1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCPhaseTimes.hpp"
  45 #include "gc/g1/g1HeapSizingPolicy.hpp"
  46 #include "gc/g1/g1HeapTransition.hpp"
  47 #include "gc/g1/g1HeapVerifier.hpp"
  48 #include "gc/g1/g1HotCardCache.hpp"
  49 #include "gc/g1/g1MemoryPool.hpp"
  50 #include "gc/g1/g1OopClosures.inline.hpp"
  51 #include "gc/g1/g1ParallelCleaning.hpp"
  52 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  53 #include "gc/g1/g1Policy.hpp"
  54 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  55 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  56 #include "gc/g1/g1RemSet.hpp"
  57 #include "gc/g1/g1RootClosures.hpp"
  58 #include "gc/g1/g1RootProcessor.hpp"
  59 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  60 #include "gc/g1/g1StringDedup.hpp"
  61 #include "gc/g1/g1ThreadLocalData.hpp"
  62 #include "gc/g1/g1YCTypes.hpp"
  63 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  64 #include "gc/g1/g1VMOperations.hpp"
  65 #include "gc/g1/heapRegion.inline.hpp"
  66 #include "gc/g1/heapRegionRemSet.hpp"
  67 #include "gc/g1/heapRegionSet.inline.hpp"
  68 #include "gc/shared/gcBehaviours.hpp"
  69 #include "gc/shared/gcHeapSummary.hpp"
  70 #include "gc/shared/gcId.hpp"
  71 #include "gc/shared/gcLocker.hpp"
  72 #include "gc/shared/gcTimer.hpp"
  73 #include "gc/shared/gcTrace.hpp"
  74 #include "gc/shared/gcTraceTime.inline.hpp"
  75 #include "gc/shared/generationSpec.hpp"
  76 #include "gc/shared/isGCActiveMark.hpp"
  77 #include "gc/shared/oopStorageParState.hpp"
  78 #include "gc/shared/preservedMarks.inline.hpp"
  79 #include "gc/shared/suspendibleThreadSet.hpp"
  80 #include "gc/shared/referenceProcessor.inline.hpp"
  81 #include "gc/shared/taskqueue.inline.hpp"
  82 #include "gc/shared/weakProcessor.inline.hpp"
  83 #include "gc/shared/workerPolicy.hpp"
  84 #include "logging/log.hpp"
  85 #include "memory/allocation.hpp"
  86 #include "memory/iterator.hpp"
  87 #include "memory/resourceArea.hpp"
  88 #include "memory/universe.hpp"
  89 #include "oops/access.inline.hpp"
  90 #include "oops/compressedOops.inline.hpp"
  91 #include "oops/oop.inline.hpp"
  92 #include "runtime/atomic.hpp"
  93 #include "runtime/flags/flagSetting.hpp"
  94 #include "runtime/handles.inline.hpp"
  95 #include "runtime/init.hpp"
  96 #include "runtime/orderAccess.hpp"
  97 #include "runtime/threadSMR.hpp"
  98 #include "runtime/vmThread.hpp"
  99 #include "utilities/align.hpp"
 100 #include "utilities/globalDefinitions.hpp"
 101 #include "utilities/stack.inline.hpp"
 102 
 103 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 104 
 105 // INVARIANTS/NOTES
 106 //
 107 // All allocation activity covered by the G1CollectedHeap interface is
 108 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 109 // and allocate_new_tlab, which are the "entry" points to the
 110 // allocation code from the rest of the JVM.  (Note that this does not
 111 // apply to TLAB allocation, which is not part of this interface: it
 112 // is done by clients of this interface.)
 113 
 114 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 115  private:
 116   size_t _num_dirtied;
 117   G1CollectedHeap* _g1h;
 118   G1CardTable* _g1_ct;
 119 
 120   HeapRegion* region_for_card(CardValue* card_ptr) const {
 121     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 122   }
 123 
 124   bool will_become_free(HeapRegion* hr) const {
 125     // A region will be freed by free_collection_set if the region is in the
 126     // collection set and has not had an evacuation failure.
 127     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 128   }
 129 
 130  public:
 131   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 132     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 133 
 134   bool do_card_ptr(CardValue* card_ptr, uint worker_i) {
 135     HeapRegion* hr = region_for_card(card_ptr);
 136 
 137     // Should only dirty cards in regions that won't be freed.
 138     if (!will_become_free(hr)) {
 139       *card_ptr = G1CardTable::dirty_card_val();
 140       _num_dirtied++;
 141     }
 142 
 143     return true;
 144   }
 145 
 146   size_t num_dirtied()   const { return _num_dirtied; }
 147 };
 148 
 149 
 150 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 151   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 152 }
 153 
 154 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 155   // The from card cache is not the memory that is actually committed. So we cannot
 156   // take advantage of the zero_filled parameter.
 157   reset_from_card_cache(start_idx, num_regions);
 158 }
 159 
 160 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 161   Ticks start = Ticks::now();
 162   workers()->run_task(task, workers()->active_workers());
 163   return Ticks::now() - start;
 164 }
 165 
 166 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 167                                              MemRegion mr) {
 168   return new HeapRegion(hrs_index, bot(), mr);
 169 }
 170 
 171 // Private methods.
 172 
 173 HeapRegion* G1CollectedHeap::new_region(size_t word_size, HeapRegionType type, bool do_expand) {
 174   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 175          "the only time we use this to allocate a humongous region is "
 176          "when we are allocating a single humongous region");
 177 
 178   HeapRegion* res = _hrm->allocate_free_region(type);
 179 
 180   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 181     // Currently, only attempts to allocate GC alloc regions set
 182     // do_expand to true. So, we should only reach here during a
 183     // safepoint. If this assumption changes we might have to
 184     // reconsider the use of _expand_heap_after_alloc_failure.
 185     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 186 
 187     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 188                               word_size * HeapWordSize);
 189 
 190     if (expand(word_size * HeapWordSize)) {
 191       // Given that expand() succeeded in expanding the heap, and we
 192       // always expand the heap by an amount aligned to the heap
 193       // region size, the free list should in theory not be empty.
 194       // In either case allocate_free_region() will check for NULL.
 195       res = _hrm->allocate_free_region(type);
 196     } else {
 197       _expand_heap_after_alloc_failure = false;
 198     }
 199   }
 200   return res;
 201 }
 202 
 203 HeapWord*
 204 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 205                                                            uint num_regions,
 206                                                            size_t word_size) {
 207   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 208   assert(is_humongous(word_size), "word_size should be humongous");
 209   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 210 
 211   // Index of last region in the series.
 212   uint last = first + num_regions - 1;
 213 
 214   // We need to initialize the region(s) we just discovered. This is
 215   // a bit tricky given that it can happen concurrently with
 216   // refinement threads refining cards on these regions and
 217   // potentially wanting to refine the BOT as they are scanning
 218   // those cards (this can happen shortly after a cleanup; see CR
 219   // 6991377). So we have to set up the region(s) carefully and in
 220   // a specific order.
 221 
 222   // The word size sum of all the regions we will allocate.
 223   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 224   assert(word_size <= word_size_sum, "sanity");
 225 
 226   // This will be the "starts humongous" region.
 227   HeapRegion* first_hr = region_at(first);
 228   // The header of the new object will be placed at the bottom of
 229   // the first region.
 230   HeapWord* new_obj = first_hr->bottom();
 231   // This will be the new top of the new object.
 232   HeapWord* obj_top = new_obj + word_size;
 233 
 234   // First, we need to zero the header of the space that we will be
 235   // allocating. When we update top further down, some refinement
 236   // threads might try to scan the region. By zeroing the header we
 237   // ensure that any thread that will try to scan the region will
 238   // come across the zero klass word and bail out.
 239   //
 240   // NOTE: It would not have been correct to have used
 241   // CollectedHeap::fill_with_object() and make the space look like
 242   // an int array. The thread that is doing the allocation will
 243   // later update the object header to a potentially different array
 244   // type and, for a very short period of time, the klass and length
 245   // fields will be inconsistent. This could cause a refinement
 246   // thread to calculate the object size incorrectly.
 247   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 248 
 249   // Next, pad out the unused tail of the last region with filler
 250   // objects, for improved usage accounting.
 251   // How many words we use for filler objects.
 252   size_t word_fill_size = word_size_sum - word_size;
 253 
 254   // How many words memory we "waste" which cannot hold a filler object.
 255   size_t words_not_fillable = 0;
 256 
 257   if (word_fill_size >= min_fill_size()) {
 258     fill_with_objects(obj_top, word_fill_size);
 259   } else if (word_fill_size > 0) {
 260     // We have space to fill, but we cannot fit an object there.
 261     words_not_fillable = word_fill_size;
 262     word_fill_size = 0;
 263   }
 264 
 265   // We will set up the first region as "starts humongous". This
 266   // will also update the BOT covering all the regions to reflect
 267   // that there is a single object that starts at the bottom of the
 268   // first region.
 269   first_hr->set_starts_humongous(obj_top, word_fill_size);
 270   _policy->remset_tracker()->update_at_allocate(first_hr);
 271   // Then, if there are any, we will set up the "continues
 272   // humongous" regions.
 273   HeapRegion* hr = NULL;
 274   for (uint i = first + 1; i <= last; ++i) {
 275     hr = region_at(i);
 276     hr->set_continues_humongous(first_hr);
 277     _policy->remset_tracker()->update_at_allocate(hr);
 278   }
 279 
 280   // Up to this point no concurrent thread would have been able to
 281   // do any scanning on any region in this series. All the top
 282   // fields still point to bottom, so the intersection between
 283   // [bottom,top] and [card_start,card_end] will be empty. Before we
 284   // update the top fields, we'll do a storestore to make sure that
 285   // no thread sees the update to top before the zeroing of the
 286   // object header and the BOT initialization.
 287   OrderAccess::storestore();
 288 
 289   // Now, we will update the top fields of the "continues humongous"
 290   // regions except the last one.
 291   for (uint i = first; i < last; ++i) {
 292     hr = region_at(i);
 293     hr->set_top(hr->end());
 294   }
 295 
 296   hr = region_at(last);
 297   // If we cannot fit a filler object, we must set top to the end
 298   // of the humongous object, otherwise we cannot iterate the heap
 299   // and the BOT will not be complete.
 300   hr->set_top(hr->end() - words_not_fillable);
 301 
 302   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 303          "obj_top should be in last region");
 304 
 305   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 306 
 307   assert(words_not_fillable == 0 ||
 308          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 309          "Miscalculation in humongous allocation");
 310 
 311   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 312 
 313   for (uint i = first; i <= last; ++i) {
 314     hr = region_at(i);
 315     _humongous_set.add(hr);
 316     _hr_printer.alloc(hr);
 317   }
 318 
 319   return new_obj;
 320 }
 321 
 322 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 323   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 324   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 325 }
 326 
 327 // If could fit into free regions w/o expansion, try.
 328 // Otherwise, if can expand, do so.
 329 // Otherwise, if using ex regions might help, try with ex given back.
 330 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 331   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 332 
 333   _verifier->verify_region_sets_optional();
 334 
 335   uint first = G1_NO_HRM_INDEX;
 336   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 337 
 338   if (obj_regions == 1) {
 339     // Only one region to allocate, try to use a fast path by directly allocating
 340     // from the free lists. Do not try to expand here, we will potentially do that
 341     // later.
 342     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
 343     if (hr != NULL) {
 344       first = hr->hrm_index();
 345     }
 346   } else {
 347     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 348     // are lucky enough to find some.
 349     first = _hrm->find_contiguous_only_empty(obj_regions);
 350     if (first != G1_NO_HRM_INDEX) {
 351       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 352     }
 353   }
 354 
 355   if (first == G1_NO_HRM_INDEX) {
 356     // Policy: We could not find enough regions for the humongous object in the
 357     // free list. Look through the heap to find a mix of free and uncommitted regions.
 358     // If so, try expansion.
 359     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 360     if (first != G1_NO_HRM_INDEX) {
 361       // We found something. Make sure these regions are committed, i.e. expand
 362       // the heap. Alternatively we could do a defragmentation GC.
 363       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 364                                     word_size * HeapWordSize);
 365 
 366       _hrm->expand_at(first, obj_regions, workers());
 367       policy()->record_new_heap_size(num_regions());
 368 
 369 #ifdef ASSERT
 370       for (uint i = first; i < first + obj_regions; ++i) {
 371         HeapRegion* hr = region_at(i);
 372         assert(hr->is_free(), "sanity");
 373         assert(hr->is_empty(), "sanity");
 374         assert(is_on_master_free_list(hr), "sanity");
 375       }
 376 #endif
 377       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 378     } else {
 379       // Policy: Potentially trigger a defragmentation GC.
 380     }
 381   }
 382 
 383   HeapWord* result = NULL;
 384   if (first != G1_NO_HRM_INDEX) {
 385     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 386     assert(result != NULL, "it should always return a valid result");
 387 
 388     // A successful humongous object allocation changes the used space
 389     // information of the old generation so we need to recalculate the
 390     // sizes and update the jstat counters here.
 391     g1mm()->update_sizes();
 392   }
 393 
 394   _verifier->verify_region_sets_optional();
 395 
 396   return result;
 397 }
 398 
 399 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 400                                              size_t requested_size,
 401                                              size_t* actual_size) {
 402   assert_heap_not_locked_and_not_at_safepoint();
 403   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 404 
 405   return attempt_allocation(min_size, requested_size, actual_size);
 406 }
 407 
 408 HeapWord*
 409 G1CollectedHeap::mem_allocate(size_t word_size,
 410                               bool*  gc_overhead_limit_was_exceeded) {
 411   assert_heap_not_locked_and_not_at_safepoint();
 412 
 413   if (is_humongous(word_size)) {
 414     return attempt_allocation_humongous(word_size);
 415   }
 416   size_t dummy = 0;
 417   return attempt_allocation(word_size, word_size, &dummy);
 418 }
 419 
 420 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 421   ResourceMark rm; // For retrieving the thread names in log messages.
 422 
 423   // Make sure you read the note in attempt_allocation_humongous().
 424 
 425   assert_heap_not_locked_and_not_at_safepoint();
 426   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 427          "be called for humongous allocation requests");
 428 
 429   // We should only get here after the first-level allocation attempt
 430   // (attempt_allocation()) failed to allocate.
 431 
 432   // We will loop until a) we manage to successfully perform the
 433   // allocation or b) we successfully schedule a collection which
 434   // fails to perform the allocation. b) is the only case when we'll
 435   // return NULL.
 436   HeapWord* result = NULL;
 437   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 438     bool should_try_gc;
 439     uint gc_count_before;
 440 
 441     {
 442       MutexLocker x(Heap_lock);
 443       result = _allocator->attempt_allocation_locked(word_size);
 444       if (result != NULL) {
 445         return result;
 446       }
 447 
 448       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 449       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 450       // waiting because the GCLocker is active to not wait too long.
 451       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 452         // No need for an ergo message here, can_expand_young_list() does this when
 453         // it returns true.
 454         result = _allocator->attempt_allocation_force(word_size);
 455         if (result != NULL) {
 456           return result;
 457         }
 458       }
 459       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 460       // the GCLocker initiated GC has been performed and then retry. This includes
 461       // the case when the GC Locker is not active but has not been performed.
 462       should_try_gc = !GCLocker::needs_gc();
 463       // Read the GC count while still holding the Heap_lock.
 464       gc_count_before = total_collections();
 465     }
 466 
 467     if (should_try_gc) {
 468       bool succeeded;
 469       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 470                                    GCCause::_g1_inc_collection_pause);
 471       if (result != NULL) {
 472         assert(succeeded, "only way to get back a non-NULL result");
 473         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 474                              Thread::current()->name(), p2i(result));
 475         return result;
 476       }
 477 
 478       if (succeeded) {
 479         // We successfully scheduled a collection which failed to allocate. No
 480         // point in trying to allocate further. We'll just return NULL.
 481         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 482                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 483         return NULL;
 484       }
 485       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 486                            Thread::current()->name(), word_size);
 487     } else {
 488       // Failed to schedule a collection.
 489       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 490         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 491                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 492         return NULL;
 493       }
 494       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 495       // The GCLocker is either active or the GCLocker initiated
 496       // GC has not yet been performed. Stall until it is and
 497       // then retry the allocation.
 498       GCLocker::stall_until_clear();
 499       gclocker_retry_count += 1;
 500     }
 501 
 502     // We can reach here if we were unsuccessful in scheduling a
 503     // collection (because another thread beat us to it) or if we were
 504     // stalled due to the GC locker. In either can we should retry the
 505     // allocation attempt in case another thread successfully
 506     // performed a collection and reclaimed enough space. We do the
 507     // first attempt (without holding the Heap_lock) here and the
 508     // follow-on attempt will be at the start of the next loop
 509     // iteration (after taking the Heap_lock).
 510     size_t dummy = 0;
 511     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 512     if (result != NULL) {
 513       return result;
 514     }
 515 
 516     // Give a warning if we seem to be looping forever.
 517     if ((QueuedAllocationWarningCount > 0) &&
 518         (try_count % QueuedAllocationWarningCount == 0)) {
 519       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 520                              Thread::current()->name(), try_count, word_size);
 521     }
 522   }
 523 
 524   ShouldNotReachHere();
 525   return NULL;
 526 }
 527 
 528 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 529   assert_at_safepoint_on_vm_thread();
 530   if (_archive_allocator == NULL) {
 531     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 532   }
 533 }
 534 
 535 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 536   // Allocations in archive regions cannot be of a size that would be considered
 537   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 538   // may be different at archive-restore time.
 539   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 540 }
 541 
 542 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 543   assert_at_safepoint_on_vm_thread();
 544   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 545   if (is_archive_alloc_too_large(word_size)) {
 546     return NULL;
 547   }
 548   return _archive_allocator->archive_mem_allocate(word_size);
 549 }
 550 
 551 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 552                                               size_t end_alignment_in_bytes) {
 553   assert_at_safepoint_on_vm_thread();
 554   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 555 
 556   // Call complete_archive to do the real work, filling in the MemRegion
 557   // array with the archive regions.
 558   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 559   delete _archive_allocator;
 560   _archive_allocator = NULL;
 561 }
 562 
 563 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 564   assert(ranges != NULL, "MemRegion array NULL");
 565   assert(count != 0, "No MemRegions provided");
 566   MemRegion reserved = _hrm->reserved();
 567   for (size_t i = 0; i < count; i++) {
 568     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 569       return false;
 570     }
 571   }
 572   return true;
 573 }
 574 
 575 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 576                                             size_t count,
 577                                             bool open) {
 578   assert(!is_init_completed(), "Expect to be called at JVM init time");
 579   assert(ranges != NULL, "MemRegion array NULL");
 580   assert(count != 0, "No MemRegions provided");
 581   MutexLocker x(Heap_lock);
 582 
 583   MemRegion reserved = _hrm->reserved();
 584   HeapWord* prev_last_addr = NULL;
 585   HeapRegion* prev_last_region = NULL;
 586 
 587   // Temporarily disable pretouching of heap pages. This interface is used
 588   // when mmap'ing archived heap data in, so pre-touching is wasted.
 589   FlagSetting fs(AlwaysPreTouch, false);
 590 
 591   // Enable archive object checking used by G1MarkSweep. We have to let it know
 592   // about each archive range, so that objects in those ranges aren't marked.
 593   G1ArchiveAllocator::enable_archive_object_check();
 594 
 595   // For each specified MemRegion range, allocate the corresponding G1
 596   // regions and mark them as archive regions. We expect the ranges
 597   // in ascending starting address order, without overlap.
 598   for (size_t i = 0; i < count; i++) {
 599     MemRegion curr_range = ranges[i];
 600     HeapWord* start_address = curr_range.start();
 601     size_t word_size = curr_range.word_size();
 602     HeapWord* last_address = curr_range.last();
 603     size_t commits = 0;
 604 
 605     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 606               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 607               p2i(start_address), p2i(last_address));
 608     guarantee(start_address > prev_last_addr,
 609               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 610               p2i(start_address), p2i(prev_last_addr));
 611     prev_last_addr = last_address;
 612 
 613     // Check for ranges that start in the same G1 region in which the previous
 614     // range ended, and adjust the start address so we don't try to allocate
 615     // the same region again. If the current range is entirely within that
 616     // region, skip it, just adjusting the recorded top.
 617     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 618     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 619       start_address = start_region->end();
 620       if (start_address > last_address) {
 621         increase_used(word_size * HeapWordSize);
 622         start_region->set_top(last_address + 1);
 623         continue;
 624       }
 625       start_region->set_top(start_address);
 626       curr_range = MemRegion(start_address, last_address + 1);
 627       start_region = _hrm->addr_to_region(start_address);
 628     }
 629 
 630     // Perform the actual region allocation, exiting if it fails.
 631     // Then note how much new space we have allocated.
 632     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 633       return false;
 634     }
 635     increase_used(word_size * HeapWordSize);
 636     if (commits != 0) {
 637       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 638                                 HeapRegion::GrainWords * HeapWordSize * commits);
 639 
 640     }
 641 
 642     // Mark each G1 region touched by the range as archive, add it to
 643     // the old set, and set top.
 644     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 645     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 646     prev_last_region = last_region;
 647 
 648     while (curr_region != NULL) {
 649       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 650              "Region already in use (index %u)", curr_region->hrm_index());
 651       if (open) {
 652         curr_region->set_open_archive();
 653       } else {
 654         curr_region->set_closed_archive();
 655       }
 656       _hr_printer.alloc(curr_region);
 657       _archive_set.add(curr_region);
 658       HeapWord* top;
 659       HeapRegion* next_region;
 660       if (curr_region != last_region) {
 661         top = curr_region->end();
 662         next_region = _hrm->next_region_in_heap(curr_region);
 663       } else {
 664         top = last_address + 1;
 665         next_region = NULL;
 666       }
 667       curr_region->set_top(top);
 668       curr_region->set_first_dead(top);
 669       curr_region->set_end_of_live(top);
 670       curr_region = next_region;
 671     }
 672 
 673     // Notify mark-sweep of the archive
 674     G1ArchiveAllocator::set_range_archive(curr_range, open);
 675   }
 676   return true;
 677 }
 678 
 679 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 680   assert(!is_init_completed(), "Expect to be called at JVM init time");
 681   assert(ranges != NULL, "MemRegion array NULL");
 682   assert(count != 0, "No MemRegions provided");
 683   MemRegion reserved = _hrm->reserved();
 684   HeapWord *prev_last_addr = NULL;
 685   HeapRegion* prev_last_region = NULL;
 686 
 687   // For each MemRegion, create filler objects, if needed, in the G1 regions
 688   // that contain the address range. The address range actually within the
 689   // MemRegion will not be modified. That is assumed to have been initialized
 690   // elsewhere, probably via an mmap of archived heap data.
 691   MutexLocker x(Heap_lock);
 692   for (size_t i = 0; i < count; i++) {
 693     HeapWord* start_address = ranges[i].start();
 694     HeapWord* last_address = ranges[i].last();
 695 
 696     assert(reserved.contains(start_address) && reserved.contains(last_address),
 697            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 698            p2i(start_address), p2i(last_address));
 699     assert(start_address > prev_last_addr,
 700            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 701            p2i(start_address), p2i(prev_last_addr));
 702 
 703     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 704     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 705     HeapWord* bottom_address = start_region->bottom();
 706 
 707     // Check for a range beginning in the same region in which the
 708     // previous one ended.
 709     if (start_region == prev_last_region) {
 710       bottom_address = prev_last_addr + 1;
 711     }
 712 
 713     // Verify that the regions were all marked as archive regions by
 714     // alloc_archive_regions.
 715     HeapRegion* curr_region = start_region;
 716     while (curr_region != NULL) {
 717       guarantee(curr_region->is_archive(),
 718                 "Expected archive region at index %u", curr_region->hrm_index());
 719       if (curr_region != last_region) {
 720         curr_region = _hrm->next_region_in_heap(curr_region);
 721       } else {
 722         curr_region = NULL;
 723       }
 724     }
 725 
 726     prev_last_addr = last_address;
 727     prev_last_region = last_region;
 728 
 729     // Fill the memory below the allocated range with dummy object(s),
 730     // if the region bottom does not match the range start, or if the previous
 731     // range ended within the same G1 region, and there is a gap.
 732     if (start_address != bottom_address) {
 733       size_t fill_size = pointer_delta(start_address, bottom_address);
 734       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 735       increase_used(fill_size * HeapWordSize);
 736     }
 737   }
 738 }
 739 
 740 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 741                                                      size_t desired_word_size,
 742                                                      size_t* actual_word_size) {
 743   assert_heap_not_locked_and_not_at_safepoint();
 744   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 745          "be called for humongous allocation requests");
 746 
 747   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 748 
 749   if (result == NULL) {
 750     *actual_word_size = desired_word_size;
 751     result = attempt_allocation_slow(desired_word_size);
 752   }
 753 
 754   assert_heap_not_locked();
 755   if (result != NULL) {
 756     assert(*actual_word_size != 0, "Actual size must have been set here");
 757     dirty_young_block(result, *actual_word_size);
 758   } else {
 759     *actual_word_size = 0;
 760   }
 761 
 762   return result;
 763 }
 764 
 765 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) {
 766   assert(!is_init_completed(), "Expect to be called at JVM init time");
 767   assert(ranges != NULL, "MemRegion array NULL");
 768   assert(count != 0, "No MemRegions provided");
 769   MemRegion reserved = _hrm->reserved();
 770   HeapWord* prev_last_addr = NULL;
 771   HeapRegion* prev_last_region = NULL;
 772   size_t size_used = 0;
 773   size_t uncommitted_regions = 0;
 774 
 775   // For each Memregion, free the G1 regions that constitute it, and
 776   // notify mark-sweep that the range is no longer to be considered 'archive.'
 777   MutexLocker x(Heap_lock);
 778   for (size_t i = 0; i < count; i++) {
 779     HeapWord* start_address = ranges[i].start();
 780     HeapWord* last_address = ranges[i].last();
 781 
 782     assert(reserved.contains(start_address) && reserved.contains(last_address),
 783            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 784            p2i(start_address), p2i(last_address));
 785     assert(start_address > prev_last_addr,
 786            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 787            p2i(start_address), p2i(prev_last_addr));
 788     size_used += ranges[i].byte_size();
 789     prev_last_addr = last_address;
 790 
 791     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 792     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 793 
 794     // Check for ranges that start in the same G1 region in which the previous
 795     // range ended, and adjust the start address so we don't try to free
 796     // the same region again. If the current range is entirely within that
 797     // region, skip it.
 798     if (start_region == prev_last_region) {
 799       start_address = start_region->end();
 800       if (start_address > last_address) {
 801         continue;
 802       }
 803       start_region = _hrm->addr_to_region(start_address);
 804     }
 805     prev_last_region = last_region;
 806 
 807     // After verifying that each region was marked as an archive region by
 808     // alloc_archive_regions, set it free and empty and uncommit it.
 809     HeapRegion* curr_region = start_region;
 810     while (curr_region != NULL) {
 811       guarantee(curr_region->is_archive(),
 812                 "Expected archive region at index %u", curr_region->hrm_index());
 813       uint curr_index = curr_region->hrm_index();
 814       _archive_set.remove(curr_region);
 815       curr_region->set_free();
 816       curr_region->set_top(curr_region->bottom());
 817       if (curr_region != last_region) {
 818         curr_region = _hrm->next_region_in_heap(curr_region);
 819       } else {
 820         curr_region = NULL;
 821       }
 822       _hrm->shrink_at(curr_index, 1);
 823       uncommitted_regions++;
 824     }
 825 
 826     // Notify mark-sweep that this is no longer an archive range.
 827     G1ArchiveAllocator::clear_range_archive(ranges[i], is_open);
 828   }
 829 
 830   if (uncommitted_regions != 0) {
 831     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 832                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 833   }
 834   decrease_used(size_used);
 835 }
 836 
 837 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 838   assert(obj != NULL, "archived obj is NULL");
 839   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 840 
 841   // Loading an archived object makes it strongly reachable. If it is
 842   // loaded during concurrent marking, it must be enqueued to the SATB
 843   // queue, shading the previously white object gray.
 844   G1BarrierSet::enqueue(obj);
 845 
 846   return obj;
 847 }
 848 
 849 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 850   ResourceMark rm; // For retrieving the thread names in log messages.
 851 
 852   // The structure of this method has a lot of similarities to
 853   // attempt_allocation_slow(). The reason these two were not merged
 854   // into a single one is that such a method would require several "if
 855   // allocation is not humongous do this, otherwise do that"
 856   // conditional paths which would obscure its flow. In fact, an early
 857   // version of this code did use a unified method which was harder to
 858   // follow and, as a result, it had subtle bugs that were hard to
 859   // track down. So keeping these two methods separate allows each to
 860   // be more readable. It will be good to keep these two in sync as
 861   // much as possible.
 862 
 863   assert_heap_not_locked_and_not_at_safepoint();
 864   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 865          "should only be called for humongous allocations");
 866 
 867   // Humongous objects can exhaust the heap quickly, so we should check if we
 868   // need to start a marking cycle at each humongous object allocation. We do
 869   // the check before we do the actual allocation. The reason for doing it
 870   // before the allocation is that we avoid having to keep track of the newly
 871   // allocated memory while we do a GC.
 872   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 873                                            word_size)) {
 874     collect(GCCause::_g1_humongous_allocation);
 875   }
 876 
 877   // We will loop until a) we manage to successfully perform the
 878   // allocation or b) we successfully schedule a collection which
 879   // fails to perform the allocation. b) is the only case when we'll
 880   // return NULL.
 881   HeapWord* result = NULL;
 882   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 883     bool should_try_gc;
 884     uint gc_count_before;
 885 
 886 
 887     {
 888       MutexLocker x(Heap_lock);
 889 
 890       // Given that humongous objects are not allocated in young
 891       // regions, we'll first try to do the allocation without doing a
 892       // collection hoping that there's enough space in the heap.
 893       result = humongous_obj_allocate(word_size);
 894       if (result != NULL) {
 895         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 896         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 897         return result;
 898       }
 899 
 900       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 901       // the GCLocker initiated GC has been performed and then retry. This includes
 902       // the case when the GC Locker is not active but has not been performed.
 903       should_try_gc = !GCLocker::needs_gc();
 904       // Read the GC count while still holding the Heap_lock.
 905       gc_count_before = total_collections();
 906     }
 907 
 908     if (should_try_gc) {
 909       bool succeeded;
 910       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 911                                    GCCause::_g1_humongous_allocation);
 912       if (result != NULL) {
 913         assert(succeeded, "only way to get back a non-NULL result");
 914         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 915                              Thread::current()->name(), p2i(result));
 916         return result;
 917       }
 918 
 919       if (succeeded) {
 920         // We successfully scheduled a collection which failed to allocate. No
 921         // point in trying to allocate further. We'll just return NULL.
 922         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 923                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 924         return NULL;
 925       }
 926       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 927                            Thread::current()->name(), word_size);
 928     } else {
 929       // Failed to schedule a collection.
 930       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 931         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 932                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 933         return NULL;
 934       }
 935       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 936       // The GCLocker is either active or the GCLocker initiated
 937       // GC has not yet been performed. Stall until it is and
 938       // then retry the allocation.
 939       GCLocker::stall_until_clear();
 940       gclocker_retry_count += 1;
 941     }
 942 
 943 
 944     // We can reach here if we were unsuccessful in scheduling a
 945     // collection (because another thread beat us to it) or if we were
 946     // stalled due to the GC locker. In either can we should retry the
 947     // allocation attempt in case another thread successfully
 948     // performed a collection and reclaimed enough space.
 949     // Humongous object allocation always needs a lock, so we wait for the retry
 950     // in the next iteration of the loop, unlike for the regular iteration case.
 951     // Give a warning if we seem to be looping forever.
 952 
 953     if ((QueuedAllocationWarningCount > 0) &&
 954         (try_count % QueuedAllocationWarningCount == 0)) {
 955       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 956                              Thread::current()->name(), try_count, word_size);
 957     }
 958   }
 959 
 960   ShouldNotReachHere();
 961   return NULL;
 962 }
 963 
 964 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 965                                                            bool expect_null_mutator_alloc_region) {
 966   assert_at_safepoint_on_vm_thread();
 967   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 968          "the current alloc region was unexpectedly found to be non-NULL");
 969 
 970   if (!is_humongous(word_size)) {
 971     return _allocator->attempt_allocation_locked(word_size);
 972   } else {
 973     HeapWord* result = humongous_obj_allocate(word_size);
 974     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 975       collector_state()->set_initiate_conc_mark_if_possible(true);
 976     }
 977     return result;
 978   }
 979 
 980   ShouldNotReachHere();
 981 }
 982 
 983 class PostCompactionPrinterClosure: public HeapRegionClosure {
 984 private:
 985   G1HRPrinter* _hr_printer;
 986 public:
 987   bool do_heap_region(HeapRegion* hr) {
 988     assert(!hr->is_young(), "not expecting to find young regions");
 989     _hr_printer->post_compaction(hr);
 990     return false;
 991   }
 992 
 993   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 994     : _hr_printer(hr_printer) { }
 995 };
 996 
 997 void G1CollectedHeap::print_hrm_post_compaction() {
 998   if (_hr_printer.is_active()) {
 999     PostCompactionPrinterClosure cl(hr_printer());
1000     heap_region_iterate(&cl);
1001   }
1002 }
1003 
1004 void G1CollectedHeap::abort_concurrent_cycle() {
1005   // If we start the compaction before the CM threads finish
1006   // scanning the root regions we might trip them over as we'll
1007   // be moving objects / updating references. So let's wait until
1008   // they are done. By telling them to abort, they should complete
1009   // early.
1010   _cm->root_regions()->abort();
1011   _cm->root_regions()->wait_until_scan_finished();
1012 
1013   // Disable discovery and empty the discovered lists
1014   // for the CM ref processor.
1015   _ref_processor_cm->disable_discovery();
1016   _ref_processor_cm->abandon_partial_discovery();
1017   _ref_processor_cm->verify_no_references_recorded();
1018 
1019   // Abandon current iterations of concurrent marking and concurrent
1020   // refinement, if any are in progress.
1021   concurrent_mark()->concurrent_cycle_abort();
1022 }
1023 
1024 void G1CollectedHeap::prepare_heap_for_full_collection() {
1025   // Make sure we'll choose a new allocation region afterwards.
1026   _allocator->release_mutator_alloc_region();
1027   _allocator->abandon_gc_alloc_regions();
1028 
1029   // We may have added regions to the current incremental collection
1030   // set between the last GC or pause and now. We need to clear the
1031   // incremental collection set and then start rebuilding it afresh
1032   // after this full GC.
1033   abandon_collection_set(collection_set());
1034 
1035   tear_down_region_sets(false /* free_list_only */);
1036 
1037   hrm()->prepare_for_full_collection_start();
1038 }
1039 
1040 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1041   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1042   assert_used_and_recalculate_used_equal(this);
1043   _verifier->verify_region_sets_optional();
1044   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1045   _verifier->check_bitmaps("Full GC Start");
1046 }
1047 
1048 void G1CollectedHeap::prepare_heap_for_mutators() {
1049   hrm()->prepare_for_full_collection_end();
1050 
1051   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1052   ClassLoaderDataGraph::purge();
1053   DEBUG_ONLY(MetaspaceUtils::verify(false);)
1054 
1055   // Prepare heap for normal collections.
1056   assert(num_free_regions() == 0, "we should not have added any free regions");
1057   rebuild_region_sets(false /* free_list_only */);
1058   abort_refinement();
1059   resize_heap_if_necessary();
1060 
1061   // Rebuild the strong code root lists for each region
1062   rebuild_strong_code_roots();
1063 
1064   // Purge code root memory
1065   purge_code_root_memory();
1066 
1067   // Start a new incremental collection set for the next pause
1068   start_new_collection_set();
1069 
1070   _allocator->init_mutator_alloc_region();
1071 
1072   // Post collection state updates.
1073   MetaspaceGC::compute_new_size();
1074 }
1075 
1076 void G1CollectedHeap::abort_refinement() {
1077   if (_hot_card_cache->use_cache()) {
1078     _hot_card_cache->reset_hot_cache();
1079   }
1080 
1081   // Discard all remembered set updates.
1082   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1083   assert(G1BarrierSet::dirty_card_queue_set().num_completed_buffers() == 0,
1084          "DCQS should be empty");
1085   redirty_cards_queue_set().verify_empty();
1086 }
1087 
1088 void G1CollectedHeap::verify_after_full_collection() {
1089   _hrm->verify_optional();
1090   _verifier->verify_region_sets_optional();
1091   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1092   // Clear the previous marking bitmap, if needed for bitmap verification.
1093   // Note we cannot do this when we clear the next marking bitmap in
1094   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1095   // objects marked during a full GC against the previous bitmap.
1096   // But we need to clear it before calling check_bitmaps below since
1097   // the full GC has compacted objects and updated TAMS but not updated
1098   // the prev bitmap.
1099   if (G1VerifyBitmaps) {
1100     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1101     _cm->clear_prev_bitmap(workers());
1102   }
1103   // This call implicitly verifies that the next bitmap is clear after Full GC.
1104   _verifier->check_bitmaps("Full GC End");
1105 
1106   // At this point there should be no regions in the
1107   // entire heap tagged as young.
1108   assert(check_young_list_empty(), "young list should be empty at this point");
1109 
1110   // Note: since we've just done a full GC, concurrent
1111   // marking is no longer active. Therefore we need not
1112   // re-enable reference discovery for the CM ref processor.
1113   // That will be done at the start of the next marking cycle.
1114   // We also know that the STW processor should no longer
1115   // discover any new references.
1116   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1117   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1118   _ref_processor_stw->verify_no_references_recorded();
1119   _ref_processor_cm->verify_no_references_recorded();
1120 }
1121 
1122 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1123   // Post collection logging.
1124   // We should do this after we potentially resize the heap so
1125   // that all the COMMIT / UNCOMMIT events are generated before
1126   // the compaction events.
1127   print_hrm_post_compaction();
1128   heap_transition->print();
1129   print_heap_after_gc();
1130   print_heap_regions();
1131 #ifdef TRACESPINNING
1132   ParallelTaskTerminator::print_termination_counts();
1133 #endif
1134 }
1135 
1136 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1137                                          bool clear_all_soft_refs) {
1138   assert_at_safepoint_on_vm_thread();
1139 
1140   if (GCLocker::check_active_before_gc()) {
1141     // Full GC was not completed.
1142     return false;
1143   }
1144 
1145   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1146       soft_ref_policy()->should_clear_all_soft_refs();
1147 
1148   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1149   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1150 
1151   collector.prepare_collection();
1152   collector.collect();
1153   collector.complete_collection();
1154 
1155   // Full collection was successfully completed.
1156   return true;
1157 }
1158 
1159 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1160   // Currently, there is no facility in the do_full_collection(bool) API to notify
1161   // the caller that the collection did not succeed (e.g., because it was locked
1162   // out by the GC locker). So, right now, we'll ignore the return value.
1163   bool dummy = do_full_collection(true,                /* explicit_gc */
1164                                   clear_all_soft_refs);
1165 }
1166 
1167 void G1CollectedHeap::resize_heap_if_necessary() {
1168   assert_at_safepoint_on_vm_thread();
1169 
1170   // Capacity, free and used after the GC counted as full regions to
1171   // include the waste in the following calculations.
1172   const size_t capacity_after_gc = capacity();
1173   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1174 
1175   // This is enforced in arguments.cpp.
1176   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1177          "otherwise the code below doesn't make sense");
1178 
1179   // We don't have floating point command-line arguments
1180   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1181   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1182   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1183   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1184 
1185   // We have to be careful here as these two calculations can overflow
1186   // 32-bit size_t's.
1187   double used_after_gc_d = (double) used_after_gc;
1188   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1189   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1190 
1191   // Let's make sure that they are both under the max heap size, which
1192   // by default will make them fit into a size_t.
1193   double desired_capacity_upper_bound = (double) MaxHeapSize;
1194   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1195                                     desired_capacity_upper_bound);
1196   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1197                                     desired_capacity_upper_bound);
1198 
1199   // We can now safely turn them into size_t's.
1200   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1201   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1202 
1203   // This assert only makes sense here, before we adjust them
1204   // with respect to the min and max heap size.
1205   assert(minimum_desired_capacity <= maximum_desired_capacity,
1206          "minimum_desired_capacity = " SIZE_FORMAT ", "
1207          "maximum_desired_capacity = " SIZE_FORMAT,
1208          minimum_desired_capacity, maximum_desired_capacity);
1209 
1210   // Should not be greater than the heap max size. No need to adjust
1211   // it with respect to the heap min size as it's a lower bound (i.e.,
1212   // we'll try to make the capacity larger than it, not smaller).
1213   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1214   // Should not be less than the heap min size. No need to adjust it
1215   // with respect to the heap max size as it's an upper bound (i.e.,
1216   // we'll try to make the capacity smaller than it, not greater).
1217   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1218 
1219   if (capacity_after_gc < minimum_desired_capacity) {
1220     // Don't expand unless it's significant
1221     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1222 
1223     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1224                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1225                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1226                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1227 
1228     expand(expand_bytes, _workers);
1229 
1230     // No expansion, now see if we want to shrink
1231   } else if (capacity_after_gc > maximum_desired_capacity) {
1232     // Capacity too large, compute shrinking size
1233     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1234 
1235     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1236                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1237                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1238                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1239 
1240     shrink(shrink_bytes);
1241   }
1242 }
1243 
1244 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1245                                                             bool do_gc,
1246                                                             bool clear_all_soft_refs,
1247                                                             bool expect_null_mutator_alloc_region,
1248                                                             bool* gc_succeeded) {
1249   *gc_succeeded = true;
1250   // Let's attempt the allocation first.
1251   HeapWord* result =
1252     attempt_allocation_at_safepoint(word_size,
1253                                     expect_null_mutator_alloc_region);
1254   if (result != NULL) {
1255     return result;
1256   }
1257 
1258   // In a G1 heap, we're supposed to keep allocation from failing by
1259   // incremental pauses.  Therefore, at least for now, we'll favor
1260   // expansion over collection.  (This might change in the future if we can
1261   // do something smarter than full collection to satisfy a failed alloc.)
1262   result = expand_and_allocate(word_size);
1263   if (result != NULL) {
1264     return result;
1265   }
1266 
1267   if (do_gc) {
1268     // Expansion didn't work, we'll try to do a Full GC.
1269     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1270                                        clear_all_soft_refs);
1271   }
1272 
1273   return NULL;
1274 }
1275 
1276 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1277                                                      bool* succeeded) {
1278   assert_at_safepoint_on_vm_thread();
1279 
1280   // Attempts to allocate followed by Full GC.
1281   HeapWord* result =
1282     satisfy_failed_allocation_helper(word_size,
1283                                      true,  /* do_gc */
1284                                      false, /* clear_all_soft_refs */
1285                                      false, /* expect_null_mutator_alloc_region */
1286                                      succeeded);
1287 
1288   if (result != NULL || !*succeeded) {
1289     return result;
1290   }
1291 
1292   // Attempts to allocate followed by Full GC that will collect all soft references.
1293   result = satisfy_failed_allocation_helper(word_size,
1294                                             true, /* do_gc */
1295                                             true, /* clear_all_soft_refs */
1296                                             true, /* expect_null_mutator_alloc_region */
1297                                             succeeded);
1298 
1299   if (result != NULL || !*succeeded) {
1300     return result;
1301   }
1302 
1303   // Attempts to allocate, no GC
1304   result = satisfy_failed_allocation_helper(word_size,
1305                                             false, /* do_gc */
1306                                             false, /* clear_all_soft_refs */
1307                                             true,  /* expect_null_mutator_alloc_region */
1308                                             succeeded);
1309 
1310   if (result != NULL) {
1311     return result;
1312   }
1313 
1314   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1315          "Flag should have been handled and cleared prior to this point");
1316 
1317   // What else?  We might try synchronous finalization later.  If the total
1318   // space available is large enough for the allocation, then a more
1319   // complete compaction phase than we've tried so far might be
1320   // appropriate.
1321   return NULL;
1322 }
1323 
1324 // Attempting to expand the heap sufficiently
1325 // to support an allocation of the given "word_size".  If
1326 // successful, perform the allocation and return the address of the
1327 // allocated block, or else "NULL".
1328 
1329 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1330   assert_at_safepoint_on_vm_thread();
1331 
1332   _verifier->verify_region_sets_optional();
1333 
1334   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1335   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1336                             word_size * HeapWordSize);
1337 
1338 
1339   if (expand(expand_bytes, _workers)) {
1340     _hrm->verify_optional();
1341     _verifier->verify_region_sets_optional();
1342     return attempt_allocation_at_safepoint(word_size,
1343                                            false /* expect_null_mutator_alloc_region */);
1344   }
1345   return NULL;
1346 }
1347 
1348 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1349   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1350   aligned_expand_bytes = align_up(aligned_expand_bytes,
1351                                        HeapRegion::GrainBytes);
1352 
1353   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1354                             expand_bytes, aligned_expand_bytes);
1355 
1356   if (is_maximal_no_gc()) {
1357     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1358     return false;
1359   }
1360 
1361   double expand_heap_start_time_sec = os::elapsedTime();
1362   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1363   assert(regions_to_expand > 0, "Must expand by at least one region");
1364 
1365   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1366   if (expand_time_ms != NULL) {
1367     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1368   }
1369 
1370   if (expanded_by > 0) {
1371     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1372     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1373     policy()->record_new_heap_size(num_regions());
1374   } else {
1375     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1376 
1377     // The expansion of the virtual storage space was unsuccessful.
1378     // Let's see if it was because we ran out of swap.
1379     if (G1ExitOnExpansionFailure &&
1380         _hrm->available() >= regions_to_expand) {
1381       // We had head room...
1382       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1383     }
1384   }
1385   return regions_to_expand > 0;
1386 }
1387 
1388 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1389   size_t aligned_shrink_bytes =
1390     ReservedSpace::page_align_size_down(shrink_bytes);
1391   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1392                                          HeapRegion::GrainBytes);
1393   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1394 
1395   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1396   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1397 
1398 
1399   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1400                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1401   if (num_regions_removed > 0) {
1402     policy()->record_new_heap_size(num_regions());
1403   } else {
1404     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1405   }
1406 }
1407 
1408 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1409   _verifier->verify_region_sets_optional();
1410 
1411   // We should only reach here at the end of a Full GC or during Remark which
1412   // means we should not not be holding to any GC alloc regions. The method
1413   // below will make sure of that and do any remaining clean up.
1414   _allocator->abandon_gc_alloc_regions();
1415 
1416   // Instead of tearing down / rebuilding the free lists here, we
1417   // could instead use the remove_all_pending() method on free_list to
1418   // remove only the ones that we need to remove.
1419   tear_down_region_sets(true /* free_list_only */);
1420   shrink_helper(shrink_bytes);
1421   rebuild_region_sets(true /* free_list_only */);
1422 
1423   _hrm->verify_optional();
1424   _verifier->verify_region_sets_optional();
1425 }
1426 
1427 class OldRegionSetChecker : public HeapRegionSetChecker {
1428 public:
1429   void check_mt_safety() {
1430     // Master Old Set MT safety protocol:
1431     // (a) If we're at a safepoint, operations on the master old set
1432     // should be invoked:
1433     // - by the VM thread (which will serialize them), or
1434     // - by the GC workers while holding the FreeList_lock, if we're
1435     //   at a safepoint for an evacuation pause (this lock is taken
1436     //   anyway when an GC alloc region is retired so that a new one
1437     //   is allocated from the free list), or
1438     // - by the GC workers while holding the OldSets_lock, if we're at a
1439     //   safepoint for a cleanup pause.
1440     // (b) If we're not at a safepoint, operations on the master old set
1441     // should be invoked while holding the Heap_lock.
1442 
1443     if (SafepointSynchronize::is_at_safepoint()) {
1444       guarantee(Thread::current()->is_VM_thread() ||
1445                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1446                 "master old set MT safety protocol at a safepoint");
1447     } else {
1448       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1449     }
1450   }
1451   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1452   const char* get_description() { return "Old Regions"; }
1453 };
1454 
1455 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1456 public:
1457   void check_mt_safety() {
1458     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1459               "May only change archive regions during initialization or safepoint.");
1460   }
1461   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1462   const char* get_description() { return "Archive Regions"; }
1463 };
1464 
1465 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1466 public:
1467   void check_mt_safety() {
1468     // Humongous Set MT safety protocol:
1469     // (a) If we're at a safepoint, operations on the master humongous
1470     // set should be invoked by either the VM thread (which will
1471     // serialize them) or by the GC workers while holding the
1472     // OldSets_lock.
1473     // (b) If we're not at a safepoint, operations on the master
1474     // humongous set should be invoked while holding the Heap_lock.
1475 
1476     if (SafepointSynchronize::is_at_safepoint()) {
1477       guarantee(Thread::current()->is_VM_thread() ||
1478                 OldSets_lock->owned_by_self(),
1479                 "master humongous set MT safety protocol at a safepoint");
1480     } else {
1481       guarantee(Heap_lock->owned_by_self(),
1482                 "master humongous set MT safety protocol outside a safepoint");
1483     }
1484   }
1485   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1486   const char* get_description() { return "Humongous Regions"; }
1487 };
1488 
1489 G1CollectedHeap::G1CollectedHeap() :
1490   CollectedHeap(),
1491   _young_gen_sampling_thread(NULL),
1492   _workers(NULL),
1493   _card_table(NULL),
1494   _soft_ref_policy(),
1495   _old_set("Old Region Set", new OldRegionSetChecker()),
1496   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1497   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1498   _bot(NULL),
1499   _listener(),
1500   _hrm(NULL),
1501   _allocator(NULL),
1502   _verifier(NULL),
1503   _summary_bytes_used(0),
1504   _archive_allocator(NULL),
1505   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1506   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1507   _expand_heap_after_alloc_failure(true),
1508   _g1mm(NULL),
1509   _humongous_reclaim_candidates(),
1510   _has_humongous_reclaim_candidates(false),
1511   _hr_printer(),
1512   _collector_state(),
1513   _old_marking_cycles_started(0),
1514   _old_marking_cycles_completed(0),
1515   _eden(),
1516   _survivor(),
1517   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1518   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1519   _policy(G1Policy::create_policy(_gc_timer_stw)),
1520   _heap_sizing_policy(NULL),
1521   _collection_set(this, _policy),
1522   _hot_card_cache(NULL),
1523   _rem_set(NULL),
1524   _redirty_cards_queue_set(),
1525   _cm(NULL),
1526   _cm_thread(NULL),
1527   _cr(NULL),
1528   _task_queues(NULL),
1529   _evacuation_failed(false),
1530   _evacuation_failed_info_array(NULL),
1531   _preserved_marks_set(true /* in_c_heap */),
1532 #ifndef PRODUCT
1533   _evacuation_failure_alot_for_current_gc(false),
1534   _evacuation_failure_alot_gc_number(0),
1535   _evacuation_failure_alot_count(0),
1536 #endif
1537   _ref_processor_stw(NULL),
1538   _is_alive_closure_stw(this),
1539   _is_subject_to_discovery_stw(this),
1540   _ref_processor_cm(NULL),
1541   _is_alive_closure_cm(this),
1542   _is_subject_to_discovery_cm(this),
1543   _region_attr() {
1544 
1545   _verifier = new G1HeapVerifier(this);
1546 
1547   _allocator = new G1Allocator(this);
1548 
1549   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1550 
1551   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1552 
1553   // Override the default _filler_array_max_size so that no humongous filler
1554   // objects are created.
1555   _filler_array_max_size = _humongous_object_threshold_in_words;
1556 
1557   uint n_queues = ParallelGCThreads;
1558   _task_queues = new RefToScanQueueSet(n_queues);
1559 
1560   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1561 
1562   for (uint i = 0; i < n_queues; i++) {
1563     RefToScanQueue* q = new RefToScanQueue();
1564     q->initialize();
1565     _task_queues->register_queue(i, q);
1566     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1567   }
1568 
1569   // Initialize the G1EvacuationFailureALot counters and flags.
1570   NOT_PRODUCT(reset_evacuation_should_fail();)
1571 
1572   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1573 }
1574 
1575 static size_t actual_reserved_page_size(ReservedSpace rs) {
1576   size_t page_size = os::vm_page_size();
1577   if (UseLargePages) {
1578     // There are two ways to manage large page memory.
1579     // 1. OS supports committing large page memory.
1580     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1581     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1582     //    we reserved memory without large page.
1583     if (os::can_commit_large_page_memory() || rs.special()) {
1584       // An alignment at ReservedSpace comes from preferred page size or
1585       // heap alignment, and if the alignment came from heap alignment, it could be
1586       // larger than large pages size. So need to cap with the large page size.
1587       page_size = MIN2(rs.alignment(), os::large_page_size());
1588     }
1589   }
1590 
1591   return page_size;
1592 }
1593 
1594 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1595                                                                  size_t size,
1596                                                                  size_t translation_factor) {
1597   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1598   // Allocate a new reserved space, preferring to use large pages.
1599   ReservedSpace rs(size, preferred_page_size);
1600   size_t page_size = actual_reserved_page_size(rs);
1601   G1RegionToSpaceMapper* result  =
1602     G1RegionToSpaceMapper::create_mapper(rs,
1603                                          size,
1604                                          page_size,
1605                                          HeapRegion::GrainBytes,
1606                                          translation_factor,
1607                                          mtGC);
1608 
1609   os::trace_page_sizes_for_requested_size(description,
1610                                           size,
1611                                           preferred_page_size,
1612                                           page_size,
1613                                           rs.base(),
1614                                           rs.size());
1615 
1616   return result;
1617 }
1618 
1619 jint G1CollectedHeap::initialize_concurrent_refinement() {
1620   jint ecode = JNI_OK;
1621   _cr = G1ConcurrentRefine::create(&ecode);
1622   return ecode;
1623 }
1624 
1625 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1626   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1627   if (_young_gen_sampling_thread->osthread() == NULL) {
1628     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1629     return JNI_ENOMEM;
1630   }
1631   return JNI_OK;
1632 }
1633 
1634 jint G1CollectedHeap::initialize() {
1635   os::enable_vtime();
1636 
1637   // Necessary to satisfy locking discipline assertions.
1638 
1639   MutexLocker x(Heap_lock);
1640 
1641   // While there are no constraints in the GC code that HeapWordSize
1642   // be any particular value, there are multiple other areas in the
1643   // system which believe this to be true (e.g. oop->object_size in some
1644   // cases incorrectly returns the size in wordSize units rather than
1645   // HeapWordSize).
1646   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1647 
1648   size_t init_byte_size = InitialHeapSize;
1649   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1650 
1651   // Ensure that the sizes are properly aligned.
1652   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1653   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1654   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1655 
1656   // Reserve the maximum.
1657 
1658   // When compressed oops are enabled, the preferred heap base
1659   // is calculated by subtracting the requested size from the
1660   // 32Gb boundary and using the result as the base address for
1661   // heap reservation. If the requested size is not aligned to
1662   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1663   // into the ReservedHeapSpace constructor) then the actual
1664   // base of the reserved heap may end up differing from the
1665   // address that was requested (i.e. the preferred heap base).
1666   // If this happens then we could end up using a non-optimal
1667   // compressed oops mode.
1668 
1669   ReservedSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1670                                                  HeapAlignment);
1671 
1672   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1673 
1674   // Create the barrier set for the entire reserved region.
1675   G1CardTable* ct = new G1CardTable(reserved_region());
1676   ct->initialize();
1677   G1BarrierSet* bs = new G1BarrierSet(ct);
1678   bs->initialize();
1679   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1680   BarrierSet::set_barrier_set(bs);
1681   _card_table = ct;
1682 
1683   G1BarrierSet::satb_mark_queue_set().initialize(this,
1684                                                  &bs->satb_mark_queue_buffer_allocator(),
1685                                                  G1SATBProcessCompletedThreshold,
1686                                                  G1SATBBufferEnqueueingThresholdPercent);
1687 
1688   // process_completed_buffers_threshold and max_completed_buffers are updated
1689   // later, based on the concurrent refinement object.
1690   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1691                                                   &bs->dirty_card_queue_buffer_allocator(),
1692                                                   true); // init_free_ids
1693 
1694   // Use same buffer allocator as dirty card qset, to allow merging.
1695   _redirty_cards_queue_set.initialize(&bs->dirty_card_queue_buffer_allocator());
1696 
1697   // Create the hot card cache.
1698   _hot_card_cache = new G1HotCardCache(this);
1699 
1700   // Carve out the G1 part of the heap.
1701   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1702   size_t page_size = actual_reserved_page_size(heap_rs);
1703   G1RegionToSpaceMapper* heap_storage =
1704     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1705                                               g1_rs.size(),
1706                                               page_size,
1707                                               HeapRegion::GrainBytes,
1708                                               1,
1709                                               mtJavaHeap);
1710   if(heap_storage == NULL) {
1711     vm_shutdown_during_initialization("Could not initialize G1 heap");
1712     return JNI_ERR;
1713   }
1714 
1715   os::trace_page_sizes("Heap",
1716                        MinHeapSize,
1717                        reserved_byte_size,
1718                        page_size,
1719                        heap_rs.base(),
1720                        heap_rs.size());
1721   heap_storage->set_mapping_changed_listener(&_listener);
1722 
1723   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1724   G1RegionToSpaceMapper* bot_storage =
1725     create_aux_memory_mapper("Block Offset Table",
1726                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1727                              G1BlockOffsetTable::heap_map_factor());
1728 
1729   G1RegionToSpaceMapper* cardtable_storage =
1730     create_aux_memory_mapper("Card Table",
1731                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1732                              G1CardTable::heap_map_factor());
1733 
1734   G1RegionToSpaceMapper* card_counts_storage =
1735     create_aux_memory_mapper("Card Counts Table",
1736                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1737                              G1CardCounts::heap_map_factor());
1738 
1739   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1740   G1RegionToSpaceMapper* prev_bitmap_storage =
1741     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1742   G1RegionToSpaceMapper* next_bitmap_storage =
1743     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1744 
1745   _hrm = HeapRegionManager::create_manager(this);
1746 
1747   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1748   _card_table->initialize(cardtable_storage);
1749   // Do later initialization work for concurrent refinement.
1750   _hot_card_cache->initialize(card_counts_storage);
1751 
1752   // 6843694 - ensure that the maximum region index can fit
1753   // in the remembered set structures.
1754   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1755   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1756 
1757   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1758   // start within the first card.
1759   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1760   // Also create a G1 rem set.
1761   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1762   _rem_set->initialize(max_reserved_capacity(), max_regions());
1763 
1764   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1765   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1766   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1767             "too many cards per region");
1768 
1769   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1770 
1771   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1772 
1773   {
1774     HeapWord* start = _hrm->reserved().start();
1775     HeapWord* end = _hrm->reserved().end();
1776     size_t granularity = HeapRegion::GrainBytes;
1777 
1778     _region_attr.initialize(start, end, granularity);
1779     _humongous_reclaim_candidates.initialize(start, end, granularity);
1780   }
1781 
1782   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1783                           true /* are_GC_task_threads */,
1784                           false /* are_ConcurrentGC_threads */);
1785   if (_workers == NULL) {
1786     return JNI_ENOMEM;
1787   }
1788   _workers->initialize_workers();
1789 
1790   // Create the G1ConcurrentMark data structure and thread.
1791   // (Must do this late, so that "max_regions" is defined.)
1792   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1793   if (_cm == NULL || !_cm->completed_initialization()) {
1794     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1795     return JNI_ENOMEM;
1796   }
1797   _cm_thread = _cm->cm_thread();
1798 
1799   // Now expand into the initial heap size.
1800   if (!expand(init_byte_size, _workers)) {
1801     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1802     return JNI_ENOMEM;
1803   }
1804 
1805   // Perform any initialization actions delegated to the policy.
1806   policy()->init(this, &_collection_set);
1807 
1808   jint ecode = initialize_concurrent_refinement();
1809   if (ecode != JNI_OK) {
1810     return ecode;
1811   }
1812 
1813   ecode = initialize_young_gen_sampling_thread();
1814   if (ecode != JNI_OK) {
1815     return ecode;
1816   }
1817 
1818   {
1819     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1820     dcqs.set_process_completed_buffers_threshold(concurrent_refine()->yellow_zone());
1821     dcqs.set_max_completed_buffers(concurrent_refine()->red_zone());
1822   }
1823 
1824   // Here we allocate the dummy HeapRegion that is required by the
1825   // G1AllocRegion class.
1826   HeapRegion* dummy_region = _hrm->get_dummy_region();
1827 
1828   // We'll re-use the same region whether the alloc region will
1829   // require BOT updates or not and, if it doesn't, then a non-young
1830   // region will complain that it cannot support allocations without
1831   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1832   dummy_region->set_eden();
1833   // Make sure it's full.
1834   dummy_region->set_top(dummy_region->end());
1835   G1AllocRegion::setup(this, dummy_region);
1836 
1837   _allocator->init_mutator_alloc_region();
1838 
1839   // Do create of the monitoring and management support so that
1840   // values in the heap have been properly initialized.
1841   _g1mm = new G1MonitoringSupport(this);
1842 
1843   G1StringDedup::initialize();
1844 
1845   _preserved_marks_set.init(ParallelGCThreads);
1846 
1847   _collection_set.initialize(max_regions());
1848 
1849   return JNI_OK;
1850 }
1851 
1852 void G1CollectedHeap::stop() {
1853   // Stop all concurrent threads. We do this to make sure these threads
1854   // do not continue to execute and access resources (e.g. logging)
1855   // that are destroyed during shutdown.
1856   _cr->stop();
1857   _young_gen_sampling_thread->stop();
1858   _cm_thread->stop();
1859   if (G1StringDedup::is_enabled()) {
1860     G1StringDedup::stop();
1861   }
1862 }
1863 
1864 void G1CollectedHeap::safepoint_synchronize_begin() {
1865   SuspendibleThreadSet::synchronize();
1866 }
1867 
1868 void G1CollectedHeap::safepoint_synchronize_end() {
1869   SuspendibleThreadSet::desynchronize();
1870 }
1871 
1872 void G1CollectedHeap::post_initialize() {
1873   CollectedHeap::post_initialize();
1874   ref_processing_init();
1875 }
1876 
1877 void G1CollectedHeap::ref_processing_init() {
1878   // Reference processing in G1 currently works as follows:
1879   //
1880   // * There are two reference processor instances. One is
1881   //   used to record and process discovered references
1882   //   during concurrent marking; the other is used to
1883   //   record and process references during STW pauses
1884   //   (both full and incremental).
1885   // * Both ref processors need to 'span' the entire heap as
1886   //   the regions in the collection set may be dotted around.
1887   //
1888   // * For the concurrent marking ref processor:
1889   //   * Reference discovery is enabled at initial marking.
1890   //   * Reference discovery is disabled and the discovered
1891   //     references processed etc during remarking.
1892   //   * Reference discovery is MT (see below).
1893   //   * Reference discovery requires a barrier (see below).
1894   //   * Reference processing may or may not be MT
1895   //     (depending on the value of ParallelRefProcEnabled
1896   //     and ParallelGCThreads).
1897   //   * A full GC disables reference discovery by the CM
1898   //     ref processor and abandons any entries on it's
1899   //     discovered lists.
1900   //
1901   // * For the STW processor:
1902   //   * Non MT discovery is enabled at the start of a full GC.
1903   //   * Processing and enqueueing during a full GC is non-MT.
1904   //   * During a full GC, references are processed after marking.
1905   //
1906   //   * Discovery (may or may not be MT) is enabled at the start
1907   //     of an incremental evacuation pause.
1908   //   * References are processed near the end of a STW evacuation pause.
1909   //   * For both types of GC:
1910   //     * Discovery is atomic - i.e. not concurrent.
1911   //     * Reference discovery will not need a barrier.
1912 
1913   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1914 
1915   // Concurrent Mark ref processor
1916   _ref_processor_cm =
1917     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1918                            mt_processing,                                  // mt processing
1919                            ParallelGCThreads,                              // degree of mt processing
1920                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1921                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1922                            false,                                          // Reference discovery is not atomic
1923                            &_is_alive_closure_cm,                          // is alive closure
1924                            true);                                          // allow changes to number of processing threads
1925 
1926   // STW ref processor
1927   _ref_processor_stw =
1928     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1929                            mt_processing,                        // mt processing
1930                            ParallelGCThreads,                    // degree of mt processing
1931                            (ParallelGCThreads > 1),              // mt discovery
1932                            ParallelGCThreads,                    // degree of mt discovery
1933                            true,                                 // Reference discovery is atomic
1934                            &_is_alive_closure_stw,               // is alive closure
1935                            true);                                // allow changes to number of processing threads
1936 }
1937 
1938 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1939   return &_soft_ref_policy;
1940 }
1941 
1942 size_t G1CollectedHeap::capacity() const {
1943   return _hrm->length() * HeapRegion::GrainBytes;
1944 }
1945 
1946 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1947   return _hrm->total_free_bytes();
1948 }
1949 
1950 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_i) {
1951   _hot_card_cache->drain(cl, worker_i);
1952 }
1953 
1954 void G1CollectedHeap::iterate_dirty_card_closure(G1CardTableEntryClosure* cl, uint worker_i) {
1955   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1956   size_t n_completed_buffers = 0;
1957   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1958     n_completed_buffers++;
1959   }
1960   assert(dcqs.num_completed_buffers() == 0, "Completed buffers exist!");
1961   phase_times()->record_thread_work_item(G1GCPhaseTimes::MergeLB, worker_i, n_completed_buffers, G1GCPhaseTimes::MergeLBProcessedBuffers);
1962 }
1963 
1964 // Computes the sum of the storage used by the various regions.
1965 size_t G1CollectedHeap::used() const {
1966   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1967   if (_archive_allocator != NULL) {
1968     result += _archive_allocator->used();
1969   }
1970   return result;
1971 }
1972 
1973 size_t G1CollectedHeap::used_unlocked() const {
1974   return _summary_bytes_used;
1975 }
1976 
1977 class SumUsedClosure: public HeapRegionClosure {
1978   size_t _used;
1979 public:
1980   SumUsedClosure() : _used(0) {}
1981   bool do_heap_region(HeapRegion* r) {
1982     _used += r->used();
1983     return false;
1984   }
1985   size_t result() { return _used; }
1986 };
1987 
1988 size_t G1CollectedHeap::recalculate_used() const {
1989   SumUsedClosure blk;
1990   heap_region_iterate(&blk);
1991   return blk.result();
1992 }
1993 
1994 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1995   switch (cause) {
1996     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1997     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1998     case GCCause::_wb_conc_mark:                        return true;
1999     default :                                           return false;
2000   }
2001 }
2002 
2003 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2004   switch (cause) {
2005     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2006     case GCCause::_g1_humongous_allocation: return true;
2007     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
2008     default:                                return is_user_requested_concurrent_full_gc(cause);
2009   }
2010 }
2011 
2012 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
2013   if(policy()->force_upgrade_to_full()) {
2014     return true;
2015   } else if (should_do_concurrent_full_gc(_gc_cause)) {
2016     return false;
2017   } else if (has_regions_left_for_allocation()) {
2018     return false;
2019   } else {
2020     return true;
2021   }
2022 }
2023 
2024 #ifndef PRODUCT
2025 void G1CollectedHeap::allocate_dummy_regions() {
2026   // Let's fill up most of the region
2027   size_t word_size = HeapRegion::GrainWords - 1024;
2028   // And as a result the region we'll allocate will be humongous.
2029   guarantee(is_humongous(word_size), "sanity");
2030 
2031   // _filler_array_max_size is set to humongous object threshold
2032   // but temporarily change it to use CollectedHeap::fill_with_object().
2033   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2034 
2035   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2036     // Let's use the existing mechanism for the allocation
2037     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2038     if (dummy_obj != NULL) {
2039       MemRegion mr(dummy_obj, word_size);
2040       CollectedHeap::fill_with_object(mr);
2041     } else {
2042       // If we can't allocate once, we probably cannot allocate
2043       // again. Let's get out of the loop.
2044       break;
2045     }
2046   }
2047 }
2048 #endif // !PRODUCT
2049 
2050 void G1CollectedHeap::increment_old_marking_cycles_started() {
2051   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2052          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2053          "Wrong marking cycle count (started: %d, completed: %d)",
2054          _old_marking_cycles_started, _old_marking_cycles_completed);
2055 
2056   _old_marking_cycles_started++;
2057 }
2058 
2059 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2060   MonitorLocker x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2061 
2062   // We assume that if concurrent == true, then the caller is a
2063   // concurrent thread that was joined the Suspendible Thread
2064   // Set. If there's ever a cheap way to check this, we should add an
2065   // assert here.
2066 
2067   // Given that this method is called at the end of a Full GC or of a
2068   // concurrent cycle, and those can be nested (i.e., a Full GC can
2069   // interrupt a concurrent cycle), the number of full collections
2070   // completed should be either one (in the case where there was no
2071   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2072   // behind the number of full collections started.
2073 
2074   // This is the case for the inner caller, i.e. a Full GC.
2075   assert(concurrent ||
2076          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2077          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2078          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2079          "is inconsistent with _old_marking_cycles_completed = %u",
2080          _old_marking_cycles_started, _old_marking_cycles_completed);
2081 
2082   // This is the case for the outer caller, i.e. the concurrent cycle.
2083   assert(!concurrent ||
2084          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2085          "for outer caller (concurrent cycle): "
2086          "_old_marking_cycles_started = %u "
2087          "is inconsistent with _old_marking_cycles_completed = %u",
2088          _old_marking_cycles_started, _old_marking_cycles_completed);
2089 
2090   _old_marking_cycles_completed += 1;
2091 
2092   // We need to clear the "in_progress" flag in the CM thread before
2093   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2094   // is set) so that if a waiter requests another System.gc() it doesn't
2095   // incorrectly see that a marking cycle is still in progress.
2096   if (concurrent) {
2097     _cm_thread->set_idle();
2098   }
2099 
2100   // This notify_all() will ensure that a thread that called
2101   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2102   // and it's waiting for a full GC to finish will be woken up. It is
2103   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2104   FullGCCount_lock->notify_all();
2105 }
2106 
2107 void G1CollectedHeap::collect(GCCause::Cause cause) {
2108   try_collect(cause, true);
2109 }
2110 
2111 bool G1CollectedHeap::try_collect(GCCause::Cause cause, bool retry_on_gc_failure) {
2112   assert_heap_not_locked();
2113 
2114   bool gc_succeeded;
2115   bool should_retry_gc;
2116 
2117   do {
2118     should_retry_gc = false;
2119 
2120     uint gc_count_before;
2121     uint old_marking_count_before;
2122     uint full_gc_count_before;
2123 
2124     {
2125       MutexLocker ml(Heap_lock);
2126 
2127       // Read the GC count while holding the Heap_lock
2128       gc_count_before = total_collections();
2129       full_gc_count_before = total_full_collections();
2130       old_marking_count_before = _old_marking_cycles_started;
2131     }
2132 
2133     if (should_do_concurrent_full_gc(cause)) {
2134       // Schedule an initial-mark evacuation pause that will start a
2135       // concurrent cycle. We're setting word_size to 0 which means that
2136       // we are not requesting a post-GC allocation.
2137       VM_G1CollectForAllocation op(0,     /* word_size */
2138                                    gc_count_before,
2139                                    cause,
2140                                    true,  /* should_initiate_conc_mark */
2141                                    policy()->max_pause_time_ms());
2142       VMThread::execute(&op);
2143       gc_succeeded = op.gc_succeeded();
2144       if (!gc_succeeded && retry_on_gc_failure) {
2145         if (old_marking_count_before == _old_marking_cycles_started) {
2146           should_retry_gc = op.should_retry_gc();
2147         } else {
2148           // A Full GC happened while we were trying to schedule the
2149           // concurrent cycle. No point in starting a new cycle given
2150           // that the whole heap was collected anyway.
2151         }
2152 
2153         if (should_retry_gc && GCLocker::is_active_and_needs_gc()) {
2154           GCLocker::stall_until_clear();
2155         }
2156       }
2157     } else if (GCLocker::should_discard(cause, gc_count_before)) {
2158       // Return false to be consistent with VMOp failure due to
2159       // another collection slipping in after our gc_count but before
2160       // our request is processed.  _gc_locker collections upgraded by
2161       // GCLockerInvokesConcurrent are handled above and never discarded.
2162       return false;
2163     } else {
2164       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2165           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2166 
2167         // Schedule a standard evacuation pause. We're setting word_size
2168         // to 0 which means that we are not requesting a post-GC allocation.
2169         VM_G1CollectForAllocation op(0,     /* word_size */
2170                                      gc_count_before,
2171                                      cause,
2172                                      false, /* should_initiate_conc_mark */
2173                                      policy()->max_pause_time_ms());
2174         VMThread::execute(&op);
2175         gc_succeeded = op.gc_succeeded();
2176       } else {
2177         // Schedule a Full GC.
2178         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2179         VMThread::execute(&op);
2180         gc_succeeded = op.gc_succeeded();
2181       }
2182     }
2183   } while (should_retry_gc);
2184   return gc_succeeded;
2185 }
2186 
2187 bool G1CollectedHeap::is_in(const void* p) const {
2188   if (_hrm->reserved().contains(p)) {
2189     // Given that we know that p is in the reserved space,
2190     // heap_region_containing() should successfully
2191     // return the containing region.
2192     HeapRegion* hr = heap_region_containing(p);
2193     return hr->is_in(p);
2194   } else {
2195     return false;
2196   }
2197 }
2198 
2199 #ifdef ASSERT
2200 bool G1CollectedHeap::is_in_exact(const void* p) const {
2201   bool contains = reserved_region().contains(p);
2202   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2203   if (contains && available) {
2204     return true;
2205   } else {
2206     return false;
2207   }
2208 }
2209 #endif
2210 
2211 // Iteration functions.
2212 
2213 // Iterates an ObjectClosure over all objects within a HeapRegion.
2214 
2215 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2216   ObjectClosure* _cl;
2217 public:
2218   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2219   bool do_heap_region(HeapRegion* r) {
2220     if (!r->is_continues_humongous()) {
2221       r->object_iterate(_cl);
2222     }
2223     return false;
2224   }
2225 };
2226 
2227 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2228   IterateObjectClosureRegionClosure blk(cl);
2229   heap_region_iterate(&blk);
2230 }
2231 
2232 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2233   _hrm->iterate(cl);
2234 }
2235 
2236 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2237                                                                  HeapRegionClaimer *hrclaimer,
2238                                                                  uint worker_id) const {
2239   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2240 }
2241 
2242 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2243                                                          HeapRegionClaimer *hrclaimer) const {
2244   _hrm->par_iterate(cl, hrclaimer, 0);
2245 }
2246 
2247 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2248   _collection_set.iterate(cl);
2249 }
2250 
2251 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2252   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2253 }
2254 
2255 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2256   HeapRegion* hr = heap_region_containing(addr);
2257   return hr->block_start(addr);
2258 }
2259 
2260 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2261   HeapRegion* hr = heap_region_containing(addr);
2262   return hr->block_is_obj(addr);
2263 }
2264 
2265 bool G1CollectedHeap::supports_tlab_allocation() const {
2266   return true;
2267 }
2268 
2269 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2270   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2271 }
2272 
2273 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2274   return _eden.length() * HeapRegion::GrainBytes;
2275 }
2276 
2277 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2278 // must be equal to the humongous object limit.
2279 size_t G1CollectedHeap::max_tlab_size() const {
2280   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2281 }
2282 
2283 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2284   return _allocator->unsafe_max_tlab_alloc();
2285 }
2286 
2287 size_t G1CollectedHeap::max_capacity() const {
2288   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2289 }
2290 
2291 size_t G1CollectedHeap::max_reserved_capacity() const {
2292   return _hrm->max_length() * HeapRegion::GrainBytes;
2293 }
2294 
2295 jlong G1CollectedHeap::millis_since_last_gc() {
2296   // See the notes in GenCollectedHeap::millis_since_last_gc()
2297   // for more information about the implementation.
2298   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2299                   _policy->collection_pause_end_millis();
2300   if (ret_val < 0) {
2301     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2302       ". returning zero instead.", ret_val);
2303     return 0;
2304   }
2305   return ret_val;
2306 }
2307 
2308 void G1CollectedHeap::deduplicate_string(oop str) {
2309   assert(java_lang_String::is_instance(str), "invariant");
2310 
2311   if (G1StringDedup::is_enabled()) {
2312     G1StringDedup::deduplicate(str);
2313   }
2314 }
2315 
2316 void G1CollectedHeap::prepare_for_verify() {
2317   _verifier->prepare_for_verify();
2318 }
2319 
2320 void G1CollectedHeap::verify(VerifyOption vo) {
2321   _verifier->verify(vo);
2322 }
2323 
2324 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2325   return true;
2326 }
2327 
2328 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2329   return _cm_thread->request_concurrent_phase(phase);
2330 }
2331 
2332 bool G1CollectedHeap::is_heterogeneous_heap() const {
2333   return G1Arguments::is_heterogeneous_heap();
2334 }
2335 
2336 class PrintRegionClosure: public HeapRegionClosure {
2337   outputStream* _st;
2338 public:
2339   PrintRegionClosure(outputStream* st) : _st(st) {}
2340   bool do_heap_region(HeapRegion* r) {
2341     r->print_on(_st);
2342     return false;
2343   }
2344 };
2345 
2346 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2347                                        const HeapRegion* hr,
2348                                        const VerifyOption vo) const {
2349   switch (vo) {
2350   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2351   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2352   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2353   default:                            ShouldNotReachHere();
2354   }
2355   return false; // keep some compilers happy
2356 }
2357 
2358 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2359                                        const VerifyOption vo) const {
2360   switch (vo) {
2361   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2362   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2363   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2364   default:                            ShouldNotReachHere();
2365   }
2366   return false; // keep some compilers happy
2367 }
2368 
2369 void G1CollectedHeap::print_heap_regions() const {
2370   LogTarget(Trace, gc, heap, region) lt;
2371   if (lt.is_enabled()) {
2372     LogStream ls(lt);
2373     print_regions_on(&ls);
2374   }
2375 }
2376 
2377 void G1CollectedHeap::print_on(outputStream* st) const {
2378   st->print(" %-20s", "garbage-first heap");
2379   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2380             capacity()/K, used_unlocked()/K);
2381   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2382             p2i(_hrm->reserved().start()),
2383             p2i(_hrm->reserved().end()));
2384   st->cr();
2385   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2386   uint young_regions = young_regions_count();
2387   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2388             (size_t) young_regions * HeapRegion::GrainBytes / K);
2389   uint survivor_regions = survivor_regions_count();
2390   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2391             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2392   st->cr();
2393   MetaspaceUtils::print_on(st);
2394 }
2395 
2396 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2397   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2398                "HS=humongous(starts), HC=humongous(continues), "
2399                "CS=collection set, F=free, A=archive, "
2400                "TAMS=top-at-mark-start (previous, next)");
2401   PrintRegionClosure blk(st);
2402   heap_region_iterate(&blk);
2403 }
2404 
2405 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2406   print_on(st);
2407 
2408   // Print the per-region information.
2409   print_regions_on(st);
2410 }
2411 
2412 void G1CollectedHeap::print_on_error(outputStream* st) const {
2413   this->CollectedHeap::print_on_error(st);
2414 
2415   if (_cm != NULL) {
2416     st->cr();
2417     _cm->print_on_error(st);
2418   }
2419 }
2420 
2421 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2422   workers()->print_worker_threads_on(st);
2423   _cm_thread->print_on(st);
2424   st->cr();
2425   _cm->print_worker_threads_on(st);
2426   _cr->print_threads_on(st);
2427   _young_gen_sampling_thread->print_on(st);
2428   if (G1StringDedup::is_enabled()) {
2429     G1StringDedup::print_worker_threads_on(st);
2430   }
2431 }
2432 
2433 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2434   workers()->threads_do(tc);
2435   tc->do_thread(_cm_thread);
2436   _cm->threads_do(tc);
2437   _cr->threads_do(tc);
2438   tc->do_thread(_young_gen_sampling_thread);
2439   if (G1StringDedup::is_enabled()) {
2440     G1StringDedup::threads_do(tc);
2441   }
2442 }
2443 
2444 void G1CollectedHeap::print_tracing_info() const {
2445   rem_set()->print_summary_info();
2446   concurrent_mark()->print_summary_info();
2447 }
2448 
2449 #ifndef PRODUCT
2450 // Helpful for debugging RSet issues.
2451 
2452 class PrintRSetsClosure : public HeapRegionClosure {
2453 private:
2454   const char* _msg;
2455   size_t _occupied_sum;
2456 
2457 public:
2458   bool do_heap_region(HeapRegion* r) {
2459     HeapRegionRemSet* hrrs = r->rem_set();
2460     size_t occupied = hrrs->occupied();
2461     _occupied_sum += occupied;
2462 
2463     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2464     if (occupied == 0) {
2465       tty->print_cr("  RSet is empty");
2466     } else {
2467       hrrs->print();
2468     }
2469     tty->print_cr("----------");
2470     return false;
2471   }
2472 
2473   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2474     tty->cr();
2475     tty->print_cr("========================================");
2476     tty->print_cr("%s", msg);
2477     tty->cr();
2478   }
2479 
2480   ~PrintRSetsClosure() {
2481     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2482     tty->print_cr("========================================");
2483     tty->cr();
2484   }
2485 };
2486 
2487 void G1CollectedHeap::print_cset_rsets() {
2488   PrintRSetsClosure cl("Printing CSet RSets");
2489   collection_set_iterate_all(&cl);
2490 }
2491 
2492 void G1CollectedHeap::print_all_rsets() {
2493   PrintRSetsClosure cl("Printing All RSets");;
2494   heap_region_iterate(&cl);
2495 }
2496 #endif // PRODUCT
2497 
2498 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2499 
2500   size_t eden_used_bytes = _eden.used_bytes();
2501   size_t survivor_used_bytes = _survivor.used_bytes();
2502   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2503 
2504   size_t eden_capacity_bytes =
2505     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2506 
2507   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2508   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2509                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2510 }
2511 
2512 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2513   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2514                        stats->unused(), stats->used(), stats->region_end_waste(),
2515                        stats->regions_filled(), stats->direct_allocated(),
2516                        stats->failure_used(), stats->failure_waste());
2517 }
2518 
2519 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2520   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2521   gc_tracer->report_gc_heap_summary(when, heap_summary);
2522 
2523   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2524   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2525 }
2526 
2527 G1CollectedHeap* G1CollectedHeap::heap() {
2528   CollectedHeap* heap = Universe::heap();
2529   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2530   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2531   return (G1CollectedHeap*)heap;
2532 }
2533 
2534 void G1CollectedHeap::gc_prologue(bool full) {
2535   // always_do_update_barrier = false;
2536   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2537 
2538   // This summary needs to be printed before incrementing total collections.
2539   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2540 
2541   // Update common counters.
2542   increment_total_collections(full /* full gc */);
2543   if (full || collector_state()->in_initial_mark_gc()) {
2544     increment_old_marking_cycles_started();
2545   }
2546 
2547   // Fill TLAB's and such
2548   double start = os::elapsedTime();
2549   ensure_parsability(true);
2550   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2551 }
2552 
2553 void G1CollectedHeap::gc_epilogue(bool full) {
2554   // Update common counters.
2555   if (full) {
2556     // Update the number of full collections that have been completed.
2557     increment_old_marking_cycles_completed(false /* concurrent */);
2558   }
2559 
2560   // We are at the end of the GC. Total collections has already been increased.
2561   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2562 
2563   // FIXME: what is this about?
2564   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2565   // is set.
2566 #if COMPILER2_OR_JVMCI
2567   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2568 #endif
2569   // always_do_update_barrier = true;
2570 
2571   double start = os::elapsedTime();
2572   resize_all_tlabs();
2573   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2574 
2575   MemoryService::track_memory_usage();
2576   // We have just completed a GC. Update the soft reference
2577   // policy with the new heap occupancy
2578   Universe::update_heap_info_at_gc();
2579 }
2580 
2581 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2582                                                uint gc_count_before,
2583                                                bool* succeeded,
2584                                                GCCause::Cause gc_cause) {
2585   assert_heap_not_locked_and_not_at_safepoint();
2586   VM_G1CollectForAllocation op(word_size,
2587                                gc_count_before,
2588                                gc_cause,
2589                                false, /* should_initiate_conc_mark */
2590                                policy()->max_pause_time_ms());
2591   VMThread::execute(&op);
2592 
2593   HeapWord* result = op.result();
2594   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2595   assert(result == NULL || ret_succeeded,
2596          "the result should be NULL if the VM did not succeed");
2597   *succeeded = ret_succeeded;
2598 
2599   assert_heap_not_locked();
2600   return result;
2601 }
2602 
2603 void G1CollectedHeap::do_concurrent_mark() {
2604   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2605   if (!_cm_thread->in_progress()) {
2606     _cm_thread->set_started();
2607     CGC_lock->notify();
2608   }
2609 }
2610 
2611 size_t G1CollectedHeap::pending_card_num() {
2612   struct CountCardsClosure : public ThreadClosure {
2613     size_t _cards;
2614     CountCardsClosure() : _cards(0) {}
2615     virtual void do_thread(Thread* t) {
2616       _cards += G1ThreadLocalData::dirty_card_queue(t).size();
2617     }
2618   } count_from_threads;
2619   Threads::threads_do(&count_from_threads);
2620 
2621   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2622   dcqs.verify_num_entries_in_completed_buffers();
2623 
2624   return dcqs.num_entries_in_completed_buffers() + count_from_threads._cards;
2625 }
2626 
2627 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2628   // We don't nominate objects with many remembered set entries, on
2629   // the assumption that such objects are likely still live.
2630   HeapRegionRemSet* rem_set = r->rem_set();
2631 
2632   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2633          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2634          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2635 }
2636 
2637 class RegisterRegionsWithRegionAttrTableClosure : public HeapRegionClosure {
2638  private:
2639   size_t _total_humongous;
2640   size_t _candidate_humongous;
2641 
2642   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2643     assert(region->is_starts_humongous(), "Must start a humongous object");
2644 
2645     oop obj = oop(region->bottom());
2646 
2647     // Dead objects cannot be eager reclaim candidates. Due to class
2648     // unloading it is unsafe to query their classes so we return early.
2649     if (g1h->is_obj_dead(obj, region)) {
2650       return false;
2651     }
2652 
2653     // If we do not have a complete remembered set for the region, then we can
2654     // not be sure that we have all references to it.
2655     if (!region->rem_set()->is_complete()) {
2656       return false;
2657     }
2658     // Candidate selection must satisfy the following constraints
2659     // while concurrent marking is in progress:
2660     //
2661     // * In order to maintain SATB invariants, an object must not be
2662     // reclaimed if it was allocated before the start of marking and
2663     // has not had its references scanned.  Such an object must have
2664     // its references (including type metadata) scanned to ensure no
2665     // live objects are missed by the marking process.  Objects
2666     // allocated after the start of concurrent marking don't need to
2667     // be scanned.
2668     //
2669     // * An object must not be reclaimed if it is on the concurrent
2670     // mark stack.  Objects allocated after the start of concurrent
2671     // marking are never pushed on the mark stack.
2672     //
2673     // Nominating only objects allocated after the start of concurrent
2674     // marking is sufficient to meet both constraints.  This may miss
2675     // some objects that satisfy the constraints, but the marking data
2676     // structures don't support efficiently performing the needed
2677     // additional tests or scrubbing of the mark stack.
2678     //
2679     // However, we presently only nominate is_typeArray() objects.
2680     // A humongous object containing references induces remembered
2681     // set entries on other regions.  In order to reclaim such an
2682     // object, those remembered sets would need to be cleaned up.
2683     //
2684     // We also treat is_typeArray() objects specially, allowing them
2685     // to be reclaimed even if allocated before the start of
2686     // concurrent mark.  For this we rely on mark stack insertion to
2687     // exclude is_typeArray() objects, preventing reclaiming an object
2688     // that is in the mark stack.  We also rely on the metadata for
2689     // such objects to be built-in and so ensured to be kept live.
2690     // Frequent allocation and drop of large binary blobs is an
2691     // important use case for eager reclaim, and this special handling
2692     // may reduce needed headroom.
2693 
2694     return obj->is_typeArray() &&
2695            g1h->is_potential_eager_reclaim_candidate(region);
2696   }
2697 
2698  public:
2699   RegisterRegionsWithRegionAttrTableClosure()
2700   : _total_humongous(0),
2701     _candidate_humongous(0) {
2702   }
2703 
2704   virtual bool do_heap_region(HeapRegion* r) {
2705     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2706 
2707     if (!r->is_starts_humongous()) {
2708       g1h->register_region_with_region_attr(r);
2709       return false;
2710     }
2711 
2712     bool is_candidate = humongous_region_is_candidate(g1h, r);
2713     uint rindex = r->hrm_index();
2714     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2715     if (is_candidate) {
2716       g1h->register_humongous_region_with_region_attr(rindex);
2717       _candidate_humongous++;
2718       // We will later handle the remembered sets of these regions.
2719     } else {
2720       g1h->register_region_with_region_attr(r);
2721     }
2722     _total_humongous++;
2723 
2724     return false;
2725   }
2726 
2727   size_t total_humongous() const { return _total_humongous; }
2728   size_t candidate_humongous() const { return _candidate_humongous; }
2729 };
2730 
2731 void G1CollectedHeap::register_regions_with_region_attr() {
2732   Ticks start = Ticks::now();
2733 
2734   RegisterRegionsWithRegionAttrTableClosure cl;
2735   heap_region_iterate(&cl);
2736 
2737   phase_times()->record_register_regions((Ticks::now() - start).seconds() * 1000.0,
2738                                          cl.total_humongous(),
2739                                          cl.candidate_humongous());
2740   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2741 }
2742 
2743 #ifndef PRODUCT
2744 void G1CollectedHeap::verify_region_attr_remset_update() {
2745   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2746   public:
2747     virtual bool do_heap_region(HeapRegion* r) {
2748       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2749       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2750       assert(r->rem_set()->is_tracked() == needs_remset_update,
2751              "Region %u remset tracking status (%s) different to region attribute (%s)",
2752              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2753       return false;
2754     }
2755   } cl;
2756   heap_region_iterate(&cl);
2757 }
2758 #endif
2759 
2760 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2761   public:
2762     bool do_heap_region(HeapRegion* hr) {
2763       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2764         hr->verify_rem_set();
2765       }
2766       return false;
2767     }
2768 };
2769 
2770 uint G1CollectedHeap::num_task_queues() const {
2771   return _task_queues->size();
2772 }
2773 
2774 #if TASKQUEUE_STATS
2775 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2776   st->print_raw_cr("GC Task Stats");
2777   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2778   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2779 }
2780 
2781 void G1CollectedHeap::print_taskqueue_stats() const {
2782   if (!log_is_enabled(Trace, gc, task, stats)) {
2783     return;
2784   }
2785   Log(gc, task, stats) log;
2786   ResourceMark rm;
2787   LogStream ls(log.trace());
2788   outputStream* st = &ls;
2789 
2790   print_taskqueue_stats_hdr(st);
2791 
2792   TaskQueueStats totals;
2793   const uint n = num_task_queues();
2794   for (uint i = 0; i < n; ++i) {
2795     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2796     totals += task_queue(i)->stats;
2797   }
2798   st->print_raw("tot "); totals.print(st); st->cr();
2799 
2800   DEBUG_ONLY(totals.verify());
2801 }
2802 
2803 void G1CollectedHeap::reset_taskqueue_stats() {
2804   const uint n = num_task_queues();
2805   for (uint i = 0; i < n; ++i) {
2806     task_queue(i)->stats.reset();
2807   }
2808 }
2809 #endif // TASKQUEUE_STATS
2810 
2811 void G1CollectedHeap::wait_for_root_region_scanning() {
2812   double scan_wait_start = os::elapsedTime();
2813   // We have to wait until the CM threads finish scanning the
2814   // root regions as it's the only way to ensure that all the
2815   // objects on them have been correctly scanned before we start
2816   // moving them during the GC.
2817   bool waited = _cm->root_regions()->wait_until_scan_finished();
2818   double wait_time_ms = 0.0;
2819   if (waited) {
2820     double scan_wait_end = os::elapsedTime();
2821     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2822   }
2823   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2824 }
2825 
2826 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2827 private:
2828   G1HRPrinter* _hr_printer;
2829 public:
2830   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2831 
2832   virtual bool do_heap_region(HeapRegion* r) {
2833     _hr_printer->cset(r);
2834     return false;
2835   }
2836 };
2837 
2838 void G1CollectedHeap::start_new_collection_set() {
2839   double start = os::elapsedTime();
2840 
2841   collection_set()->start_incremental_building();
2842 
2843   clear_region_attr();
2844 
2845   guarantee(_eden.length() == 0, "eden should have been cleared");
2846   policy()->transfer_survivors_to_cset(survivor());
2847 
2848   // We redo the verification but now wrt to the new CSet which
2849   // has just got initialized after the previous CSet was freed.
2850   _cm->verify_no_collection_set_oops();
2851 
2852   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2853 }
2854 
2855 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2856 
2857   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2858   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2859                                             collection_set()->optional_region_length());
2860 
2861   _cm->verify_no_collection_set_oops();
2862 
2863   if (_hr_printer.is_active()) {
2864     G1PrintCollectionSetClosure cl(&_hr_printer);
2865     _collection_set.iterate(&cl);
2866     _collection_set.iterate_optional(&cl);
2867   }
2868 }
2869 
2870 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2871   if (collector_state()->in_initial_mark_gc()) {
2872     return G1HeapVerifier::G1VerifyConcurrentStart;
2873   } else if (collector_state()->in_young_only_phase()) {
2874     return G1HeapVerifier::G1VerifyYoungNormal;
2875   } else {
2876     return G1HeapVerifier::G1VerifyMixed;
2877   }
2878 }
2879 
2880 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2881   if (VerifyRememberedSets) {
2882     log_info(gc, verify)("[Verifying RemSets before GC]");
2883     VerifyRegionRemSetClosure v_cl;
2884     heap_region_iterate(&v_cl);
2885   }
2886   _verifier->verify_before_gc(type);
2887   _verifier->check_bitmaps("GC Start");
2888 }
2889 
2890 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2891   if (VerifyRememberedSets) {
2892     log_info(gc, verify)("[Verifying RemSets after GC]");
2893     VerifyRegionRemSetClosure v_cl;
2894     heap_region_iterate(&v_cl);
2895   }
2896   _verifier->verify_after_gc(type);
2897   _verifier->check_bitmaps("GC End");
2898 }
2899 
2900 void G1CollectedHeap::expand_heap_after_young_collection(){
2901   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2902   if (expand_bytes > 0) {
2903     // No need for an ergo logging here,
2904     // expansion_amount() does this when it returns a value > 0.
2905     double expand_ms;
2906     if (!expand(expand_bytes, _workers, &expand_ms)) {
2907       // We failed to expand the heap. Cannot do anything about it.
2908     }
2909     phase_times()->record_expand_heap_time(expand_ms);
2910   }
2911 }
2912 
2913 const char* G1CollectedHeap::young_gc_name() const {
2914   if (collector_state()->in_initial_mark_gc()) {
2915     return "Pause Young (Concurrent Start)";
2916   } else if (collector_state()->in_young_only_phase()) {
2917     if (collector_state()->in_young_gc_before_mixed()) {
2918       return "Pause Young (Prepare Mixed)";
2919     } else {
2920       return "Pause Young (Normal)";
2921     }
2922   } else {
2923     return "Pause Young (Mixed)";
2924   }
2925 }
2926 
2927 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2928   assert_at_safepoint_on_vm_thread();
2929   guarantee(!is_gc_active(), "collection is not reentrant");
2930 
2931   if (GCLocker::check_active_before_gc()) {
2932     return false;
2933   }
2934 
2935   GCIdMark gc_id_mark;
2936 
2937   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2938   ResourceMark rm;
2939 
2940   policy()->note_gc_start();
2941 
2942   _gc_timer_stw->register_gc_start();
2943   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2944 
2945   wait_for_root_region_scanning();
2946 
2947   print_heap_before_gc();
2948   print_heap_regions();
2949   trace_heap_before_gc(_gc_tracer_stw);
2950 
2951   _verifier->verify_region_sets_optional();
2952   _verifier->verify_dirty_young_regions();
2953 
2954   // We should not be doing initial mark unless the conc mark thread is running
2955   if (!_cm_thread->should_terminate()) {
2956     // This call will decide whether this pause is an initial-mark
2957     // pause. If it is, in_initial_mark_gc() will return true
2958     // for the duration of this pause.
2959     policy()->decide_on_conc_mark_initiation();
2960   }
2961 
2962   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2963   assert(!collector_state()->in_initial_mark_gc() ||
2964          collector_state()->in_young_only_phase(), "sanity");
2965   // We also do not allow mixed GCs during marking.
2966   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2967 
2968   // Record whether this pause is an initial mark. When the current
2969   // thread has completed its logging output and it's safe to signal
2970   // the CM thread, the flag's value in the policy has been reset.
2971   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2972   if (should_start_conc_mark) {
2973     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2974   }
2975 
2976   // Inner scope for scope based logging, timers, and stats collection
2977   {
2978     G1EvacuationInfo evacuation_info;
2979 
2980     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2981 
2982     GCTraceCPUTime tcpu;
2983 
2984     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
2985 
2986     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
2987                                                             workers()->active_workers(),
2988                                                             Threads::number_of_non_daemon_threads());
2989     active_workers = workers()->update_active_workers(active_workers);
2990     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2991 
2992     G1MonitoringScope ms(g1mm(),
2993                          false /* full_gc */,
2994                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
2995 
2996     G1HeapTransition heap_transition(this);
2997     size_t heap_used_bytes_before_gc = used();
2998 
2999     {
3000       IsGCActiveMark x;
3001 
3002       gc_prologue(false);
3003 
3004       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3005       verify_before_young_collection(verify_type);
3006 
3007       {
3008         // The elapsed time induced by the start time below deliberately elides
3009         // the possible verification above.
3010         double sample_start_time_sec = os::elapsedTime();
3011 
3012         // Please see comment in g1CollectedHeap.hpp and
3013         // G1CollectedHeap::ref_processing_init() to see how
3014         // reference processing currently works in G1.
3015         _ref_processor_stw->enable_discovery();
3016 
3017         // We want to temporarily turn off discovery by the
3018         // CM ref processor, if necessary, and turn it back on
3019         // on again later if we do. Using a scoped
3020         // NoRefDiscovery object will do this.
3021         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3022 
3023         policy()->record_collection_pause_start(sample_start_time_sec);
3024 
3025         // Forget the current allocation region (we might even choose it to be part
3026         // of the collection set!).
3027         _allocator->release_mutator_alloc_region();
3028 
3029         calculate_collection_set(evacuation_info, target_pause_time_ms);
3030 
3031         G1ParScanThreadStateSet per_thread_states(this,
3032                                                   workers()->active_workers(),
3033                                                   collection_set()->young_region_length(),
3034                                                   collection_set()->optional_region_length());
3035         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3036 
3037         // Actually do the work...
3038         evacuate_initial_collection_set(&per_thread_states);
3039 
3040         if (_collection_set.optional_region_length() != 0) {
3041           evacuate_optional_collection_set(&per_thread_states);
3042         }
3043         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3044 
3045         start_new_collection_set();
3046 
3047         _survivor_evac_stats.adjust_desired_plab_sz();
3048         _old_evac_stats.adjust_desired_plab_sz();
3049 
3050         if (should_start_conc_mark) {
3051           // We have to do this before we notify the CM threads that
3052           // they can start working to make sure that all the
3053           // appropriate initialization is done on the CM object.
3054           concurrent_mark()->post_initial_mark();
3055           // Note that we don't actually trigger the CM thread at
3056           // this point. We do that later when we're sure that
3057           // the current thread has completed its logging output.
3058         }
3059 
3060         allocate_dummy_regions();
3061 
3062         _allocator->init_mutator_alloc_region();
3063 
3064         expand_heap_after_young_collection();
3065 
3066         double sample_end_time_sec = os::elapsedTime();
3067         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3068         policy()->record_collection_pause_end(pause_time_ms, heap_used_bytes_before_gc);
3069       }
3070 
3071       verify_after_young_collection(verify_type);
3072 
3073 #ifdef TRACESPINNING
3074       ParallelTaskTerminator::print_termination_counts();
3075 #endif
3076 
3077       gc_epilogue(false);
3078     }
3079 
3080     // Print the remainder of the GC log output.
3081     if (evacuation_failed()) {
3082       log_info(gc)("To-space exhausted");
3083     }
3084 
3085     policy()->print_phases();
3086     heap_transition.print();
3087 
3088     _hrm->verify_optional();
3089     _verifier->verify_region_sets_optional();
3090 
3091     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3092     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3093 
3094     print_heap_after_gc();
3095     print_heap_regions();
3096     trace_heap_after_gc(_gc_tracer_stw);
3097 
3098     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3099     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3100     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3101     // before any GC notifications are raised.
3102     g1mm()->update_sizes();
3103 
3104     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3105     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3106     _gc_timer_stw->register_gc_end();
3107     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3108   }
3109   // It should now be safe to tell the concurrent mark thread to start
3110   // without its logging output interfering with the logging output
3111   // that came from the pause.
3112 
3113   if (should_start_conc_mark) {
3114     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3115     // thread(s) could be running concurrently with us. Make sure that anything
3116     // after this point does not assume that we are the only GC thread running.
3117     // Note: of course, the actual marking work will not start until the safepoint
3118     // itself is released in SuspendibleThreadSet::desynchronize().
3119     do_concurrent_mark();
3120   }
3121 
3122   return true;
3123 }
3124 
3125 void G1CollectedHeap::remove_self_forwarding_pointers() {
3126   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3127   workers()->run_task(&rsfp_task);
3128 }
3129 
3130 void G1CollectedHeap::restore_after_evac_failure() {
3131   double remove_self_forwards_start = os::elapsedTime();
3132 
3133   remove_self_forwarding_pointers();
3134   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3135   _preserved_marks_set.restore(&task_executor);
3136 
3137   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3138 }
3139 
3140 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3141   if (!_evacuation_failed) {
3142     _evacuation_failed = true;
3143   }
3144 
3145   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3146   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3147 }
3148 
3149 bool G1ParEvacuateFollowersClosure::offer_termination() {
3150   EventGCPhaseParallel event;
3151   G1ParScanThreadState* const pss = par_scan_state();
3152   start_term_time();
3153   const bool res = terminator()->offer_termination();
3154   end_term_time();
3155   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3156   return res;
3157 }
3158 
3159 void G1ParEvacuateFollowersClosure::do_void() {
3160   EventGCPhaseParallel event;
3161   G1ParScanThreadState* const pss = par_scan_state();
3162   pss->trim_queue();
3163   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3164   do {
3165     EventGCPhaseParallel event;
3166     pss->steal_and_trim_queue(queues());
3167     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3168   } while (!offer_termination());
3169 }
3170 
3171 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3172                                         bool class_unloading_occurred) {
3173   uint num_workers = workers()->active_workers();
3174   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3175   workers()->run_task(&unlink_task);
3176 }
3177 
3178 // Clean string dedup data structures.
3179 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3180 // record the durations of the phases. Hence the almost-copy.
3181 class G1StringDedupCleaningTask : public AbstractGangTask {
3182   BoolObjectClosure* _is_alive;
3183   OopClosure* _keep_alive;
3184   G1GCPhaseTimes* _phase_times;
3185 
3186 public:
3187   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3188                             OopClosure* keep_alive,
3189                             G1GCPhaseTimes* phase_times) :
3190     AbstractGangTask("Partial Cleaning Task"),
3191     _is_alive(is_alive),
3192     _keep_alive(keep_alive),
3193     _phase_times(phase_times)
3194   {
3195     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3196     StringDedup::gc_prologue(true);
3197   }
3198 
3199   ~G1StringDedupCleaningTask() {
3200     StringDedup::gc_epilogue();
3201   }
3202 
3203   void work(uint worker_id) {
3204     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3205     {
3206       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3207       StringDedupQueue::unlink_or_oops_do(&cl);
3208     }
3209     {
3210       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3211       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3212     }
3213   }
3214 };
3215 
3216 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3217                                             OopClosure* keep_alive,
3218                                             G1GCPhaseTimes* phase_times) {
3219   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3220   workers()->run_task(&cl);
3221 }
3222 
3223 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3224  private:
3225   G1RedirtyCardsQueueSet* _qset;
3226   G1CollectedHeap* _g1h;
3227   BufferNode* volatile _nodes;
3228 
3229   void apply(G1CardTableEntryClosure* cl, BufferNode* node, uint worker_id) {
3230     void** buf = BufferNode::make_buffer_from_node(node);
3231     size_t limit = _qset->buffer_size();
3232     for (size_t i = node->index(); i < limit; ++i) {
3233       CardTable::CardValue* card_ptr = static_cast<CardTable::CardValue*>(buf[i]);
3234       bool result = cl->do_card_ptr(card_ptr, worker_id);
3235       assert(result, "Closure should always return true");
3236     }
3237   }
3238 
3239   void par_apply(G1CardTableEntryClosure* cl, uint worker_id) {
3240     BufferNode* next = Atomic::load(&_nodes);
3241     while (next != NULL) {
3242       BufferNode* node = next;
3243       next = Atomic::cmpxchg(node->next(), &_nodes, node);
3244       if (next == node) {
3245         apply(cl, node, worker_id);
3246         next = node->next();
3247       }
3248     }
3249   }
3250 
3251  public:
3252   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3253     AbstractGangTask("Redirty Cards"),
3254     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3255 
3256   virtual void work(uint worker_id) {
3257     G1GCPhaseTimes* p = _g1h->phase_times();
3258     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3259 
3260     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3261     par_apply(&cl, worker_id);
3262 
3263     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3264   }
3265 };
3266 
3267 void G1CollectedHeap::redirty_logged_cards() {
3268   double redirty_logged_cards_start = os::elapsedTime();
3269 
3270   G1RedirtyLoggedCardsTask redirty_task(&redirty_cards_queue_set(), this);
3271   workers()->run_task(&redirty_task);
3272 
3273   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3274   dcq.merge_bufferlists(&redirty_cards_queue_set());
3275   redirty_cards_queue_set().verify_empty();
3276 
3277   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3278 }
3279 
3280 // Weak Reference Processing support
3281 
3282 bool G1STWIsAliveClosure::do_object_b(oop p) {
3283   // An object is reachable if it is outside the collection set,
3284   // or is inside and copied.
3285   return !_g1h->is_in_cset(p) || p->is_forwarded();
3286 }
3287 
3288 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3289   assert(obj != NULL, "must not be NULL");
3290   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3291   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3292   // may falsely indicate that this is not the case here: however the collection set only
3293   // contains old regions when concurrent mark is not running.
3294   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3295 }
3296 
3297 // Non Copying Keep Alive closure
3298 class G1KeepAliveClosure: public OopClosure {
3299   G1CollectedHeap*_g1h;
3300 public:
3301   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3302   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3303   void do_oop(oop* p) {
3304     oop obj = *p;
3305     assert(obj != NULL, "the caller should have filtered out NULL values");
3306 
3307     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3308     if (!region_attr.is_in_cset_or_humongous()) {
3309       return;
3310     }
3311     if (region_attr.is_in_cset()) {
3312       assert( obj->is_forwarded(), "invariant" );
3313       *p = obj->forwardee();
3314     } else {
3315       assert(!obj->is_forwarded(), "invariant" );
3316       assert(region_attr.is_humongous(),
3317              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3318      _g1h->set_humongous_is_live(obj);
3319     }
3320   }
3321 };
3322 
3323 // Copying Keep Alive closure - can be called from both
3324 // serial and parallel code as long as different worker
3325 // threads utilize different G1ParScanThreadState instances
3326 // and different queues.
3327 
3328 class G1CopyingKeepAliveClosure: public OopClosure {
3329   G1CollectedHeap*         _g1h;
3330   G1ParScanThreadState*    _par_scan_state;
3331 
3332 public:
3333   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3334                             G1ParScanThreadState* pss):
3335     _g1h(g1h),
3336     _par_scan_state(pss)
3337   {}
3338 
3339   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3340   virtual void do_oop(      oop* p) { do_oop_work(p); }
3341 
3342   template <class T> void do_oop_work(T* p) {
3343     oop obj = RawAccess<>::oop_load(p);
3344 
3345     if (_g1h->is_in_cset_or_humongous(obj)) {
3346       // If the referent object has been forwarded (either copied
3347       // to a new location or to itself in the event of an
3348       // evacuation failure) then we need to update the reference
3349       // field and, if both reference and referent are in the G1
3350       // heap, update the RSet for the referent.
3351       //
3352       // If the referent has not been forwarded then we have to keep
3353       // it alive by policy. Therefore we have copy the referent.
3354       //
3355       // When the queue is drained (after each phase of reference processing)
3356       // the object and it's followers will be copied, the reference field set
3357       // to point to the new location, and the RSet updated.
3358       _par_scan_state->push_on_queue(p);
3359     }
3360   }
3361 };
3362 
3363 // Serial drain queue closure. Called as the 'complete_gc'
3364 // closure for each discovered list in some of the
3365 // reference processing phases.
3366 
3367 class G1STWDrainQueueClosure: public VoidClosure {
3368 protected:
3369   G1CollectedHeap* _g1h;
3370   G1ParScanThreadState* _par_scan_state;
3371 
3372   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3373 
3374 public:
3375   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3376     _g1h(g1h),
3377     _par_scan_state(pss)
3378   { }
3379 
3380   void do_void() {
3381     G1ParScanThreadState* const pss = par_scan_state();
3382     pss->trim_queue();
3383   }
3384 };
3385 
3386 // Parallel Reference Processing closures
3387 
3388 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3389 // processing during G1 evacuation pauses.
3390 
3391 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3392 private:
3393   G1CollectedHeap*          _g1h;
3394   G1ParScanThreadStateSet*  _pss;
3395   RefToScanQueueSet*        _queues;
3396   WorkGang*                 _workers;
3397 
3398 public:
3399   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3400                            G1ParScanThreadStateSet* per_thread_states,
3401                            WorkGang* workers,
3402                            RefToScanQueueSet *task_queues) :
3403     _g1h(g1h),
3404     _pss(per_thread_states),
3405     _queues(task_queues),
3406     _workers(workers)
3407   {
3408     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3409   }
3410 
3411   // Executes the given task using concurrent marking worker threads.
3412   virtual void execute(ProcessTask& task, uint ergo_workers);
3413 };
3414 
3415 // Gang task for possibly parallel reference processing
3416 
3417 class G1STWRefProcTaskProxy: public AbstractGangTask {
3418   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3419   ProcessTask&     _proc_task;
3420   G1CollectedHeap* _g1h;
3421   G1ParScanThreadStateSet* _pss;
3422   RefToScanQueueSet* _task_queues;
3423   ParallelTaskTerminator* _terminator;
3424 
3425 public:
3426   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3427                         G1CollectedHeap* g1h,
3428                         G1ParScanThreadStateSet* per_thread_states,
3429                         RefToScanQueueSet *task_queues,
3430                         ParallelTaskTerminator* terminator) :
3431     AbstractGangTask("Process reference objects in parallel"),
3432     _proc_task(proc_task),
3433     _g1h(g1h),
3434     _pss(per_thread_states),
3435     _task_queues(task_queues),
3436     _terminator(terminator)
3437   {}
3438 
3439   virtual void work(uint worker_id) {
3440     // The reference processing task executed by a single worker.
3441     ResourceMark rm;
3442     HandleMark   hm;
3443 
3444     G1STWIsAliveClosure is_alive(_g1h);
3445 
3446     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3447     pss->set_ref_discoverer(NULL);
3448 
3449     // Keep alive closure.
3450     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3451 
3452     // Complete GC closure
3453     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3454 
3455     // Call the reference processing task's work routine.
3456     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3457 
3458     // Note we cannot assert that the refs array is empty here as not all
3459     // of the processing tasks (specifically phase2 - pp2_work) execute
3460     // the complete_gc closure (which ordinarily would drain the queue) so
3461     // the queue may not be empty.
3462   }
3463 };
3464 
3465 // Driver routine for parallel reference processing.
3466 // Creates an instance of the ref processing gang
3467 // task and has the worker threads execute it.
3468 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3469   assert(_workers != NULL, "Need parallel worker threads.");
3470 
3471   assert(_workers->active_workers() >= ergo_workers,
3472          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3473          ergo_workers, _workers->active_workers());
3474   TaskTerminator terminator(ergo_workers, _queues);
3475   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator());
3476 
3477   _workers->run_task(&proc_task_proxy, ergo_workers);
3478 }
3479 
3480 // End of weak reference support closures
3481 
3482 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3483   double ref_proc_start = os::elapsedTime();
3484 
3485   ReferenceProcessor* rp = _ref_processor_stw;
3486   assert(rp->discovery_enabled(), "should have been enabled");
3487 
3488   // Closure to test whether a referent is alive.
3489   G1STWIsAliveClosure is_alive(this);
3490 
3491   // Even when parallel reference processing is enabled, the processing
3492   // of JNI refs is serial and performed serially by the current thread
3493   // rather than by a worker. The following PSS will be used for processing
3494   // JNI refs.
3495 
3496   // Use only a single queue for this PSS.
3497   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3498   pss->set_ref_discoverer(NULL);
3499   assert(pss->queue_is_empty(), "pre-condition");
3500 
3501   // Keep alive closure.
3502   G1CopyingKeepAliveClosure keep_alive(this, pss);
3503 
3504   // Serial Complete GC closure
3505   G1STWDrainQueueClosure drain_queue(this, pss);
3506 
3507   // Setup the soft refs policy...
3508   rp->setup_policy(false);
3509 
3510   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3511 
3512   ReferenceProcessorStats stats;
3513   if (!rp->processing_is_mt()) {
3514     // Serial reference processing...
3515     stats = rp->process_discovered_references(&is_alive,
3516                                               &keep_alive,
3517                                               &drain_queue,
3518                                               NULL,
3519                                               pt);
3520   } else {
3521     uint no_of_gc_workers = workers()->active_workers();
3522 
3523     // Parallel reference processing
3524     assert(no_of_gc_workers <= rp->max_num_queues(),
3525            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3526            no_of_gc_workers,  rp->max_num_queues());
3527 
3528     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3529     stats = rp->process_discovered_references(&is_alive,
3530                                               &keep_alive,
3531                                               &drain_queue,
3532                                               &par_task_executor,
3533                                               pt);
3534   }
3535 
3536   _gc_tracer_stw->report_gc_reference_stats(stats);
3537 
3538   // We have completed copying any necessary live referent objects.
3539   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3540 
3541   make_pending_list_reachable();
3542 
3543   assert(!rp->discovery_enabled(), "Postcondition");
3544   rp->verify_no_references_recorded();
3545 
3546   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3547   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3548 }
3549 
3550 void G1CollectedHeap::make_pending_list_reachable() {
3551   if (collector_state()->in_initial_mark_gc()) {
3552     oop pll_head = Universe::reference_pending_list();
3553     if (pll_head != NULL) {
3554       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3555       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3556     }
3557   }
3558 }
3559 
3560 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3561   double merge_pss_time_start = os::elapsedTime();
3562   per_thread_states->flush();
3563   phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3564 }
3565 
3566 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3567   _expand_heap_after_alloc_failure = true;
3568   _evacuation_failed = false;
3569 
3570   // Disable the hot card cache.
3571   _hot_card_cache->reset_hot_cache_claimed_index();
3572   _hot_card_cache->set_use_cache(false);
3573 
3574   // Initialize the GC alloc regions.
3575   _allocator->init_gc_alloc_regions(evacuation_info);
3576 
3577   {
3578     Ticks start = Ticks::now();
3579     rem_set()->prepare_for_scan_heap_roots();
3580     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3581   }
3582 
3583   register_regions_with_region_attr();
3584   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3585 
3586   _preserved_marks_set.assert_empty();
3587 
3588 #if COMPILER2_OR_JVMCI
3589   DerivedPointerTable::clear();
3590 #endif
3591 
3592   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3593   if (collector_state()->in_initial_mark_gc()) {
3594     concurrent_mark()->pre_initial_mark();
3595 
3596     double start_clear_claimed_marks = os::elapsedTime();
3597 
3598     ClassLoaderDataGraph::clear_claimed_marks();
3599 
3600     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3601     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3602   }
3603 
3604   // Should G1EvacuationFailureALot be in effect for this GC?
3605   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3606 
3607   redirty_cards_queue_set().verify_empty();
3608 }
3609 
3610 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3611 protected:
3612   G1CollectedHeap* _g1h;
3613   G1ParScanThreadStateSet* _per_thread_states;
3614   RefToScanQueueSet* _task_queues;
3615   TaskTerminator _terminator;
3616   uint _num_workers;
3617 
3618   void evacuate_live_objects(G1ParScanThreadState* pss,
3619                              uint worker_id,
3620                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3621                              G1GCPhaseTimes::GCParPhases termination_phase) {
3622     G1GCPhaseTimes* p = _g1h->phase_times();
3623 
3624     Ticks start = Ticks::now();
3625     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, _terminator.terminator(), objcopy_phase);
3626     cl.do_void();
3627 
3628     assert(pss->queue_is_empty(), "should be empty");
3629 
3630     Tickspan evac_time = (Ticks::now() - start);
3631     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3632 
3633     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABWaste);
3634     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_undo_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABUndoWaste);
3635 
3636     if (termination_phase == G1GCPhaseTimes::Termination) {
3637       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3638       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3639     } else {
3640       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3641       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3642     }
3643     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3644   }
3645 
3646   virtual void start_work(uint worker_id) { }
3647 
3648   virtual void end_work(uint worker_id) { }
3649 
3650   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3651 
3652   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3653 
3654 public:
3655   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3656     AbstractGangTask(name),
3657     _g1h(G1CollectedHeap::heap()),
3658     _per_thread_states(per_thread_states),
3659     _task_queues(task_queues),
3660     _terminator(num_workers, _task_queues),
3661     _num_workers(num_workers)
3662   { }
3663 
3664   void work(uint worker_id) {
3665     start_work(worker_id);
3666 
3667     {
3668       ResourceMark rm;
3669       HandleMark   hm;
3670 
3671       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3672       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3673 
3674       scan_roots(pss, worker_id);
3675       evacuate_live_objects(pss, worker_id);
3676     }
3677 
3678     end_work(worker_id);
3679   }
3680 };
3681 
3682 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3683   G1RootProcessor* _root_processor;
3684 
3685   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3686     _root_processor->evacuate_roots(pss, worker_id);
3687     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3688     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3689   }
3690 
3691   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3692     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3693   }
3694 
3695   void start_work(uint worker_id) {
3696     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3697   }
3698 
3699   void end_work(uint worker_id) {
3700     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3701   }
3702 
3703 public:
3704   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3705                         G1ParScanThreadStateSet* per_thread_states,
3706                         RefToScanQueueSet* task_queues,
3707                         G1RootProcessor* root_processor,
3708                         uint num_workers) :
3709     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3710     _root_processor(root_processor)
3711   { }
3712 };
3713 
3714 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3715   G1GCPhaseTimes* p = phase_times();
3716 
3717   {
3718     Ticks start = Ticks::now();
3719     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3720     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3721   }
3722 
3723   Tickspan task_time;
3724   const uint num_workers = workers()->active_workers();
3725 
3726   Ticks start_processing = Ticks::now();
3727   {
3728     G1RootProcessor root_processor(this, num_workers);
3729     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3730     task_time = run_task(&g1_par_task);
3731     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3732     // To extract its code root fixup time we measure total time of this scope and
3733     // subtract from the time the WorkGang task took.
3734   }
3735   Tickspan total_processing = Ticks::now() - start_processing;
3736 
3737   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3738   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3739 }
3740 
3741 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3742 
3743   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3744     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3745     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3746   }
3747 
3748   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3749     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3750   }
3751 
3752 public:
3753   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3754                                 RefToScanQueueSet* queues,
3755                                 uint num_workers) :
3756     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3757   }
3758 };
3759 
3760 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3761   class G1MarkScope : public MarkScope { };
3762 
3763   Tickspan task_time;
3764 
3765   Ticks start_processing = Ticks::now();
3766   {
3767     G1MarkScope code_mark_scope;
3768     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3769     task_time = run_task(&task);
3770     // See comment in evacuate_collection_set() for the reason of the scope.
3771   }
3772   Tickspan total_processing = Ticks::now() - start_processing;
3773 
3774   G1GCPhaseTimes* p = phase_times();
3775   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3776 }
3777 
3778 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3779   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3780 
3781   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3782 
3783     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3784     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3785 
3786     if (time_left_ms < 0 ||
3787         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3788       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3789                                 _collection_set.optional_region_length(), time_left_ms);
3790       break;
3791     }
3792 
3793     {
3794       Ticks start = Ticks::now();
3795       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3796       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3797     }
3798 
3799     {
3800       Ticks start = Ticks::now();
3801       evacuate_next_optional_regions(per_thread_states);
3802       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3803     }
3804   }
3805 
3806   _collection_set.abandon_optional_collection_set(per_thread_states);
3807 }
3808 
3809 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3810   rem_set()->cleanup_after_scan_heap_roots();
3811 
3812   // Process any discovered reference objects - we have
3813   // to do this _before_ we retire the GC alloc regions
3814   // as we may have to copy some 'reachable' referent
3815   // objects (and their reachable sub-graphs) that were
3816   // not copied during the pause.
3817   process_discovered_references(per_thread_states);
3818 
3819   G1STWIsAliveClosure is_alive(this);
3820   G1KeepAliveClosure keep_alive(this);
3821 
3822   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3823                               phase_times()->weak_phase_times());
3824 
3825   if (G1StringDedup::is_enabled()) {
3826     double string_dedup_time_ms = os::elapsedTime();
3827 
3828     string_dedup_cleaning(&is_alive, &keep_alive, phase_times());
3829 
3830     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
3831     phase_times()->record_string_deduplication_time(string_cleanup_time_ms);
3832   }
3833 
3834   _allocator->release_gc_alloc_regions(evacuation_info);
3835 
3836   if (evacuation_failed()) {
3837     restore_after_evac_failure();
3838 
3839     // Reset the G1EvacuationFailureALot counters and flags
3840     NOT_PRODUCT(reset_evacuation_should_fail();)
3841 
3842     double recalculate_used_start = os::elapsedTime();
3843     set_used(recalculate_used());
3844     phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3845 
3846     if (_archive_allocator != NULL) {
3847       _archive_allocator->clear_used();
3848     }
3849     for (uint i = 0; i < ParallelGCThreads; i++) {
3850       if (_evacuation_failed_info_array[i].has_failed()) {
3851         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3852       }
3853     }
3854   } else {
3855     // The "used" of the the collection set have already been subtracted
3856     // when they were freed.  Add in the bytes evacuated.
3857     increase_used(policy()->bytes_copied_during_gc());
3858   }
3859 
3860   _preserved_marks_set.assert_empty();
3861 
3862   merge_per_thread_state_info(per_thread_states);
3863 
3864   // Reset and re-enable the hot card cache.
3865   // Note the counts for the cards in the regions in the
3866   // collection set are reset when the collection set is freed.
3867   _hot_card_cache->reset_hot_cache();
3868   _hot_card_cache->set_use_cache(true);
3869 
3870   purge_code_root_memory();
3871 
3872   redirty_logged_cards();
3873 
3874   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
3875 
3876   eagerly_reclaim_humongous_regions();
3877 
3878   record_obj_copy_mem_stats();
3879 
3880   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3881   evacuation_info.set_bytes_copied(policy()->bytes_copied_during_gc());
3882 
3883 #if COMPILER2_OR_JVMCI
3884   double start = os::elapsedTime();
3885   DerivedPointerTable::update_pointers();
3886   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3887 #endif
3888   policy()->print_age_table();
3889 }
3890 
3891 void G1CollectedHeap::record_obj_copy_mem_stats() {
3892   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3893 
3894   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3895                                                create_g1_evac_summary(&_old_evac_stats));
3896 }
3897 
3898 void G1CollectedHeap::free_region(HeapRegion* hr,
3899                                   FreeRegionList* free_list,
3900                                   bool skip_remset,
3901                                   bool skip_hot_card_cache,
3902                                   bool locked) {
3903   assert(!hr->is_free(), "the region should not be free");
3904   assert(!hr->is_empty(), "the region should not be empty");
3905   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3906   assert(free_list != NULL, "pre-condition");
3907 
3908   if (G1VerifyBitmaps) {
3909     MemRegion mr(hr->bottom(), hr->end());
3910     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3911   }
3912 
3913   // Clear the card counts for this region.
3914   // Note: we only need to do this if the region is not young
3915   // (since we don't refine cards in young regions).
3916   if (!skip_hot_card_cache && !hr->is_young()) {
3917     _hot_card_cache->reset_card_counts(hr);
3918   }
3919   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3920   _policy->remset_tracker()->update_at_free(hr);
3921   free_list->add_ordered(hr);
3922 }
3923 
3924 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3925                                             FreeRegionList* free_list) {
3926   assert(hr->is_humongous(), "this is only for humongous regions");
3927   assert(free_list != NULL, "pre-condition");
3928   hr->clear_humongous();
3929   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3930 }
3931 
3932 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3933                                            const uint humongous_regions_removed) {
3934   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3935     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3936     _old_set.bulk_remove(old_regions_removed);
3937     _humongous_set.bulk_remove(humongous_regions_removed);
3938   }
3939 
3940 }
3941 
3942 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3943   assert(list != NULL, "list can't be null");
3944   if (!list->is_empty()) {
3945     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3946     _hrm->insert_list_into_free_list(list);
3947   }
3948 }
3949 
3950 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3951   decrease_used(bytes);
3952 }
3953 
3954 class G1FreeCollectionSetTask : public AbstractGangTask {
3955 private:
3956 
3957   // Closure applied to all regions in the collection set to do work that needs to
3958   // be done serially in a single thread.
3959   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3960   private:
3961     G1EvacuationInfo* _evacuation_info;
3962     const size_t* _surviving_young_words;
3963 
3964     // Bytes used in successfully evacuated regions before the evacuation.
3965     size_t _before_used_bytes;
3966     // Bytes used in unsucessfully evacuated regions before the evacuation
3967     size_t _after_used_bytes;
3968 
3969     size_t _bytes_allocated_in_old_since_last_gc;
3970 
3971     size_t _failure_used_words;
3972     size_t _failure_waste_words;
3973 
3974     FreeRegionList _local_free_list;
3975   public:
3976     G1SerialFreeCollectionSetClosure(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
3977       HeapRegionClosure(),
3978       _evacuation_info(evacuation_info),
3979       _surviving_young_words(surviving_young_words),
3980       _before_used_bytes(0),
3981       _after_used_bytes(0),
3982       _bytes_allocated_in_old_since_last_gc(0),
3983       _failure_used_words(0),
3984       _failure_waste_words(0),
3985       _local_free_list("Local Region List for CSet Freeing") {
3986     }
3987 
3988     virtual bool do_heap_region(HeapRegion* r) {
3989       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3990 
3991       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
3992       g1h->clear_region_attr(r);
3993 
3994       if (r->is_young()) {
3995         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
3996                "Young index %d is wrong for region %u of type %s with %u young regions",
3997                r->young_index_in_cset(),
3998                r->hrm_index(),
3999                r->get_type_str(),
4000                g1h->collection_set()->young_region_length());
4001         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4002         r->record_surv_words_in_group(words_survived);
4003       }
4004 
4005       if (!r->evacuation_failed()) {
4006         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4007         _before_used_bytes += r->used();
4008         g1h->free_region(r,
4009                          &_local_free_list,
4010                          true, /* skip_remset */
4011                          true, /* skip_hot_card_cache */
4012                          true  /* locked */);
4013       } else {
4014         r->uninstall_surv_rate_group();
4015         r->set_young_index_in_cset(-1);
4016         r->set_evacuation_failed(false);
4017         // When moving a young gen region to old gen, we "allocate" that whole region
4018         // there. This is in addition to any already evacuated objects. Notify the
4019         // policy about that.
4020         // Old gen regions do not cause an additional allocation: both the objects
4021         // still in the region and the ones already moved are accounted for elsewhere.
4022         if (r->is_young()) {
4023           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4024         }
4025         // The region is now considered to be old.
4026         r->set_old();
4027         // Do some allocation statistics accounting. Regions that failed evacuation
4028         // are always made old, so there is no need to update anything in the young
4029         // gen statistics, but we need to update old gen statistics.
4030         size_t used_words = r->marked_bytes() / HeapWordSize;
4031 
4032         _failure_used_words += used_words;
4033         _failure_waste_words += HeapRegion::GrainWords - used_words;
4034 
4035         g1h->old_set_add(r);
4036         _after_used_bytes += r->used();
4037       }
4038       return false;
4039     }
4040 
4041     void complete_work() {
4042       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4043 
4044       _evacuation_info->set_regions_freed(_local_free_list.length());
4045       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4046 
4047       g1h->prepend_to_freelist(&_local_free_list);
4048       g1h->decrement_summary_bytes(_before_used_bytes);
4049 
4050       G1Policy* policy = g1h->policy();
4051       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4052 
4053       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4054     }
4055   };
4056 
4057   G1CollectionSet* _collection_set;
4058   G1SerialFreeCollectionSetClosure _cl;
4059   const size_t* _surviving_young_words;
4060 
4061   size_t _rs_lengths;
4062 
4063   volatile jint _serial_work_claim;
4064 
4065   struct WorkItem {
4066     uint region_idx;
4067     bool is_young;
4068     bool evacuation_failed;
4069 
4070     WorkItem(HeapRegion* r) {
4071       region_idx = r->hrm_index();
4072       is_young = r->is_young();
4073       evacuation_failed = r->evacuation_failed();
4074     }
4075   };
4076 
4077   volatile size_t _parallel_work_claim;
4078   size_t _num_work_items;
4079   WorkItem* _work_items;
4080 
4081   void do_serial_work() {
4082     // Need to grab the lock to be allowed to modify the old region list.
4083     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4084     _collection_set->iterate(&_cl);
4085   }
4086 
4087   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4088     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4089 
4090     HeapRegion* r = g1h->region_at(region_idx);
4091     assert(!g1h->is_on_master_free_list(r), "sanity");
4092 
4093     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4094 
4095     if (!is_young) {
4096       g1h->_hot_card_cache->reset_card_counts(r);
4097     }
4098 
4099     if (!evacuation_failed) {
4100       r->rem_set()->clear_locked();
4101     }
4102   }
4103 
4104   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4105   private:
4106     size_t _cur_idx;
4107     WorkItem* _work_items;
4108   public:
4109     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4110 
4111     virtual bool do_heap_region(HeapRegion* r) {
4112       _work_items[_cur_idx++] = WorkItem(r);
4113       return false;
4114     }
4115   };
4116 
4117   void prepare_work() {
4118     G1PrepareFreeCollectionSetClosure cl(_work_items);
4119     _collection_set->iterate(&cl);
4120   }
4121 
4122   void complete_work() {
4123     _cl.complete_work();
4124 
4125     G1Policy* policy = G1CollectedHeap::heap()->policy();
4126     policy->record_max_rs_lengths(_rs_lengths);
4127     policy->cset_regions_freed();
4128   }
4129 public:
4130   G1FreeCollectionSetTask(G1CollectionSet* collection_set, G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4131     AbstractGangTask("G1 Free Collection Set"),
4132     _collection_set(collection_set),
4133     _cl(evacuation_info, surviving_young_words),
4134     _surviving_young_words(surviving_young_words),
4135     _rs_lengths(0),
4136     _serial_work_claim(0),
4137     _parallel_work_claim(0),
4138     _num_work_items(collection_set->region_length()),
4139     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4140     prepare_work();
4141   }
4142 
4143   ~G1FreeCollectionSetTask() {
4144     complete_work();
4145     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4146   }
4147 
4148   // Chunk size for work distribution. The chosen value has been determined experimentally
4149   // to be a good tradeoff between overhead and achievable parallelism.
4150   static uint chunk_size() { return 32; }
4151 
4152   virtual void work(uint worker_id) {
4153     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->phase_times();
4154 
4155     // Claim serial work.
4156     if (_serial_work_claim == 0) {
4157       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4158       if (value == 0) {
4159         double serial_time = os::elapsedTime();
4160         do_serial_work();
4161         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4162       }
4163     }
4164 
4165     // Start parallel work.
4166     double young_time = 0.0;
4167     bool has_young_time = false;
4168     double non_young_time = 0.0;
4169     bool has_non_young_time = false;
4170 
4171     while (true) {
4172       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4173       size_t cur = end - chunk_size();
4174 
4175       if (cur >= _num_work_items) {
4176         break;
4177       }
4178 
4179       EventGCPhaseParallel event;
4180       double start_time = os::elapsedTime();
4181 
4182       end = MIN2(end, _num_work_items);
4183 
4184       for (; cur < end; cur++) {
4185         bool is_young = _work_items[cur].is_young;
4186 
4187         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4188 
4189         double end_time = os::elapsedTime();
4190         double time_taken = end_time - start_time;
4191         if (is_young) {
4192           young_time += time_taken;
4193           has_young_time = true;
4194           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4195         } else {
4196           non_young_time += time_taken;
4197           has_non_young_time = true;
4198           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4199         }
4200         start_time = end_time;
4201       }
4202     }
4203 
4204     if (has_young_time) {
4205       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4206     }
4207     if (has_non_young_time) {
4208       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4209     }
4210   }
4211 };
4212 
4213 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4214   _eden.clear();
4215 
4216   double free_cset_start_time = os::elapsedTime();
4217 
4218   {
4219     uint const num_regions = _collection_set.region_length();
4220     uint const num_chunks = MAX2(num_regions / G1FreeCollectionSetTask::chunk_size(), 1U);
4221     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4222 
4223     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4224 
4225     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4226                         cl.name(), num_workers, num_regions);
4227     workers()->run_task(&cl, num_workers);
4228   }
4229   phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4230 
4231   collection_set->clear();
4232 }
4233 
4234 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4235  private:
4236   FreeRegionList* _free_region_list;
4237   HeapRegionSet* _proxy_set;
4238   uint _humongous_objects_reclaimed;
4239   uint _humongous_regions_reclaimed;
4240   size_t _freed_bytes;
4241  public:
4242 
4243   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4244     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4245   }
4246 
4247   virtual bool do_heap_region(HeapRegion* r) {
4248     if (!r->is_starts_humongous()) {
4249       return false;
4250     }
4251 
4252     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4253 
4254     oop obj = (oop)r->bottom();
4255     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4256 
4257     // The following checks whether the humongous object is live are sufficient.
4258     // The main additional check (in addition to having a reference from the roots
4259     // or the young gen) is whether the humongous object has a remembered set entry.
4260     //
4261     // A humongous object cannot be live if there is no remembered set for it
4262     // because:
4263     // - there can be no references from within humongous starts regions referencing
4264     // the object because we never allocate other objects into them.
4265     // (I.e. there are no intra-region references that may be missed by the
4266     // remembered set)
4267     // - as soon there is a remembered set entry to the humongous starts region
4268     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4269     // until the end of a concurrent mark.
4270     //
4271     // It is not required to check whether the object has been found dead by marking
4272     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4273     // all objects allocated during that time are considered live.
4274     // SATB marking is even more conservative than the remembered set.
4275     // So if at this point in the collection there is no remembered set entry,
4276     // nobody has a reference to it.
4277     // At the start of collection we flush all refinement logs, and remembered sets
4278     // are completely up-to-date wrt to references to the humongous object.
4279     //
4280     // Other implementation considerations:
4281     // - never consider object arrays at this time because they would pose
4282     // considerable effort for cleaning up the the remembered sets. This is
4283     // required because stale remembered sets might reference locations that
4284     // are currently allocated into.
4285     uint region_idx = r->hrm_index();
4286     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4287         !r->rem_set()->is_empty()) {
4288       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4289                                region_idx,
4290                                (size_t)obj->size() * HeapWordSize,
4291                                p2i(r->bottom()),
4292                                r->rem_set()->occupied(),
4293                                r->rem_set()->strong_code_roots_list_length(),
4294                                next_bitmap->is_marked(r->bottom()),
4295                                g1h->is_humongous_reclaim_candidate(region_idx),
4296                                obj->is_typeArray()
4297                               );
4298       return false;
4299     }
4300 
4301     guarantee(obj->is_typeArray(),
4302               "Only eagerly reclaiming type arrays is supported, but the object "
4303               PTR_FORMAT " is not.", p2i(r->bottom()));
4304 
4305     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4306                              region_idx,
4307                              (size_t)obj->size() * HeapWordSize,
4308                              p2i(r->bottom()),
4309                              r->rem_set()->occupied(),
4310                              r->rem_set()->strong_code_roots_list_length(),
4311                              next_bitmap->is_marked(r->bottom()),
4312                              g1h->is_humongous_reclaim_candidate(region_idx),
4313                              obj->is_typeArray()
4314                             );
4315 
4316     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4317     cm->humongous_object_eagerly_reclaimed(r);
4318     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4319            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4320            region_idx,
4321            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4322            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4323     _humongous_objects_reclaimed++;
4324     do {
4325       HeapRegion* next = g1h->next_region_in_humongous(r);
4326       _freed_bytes += r->used();
4327       r->set_containing_set(NULL);
4328       _humongous_regions_reclaimed++;
4329       g1h->free_humongous_region(r, _free_region_list);
4330       r = next;
4331     } while (r != NULL);
4332 
4333     return false;
4334   }
4335 
4336   uint humongous_objects_reclaimed() {
4337     return _humongous_objects_reclaimed;
4338   }
4339 
4340   uint humongous_regions_reclaimed() {
4341     return _humongous_regions_reclaimed;
4342   }
4343 
4344   size_t bytes_freed() const {
4345     return _freed_bytes;
4346   }
4347 };
4348 
4349 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4350   assert_at_safepoint_on_vm_thread();
4351 
4352   if (!G1EagerReclaimHumongousObjects ||
4353       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4354     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4355     return;
4356   }
4357 
4358   double start_time = os::elapsedTime();
4359 
4360   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4361 
4362   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4363   heap_region_iterate(&cl);
4364 
4365   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4366 
4367   G1HRPrinter* hrp = hr_printer();
4368   if (hrp->is_active()) {
4369     FreeRegionListIterator iter(&local_cleanup_list);
4370     while (iter.more_available()) {
4371       HeapRegion* hr = iter.get_next();
4372       hrp->cleanup(hr);
4373     }
4374   }
4375 
4376   prepend_to_freelist(&local_cleanup_list);
4377   decrement_summary_bytes(cl.bytes_freed());
4378 
4379   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4380                                                        cl.humongous_objects_reclaimed());
4381 }
4382 
4383 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4384 public:
4385   virtual bool do_heap_region(HeapRegion* r) {
4386     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4387     G1CollectedHeap::heap()->clear_region_attr(r);
4388     r->set_young_index_in_cset(-1);
4389     return false;
4390   }
4391 };
4392 
4393 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4394   G1AbandonCollectionSetClosure cl;
4395   collection_set_iterate_all(&cl);
4396 
4397   collection_set->clear();
4398   collection_set->stop_incremental_building();
4399 }
4400 
4401 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4402   return _allocator->is_retained_old_region(hr);
4403 }
4404 
4405 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4406   _eden.add(hr);
4407   _policy->set_region_eden(hr);
4408 }
4409 
4410 #ifdef ASSERT
4411 
4412 class NoYoungRegionsClosure: public HeapRegionClosure {
4413 private:
4414   bool _success;
4415 public:
4416   NoYoungRegionsClosure() : _success(true) { }
4417   bool do_heap_region(HeapRegion* r) {
4418     if (r->is_young()) {
4419       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4420                             p2i(r->bottom()), p2i(r->end()));
4421       _success = false;
4422     }
4423     return false;
4424   }
4425   bool success() { return _success; }
4426 };
4427 
4428 bool G1CollectedHeap::check_young_list_empty() {
4429   bool ret = (young_regions_count() == 0);
4430 
4431   NoYoungRegionsClosure closure;
4432   heap_region_iterate(&closure);
4433   ret = ret && closure.success();
4434 
4435   return ret;
4436 }
4437 
4438 #endif // ASSERT
4439 
4440 class TearDownRegionSetsClosure : public HeapRegionClosure {
4441   HeapRegionSet *_old_set;
4442 
4443 public:
4444   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4445 
4446   bool do_heap_region(HeapRegion* r) {
4447     if (r->is_old()) {
4448       _old_set->remove(r);
4449     } else if(r->is_young()) {
4450       r->uninstall_surv_rate_group();
4451     } else {
4452       // We ignore free regions, we'll empty the free list afterwards.
4453       // We ignore humongous and archive regions, we're not tearing down these
4454       // sets.
4455       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4456              "it cannot be another type");
4457     }
4458     return false;
4459   }
4460 
4461   ~TearDownRegionSetsClosure() {
4462     assert(_old_set->is_empty(), "post-condition");
4463   }
4464 };
4465 
4466 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4467   assert_at_safepoint_on_vm_thread();
4468 
4469   if (!free_list_only) {
4470     TearDownRegionSetsClosure cl(&_old_set);
4471     heap_region_iterate(&cl);
4472 
4473     // Note that emptying the _young_list is postponed and instead done as
4474     // the first step when rebuilding the regions sets again. The reason for
4475     // this is that during a full GC string deduplication needs to know if
4476     // a collected region was young or old when the full GC was initiated.
4477   }
4478   _hrm->remove_all_free_regions();
4479 }
4480 
4481 void G1CollectedHeap::increase_used(size_t bytes) {
4482   _summary_bytes_used += bytes;
4483 }
4484 
4485 void G1CollectedHeap::decrease_used(size_t bytes) {
4486   assert(_summary_bytes_used >= bytes,
4487          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4488          _summary_bytes_used, bytes);
4489   _summary_bytes_used -= bytes;
4490 }
4491 
4492 void G1CollectedHeap::set_used(size_t bytes) {
4493   _summary_bytes_used = bytes;
4494 }
4495 
4496 class RebuildRegionSetsClosure : public HeapRegionClosure {
4497 private:
4498   bool _free_list_only;
4499 
4500   HeapRegionSet* _old_set;
4501   HeapRegionManager* _hrm;
4502 
4503   size_t _total_used;
4504 
4505 public:
4506   RebuildRegionSetsClosure(bool free_list_only,
4507                            HeapRegionSet* old_set,
4508                            HeapRegionManager* hrm) :
4509     _free_list_only(free_list_only),
4510     _old_set(old_set), _hrm(hrm), _total_used(0) {
4511     assert(_hrm->num_free_regions() == 0, "pre-condition");
4512     if (!free_list_only) {
4513       assert(_old_set->is_empty(), "pre-condition");
4514     }
4515   }
4516 
4517   bool do_heap_region(HeapRegion* r) {
4518     if (r->is_empty()) {
4519       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4520       // Add free regions to the free list
4521       r->set_free();
4522       _hrm->insert_into_free_list(r);
4523     } else if (!_free_list_only) {
4524       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4525 
4526       if (r->is_archive() || r->is_humongous()) {
4527         // We ignore archive and humongous regions. We left these sets unchanged.
4528       } else {
4529         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4530         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4531         r->move_to_old();
4532         _old_set->add(r);
4533       }
4534       _total_used += r->used();
4535     }
4536 
4537     return false;
4538   }
4539 
4540   size_t total_used() {
4541     return _total_used;
4542   }
4543 };
4544 
4545 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4546   assert_at_safepoint_on_vm_thread();
4547 
4548   if (!free_list_only) {
4549     _eden.clear();
4550     _survivor.clear();
4551   }
4552 
4553   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4554   heap_region_iterate(&cl);
4555 
4556   if (!free_list_only) {
4557     set_used(cl.total_used());
4558     if (_archive_allocator != NULL) {
4559       _archive_allocator->clear_used();
4560     }
4561   }
4562   assert_used_and_recalculate_used_equal(this);
4563 }
4564 
4565 // Methods for the mutator alloc region
4566 
4567 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4568                                                       bool force) {
4569   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4570   bool should_allocate = policy()->should_allocate_mutator_region();
4571   if (force || should_allocate) {
4572     HeapRegion* new_alloc_region = new_region(word_size,
4573                                               HeapRegionType::Eden,
4574                                               false /* do_expand */);
4575     if (new_alloc_region != NULL) {
4576       set_region_short_lived_locked(new_alloc_region);
4577       _hr_printer.alloc(new_alloc_region, !should_allocate);
4578       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4579       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4580       return new_alloc_region;
4581     }
4582   }
4583   return NULL;
4584 }
4585 
4586 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4587                                                   size_t allocated_bytes) {
4588   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4589   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4590 
4591   collection_set()->add_eden_region(alloc_region);
4592   increase_used(allocated_bytes);
4593   _eden.add_used_bytes(allocated_bytes);
4594   _hr_printer.retire(alloc_region);
4595 
4596   // We update the eden sizes here, when the region is retired,
4597   // instead of when it's allocated, since this is the point that its
4598   // used space has been recorded in _summary_bytes_used.
4599   g1mm()->update_eden_size();
4600 }
4601 
4602 // Methods for the GC alloc regions
4603 
4604 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4605   if (dest.is_old()) {
4606     return true;
4607   } else {
4608     return survivor_regions_count() < policy()->max_survivor_regions();
4609   }
4610 }
4611 
4612 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest) {
4613   assert(FreeList_lock->owned_by_self(), "pre-condition");
4614 
4615   if (!has_more_regions(dest)) {
4616     return NULL;
4617   }
4618 
4619   HeapRegionType type;
4620   if (dest.is_young()) {
4621     type = HeapRegionType::Survivor;
4622   } else {
4623     type = HeapRegionType::Old;
4624   }
4625 
4626   HeapRegion* new_alloc_region = new_region(word_size,
4627                                             type,
4628                                             true /* do_expand */);
4629 
4630   if (new_alloc_region != NULL) {
4631     if (type.is_survivor()) {
4632       new_alloc_region->set_survivor();
4633       _survivor.add(new_alloc_region);
4634       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4635     } else {
4636       new_alloc_region->set_old();
4637       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4638     }
4639     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4640     register_region_with_region_attr(new_alloc_region);
4641     _hr_printer.alloc(new_alloc_region);
4642     return new_alloc_region;
4643   }
4644   return NULL;
4645 }
4646 
4647 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4648                                              size_t allocated_bytes,
4649                                              G1HeapRegionAttr dest) {
4650   policy()->record_bytes_copied_during_gc(allocated_bytes);
4651   if (dest.is_old()) {
4652     old_set_add(alloc_region);
4653   } else {
4654     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4655     _survivor.add_used_bytes(allocated_bytes);
4656   }
4657 
4658   bool const during_im = collector_state()->in_initial_mark_gc();
4659   if (during_im && allocated_bytes > 0) {
4660     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4661   }
4662   _hr_printer.retire(alloc_region);
4663 }
4664 
4665 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4666   bool expanded = false;
4667   uint index = _hrm->find_highest_free(&expanded);
4668 
4669   if (index != G1_NO_HRM_INDEX) {
4670     if (expanded) {
4671       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4672                                 HeapRegion::GrainWords * HeapWordSize);
4673     }
4674     _hrm->allocate_free_regions_starting_at(index, 1);
4675     return region_at(index);
4676   }
4677   return NULL;
4678 }
4679 
4680 // Optimized nmethod scanning
4681 
4682 class RegisterNMethodOopClosure: public OopClosure {
4683   G1CollectedHeap* _g1h;
4684   nmethod* _nm;
4685 
4686   template <class T> void do_oop_work(T* p) {
4687     T heap_oop = RawAccess<>::oop_load(p);
4688     if (!CompressedOops::is_null(heap_oop)) {
4689       oop obj = CompressedOops::decode_not_null(heap_oop);
4690       HeapRegion* hr = _g1h->heap_region_containing(obj);
4691       assert(!hr->is_continues_humongous(),
4692              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4693              " starting at " HR_FORMAT,
4694              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4695 
4696       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4697       hr->add_strong_code_root_locked(_nm);
4698     }
4699   }
4700 
4701 public:
4702   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4703     _g1h(g1h), _nm(nm) {}
4704 
4705   void do_oop(oop* p)       { do_oop_work(p); }
4706   void do_oop(narrowOop* p) { do_oop_work(p); }
4707 };
4708 
4709 class UnregisterNMethodOopClosure: public OopClosure {
4710   G1CollectedHeap* _g1h;
4711   nmethod* _nm;
4712 
4713   template <class T> void do_oop_work(T* p) {
4714     T heap_oop = RawAccess<>::oop_load(p);
4715     if (!CompressedOops::is_null(heap_oop)) {
4716       oop obj = CompressedOops::decode_not_null(heap_oop);
4717       HeapRegion* hr = _g1h->heap_region_containing(obj);
4718       assert(!hr->is_continues_humongous(),
4719              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4720              " starting at " HR_FORMAT,
4721              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4722 
4723       hr->remove_strong_code_root(_nm);
4724     }
4725   }
4726 
4727 public:
4728   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4729     _g1h(g1h), _nm(nm) {}
4730 
4731   void do_oop(oop* p)       { do_oop_work(p); }
4732   void do_oop(narrowOop* p) { do_oop_work(p); }
4733 };
4734 
4735 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4736   guarantee(nm != NULL, "sanity");
4737   RegisterNMethodOopClosure reg_cl(this, nm);
4738   nm->oops_do(&reg_cl);
4739 }
4740 
4741 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4742   guarantee(nm != NULL, "sanity");
4743   UnregisterNMethodOopClosure reg_cl(this, nm);
4744   nm->oops_do(&reg_cl, true);
4745 }
4746 
4747 void G1CollectedHeap::purge_code_root_memory() {
4748   double purge_start = os::elapsedTime();
4749   G1CodeRootSet::purge();
4750   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4751   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4752 }
4753 
4754 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4755   G1CollectedHeap* _g1h;
4756 
4757 public:
4758   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4759     _g1h(g1h) {}
4760 
4761   void do_code_blob(CodeBlob* cb) {
4762     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4763     if (nm == NULL) {
4764       return;
4765     }
4766 
4767     _g1h->register_nmethod(nm);
4768   }
4769 };
4770 
4771 void G1CollectedHeap::rebuild_strong_code_roots() {
4772   RebuildStrongCodeRootClosure blob_cl(this);
4773   CodeCache::blobs_do(&blob_cl);
4774 }
4775 
4776 void G1CollectedHeap::initialize_serviceability() {
4777   _g1mm->initialize_serviceability();
4778 }
4779 
4780 MemoryUsage G1CollectedHeap::memory_usage() {
4781   return _g1mm->memory_usage();
4782 }
4783 
4784 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4785   return _g1mm->memory_managers();
4786 }
4787 
4788 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4789   return _g1mm->memory_pools();
4790 }