1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc/shared/allocTracer.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "gc/shared/gcLocker.inline.hpp"
  32 #include "gc/shared/gcHeapSummary.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "gc/shared/gcVMOperations.hpp"
  36 #include "gc/shared/gcWhen.hpp"
  37 #include "gc/shared/memAllocator.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/metaspace.hpp"
  40 #include "memory/metaspace/classLoaderMetaspace.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "memory/universe.hpp"
  43 #include "oops/instanceMirrorKlass.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "runtime/handles.inline.hpp"
  46 #include "runtime/init.hpp"
  47 #include "runtime/thread.inline.hpp"
  48 #include "runtime/threadSMR.hpp"
  49 #include "runtime/vmThread.hpp"
  50 #include "services/heapDumper.hpp"
  51 #include "utilities/align.hpp"
  52 #include "utilities/copy.hpp"
  53 
  54 class ClassLoaderData;
  55 
  56 size_t CollectedHeap::_filler_array_max_size = 0;
  57 
  58 template <>
  59 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
  60   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
  61   st->print_raw(m);
  62 }
  63 
  64 void GCHeapLog::log_heap(CollectedHeap* heap, bool before) {
  65   if (!should_log()) {
  66     return;
  67   }
  68 
  69   double timestamp = fetch_timestamp();
  70   MutexLocker ml(&_mutex, Mutex::_no_safepoint_check_flag);
  71   int index = compute_log_index();
  72   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
  73   _records[index].timestamp = timestamp;
  74   _records[index].data.is_before = before;
  75   stringStream st(_records[index].data.buffer(), _records[index].data.size());
  76 
  77   st.print_cr("{Heap %s GC invocations=%u (full %u):",
  78                  before ? "before" : "after",
  79                  heap->total_collections(),
  80                  heap->total_full_collections());
  81 
  82   heap->print_on(&st);
  83   st.print_cr("}");
  84 }
  85 
  86 size_t CollectedHeap::unused() const {
  87   MutexLocker ml(Heap_lock);
  88   return capacity() - used();
  89 }
  90 
  91 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
  92   size_t capacity_in_words = capacity() / HeapWordSize;
  93 
  94   return VirtualSpaceSummary(
  95     reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
  96 }
  97 
  98 GCHeapSummary CollectedHeap::create_heap_summary() {
  99   VirtualSpaceSummary heap_space = create_heap_space_summary();
 100   return GCHeapSummary(heap_space, used());
 101 }
 102 
 103 MetaspaceSummary CollectedHeap::create_metaspace_summary() {
 104   const MetaspaceSizes meta_space(
 105       MetaspaceUtils::committed_bytes(),
 106       MetaspaceUtils::used_bytes(),
 107       MetaspaceUtils::reserved_bytes());
 108   const MetaspaceSizes data_space(
 109       MetaspaceUtils::committed_bytes(metaspace::NonClassType),
 110       MetaspaceUtils::used_bytes(metaspace::NonClassType),
 111       MetaspaceUtils::reserved_bytes(metaspace::NonClassType));
 112   const MetaspaceSizes class_space(
 113       MetaspaceUtils::committed_bytes(metaspace::ClassType),
 114       MetaspaceUtils::used_bytes(metaspace::ClassType),
 115       MetaspaceUtils::reserved_bytes(metaspace::ClassType));
 116 
 117   const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
 118     MetaspaceUtils::chunk_free_list_summary(metaspace::NonClassType);
 119   const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
 120     MetaspaceUtils::chunk_free_list_summary(metaspace::ClassType);
 121 
 122   return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space,
 123                           ms_chunk_free_list_summary, class_chunk_free_list_summary);
 124 }
 125 
 126 void CollectedHeap::print_heap_before_gc() {
 127   Universe::print_heap_before_gc();
 128   if (_gc_heap_log != NULL) {
 129     _gc_heap_log->log_heap_before(this);
 130   }
 131 }
 132 
 133 void CollectedHeap::print_heap_after_gc() {
 134   Universe::print_heap_after_gc();
 135   if (_gc_heap_log != NULL) {
 136     _gc_heap_log->log_heap_after(this);
 137   }
 138 }
 139 
 140 void CollectedHeap::print() const { print_on(tty); }
 141 
 142 void CollectedHeap::print_on_error(outputStream* st) const {
 143   st->print_cr("Heap:");
 144   print_extended_on(st);
 145   st->cr();
 146 
 147   BarrierSet::barrier_set()->print_on(st);
 148 }
 149 
 150 void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 151   const GCHeapSummary& heap_summary = create_heap_summary();
 152   gc_tracer->report_gc_heap_summary(when, heap_summary);
 153 
 154   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 155   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 156 }
 157 
 158 void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) {
 159   trace_heap(GCWhen::BeforeGC, gc_tracer);
 160 }
 161 
 162 void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) {
 163   trace_heap(GCWhen::AfterGC, gc_tracer);
 164 }
 165 
 166 // WhiteBox API support for concurrent collectors.  These are the
 167 // default implementations, for collectors which don't support this
 168 // feature.
 169 bool CollectedHeap::supports_concurrent_phase_control() const {
 170   return false;
 171 }
 172 
 173 bool CollectedHeap::request_concurrent_phase(const char* phase) {
 174   return false;
 175 }
 176 
 177 bool CollectedHeap::is_oop(oop object) const {
 178   if (!check_obj_alignment(object)) {
 179     return false;
 180   }
 181 
 182   if (!is_in_reserved(object)) {
 183     return false;
 184   }
 185 
 186   if (is_in_reserved(object->klass_or_null())) {
 187     return false;
 188   }
 189 
 190   return true;
 191 }
 192 
 193 // Memory state functions.
 194 
 195 
 196 CollectedHeap::CollectedHeap() :
 197   _is_gc_active(false),
 198   _total_collections(0),
 199   _total_full_collections(0),
 200   _gc_cause(GCCause::_no_gc),
 201   _gc_lastcause(GCCause::_no_gc)
 202 {
 203   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
 204   const size_t elements_per_word = HeapWordSize / sizeof(jint);
 205   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
 206                                              max_len / elements_per_word);
 207 
 208   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
 209   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
 210 
 211   if (UsePerfData) {
 212     EXCEPTION_MARK;
 213 
 214     // create the gc cause jvmstat counters
 215     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
 216                              80, GCCause::to_string(_gc_cause), CHECK);
 217 
 218     _perf_gc_lastcause =
 219                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
 220                              80, GCCause::to_string(_gc_lastcause), CHECK);
 221   }
 222 
 223   // Create the ring log
 224   if (LogEvents) {
 225     _gc_heap_log = new GCHeapLog();
 226   } else {
 227     _gc_heap_log = NULL;
 228   }
 229 }
 230 
 231 // This interface assumes that it's being called by the
 232 // vm thread. It collects the heap assuming that the
 233 // heap lock is already held and that we are executing in
 234 // the context of the vm thread.
 235 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
 236   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 237   assert(Heap_lock->is_locked(), "Precondition#2");
 238   GCCauseSetter gcs(this, cause);
 239   switch (cause) {
 240     case GCCause::_heap_inspection:
 241     case GCCause::_heap_dump:
 242     case GCCause::_metadata_GC_threshold : {
 243       HandleMark hm;
 244       do_full_collection(false);        // don't clear all soft refs
 245       break;
 246     }
 247     case GCCause::_metadata_GC_clear_soft_refs: {
 248       HandleMark hm;
 249       do_full_collection(true);         // do clear all soft refs
 250       break;
 251     }
 252     default:
 253       ShouldNotReachHere(); // Unexpected use of this function
 254   }
 255 }
 256 
 257 MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 258                                                             size_t word_size,
 259                                                             metaspace::MetadataType mdtype) {
 260   uint loop_count = 0;
 261   uint gc_count = 0;
 262   uint full_gc_count = 0;
 263 
 264   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 265 
 266   do {
 267     MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
 268     if (result != NULL) {
 269       return result;
 270     }
 271 
 272     if (GCLocker::is_active_and_needs_gc()) {
 273       // If the GCLocker is active, just expand and allocate.
 274       // If that does not succeed, wait if this thread is not
 275       // in a critical section itself.
 276       result = loader_data->metaspace_non_null()->expand_and_allocate(word_size, mdtype);
 277       if (result != NULL) {
 278         return result;
 279       }
 280       JavaThread* jthr = JavaThread::current();
 281       if (!jthr->in_critical()) {
 282         // Wait for JNI critical section to be exited
 283         GCLocker::stall_until_clear();
 284         // The GC invoked by the last thread leaving the critical
 285         // section will be a young collection and a full collection
 286         // is (currently) needed for unloading classes so continue
 287         // to the next iteration to get a full GC.
 288         continue;
 289       } else {
 290         if (CheckJNICalls) {
 291           fatal("Possible deadlock due to allocating while"
 292                 " in jni critical section");
 293         }
 294         return NULL;
 295       }
 296     }
 297 
 298     {  // Need lock to get self consistent gc_count's
 299       MutexLocker ml(Heap_lock);
 300       gc_count      = Universe::heap()->total_collections();
 301       full_gc_count = Universe::heap()->total_full_collections();
 302     }
 303 
 304     // Generate a VM operation
 305     VM_CollectForMetadataAllocation op(loader_data,
 306                                        word_size,
 307                                        mdtype,
 308                                        gc_count,
 309                                        full_gc_count,
 310                                        GCCause::_metadata_GC_threshold);
 311     VMThread::execute(&op);
 312 
 313     // If GC was locked out, try again. Check before checking success because the
 314     // prologue could have succeeded and the GC still have been locked out.
 315     if (op.gc_locked()) {
 316       continue;
 317     }
 318 
 319     if (op.prologue_succeeded()) {
 320       return op.result();
 321     }
 322     loop_count++;
 323     if ((QueuedAllocationWarningCount > 0) &&
 324         (loop_count % QueuedAllocationWarningCount == 0)) {
 325       log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times,"
 326                             " size=" SIZE_FORMAT, loop_count, word_size);
 327     }
 328   } while (true);  // Until a GC is done
 329 }
 330 
 331 MemoryUsage CollectedHeap::memory_usage() {
 332   return MemoryUsage(InitialHeapSize, used(), capacity(), max_capacity());
 333 }
 334 
 335 
 336 #ifndef PRODUCT
 337 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
 338   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 339     for (size_t slot = 0; slot < size; slot += 1) {
 340       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
 341              "Found non badHeapWordValue in pre-allocation check");
 342     }
 343   }
 344 }
 345 #endif // PRODUCT
 346 
 347 size_t CollectedHeap::max_tlab_size() const {
 348   // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
 349   // This restriction could be removed by enabling filling with multiple arrays.
 350   // If we compute that the reasonable way as
 351   //    header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
 352   // we'll overflow on the multiply, so we do the divide first.
 353   // We actually lose a little by dividing first,
 354   // but that just makes the TLAB  somewhat smaller than the biggest array,
 355   // which is fine, since we'll be able to fill that.
 356   size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
 357               sizeof(jint) *
 358               ((juint) max_jint / (size_t) HeapWordSize);
 359   return align_down(max_int_size, MinObjAlignment);
 360 }
 361 
 362 size_t CollectedHeap::filler_array_hdr_size() {
 363   return align_object_offset(arrayOopDesc::header_size(T_INT)); // align to Long
 364 }
 365 
 366 size_t CollectedHeap::filler_array_min_size() {
 367   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 368 }
 369 
 370 #ifdef ASSERT
 371 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 372 {
 373   assert(words >= min_fill_size(), "too small to fill");
 374   assert(is_object_aligned(words), "unaligned size");
 375   assert(Universe::heap()->is_in_reserved(start), "not in heap");
 376   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
 377 }
 378 
 379 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 380 {
 381   if (ZapFillerObjects && zap) {
 382     Copy::fill_to_words(start + filler_array_hdr_size(),
 383                         words - filler_array_hdr_size(), 0XDEAFBABE);
 384   }
 385 }
 386 #endif // ASSERT
 387 
 388 void
 389 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 390 {
 391   assert(words >= filler_array_min_size(), "too small for an array");
 392   assert(words <= filler_array_max_size(), "too big for a single object");
 393 
 394   const size_t payload_size = words - filler_array_hdr_size();
 395   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 396   assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d", words, (int)len);
 397 
 398   ObjArrayAllocator allocator(Universe::intArrayKlassObj(), words, (int)len, /* do_zero */ false);
 399   allocator.initialize(start);
 400   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 401 }
 402 
 403 void
 404 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 405 {
 406   assert(words <= filler_array_max_size(), "too big for a single object");
 407 
 408   if (words >= filler_array_min_size()) {
 409     fill_with_array(start, words, zap);
 410   } else if (words > 0) {
 411     assert(words == min_fill_size(), "unaligned size");
 412     ObjAllocator allocator(SystemDictionary::Object_klass(), words);
 413     allocator.initialize(start);
 414   }
 415 }
 416 
 417 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 418 {
 419   DEBUG_ONLY(fill_args_check(start, words);)
 420   HandleMark hm;  // Free handles before leaving.
 421   fill_with_object_impl(start, words, zap);
 422 }
 423 
 424 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 425 {
 426   DEBUG_ONLY(fill_args_check(start, words);)
 427   HandleMark hm;  // Free handles before leaving.
 428 
 429   // Multiple objects may be required depending on the filler array maximum size. Fill
 430   // the range up to that with objects that are filler_array_max_size sized. The
 431   // remainder is filled with a single object.
 432   const size_t min = min_fill_size();
 433   const size_t max = filler_array_max_size();
 434   while (words > max) {
 435     const size_t cur = (words - max) >= min ? max : max - min;
 436     fill_with_array(start, cur, zap);
 437     start += cur;
 438     words -= cur;
 439   }
 440 
 441   fill_with_object_impl(start, words, zap);
 442 }
 443 
 444 void CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
 445   CollectedHeap::fill_with_object(start, end, zap);
 446 }
 447 
 448 size_t CollectedHeap::min_dummy_object_size() const {
 449   return oopDesc::header_size();
 450 }
 451 
 452 size_t CollectedHeap::tlab_alloc_reserve() const {
 453   size_t min_size = min_dummy_object_size();
 454   return min_size > (size_t)MinObjAlignment ? align_object_size(min_size) : 0;
 455 }
 456 
 457 HeapWord* CollectedHeap::allocate_new_tlab(size_t min_size,
 458                                            size_t requested_size,
 459                                            size_t* actual_size) {
 460   guarantee(false, "thread-local allocation buffers not supported");
 461   return NULL;
 462 }
 463 
 464 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 465   assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
 466          "Should only be called at a safepoint or at start-up");
 467 
 468   ThreadLocalAllocStats stats;
 469 
 470   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next();) {
 471     BarrierSet::barrier_set()->make_parsable(thread);
 472     if (UseTLAB) {
 473       if (retire_tlabs) {
 474         thread->tlab().retire(&stats);
 475       } else {
 476         thread->tlab().make_parsable();
 477       }
 478     }
 479   }
 480 
 481   stats.publish();
 482 }
 483 
 484 void CollectedHeap::resize_all_tlabs() {
 485   assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
 486          "Should only resize tlabs at safepoint");
 487 
 488   if (UseTLAB && ResizeTLAB) {
 489     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
 490       thread->tlab().resize();
 491     }
 492   }
 493 }
 494 
 495 void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) {
 496   assert(timer != NULL, "timer is null");
 497   if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) {
 498     GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer);
 499     HeapDumper::dump_heap();
 500   }
 501 
 502   LogTarget(Trace, gc, classhisto) lt;
 503   if (lt.is_enabled()) {
 504     GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer);
 505     ResourceMark rm;
 506     LogStream ls(lt);
 507     VM_GC_HeapInspection inspector(&ls, false /* ! full gc */);
 508     inspector.doit();
 509   }
 510 }
 511 
 512 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
 513   full_gc_dump(timer, true);
 514 }
 515 
 516 void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
 517   full_gc_dump(timer, false);
 518 }
 519 
 520 void CollectedHeap::initialize_reserved_region(HeapWord *start, HeapWord *end) {
 521   // It is important to do this in a way such that concurrent readers can't
 522   // temporarily think something is in the heap.  (Seen this happen in asserts.)
 523   _reserved.set_word_size(0);
 524   _reserved.set_start(start);
 525   _reserved.set_end(end);
 526 }
 527 
 528 void CollectedHeap::post_initialize() {
 529   initialize_serviceability();
 530 }
 531 
 532 #ifndef PRODUCT
 533 
 534 bool CollectedHeap::promotion_should_fail(volatile size_t* count) {
 535   // Access to count is not atomic; the value does not have to be exact.
 536   if (PromotionFailureALot) {
 537     const size_t gc_num = total_collections();
 538     const size_t elapsed_gcs = gc_num - _promotion_failure_alot_gc_number;
 539     if (elapsed_gcs >= PromotionFailureALotInterval) {
 540       // Test for unsigned arithmetic wrap-around.
 541       if (++*count >= PromotionFailureALotCount) {
 542         *count = 0;
 543         return true;
 544       }
 545     }
 546   }
 547   return false;
 548 }
 549 
 550 bool CollectedHeap::promotion_should_fail() {
 551   return promotion_should_fail(&_promotion_failure_alot_count);
 552 }
 553 
 554 void CollectedHeap::reset_promotion_should_fail(volatile size_t* count) {
 555   if (PromotionFailureALot) {
 556     _promotion_failure_alot_gc_number = total_collections();
 557     *count = 0;
 558   }
 559 }
 560 
 561 void CollectedHeap::reset_promotion_should_fail() {
 562   reset_promotion_should_fail(&_promotion_failure_alot_count);
 563 }
 564 
 565 #endif  // #ifndef PRODUCT
 566 
 567 bool CollectedHeap::supports_object_pinning() const {
 568   return false;
 569 }
 570 
 571 oop CollectedHeap::pin_object(JavaThread* thread, oop obj) {
 572   ShouldNotReachHere();
 573   return NULL;
 574 }
 575 
 576 void CollectedHeap::unpin_object(JavaThread* thread, oop obj) {
 577   ShouldNotReachHere();
 578 }
 579 
 580 void CollectedHeap::deduplicate_string(oop str) {
 581   // Do nothing, unless overridden in subclass.
 582 }
 583 
 584 size_t CollectedHeap::obj_size(oop obj) const {
 585   return obj->size();
 586 }
 587 
 588 uint32_t CollectedHeap::hash_oop(oop obj) const {
 589   const uintptr_t addr = cast_from_oop<uintptr_t>(obj);
 590   return static_cast<uint32_t>(addr >> LogMinObjAlignment);
 591 }