/* * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_MEMORY_METASPACE_CHUNKTREE_HPP #define SHARE_MEMORY_METASPACE_CHUNKTREE_HPP #include "memory/metaspace/abstractPool.hpp" #include "memory/metaspace/chunkLevel.hpp" #include "memory/metaspace/metachunk.hpp" namespace metaspace { // Chunks live in a binary tree. // class ChunkClosure { public: // Return false to cancel traversal. virtual bool do_chunk(Metachunk* chunk) = 0; }; class ChunkTree { typedef u2 ref_t; // Root is either a direct pointer to a Metachunk* (in that case, a root chunk of max. size) // or a pointer to a node. ref_t _root; struct btnode_t { ref_t parent; ref_t child[2]; }; typedef AbstractPool NodePoolType; typedef AbstractPool ChunkPoolType; NodePoolType _nodePool; ChunkPoolType _chunkPool; // The upper two bits of a reference encode information about it. // bit 0,1: 00 - reference is a btnode_t // 10 - reference is a free chunk // 11 - reference is a chunk in use. // This also means a reference has to get by with 14 bits. Which covers 16K, which is enough for both // chunk headers and nodes within one root chunk area. static const u2 highest_possible_index = (1 << 14) - 1; static const u2 node_marker = 0; static const u2 free_chunk_marker = 2; static const u2 used_chunk_marker = 3; static u2 get_raw_index_from_reference(ref_t ref) { return 0x3FFF & ref; } static u2 get_info_from_reference(ref_t ref) { return 0xc000 & ref; } static u2 encode_reference(u2 raw_idx, u2 info) { assert(raw_idx <= highest_possible_index, "invalid index"); return (info << 14) | raw_idx; } #ifdef ASSERT static bool reference_is_node(ref_t ref) { return get_info_from_reference(ref) == node_marker; } static bool reference_is_chunk(ref_t ref) { u2 i = get_info_from_reference(ref); return i == free_chunk_marker || i == used_chunk_marker; } static bool reference_is_used_chunk(ref_t ref) { return get_info_from_reference(ref) == used_chunk_marker; } void check_is_valid_node_ref(ref_t ref) { assert(resolve_reference_to_node(ref) != NULL, "invalid node ref"); } void check_is_valid_chunk_ref(ref_t ref) { assert(resolve_reference_to_chunk(ref) != NULL, "invalid chunk ref"); } void check_is_valid_ref(ref_t ref); #endif static bool reference_is_free_chunk(ref_t ref) { return get_info_from_reference(ref) == free_chunk_marker; } // Given a reference we know to be a node, resolve it to the node pointer. btnode_t* resolve_reference_to_node(ref_t ref) const { assert(reference_is_node(ref), "Not a node ref"); return _nodePool.elem_at_index(get_raw_index_from_reference(ref)); } // Allocate a new node. Node is uninitialized. // Returns pointer to node, and reference in ref. btnode_t* allocate_new_node() { return _nodePool.allocate_element(); } // Given a node pointer, return its correctly encoded reference. ref_t encode_reference_for_node(const btnode_t* n) const { const u2 raw_idx = _nodePool.index_for_elem(n); return encode_reference(raw_idx, node_marker); } // Release a node to the pool. void release_node(btnode_t* n) { _nodePool.return_element(n); } // Given a reference we know to be a chunk, resolve it to the chunk pointer. Metachunk* resolve_reference_to_chunk(ref_t ref) const { assert(reference_is_chunk(ref), "Not a chunk ref"); return _chunkPool.elem_at_index(get_raw_index_from_reference(ref)); } // Allocate a new node. Node is uninitialized. // Returns pointer to node, and reference in ref. Metachunk* allocate_new_chunk() { return _chunkPool.allocate_element(); } // Given a chunk pointer, return its correctly encoded reference. ref_t encode_reference_for_chunk(Metachunk* c, bool is_free) const { const u2 raw_idx = _chunkPool.index_for_elem(c); return encode_reference(raw_idx, is_free ? free_chunk_marker : used_chunk_marker); } // Release a chunk to the pool. void release_chunk(Metachunk* c) { _chunkPool.return_element(c); } //// Helpers for tree traversal //// class ConstChunkClosure; bool iterate_chunks_helper(ref_t ref, ChunkClosure* cc) const; #ifdef ASSERT // Verify a life node (one which lives in the tree). void verify_node(const btnode_t* n) const; // Helper for verify() void verify_helper(bool slow, ref_t ref, const MetaWord* p, int* num_chunks, int* num_nodes) const; #endif // Given a chunk c, split it once. // // The original chunk must not be part of a freelist. // // Returns pointer to the result chunk; updates the splinters array to return the splintered off chunk. // // Returns NULL if chunk cannot be split any further. Metachunk* split_once(Metachunk* c, Metachunk* splinters[chklvl::NUM_CHUNK_LEVELS]); // Given a chunk, attempt to merge it with its sibling if it is free. // Returns pointer to the result chunk if successful, NULL otherwise. // // Returns number of merged chunks, by chunk level, in num_merged array. These numbers // includes the original chunk. // // !!! Please note that if this method returns a non-NULL value, the // original chunk will be invalid and should not be accessed anymore! !!! Metachunk* merge_once(Metachunk* c, int num_merged[chklvl::NUM_CHUNK_LEVELS]); public: ChunkTree(); // Initialize: allocate a root node and a root chunk header; return the // root chunk header. It will be partly initialized. // Note: this just allocates a memory-less header; memory itself is allocated inside VirtualSpaceNode. Metachunk* alloc_root_chunk_header(); // Given a chunk c, split it recursively until you get a chunk of the given target_level. // // The original chunk must not be part of a freelist. // // Returns pointer to the result chunk; returns split off chunks in splinters array. // // Returns NULL if chunk cannot be split at least once. Metachunk* split(chklvl_t target_level, Metachunk* c, Metachunk* splinters[chklvl::NUM_CHUNK_LEVELS]); // Given a chunk, attempt to merge it recursively with its neighboring chunks. // // If successful (merged at least once), returns address of // the merged chunk; NULL otherwise. // // The merged chunks are removed from their freelist; the number of merged chunks is // returned, split by level, in num_merged array. Note that these numbers does not // include the original chunk. // // !!! Please note that if this method returns a non-NULL value, the // original chunk will be invalid and should not be accessed anymore! !!! Metachunk* merge(Metachunk* c, int num_merged[chklvl::NUM_CHUNK_LEVELS]); //// tree traversal //// // Iterate over all nodes in this tree. Returns true for complete traversal, // false if traversal was cancelled. bool iterate_chunks(ChunkClosure* cc) const; //// Debug stuff //// // Verify tree. If base != NULL, it should point to the location assumed // to be base of the first chunk. DEBUG_ONLY(void verify(bool slow, const MetaWord* base) const;) // Returns the footprint of this tree, in words. size_t memory_footprint_words() const; }; /////////////////////// // An C-heap allocated array of chunk trees. Used to describe fragmentation over a range of multiple root chunks. class ChunkTreeArray { const MetaWord* const _base; const size_t _word_size; ChunkTree** _arr; int _num; #ifdef ASSERT void check_pointer(const MetaWord* p) const { assert(p >= _base && p < _base + _word_size, "Invalid pointer"); } #endif int index_by_address(const MetaWord* p) const { DEBUG_ONLY(check_pointer(p);) return (p - _base) / chklvl::MAX_CHUNK_WORD_SIZE; } public: // Create an array of ChunkTree objects, all initialized to NULL, covering // a given memory range. Memory range must be aligned to size of root chunks. ChunkTreeArray(const MetaWord* base, size_t word_size); ~ChunkTreeArray(); // Given a memory address into the range the trees cover, return the corresponding // tree. If none existed at this position, create it. ChunkTree* get_tree_by_address(const MetaWord* p) const { assert(p >= _base && p < _base + _word_size, "Invalid pointer"); const int idx = index_by_address(p); assert(idx >= 0 && idx < _num, "Invalid index"); if (_arr[idx] == NULL) { _arr[idx] = new ChunkTree(); } return _arr[idx]; } // Iterate over all nodes in all trees. Returns true for complete traversal, // false if traversal was cancelled. bool iterate_chunks(ChunkClosure* cc) const; DEBUG_ONLY(void verify(bool slow) const;) // Returns the footprint of all trees in this array, in words. size_t memory_footprint_words() const; }; } // namespace metaspace #endif // SHARE_MEMORY_METASPACE_CHUNKTREE_HPP