1 /*
   2  * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 // This file is available under and governed by the GNU General Public
  27 // License version 2 only, as published by the Free Software Foundation.
  28 // However, the following notice accompanied the original version of this
  29 // file:
  30 //
  31 // Copyright 2010 the V8 project authors. All rights reserved.
  32 // Redistribution and use in source and binary forms, with or without
  33 // modification, are permitted provided that the following conditions are
  34 // met:
  35 //
  36 //     * Redistributions of source code must retain the above copyright
  37 //       notice, this list of conditions and the following disclaimer.
  38 //     * Redistributions in binary form must reproduce the above
  39 //       copyright notice, this list of conditions and the following
  40 //       disclaimer in the documentation and/or other materials provided
  41 //       with the distribution.
  42 //     * Neither the name of Google Inc. nor the names of its
  43 //       contributors may be used to endorse or promote products derived
  44 //       from this software without specific prior written permission.
  45 //
  46 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  47 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  48 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  49 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  50 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  51 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  52 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  53 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  54 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  55 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  56 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  57 
  58 package jdk.nashorn.internal.runtime.doubleconv;
  59 
  60 import java.util.Arrays;
  61 
  62 class Bignum {
  63 
  64     // 3584 = 128 * 28. We can represent 2^3584 > 10^1000 accurately.
  65     // This bignum can encode much bigger numbers, since it contains an
  66     // exponent.
  67     static final int kMaxSignificantBits = 3584;
  68 
  69     static final int kChunkSize = 32;       // size of int
  70     static final int kDoubleChunkSize = 64; // size of long
  71     // With bigit size of 28 we loose some bits, but a double still fits easily
  72     // into two ints, and more importantly we can use the Comba multiplication.
  73     static final int kBigitSize = 28;
  74     static final int kBigitMask = (1 << kBigitSize) - 1;
  75     // Every instance allocates kbigitLength ints on the stack. Bignums cannot
  76     // grow. There are no checks if the stack-allocated space is sufficient.
  77     static final int kBigitCapacity = kMaxSignificantBits / kBigitSize;
  78 
  79     private int used_digits_;
  80     // The Bignum's value equals value(bigits_) * 2^(exponent_ * kBigitSize).
  81     private int exponent_;
  82     private final int[] bigits_ = new int[kBigitCapacity];
  83 
  84     Bignum() {}
  85 
  86     void times10() { multiplyByUInt32(10); }
  87 
  88     static boolean equal(final Bignum a, final Bignum b) {
  89         return compare(a, b) == 0;
  90     }
  91     static boolean lessEqual(final Bignum a, final Bignum b) {
  92         return compare(a, b) <= 0;
  93     }
  94     static boolean less(final Bignum a, final Bignum b) {
  95         return compare(a, b) < 0;
  96     }
  97 
  98     // Returns a + b == c
  99     static boolean plusEqual(final Bignum a, final Bignum b, final Bignum c) {
 100         return plusCompare(a, b, c) == 0;
 101     }
 102     // Returns a + b <= c
 103     static boolean plusLessEqual(final Bignum a, final Bignum b, final Bignum c) {
 104         return plusCompare(a, b, c) <= 0;
 105     }
 106     // Returns a + b < c
 107     static boolean plusLess(final Bignum a, final Bignum b, final Bignum c) {
 108         return plusCompare(a, b, c) < 0;
 109     }
 110 
 111     private void ensureCapacity(final int size) {
 112         if (size > kBigitCapacity) {
 113             throw new RuntimeException();
 114         }
 115     }
 116 
 117     // BigitLength includes the "hidden" digits encoded in the exponent.
 118     int bigitLength() { return used_digits_ + exponent_; }
 119 
 120     // Guaranteed to lie in one Bigit.
 121     void assignUInt16(final char value) {
 122         assert (kBigitSize >= 16);
 123         zero();
 124         if (value == 0) {
 125             return;
 126         }
 127 
 128         ensureCapacity(1);
 129         bigits_[0] = value;
 130         used_digits_ = 1;
 131     }
 132 
 133 
 134     void assignUInt64(long value) {
 135         final  int kUInt64Size = 64;
 136 
 137         zero();
 138         if (value == 0) {
 139             return;
 140         }
 141 
 142         final int needed_bigits = kUInt64Size / kBigitSize + 1;
 143         ensureCapacity(needed_bigits);
 144         for (int i = 0; i < needed_bigits; ++i) {
 145             bigits_[i] = (int) (value & kBigitMask);
 146             value = value >>> kBigitSize;
 147         }
 148         used_digits_ = needed_bigits;
 149         clamp();
 150     }
 151 
 152 
 153     void assignBignum(final Bignum other) {
 154         exponent_ = other.exponent_;
 155         for (int i = 0; i < other.used_digits_; ++i) {
 156             bigits_[i] = other.bigits_[i];
 157         }
 158         // Clear the excess digits (if there were any).
 159         for (int i = other.used_digits_; i < used_digits_; ++i) {
 160             bigits_[i] = 0;
 161         }
 162         used_digits_ = other.used_digits_;
 163     }
 164 
 165 
 166     static long readUInt64(final String str,
 167                            final int from,
 168                            final int digits_to_read) {
 169         long result = 0;
 170         for (int i = from; i < from + digits_to_read; ++i) {
 171             final int digit = str.charAt(i) - '0';
 172             assert (0 <= digit && digit <= 9);
 173             result = result * 10 + digit;
 174         }
 175         return result;
 176     }
 177 
 178 
 179     void assignDecimalString(final String str) {
 180         // 2^64 = 18446744073709551616 > 10^19
 181         final int kMaxUint64DecimalDigits = 19;
 182         zero();
 183         int length = str.length();
 184         int pos = 0;
 185         // Let's just say that each digit needs 4 bits.
 186         while (length >= kMaxUint64DecimalDigits) {
 187             final long digits = readUInt64(str, pos, kMaxUint64DecimalDigits);
 188             pos += kMaxUint64DecimalDigits;
 189             length -= kMaxUint64DecimalDigits;
 190             multiplyByPowerOfTen(kMaxUint64DecimalDigits);
 191             addUInt64(digits);
 192         }
 193         final long digits = readUInt64(str, pos, length);
 194         multiplyByPowerOfTen(length);
 195         addUInt64(digits);
 196         clamp();
 197     }
 198 
 199 
 200     static int hexCharValue(final char c) {
 201         if ('0' <= c && c <= '9') return c - '0';
 202         if ('a' <= c && c <= 'f') return 10 + c - 'a';
 203         assert ('A' <= c && c <= 'F');
 204         return 10 + c - 'A';
 205     }
 206 
 207 
 208     void assignHexString(final String str) {
 209         zero();
 210         final int length = str.length();
 211 
 212         final int needed_bigits = length * 4 / kBigitSize + 1;
 213         ensureCapacity(needed_bigits);
 214         int string_index = length - 1;
 215         for (int i = 0; i < needed_bigits - 1; ++i) {
 216             // These bigits are guaranteed to be "full".
 217             int current_bigit = 0;
 218             for (int j = 0; j < kBigitSize / 4; j++) {
 219                 current_bigit += hexCharValue(str.charAt(string_index--)) << (j * 4);
 220             }
 221             bigits_[i] = current_bigit;
 222         }
 223         used_digits_ = needed_bigits - 1;
 224 
 225         int most_significant_bigit = 0;  // Could be = 0;
 226         for (int j = 0; j <= string_index; ++j) {
 227             most_significant_bigit <<= 4;
 228             most_significant_bigit += hexCharValue(str.charAt(j));
 229         }
 230         if (most_significant_bigit != 0) {
 231             bigits_[used_digits_] = most_significant_bigit;
 232             used_digits_++;
 233         }
 234         clamp();
 235     }
 236 
 237 
 238     void addUInt64(final long operand) {
 239         if (operand == 0) return;
 240         final Bignum other = new Bignum();
 241         other.assignUInt64(operand);
 242         addBignum(other);
 243     }
 244 
 245 
 246     void addBignum(final Bignum other) {
 247         assert (isClamped());
 248         assert (other.isClamped());
 249 
 250         // If this has a greater exponent than other append zero-bigits to this.
 251         // After this call exponent_ <= other.exponent_.
 252         align(other);
 253 
 254         // There are two possibilities:
 255         //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
 256         //     bbbbb 00000000
 257         //   ----------------
 258         //   ccccccccccc 0000
 259         // or
 260         //    aaaaaaaaaa 0000
 261         //  bbbbbbbbb 0000000
 262         //  -----------------
 263         //  cccccccccccc 0000
 264         // In both cases we might need a carry bigit.
 265 
 266         ensureCapacity(1 + Math.max(bigitLength(), other.bigitLength()) - exponent_);
 267         int carry = 0;
 268         int bigit_pos = other.exponent_ - exponent_;
 269         assert (bigit_pos >= 0);
 270         for (int i = 0; i < other.used_digits_; ++i) {
 271             final int sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
 272             bigits_[bigit_pos] = sum & kBigitMask;
 273             carry = sum >>> kBigitSize;
 274             bigit_pos++;
 275         }
 276 
 277         while (carry != 0) {
 278             final int sum = bigits_[bigit_pos] + carry;
 279             bigits_[bigit_pos] = sum & kBigitMask;
 280             carry = sum >>> kBigitSize;
 281             bigit_pos++;
 282         }
 283         used_digits_ = Math.max(bigit_pos, used_digits_);
 284         assert (isClamped());
 285     }
 286 
 287 
 288     void subtractBignum(final Bignum other) {
 289         assert (isClamped());
 290         assert (other.isClamped());
 291         // We require this to be bigger than other.
 292         assert (lessEqual(other, this));
 293 
 294         align(other);
 295 
 296         final int offset = other.exponent_ - exponent_;
 297         int borrow = 0;
 298         int i;
 299         for (i = 0; i < other.used_digits_; ++i) {
 300             assert ((borrow == 0) || (borrow == 1));
 301             final int difference = bigits_[i + offset] - other.bigits_[i] - borrow;
 302             bigits_[i + offset] = difference & kBigitMask;
 303             borrow = difference >>> (kChunkSize - 1);
 304         }
 305         while (borrow != 0) {
 306             final int difference = bigits_[i + offset] - borrow;
 307             bigits_[i + offset] = difference & kBigitMask;
 308             borrow = difference >>> (kChunkSize - 1);
 309             ++i;
 310         }
 311         clamp();
 312     }
 313 
 314 
 315     void shiftLeft(final int shift_amount) {
 316         if (used_digits_ == 0) return;
 317         exponent_ += shift_amount / kBigitSize;
 318         final int local_shift = shift_amount % kBigitSize;
 319         ensureCapacity(used_digits_ + 1);
 320         bigitsShiftLeft(local_shift);
 321     }
 322 
 323 
 324     void multiplyByUInt32(final int factor) {
 325         if (factor == 1) return;
 326         if (factor == 0) {
 327             zero();
 328             return;
 329         }
 330         if (used_digits_ == 0) return;
 331 
 332         // The product of a bigit with the factor is of size kBigitSize + 32.
 333         // Assert that this number + 1 (for the carry) fits into double int.
 334         assert (kDoubleChunkSize >= kBigitSize + 32 + 1);
 335         long carry = 0;
 336         for (int i = 0; i < used_digits_; ++i) {
 337             final long product = (factor & 0xFFFFFFFFL) * bigits_[i] + carry;
 338             bigits_[i] = (int) (product & kBigitMask);
 339             carry = product >>> kBigitSize;
 340         }
 341         while (carry != 0) {
 342             ensureCapacity(used_digits_ + 1);
 343             bigits_[used_digits_] = (int) (carry & kBigitMask);
 344             used_digits_++;
 345             carry >>>= kBigitSize;
 346         }
 347     }
 348 
 349 
 350     void multiplyByUInt64(final long factor) {
 351         if (factor == 1) return;
 352         if (factor == 0) {
 353             zero();
 354             return;
 355         }
 356         assert (kBigitSize < 32);
 357         long carry = 0;
 358         final long low = factor & 0xFFFFFFFFL;
 359         final long high = factor >>> 32;
 360         for (int i = 0; i < used_digits_; ++i) {
 361             final long product_low = low * bigits_[i];
 362             final long product_high = high * bigits_[i];
 363             final long tmp = (carry & kBigitMask) + product_low;
 364             bigits_[i] = (int) (tmp & kBigitMask);
 365             carry = (carry >>> kBigitSize) + (tmp >>> kBigitSize) +
 366                     (product_high << (32 - kBigitSize));
 367         }
 368         while (carry != 0) {
 369             ensureCapacity(used_digits_ + 1);
 370             bigits_[used_digits_] = (int) (carry & kBigitMask);
 371             used_digits_++;
 372             carry >>>= kBigitSize;
 373         }
 374     }
 375 
 376 
 377     void multiplyByPowerOfTen(final int exponent) {
 378         final long kFive27 = 0x6765c793fa10079dL;
 379         final int kFive1 = 5;
 380         final int kFive2 = kFive1 * 5;
 381         final int kFive3 = kFive2 * 5;
 382         final int kFive4 = kFive3 * 5;
 383         final int kFive5 = kFive4 * 5;
 384         final int kFive6 = kFive5 * 5;
 385         final int kFive7 = kFive6 * 5;
 386         final int kFive8 = kFive7 * 5;
 387         final int kFive9 = kFive8 * 5;
 388         final int kFive10 = kFive9 * 5;
 389         final int kFive11 = kFive10 * 5;
 390         final int kFive12 = kFive11 * 5;
 391         final int kFive13 = kFive12 * 5;
 392         final int kFive1_to_12[] =
 393                 { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
 394                         kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
 395 
 396         assert (exponent >= 0);
 397         if (exponent == 0) return;
 398         if (used_digits_ == 0) return;
 399 
 400         // We shift by exponent at the end just before returning.
 401         int remaining_exponent = exponent;
 402         while (remaining_exponent >= 27) {
 403             multiplyByUInt64(kFive27);
 404             remaining_exponent -= 27;
 405         }
 406         while (remaining_exponent >= 13) {
 407             multiplyByUInt32(kFive13);
 408             remaining_exponent -= 13;
 409         }
 410         if (remaining_exponent > 0) {
 411             multiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
 412         }
 413         shiftLeft(exponent);
 414     }
 415 
 416 
 417     void square() {
 418         assert (isClamped());
 419         final int product_length = 2 * used_digits_;
 420         ensureCapacity(product_length);
 421 
 422         // Comba multiplication: compute each column separately.
 423         // Example: r = a2a1a0 * b2b1b0.
 424         //    r =  1    * a0b0 +
 425         //        10    * (a1b0 + a0b1) +
 426         //        100   * (a2b0 + a1b1 + a0b2) +
 427         //        1000  * (a2b1 + a1b2) +
 428         //        10000 * a2b2
 429         //
 430         // In the worst case we have to accumulate nb-digits products of digit*digit.
 431         //
 432         // Assert that the additional number of bits in a DoubleChunk are enough to
 433         // sum up used_digits of Bigit*Bigit.
 434         if ((1L << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
 435             throw new RuntimeException("unimplemented");
 436         }
 437         long accumulator = 0;
 438         // First shift the digits so we don't overwrite them.
 439         final int copy_offset = used_digits_;
 440         for (int i = 0; i < used_digits_; ++i) {
 441             bigits_[copy_offset + i] = bigits_[i];
 442         }
 443         // We have two loops to avoid some 'if's in the loop.
 444         for (int i = 0; i < used_digits_; ++i) {
 445             // Process temporary digit i with power i.
 446             // The sum of the two indices must be equal to i.
 447             int bigit_index1 = i;
 448             int bigit_index2 = 0;
 449             // Sum all of the sub-products.
 450             while (bigit_index1 >= 0) {
 451                 final int int1 = bigits_[copy_offset + bigit_index1];
 452                 final int int2 = bigits_[copy_offset + bigit_index2];
 453                 accumulator += ((long) int1) * int2;
 454                 bigit_index1--;
 455                 bigit_index2++;
 456             }
 457             bigits_[i] = (int) (accumulator & kBigitMask);
 458             accumulator >>>= kBigitSize;
 459         }
 460         for (int i = used_digits_; i < product_length; ++i) {
 461             int bigit_index1 = used_digits_ - 1;
 462             int bigit_index2 = i - bigit_index1;
 463             // Invariant: sum of both indices is again equal to i.
 464             // Inner loop runs 0 times on last iteration, emptying accumulator.
 465             while (bigit_index2 < used_digits_) {
 466                 final int int1 = bigits_[copy_offset + bigit_index1];
 467                 final int int2 = bigits_[copy_offset + bigit_index2];
 468                 accumulator += ((long) int1) * int2;
 469                 bigit_index1--;
 470                 bigit_index2++;
 471             }
 472             // The overwritten bigits_[i] will never be read in further loop iterations,
 473             // because bigit_index1 and bigit_index2 are always greater
 474             // than i - used_digits_.
 475             bigits_[i] = (int) (accumulator & kBigitMask);
 476             accumulator >>>= kBigitSize;
 477         }
 478         // Since the result was guaranteed to lie inside the number the
 479         // accumulator must be 0 now.
 480         assert (accumulator == 0);
 481 
 482         // Don't forget to update the used_digits and the exponent.
 483         used_digits_ = product_length;
 484         exponent_ *= 2;
 485         clamp();
 486     }
 487 
 488 
 489     void assignPowerUInt16(int base, final int power_exponent) {
 490         assert (base != 0);
 491         assert (power_exponent >= 0);
 492         if (power_exponent == 0) {
 493             assignUInt16((char) 1);
 494             return;
 495         }
 496         zero();
 497         int shifts = 0;
 498         // We expect base to be in range 2-32, and most often to be 10.
 499         // It does not make much sense to implement different algorithms for counting
 500         // the bits.
 501         while ((base & 1) == 0) {
 502             base >>>= 1;
 503             shifts++;
 504         }
 505         int bit_size = 0;
 506         int tmp_base = base;
 507         while (tmp_base != 0) {
 508             tmp_base >>>= 1;
 509             bit_size++;
 510         }
 511         final int final_size = bit_size * power_exponent;
 512         // 1 extra bigit for the shifting, and one for rounded final_size.
 513         ensureCapacity(final_size / kBigitSize + 2);
 514 
 515         // Left to Right exponentiation.
 516         int mask = 1;
 517         while (power_exponent >= mask) mask <<= 1;
 518 
 519         // The mask is now pointing to the bit above the most significant 1-bit of
 520         // power_exponent.
 521         // Get rid of first 1-bit;
 522         mask >>>= 2;
 523         long this_value = base;
 524 
 525         boolean delayed_multiplication = false;
 526         final long max_32bits = 0xFFFFFFFFL;
 527         while (mask != 0 && this_value <= max_32bits) {
 528             this_value = this_value * this_value;
 529             // Verify that there is enough space in this_value to perform the
 530             // multiplication.  The first bit_size bits must be 0.
 531             if ((power_exponent & mask) != 0) {
 532                 assert bit_size > 0;
 533                 final long base_bits_mask =
 534                         ~((1L << (64 - bit_size)) - 1);
 535                 final boolean high_bits_zero = (this_value & base_bits_mask) == 0;
 536                 if (high_bits_zero) {
 537                     this_value *= base;
 538                 } else {
 539                     delayed_multiplication = true;
 540                 }
 541             }
 542             mask >>>= 1;
 543         }
 544         assignUInt64(this_value);
 545         if (delayed_multiplication) {
 546             multiplyByUInt32(base);
 547         }
 548 
 549         // Now do the same thing as a bignum.
 550         while (mask != 0) {
 551             square();
 552             if ((power_exponent & mask) != 0) {
 553                 multiplyByUInt32(base);
 554             }
 555             mask >>>= 1;
 556         }
 557 
 558         // And finally add the saved shifts.
 559         shiftLeft(shifts * power_exponent);
 560     }
 561 
 562 
 563     // Precondition: this/other < 16bit.
 564     char divideModuloIntBignum(final Bignum other) {
 565         assert (isClamped());
 566         assert (other.isClamped());
 567         assert (other.used_digits_ > 0);
 568 
 569         // Easy case: if we have less digits than the divisor than the result is 0.
 570         // Note: this handles the case where this == 0, too.
 571         if (bigitLength() < other.bigitLength()) {
 572             return 0;
 573         }
 574 
 575         align(other);
 576 
 577         char result = 0;
 578 
 579         // Start by removing multiples of 'other' until both numbers have the same
 580         // number of digits.
 581         while (bigitLength() > other.bigitLength()) {
 582             // This naive approach is extremely inefficient if `this` divided by other
 583             // is big. This function is implemented for doubleToString where
 584             // the result should be small (less than 10).
 585             assert (other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
 586             assert (bigits_[used_digits_ - 1] < 0x10000);
 587             // Remove the multiples of the first digit.
 588             // Example this = 23 and other equals 9. -> Remove 2 multiples.
 589             result += (bigits_[used_digits_ - 1]);
 590             subtractTimes(other, bigits_[used_digits_ - 1]);
 591         }
 592 
 593         assert (bigitLength() == other.bigitLength());
 594 
 595         // Both bignums are at the same length now.
 596         // Since other has more than 0 digits we know that the access to
 597         // bigits_[used_digits_ - 1] is safe.
 598         final int this_bigit = bigits_[used_digits_ - 1];
 599         final int other_bigit = other.bigits_[other.used_digits_ - 1];
 600 
 601         if (other.used_digits_ == 1) {
 602             // Shortcut for easy (and common) case.
 603             final int quotient = Integer.divideUnsigned(this_bigit, other_bigit);
 604             bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
 605             assert (Integer.compareUnsigned(quotient, 0x10000) < 0);
 606             result += quotient;
 607             clamp();
 608             return result;
 609         }
 610 
 611         final int division_estimate = Integer.divideUnsigned(this_bigit, (other_bigit + 1));
 612         assert (Integer.compareUnsigned(division_estimate, 0x10000) < 0);
 613         result += division_estimate;
 614         subtractTimes(other, division_estimate);
 615 
 616         if (other_bigit * (division_estimate + 1) > this_bigit) {
 617             // No need to even try to subtract. Even if other's remaining digits were 0
 618             // another subtraction would be too much.
 619             return result;
 620         }
 621 
 622         while (lessEqual(other, this)) {
 623             subtractBignum(other);
 624             result++;
 625         }
 626         return result;
 627     }
 628 
 629 
 630     static int sizeInHexChars(int number) {
 631         assert (number > 0);
 632         int result = 0;
 633         while (number != 0) {
 634             number >>>= 4;
 635             result++;
 636         }
 637         return result;
 638     }
 639 
 640 
 641     static char hexCharOfValue(final int value) {
 642         assert (0 <= value && value <= 16);
 643         if (value < 10) return (char) (value + '0');
 644         return (char) (value - 10 + 'A');
 645     }
 646 
 647 
 648     String toHexString() {
 649         assert (isClamped());
 650         // Each bigit must be printable as separate hex-character.
 651         assert (kBigitSize % 4 == 0);
 652         final int kHexCharsPerBigit = kBigitSize / 4;
 653 
 654         if (used_digits_ == 0) {
 655             return "0";
 656         }
 657 
 658         final int needed_chars = (bigitLength() - 1) * kHexCharsPerBigit +
 659                 sizeInHexChars(bigits_[used_digits_ - 1]);
 660         final StringBuilder buffer = new StringBuilder(needed_chars);
 661         buffer.setLength(needed_chars);
 662 
 663         int string_index = needed_chars - 1;
 664         for (int i = 0; i < exponent_; ++i) {
 665             for (int j = 0; j < kHexCharsPerBigit; ++j) {
 666                 buffer.setCharAt(string_index--, '0');
 667             }
 668         }
 669         for (int i = 0; i < used_digits_ - 1; ++i) {
 670             int current_bigit = bigits_[i];
 671             for (int j = 0; j < kHexCharsPerBigit; ++j) {
 672                 buffer.setCharAt(string_index--, hexCharOfValue(current_bigit & 0xF));
 673                 current_bigit >>>= 4;
 674             }
 675         }
 676         // And finally the last bigit.
 677         int most_significant_bigit = bigits_[used_digits_ - 1];
 678         while (most_significant_bigit != 0) {
 679             buffer.setCharAt(string_index--, hexCharOfValue(most_significant_bigit & 0xF));
 680             most_significant_bigit >>>= 4;
 681         }
 682         return buffer.toString();
 683     }
 684 
 685 
 686     int bigitOrZero(final int index) {
 687         if (index >= bigitLength()) return 0;
 688         if (index < exponent_) return 0;
 689         return bigits_[index - exponent_];
 690     }
 691 
 692 
 693     static int compare(final Bignum a, final Bignum b) {
 694         assert (a.isClamped());
 695         assert (b.isClamped());
 696         final int bigit_length_a = a.bigitLength();
 697         final int bigit_length_b = b.bigitLength();
 698         if (bigit_length_a < bigit_length_b) return -1;
 699         if (bigit_length_a > bigit_length_b) return +1;
 700         for (int i = bigit_length_a - 1; i >= Math.min(a.exponent_, b.exponent_); --i) {
 701             final int bigit_a = a.bigitOrZero(i);
 702             final int bigit_b = b.bigitOrZero(i);
 703             if (bigit_a < bigit_b) return -1;
 704             if (bigit_a > bigit_b) return +1;
 705             // Otherwise they are equal up to this digit. Try the next digit.
 706         }
 707         return 0;
 708     }
 709 
 710 
 711     static int plusCompare(final Bignum a, final Bignum b, final Bignum c) {
 712         assert (a.isClamped());
 713         assert (b.isClamped());
 714         assert (c.isClamped());
 715         if (a.bigitLength() < b.bigitLength()) {
 716             return plusCompare(b, a, c);
 717         }
 718         if (a.bigitLength() + 1 < c.bigitLength()) return -1;
 719         if (a.bigitLength() > c.bigitLength()) return +1;
 720         // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
 721         // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
 722         // of 'a'.
 723         if (a.exponent_ >= b.bigitLength() && a.bigitLength() < c.bigitLength()) {
 724             return -1;
 725         }
 726 
 727         int borrow = 0;
 728         // Starting at min_exponent all digits are == 0. So no need to compare them.
 729         final int min_exponent = Math.min(Math.min(a.exponent_, b.exponent_), c.exponent_);
 730         for (int i = c.bigitLength() - 1; i >= min_exponent; --i) {
 731             final int int_a = a.bigitOrZero(i);
 732             final int int_b = b.bigitOrZero(i);
 733             final int int_c = c.bigitOrZero(i);
 734             final int sum = int_a + int_b;
 735             if (sum > int_c + borrow) {
 736                 return +1;
 737             } else {
 738                 borrow = int_c + borrow - sum;
 739                 if (borrow > 1) return -1;
 740                 borrow <<= kBigitSize;
 741             }
 742         }
 743         if (borrow == 0) return 0;
 744         return -1;
 745     }
 746 
 747 
 748     void clamp() {
 749         while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
 750             used_digits_--;
 751         }
 752         if (used_digits_ == 0) {
 753             // Zero.
 754             exponent_ = 0;
 755         }
 756     }
 757 
 758 
 759     boolean isClamped() {
 760         return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
 761     }
 762 
 763 
 764     void zero() {
 765         for (int i = 0; i < used_digits_; ++i) {
 766             bigits_[i] = 0;
 767         }
 768         used_digits_ = 0;
 769         exponent_ = 0;
 770     }
 771 
 772 
 773     void align(final Bignum other) {
 774         if (exponent_ > other.exponent_) {
 775             // If "X" represents a "hidden" digit (by the exponent) then we are in the
 776             // following case (a == this, b == other):
 777             // a:  aaaaaaXXXX   or a:   aaaaaXXX
 778             // b:     bbbbbbX      b: bbbbbbbbXX
 779             // We replace some of the hidden digits (X) of a with 0 digits.
 780             // a:  aaaaaa000X   or a:   aaaaa0XX
 781             final int zero_digits = exponent_ - other.exponent_;
 782             ensureCapacity(used_digits_ + zero_digits);
 783             for (int i = used_digits_ - 1; i >= 0; --i) {
 784                 bigits_[i + zero_digits] = bigits_[i];
 785             }
 786             for (int i = 0; i < zero_digits; ++i) {
 787                 bigits_[i] = 0;
 788             }
 789             used_digits_ += zero_digits;
 790             exponent_ -= zero_digits;
 791             assert (used_digits_ >= 0);
 792             assert (exponent_ >= 0);
 793         }
 794     }
 795 
 796 
 797     void bigitsShiftLeft(final int shift_amount) {
 798         assert (shift_amount < kBigitSize);
 799         assert (shift_amount >= 0);
 800         int carry = 0;
 801         for (int i = 0; i < used_digits_; ++i) {
 802             final int new_carry = bigits_[i] >>> (kBigitSize - shift_amount);
 803             bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
 804             carry = new_carry;
 805         }
 806         if (carry != 0) {
 807             bigits_[used_digits_] = carry;
 808             used_digits_++;
 809         }
 810     }
 811 
 812 
 813     void subtractTimes(final Bignum other, final int factor) {
 814         assert (exponent_ <= other.exponent_);
 815         if (factor < 3) {
 816             for (int i = 0; i < factor; ++i) {
 817                 subtractBignum(other);
 818             }
 819             return;
 820         }
 821         int borrow = 0;
 822         final int exponent_diff = other.exponent_ - exponent_;
 823         for (int i = 0; i < other.used_digits_; ++i) {
 824             final long product = ((long) factor) * other.bigits_[i];
 825             final long remove = borrow + product;
 826             final int difference = bigits_[i + exponent_diff] - (int) (remove & kBigitMask);
 827             bigits_[i + exponent_diff] = difference & kBigitMask;
 828             borrow = (int) ((difference >>> (kChunkSize - 1)) +
 829                     (remove >>> kBigitSize));
 830         }
 831         for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
 832             if (borrow == 0) return;
 833             final int difference = bigits_[i] - borrow;
 834             bigits_[i] = difference & kBigitMask;
 835             borrow = difference >>> (kChunkSize - 1);
 836         }
 837         clamp();
 838     }
 839 
 840     @Override
 841     public String toString() {
 842         return "Bignum" + Arrays.toString(bigits_);
 843     }
 844 }