1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "gc/parallel/gcTaskManager.hpp"
  34 #include "gc/parallel/parallelArguments.hpp"
  35 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  36 #include "gc/parallel/parMarkBitMap.inline.hpp"
  37 #include "gc/parallel/pcTasks.hpp"
  38 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  39 #include "gc/parallel/psCompactionManager.inline.hpp"
  40 #include "gc/parallel/psOldGen.hpp"
  41 #include "gc/parallel/psParallelCompact.inline.hpp"
  42 #include "gc/parallel/psPromotionManager.inline.hpp"
  43 #include "gc/parallel/psScavenge.hpp"
  44 #include "gc/parallel/psYoungGen.hpp"
  45 #include "gc/shared/gcCause.hpp"
  46 #include "gc/shared/gcHeapSummary.hpp"
  47 #include "gc/shared/gcId.hpp"
  48 #include "gc/shared/gcLocker.hpp"
  49 #include "gc/shared/gcTimer.hpp"
  50 #include "gc/shared/gcTrace.hpp"
  51 #include "gc/shared/gcTraceTime.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/referencePolicy.hpp"
  54 #include "gc/shared/referenceProcessor.hpp"
  55 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  56 #include "gc/shared/spaceDecorator.hpp"
  57 #include "gc/shared/weakProcessor.hpp"
  58 #include "logging/log.hpp"
  59 #include "memory/iterator.inline.hpp"
  60 #include "memory/resourceArea.hpp"
  61 #include "memory/universe.hpp"
  62 #include "oops/access.inline.hpp"
  63 #include "oops/instanceClassLoaderKlass.inline.hpp"
  64 #include "oops/instanceKlass.inline.hpp"
  65 #include "oops/instanceMirrorKlass.inline.hpp"
  66 #include "oops/methodData.hpp"
  67 #include "oops/objArrayKlass.inline.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.hpp"
  70 #include "runtime/handles.inline.hpp"
  71 #include "runtime/safepoint.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "services/management.hpp"
  74 #include "services/memTracker.hpp"
  75 #include "services/memoryService.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/debug.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/formatBuffer.hpp"
  80 #include "utilities/macros.hpp"
  81 #include "utilities/stack.inline.hpp"
  82 #if INCLUDE_JVMCI
  83 #include "jvmci/jvmci.hpp"
  84 #endif
  85 
  86 #include <math.h>
  87 
  88 // All sizes are in HeapWords.
  89 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  90 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  91 const size_t ParallelCompactData::RegionSizeBytes =
  92   RegionSize << LogHeapWordSize;
  93 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  94 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  95 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  96 
  97 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  98 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  99 const size_t ParallelCompactData::BlockSizeBytes  =
 100   BlockSize << LogHeapWordSize;
 101 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
 102 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
 103 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
 104 
 105 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
 106 const size_t ParallelCompactData::Log2BlocksPerRegion =
 107   Log2RegionSize - Log2BlockSize;
 108 
 109 const ParallelCompactData::RegionData::region_sz_t
 110 ParallelCompactData::RegionData::dc_shift = 27;
 111 
 112 const ParallelCompactData::RegionData::region_sz_t
 113 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 114 
 115 const ParallelCompactData::RegionData::region_sz_t
 116 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 117 
 118 const ParallelCompactData::RegionData::region_sz_t
 119 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 120 
 121 const ParallelCompactData::RegionData::region_sz_t
 122 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 123 
 124 const ParallelCompactData::RegionData::region_sz_t
 125 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 126 
 127 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 128 
 129 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer;
 130 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 131 
 132 double PSParallelCompact::_dwl_mean;
 133 double PSParallelCompact::_dwl_std_dev;
 134 double PSParallelCompact::_dwl_first_term;
 135 double PSParallelCompact::_dwl_adjustment;
 136 #ifdef  ASSERT
 137 bool   PSParallelCompact::_dwl_initialized = false;
 138 #endif  // #ifdef ASSERT
 139 
 140 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 141                        HeapWord* destination)
 142 {
 143   assert(src_region_idx != 0, "invalid src_region_idx");
 144   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 145   assert(destination != NULL, "invalid destination argument");
 146 
 147   _src_region_idx = src_region_idx;
 148   _partial_obj_size = partial_obj_size;
 149   _destination = destination;
 150 
 151   // These fields may not be updated below, so make sure they're clear.
 152   assert(_dest_region_addr == NULL, "should have been cleared");
 153   assert(_first_src_addr == NULL, "should have been cleared");
 154 
 155   // Determine the number of destination regions for the partial object.
 156   HeapWord* const last_word = destination + partial_obj_size - 1;
 157   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 158   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 159   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 160 
 161   if (beg_region_addr == end_region_addr) {
 162     // One destination region.
 163     _destination_count = 1;
 164     if (end_region_addr == destination) {
 165       // The destination falls on a region boundary, thus the first word of the
 166       // partial object will be the first word copied to the destination region.
 167       _dest_region_addr = end_region_addr;
 168       _first_src_addr = sd.region_to_addr(src_region_idx);
 169     }
 170   } else {
 171     // Two destination regions.  When copied, the partial object will cross a
 172     // destination region boundary, so a word somewhere within the partial
 173     // object will be the first word copied to the second destination region.
 174     _destination_count = 2;
 175     _dest_region_addr = end_region_addr;
 176     const size_t ofs = pointer_delta(end_region_addr, destination);
 177     assert(ofs < _partial_obj_size, "sanity");
 178     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 179   }
 180 }
 181 
 182 void SplitInfo::clear()
 183 {
 184   _src_region_idx = 0;
 185   _partial_obj_size = 0;
 186   _destination = NULL;
 187   _destination_count = 0;
 188   _dest_region_addr = NULL;
 189   _first_src_addr = NULL;
 190   assert(!is_valid(), "sanity");
 191 }
 192 
 193 #ifdef  ASSERT
 194 void SplitInfo::verify_clear()
 195 {
 196   assert(_src_region_idx == 0, "not clear");
 197   assert(_partial_obj_size == 0, "not clear");
 198   assert(_destination == NULL, "not clear");
 199   assert(_destination_count == 0, "not clear");
 200   assert(_dest_region_addr == NULL, "not clear");
 201   assert(_first_src_addr == NULL, "not clear");
 202 }
 203 #endif  // #ifdef ASSERT
 204 
 205 
 206 void PSParallelCompact::print_on_error(outputStream* st) {
 207   _mark_bitmap.print_on_error(st);
 208 }
 209 
 210 #ifndef PRODUCT
 211 const char* PSParallelCompact::space_names[] = {
 212   "old ", "eden", "from", "to  "
 213 };
 214 
 215 void PSParallelCompact::print_region_ranges() {
 216   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 217     return;
 218   }
 219   Log(gc, compaction) log;
 220   ResourceMark rm;
 221   LogStream ls(log.trace());
 222   Universe::print_on(&ls);
 223   log.trace("space  bottom     top        end        new_top");
 224   log.trace("------ ---------- ---------- ---------- ----------");
 225 
 226   for (unsigned int id = 0; id < last_space_id; ++id) {
 227     const MutableSpace* space = _space_info[id].space();
 228     log.trace("%u %s "
 229               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 230               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 231               id, space_names[id],
 232               summary_data().addr_to_region_idx(space->bottom()),
 233               summary_data().addr_to_region_idx(space->top()),
 234               summary_data().addr_to_region_idx(space->end()),
 235               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 236   }
 237 }
 238 
 239 void
 240 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 241 {
 242 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 243 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 244 
 245   ParallelCompactData& sd = PSParallelCompact::summary_data();
 246   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 247   log_develop_trace(gc, compaction)(
 248       REGION_IDX_FORMAT " " PTR_FORMAT " "
 249       REGION_IDX_FORMAT " " PTR_FORMAT " "
 250       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 251       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 252       i, p2i(c->data_location()), dci, p2i(c->destination()),
 253       c->partial_obj_size(), c->live_obj_size(),
 254       c->data_size(), c->source_region(), c->destination_count());
 255 
 256 #undef  REGION_IDX_FORMAT
 257 #undef  REGION_DATA_FORMAT
 258 }
 259 
 260 void
 261 print_generic_summary_data(ParallelCompactData& summary_data,
 262                            HeapWord* const beg_addr,
 263                            HeapWord* const end_addr)
 264 {
 265   size_t total_words = 0;
 266   size_t i = summary_data.addr_to_region_idx(beg_addr);
 267   const size_t last = summary_data.addr_to_region_idx(end_addr);
 268   HeapWord* pdest = 0;
 269 
 270   while (i < last) {
 271     ParallelCompactData::RegionData* c = summary_data.region(i);
 272     if (c->data_size() != 0 || c->destination() != pdest) {
 273       print_generic_summary_region(i, c);
 274       total_words += c->data_size();
 275       pdest = c->destination();
 276     }
 277     ++i;
 278   }
 279 
 280   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 281 }
 282 
 283 void
 284 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
 285                                               HeapWord* const beg_addr,
 286                                               HeapWord* const end_addr) {
 287   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
 288 }
 289 
 290 void
 291 print_generic_summary_data(ParallelCompactData& summary_data,
 292                            SpaceInfo* space_info)
 293 {
 294   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 295     return;
 296   }
 297 
 298   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 299     const MutableSpace* space = space_info[id].space();
 300     print_generic_summary_data(summary_data, space->bottom(),
 301                                MAX2(space->top(), space_info[id].new_top()));
 302   }
 303 }
 304 
 305 void
 306 print_initial_summary_data(ParallelCompactData& summary_data,
 307                            const MutableSpace* space) {
 308   if (space->top() == space->bottom()) {
 309     return;
 310   }
 311 
 312   const size_t region_size = ParallelCompactData::RegionSize;
 313   typedef ParallelCompactData::RegionData RegionData;
 314   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 315   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 316   const RegionData* c = summary_data.region(end_region - 1);
 317   HeapWord* end_addr = c->destination() + c->data_size();
 318   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 319 
 320   // Print (and count) the full regions at the beginning of the space.
 321   size_t full_region_count = 0;
 322   size_t i = summary_data.addr_to_region_idx(space->bottom());
 323   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 324     ParallelCompactData::RegionData* c = summary_data.region(i);
 325     log_develop_trace(gc, compaction)(
 326         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 327         i, p2i(c->destination()),
 328         c->partial_obj_size(), c->live_obj_size(),
 329         c->data_size(), c->source_region(), c->destination_count());
 330     ++full_region_count;
 331     ++i;
 332   }
 333 
 334   size_t live_to_right = live_in_space - full_region_count * region_size;
 335 
 336   double max_reclaimed_ratio = 0.0;
 337   size_t max_reclaimed_ratio_region = 0;
 338   size_t max_dead_to_right = 0;
 339   size_t max_live_to_right = 0;
 340 
 341   // Print the 'reclaimed ratio' for regions while there is something live in
 342   // the region or to the right of it.  The remaining regions are empty (and
 343   // uninteresting), and computing the ratio will result in division by 0.
 344   while (i < end_region && live_to_right > 0) {
 345     c = summary_data.region(i);
 346     HeapWord* const region_addr = summary_data.region_to_addr(i);
 347     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 348     const size_t dead_to_right = used_to_right - live_to_right;
 349     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 350 
 351     if (reclaimed_ratio > max_reclaimed_ratio) {
 352             max_reclaimed_ratio = reclaimed_ratio;
 353             max_reclaimed_ratio_region = i;
 354             max_dead_to_right = dead_to_right;
 355             max_live_to_right = live_to_right;
 356     }
 357 
 358     ParallelCompactData::RegionData* c = summary_data.region(i);
 359     log_develop_trace(gc, compaction)(
 360         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 361         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 362         i, p2i(c->destination()),
 363         c->partial_obj_size(), c->live_obj_size(),
 364         c->data_size(), c->source_region(), c->destination_count(),
 365         reclaimed_ratio, dead_to_right, live_to_right);
 366 
 367 
 368     live_to_right -= c->data_size();
 369     ++i;
 370   }
 371 
 372   // Any remaining regions are empty.  Print one more if there is one.
 373   if (i < end_region) {
 374     ParallelCompactData::RegionData* c = summary_data.region(i);
 375     log_develop_trace(gc, compaction)(
 376         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 377          i, p2i(c->destination()),
 378          c->partial_obj_size(), c->live_obj_size(),
 379          c->data_size(), c->source_region(), c->destination_count());
 380   }
 381 
 382   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 383                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 384 }
 385 
 386 void
 387 print_initial_summary_data(ParallelCompactData& summary_data,
 388                            SpaceInfo* space_info) {
 389   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 390     return;
 391   }
 392 
 393   unsigned int id = PSParallelCompact::old_space_id;
 394   const MutableSpace* space;
 395   do {
 396     space = space_info[id].space();
 397     print_initial_summary_data(summary_data, space);
 398   } while (++id < PSParallelCompact::eden_space_id);
 399 
 400   do {
 401     space = space_info[id].space();
 402     print_generic_summary_data(summary_data, space->bottom(), space->top());
 403   } while (++id < PSParallelCompact::last_space_id);
 404 }
 405 #endif  // #ifndef PRODUCT
 406 
 407 #ifdef  ASSERT
 408 size_t add_obj_count;
 409 size_t add_obj_size;
 410 size_t mark_bitmap_count;
 411 size_t mark_bitmap_size;
 412 #endif  // #ifdef ASSERT
 413 
 414 ParallelCompactData::ParallelCompactData() :
 415   _region_start(NULL),
 416   DEBUG_ONLY(_region_end(NULL) COMMA)
 417   _region_vspace(NULL),
 418   _reserved_byte_size(0),
 419   _region_data(NULL),
 420   _region_count(0),
 421   _block_vspace(NULL),
 422   _block_data(NULL),
 423   _block_count(0) {}
 424 
 425 bool ParallelCompactData::initialize(MemRegion covered_region)
 426 {
 427   _region_start = covered_region.start();
 428   const size_t region_size = covered_region.word_size();
 429   DEBUG_ONLY(_region_end = _region_start + region_size;)
 430 
 431   assert(region_align_down(_region_start) == _region_start,
 432          "region start not aligned");
 433   assert((region_size & RegionSizeOffsetMask) == 0,
 434          "region size not a multiple of RegionSize");
 435 
 436   bool result = initialize_region_data(region_size) && initialize_block_data();
 437   return result;
 438 }
 439 
 440 PSVirtualSpace*
 441 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 442 {
 443   const size_t raw_bytes = count * element_size;
 444   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 445   const size_t granularity = os::vm_allocation_granularity();
 446   _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
 447 
 448   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 449     MAX2(page_sz, granularity);
 450   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 451   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
 452                        rs.size());
 453 
 454   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 455 
 456   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 457   if (vspace != 0) {
 458     if (vspace->expand_by(_reserved_byte_size)) {
 459       return vspace;
 460     }
 461     delete vspace;
 462     // Release memory reserved in the space.
 463     rs.release();
 464   }
 465 
 466   return 0;
 467 }
 468 
 469 bool ParallelCompactData::initialize_region_data(size_t region_size)
 470 {
 471   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 472   _region_vspace = create_vspace(count, sizeof(RegionData));
 473   if (_region_vspace != 0) {
 474     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 475     _region_count = count;
 476     return true;
 477   }
 478   return false;
 479 }
 480 
 481 bool ParallelCompactData::initialize_block_data()
 482 {
 483   assert(_region_count != 0, "region data must be initialized first");
 484   const size_t count = _region_count << Log2BlocksPerRegion;
 485   _block_vspace = create_vspace(count, sizeof(BlockData));
 486   if (_block_vspace != 0) {
 487     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 488     _block_count = count;
 489     return true;
 490   }
 491   return false;
 492 }
 493 
 494 void ParallelCompactData::clear()
 495 {
 496   memset(_region_data, 0, _region_vspace->committed_size());
 497   memset(_block_data, 0, _block_vspace->committed_size());
 498 }
 499 
 500 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 501   assert(beg_region <= _region_count, "beg_region out of range");
 502   assert(end_region <= _region_count, "end_region out of range");
 503   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 504 
 505   const size_t region_cnt = end_region - beg_region;
 506   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 507 
 508   const size_t beg_block = beg_region * BlocksPerRegion;
 509   const size_t block_cnt = region_cnt * BlocksPerRegion;
 510   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 511 }
 512 
 513 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 514 {
 515   const RegionData* cur_cp = region(region_idx);
 516   const RegionData* const end_cp = region(region_count() - 1);
 517 
 518   HeapWord* result = region_to_addr(region_idx);
 519   if (cur_cp < end_cp) {
 520     do {
 521       result += cur_cp->partial_obj_size();
 522     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 523   }
 524   return result;
 525 }
 526 
 527 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 528 {
 529   const size_t obj_ofs = pointer_delta(addr, _region_start);
 530   const size_t beg_region = obj_ofs >> Log2RegionSize;
 531   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 532 
 533   DEBUG_ONLY(Atomic::inc(&add_obj_count);)
 534   DEBUG_ONLY(Atomic::add(len, &add_obj_size);)
 535 
 536   if (beg_region == end_region) {
 537     // All in one region.
 538     _region_data[beg_region].add_live_obj(len);
 539     return;
 540   }
 541 
 542   // First region.
 543   const size_t beg_ofs = region_offset(addr);
 544   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 545 
 546   Klass* klass = ((oop)addr)->klass();
 547   // Middle regions--completely spanned by this object.
 548   for (size_t region = beg_region + 1; region < end_region; ++region) {
 549     _region_data[region].set_partial_obj_size(RegionSize);
 550     _region_data[region].set_partial_obj_addr(addr);
 551   }
 552 
 553   // Last region.
 554   const size_t end_ofs = region_offset(addr + len - 1);
 555   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 556   _region_data[end_region].set_partial_obj_addr(addr);
 557 }
 558 
 559 void
 560 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 561 {
 562   assert(region_offset(beg) == 0, "not RegionSize aligned");
 563   assert(region_offset(end) == 0, "not RegionSize aligned");
 564 
 565   size_t cur_region = addr_to_region_idx(beg);
 566   const size_t end_region = addr_to_region_idx(end);
 567   HeapWord* addr = beg;
 568   while (cur_region < end_region) {
 569     _region_data[cur_region].set_destination(addr);
 570     _region_data[cur_region].set_destination_count(0);
 571     _region_data[cur_region].set_source_region(cur_region);
 572     _region_data[cur_region].set_data_location(addr);
 573 
 574     // Update live_obj_size so the region appears completely full.
 575     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 576     _region_data[cur_region].set_live_obj_size(live_size);
 577 
 578     ++cur_region;
 579     addr += RegionSize;
 580   }
 581 }
 582 
 583 // Find the point at which a space can be split and, if necessary, record the
 584 // split point.
 585 //
 586 // If the current src region (which overflowed the destination space) doesn't
 587 // have a partial object, the split point is at the beginning of the current src
 588 // region (an "easy" split, no extra bookkeeping required).
 589 //
 590 // If the current src region has a partial object, the split point is in the
 591 // region where that partial object starts (call it the split_region).  If
 592 // split_region has a partial object, then the split point is just after that
 593 // partial object (a "hard" split where we have to record the split data and
 594 // zero the partial_obj_size field).  With a "hard" split, we know that the
 595 // partial_obj ends within split_region because the partial object that caused
 596 // the overflow starts in split_region.  If split_region doesn't have a partial
 597 // obj, then the split is at the beginning of split_region (another "easy"
 598 // split).
 599 HeapWord*
 600 ParallelCompactData::summarize_split_space(size_t src_region,
 601                                            SplitInfo& split_info,
 602                                            HeapWord* destination,
 603                                            HeapWord* target_end,
 604                                            HeapWord** target_next)
 605 {
 606   assert(destination <= target_end, "sanity");
 607   assert(destination + _region_data[src_region].data_size() > target_end,
 608     "region should not fit into target space");
 609   assert(is_region_aligned(target_end), "sanity");
 610 
 611   size_t split_region = src_region;
 612   HeapWord* split_destination = destination;
 613   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 614 
 615   if (destination + partial_obj_size > target_end) {
 616     // The split point is just after the partial object (if any) in the
 617     // src_region that contains the start of the object that overflowed the
 618     // destination space.
 619     //
 620     // Find the start of the "overflow" object and set split_region to the
 621     // region containing it.
 622     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 623     split_region = addr_to_region_idx(overflow_obj);
 624 
 625     // Clear the source_region field of all destination regions whose first word
 626     // came from data after the split point (a non-null source_region field
 627     // implies a region must be filled).
 628     //
 629     // An alternative to the simple loop below:  clear during post_compact(),
 630     // which uses memcpy instead of individual stores, and is easy to
 631     // parallelize.  (The downside is that it clears the entire RegionData
 632     // object as opposed to just one field.)
 633     //
 634     // post_compact() would have to clear the summary data up to the highest
 635     // address that was written during the summary phase, which would be
 636     //
 637     //         max(top, max(new_top, clear_top))
 638     //
 639     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 640     // to target_end.
 641     const RegionData* const sr = region(split_region);
 642     const size_t beg_idx =
 643       addr_to_region_idx(region_align_up(sr->destination() +
 644                                          sr->partial_obj_size()));
 645     const size_t end_idx = addr_to_region_idx(target_end);
 646 
 647     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 648     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 649       _region_data[idx].set_source_region(0);
 650     }
 651 
 652     // Set split_destination and partial_obj_size to reflect the split region.
 653     split_destination = sr->destination();
 654     partial_obj_size = sr->partial_obj_size();
 655   }
 656 
 657   // The split is recorded only if a partial object extends onto the region.
 658   if (partial_obj_size != 0) {
 659     _region_data[split_region].set_partial_obj_size(0);
 660     split_info.record(split_region, partial_obj_size, split_destination);
 661   }
 662 
 663   // Setup the continuation addresses.
 664   *target_next = split_destination + partial_obj_size;
 665   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 666 
 667   if (log_develop_is_enabled(Trace, gc, compaction)) {
 668     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 669     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 670                                       split_type, p2i(source_next), split_region, partial_obj_size);
 671     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 672                                       split_type, p2i(split_destination),
 673                                       addr_to_region_idx(split_destination),
 674                                       p2i(*target_next));
 675 
 676     if (partial_obj_size != 0) {
 677       HeapWord* const po_beg = split_info.destination();
 678       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 679       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 680                                         split_type,
 681                                         p2i(po_beg), addr_to_region_idx(po_beg),
 682                                         p2i(po_end), addr_to_region_idx(po_end));
 683     }
 684   }
 685 
 686   return source_next;
 687 }
 688 
 689 bool ParallelCompactData::summarize(SplitInfo& split_info,
 690                                     HeapWord* source_beg, HeapWord* source_end,
 691                                     HeapWord** source_next,
 692                                     HeapWord* target_beg, HeapWord* target_end,
 693                                     HeapWord** target_next)
 694 {
 695   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 696   log_develop_trace(gc, compaction)(
 697       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 698       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 699       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 700       p2i(target_beg), p2i(target_end), p2i(*target_next));
 701 
 702   size_t cur_region = addr_to_region_idx(source_beg);
 703   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 704 
 705   HeapWord *dest_addr = target_beg;
 706   while (cur_region < end_region) {
 707     // The destination must be set even if the region has no data.
 708     _region_data[cur_region].set_destination(dest_addr);
 709 
 710     size_t words = _region_data[cur_region].data_size();
 711     if (words > 0) {
 712       // If cur_region does not fit entirely into the target space, find a point
 713       // at which the source space can be 'split' so that part is copied to the
 714       // target space and the rest is copied elsewhere.
 715       if (dest_addr + words > target_end) {
 716         assert(source_next != NULL, "source_next is NULL when splitting");
 717         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 718                                              target_end, target_next);
 719         return false;
 720       }
 721 
 722       // Compute the destination_count for cur_region, and if necessary, update
 723       // source_region for a destination region.  The source_region field is
 724       // updated if cur_region is the first (left-most) region to be copied to a
 725       // destination region.
 726       //
 727       // The destination_count calculation is a bit subtle.  A region that has
 728       // data that compacts into itself does not count itself as a destination.
 729       // This maintains the invariant that a zero count means the region is
 730       // available and can be claimed and then filled.
 731       uint destination_count = 0;
 732       if (split_info.is_split(cur_region)) {
 733         // The current region has been split:  the partial object will be copied
 734         // to one destination space and the remaining data will be copied to
 735         // another destination space.  Adjust the initial destination_count and,
 736         // if necessary, set the source_region field if the partial object will
 737         // cross a destination region boundary.
 738         destination_count = split_info.destination_count();
 739         if (destination_count == 2) {
 740           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 741           _region_data[dest_idx].set_source_region(cur_region);
 742         }
 743       }
 744 
 745       HeapWord* const last_addr = dest_addr + words - 1;
 746       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 747       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 748 
 749       // Initially assume that the destination regions will be the same and
 750       // adjust the value below if necessary.  Under this assumption, if
 751       // cur_region == dest_region_2, then cur_region will be compacted
 752       // completely into itself.
 753       destination_count += cur_region == dest_region_2 ? 0 : 1;
 754       if (dest_region_1 != dest_region_2) {
 755         // Destination regions differ; adjust destination_count.
 756         destination_count += 1;
 757         // Data from cur_region will be copied to the start of dest_region_2.
 758         _region_data[dest_region_2].set_source_region(cur_region);
 759       } else if (region_offset(dest_addr) == 0) {
 760         // Data from cur_region will be copied to the start of the destination
 761         // region.
 762         _region_data[dest_region_1].set_source_region(cur_region);
 763       }
 764 
 765       _region_data[cur_region].set_destination_count(destination_count);
 766       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 767       dest_addr += words;
 768     }
 769 
 770     ++cur_region;
 771   }
 772 
 773   *target_next = dest_addr;
 774   return true;
 775 }
 776 
 777 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
 778   assert(addr != NULL, "Should detect NULL oop earlier");
 779   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 780   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 781 
 782   // Region covering the object.
 783   RegionData* const region_ptr = addr_to_region_ptr(addr);
 784   HeapWord* result = region_ptr->destination();
 785 
 786   // If the entire Region is live, the new location is region->destination + the
 787   // offset of the object within in the Region.
 788 
 789   // Run some performance tests to determine if this special case pays off.  It
 790   // is worth it for pointers into the dense prefix.  If the optimization to
 791   // avoid pointer updates in regions that only point to the dense prefix is
 792   // ever implemented, this should be revisited.
 793   if (region_ptr->data_size() == RegionSize) {
 794     result += region_offset(addr);
 795     return result;
 796   }
 797 
 798   // Otherwise, the new location is region->destination + block offset + the
 799   // number of live words in the Block that are (a) to the left of addr and (b)
 800   // due to objects that start in the Block.
 801 
 802   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 803   // threads may fill the block table for a region (harmless, since it is
 804   // idempotent).
 805   if (!region_ptr->blocks_filled()) {
 806     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 807     region_ptr->set_blocks_filled();
 808   }
 809 
 810   HeapWord* const search_start = block_align_down(addr);
 811   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 812 
 813   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 814   const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
 815   result += block_offset + live;
 816   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 817   return result;
 818 }
 819 
 820 #ifdef ASSERT
 821 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 822 {
 823   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 824   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 825   for (const size_t* p = beg; p < end; ++p) {
 826     assert(*p == 0, "not zero");
 827   }
 828 }
 829 
 830 void ParallelCompactData::verify_clear()
 831 {
 832   verify_clear(_region_vspace);
 833   verify_clear(_block_vspace);
 834 }
 835 #endif  // #ifdef ASSERT
 836 
 837 STWGCTimer          PSParallelCompact::_gc_timer;
 838 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 839 elapsedTimer        PSParallelCompact::_accumulated_time;
 840 unsigned int        PSParallelCompact::_total_invocations = 0;
 841 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 842 jlong               PSParallelCompact::_time_of_last_gc = 0;
 843 CollectorCounters*  PSParallelCompact::_counters = NULL;
 844 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 845 ParallelCompactData PSParallelCompact::_summary_data;
 846 
 847 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 848 
 849 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 850 
 851 class PCReferenceProcessor: public ReferenceProcessor {
 852 public:
 853   PCReferenceProcessor(
 854     BoolObjectClosure* is_subject_to_discovery,
 855     BoolObjectClosure* is_alive_non_header) :
 856       ReferenceProcessor(is_subject_to_discovery,
 857       ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 858       ParallelGCThreads,   // mt processing degree
 859       true,                // mt discovery
 860       ParallelGCThreads,   // mt discovery degree
 861       true,                // atomic_discovery
 862       is_alive_non_header) {
 863   }
 864 
 865   template<typename T> bool discover(oop obj, ReferenceType type) {
 866     T* referent_addr = (T*) java_lang_ref_Reference::referent_addr_raw(obj);
 867     T heap_oop = RawAccess<>::oop_load(referent_addr);
 868     oop referent = CompressedOops::decode_not_null(heap_oop);
 869     return PSParallelCompact::mark_bitmap()->is_unmarked(referent)
 870         && ReferenceProcessor::discover_reference(obj, type);
 871   }
 872   virtual bool discover_reference(oop obj, ReferenceType type) {
 873     if (UseCompressedOops) {
 874       return discover<narrowOop>(obj, type);
 875     } else {
 876       return discover<oop>(obj, type);
 877     }
 878   }
 879 };
 880 
 881 void PSParallelCompact::post_initialize() {
 882   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 883   _span_based_discoverer.set_span(heap->reserved_region());
 884   _ref_processor =
 885     new PCReferenceProcessor(&_span_based_discoverer,
 886                              &_is_alive_closure); // non-header is alive closure
 887 
 888   _counters = new CollectorCounters("Parallel full collection pauses", 1);
 889 
 890   // Initialize static fields in ParCompactionManager.
 891   ParCompactionManager::initialize(mark_bitmap());
 892 }
 893 
 894 bool PSParallelCompact::initialize() {
 895   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 896   MemRegion mr = heap->reserved_region();
 897 
 898   // Was the old gen get allocated successfully?
 899   if (!heap->old_gen()->is_allocated()) {
 900     return false;
 901   }
 902 
 903   initialize_space_info();
 904   initialize_dead_wood_limiter();
 905 
 906   if (!_mark_bitmap.initialize(mr)) {
 907     vm_shutdown_during_initialization(
 908       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 909       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 910       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 911     return false;
 912   }
 913 
 914   if (!_summary_data.initialize(mr)) {
 915     vm_shutdown_during_initialization(
 916       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 917       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 918       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 919     return false;
 920   }
 921 
 922   return true;
 923 }
 924 
 925 void PSParallelCompact::initialize_space_info()
 926 {
 927   memset(&_space_info, 0, sizeof(_space_info));
 928 
 929   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 930   PSYoungGen* young_gen = heap->young_gen();
 931 
 932   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 933   _space_info[eden_space_id].set_space(young_gen->eden_space());
 934   _space_info[from_space_id].set_space(young_gen->from_space());
 935   _space_info[to_space_id].set_space(young_gen->to_space());
 936 
 937   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 938 }
 939 
 940 void PSParallelCompact::initialize_dead_wood_limiter()
 941 {
 942   const size_t max = 100;
 943   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 944   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 945   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 946   DEBUG_ONLY(_dwl_initialized = true;)
 947   _dwl_adjustment = normal_distribution(1.0);
 948 }
 949 
 950 void
 951 PSParallelCompact::clear_data_covering_space(SpaceId id)
 952 {
 953   // At this point, top is the value before GC, new_top() is the value that will
 954   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 955   // should be marked above top.  The summary data is cleared to the larger of
 956   // top & new_top.
 957   MutableSpace* const space = _space_info[id].space();
 958   HeapWord* const bot = space->bottom();
 959   HeapWord* const top = space->top();
 960   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 961 
 962   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 963   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 964   _mark_bitmap.clear_range(beg_bit, end_bit);
 965 
 966   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 967   const size_t end_region =
 968     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 969   _summary_data.clear_range(beg_region, end_region);
 970 
 971   // Clear the data used to 'split' regions.
 972   SplitInfo& split_info = _space_info[id].split_info();
 973   if (split_info.is_valid()) {
 974     split_info.clear();
 975   }
 976   DEBUG_ONLY(split_info.verify_clear();)
 977 }
 978 
 979 void PSParallelCompact::pre_compact()
 980 {
 981   // Update the from & to space pointers in space_info, since they are swapped
 982   // at each young gen gc.  Do the update unconditionally (even though a
 983   // promotion failure does not swap spaces) because an unknown number of young
 984   // collections will have swapped the spaces an unknown number of times.
 985   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 986   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 987   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 988   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 989 
 990   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 991   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 992 
 993   // Increment the invocation count
 994   heap->increment_total_collections(true);
 995 
 996   // We need to track unique mark sweep invocations as well.
 997   _total_invocations++;
 998 
 999   heap->print_heap_before_gc();
1000   heap->trace_heap_before_gc(&_gc_tracer);
1001 
1002   // Fill in TLABs
1003   heap->ensure_parsability(true);  // retire TLABs
1004 
1005   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
1006     HandleMark hm;  // Discard invalid handles created during verification
1007     Universe::verify("Before GC");
1008   }
1009 
1010   // Verify object start arrays
1011   if (VerifyObjectStartArray &&
1012       VerifyBeforeGC) {
1013     heap->old_gen()->verify_object_start_array();
1014   }
1015 
1016   DEBUG_ONLY(mark_bitmap()->verify_clear();)
1017   DEBUG_ONLY(summary_data().verify_clear();)
1018 
1019   // Have worker threads release resources the next time they run a task.
1020   gc_task_manager()->release_all_resources();
1021 
1022   ParCompactionManager::reset_all_bitmap_query_caches();
1023 }
1024 
1025 void PSParallelCompact::post_compact()
1026 {
1027   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
1028 
1029   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1030     // Clear the marking bitmap, summary data and split info.
1031     clear_data_covering_space(SpaceId(id));
1032     // Update top().  Must be done after clearing the bitmap and summary data.
1033     _space_info[id].publish_new_top();
1034   }
1035 
1036   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1037   MutableSpace* const from_space = _space_info[from_space_id].space();
1038   MutableSpace* const to_space   = _space_info[to_space_id].space();
1039 
1040   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1041   bool eden_empty = eden_space->is_empty();
1042   if (!eden_empty) {
1043     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1044                                             heap->young_gen(), heap->old_gen());
1045   }
1046 
1047   // Update heap occupancy information which is used as input to the soft ref
1048   // clearing policy at the next gc.
1049   Universe::update_heap_info_at_gc();
1050 
1051   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1052     to_space->is_empty();
1053 
1054   PSCardTable* ct = heap->card_table();
1055   MemRegion old_mr = heap->old_gen()->reserved();
1056   if (young_gen_empty) {
1057     ct->clear(MemRegion(old_mr.start(), old_mr.end()));
1058   } else {
1059     ct->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1060   }
1061 
1062   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1063   ClassLoaderDataGraph::purge();
1064   DEBUG_ONLY(MetaspaceUtils::verify(false);)
1065 
1066   heap->prune_scavengable_nmethods();
1067 
1068 #if COMPILER2_OR_JVMCI
1069   DerivedPointerTable::update_pointers();
1070 #endif
1071 
1072   if (ZapUnusedHeapArea) {
1073     heap->gen_mangle_unused_area();
1074   }
1075 
1076   // Update time of last GC
1077   reset_millis_since_last_gc();
1078 }
1079 
1080 HeapWord*
1081 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1082                                                     bool maximum_compaction)
1083 {
1084   const size_t region_size = ParallelCompactData::RegionSize;
1085   const ParallelCompactData& sd = summary_data();
1086 
1087   const MutableSpace* const space = _space_info[id].space();
1088   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1089   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1090   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1091 
1092   // Skip full regions at the beginning of the space--they are necessarily part
1093   // of the dense prefix.
1094   size_t full_count = 0;
1095   const RegionData* cp;
1096   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1097     ++full_count;
1098   }
1099 
1100   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1101   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1102   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1103   if (maximum_compaction || cp == end_cp || interval_ended) {
1104     _maximum_compaction_gc_num = total_invocations();
1105     return sd.region_to_addr(cp);
1106   }
1107 
1108   HeapWord* const new_top = _space_info[id].new_top();
1109   const size_t space_live = pointer_delta(new_top, space->bottom());
1110   const size_t space_used = space->used_in_words();
1111   const size_t space_capacity = space->capacity_in_words();
1112 
1113   const double cur_density = double(space_live) / space_capacity;
1114   const double deadwood_density =
1115     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1116   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1117 
1118   if (TraceParallelOldGCDensePrefix) {
1119     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1120                   cur_density, deadwood_density, deadwood_goal);
1121     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1122                   "space_cap=" SIZE_FORMAT,
1123                   space_live, space_used,
1124                   space_capacity);
1125   }
1126 
1127   // XXX - Use binary search?
1128   HeapWord* dense_prefix = sd.region_to_addr(cp);
1129   const RegionData* full_cp = cp;
1130   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1131   while (cp < end_cp) {
1132     HeapWord* region_destination = cp->destination();
1133     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1134     if (TraceParallelOldGCDensePrefix && Verbose) {
1135       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1136                     "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1137                     sd.region(cp), p2i(region_destination),
1138                     p2i(dense_prefix), cur_deadwood);
1139     }
1140 
1141     if (cur_deadwood >= deadwood_goal) {
1142       // Found the region that has the correct amount of deadwood to the left.
1143       // This typically occurs after crossing a fairly sparse set of regions, so
1144       // iterate backwards over those sparse regions, looking for the region
1145       // that has the lowest density of live objects 'to the right.'
1146       size_t space_to_left = sd.region(cp) * region_size;
1147       size_t live_to_left = space_to_left - cur_deadwood;
1148       size_t space_to_right = space_capacity - space_to_left;
1149       size_t live_to_right = space_live - live_to_left;
1150       double density_to_right = double(live_to_right) / space_to_right;
1151       while (cp > full_cp) {
1152         --cp;
1153         const size_t prev_region_live_to_right = live_to_right -
1154           cp->data_size();
1155         const size_t prev_region_space_to_right = space_to_right + region_size;
1156         double prev_region_density_to_right =
1157           double(prev_region_live_to_right) / prev_region_space_to_right;
1158         if (density_to_right <= prev_region_density_to_right) {
1159           return dense_prefix;
1160         }
1161         if (TraceParallelOldGCDensePrefix && Verbose) {
1162           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1163                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1164                         prev_region_density_to_right);
1165         }
1166         dense_prefix -= region_size;
1167         live_to_right = prev_region_live_to_right;
1168         space_to_right = prev_region_space_to_right;
1169         density_to_right = prev_region_density_to_right;
1170       }
1171       return dense_prefix;
1172     }
1173 
1174     dense_prefix += region_size;
1175     ++cp;
1176   }
1177 
1178   return dense_prefix;
1179 }
1180 
1181 #ifndef PRODUCT
1182 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1183                                                  const SpaceId id,
1184                                                  const bool maximum_compaction,
1185                                                  HeapWord* const addr)
1186 {
1187   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1188   RegionData* const cp = summary_data().region(region_idx);
1189   const MutableSpace* const space = _space_info[id].space();
1190   HeapWord* const new_top = _space_info[id].new_top();
1191 
1192   const size_t space_live = pointer_delta(new_top, space->bottom());
1193   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1194   const size_t space_cap = space->capacity_in_words();
1195   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1196   const size_t live_to_right = new_top - cp->destination();
1197   const size_t dead_to_right = space->top() - addr - live_to_right;
1198 
1199   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1200                 "spl=" SIZE_FORMAT " "
1201                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1202                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1203                 " ratio=%10.8f",
1204                 algorithm, p2i(addr), region_idx,
1205                 space_live,
1206                 dead_to_left, dead_to_left_pct,
1207                 dead_to_right, live_to_right,
1208                 double(dead_to_right) / live_to_right);
1209 }
1210 #endif  // #ifndef PRODUCT
1211 
1212 // Return a fraction indicating how much of the generation can be treated as
1213 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1214 // based on the density of live objects in the generation to determine a limit,
1215 // which is then adjusted so the return value is min_percent when the density is
1216 // 1.
1217 //
1218 // The following table shows some return values for a different values of the
1219 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1220 // min_percent is 1.
1221 //
1222 //                          fraction allowed as dead wood
1223 //         -----------------------------------------------------------------
1224 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1225 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1226 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1227 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1228 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1229 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1230 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1231 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1232 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1233 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1234 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1235 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1236 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1237 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1238 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1239 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1240 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1241 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1242 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1243 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1244 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1245 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1246 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1247 
1248 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1249 {
1250   assert(_dwl_initialized, "uninitialized");
1251 
1252   // The raw limit is the value of the normal distribution at x = density.
1253   const double raw_limit = normal_distribution(density);
1254 
1255   // Adjust the raw limit so it becomes the minimum when the density is 1.
1256   //
1257   // First subtract the adjustment value (which is simply the precomputed value
1258   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1259   // Then add the minimum value, so the minimum is returned when the density is
1260   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1261   const double min = double(min_percent) / 100.0;
1262   const double limit = raw_limit - _dwl_adjustment + min;
1263   return MAX2(limit, 0.0);
1264 }
1265 
1266 ParallelCompactData::RegionData*
1267 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1268                                            const RegionData* end)
1269 {
1270   const size_t region_size = ParallelCompactData::RegionSize;
1271   ParallelCompactData& sd = summary_data();
1272   size_t left = sd.region(beg);
1273   size_t right = end > beg ? sd.region(end) - 1 : left;
1274 
1275   // Binary search.
1276   while (left < right) {
1277     // Equivalent to (left + right) / 2, but does not overflow.
1278     const size_t middle = left + (right - left) / 2;
1279     RegionData* const middle_ptr = sd.region(middle);
1280     HeapWord* const dest = middle_ptr->destination();
1281     HeapWord* const addr = sd.region_to_addr(middle);
1282     assert(dest != NULL, "sanity");
1283     assert(dest <= addr, "must move left");
1284 
1285     if (middle > left && dest < addr) {
1286       right = middle - 1;
1287     } else if (middle < right && middle_ptr->data_size() == region_size) {
1288       left = middle + 1;
1289     } else {
1290       return middle_ptr;
1291     }
1292   }
1293   return sd.region(left);
1294 }
1295 
1296 ParallelCompactData::RegionData*
1297 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1298                                           const RegionData* end,
1299                                           size_t dead_words)
1300 {
1301   ParallelCompactData& sd = summary_data();
1302   size_t left = sd.region(beg);
1303   size_t right = end > beg ? sd.region(end) - 1 : left;
1304 
1305   // Binary search.
1306   while (left < right) {
1307     // Equivalent to (left + right) / 2, but does not overflow.
1308     const size_t middle = left + (right - left) / 2;
1309     RegionData* const middle_ptr = sd.region(middle);
1310     HeapWord* const dest = middle_ptr->destination();
1311     HeapWord* const addr = sd.region_to_addr(middle);
1312     assert(dest != NULL, "sanity");
1313     assert(dest <= addr, "must move left");
1314 
1315     const size_t dead_to_left = pointer_delta(addr, dest);
1316     if (middle > left && dead_to_left > dead_words) {
1317       right = middle - 1;
1318     } else if (middle < right && dead_to_left < dead_words) {
1319       left = middle + 1;
1320     } else {
1321       return middle_ptr;
1322     }
1323   }
1324   return sd.region(left);
1325 }
1326 
1327 // The result is valid during the summary phase, after the initial summarization
1328 // of each space into itself, and before final summarization.
1329 inline double
1330 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1331                                    HeapWord* const bottom,
1332                                    HeapWord* const top,
1333                                    HeapWord* const new_top)
1334 {
1335   ParallelCompactData& sd = summary_data();
1336 
1337   assert(cp != NULL, "sanity");
1338   assert(bottom != NULL, "sanity");
1339   assert(top != NULL, "sanity");
1340   assert(new_top != NULL, "sanity");
1341   assert(top >= new_top, "summary data problem?");
1342   assert(new_top > bottom, "space is empty; should not be here");
1343   assert(new_top >= cp->destination(), "sanity");
1344   assert(top >= sd.region_to_addr(cp), "sanity");
1345 
1346   HeapWord* const destination = cp->destination();
1347   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1348   const size_t compacted_region_live = pointer_delta(new_top, destination);
1349   const size_t compacted_region_used = pointer_delta(top,
1350                                                      sd.region_to_addr(cp));
1351   const size_t reclaimable = compacted_region_used - compacted_region_live;
1352 
1353   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1354   return double(reclaimable) / divisor;
1355 }
1356 
1357 // Return the address of the end of the dense prefix, a.k.a. the start of the
1358 // compacted region.  The address is always on a region boundary.
1359 //
1360 // Completely full regions at the left are skipped, since no compaction can
1361 // occur in those regions.  Then the maximum amount of dead wood to allow is
1362 // computed, based on the density (amount live / capacity) of the generation;
1363 // the region with approximately that amount of dead space to the left is
1364 // identified as the limit region.  Regions between the last completely full
1365 // region and the limit region are scanned and the one that has the best
1366 // (maximum) reclaimed_ratio() is selected.
1367 HeapWord*
1368 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1369                                         bool maximum_compaction)
1370 {
1371   const size_t region_size = ParallelCompactData::RegionSize;
1372   const ParallelCompactData& sd = summary_data();
1373 
1374   const MutableSpace* const space = _space_info[id].space();
1375   HeapWord* const top = space->top();
1376   HeapWord* const top_aligned_up = sd.region_align_up(top);
1377   HeapWord* const new_top = _space_info[id].new_top();
1378   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1379   HeapWord* const bottom = space->bottom();
1380   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1381   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1382   const RegionData* const new_top_cp =
1383     sd.addr_to_region_ptr(new_top_aligned_up);
1384 
1385   // Skip full regions at the beginning of the space--they are necessarily part
1386   // of the dense prefix.
1387   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1388   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1389          space->is_empty(), "no dead space allowed to the left");
1390   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1391          "region must have dead space");
1392 
1393   // The gc number is saved whenever a maximum compaction is done, and used to
1394   // determine when the maximum compaction interval has expired.  This avoids
1395   // successive max compactions for different reasons.
1396   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1397   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1398   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1399     total_invocations() == HeapFirstMaximumCompactionCount;
1400   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1401     _maximum_compaction_gc_num = total_invocations();
1402     return sd.region_to_addr(full_cp);
1403   }
1404 
1405   const size_t space_live = pointer_delta(new_top, bottom);
1406   const size_t space_used = space->used_in_words();
1407   const size_t space_capacity = space->capacity_in_words();
1408 
1409   const double density = double(space_live) / double(space_capacity);
1410   const size_t min_percent_free = MarkSweepDeadRatio;
1411   const double limiter = dead_wood_limiter(density, min_percent_free);
1412   const size_t dead_wood_max = space_used - space_live;
1413   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1414                                       dead_wood_max);
1415 
1416   if (TraceParallelOldGCDensePrefix) {
1417     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1418                   "space_cap=" SIZE_FORMAT,
1419                   space_live, space_used,
1420                   space_capacity);
1421     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1422                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1423                   density, min_percent_free, limiter,
1424                   dead_wood_max, dead_wood_limit);
1425   }
1426 
1427   // Locate the region with the desired amount of dead space to the left.
1428   const RegionData* const limit_cp =
1429     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1430 
1431   // Scan from the first region with dead space to the limit region and find the
1432   // one with the best (largest) reclaimed ratio.
1433   double best_ratio = 0.0;
1434   const RegionData* best_cp = full_cp;
1435   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1436     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1437     if (tmp_ratio > best_ratio) {
1438       best_cp = cp;
1439       best_ratio = tmp_ratio;
1440     }
1441   }
1442 
1443   return sd.region_to_addr(best_cp);
1444 }
1445 
1446 void PSParallelCompact::summarize_spaces_quick()
1447 {
1448   for (unsigned int i = 0; i < last_space_id; ++i) {
1449     const MutableSpace* space = _space_info[i].space();
1450     HeapWord** nta = _space_info[i].new_top_addr();
1451     bool result = _summary_data.summarize(_space_info[i].split_info(),
1452                                           space->bottom(), space->top(), NULL,
1453                                           space->bottom(), space->end(), nta);
1454     assert(result, "space must fit into itself");
1455     _space_info[i].set_dense_prefix(space->bottom());
1456   }
1457 }
1458 
1459 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1460 {
1461   HeapWord* const dense_prefix_end = dense_prefix(id);
1462   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1463   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1464   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1465     // Only enough dead space is filled so that any remaining dead space to the
1466     // left is larger than the minimum filler object.  (The remainder is filled
1467     // during the copy/update phase.)
1468     //
1469     // The size of the dead space to the right of the boundary is not a
1470     // concern, since compaction will be able to use whatever space is
1471     // available.
1472     //
1473     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1474     // surrounds the space to be filled with an object.
1475     //
1476     // In the 32-bit VM, each bit represents two 32-bit words:
1477     //                              +---+
1478     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1479     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1480     //                              +---+
1481     //
1482     // In the 64-bit VM, each bit represents one 64-bit word:
1483     //                              +------------+
1484     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1485     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1486     //                              +------------+
1487     //                          +-------+
1488     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1489     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1490     //                          +-------+
1491     //                      +-----------+
1492     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1493     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1494     //                      +-----------+
1495     //                          +-------+
1496     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1497     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1498     //                          +-------+
1499 
1500     // Initially assume case a, c or e will apply.
1501     size_t obj_len = CollectedHeap::min_fill_size();
1502     HeapWord* obj_beg = dense_prefix_end - obj_len;
1503 
1504 #ifdef  _LP64
1505     if (MinObjAlignment > 1) { // object alignment > heap word size
1506       // Cases a, c or e.
1507     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1508       // Case b above.
1509       obj_beg = dense_prefix_end - 1;
1510     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1511                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1512       // Case d above.
1513       obj_beg = dense_prefix_end - 3;
1514       obj_len = 3;
1515     }
1516 #endif  // #ifdef _LP64
1517 
1518     CollectedHeap::fill_with_object(obj_beg, obj_len);
1519     _mark_bitmap.mark_obj(obj_beg, obj_len);
1520     _summary_data.add_obj(obj_beg, obj_len);
1521     assert(start_array(id) != NULL, "sanity");
1522     start_array(id)->allocate_block(obj_beg);
1523   }
1524 }
1525 
1526 void
1527 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1528 {
1529   assert(id < last_space_id, "id out of range");
1530   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1531          "should have been reset in summarize_spaces_quick()");
1532 
1533   const MutableSpace* space = _space_info[id].space();
1534   if (_space_info[id].new_top() != space->bottom()) {
1535     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1536     _space_info[id].set_dense_prefix(dense_prefix_end);
1537 
1538 #ifndef PRODUCT
1539     if (TraceParallelOldGCDensePrefix) {
1540       print_dense_prefix_stats("ratio", id, maximum_compaction,
1541                                dense_prefix_end);
1542       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1543       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1544     }
1545 #endif  // #ifndef PRODUCT
1546 
1547     // Recompute the summary data, taking into account the dense prefix.  If
1548     // every last byte will be reclaimed, then the existing summary data which
1549     // compacts everything can be left in place.
1550     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1551       // If dead space crosses the dense prefix boundary, it is (at least
1552       // partially) filled with a dummy object, marked live and added to the
1553       // summary data.  This simplifies the copy/update phase and must be done
1554       // before the final locations of objects are determined, to prevent
1555       // leaving a fragment of dead space that is too small to fill.
1556       fill_dense_prefix_end(id);
1557 
1558       // Compute the destination of each Region, and thus each object.
1559       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1560       _summary_data.summarize(_space_info[id].split_info(),
1561                               dense_prefix_end, space->top(), NULL,
1562                               dense_prefix_end, space->end(),
1563                               _space_info[id].new_top_addr());
1564     }
1565   }
1566 
1567   if (log_develop_is_enabled(Trace, gc, compaction)) {
1568     const size_t region_size = ParallelCompactData::RegionSize;
1569     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1570     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1571     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1572     HeapWord* const new_top = _space_info[id].new_top();
1573     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1574     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1575     log_develop_trace(gc, compaction)(
1576         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1577         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1578         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1579         id, space->capacity_in_words(), p2i(dense_prefix_end),
1580         dp_region, dp_words / region_size,
1581         cr_words / region_size, p2i(new_top));
1582   }
1583 }
1584 
1585 #ifndef PRODUCT
1586 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1587                                           HeapWord* dst_beg, HeapWord* dst_end,
1588                                           SpaceId src_space_id,
1589                                           HeapWord* src_beg, HeapWord* src_end)
1590 {
1591   log_develop_trace(gc, compaction)(
1592       "Summarizing %d [%s] into %d [%s]:  "
1593       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1594       SIZE_FORMAT "-" SIZE_FORMAT " "
1595       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1596       SIZE_FORMAT "-" SIZE_FORMAT,
1597       src_space_id, space_names[src_space_id],
1598       dst_space_id, space_names[dst_space_id],
1599       p2i(src_beg), p2i(src_end),
1600       _summary_data.addr_to_region_idx(src_beg),
1601       _summary_data.addr_to_region_idx(src_end),
1602       p2i(dst_beg), p2i(dst_end),
1603       _summary_data.addr_to_region_idx(dst_beg),
1604       _summary_data.addr_to_region_idx(dst_end));
1605 }
1606 #endif  // #ifndef PRODUCT
1607 
1608 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1609                                       bool maximum_compaction)
1610 {
1611   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1612 
1613 #ifdef  ASSERT
1614   if (TraceParallelOldGCMarkingPhase) {
1615     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1616                   "add_obj_bytes=" SIZE_FORMAT,
1617                   add_obj_count, add_obj_size * HeapWordSize);
1618     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1619                   "mark_bitmap_bytes=" SIZE_FORMAT,
1620                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1621   }
1622 #endif  // #ifdef ASSERT
1623 
1624   // Quick summarization of each space into itself, to see how much is live.
1625   summarize_spaces_quick();
1626 
1627   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1628   NOT_PRODUCT(print_region_ranges());
1629   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1630 
1631   // The amount of live data that will end up in old space (assuming it fits).
1632   size_t old_space_total_live = 0;
1633   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1634     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1635                                           _space_info[id].space()->bottom());
1636   }
1637 
1638   MutableSpace* const old_space = _space_info[old_space_id].space();
1639   const size_t old_capacity = old_space->capacity_in_words();
1640   if (old_space_total_live > old_capacity) {
1641     // XXX - should also try to expand
1642     maximum_compaction = true;
1643   }
1644 
1645   // Old generations.
1646   summarize_space(old_space_id, maximum_compaction);
1647 
1648   // Summarize the remaining spaces in the young gen.  The initial target space
1649   // is the old gen.  If a space does not fit entirely into the target, then the
1650   // remainder is compacted into the space itself and that space becomes the new
1651   // target.
1652   SpaceId dst_space_id = old_space_id;
1653   HeapWord* dst_space_end = old_space->end();
1654   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1655   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1656     const MutableSpace* space = _space_info[id].space();
1657     const size_t live = pointer_delta(_space_info[id].new_top(),
1658                                       space->bottom());
1659     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1660 
1661     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1662                                   SpaceId(id), space->bottom(), space->top());)
1663     if (live > 0 && live <= available) {
1664       // All the live data will fit.
1665       bool done = _summary_data.summarize(_space_info[id].split_info(),
1666                                           space->bottom(), space->top(),
1667                                           NULL,
1668                                           *new_top_addr, dst_space_end,
1669                                           new_top_addr);
1670       assert(done, "space must fit into old gen");
1671 
1672       // Reset the new_top value for the space.
1673       _space_info[id].set_new_top(space->bottom());
1674     } else if (live > 0) {
1675       // Attempt to fit part of the source space into the target space.
1676       HeapWord* next_src_addr = NULL;
1677       bool done = _summary_data.summarize(_space_info[id].split_info(),
1678                                           space->bottom(), space->top(),
1679                                           &next_src_addr,
1680                                           *new_top_addr, dst_space_end,
1681                                           new_top_addr);
1682       assert(!done, "space should not fit into old gen");
1683       assert(next_src_addr != NULL, "sanity");
1684 
1685       // The source space becomes the new target, so the remainder is compacted
1686       // within the space itself.
1687       dst_space_id = SpaceId(id);
1688       dst_space_end = space->end();
1689       new_top_addr = _space_info[id].new_top_addr();
1690       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1691                                     space->bottom(), dst_space_end,
1692                                     SpaceId(id), next_src_addr, space->top());)
1693       done = _summary_data.summarize(_space_info[id].split_info(),
1694                                      next_src_addr, space->top(),
1695                                      NULL,
1696                                      space->bottom(), dst_space_end,
1697                                      new_top_addr);
1698       assert(done, "space must fit when compacted into itself");
1699       assert(*new_top_addr <= space->top(), "usage should not grow");
1700     }
1701   }
1702 
1703   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1704   NOT_PRODUCT(print_region_ranges());
1705   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1706 }
1707 
1708 // This method should contain all heap-specific policy for invoking a full
1709 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1710 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1711 // before full gc, or any other specialized behavior, it needs to be added here.
1712 //
1713 // Note that this method should only be called from the vm_thread while at a
1714 // safepoint.
1715 //
1716 // Note that the all_soft_refs_clear flag in the soft ref policy
1717 // may be true because this method can be called without intervening
1718 // activity.  For example when the heap space is tight and full measure
1719 // are being taken to free space.
1720 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1721   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1722   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1723          "should be in vm thread");
1724 
1725   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1726   GCCause::Cause gc_cause = heap->gc_cause();
1727   assert(!heap->is_gc_active(), "not reentrant");
1728 
1729   PSAdaptiveSizePolicy* policy = heap->size_policy();
1730   IsGCActiveMark mark;
1731 
1732   if (ScavengeBeforeFullGC) {
1733     PSScavenge::invoke_no_policy();
1734   }
1735 
1736   const bool clear_all_soft_refs =
1737     heap->soft_ref_policy()->should_clear_all_soft_refs();
1738 
1739   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1740                                       maximum_heap_compaction);
1741 }
1742 
1743 // This method contains no policy. You should probably
1744 // be calling invoke() instead.
1745 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1746   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1747   assert(ref_processor() != NULL, "Sanity");
1748 
1749   if (GCLocker::check_active_before_gc()) {
1750     return false;
1751   }
1752 
1753   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1754 
1755   GCIdMark gc_id_mark;
1756   _gc_timer.register_gc_start();
1757   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1758 
1759   TimeStamp marking_start;
1760   TimeStamp compaction_start;
1761   TimeStamp collection_exit;
1762 
1763   GCCause::Cause gc_cause = heap->gc_cause();
1764   PSYoungGen* young_gen = heap->young_gen();
1765   PSOldGen* old_gen = heap->old_gen();
1766   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1767 
1768   // The scope of casr should end after code that can change
1769   // SoftRefPolicy::_should_clear_all_soft_refs.
1770   ClearedAllSoftRefs casr(maximum_heap_compaction,
1771                           heap->soft_ref_policy());
1772 
1773   if (ZapUnusedHeapArea) {
1774     // Save information needed to minimize mangling
1775     heap->record_gen_tops_before_GC();
1776   }
1777 
1778   // Make sure data structures are sane, make the heap parsable, and do other
1779   // miscellaneous bookkeeping.
1780   pre_compact();
1781 
1782   const PreGCValues pre_gc_values(heap);
1783 
1784   // Get the compaction manager reserved for the VM thread.
1785   ParCompactionManager* const vmthread_cm =
1786     ParCompactionManager::manager_array(gc_task_manager()->workers());
1787 
1788   {
1789     ResourceMark rm;
1790     HandleMark hm;
1791 
1792     // Set the number of GC threads to be used in this collection
1793     gc_task_manager()->set_active_gang();
1794     gc_task_manager()->task_idle_workers();
1795 
1796     GCTraceCPUTime tcpu;
1797     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1798 
1799     heap->pre_full_gc_dump(&_gc_timer);
1800 
1801     TraceCollectorStats tcs(counters());
1802     TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause);
1803 
1804     if (log_is_enabled(Debug, gc, heap, exit)) {
1805       accumulated_time()->start();
1806     }
1807 
1808     // Let the size policy know we're starting
1809     size_policy->major_collection_begin();
1810 
1811 #if COMPILER2_OR_JVMCI
1812     DerivedPointerTable::clear();
1813 #endif
1814 
1815     ref_processor()->enable_discovery();
1816     ref_processor()->setup_policy(maximum_heap_compaction);
1817 
1818     bool marked_for_unloading = false;
1819 
1820     marking_start.update();
1821     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1822 
1823     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1824       && GCCause::is_user_requested_gc(gc_cause);
1825     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1826 
1827 #if COMPILER2_OR_JVMCI
1828     assert(DerivedPointerTable::is_active(), "Sanity");
1829     DerivedPointerTable::set_active(false);
1830 #endif
1831 
1832     // adjust_roots() updates Universe::_intArrayKlassObj which is
1833     // needed by the compaction for filling holes in the dense prefix.
1834     adjust_roots(vmthread_cm);
1835 
1836     compaction_start.update();
1837     compact();
1838 
1839     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1840     // done before resizing.
1841     post_compact();
1842 
1843     // Let the size policy know we're done
1844     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1845 
1846     if (UseAdaptiveSizePolicy) {
1847       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1848       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1849                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1850 
1851       // Don't check if the size_policy is ready here.  Let
1852       // the size_policy check that internally.
1853       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1854           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1855         // Swap the survivor spaces if from_space is empty. The
1856         // resize_young_gen() called below is normally used after
1857         // a successful young GC and swapping of survivor spaces;
1858         // otherwise, it will fail to resize the young gen with
1859         // the current implementation.
1860         if (young_gen->from_space()->is_empty()) {
1861           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1862           young_gen->swap_spaces();
1863         }
1864 
1865         // Calculate optimal free space amounts
1866         assert(young_gen->max_size() >
1867           young_gen->from_space()->capacity_in_bytes() +
1868           young_gen->to_space()->capacity_in_bytes(),
1869           "Sizes of space in young gen are out-of-bounds");
1870 
1871         size_t young_live = young_gen->used_in_bytes();
1872         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1873         size_t old_live = old_gen->used_in_bytes();
1874         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1875         size_t max_old_gen_size = old_gen->max_gen_size();
1876         size_t max_eden_size = young_gen->max_size() -
1877           young_gen->from_space()->capacity_in_bytes() -
1878           young_gen->to_space()->capacity_in_bytes();
1879 
1880         // Used for diagnostics
1881         size_policy->clear_generation_free_space_flags();
1882 
1883         size_policy->compute_generations_free_space(young_live,
1884                                                     eden_live,
1885                                                     old_live,
1886                                                     cur_eden,
1887                                                     max_old_gen_size,
1888                                                     max_eden_size,
1889                                                     true /* full gc*/);
1890 
1891         size_policy->check_gc_overhead_limit(eden_live,
1892                                              max_old_gen_size,
1893                                              max_eden_size,
1894                                              true /* full gc*/,
1895                                              gc_cause,
1896                                              heap->soft_ref_policy());
1897 
1898         size_policy->decay_supplemental_growth(true /* full gc*/);
1899 
1900         heap->resize_old_gen(
1901           size_policy->calculated_old_free_size_in_bytes());
1902 
1903         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1904                                size_policy->calculated_survivor_size_in_bytes());
1905       }
1906 
1907       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1908     }
1909 
1910     if (UsePerfData) {
1911       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1912       counters->update_counters();
1913       counters->update_old_capacity(old_gen->capacity_in_bytes());
1914       counters->update_young_capacity(young_gen->capacity_in_bytes());
1915     }
1916 
1917     heap->resize_all_tlabs();
1918 
1919     // Resize the metaspace capacity after a collection
1920     MetaspaceGC::compute_new_size();
1921 
1922     if (log_is_enabled(Debug, gc, heap, exit)) {
1923       accumulated_time()->stop();
1924     }
1925 
1926     young_gen->print_used_change(pre_gc_values.young_gen_used());
1927     old_gen->print_used_change(pre_gc_values.old_gen_used());
1928     MetaspaceUtils::print_metaspace_change(pre_gc_values.metaspace_sizes());
1929 
1930     // Track memory usage and detect low memory
1931     MemoryService::track_memory_usage();
1932     heap->update_counters();
1933     gc_task_manager()->release_idle_workers();
1934 
1935     heap->post_full_gc_dump(&_gc_timer);
1936   }
1937 
1938 #ifdef ASSERT
1939   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1940     ParCompactionManager* const cm =
1941       ParCompactionManager::manager_array(int(i));
1942     assert(cm->marking_stack()->is_empty(),       "should be empty");
1943     assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1944   }
1945 #endif // ASSERT
1946 
1947   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1948     HandleMark hm;  // Discard invalid handles created during verification
1949     Universe::verify("After GC");
1950   }
1951 
1952   // Re-verify object start arrays
1953   if (VerifyObjectStartArray &&
1954       VerifyAfterGC) {
1955     old_gen->verify_object_start_array();
1956   }
1957 
1958   if (ZapUnusedHeapArea) {
1959     old_gen->object_space()->check_mangled_unused_area_complete();
1960   }
1961 
1962   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1963 
1964   collection_exit.update();
1965 
1966   heap->print_heap_after_gc();
1967   heap->trace_heap_after_gc(&_gc_tracer);
1968 
1969   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1970                          marking_start.ticks(), compaction_start.ticks(),
1971                          collection_exit.ticks());
1972   gc_task_manager()->print_task_time_stamps();
1973 
1974 #ifdef TRACESPINNING
1975   ParallelTaskTerminator::print_termination_counts();
1976 #endif
1977 
1978   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1979 
1980   _gc_timer.register_gc_end();
1981 
1982   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1983   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1984 
1985   return true;
1986 }
1987 
1988 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1989                                              PSYoungGen* young_gen,
1990                                              PSOldGen* old_gen) {
1991   MutableSpace* const eden_space = young_gen->eden_space();
1992   assert(!eden_space->is_empty(), "eden must be non-empty");
1993   assert(young_gen->virtual_space()->alignment() ==
1994          old_gen->virtual_space()->alignment(), "alignments do not match");
1995 
1996   // We also return false when it's a heterogenous heap because old generation cannot absorb data from eden
1997   // when it is allocated on different memory (example, nv-dimm) than young.
1998   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary) ||
1999       ParallelArguments::is_heterogeneous_heap()) {
2000     return false;
2001   }
2002 
2003   // Both generations must be completely committed.
2004   if (young_gen->virtual_space()->uncommitted_size() != 0) {
2005     return false;
2006   }
2007   if (old_gen->virtual_space()->uncommitted_size() != 0) {
2008     return false;
2009   }
2010 
2011   // Figure out how much to take from eden.  Include the average amount promoted
2012   // in the total; otherwise the next young gen GC will simply bail out to a
2013   // full GC.
2014   const size_t alignment = old_gen->virtual_space()->alignment();
2015   const size_t eden_used = eden_space->used_in_bytes();
2016   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2017   const size_t absorb_size = align_up(eden_used + promoted, alignment);
2018   const size_t eden_capacity = eden_space->capacity_in_bytes();
2019 
2020   if (absorb_size >= eden_capacity) {
2021     return false; // Must leave some space in eden.
2022   }
2023 
2024   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2025   if (new_young_size < young_gen->min_gen_size()) {
2026     return false; // Respect young gen minimum size.
2027   }
2028 
2029   log_trace(gc, ergo, heap)(" absorbing " SIZE_FORMAT "K:  "
2030                             "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2031                             "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2032                             "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2033                             absorb_size / K,
2034                             eden_capacity / K, (eden_capacity - absorb_size) / K,
2035                             young_gen->from_space()->used_in_bytes() / K,
2036                             young_gen->to_space()->used_in_bytes() / K,
2037                             young_gen->capacity_in_bytes() / K, new_young_size / K);
2038 
2039   // Fill the unused part of the old gen.
2040   MutableSpace* const old_space = old_gen->object_space();
2041   HeapWord* const unused_start = old_space->top();
2042   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2043 
2044   if (unused_words > 0) {
2045     if (unused_words < CollectedHeap::min_fill_size()) {
2046       return false;  // If the old gen cannot be filled, must give up.
2047     }
2048     CollectedHeap::fill_with_objects(unused_start, unused_words);
2049   }
2050 
2051   // Take the live data from eden and set both top and end in the old gen to
2052   // eden top.  (Need to set end because reset_after_change() mangles the region
2053   // from end to virtual_space->high() in debug builds).
2054   HeapWord* const new_top = eden_space->top();
2055   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2056                                         absorb_size);
2057   young_gen->reset_after_change();
2058   old_space->set_top(new_top);
2059   old_space->set_end(new_top);
2060   old_gen->reset_after_change();
2061 
2062   // Update the object start array for the filler object and the data from eden.
2063   ObjectStartArray* const start_array = old_gen->start_array();
2064   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2065     start_array->allocate_block(p);
2066   }
2067 
2068   // Could update the promoted average here, but it is not typically updated at
2069   // full GCs and the value to use is unclear.  Something like
2070   //
2071   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2072 
2073   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2074   return true;
2075 }
2076 
2077 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2078   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2079     "shouldn't return NULL");
2080   return ParallelScavengeHeap::gc_task_manager();
2081 }
2082 
2083 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure {
2084 private:
2085   GCTaskQueue* _q;
2086 
2087 public:
2088   PCAddThreadRootsMarkingTaskClosure(GCTaskQueue* q) : _q(q) { }
2089   void do_thread(Thread* t) {
2090     _q->enqueue(new ThreadRootsMarkingTask(t));
2091   }
2092 };
2093 
2094 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2095                                       bool maximum_heap_compaction,
2096                                       ParallelOldTracer *gc_tracer) {
2097   // Recursively traverse all live objects and mark them
2098   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2099 
2100   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2101   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2102   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2103   TaskQueueSetSuper* qset = ParCompactionManager::stack_array();
2104   TaskTerminator terminator(active_gc_threads, qset);
2105 
2106   PCMarkAndPushClosure mark_and_push_closure(cm);
2107   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2108 
2109   // Need new claim bits before marking starts.
2110   ClassLoaderDataGraph::clear_claimed_marks();
2111 
2112   {
2113     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2114 
2115     ParallelScavengeHeap::ParStrongRootsScope psrs;
2116 
2117     GCTaskQueue* q = GCTaskQueue::create();
2118 
2119     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2120     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2121     // We scan the thread roots in parallel
2122     PCAddThreadRootsMarkingTaskClosure cl(q);
2123     Threads::java_threads_and_vm_thread_do(&cl);
2124     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2125     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2126     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2127     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2128     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2129     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2130 
2131     if (active_gc_threads > 1) {
2132       for (uint j = 0; j < active_gc_threads; j++) {
2133         q->enqueue(new StealMarkingTask(terminator.terminator()));
2134       }
2135     }
2136 
2137     gc_task_manager()->execute_and_wait(q);
2138   }
2139 
2140   // Process reference objects found during marking
2141   {
2142     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2143 
2144     ReferenceProcessorStats stats;
2145     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues());
2146 
2147     if (ref_processor()->processing_is_mt()) {
2148       ref_processor()->set_active_mt_degree(active_gc_threads);
2149 
2150       RefProcTaskExecutor task_executor;
2151       stats = ref_processor()->process_discovered_references(
2152         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2153         &task_executor, &pt);
2154     } else {
2155       stats = ref_processor()->process_discovered_references(
2156         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2157         &pt);
2158     }
2159 
2160     gc_tracer->report_gc_reference_stats(stats);
2161     pt.print_all_references();
2162   }
2163 
2164   // This is the point where the entire marking should have completed.
2165   assert(cm->marking_stacks_empty(), "Marking should have completed");
2166 
2167   {
2168     GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
2169     WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl);
2170   }
2171 
2172   {
2173     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2174 
2175     // Follow system dictionary roots and unload classes.
2176     bool purged_class = SystemDictionary::do_unloading(&_gc_timer);
2177 
2178     // Unload nmethods.
2179     CodeCache::do_unloading(is_alive_closure(), purged_class);
2180 
2181     // Prune dead klasses from subklass/sibling/implementor lists.
2182     Klass::clean_weak_klass_links(purged_class);
2183 
2184     // Clean JVMCI metadata handles.
2185     JVMCI_ONLY(JVMCI::do_unloading(purged_class));
2186   }
2187 
2188   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2189 }
2190 
2191 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2192   // Adjust the pointers to reflect the new locations
2193   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2194 
2195   // Need new claim bits when tracing through and adjusting pointers.
2196   ClassLoaderDataGraph::clear_claimed_marks();
2197 
2198   PCAdjustPointerClosure oop_closure(cm);
2199 
2200   // General strong roots.
2201   Universe::oops_do(&oop_closure);
2202   JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles
2203   Threads::oops_do(&oop_closure, NULL);
2204   ObjectSynchronizer::oops_do(&oop_closure);
2205   Management::oops_do(&oop_closure);
2206   JvmtiExport::oops_do(&oop_closure);
2207   SystemDictionary::oops_do(&oop_closure);
2208   CLDToOopClosure cld_closure(&oop_closure, ClassLoaderData::_claim_strong);
2209   ClassLoaderDataGraph::cld_do(&cld_closure);
2210 
2211   // Now adjust pointers in remaining weak roots.  (All of which should
2212   // have been cleared if they pointed to non-surviving objects.)
2213   WeakProcessor::oops_do(&oop_closure);
2214 
2215   CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2216   CodeCache::blobs_do(&adjust_from_blobs);
2217   AOT_ONLY(AOTLoader::oops_do(&oop_closure);)
2218 
2219   ref_processor()->weak_oops_do(&oop_closure);
2220   // Roots were visited so references into the young gen in roots
2221   // may have been scanned.  Process them also.
2222   // Should the reference processor have a span that excludes
2223   // young gen objects?
2224   PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2225 }
2226 
2227 // Helper class to print 8 region numbers per line and then print the total at the end.
2228 class FillableRegionLogger : public StackObj {
2229 private:
2230   Log(gc, compaction) log;
2231   static const int LineLength = 8;
2232   size_t _regions[LineLength];
2233   int _next_index;
2234   bool _enabled;
2235   size_t _total_regions;
2236 public:
2237   FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { }
2238   ~FillableRegionLogger() {
2239     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2240   }
2241 
2242   void print_line() {
2243     if (!_enabled || _next_index == 0) {
2244       return;
2245     }
2246     FormatBuffer<> line("Fillable: ");
2247     for (int i = 0; i < _next_index; i++) {
2248       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2249     }
2250     log.trace("%s", line.buffer());
2251     _next_index = 0;
2252   }
2253 
2254   void handle(size_t region) {
2255     if (!_enabled) {
2256       return;
2257     }
2258     _regions[_next_index++] = region;
2259     if (_next_index == LineLength) {
2260       print_line();
2261     }
2262     _total_regions++;
2263   }
2264 };
2265 
2266 void PSParallelCompact::prepare_region_draining_tasks(GCTaskQueue* q,
2267                                                       uint parallel_gc_threads)
2268 {
2269   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2270 
2271   // Find the threads that are active
2272   unsigned int which = 0;
2273 
2274   // Find all regions that are available (can be filled immediately) and
2275   // distribute them to the thread stacks.  The iteration is done in reverse
2276   // order (high to low) so the regions will be removed in ascending order.
2277 
2278   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2279 
2280   which = 0;
2281   // id + 1 is used to test termination so unsigned  can
2282   // be used with an old_space_id == 0.
2283   FillableRegionLogger region_logger;
2284   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2285     SpaceInfo* const space_info = _space_info + id;
2286     MutableSpace* const space = space_info->space();
2287     HeapWord* const new_top = space_info->new_top();
2288 
2289     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2290     const size_t end_region =
2291       sd.addr_to_region_idx(sd.region_align_up(new_top));
2292 
2293     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2294       if (sd.region(cur)->claim_unsafe()) {
2295         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
2296         cm->region_stack()->push(cur);
2297         region_logger.handle(cur);
2298         // Assign regions to tasks in round-robin fashion.
2299         if (++which == parallel_gc_threads) {
2300           which = 0;
2301         }
2302       }
2303     }
2304     region_logger.print_line();
2305   }
2306 }
2307 
2308 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2309 
2310 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2311                                                     uint parallel_gc_threads) {
2312   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2313 
2314   ParallelCompactData& sd = PSParallelCompact::summary_data();
2315 
2316   // Iterate over all the spaces adding tasks for updating
2317   // regions in the dense prefix.  Assume that 1 gc thread
2318   // will work on opening the gaps and the remaining gc threads
2319   // will work on the dense prefix.
2320   unsigned int space_id;
2321   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2322     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2323     const MutableSpace* const space = _space_info[space_id].space();
2324 
2325     if (dense_prefix_end == space->bottom()) {
2326       // There is no dense prefix for this space.
2327       continue;
2328     }
2329 
2330     // The dense prefix is before this region.
2331     size_t region_index_end_dense_prefix =
2332         sd.addr_to_region_idx(dense_prefix_end);
2333     RegionData* const dense_prefix_cp =
2334       sd.region(region_index_end_dense_prefix);
2335     assert(dense_prefix_end == space->end() ||
2336            dense_prefix_cp->available() ||
2337            dense_prefix_cp->claimed(),
2338            "The region after the dense prefix should always be ready to fill");
2339 
2340     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2341 
2342     // Is there dense prefix work?
2343     size_t total_dense_prefix_regions =
2344       region_index_end_dense_prefix - region_index_start;
2345     // How many regions of the dense prefix should be given to
2346     // each thread?
2347     if (total_dense_prefix_regions > 0) {
2348       uint tasks_for_dense_prefix = 1;
2349       if (total_dense_prefix_regions <=
2350           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2351         // Don't over partition.  This assumes that
2352         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2353         // so there are not many regions to process.
2354         tasks_for_dense_prefix = parallel_gc_threads;
2355       } else {
2356         // Over partition
2357         tasks_for_dense_prefix = parallel_gc_threads *
2358           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2359       }
2360       size_t regions_per_thread = total_dense_prefix_regions /
2361         tasks_for_dense_prefix;
2362       // Give each thread at least 1 region.
2363       if (regions_per_thread == 0) {
2364         regions_per_thread = 1;
2365       }
2366 
2367       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2368         if (region_index_start >= region_index_end_dense_prefix) {
2369           break;
2370         }
2371         // region_index_end is not processed
2372         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2373                                        region_index_end_dense_prefix);
2374         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2375                                              region_index_start,
2376                                              region_index_end));
2377         region_index_start = region_index_end;
2378       }
2379     }
2380     // This gets any part of the dense prefix that did not
2381     // fit evenly.
2382     if (region_index_start < region_index_end_dense_prefix) {
2383       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2384                                            region_index_start,
2385                                            region_index_end_dense_prefix));
2386     }
2387   }
2388 }
2389 
2390 void PSParallelCompact::enqueue_region_stealing_tasks(
2391                                      GCTaskQueue* q,
2392                                      ParallelTaskTerminator* terminator_ptr,
2393                                      uint parallel_gc_threads) {
2394   GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer);
2395 
2396   // Once a thread has drained it's stack, it should try to steal regions from
2397   // other threads.
2398   for (uint j = 0; j < parallel_gc_threads; j++) {
2399     q->enqueue(new CompactionWithStealingTask(terminator_ptr));
2400   }
2401 }
2402 
2403 #ifdef ASSERT
2404 // Write a histogram of the number of times the block table was filled for a
2405 // region.
2406 void PSParallelCompact::write_block_fill_histogram()
2407 {
2408   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2409     return;
2410   }
2411 
2412   Log(gc, compaction) log;
2413   ResourceMark rm;
2414   LogStream ls(log.trace());
2415   outputStream* out = &ls;
2416 
2417   typedef ParallelCompactData::RegionData rd_t;
2418   ParallelCompactData& sd = summary_data();
2419 
2420   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2421     MutableSpace* const spc = _space_info[id].space();
2422     if (spc->bottom() != spc->top()) {
2423       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2424       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2425       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2426 
2427       size_t histo[5] = { 0, 0, 0, 0, 0 };
2428       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2429       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2430 
2431       for (const rd_t* cur = beg; cur < end; ++cur) {
2432         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2433       }
2434       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2435       for (size_t i = 0; i < histo_len; ++i) {
2436         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2437                    histo[i], 100.0 * histo[i] / region_cnt);
2438       }
2439       out->cr();
2440     }
2441   }
2442 }
2443 #endif // #ifdef ASSERT
2444 
2445 void PSParallelCompact::compact() {
2446   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2447 
2448   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2449   PSOldGen* old_gen = heap->old_gen();
2450   old_gen->start_array()->reset();
2451   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2452   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2453   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2454   TaskTerminator terminator(active_gc_threads, qset);
2455 
2456   GCTaskQueue* q = GCTaskQueue::create();
2457   prepare_region_draining_tasks(q, active_gc_threads);
2458   enqueue_dense_prefix_tasks(q, active_gc_threads);
2459   enqueue_region_stealing_tasks(q, terminator.terminator(), active_gc_threads);
2460 
2461   {
2462     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2463 
2464     gc_task_manager()->execute_and_wait(q);
2465 
2466 #ifdef  ASSERT
2467     // Verify that all regions have been processed before the deferred updates.
2468     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2469       verify_complete(SpaceId(id));
2470     }
2471 #endif
2472   }
2473 
2474   {
2475     // Update the deferred objects, if any.  Any compaction manager can be used.
2476     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2477     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2478     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2479       update_deferred_objects(cm, SpaceId(id));
2480     }
2481   }
2482 
2483   DEBUG_ONLY(write_block_fill_histogram());
2484 }
2485 
2486 #ifdef  ASSERT
2487 void PSParallelCompact::verify_complete(SpaceId space_id) {
2488   // All Regions between space bottom() to new_top() should be marked as filled
2489   // and all Regions between new_top() and top() should be available (i.e.,
2490   // should have been emptied).
2491   ParallelCompactData& sd = summary_data();
2492   SpaceInfo si = _space_info[space_id];
2493   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2494   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2495   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2496   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2497   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2498 
2499   bool issued_a_warning = false;
2500 
2501   size_t cur_region;
2502   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2503     const RegionData* const c = sd.region(cur_region);
2504     if (!c->completed()) {
2505       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2506                       cur_region, c->destination_count());
2507       issued_a_warning = true;
2508     }
2509   }
2510 
2511   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2512     const RegionData* const c = sd.region(cur_region);
2513     if (!c->available()) {
2514       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2515                       cur_region, c->destination_count());
2516       issued_a_warning = true;
2517     }
2518   }
2519 
2520   if (issued_a_warning) {
2521     print_region_ranges();
2522   }
2523 }
2524 #endif  // #ifdef ASSERT
2525 
2526 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2527   _start_array->allocate_block(addr);
2528   compaction_manager()->update_contents(oop(addr));
2529 }
2530 
2531 // Update interior oops in the ranges of regions [beg_region, end_region).
2532 void
2533 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2534                                                        SpaceId space_id,
2535                                                        size_t beg_region,
2536                                                        size_t end_region) {
2537   ParallelCompactData& sd = summary_data();
2538   ParMarkBitMap* const mbm = mark_bitmap();
2539 
2540   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2541   HeapWord* const end_addr = sd.region_to_addr(end_region);
2542   assert(beg_region <= end_region, "bad region range");
2543   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2544 
2545 #ifdef  ASSERT
2546   // Claim the regions to avoid triggering an assert when they are marked as
2547   // filled.
2548   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2549     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2550   }
2551 #endif  // #ifdef ASSERT
2552 
2553   if (beg_addr != space(space_id)->bottom()) {
2554     // Find the first live object or block of dead space that *starts* in this
2555     // range of regions.  If a partial object crosses onto the region, skip it;
2556     // it will be marked for 'deferred update' when the object head is
2557     // processed.  If dead space crosses onto the region, it is also skipped; it
2558     // will be filled when the prior region is processed.  If neither of those
2559     // apply, the first word in the region is the start of a live object or dead
2560     // space.
2561     assert(beg_addr > space(space_id)->bottom(), "sanity");
2562     const RegionData* const cp = sd.region(beg_region);
2563     if (cp->partial_obj_size() != 0) {
2564       beg_addr = sd.partial_obj_end(beg_region);
2565     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2566       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2567     }
2568   }
2569 
2570   if (beg_addr < end_addr) {
2571     // A live object or block of dead space starts in this range of Regions.
2572      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2573 
2574     // Create closures and iterate.
2575     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2576     FillClosure fill_closure(cm, space_id);
2577     ParMarkBitMap::IterationStatus status;
2578     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2579                           dense_prefix_end);
2580     if (status == ParMarkBitMap::incomplete) {
2581       update_closure.do_addr(update_closure.source());
2582     }
2583   }
2584 
2585   // Mark the regions as filled.
2586   RegionData* const beg_cp = sd.region(beg_region);
2587   RegionData* const end_cp = sd.region(end_region);
2588   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2589     cp->set_completed();
2590   }
2591 }
2592 
2593 // Return the SpaceId for the space containing addr.  If addr is not in the
2594 // heap, last_space_id is returned.  In debug mode it expects the address to be
2595 // in the heap and asserts such.
2596 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2597   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2598 
2599   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2600     if (_space_info[id].space()->contains(addr)) {
2601       return SpaceId(id);
2602     }
2603   }
2604 
2605   assert(false, "no space contains the addr");
2606   return last_space_id;
2607 }
2608 
2609 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2610                                                 SpaceId id) {
2611   assert(id < last_space_id, "bad space id");
2612 
2613   ParallelCompactData& sd = summary_data();
2614   const SpaceInfo* const space_info = _space_info + id;
2615   ObjectStartArray* const start_array = space_info->start_array();
2616 
2617   const MutableSpace* const space = space_info->space();
2618   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2619   HeapWord* const beg_addr = space_info->dense_prefix();
2620   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2621 
2622   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2623   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2624   const RegionData* cur_region;
2625   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2626     HeapWord* const addr = cur_region->deferred_obj_addr();
2627     if (addr != NULL) {
2628       if (start_array != NULL) {
2629         start_array->allocate_block(addr);
2630       }
2631       cm->update_contents(oop(addr));
2632       assert(oopDesc::is_oop_or_null(oop(addr)), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2633     }
2634   }
2635 }
2636 
2637 // Skip over count live words starting from beg, and return the address of the
2638 // next live word.  Unless marked, the word corresponding to beg is assumed to
2639 // be dead.  Callers must either ensure beg does not correspond to the middle of
2640 // an object, or account for those live words in some other way.  Callers must
2641 // also ensure that there are enough live words in the range [beg, end) to skip.
2642 HeapWord*
2643 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2644 {
2645   assert(count > 0, "sanity");
2646 
2647   ParMarkBitMap* m = mark_bitmap();
2648   idx_t bits_to_skip = m->words_to_bits(count);
2649   idx_t cur_beg = m->addr_to_bit(beg);
2650   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2651 
2652   do {
2653     cur_beg = m->find_obj_beg(cur_beg, search_end);
2654     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2655     const size_t obj_bits = cur_end - cur_beg + 1;
2656     if (obj_bits > bits_to_skip) {
2657       return m->bit_to_addr(cur_beg + bits_to_skip);
2658     }
2659     bits_to_skip -= obj_bits;
2660     cur_beg = cur_end + 1;
2661   } while (bits_to_skip > 0);
2662 
2663   // Skipping the desired number of words landed just past the end of an object.
2664   // Find the start of the next object.
2665   cur_beg = m->find_obj_beg(cur_beg, search_end);
2666   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2667   return m->bit_to_addr(cur_beg);
2668 }
2669 
2670 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2671                                             SpaceId src_space_id,
2672                                             size_t src_region_idx)
2673 {
2674   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2675 
2676   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2677   if (split_info.dest_region_addr() == dest_addr) {
2678     // The partial object ending at the split point contains the first word to
2679     // be copied to dest_addr.
2680     return split_info.first_src_addr();
2681   }
2682 
2683   const ParallelCompactData& sd = summary_data();
2684   ParMarkBitMap* const bitmap = mark_bitmap();
2685   const size_t RegionSize = ParallelCompactData::RegionSize;
2686 
2687   assert(sd.is_region_aligned(dest_addr), "not aligned");
2688   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2689   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2690   HeapWord* const src_region_destination = src_region_ptr->destination();
2691 
2692   assert(dest_addr >= src_region_destination, "wrong src region");
2693   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2694 
2695   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2696   HeapWord* const src_region_end = src_region_beg + RegionSize;
2697 
2698   HeapWord* addr = src_region_beg;
2699   if (dest_addr == src_region_destination) {
2700     // Return the first live word in the source region.
2701     if (partial_obj_size == 0) {
2702       addr = bitmap->find_obj_beg(addr, src_region_end);
2703       assert(addr < src_region_end, "no objects start in src region");
2704     }
2705     return addr;
2706   }
2707 
2708   // Must skip some live data.
2709   size_t words_to_skip = dest_addr - src_region_destination;
2710   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2711 
2712   if (partial_obj_size >= words_to_skip) {
2713     // All the live words to skip are part of the partial object.
2714     addr += words_to_skip;
2715     if (partial_obj_size == words_to_skip) {
2716       // Find the first live word past the partial object.
2717       addr = bitmap->find_obj_beg(addr, src_region_end);
2718       assert(addr < src_region_end, "wrong src region");
2719     }
2720     return addr;
2721   }
2722 
2723   // Skip over the partial object (if any).
2724   if (partial_obj_size != 0) {
2725     words_to_skip -= partial_obj_size;
2726     addr += partial_obj_size;
2727   }
2728 
2729   // Skip over live words due to objects that start in the region.
2730   addr = skip_live_words(addr, src_region_end, words_to_skip);
2731   assert(addr < src_region_end, "wrong src region");
2732   return addr;
2733 }
2734 
2735 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2736                                                      SpaceId src_space_id,
2737                                                      size_t beg_region,
2738                                                      HeapWord* end_addr)
2739 {
2740   ParallelCompactData& sd = summary_data();
2741 
2742 #ifdef ASSERT
2743   MutableSpace* const src_space = _space_info[src_space_id].space();
2744   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2745   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2746          "src_space_id does not match beg_addr");
2747   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2748          "src_space_id does not match end_addr");
2749 #endif // #ifdef ASSERT
2750 
2751   RegionData* const beg = sd.region(beg_region);
2752   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2753 
2754   // Regions up to new_top() are enqueued if they become available.
2755   HeapWord* const new_top = _space_info[src_space_id].new_top();
2756   RegionData* const enqueue_end =
2757     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2758 
2759   for (RegionData* cur = beg; cur < end; ++cur) {
2760     assert(cur->data_size() > 0, "region must have live data");
2761     cur->decrement_destination_count();
2762     if (cur < enqueue_end && cur->available() && cur->claim()) {
2763       cm->push_region(sd.region(cur));
2764     }
2765   }
2766 }
2767 
2768 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2769                                           SpaceId& src_space_id,
2770                                           HeapWord*& src_space_top,
2771                                           HeapWord* end_addr)
2772 {
2773   typedef ParallelCompactData::RegionData RegionData;
2774 
2775   ParallelCompactData& sd = PSParallelCompact::summary_data();
2776   const size_t region_size = ParallelCompactData::RegionSize;
2777 
2778   size_t src_region_idx = 0;
2779 
2780   // Skip empty regions (if any) up to the top of the space.
2781   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2782   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2783   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2784   const RegionData* const top_region_ptr =
2785     sd.addr_to_region_ptr(top_aligned_up);
2786   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2787     ++src_region_ptr;
2788   }
2789 
2790   if (src_region_ptr < top_region_ptr) {
2791     // The next source region is in the current space.  Update src_region_idx
2792     // and the source address to match src_region_ptr.
2793     src_region_idx = sd.region(src_region_ptr);
2794     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2795     if (src_region_addr > closure.source()) {
2796       closure.set_source(src_region_addr);
2797     }
2798     return src_region_idx;
2799   }
2800 
2801   // Switch to a new source space and find the first non-empty region.
2802   unsigned int space_id = src_space_id + 1;
2803   assert(space_id < last_space_id, "not enough spaces");
2804 
2805   HeapWord* const destination = closure.destination();
2806 
2807   do {
2808     MutableSpace* space = _space_info[space_id].space();
2809     HeapWord* const bottom = space->bottom();
2810     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2811 
2812     // Iterate over the spaces that do not compact into themselves.
2813     if (bottom_cp->destination() != bottom) {
2814       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2815       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2816 
2817       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2818         if (src_cp->live_obj_size() > 0) {
2819           // Found it.
2820           assert(src_cp->destination() == destination,
2821                  "first live obj in the space must match the destination");
2822           assert(src_cp->partial_obj_size() == 0,
2823                  "a space cannot begin with a partial obj");
2824 
2825           src_space_id = SpaceId(space_id);
2826           src_space_top = space->top();
2827           const size_t src_region_idx = sd.region(src_cp);
2828           closure.set_source(sd.region_to_addr(src_region_idx));
2829           return src_region_idx;
2830         } else {
2831           assert(src_cp->data_size() == 0, "sanity");
2832         }
2833       }
2834     }
2835   } while (++space_id < last_space_id);
2836 
2837   assert(false, "no source region was found");
2838   return 0;
2839 }
2840 
2841 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2842 {
2843   typedef ParMarkBitMap::IterationStatus IterationStatus;
2844   const size_t RegionSize = ParallelCompactData::RegionSize;
2845   ParMarkBitMap* const bitmap = mark_bitmap();
2846   ParallelCompactData& sd = summary_data();
2847   RegionData* const region_ptr = sd.region(region_idx);
2848 
2849   // Get the items needed to construct the closure.
2850   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2851   SpaceId dest_space_id = space_id(dest_addr);
2852   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2853   HeapWord* new_top = _space_info[dest_space_id].new_top();
2854   assert(dest_addr < new_top, "sanity");
2855   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2856 
2857   // Get the source region and related info.
2858   size_t src_region_idx = region_ptr->source_region();
2859   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2860   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2861 
2862   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2863   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2864 
2865   // Adjust src_region_idx to prepare for decrementing destination counts (the
2866   // destination count is not decremented when a region is copied to itself).
2867   if (src_region_idx == region_idx) {
2868     src_region_idx += 1;
2869   }
2870 
2871   if (bitmap->is_unmarked(closure.source())) {
2872     // The first source word is in the middle of an object; copy the remainder
2873     // of the object or as much as will fit.  The fact that pointer updates were
2874     // deferred will be noted when the object header is processed.
2875     HeapWord* const old_src_addr = closure.source();
2876     closure.copy_partial_obj();
2877     if (closure.is_full()) {
2878       decrement_destination_counts(cm, src_space_id, src_region_idx,
2879                                    closure.source());
2880       region_ptr->set_deferred_obj_addr(NULL);
2881       region_ptr->set_completed();
2882       return;
2883     }
2884 
2885     HeapWord* const end_addr = sd.region_align_down(closure.source());
2886     if (sd.region_align_down(old_src_addr) != end_addr) {
2887       // The partial object was copied from more than one source region.
2888       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2889 
2890       // Move to the next source region, possibly switching spaces as well.  All
2891       // args except end_addr may be modified.
2892       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2893                                        end_addr);
2894     }
2895   }
2896 
2897   do {
2898     HeapWord* const cur_addr = closure.source();
2899     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2900                                     src_space_top);
2901     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2902 
2903     if (status == ParMarkBitMap::incomplete) {
2904       // The last obj that starts in the source region does not end in the
2905       // region.
2906       assert(closure.source() < end_addr, "sanity");
2907       HeapWord* const obj_beg = closure.source();
2908       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2909                                        src_space_top);
2910       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2911       if (obj_end < range_end) {
2912         // The end was found; the entire object will fit.
2913         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2914         assert(status != ParMarkBitMap::would_overflow, "sanity");
2915       } else {
2916         // The end was not found; the object will not fit.
2917         assert(range_end < src_space_top, "obj cannot cross space boundary");
2918         status = ParMarkBitMap::would_overflow;
2919       }
2920     }
2921 
2922     if (status == ParMarkBitMap::would_overflow) {
2923       // The last object did not fit.  Note that interior oop updates were
2924       // deferred, then copy enough of the object to fill the region.
2925       region_ptr->set_deferred_obj_addr(closure.destination());
2926       status = closure.copy_until_full(); // copies from closure.source()
2927 
2928       decrement_destination_counts(cm, src_space_id, src_region_idx,
2929                                    closure.source());
2930       region_ptr->set_completed();
2931       return;
2932     }
2933 
2934     if (status == ParMarkBitMap::full) {
2935       decrement_destination_counts(cm, src_space_id, src_region_idx,
2936                                    closure.source());
2937       region_ptr->set_deferred_obj_addr(NULL);
2938       region_ptr->set_completed();
2939       return;
2940     }
2941 
2942     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2943 
2944     // Move to the next source region, possibly switching spaces as well.  All
2945     // args except end_addr may be modified.
2946     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2947                                      end_addr);
2948   } while (true);
2949 }
2950 
2951 void PSParallelCompact::fill_blocks(size_t region_idx)
2952 {
2953   // Fill in the block table elements for the specified region.  Each block
2954   // table element holds the number of live words in the region that are to the
2955   // left of the first object that starts in the block.  Thus only blocks in
2956   // which an object starts need to be filled.
2957   //
2958   // The algorithm scans the section of the bitmap that corresponds to the
2959   // region, keeping a running total of the live words.  When an object start is
2960   // found, if it's the first to start in the block that contains it, the
2961   // current total is written to the block table element.
2962   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2963   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2964   const size_t RegionSize = ParallelCompactData::RegionSize;
2965 
2966   ParallelCompactData& sd = summary_data();
2967   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2968   if (partial_obj_size >= RegionSize) {
2969     return; // No objects start in this region.
2970   }
2971 
2972   // Ensure the first loop iteration decides that the block has changed.
2973   size_t cur_block = sd.block_count();
2974 
2975   const ParMarkBitMap* const bitmap = mark_bitmap();
2976 
2977   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2978   assert((size_t)1 << Log2BitsPerBlock ==
2979          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2980 
2981   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2982   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2983   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2984   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2985   while (beg_bit < range_end) {
2986     const size_t new_block = beg_bit >> Log2BitsPerBlock;
2987     if (new_block != cur_block) {
2988       cur_block = new_block;
2989       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2990     }
2991 
2992     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2993     if (end_bit < range_end - 1) {
2994       live_bits += end_bit - beg_bit + 1;
2995       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2996     } else {
2997       return;
2998     }
2999   }
3000 }
3001 
3002 void
3003 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
3004   const MutableSpace* sp = space(space_id);
3005   if (sp->is_empty()) {
3006     return;
3007   }
3008 
3009   ParallelCompactData& sd = PSParallelCompact::summary_data();
3010   ParMarkBitMap* const bitmap = mark_bitmap();
3011   HeapWord* const dp_addr = dense_prefix(space_id);
3012   HeapWord* beg_addr = sp->bottom();
3013   HeapWord* end_addr = sp->top();
3014 
3015   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3016 
3017   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3018   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3019   if (beg_region < dp_region) {
3020     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3021   }
3022 
3023   // The destination of the first live object that starts in the region is one
3024   // past the end of the partial object entering the region (if any).
3025   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3026   HeapWord* const new_top = _space_info[space_id].new_top();
3027   assert(new_top >= dest_addr, "bad new_top value");
3028   const size_t words = pointer_delta(new_top, dest_addr);
3029 
3030   if (words > 0) {
3031     ObjectStartArray* start_array = _space_info[space_id].start_array();
3032     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3033 
3034     ParMarkBitMap::IterationStatus status;
3035     status = bitmap->iterate(&closure, dest_addr, end_addr);
3036     assert(status == ParMarkBitMap::full, "iteration not complete");
3037     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3038            "live objects skipped because closure is full");
3039   }
3040 }
3041 
3042 jlong PSParallelCompact::millis_since_last_gc() {
3043   // We need a monotonically non-decreasing time in ms but
3044   // os::javaTimeMillis() does not guarantee monotonicity.
3045   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3046   jlong ret_val = now - _time_of_last_gc;
3047   // XXX See note in genCollectedHeap::millis_since_last_gc().
3048   if (ret_val < 0) {
3049     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3050     return 0;
3051   }
3052   return ret_val;
3053 }
3054 
3055 void PSParallelCompact::reset_millis_since_last_gc() {
3056   // We need a monotonically non-decreasing time in ms but
3057   // os::javaTimeMillis() does not guarantee monotonicity.
3058   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3059 }
3060 
3061 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3062 {
3063   if (source() != destination()) {
3064     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3065     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3066   }
3067   update_state(words_remaining());
3068   assert(is_full(), "sanity");
3069   return ParMarkBitMap::full;
3070 }
3071 
3072 void MoveAndUpdateClosure::copy_partial_obj()
3073 {
3074   size_t words = words_remaining();
3075 
3076   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3077   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3078   if (end_addr < range_end) {
3079     words = bitmap()->obj_size(source(), end_addr);
3080   }
3081 
3082   // This test is necessary; if omitted, the pointer updates to a partial object
3083   // that crosses the dense prefix boundary could be overwritten.
3084   if (source() != destination()) {
3085     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3086     Copy::aligned_conjoint_words(source(), destination(), words);
3087   }
3088   update_state(words);
3089 }
3090 
3091 ParMarkBitMapClosure::IterationStatus
3092 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3093   assert(destination() != NULL, "sanity");
3094   assert(bitmap()->obj_size(addr) == words, "bad size");
3095 
3096   _source = addr;
3097   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3098          destination(), "wrong destination");
3099 
3100   if (words > words_remaining()) {
3101     return ParMarkBitMap::would_overflow;
3102   }
3103 
3104   // The start_array must be updated even if the object is not moving.
3105   if (_start_array != NULL) {
3106     _start_array->allocate_block(destination());
3107   }
3108 
3109   if (destination() != source()) {
3110     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3111     Copy::aligned_conjoint_words(source(), destination(), words);
3112   }
3113 
3114   oop moved_oop = (oop) destination();
3115   compaction_manager()->update_contents(moved_oop);
3116   assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3117 
3118   update_state(words);
3119   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3120   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3121 }
3122 
3123 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3124                                      ParCompactionManager* cm,
3125                                      PSParallelCompact::SpaceId space_id) :
3126   ParMarkBitMapClosure(mbm, cm),
3127   _space_id(space_id),
3128   _start_array(PSParallelCompact::start_array(space_id))
3129 {
3130 }
3131 
3132 // Updates the references in the object to their new values.
3133 ParMarkBitMapClosure::IterationStatus
3134 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3135   do_addr(addr);
3136   return ParMarkBitMap::incomplete;
3137 }
3138 
3139 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3140   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3141   _start_array(PSParallelCompact::start_array(space_id))
3142 {
3143   assert(space_id == PSParallelCompact::old_space_id,
3144          "cannot use FillClosure in the young gen");
3145 }
3146 
3147 ParMarkBitMapClosure::IterationStatus
3148 FillClosure::do_addr(HeapWord* addr, size_t size) {
3149   CollectedHeap::fill_with_objects(addr, size);
3150   HeapWord* const end = addr + size;
3151   do {
3152     _start_array->allocate_block(addr);
3153     addr += oop(addr)->size();
3154   } while (addr < end);
3155   return ParMarkBitMap::incomplete;
3156 }