1 /*
   2  * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.nashorn.internal.runtime.linker;
  27 
  28 import static jdk.nashorn.internal.codegen.CompilerConstants.staticCallNoLookup;
  29 
  30 import java.lang.invoke.CallSite;
  31 import java.lang.invoke.MethodHandle;
  32 import java.lang.invoke.MethodHandles;
  33 import java.lang.invoke.MethodHandles.Lookup;
  34 import java.lang.invoke.MethodType;
  35 import jdk.internal.dynalink.CallSiteDescriptor;
  36 import jdk.internal.dynalink.DynamicLinker;
  37 import jdk.internal.dynalink.DynamicLinkerFactory;
  38 import jdk.internal.dynalink.beans.BeansLinker;
  39 import jdk.internal.dynalink.beans.StaticClass;
  40 import jdk.internal.dynalink.linker.GuardedInvocation;
  41 import jdk.internal.dynalink.linker.LinkerServices;
  42 import jdk.nashorn.api.scripting.JSObject;
  43 import jdk.nashorn.internal.codegen.CompilerConstants.Call;
  44 import jdk.nashorn.internal.codegen.RuntimeCallSite;
  45 import jdk.nashorn.internal.runtime.JSType;
  46 import jdk.nashorn.internal.runtime.ScriptFunction;
  47 import jdk.nashorn.internal.runtime.ScriptRuntime;
  48 import jdk.nashorn.internal.runtime.options.Options;
  49 
  50 /**
  51  * This class houses bootstrap method for invokedynamic instructions generated by compiler.
  52  */
  53 public final class Bootstrap {
  54     /** Reference to the seed boostrap function */
  55     public static final Call BOOTSTRAP = staticCallNoLookup(Bootstrap.class, "bootstrap", CallSite.class, Lookup.class, String.class, MethodType.class, int.class);
  56 
  57     // do not create me!!
  58     private Bootstrap() {
  59     }
  60 
  61     private static final DynamicLinker dynamicLinker;
  62     static {
  63         final DynamicLinkerFactory factory = new DynamicLinkerFactory();
  64         factory.setPrioritizedLinkers(new NashornLinker(), new NashornPrimitiveLinker(), new NashornStaticClassLinker(),
  65                 new BoundDynamicMethodLinker(), new JavaSuperAdapterLinker(), new JSObjectLinker(), new ReflectionCheckLinker());
  66         factory.setFallbackLinkers(new NashornBeansLinker(), new NashornBottomLinker());
  67         factory.setSyncOnRelink(true);
  68         final int relinkThreshold = Options.getIntProperty("nashorn.unstable.relink.threshold", -1);
  69         if (relinkThreshold > -1) {
  70             factory.setUnstableRelinkThreshold(relinkThreshold);
  71         }
  72 
  73         // Linkers for any additional language runtimes deployed alongside Nashorn will be picked up by the factory.
  74         factory.setClassLoader(Bootstrap.class.getClassLoader());
  75 
  76         dynamicLinker = factory.createLinker();
  77     }
  78 
  79     /**
  80      * Returns if the given object is a "callable"
  81      * @param obj object to be checked for callability
  82      * @return true if the obj is callable
  83      */
  84     public static boolean isCallable(final Object obj) {
  85         if (obj == ScriptRuntime.UNDEFINED || obj == null) {
  86             return false;
  87         }
  88 
  89         return obj instanceof ScriptFunction ||
  90             ((obj instanceof JSObject) && ((JSObject)obj).isFunction()) ||
  91             isDynamicMethod(obj) ||
  92             isFunctionalInterfaceObject(obj) ||
  93             obj instanceof StaticClass;
  94     }
  95 
  96     /**
  97      * Returns if the given object is a dynalink Dynamic method
  98      * @param obj object to be checked
  99      * @return true if the obj is a dynamic method
 100      */
 101     public static boolean isDynamicMethod(final Object obj) {
 102         return obj instanceof BoundDynamicMethod || BeansLinker.isDynamicMethod(obj);
 103     }
 104 
 105     /**
 106      * Returns if the given object is an instance of an interface annotated with
 107      * java.lang.FunctionalInterface
 108      * @param obj object to be checked
 109      * @return true if the obj is an instance of @FunctionalInterface interface
 110      */
 111     public static boolean isFunctionalInterfaceObject(final Object obj) {
 112         return !JSType.isPrimitive(obj) && (NashornBottomLinker.getFunctionalInterfaceMethod(obj.getClass()) != null);
 113     }
 114 
 115     /**
 116      * Create a call site and link it for Nashorn. This version of the method conforms to the invokedynamic bootstrap
 117      * method expected signature and is referenced from Nashorn generated bytecode as the bootstrap method for all
 118      * invokedynamic instructions.
 119      * @param lookup MethodHandle lookup. Ignored as Nashorn only uses public lookup.
 120      * @param opDesc Dynalink dynamic operation descriptor.
 121      * @param type   Method type.
 122      * @param flags  flags for call type, trace/profile etc.
 123      * @return CallSite with MethodHandle to appropriate method or null if not found.
 124      */
 125     public static CallSite bootstrap(final Lookup lookup, final String opDesc, final MethodType type, final int flags) {
 126         return dynamicLinker.link(LinkerCallSite.newLinkerCallSite(lookup, opDesc, type, flags));
 127     }
 128 
 129     /**
 130      * Bootstrapper for a specialized Runtime call
 131      *
 132      * @param lookup       lookup
 133      * @param initialName  initial name for callsite
 134      * @param type         method type for call site
 135      *
 136      * @return callsite for a runtime node
 137      */
 138     public static CallSite runtimeBootstrap(final MethodHandles.Lookup lookup, final String initialName, final MethodType type) {
 139         return new RuntimeCallSite(type, initialName);
 140     }
 141 
 142     /**
 143      * Returns a dynamic invoker for a specified dynamic operation using the public lookup. You can use this method to
 144      * create a method handle that when invoked acts completely as if it were a Nashorn-linked call site. An overview of
 145      * available dynamic operations can be found in the
 146      * <a href="https://github.com/szegedi/dynalink/wiki/User-Guide-0.6">Dynalink User Guide</a>, but we'll show few
 147      * examples here:
 148      * <ul>
 149      *   <li>Get a named property with fixed name:
 150      *     <pre>
 151      * MethodHandle getColor = Boostrap.createDynamicInvoker("dyn:getProp:color", Object.class, Object.class);
 152      * Object obj = ...; // somehow obtain the object
 153      * Object color = getColor.invokeExact(obj);
 154      *     </pre>
 155      *   </li>
 156      *   <li>Get a named property with variable name:
 157      *     <pre>
 158      * MethodHandle getProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, String.class);
 159      * Object obj = ...; // somehow obtain the object
 160      * Object color = getProperty.invokeExact(obj, "color");
 161      * Object shape = getProperty.invokeExact(obj, "shape");
 162      * MethodHandle getNumProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, int.class);
 163      * Object elem42 = getNumProperty.invokeExact(obj, 42);
 164      *     </pre>
 165      *   </li>
 166      *   <li>Set a named property with fixed name:
 167      *     <pre>
 168      * MethodHandle setColor = Boostrap.createDynamicInvoker("dyn:setProp:color", void.class, Object.class, Object.class);
 169      * Object obj = ...; // somehow obtain the object
 170      * setColor.invokeExact(obj, Color.BLUE);
 171      *     </pre>
 172      *   </li>
 173      *   <li>Set a property with variable name:
 174      *     <pre>
 175      * MethodHandle setProperty = Boostrap.createDynamicInvoker("dyn:setElem", void.class, Object.class, String.class, Object.class);
 176      * Object obj = ...; // somehow obtain the object
 177      * setProperty.invokeExact(obj, "color", Color.BLUE);
 178      * setProperty.invokeExact(obj, "shape", Shape.CIRCLE);
 179      *     </pre>
 180      *   </li>
 181      *   <li>Call a function on an object; two-step variant. This is the actual variant used by Nashorn-generated code:
 182      *     <pre>
 183      * MethodHandle findFooFunction = Boostrap.createDynamicInvoker("dyn:getMethod:foo", Object.class, Object.class);
 184      * Object obj = ...; // somehow obtain the object
 185      * Object foo_fn = findFooFunction.invokeExact(obj);
 186      * MethodHandle callFunctionWithTwoArgs = Boostrap.createDynamicInvoker("dyn:call", Object.class, Object.class, Object.class, Object.class, Object.class);
 187      * // Note: "call" operation takes a function, then a "this" value, then the arguments:
 188      * Object foo_retval = callFunctionWithTwoArgs.invokeExact(foo_fn, obj, arg1, arg2);
 189      *     </pre>
 190      *   </li>
 191      *   <li>Call a function on an object; single-step variant. Although Nashorn doesn't use this variant and never
 192      *   emits any INVOKEDYNAMIC instructions with {@code dyn:getMethod}, it still supports this standard Dynalink
 193      *   operation:
 194      *     <pre>
 195      * MethodHandle callFunctionFooWithTwoArgs = Boostrap.createDynamicInvoker("dyn:callMethod:foo", Object.class, Object.class, Object.class, Object.class);
 196      * Object obj = ...; // somehow obtain the object
 197      * Object foo_retval = callFunctionFooWithTwoArgs.invokeExact(obj, arg1, arg2);
 198      *     </pre>
 199      *   </li>
 200      * </ul>
 201      * Few additional remarks:
 202      * <ul>
 203      * <li>Just as Nashorn works with any Java object, the invokers returned from this method can also be applied to
 204      * arbitrary Java objects in addition to Nashorn JavaScript objects.</li>
 205      * <li>For invoking a named function on an object, you can also use the {@link InvokeByName} convenience class.</li>
 206      * <li>For Nashorn objects {@code getElem}, {@code getProp}, and {@code getMethod} are handled almost identically,
 207      * since JavaScript doesn't distinguish between different kinds of properties on an object. Either can be used with
 208      * fixed property name or a variable property name. The only significant difference is handling of missing
 209      * properties: {@code getMethod} for a missing member will link to a potential invocation of
 210      * {@code __noSuchMethod__} on the object, {@code getProp} for a missing member will link to a potential invocation
 211      * of {@code __noSuchProperty__}, while {@code getElem} for a missing member will link to an empty getter.</li>
 212      * <li>In similar vein, {@code setElem} and {@code setProp} are handled identically on Nashorn objects.</li>
 213      * <li>There's no rule that the variable property identifier has to be a {@code String} for {@code getProp/setProp}
 214      * and {@code int} for {@code getElem/setElem}. You can declare their type to be {@code int}, {@code double},
 215      * {@code Object}, and so on regardless of the kind of the operation.</li>
 216      * <li>You can be as specific in parameter types as you want. E.g. if you know that the receiver of the operation
 217      * will always be {@code ScriptObject}, you can pass {@code ScriptObject.class} as its parameter type. If you happen
 218      * to link to a method that expects different types, (you can use these invokers on POJOs too, after all, and end up
 219      * linking with their methods that have strongly-typed signatures), all necessary conversions allowed by either Java
 220      * or JavaScript will be applied: if invoked methods specify either primitive or wrapped Java numeric types, or
 221      * {@code String} or {@code boolean/Boolean}, then the parameters might be subjected to standard ECMAScript
 222      * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the
 223      * expected parameter type is a SAM type, and you pass a JavaScript function, a proxy object implementing the SAM
 224      * type and delegating to the function will be passed. Linkage can often be optimized when linkers have more
 225      * specific type information than "everything can be an object".</li>
 226      * <li>You can also be as specific in return types as you want. For return types any necessary type conversion
 227      * available in either Java or JavaScript will be automatically applied, similar to the process described for
 228      * parameters, only in reverse direction:  if you specify any either primitive or wrapped Java numeric type, or
 229      * {@code String} or {@code boolean/Boolean}, then the return values will be subjected to standard ECMAScript
 230      * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the return
 231      * type is a SAM type, and the return value is a JavaScript function, a proxy object implementing the SAM type and
 232      * delegating to the function will be returned.</li>
 233      * </ul>
 234      * @param opDesc Dynalink dynamic operation descriptor.
 235      * @param rtype the return type for the operation
 236      * @param ptypes the parameter types for the operation
 237      * @return MethodHandle for invoking the operation.
 238      */
 239     public static MethodHandle createDynamicInvoker(final String opDesc, final Class<?> rtype, final Class<?>... ptypes) {
 240         return createDynamicInvoker(opDesc, MethodType.methodType(rtype, ptypes));
 241     }
 242 
 243     /**
 244      * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
 245      * {@link #createDynamicInvoker(String, Class, Class...)} but with return and parameter types composed into a
 246      * method type in the signature. See the discussion of that method for details.
 247      * @param opDesc Dynalink dynamic operation descriptor.
 248      * @param type the method type for the operation
 249      * @return MethodHandle for invoking the operation.
 250      */
 251     public static MethodHandle createDynamicInvoker(final String opDesc, final MethodType type) {
 252         return bootstrap(MethodHandles.publicLookup(), opDesc, type, 0).dynamicInvoker();
 253     }
 254 
 255     /**
 256      * Binds a bean dynamic method (returned by invoking {@code dyn:getMethod} on an object linked with
 257      * {@code BeansLinker} to a receiver.
 258      * @param dynamicMethod the dynamic method to bind
 259      * @param boundThis the bound "this" value.
 260      * @return a bound dynamic method.
 261      */
 262     public static Object bindDynamicMethod(Object dynamicMethod, Object boundThis) {
 263         return new BoundDynamicMethod(dynamicMethod, boundThis);
 264     }
 265 
 266     /**
 267      * Creates a super-adapter for an adapter, that is, an adapter to the adapter that allows invocation of superclass
 268      * methods on it.
 269      * @param adapter the original adapter
 270      * @return a new adapter that can be used to invoke super methods on the original adapter.
 271      */
 272     public static Object createSuperAdapter(final Object adapter) {
 273         return new JavaSuperAdapter(adapter);
 274     }
 275 
 276     /**
 277      * If the given class is a reflection-specific class (anything in {@code java.lang.reflect} and
 278      * {@code java.lang.invoke} package, as well a {@link Class} and any subclass of {@link ClassLoader}) and there is
 279      * a security manager in the system, then it checks the {@code nashorn.JavaReflection} {@code RuntimePermission}.
 280      * @param clazz the class being tested
 281      * @param isStatic is access checked for static members (or instance members)
 282      */
 283     public static void checkReflectionAccess(Class<?> clazz, boolean isStatic) {
 284         ReflectionCheckLinker.checkReflectionAccess(clazz, isStatic);
 285     }
 286 
 287     /**
 288      * Returns the Nashorn's internally used dynamic linker's services object. Note that in code that is processing a
 289      * linking request, you will normally use the {@code LinkerServices} object passed by whatever top-level linker
 290      * invoked the linking (if the call site is in Nashorn-generated code, you'll get this object anyway). You should
 291      * only resort to retrieving a linker services object using this method when you need some linker services (e.g.
 292      * type converter method handles) outside of a code path that is linking a call site.
 293      * @return Nashorn's internal dynamic linker's services object.
 294      */
 295     public static LinkerServices getLinkerServices() {
 296         return dynamicLinker.getLinkerServices();
 297     }
 298 
 299     /**
 300      * Takes a guarded invocation, and ensures its method and guard conform to the type of the call descriptor, using
 301      * all type conversions allowed by the linker's services. This method is used by Nashorn's linkers as a last step
 302      * before returning guarded invocations to the callers. Most of the code used to produce the guarded invocations
 303      * does not make an effort to coordinate types of the methods, and so a final type adjustment before a guarded
 304      * invocation is returned is the responsibility of the linkers themselves.
 305      * @param inv the guarded invocation that needs to be type-converted. Can be null.
 306      * @param linkerServices the linker services object providing the type conversions.
 307      * @param desc the call site descriptor to whose method type the invocation needs to conform.
 308      * @return the type-converted guarded invocation. If input is null, null is returned. If the input invocation
 309      * already conforms to the requested type, it is returned unchanged.
 310      */
 311     static GuardedInvocation asType(final GuardedInvocation inv, final LinkerServices linkerServices, final CallSiteDescriptor desc) {
 312         return inv == null ? null : inv.asType(linkerServices, desc.getMethodType());
 313     }
 314 }