1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "gc/shared/verifyOption.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/metaspace/metaspaceEnums.hpp"
  33 #include "runtime/handles.hpp"
  34 #include "runtime/perfData.hpp"
  35 #include "runtime/safepoint.hpp"
  36 #include "services/memoryUsage.hpp"
  37 #include "utilities/debug.hpp"
  38 #include "utilities/events.hpp"
  39 #include "utilities/formatBuffer.hpp"
  40 #include "utilities/growableArray.hpp"
  41 
  42 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  43 // is an abstract class: there may be many different kinds of heaps.  This
  44 // class defines the functions that a heap must implement, and contains
  45 // infrastructure common to all heaps.
  46 
  47 class AdaptiveSizePolicy;
  48 class BarrierSet;
  49 class GCHeapSummary;
  50 class GCTimer;
  51 class GCTracer;
  52 class GCMemoryManager;
  53 class MemoryPool;
  54 class MetaspaceSummary;
  55 class SoftRefPolicy;
  56 class Thread;
  57 class ThreadClosure;
  58 class VirtualSpaceSummary;
  59 class WorkGang;
  60 class nmethod;
  61 
  62 class GCMessage : public FormatBuffer<1024> {
  63  public:
  64   bool is_before;
  65 
  66  public:
  67   GCMessage() {}
  68 };
  69 
  70 class CollectedHeap;
  71 
  72 class GCHeapLog : public EventLogBase<GCMessage> {
  73  private:
  74   void log_heap(CollectedHeap* heap, bool before);
  75 
  76  public:
  77   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History", "gc") {}
  78 
  79   void log_heap_before(CollectedHeap* heap) {
  80     log_heap(heap, true);
  81   }
  82   void log_heap_after(CollectedHeap* heap) {
  83     log_heap(heap, false);
  84   }
  85 };
  86 
  87 //
  88 // CollectedHeap
  89 //   GenCollectedHeap
  90 //     SerialHeap
  91 //     CMSHeap
  92 //   G1CollectedHeap
  93 //   ParallelScavengeHeap
  94 //   ShenandoahHeap
  95 //   ZCollectedHeap
  96 //
  97 class CollectedHeap : public CHeapObj<mtInternal> {
  98   friend class VMStructs;
  99   friend class JVMCIVMStructs;
 100   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
 101   friend class MemAllocator;
 102 
 103  private:
 104   GCHeapLog* _gc_heap_log;
 105 
 106   MemRegion _reserved;
 107 
 108  protected:
 109   bool _is_gc_active;
 110 
 111   // Used for filler objects (static, but initialized in ctor).
 112   static size_t _filler_array_max_size;
 113 
 114   unsigned int _total_collections;          // ... started
 115   unsigned int _total_full_collections;     // ... started
 116   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 117   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 118 
 119   // Reason for current garbage collection.  Should be set to
 120   // a value reflecting no collection between collections.
 121   GCCause::Cause _gc_cause;
 122   GCCause::Cause _gc_lastcause;
 123   PerfStringVariable* _perf_gc_cause;
 124   PerfStringVariable* _perf_gc_lastcause;
 125 
 126   // Constructor
 127   CollectedHeap();
 128 
 129   // Create a new tlab. All TLAB allocations must go through this.
 130   // To allow more flexible TLAB allocations min_size specifies
 131   // the minimum size needed, while requested_size is the requested
 132   // size based on ergonomics. The actually allocated size will be
 133   // returned in actual_size.
 134   virtual HeapWord* allocate_new_tlab(size_t min_size,
 135                                       size_t requested_size,
 136                                       size_t* actual_size);
 137 
 138   // Reinitialize tlabs before resuming mutators.
 139   virtual void resize_all_tlabs();
 140 
 141   // Raw memory allocation facilities
 142   // The obj and array allocate methods are covers for these methods.
 143   // mem_allocate() should never be
 144   // called to allocate TLABs, only individual objects.
 145   virtual HeapWord* mem_allocate(size_t size,
 146                                  bool* gc_overhead_limit_was_exceeded) = 0;
 147 
 148   // Filler object utilities.
 149   static inline size_t filler_array_hdr_size();
 150   static inline size_t filler_array_min_size();
 151 
 152   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 153   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 154 
 155   // Fill with a single array; caller must ensure filler_array_min_size() <=
 156   // words <= filler_array_max_size().
 157   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 158 
 159   // Fill with a single object (either an int array or a java.lang.Object).
 160   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 161 
 162   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 163 
 164   // Verification functions
 165   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 166     PRODUCT_RETURN;
 167   debug_only(static void check_for_valid_allocation_state();)
 168 
 169  public:
 170   enum Name {
 171     None,
 172     Serial,
 173     Parallel,
 174     CMS,
 175     G1,
 176     Epsilon,
 177     Z,
 178     Shenandoah
 179   };
 180 
 181   static inline size_t filler_array_max_size() {
 182     return _filler_array_max_size;
 183   }
 184 
 185   virtual Name kind() const = 0;
 186 
 187   virtual const char* name() const = 0;
 188 
 189   /**
 190    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 191    * and JNI_OK on success.
 192    */
 193   virtual jint initialize() = 0;
 194 
 195   // In many heaps, there will be a need to perform some initialization activities
 196   // after the Universe is fully formed, but before general heap allocation is allowed.
 197   // This is the correct place to place such initialization methods.
 198   virtual void post_initialize();
 199 
 200   // Stop any onging concurrent work and prepare for exit.
 201   virtual void stop() {}
 202 
 203   // Stop and resume concurrent GC threads interfering with safepoint operations
 204   virtual void safepoint_synchronize_begin() {}
 205   virtual void safepoint_synchronize_end() {}
 206 
 207   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 208   MemRegion reserved_region() const { return _reserved; }
 209   address base() const { return (address)reserved_region().start(); }
 210 
 211   virtual size_t capacity() const = 0;
 212   virtual size_t used() const = 0;
 213 
 214   // Returns unused capacity.
 215   virtual size_t unused() const;
 216 
 217   // Return "true" if the part of the heap that allocates Java
 218   // objects has reached the maximal committed limit that it can
 219   // reach, without a garbage collection.
 220   virtual bool is_maximal_no_gc() const = 0;
 221 
 222   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 223   // memory that the vm could make available for storing 'normal' java objects.
 224   // This is based on the reserved address space, but should not include space
 225   // that the vm uses internally for bookkeeping or temporary storage
 226   // (e.g., in the case of the young gen, one of the survivor
 227   // spaces).
 228   virtual size_t max_capacity() const = 0;
 229 
 230   // Returns "TRUE" if "p" points into the reserved area of the heap.
 231   bool is_in_reserved(const void* p) const {
 232     return _reserved.contains(p);
 233   }
 234 
 235   bool is_in_reserved_or_null(const void* p) const {
 236     return p == NULL || is_in_reserved(p);
 237   }
 238 
 239   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 240   // This method can be expensive so avoid using it in performance critical
 241   // code.
 242   virtual bool is_in(const void* p) const = 0;
 243 
 244   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 245 
 246   virtual uint32_t hash_oop(oop obj) const;
 247 
 248   void set_gc_cause(GCCause::Cause v) {
 249      if (UsePerfData) {
 250        _gc_lastcause = _gc_cause;
 251        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 252        _perf_gc_cause->set_value(GCCause::to_string(v));
 253      }
 254     _gc_cause = v;
 255   }
 256   GCCause::Cause gc_cause() { return _gc_cause; }
 257 
 258   virtual oop obj_allocate(Klass* klass, int size, TRAPS);
 259   virtual oop array_allocate(Klass* klass, int size, int length, bool do_zero, TRAPS);
 260   virtual oop class_allocate(Klass* klass, int size, TRAPS);
 261 
 262   // Utilities for turning raw memory into filler objects.
 263   //
 264   // min_fill_size() is the smallest region that can be filled.
 265   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 266   // multiple objects.  fill_with_object() is for regions known to be smaller
 267   // than the largest array of integers; it uses a single object to fill the
 268   // region and has slightly less overhead.
 269   static size_t min_fill_size() {
 270     return size_t(align_object_size(oopDesc::header_size()));
 271   }
 272 
 273   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 274 
 275   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 276   static void fill_with_object(MemRegion region, bool zap = true) {
 277     fill_with_object(region.start(), region.word_size(), zap);
 278   }
 279   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 280     fill_with_object(start, pointer_delta(end, start), zap);
 281   }
 282 
 283   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
 284   virtual size_t min_dummy_object_size() const;
 285   size_t tlab_alloc_reserve() const;
 286 
 287   // Return the address "addr" aligned by "alignment_in_bytes" if such
 288   // an address is below "end".  Return NULL otherwise.
 289   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 290                                                    HeapWord* end,
 291                                                    unsigned short alignment_in_bytes);
 292 
 293   // Some heaps may offer a contiguous region for shared non-blocking
 294   // allocation, via inlined code (by exporting the address of the top and
 295   // end fields defining the extent of the contiguous allocation region.)
 296 
 297   // This function returns "true" iff the heap supports this kind of
 298   // allocation.  (Default is "no".)
 299   virtual bool supports_inline_contig_alloc() const {
 300     return false;
 301   }
 302   // These functions return the addresses of the fields that define the
 303   // boundaries of the contiguous allocation area.  (These fields should be
 304   // physically near to one another.)
 305   virtual HeapWord* volatile* top_addr() const {
 306     guarantee(false, "inline contiguous allocation not supported");
 307     return NULL;
 308   }
 309   virtual HeapWord** end_addr() const {
 310     guarantee(false, "inline contiguous allocation not supported");
 311     return NULL;
 312   }
 313 
 314   // Some heaps may be in an unparseable state at certain times between
 315   // collections. This may be necessary for efficient implementation of
 316   // certain allocation-related activities. Calling this function before
 317   // attempting to parse a heap ensures that the heap is in a parsable
 318   // state (provided other concurrent activity does not introduce
 319   // unparsability). It is normally expected, therefore, that this
 320   // method is invoked with the world stopped.
 321   // NOTE: if you override this method, make sure you call
 322   // super::ensure_parsability so that the non-generational
 323   // part of the work gets done. See implementation of
 324   // CollectedHeap::ensure_parsability and, for instance,
 325   // that of GenCollectedHeap::ensure_parsability().
 326   // The argument "retire_tlabs" controls whether existing TLABs
 327   // are merely filled or also retired, thus preventing further
 328   // allocation from them and necessitating allocation of new TLABs.
 329   virtual void ensure_parsability(bool retire_tlabs);
 330 
 331   // Section on thread-local allocation buffers (TLABs)
 332   // If the heap supports thread-local allocation buffers, it should override
 333   // the following methods:
 334   // Returns "true" iff the heap supports thread-local allocation buffers.
 335   // The default is "no".
 336   virtual bool supports_tlab_allocation() const = 0;
 337 
 338   // The amount of space available for thread-local allocation buffers.
 339   virtual size_t tlab_capacity(Thread *thr) const = 0;
 340 
 341   // The amount of used space for thread-local allocation buffers for the given thread.
 342   virtual size_t tlab_used(Thread *thr) const = 0;
 343 
 344   virtual size_t max_tlab_size() const;
 345 
 346   // An estimate of the maximum allocation that could be performed
 347   // for thread-local allocation buffers without triggering any
 348   // collection or expansion activity.
 349   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 350     guarantee(false, "thread-local allocation buffers not supported");
 351     return 0;
 352   }
 353 
 354   // Perform a collection of the heap; intended for use in implementing
 355   // "System.gc".  This probably implies as full a collection as the
 356   // "CollectedHeap" supports.
 357   virtual void collect(GCCause::Cause cause) = 0;
 358 
 359   // Perform a full collection
 360   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 361 
 362   // This interface assumes that it's being called by the
 363   // vm thread. It collects the heap assuming that the
 364   // heap lock is already held and that we are executing in
 365   // the context of the vm thread.
 366   virtual void collect_as_vm_thread(GCCause::Cause cause);
 367 
 368   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 369                                                        size_t size,
 370                                                        metaspace::MetadataType mdtype);
 371 
 372   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 373   // that it should answer "false" for the concurrent part of a concurrent
 374   // collector -- dld).
 375   bool is_gc_active() const { return _is_gc_active; }
 376 
 377   // Total number of GC collections (started)
 378   unsigned int total_collections() const { return _total_collections; }
 379   unsigned int total_full_collections() const { return _total_full_collections;}
 380 
 381   // Increment total number of GC collections (started)
 382   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 383   void increment_total_collections(bool full = false) {
 384     _total_collections++;
 385     if (full) {
 386       increment_total_full_collections();
 387     }
 388   }
 389 
 390   void increment_total_full_collections() { _total_full_collections++; }
 391 
 392   // Return the SoftRefPolicy for the heap;
 393   virtual SoftRefPolicy* soft_ref_policy() = 0;
 394 
 395   virtual MemoryUsage memory_usage();
 396   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
 397   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
 398 
 399   // Iterate over all objects, calling "cl.do_object" on each.
 400   virtual void object_iterate(ObjectClosure* cl) = 0;
 401 
 402   // Similar to object_iterate() except iterates only
 403   // over live objects.
 404   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 405 
 406   // NOTE! There is no requirement that a collector implement these
 407   // functions.
 408   //
 409   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 410   // each address in the (reserved) heap is a member of exactly
 411   // one block.  The defining characteristic of a block is that it is
 412   // possible to find its size, and thus to progress forward to the next
 413   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 414   // represent Java objects, or they might be free blocks in a
 415   // free-list-based heap (or subheap), as long as the two kinds are
 416   // distinguishable and the size of each is determinable.
 417 
 418   // Returns the address of the start of the "block" that contains the
 419   // address "addr".  We say "blocks" instead of "object" since some heaps
 420   // may not pack objects densely; a chunk may either be an object or a
 421   // non-object.
 422   virtual HeapWord* block_start(const void* addr) const = 0;
 423 
 424   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 425   // the block is an object.
 426   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 427 
 428   // Returns the longest time (in ms) that has elapsed since the last
 429   // time that any part of the heap was examined by a garbage collection.
 430   virtual jlong millis_since_last_gc() = 0;
 431 
 432   // Perform any cleanup actions necessary before allowing a verification.
 433   virtual void prepare_for_verify() = 0;
 434 
 435   // Generate any dumps preceding or following a full gc
 436  private:
 437   void full_gc_dump(GCTimer* timer, bool before);
 438 
 439   virtual void initialize_serviceability() = 0;
 440 
 441  public:
 442   void pre_full_gc_dump(GCTimer* timer);
 443   void post_full_gc_dump(GCTimer* timer);
 444 
 445   virtual VirtualSpaceSummary create_heap_space_summary();
 446   GCHeapSummary create_heap_summary();
 447 
 448   MetaspaceSummary create_metaspace_summary();
 449 
 450   // Print heap information on the given outputStream.
 451   virtual void print_on(outputStream* st) const = 0;
 452   // The default behavior is to call print_on() on tty.
 453   virtual void print() const;
 454 
 455   // Print more detailed heap information on the given
 456   // outputStream. The default behavior is to call print_on(). It is
 457   // up to each subclass to override it and add any additional output
 458   // it needs.
 459   virtual void print_extended_on(outputStream* st) const {
 460     print_on(st);
 461   }
 462 
 463   virtual void print_on_error(outputStream* st) const;
 464 
 465   // Print all GC threads (other than the VM thread)
 466   // used by this heap.
 467   virtual void print_gc_threads_on(outputStream* st) const = 0;
 468   // The default behavior is to call print_gc_threads_on() on tty.
 469   void print_gc_threads() {
 470     print_gc_threads_on(tty);
 471   }
 472   // Iterator for all GC threads (other than VM thread)
 473   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 474 
 475   // Print any relevant tracing info that flags imply.
 476   // Default implementation does nothing.
 477   virtual void print_tracing_info() const = 0;
 478 
 479   void print_heap_before_gc();
 480   void print_heap_after_gc();
 481 
 482   // Registering and unregistering an nmethod (compiled code) with the heap.
 483   virtual void register_nmethod(nmethod* nm) = 0;
 484   virtual void unregister_nmethod(nmethod* nm) = 0;
 485   // Callback for when nmethod is about to be deleted.
 486   virtual void flush_nmethod(nmethod* nm) = 0;
 487   virtual void verify_nmethod(nmethod* nm) = 0;
 488 
 489   void trace_heap_before_gc(const GCTracer* gc_tracer);
 490   void trace_heap_after_gc(const GCTracer* gc_tracer);
 491 
 492   // Heap verification
 493   virtual void verify(VerifyOption option) = 0;
 494 
 495   // Return true if concurrent phase control (via
 496   // request_concurrent_phase_control) is supported by this collector.
 497   // The default implementation returns false.
 498   virtual bool supports_concurrent_phase_control() const;
 499 
 500   // Request the collector enter the indicated concurrent phase, and
 501   // wait until it does so.  Supports WhiteBox testing.  Only one
 502   // request may be active at a time.  Phases are designated by name;
 503   // the set of names and their meaning is GC-specific.  Once the
 504   // requested phase has been reached, the collector will attempt to
 505   // avoid transitioning to a new phase until a new request is made.
 506   // [Note: A collector might not be able to remain in a given phase.
 507   // For example, a full collection might cancel an in-progress
 508   // concurrent collection.]
 509   //
 510   // Returns true when the phase is reached.  Returns false for an
 511   // unknown phase.  The default implementation returns false.
 512   virtual bool request_concurrent_phase(const char* phase);
 513 
 514   // Provides a thread pool to SafepointSynchronize to use
 515   // for parallel safepoint cleanup.
 516   // GCs that use a GC worker thread pool may want to share
 517   // it for use during safepoint cleanup. This is only possible
 518   // if the GC can pause and resume concurrent work (e.g. G1
 519   // concurrent marking) for an intermittent non-GC safepoint.
 520   // If this method returns NULL, SafepointSynchronize will
 521   // perform cleanup tasks serially in the VMThread.
 522   virtual WorkGang* get_safepoint_workers() { return NULL; }
 523 
 524   // Support for object pinning. This is used by JNI Get*Critical()
 525   // and Release*Critical() family of functions. If supported, the GC
 526   // must guarantee that pinned objects never move.
 527   virtual bool supports_object_pinning() const;
 528   virtual oop pin_object(JavaThread* thread, oop obj);
 529   virtual void unpin_object(JavaThread* thread, oop obj);
 530 
 531   // Deduplicate the string, iff the GC supports string deduplication.
 532   virtual void deduplicate_string(oop str);
 533 
 534   virtual bool is_oop(oop object) const;
 535 
 536   virtual size_t obj_size(oop obj) const;
 537 
 538   // Non product verification and debugging.
 539 #ifndef PRODUCT
 540   // Support for PromotionFailureALot.  Return true if it's time to cause a
 541   // promotion failure.  The no-argument version uses
 542   // this->_promotion_failure_alot_count as the counter.
 543   bool promotion_should_fail(volatile size_t* count);
 544   bool promotion_should_fail();
 545 
 546   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 547   // GC in which promotion failure occurred.
 548   void reset_promotion_should_fail(volatile size_t* count);
 549   void reset_promotion_should_fail();
 550 #endif  // #ifndef PRODUCT
 551 };
 552 
 553 // Class to set and reset the GC cause for a CollectedHeap.
 554 
 555 class GCCauseSetter : StackObj {
 556   CollectedHeap* _heap;
 557   GCCause::Cause _previous_cause;
 558  public:
 559   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 560     _heap = heap;
 561     _previous_cause = _heap->gc_cause();
 562     _heap->set_gc_cause(cause);
 563   }
 564 
 565   ~GCCauseSetter() {
 566     _heap->set_gc_cause(_previous_cause);
 567   }
 568 };
 569 
 570 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP