1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/accessDecorators.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "prims/methodHandles.hpp"
  39 #include "runtime/biasedLocking.hpp"
  40 #include "runtime/flags/flagSetting.hpp"
  41 #include "runtime/interfaceSupport.inline.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/os.hpp"
  44 #include "runtime/safepoint.hpp"
  45 #include "runtime/safepointMechanism.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/thread.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "crc32c.h"
  51 #ifdef COMPILER2
  52 #include "opto/intrinsicnode.hpp"
  53 #endif
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str) /* nothing */
  57 #define STOP(error) stop(error)
  58 #else
  59 #define BLOCK_COMMENT(str) block_comment(str)
  60 #define STOP(error) block_comment(error); stop(error)
  61 #endif
  62 
  63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  64 
  65 #ifdef ASSERT
  66 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  67 #endif
  68 
  69 static Assembler::Condition reverse[] = {
  70     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  71     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  72     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  73     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  74     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  75     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  76     Assembler::above          /* belowEqual    = 0x6 */ ,
  77     Assembler::belowEqual     /* above         = 0x7 */ ,
  78     Assembler::positive       /* negative      = 0x8 */ ,
  79     Assembler::negative       /* positive      = 0x9 */ ,
  80     Assembler::noParity       /* parity        = 0xa */ ,
  81     Assembler::parity         /* noParity      = 0xb */ ,
  82     Assembler::greaterEqual   /* less          = 0xc */ ,
  83     Assembler::less           /* greaterEqual  = 0xd */ ,
  84     Assembler::greater        /* lessEqual     = 0xe */ ,
  85     Assembler::lessEqual      /* greater       = 0xf, */
  86 
  87 };
  88 
  89 
  90 // Implementation of MacroAssembler
  91 
  92 // First all the versions that have distinct versions depending on 32/64 bit
  93 // Unless the difference is trivial (1 line or so).
  94 
  95 #ifndef _LP64
  96 
  97 // 32bit versions
  98 
  99 Address MacroAssembler::as_Address(AddressLiteral adr) {
 100   return Address(adr.target(), adr.rspec());
 101 }
 102 
 103 Address MacroAssembler::as_Address(ArrayAddress adr) {
 104   return Address::make_array(adr);
 105 }
 106 
 107 void MacroAssembler::call_VM_leaf_base(address entry_point,
 108                                        int number_of_arguments) {
 109   call(RuntimeAddress(entry_point));
 110   increment(rsp, number_of_arguments * wordSize);
 111 }
 112 
 113 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 114   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 115 }
 116 
 117 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 118   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 119 }
 120 
 121 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
 122   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 123 }
 124 
 125 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
 126   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 127 }
 128 
 129 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 130   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 131   bs->obj_equals(this, src1, obj);
 132 }
 133 
 134 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 135   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 136   bs->obj_equals(this, src1, obj);
 137 }
 138 
 139 void MacroAssembler::extend_sign(Register hi, Register lo) {
 140   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 141   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 142     cdql();
 143   } else {
 144     movl(hi, lo);
 145     sarl(hi, 31);
 146   }
 147 }
 148 
 149 void MacroAssembler::jC2(Register tmp, Label& L) {
 150   // set parity bit if FPU flag C2 is set (via rax)
 151   save_rax(tmp);
 152   fwait(); fnstsw_ax();
 153   sahf();
 154   restore_rax(tmp);
 155   // branch
 156   jcc(Assembler::parity, L);
 157 }
 158 
 159 void MacroAssembler::jnC2(Register tmp, Label& L) {
 160   // set parity bit if FPU flag C2 is set (via rax)
 161   save_rax(tmp);
 162   fwait(); fnstsw_ax();
 163   sahf();
 164   restore_rax(tmp);
 165   // branch
 166   jcc(Assembler::noParity, L);
 167 }
 168 
 169 // 32bit can do a case table jump in one instruction but we no longer allow the base
 170 // to be installed in the Address class
 171 void MacroAssembler::jump(ArrayAddress entry) {
 172   jmp(as_Address(entry));
 173 }
 174 
 175 // Note: y_lo will be destroyed
 176 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 177   // Long compare for Java (semantics as described in JVM spec.)
 178   Label high, low, done;
 179 
 180   cmpl(x_hi, y_hi);
 181   jcc(Assembler::less, low);
 182   jcc(Assembler::greater, high);
 183   // x_hi is the return register
 184   xorl(x_hi, x_hi);
 185   cmpl(x_lo, y_lo);
 186   jcc(Assembler::below, low);
 187   jcc(Assembler::equal, done);
 188 
 189   bind(high);
 190   xorl(x_hi, x_hi);
 191   increment(x_hi);
 192   jmp(done);
 193 
 194   bind(low);
 195   xorl(x_hi, x_hi);
 196   decrementl(x_hi);
 197 
 198   bind(done);
 199 }
 200 
 201 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 202     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 203 }
 204 
 205 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 206   // leal(dst, as_Address(adr));
 207   // see note in movl as to why we must use a move
 208   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 209 }
 210 
 211 void MacroAssembler::leave() {
 212   mov(rsp, rbp);
 213   pop(rbp);
 214 }
 215 
 216 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 217   // Multiplication of two Java long values stored on the stack
 218   // as illustrated below. Result is in rdx:rax.
 219   //
 220   // rsp ---> [  ??  ] \               \
 221   //            ....    | y_rsp_offset  |
 222   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 223   //          [ y_hi ]                  | (in bytes)
 224   //            ....                    |
 225   //          [ x_lo ]                 /
 226   //          [ x_hi ]
 227   //            ....
 228   //
 229   // Basic idea: lo(result) = lo(x_lo * y_lo)
 230   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 231   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 232   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 233   Label quick;
 234   // load x_hi, y_hi and check if quick
 235   // multiplication is possible
 236   movl(rbx, x_hi);
 237   movl(rcx, y_hi);
 238   movl(rax, rbx);
 239   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 240   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 241   // do full multiplication
 242   // 1st step
 243   mull(y_lo);                                    // x_hi * y_lo
 244   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 245   // 2nd step
 246   movl(rax, x_lo);
 247   mull(rcx);                                     // x_lo * y_hi
 248   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 249   // 3rd step
 250   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 251   movl(rax, x_lo);
 252   mull(y_lo);                                    // x_lo * y_lo
 253   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 254 }
 255 
 256 void MacroAssembler::lneg(Register hi, Register lo) {
 257   negl(lo);
 258   adcl(hi, 0);
 259   negl(hi);
 260 }
 261 
 262 void MacroAssembler::lshl(Register hi, Register lo) {
 263   // Java shift left long support (semantics as described in JVM spec., p.305)
 264   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 265   // shift value is in rcx !
 266   assert(hi != rcx, "must not use rcx");
 267   assert(lo != rcx, "must not use rcx");
 268   const Register s = rcx;                        // shift count
 269   const int      n = BitsPerWord;
 270   Label L;
 271   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 272   cmpl(s, n);                                    // if (s < n)
 273   jcc(Assembler::less, L);                       // else (s >= n)
 274   movl(hi, lo);                                  // x := x << n
 275   xorl(lo, lo);
 276   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 277   bind(L);                                       // s (mod n) < n
 278   shldl(hi, lo);                                 // x := x << s
 279   shll(lo);
 280 }
 281 
 282 
 283 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 284   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 285   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 286   assert(hi != rcx, "must not use rcx");
 287   assert(lo != rcx, "must not use rcx");
 288   const Register s = rcx;                        // shift count
 289   const int      n = BitsPerWord;
 290   Label L;
 291   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 292   cmpl(s, n);                                    // if (s < n)
 293   jcc(Assembler::less, L);                       // else (s >= n)
 294   movl(lo, hi);                                  // x := x >> n
 295   if (sign_extension) sarl(hi, 31);
 296   else                xorl(hi, hi);
 297   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 298   bind(L);                                       // s (mod n) < n
 299   shrdl(lo, hi);                                 // x := x >> s
 300   if (sign_extension) sarl(hi);
 301   else                shrl(hi);
 302 }
 303 
 304 void MacroAssembler::movoop(Register dst, jobject obj) {
 305   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 306 }
 307 
 308 void MacroAssembler::movoop(Address dst, jobject obj) {
 309   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 310 }
 311 
 312 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 313   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 314 }
 315 
 316 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 317   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 318 }
 319 
 320 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 321   // scratch register is not used,
 322   // it is defined to match parameters of 64-bit version of this method.
 323   if (src.is_lval()) {
 324     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 325   } else {
 326     movl(dst, as_Address(src));
 327   }
 328 }
 329 
 330 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 331   movl(as_Address(dst), src);
 332 }
 333 
 334 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 335   movl(dst, as_Address(src));
 336 }
 337 
 338 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 339 void MacroAssembler::movptr(Address dst, intptr_t src) {
 340   movl(dst, src);
 341 }
 342 
 343 
 344 void MacroAssembler::pop_callee_saved_registers() {
 345   pop(rcx);
 346   pop(rdx);
 347   pop(rdi);
 348   pop(rsi);
 349 }
 350 
 351 void MacroAssembler::pop_fTOS() {
 352   fld_d(Address(rsp, 0));
 353   addl(rsp, 2 * wordSize);
 354 }
 355 
 356 void MacroAssembler::push_callee_saved_registers() {
 357   push(rsi);
 358   push(rdi);
 359   push(rdx);
 360   push(rcx);
 361 }
 362 
 363 void MacroAssembler::push_fTOS() {
 364   subl(rsp, 2 * wordSize);
 365   fstp_d(Address(rsp, 0));
 366 }
 367 
 368 
 369 void MacroAssembler::pushoop(jobject obj) {
 370   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 371 }
 372 
 373 void MacroAssembler::pushklass(Metadata* obj) {
 374   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 375 }
 376 
 377 void MacroAssembler::pushptr(AddressLiteral src) {
 378   if (src.is_lval()) {
 379     push_literal32((int32_t)src.target(), src.rspec());
 380   } else {
 381     pushl(as_Address(src));
 382   }
 383 }
 384 
 385 void MacroAssembler::set_word_if_not_zero(Register dst) {
 386   xorl(dst, dst);
 387   set_byte_if_not_zero(dst);
 388 }
 389 
 390 static void pass_arg0(MacroAssembler* masm, Register arg) {
 391   masm->push(arg);
 392 }
 393 
 394 static void pass_arg1(MacroAssembler* masm, Register arg) {
 395   masm->push(arg);
 396 }
 397 
 398 static void pass_arg2(MacroAssembler* masm, Register arg) {
 399   masm->push(arg);
 400 }
 401 
 402 static void pass_arg3(MacroAssembler* masm, Register arg) {
 403   masm->push(arg);
 404 }
 405 
 406 #ifndef PRODUCT
 407 extern "C" void findpc(intptr_t x);
 408 #endif
 409 
 410 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 411   // In order to get locks to work, we need to fake a in_VM state
 412   JavaThread* thread = JavaThread::current();
 413   JavaThreadState saved_state = thread->thread_state();
 414   thread->set_thread_state(_thread_in_vm);
 415   if (ShowMessageBoxOnError) {
 416     JavaThread* thread = JavaThread::current();
 417     JavaThreadState saved_state = thread->thread_state();
 418     thread->set_thread_state(_thread_in_vm);
 419     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 420       ttyLocker ttyl;
 421       BytecodeCounter::print();
 422     }
 423     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 424     // This is the value of eip which points to where verify_oop will return.
 425     if (os::message_box(msg, "Execution stopped, print registers?")) {
 426       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 427       BREAKPOINT;
 428     }
 429   } else {
 430     ttyLocker ttyl;
 431     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 432   }
 433   // Don't assert holding the ttyLock
 434     assert(false, "DEBUG MESSAGE: %s", msg);
 435   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 436 }
 437 
 438 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 439   ttyLocker ttyl;
 440   FlagSetting fs(Debugging, true);
 441   tty->print_cr("eip = 0x%08x", eip);
 442 #ifndef PRODUCT
 443   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 444     tty->cr();
 445     findpc(eip);
 446     tty->cr();
 447   }
 448 #endif
 449 #define PRINT_REG(rax) \
 450   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 451   PRINT_REG(rax);
 452   PRINT_REG(rbx);
 453   PRINT_REG(rcx);
 454   PRINT_REG(rdx);
 455   PRINT_REG(rdi);
 456   PRINT_REG(rsi);
 457   PRINT_REG(rbp);
 458   PRINT_REG(rsp);
 459 #undef PRINT_REG
 460   // Print some words near top of staack.
 461   int* dump_sp = (int*) rsp;
 462   for (int col1 = 0; col1 < 8; col1++) {
 463     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 464     os::print_location(tty, *dump_sp++);
 465   }
 466   for (int row = 0; row < 16; row++) {
 467     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 468     for (int col = 0; col < 8; col++) {
 469       tty->print(" 0x%08x", *dump_sp++);
 470     }
 471     tty->cr();
 472   }
 473   // Print some instructions around pc:
 474   Disassembler::decode((address)eip-64, (address)eip);
 475   tty->print_cr("--------");
 476   Disassembler::decode((address)eip, (address)eip+32);
 477 }
 478 
 479 void MacroAssembler::stop(const char* msg) {
 480   ExternalAddress message((address)msg);
 481   // push address of message
 482   pushptr(message.addr());
 483   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 484   pusha();                                            // push registers
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 486   hlt();
 487 }
 488 
 489 void MacroAssembler::warn(const char* msg) {
 490   push_CPU_state();
 491 
 492   ExternalAddress message((address) msg);
 493   // push address of message
 494   pushptr(message.addr());
 495 
 496   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 497   addl(rsp, wordSize);       // discard argument
 498   pop_CPU_state();
 499 }
 500 
 501 void MacroAssembler::print_state() {
 502   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 503   pusha();                                            // push registers
 504 
 505   push_CPU_state();
 506   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 507   pop_CPU_state();
 508 
 509   popa();
 510   addl(rsp, wordSize);
 511 }
 512 
 513 #else // _LP64
 514 
 515 // 64 bit versions
 516 
 517 Address MacroAssembler::as_Address(AddressLiteral adr) {
 518   // amd64 always does this as a pc-rel
 519   // we can be absolute or disp based on the instruction type
 520   // jmp/call are displacements others are absolute
 521   assert(!adr.is_lval(), "must be rval");
 522   assert(reachable(adr), "must be");
 523   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 524 
 525 }
 526 
 527 Address MacroAssembler::as_Address(ArrayAddress adr) {
 528   AddressLiteral base = adr.base();
 529   lea(rscratch1, base);
 530   Address index = adr.index();
 531   assert(index._disp == 0, "must not have disp"); // maybe it can?
 532   Address array(rscratch1, index._index, index._scale, index._disp);
 533   return array;
 534 }
 535 
 536 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 537   Label L, E;
 538 
 539 #ifdef _WIN64
 540   // Windows always allocates space for it's register args
 541   assert(num_args <= 4, "only register arguments supported");
 542   subq(rsp,  frame::arg_reg_save_area_bytes);
 543 #endif
 544 
 545   // Align stack if necessary
 546   testl(rsp, 15);
 547   jcc(Assembler::zero, L);
 548 
 549   subq(rsp, 8);
 550   {
 551     call(RuntimeAddress(entry_point));
 552   }
 553   addq(rsp, 8);
 554   jmp(E);
 555 
 556   bind(L);
 557   {
 558     call(RuntimeAddress(entry_point));
 559   }
 560 
 561   bind(E);
 562 
 563 #ifdef _WIN64
 564   // restore stack pointer
 565   addq(rsp, frame::arg_reg_save_area_bytes);
 566 #endif
 567 
 568 }
 569 
 570 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 571   assert(!src2.is_lval(), "should use cmpptr");
 572 
 573   if (reachable(src2)) {
 574     cmpq(src1, as_Address(src2));
 575   } else {
 576     lea(rscratch1, src2);
 577     Assembler::cmpq(src1, Address(rscratch1, 0));
 578   }
 579 }
 580 
 581 int MacroAssembler::corrected_idivq(Register reg) {
 582   // Full implementation of Java ldiv and lrem; checks for special
 583   // case as described in JVM spec., p.243 & p.271.  The function
 584   // returns the (pc) offset of the idivl instruction - may be needed
 585   // for implicit exceptions.
 586   //
 587   //         normal case                           special case
 588   //
 589   // input : rax: dividend                         min_long
 590   //         reg: divisor   (may not be eax/edx)   -1
 591   //
 592   // output: rax: quotient  (= rax idiv reg)       min_long
 593   //         rdx: remainder (= rax irem reg)       0
 594   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 595   static const int64_t min_long = 0x8000000000000000;
 596   Label normal_case, special_case;
 597 
 598   // check for special case
 599   cmp64(rax, ExternalAddress((address) &min_long));
 600   jcc(Assembler::notEqual, normal_case);
 601   xorl(rdx, rdx); // prepare rdx for possible special case (where
 602                   // remainder = 0)
 603   cmpq(reg, -1);
 604   jcc(Assembler::equal, special_case);
 605 
 606   // handle normal case
 607   bind(normal_case);
 608   cdqq();
 609   int idivq_offset = offset();
 610   idivq(reg);
 611 
 612   // normal and special case exit
 613   bind(special_case);
 614 
 615   return idivq_offset;
 616 }
 617 
 618 void MacroAssembler::decrementq(Register reg, int value) {
 619   if (value == min_jint) { subq(reg, value); return; }
 620   if (value <  0) { incrementq(reg, -value); return; }
 621   if (value == 0) {                        ; return; }
 622   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 623   /* else */      { subq(reg, value)       ; return; }
 624 }
 625 
 626 void MacroAssembler::decrementq(Address dst, int value) {
 627   if (value == min_jint) { subq(dst, value); return; }
 628   if (value <  0) { incrementq(dst, -value); return; }
 629   if (value == 0) {                        ; return; }
 630   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 631   /* else */      { subq(dst, value)       ; return; }
 632 }
 633 
 634 void MacroAssembler::incrementq(AddressLiteral dst) {
 635   if (reachable(dst)) {
 636     incrementq(as_Address(dst));
 637   } else {
 638     lea(rscratch1, dst);
 639     incrementq(Address(rscratch1, 0));
 640   }
 641 }
 642 
 643 void MacroAssembler::incrementq(Register reg, int value) {
 644   if (value == min_jint) { addq(reg, value); return; }
 645   if (value <  0) { decrementq(reg, -value); return; }
 646   if (value == 0) {                        ; return; }
 647   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 648   /* else */      { addq(reg, value)       ; return; }
 649 }
 650 
 651 void MacroAssembler::incrementq(Address dst, int value) {
 652   if (value == min_jint) { addq(dst, value); return; }
 653   if (value <  0) { decrementq(dst, -value); return; }
 654   if (value == 0) {                        ; return; }
 655   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 656   /* else */      { addq(dst, value)       ; return; }
 657 }
 658 
 659 // 32bit can do a case table jump in one instruction but we no longer allow the base
 660 // to be installed in the Address class
 661 void MacroAssembler::jump(ArrayAddress entry) {
 662   lea(rscratch1, entry.base());
 663   Address dispatch = entry.index();
 664   assert(dispatch._base == noreg, "must be");
 665   dispatch._base = rscratch1;
 666   jmp(dispatch);
 667 }
 668 
 669 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 670   ShouldNotReachHere(); // 64bit doesn't use two regs
 671   cmpq(x_lo, y_lo);
 672 }
 673 
 674 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 675     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 676 }
 677 
 678 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 679   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 680   movptr(dst, rscratch1);
 681 }
 682 
 683 void MacroAssembler::leave() {
 684   // %%% is this really better? Why not on 32bit too?
 685   emit_int8((unsigned char)0xC9); // LEAVE
 686 }
 687 
 688 void MacroAssembler::lneg(Register hi, Register lo) {
 689   ShouldNotReachHere(); // 64bit doesn't use two regs
 690   negq(lo);
 691 }
 692 
 693 void MacroAssembler::movoop(Register dst, jobject obj) {
 694   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 695 }
 696 
 697 void MacroAssembler::movoop(Address dst, jobject obj) {
 698   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 699   movq(dst, rscratch1);
 700 }
 701 
 702 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 703   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 704 }
 705 
 706 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 707   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 708   movq(dst, rscratch1);
 709 }
 710 
 711 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 712   if (src.is_lval()) {
 713     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 714   } else {
 715     if (reachable(src)) {
 716       movq(dst, as_Address(src));
 717     } else {
 718       lea(scratch, src);
 719       movq(dst, Address(scratch, 0));
 720     }
 721   }
 722 }
 723 
 724 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 725   movq(as_Address(dst), src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 729   movq(dst, as_Address(src));
 730 }
 731 
 732 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 733 void MacroAssembler::movptr(Address dst, intptr_t src) {
 734   mov64(rscratch1, src);
 735   movq(dst, rscratch1);
 736 }
 737 
 738 // These are mostly for initializing NULL
 739 void MacroAssembler::movptr(Address dst, int32_t src) {
 740   movslq(dst, src);
 741 }
 742 
 743 void MacroAssembler::movptr(Register dst, int32_t src) {
 744   mov64(dst, (intptr_t)src);
 745 }
 746 
 747 void MacroAssembler::pushoop(jobject obj) {
 748   movoop(rscratch1, obj);
 749   push(rscratch1);
 750 }
 751 
 752 void MacroAssembler::pushklass(Metadata* obj) {
 753   mov_metadata(rscratch1, obj);
 754   push(rscratch1);
 755 }
 756 
 757 void MacroAssembler::pushptr(AddressLiteral src) {
 758   lea(rscratch1, src);
 759   if (src.is_lval()) {
 760     push(rscratch1);
 761   } else {
 762     pushq(Address(rscratch1, 0));
 763   }
 764 }
 765 
 766 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 767   // we must set sp to zero to clear frame
 768   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 769   // must clear fp, so that compiled frames are not confused; it is
 770   // possible that we need it only for debugging
 771   if (clear_fp) {
 772     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 773   }
 774 
 775   // Always clear the pc because it could have been set by make_walkable()
 776   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 777   vzeroupper();
 778 }
 779 
 780 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 781                                          Register last_java_fp,
 782                                          address  last_java_pc) {
 783   vzeroupper();
 784   // determine last_java_sp register
 785   if (!last_java_sp->is_valid()) {
 786     last_java_sp = rsp;
 787   }
 788 
 789   // last_java_fp is optional
 790   if (last_java_fp->is_valid()) {
 791     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 792            last_java_fp);
 793   }
 794 
 795   // last_java_pc is optional
 796   if (last_java_pc != NULL) {
 797     Address java_pc(r15_thread,
 798                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 799     lea(rscratch1, InternalAddress(last_java_pc));
 800     movptr(java_pc, rscratch1);
 801   }
 802 
 803   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 804 }
 805 
 806 static void pass_arg0(MacroAssembler* masm, Register arg) {
 807   if (c_rarg0 != arg ) {
 808     masm->mov(c_rarg0, arg);
 809   }
 810 }
 811 
 812 static void pass_arg1(MacroAssembler* masm, Register arg) {
 813   if (c_rarg1 != arg ) {
 814     masm->mov(c_rarg1, arg);
 815   }
 816 }
 817 
 818 static void pass_arg2(MacroAssembler* masm, Register arg) {
 819   if (c_rarg2 != arg ) {
 820     masm->mov(c_rarg2, arg);
 821   }
 822 }
 823 
 824 static void pass_arg3(MacroAssembler* masm, Register arg) {
 825   if (c_rarg3 != arg ) {
 826     masm->mov(c_rarg3, arg);
 827   }
 828 }
 829 
 830 void MacroAssembler::stop(const char* msg) {
 831   address rip = pc();
 832   pusha(); // get regs on stack
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   lea(c_rarg1, InternalAddress(rip));
 835   movq(c_rarg2, rsp); // pass pointer to regs array
 836   andq(rsp, -16); // align stack as required by ABI
 837   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 838   hlt();
 839 }
 840 
 841 void MacroAssembler::warn(const char* msg) {
 842   push(rbp);
 843   movq(rbp, rsp);
 844   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 845   push_CPU_state();   // keeps alignment at 16 bytes
 846   lea(c_rarg0, ExternalAddress((address) msg));
 847   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 848   call(rax);
 849   pop_CPU_state();
 850   mov(rsp, rbp);
 851   pop(rbp);
 852 }
 853 
 854 void MacroAssembler::print_state() {
 855   address rip = pc();
 856   pusha();            // get regs on stack
 857   push(rbp);
 858   movq(rbp, rsp);
 859   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 860   push_CPU_state();   // keeps alignment at 16 bytes
 861 
 862   lea(c_rarg0, InternalAddress(rip));
 863   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 864   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 865 
 866   pop_CPU_state();
 867   mov(rsp, rbp);
 868   pop(rbp);
 869   popa();
 870 }
 871 
 872 #ifndef PRODUCT
 873 extern "C" void findpc(intptr_t x);
 874 #endif
 875 
 876 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 877   // In order to get locks to work, we need to fake a in_VM state
 878   if (ShowMessageBoxOnError) {
 879     JavaThread* thread = JavaThread::current();
 880     JavaThreadState saved_state = thread->thread_state();
 881     thread->set_thread_state(_thread_in_vm);
 882 #ifndef PRODUCT
 883     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 884       ttyLocker ttyl;
 885       BytecodeCounter::print();
 886     }
 887 #endif
 888     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 889     // XXX correct this offset for amd64
 890     // This is the value of eip which points to where verify_oop will return.
 891     if (os::message_box(msg, "Execution stopped, print registers?")) {
 892       print_state64(pc, regs);
 893       BREAKPOINT;
 894       assert(false, "start up GDB");
 895     }
 896     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 897   } else {
 898     ttyLocker ttyl;
 899     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 900                     msg);
 901     assert(false, "DEBUG MESSAGE: %s", msg);
 902   }
 903 }
 904 
 905 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 906   ttyLocker ttyl;
 907   FlagSetting fs(Debugging, true);
 908   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 909 #ifndef PRODUCT
 910   tty->cr();
 911   findpc(pc);
 912   tty->cr();
 913 #endif
 914 #define PRINT_REG(rax, value) \
 915   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 916   PRINT_REG(rax, regs[15]);
 917   PRINT_REG(rbx, regs[12]);
 918   PRINT_REG(rcx, regs[14]);
 919   PRINT_REG(rdx, regs[13]);
 920   PRINT_REG(rdi, regs[8]);
 921   PRINT_REG(rsi, regs[9]);
 922   PRINT_REG(rbp, regs[10]);
 923   PRINT_REG(rsp, regs[11]);
 924   PRINT_REG(r8 , regs[7]);
 925   PRINT_REG(r9 , regs[6]);
 926   PRINT_REG(r10, regs[5]);
 927   PRINT_REG(r11, regs[4]);
 928   PRINT_REG(r12, regs[3]);
 929   PRINT_REG(r13, regs[2]);
 930   PRINT_REG(r14, regs[1]);
 931   PRINT_REG(r15, regs[0]);
 932 #undef PRINT_REG
 933   // Print some words near top of staack.
 934   int64_t* rsp = (int64_t*) regs[11];
 935   int64_t* dump_sp = rsp;
 936   for (int col1 = 0; col1 < 8; col1++) {
 937     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 938     os::print_location(tty, *dump_sp++);
 939   }
 940   for (int row = 0; row < 25; row++) {
 941     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 942     for (int col = 0; col < 4; col++) {
 943       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 944     }
 945     tty->cr();
 946   }
 947   // Print some instructions around pc:
 948   Disassembler::decode((address)pc-64, (address)pc);
 949   tty->print_cr("--------");
 950   Disassembler::decode((address)pc, (address)pc+32);
 951 }
 952 
 953 #endif // _LP64
 954 
 955 // Now versions that are common to 32/64 bit
 956 
 957 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 958   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 959 }
 960 
 961 void MacroAssembler::addptr(Register dst, Register src) {
 962   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 963 }
 964 
 965 void MacroAssembler::addptr(Address dst, Register src) {
 966   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 967 }
 968 
 969 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 970   if (reachable(src)) {
 971     Assembler::addsd(dst, as_Address(src));
 972   } else {
 973     lea(rscratch1, src);
 974     Assembler::addsd(dst, Address(rscratch1, 0));
 975   }
 976 }
 977 
 978 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 979   if (reachable(src)) {
 980     addss(dst, as_Address(src));
 981   } else {
 982     lea(rscratch1, src);
 983     addss(dst, Address(rscratch1, 0));
 984   }
 985 }
 986 
 987 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 988   if (reachable(src)) {
 989     Assembler::addpd(dst, as_Address(src));
 990   } else {
 991     lea(rscratch1, src);
 992     Assembler::addpd(dst, Address(rscratch1, 0));
 993   }
 994 }
 995 
 996 void MacroAssembler::align(int modulus) {
 997   align(modulus, offset());
 998 }
 999 
1000 void MacroAssembler::align(int modulus, int target) {
1001   if (target % modulus != 0) {
1002     nop(modulus - (target % modulus));
1003   }
1004 }
1005 
1006 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
1007   // Used in sign-masking with aligned address.
1008   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1009   if (reachable(src)) {
1010     Assembler::andpd(dst, as_Address(src));
1011   } else {
1012     lea(scratch_reg, src);
1013     Assembler::andpd(dst, Address(scratch_reg, 0));
1014   }
1015 }
1016 
1017 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
1018   // Used in sign-masking with aligned address.
1019   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1020   if (reachable(src)) {
1021     Assembler::andps(dst, as_Address(src));
1022   } else {
1023     lea(scratch_reg, src);
1024     Assembler::andps(dst, Address(scratch_reg, 0));
1025   }
1026 }
1027 
1028 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1029   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1030 }
1031 
1032 void MacroAssembler::atomic_incl(Address counter_addr) {
1033   lock();
1034   incrementl(counter_addr);
1035 }
1036 
1037 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1038   if (reachable(counter_addr)) {
1039     atomic_incl(as_Address(counter_addr));
1040   } else {
1041     lea(scr, counter_addr);
1042     atomic_incl(Address(scr, 0));
1043   }
1044 }
1045 
1046 #ifdef _LP64
1047 void MacroAssembler::atomic_incq(Address counter_addr) {
1048   lock();
1049   incrementq(counter_addr);
1050 }
1051 
1052 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1053   if (reachable(counter_addr)) {
1054     atomic_incq(as_Address(counter_addr));
1055   } else {
1056     lea(scr, counter_addr);
1057     atomic_incq(Address(scr, 0));
1058   }
1059 }
1060 #endif
1061 
1062 // Writes to stack successive pages until offset reached to check for
1063 // stack overflow + shadow pages.  This clobbers tmp.
1064 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1065   movptr(tmp, rsp);
1066   // Bang stack for total size given plus shadow page size.
1067   // Bang one page at a time because large size can bang beyond yellow and
1068   // red zones.
1069   Label loop;
1070   bind(loop);
1071   movl(Address(tmp, (-os::vm_page_size())), size );
1072   subptr(tmp, os::vm_page_size());
1073   subl(size, os::vm_page_size());
1074   jcc(Assembler::greater, loop);
1075 
1076   // Bang down shadow pages too.
1077   // At this point, (tmp-0) is the last address touched, so don't
1078   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1079   // was post-decremented.)  Skip this address by starting at i=1, and
1080   // touch a few more pages below.  N.B.  It is important to touch all
1081   // the way down including all pages in the shadow zone.
1082   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1083     // this could be any sized move but this is can be a debugging crumb
1084     // so the bigger the better.
1085     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1086   }
1087 }
1088 
1089 void MacroAssembler::reserved_stack_check() {
1090     // testing if reserved zone needs to be enabled
1091     Label no_reserved_zone_enabling;
1092     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1093     NOT_LP64(get_thread(rsi);)
1094 
1095     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1096     jcc(Assembler::below, no_reserved_zone_enabling);
1097 
1098     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1099     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1100     should_not_reach_here();
1101 
1102     bind(no_reserved_zone_enabling);
1103 }
1104 
1105 int MacroAssembler::biased_locking_enter(Register lock_reg,
1106                                          Register obj_reg,
1107                                          Register swap_reg,
1108                                          Register tmp_reg,
1109                                          bool swap_reg_contains_mark,
1110                                          Label& done,
1111                                          Label* slow_case,
1112                                          BiasedLockingCounters* counters) {
1113   assert(UseBiasedLocking, "why call this otherwise?");
1114   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1115   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1116   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1117   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1118   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1119   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1120 
1121   if (PrintBiasedLockingStatistics && counters == NULL) {
1122     counters = BiasedLocking::counters();
1123   }
1124   // Biased locking
1125   // See whether the lock is currently biased toward our thread and
1126   // whether the epoch is still valid
1127   // Note that the runtime guarantees sufficient alignment of JavaThread
1128   // pointers to allow age to be placed into low bits
1129   // First check to see whether biasing is even enabled for this object
1130   Label cas_label;
1131   int null_check_offset = -1;
1132   if (!swap_reg_contains_mark) {
1133     null_check_offset = offset();
1134     movptr(swap_reg, mark_addr);
1135   }
1136   movptr(tmp_reg, swap_reg);
1137   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1138   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1139   jcc(Assembler::notEqual, cas_label);
1140   // The bias pattern is present in the object's header. Need to check
1141   // whether the bias owner and the epoch are both still current.
1142 #ifndef _LP64
1143   // Note that because there is no current thread register on x86_32 we
1144   // need to store off the mark word we read out of the object to
1145   // avoid reloading it and needing to recheck invariants below. This
1146   // store is unfortunate but it makes the overall code shorter and
1147   // simpler.
1148   movptr(saved_mark_addr, swap_reg);
1149 #endif
1150   if (swap_reg_contains_mark) {
1151     null_check_offset = offset();
1152   }
1153   load_prototype_header(tmp_reg, obj_reg);
1154 #ifdef _LP64
1155   orptr(tmp_reg, r15_thread);
1156   xorptr(tmp_reg, swap_reg);
1157   Register header_reg = tmp_reg;
1158 #else
1159   xorptr(tmp_reg, swap_reg);
1160   get_thread(swap_reg);
1161   xorptr(swap_reg, tmp_reg);
1162   Register header_reg = swap_reg;
1163 #endif
1164   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1165   if (counters != NULL) {
1166     cond_inc32(Assembler::zero,
1167                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1168   }
1169   jcc(Assembler::equal, done);
1170 
1171   Label try_revoke_bias;
1172   Label try_rebias;
1173 
1174   // At this point we know that the header has the bias pattern and
1175   // that we are not the bias owner in the current epoch. We need to
1176   // figure out more details about the state of the header in order to
1177   // know what operations can be legally performed on the object's
1178   // header.
1179 
1180   // If the low three bits in the xor result aren't clear, that means
1181   // the prototype header is no longer biased and we have to revoke
1182   // the bias on this object.
1183   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1184   jccb(Assembler::notZero, try_revoke_bias);
1185 
1186   // Biasing is still enabled for this data type. See whether the
1187   // epoch of the current bias is still valid, meaning that the epoch
1188   // bits of the mark word are equal to the epoch bits of the
1189   // prototype header. (Note that the prototype header's epoch bits
1190   // only change at a safepoint.) If not, attempt to rebias the object
1191   // toward the current thread. Note that we must be absolutely sure
1192   // that the current epoch is invalid in order to do this because
1193   // otherwise the manipulations it performs on the mark word are
1194   // illegal.
1195   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1196   jccb(Assembler::notZero, try_rebias);
1197 
1198   // The epoch of the current bias is still valid but we know nothing
1199   // about the owner; it might be set or it might be clear. Try to
1200   // acquire the bias of the object using an atomic operation. If this
1201   // fails we will go in to the runtime to revoke the object's bias.
1202   // Note that we first construct the presumed unbiased header so we
1203   // don't accidentally blow away another thread's valid bias.
1204   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1205   andptr(swap_reg,
1206          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1207 #ifdef _LP64
1208   movptr(tmp_reg, swap_reg);
1209   orptr(tmp_reg, r15_thread);
1210 #else
1211   get_thread(tmp_reg);
1212   orptr(tmp_reg, swap_reg);
1213 #endif
1214   lock();
1215   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1216   // If the biasing toward our thread failed, this means that
1217   // another thread succeeded in biasing it toward itself and we
1218   // need to revoke that bias. The revocation will occur in the
1219   // interpreter runtime in the slow case.
1220   if (counters != NULL) {
1221     cond_inc32(Assembler::zero,
1222                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1223   }
1224   if (slow_case != NULL) {
1225     jcc(Assembler::notZero, *slow_case);
1226   }
1227   jmp(done);
1228 
1229   bind(try_rebias);
1230   // At this point we know the epoch has expired, meaning that the
1231   // current "bias owner", if any, is actually invalid. Under these
1232   // circumstances _only_, we are allowed to use the current header's
1233   // value as the comparison value when doing the cas to acquire the
1234   // bias in the current epoch. In other words, we allow transfer of
1235   // the bias from one thread to another directly in this situation.
1236   //
1237   // FIXME: due to a lack of registers we currently blow away the age
1238   // bits in this situation. Should attempt to preserve them.
1239   load_prototype_header(tmp_reg, obj_reg);
1240 #ifdef _LP64
1241   orptr(tmp_reg, r15_thread);
1242 #else
1243   get_thread(swap_reg);
1244   orptr(tmp_reg, swap_reg);
1245   movptr(swap_reg, saved_mark_addr);
1246 #endif
1247   lock();
1248   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1249   // If the biasing toward our thread failed, then another thread
1250   // succeeded in biasing it toward itself and we need to revoke that
1251   // bias. The revocation will occur in the runtime in the slow case.
1252   if (counters != NULL) {
1253     cond_inc32(Assembler::zero,
1254                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1255   }
1256   if (slow_case != NULL) {
1257     jcc(Assembler::notZero, *slow_case);
1258   }
1259   jmp(done);
1260 
1261   bind(try_revoke_bias);
1262   // The prototype mark in the klass doesn't have the bias bit set any
1263   // more, indicating that objects of this data type are not supposed
1264   // to be biased any more. We are going to try to reset the mark of
1265   // this object to the prototype value and fall through to the
1266   // CAS-based locking scheme. Note that if our CAS fails, it means
1267   // that another thread raced us for the privilege of revoking the
1268   // bias of this particular object, so it's okay to continue in the
1269   // normal locking code.
1270   //
1271   // FIXME: due to a lack of registers we currently blow away the age
1272   // bits in this situation. Should attempt to preserve them.
1273   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1274   load_prototype_header(tmp_reg, obj_reg);
1275   lock();
1276   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1277   // Fall through to the normal CAS-based lock, because no matter what
1278   // the result of the above CAS, some thread must have succeeded in
1279   // removing the bias bit from the object's header.
1280   if (counters != NULL) {
1281     cond_inc32(Assembler::zero,
1282                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1283   }
1284 
1285   bind(cas_label);
1286 
1287   return null_check_offset;
1288 }
1289 
1290 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1291   assert(UseBiasedLocking, "why call this otherwise?");
1292 
1293   // Check for biased locking unlock case, which is a no-op
1294   // Note: we do not have to check the thread ID for two reasons.
1295   // First, the interpreter checks for IllegalMonitorStateException at
1296   // a higher level. Second, if the bias was revoked while we held the
1297   // lock, the object could not be rebiased toward another thread, so
1298   // the bias bit would be clear.
1299   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1300   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1301   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1302   jcc(Assembler::equal, done);
1303 }
1304 
1305 #ifdef COMPILER2
1306 
1307 #if INCLUDE_RTM_OPT
1308 
1309 // Update rtm_counters based on abort status
1310 // input: abort_status
1311 //        rtm_counters (RTMLockingCounters*)
1312 // flags are killed
1313 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1314 
1315   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1316   if (PrintPreciseRTMLockingStatistics) {
1317     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1318       Label check_abort;
1319       testl(abort_status, (1<<i));
1320       jccb(Assembler::equal, check_abort);
1321       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1322       bind(check_abort);
1323     }
1324   }
1325 }
1326 
1327 // Branch if (random & (count-1) != 0), count is 2^n
1328 // tmp, scr and flags are killed
1329 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1330   assert(tmp == rax, "");
1331   assert(scr == rdx, "");
1332   rdtsc(); // modifies EDX:EAX
1333   andptr(tmp, count-1);
1334   jccb(Assembler::notZero, brLabel);
1335 }
1336 
1337 // Perform abort ratio calculation, set no_rtm bit if high ratio
1338 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1339 // tmpReg, rtm_counters_Reg and flags are killed
1340 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1341                                                  Register rtm_counters_Reg,
1342                                                  RTMLockingCounters* rtm_counters,
1343                                                  Metadata* method_data) {
1344   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1345 
1346   if (RTMLockingCalculationDelay > 0) {
1347     // Delay calculation
1348     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1349     testptr(tmpReg, tmpReg);
1350     jccb(Assembler::equal, L_done);
1351   }
1352   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1353   //   Aborted transactions = abort_count * 100
1354   //   All transactions = total_count *  RTMTotalCountIncrRate
1355   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1356 
1357   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1358   cmpptr(tmpReg, RTMAbortThreshold);
1359   jccb(Assembler::below, L_check_always_rtm2);
1360   imulptr(tmpReg, tmpReg, 100);
1361 
1362   Register scrReg = rtm_counters_Reg;
1363   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1364   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1365   imulptr(scrReg, scrReg, RTMAbortRatio);
1366   cmpptr(tmpReg, scrReg);
1367   jccb(Assembler::below, L_check_always_rtm1);
1368   if (method_data != NULL) {
1369     // set rtm_state to "no rtm" in MDO
1370     mov_metadata(tmpReg, method_data);
1371     lock();
1372     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1373   }
1374   jmpb(L_done);
1375   bind(L_check_always_rtm1);
1376   // Reload RTMLockingCounters* address
1377   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1378   bind(L_check_always_rtm2);
1379   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1380   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1381   jccb(Assembler::below, L_done);
1382   if (method_data != NULL) {
1383     // set rtm_state to "always rtm" in MDO
1384     mov_metadata(tmpReg, method_data);
1385     lock();
1386     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1387   }
1388   bind(L_done);
1389 }
1390 
1391 // Update counters and perform abort ratio calculation
1392 // input:  abort_status_Reg
1393 // rtm_counters_Reg, flags are killed
1394 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1395                                    Register rtm_counters_Reg,
1396                                    RTMLockingCounters* rtm_counters,
1397                                    Metadata* method_data,
1398                                    bool profile_rtm) {
1399 
1400   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1401   // update rtm counters based on rax value at abort
1402   // reads abort_status_Reg, updates flags
1403   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1404   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1405   if (profile_rtm) {
1406     // Save abort status because abort_status_Reg is used by following code.
1407     if (RTMRetryCount > 0) {
1408       push(abort_status_Reg);
1409     }
1410     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1411     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1412     // restore abort status
1413     if (RTMRetryCount > 0) {
1414       pop(abort_status_Reg);
1415     }
1416   }
1417 }
1418 
1419 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1420 // inputs: retry_count_Reg
1421 //       : abort_status_Reg
1422 // output: retry_count_Reg decremented by 1
1423 // flags are killed
1424 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1425   Label doneRetry;
1426   assert(abort_status_Reg == rax, "");
1427   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1428   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1429   // if reason is in 0x6 and retry count != 0 then retry
1430   andptr(abort_status_Reg, 0x6);
1431   jccb(Assembler::zero, doneRetry);
1432   testl(retry_count_Reg, retry_count_Reg);
1433   jccb(Assembler::zero, doneRetry);
1434   pause();
1435   decrementl(retry_count_Reg);
1436   jmp(retryLabel);
1437   bind(doneRetry);
1438 }
1439 
1440 // Spin and retry if lock is busy,
1441 // inputs: box_Reg (monitor address)
1442 //       : retry_count_Reg
1443 // output: retry_count_Reg decremented by 1
1444 //       : clear z flag if retry count exceeded
1445 // tmp_Reg, scr_Reg, flags are killed
1446 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1447                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1448   Label SpinLoop, SpinExit, doneRetry;
1449   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1450 
1451   testl(retry_count_Reg, retry_count_Reg);
1452   jccb(Assembler::zero, doneRetry);
1453   decrementl(retry_count_Reg);
1454   movptr(scr_Reg, RTMSpinLoopCount);
1455 
1456   bind(SpinLoop);
1457   pause();
1458   decrementl(scr_Reg);
1459   jccb(Assembler::lessEqual, SpinExit);
1460   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1461   testptr(tmp_Reg, tmp_Reg);
1462   jccb(Assembler::notZero, SpinLoop);
1463 
1464   bind(SpinExit);
1465   jmp(retryLabel);
1466   bind(doneRetry);
1467   incrementl(retry_count_Reg); // clear z flag
1468 }
1469 
1470 // Use RTM for normal stack locks
1471 // Input: objReg (object to lock)
1472 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1473                                        Register retry_on_abort_count_Reg,
1474                                        RTMLockingCounters* stack_rtm_counters,
1475                                        Metadata* method_data, bool profile_rtm,
1476                                        Label& DONE_LABEL, Label& IsInflated) {
1477   assert(UseRTMForStackLocks, "why call this otherwise?");
1478   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1479   assert(tmpReg == rax, "");
1480   assert(scrReg == rdx, "");
1481   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1482 
1483   if (RTMRetryCount > 0) {
1484     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1485     bind(L_rtm_retry);
1486   }
1487   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1488   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1489   jcc(Assembler::notZero, IsInflated);
1490 
1491   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1492     Label L_noincrement;
1493     if (RTMTotalCountIncrRate > 1) {
1494       // tmpReg, scrReg and flags are killed
1495       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1496     }
1497     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1498     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1499     bind(L_noincrement);
1500   }
1501   xbegin(L_on_abort);
1502   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1503   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1504   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1505   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1506 
1507   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1508   if (UseRTMXendForLockBusy) {
1509     xend();
1510     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1511     jmp(L_decrement_retry);
1512   }
1513   else {
1514     xabort(0);
1515   }
1516   bind(L_on_abort);
1517   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1518     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1519   }
1520   bind(L_decrement_retry);
1521   if (RTMRetryCount > 0) {
1522     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1523     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1524   }
1525 }
1526 
1527 // Use RTM for inflating locks
1528 // inputs: objReg (object to lock)
1529 //         boxReg (on-stack box address (displaced header location) - KILLED)
1530 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1531 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1532                                           Register scrReg, Register retry_on_busy_count_Reg,
1533                                           Register retry_on_abort_count_Reg,
1534                                           RTMLockingCounters* rtm_counters,
1535                                           Metadata* method_data, bool profile_rtm,
1536                                           Label& DONE_LABEL) {
1537   assert(UseRTMLocking, "why call this otherwise?");
1538   assert(tmpReg == rax, "");
1539   assert(scrReg == rdx, "");
1540   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1541   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1542 
1543   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1544   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1545   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1546 
1547   if (RTMRetryCount > 0) {
1548     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1549     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1550     bind(L_rtm_retry);
1551   }
1552   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1553     Label L_noincrement;
1554     if (RTMTotalCountIncrRate > 1) {
1555       // tmpReg, scrReg and flags are killed
1556       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1557     }
1558     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1559     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1560     bind(L_noincrement);
1561   }
1562   xbegin(L_on_abort);
1563   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1564   movptr(tmpReg, Address(tmpReg, owner_offset));
1565   testptr(tmpReg, tmpReg);
1566   jcc(Assembler::zero, DONE_LABEL);
1567   if (UseRTMXendForLockBusy) {
1568     xend();
1569     jmp(L_decrement_retry);
1570   }
1571   else {
1572     xabort(0);
1573   }
1574   bind(L_on_abort);
1575   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1576   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1577     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1578   }
1579   if (RTMRetryCount > 0) {
1580     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1581     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1582   }
1583 
1584   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1585   testptr(tmpReg, tmpReg) ;
1586   jccb(Assembler::notZero, L_decrement_retry) ;
1587 
1588   // Appears unlocked - try to swing _owner from null to non-null.
1589   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1590 #ifdef _LP64
1591   Register threadReg = r15_thread;
1592 #else
1593   get_thread(scrReg);
1594   Register threadReg = scrReg;
1595 #endif
1596   lock();
1597   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1598 
1599   if (RTMRetryCount > 0) {
1600     // success done else retry
1601     jccb(Assembler::equal, DONE_LABEL) ;
1602     bind(L_decrement_retry);
1603     // Spin and retry if lock is busy.
1604     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1605   }
1606   else {
1607     bind(L_decrement_retry);
1608   }
1609 }
1610 
1611 #endif //  INCLUDE_RTM_OPT
1612 
1613 // Fast_Lock and Fast_Unlock used by C2
1614 
1615 // Because the transitions from emitted code to the runtime
1616 // monitorenter/exit helper stubs are so slow it's critical that
1617 // we inline both the stack-locking fast-path and the inflated fast path.
1618 //
1619 // See also: cmpFastLock and cmpFastUnlock.
1620 //
1621 // What follows is a specialized inline transliteration of the code
1622 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1623 // another option would be to emit TrySlowEnter and TrySlowExit methods
1624 // at startup-time.  These methods would accept arguments as
1625 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1626 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1627 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1628 // In practice, however, the # of lock sites is bounded and is usually small.
1629 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1630 // if the processor uses simple bimodal branch predictors keyed by EIP
1631 // Since the helper routines would be called from multiple synchronization
1632 // sites.
1633 //
1634 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1635 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1636 // to those specialized methods.  That'd give us a mostly platform-independent
1637 // implementation that the JITs could optimize and inline at their pleasure.
1638 // Done correctly, the only time we'd need to cross to native could would be
1639 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1640 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1641 // (b) explicit barriers or fence operations.
1642 //
1643 // TODO:
1644 //
1645 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1646 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1647 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1648 //    the lock operators would typically be faster than reifying Self.
1649 //
1650 // *  Ideally I'd define the primitives as:
1651 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1652 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1653 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1654 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1655 //    Furthermore the register assignments are overconstrained, possibly resulting in
1656 //    sub-optimal code near the synchronization site.
1657 //
1658 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1659 //    Alternately, use a better sp-proximity test.
1660 //
1661 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1662 //    Either one is sufficient to uniquely identify a thread.
1663 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1664 //
1665 // *  Intrinsify notify() and notifyAll() for the common cases where the
1666 //    object is locked by the calling thread but the waitlist is empty.
1667 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1668 //
1669 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1670 //    But beware of excessive branch density on AMD Opterons.
1671 //
1672 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1673 //    or failure of the fast-path.  If the fast-path fails then we pass
1674 //    control to the slow-path, typically in C.  In Fast_Lock and
1675 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1676 //    will emit a conditional branch immediately after the node.
1677 //    So we have branches to branches and lots of ICC.ZF games.
1678 //    Instead, it might be better to have C2 pass a "FailureLabel"
1679 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1680 //    will drop through the node.  ICC.ZF is undefined at exit.
1681 //    In the case of failure, the node will branch directly to the
1682 //    FailureLabel
1683 
1684 
1685 // obj: object to lock
1686 // box: on-stack box address (displaced header location) - KILLED
1687 // rax,: tmp -- KILLED
1688 // scr: tmp -- KILLED
1689 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1690                                Register scrReg, Register cx1Reg, Register cx2Reg,
1691                                BiasedLockingCounters* counters,
1692                                RTMLockingCounters* rtm_counters,
1693                                RTMLockingCounters* stack_rtm_counters,
1694                                Metadata* method_data,
1695                                bool use_rtm, bool profile_rtm) {
1696   // Ensure the register assignments are disjoint
1697   assert(tmpReg == rax, "");
1698 
1699   if (use_rtm) {
1700     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1701   } else {
1702     assert(cx1Reg == noreg, "");
1703     assert(cx2Reg == noreg, "");
1704     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1705   }
1706 
1707   if (counters != NULL) {
1708     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1709   }
1710 
1711   // Possible cases that we'll encounter in fast_lock
1712   // ------------------------------------------------
1713   // * Inflated
1714   //    -- unlocked
1715   //    -- Locked
1716   //       = by self
1717   //       = by other
1718   // * biased
1719   //    -- by Self
1720   //    -- by other
1721   // * neutral
1722   // * stack-locked
1723   //    -- by self
1724   //       = sp-proximity test hits
1725   //       = sp-proximity test generates false-negative
1726   //    -- by other
1727   //
1728 
1729   Label IsInflated, DONE_LABEL;
1730 
1731   // it's stack-locked, biased or neutral
1732   // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1733   // order to reduce the number of conditional branches in the most common cases.
1734   // Beware -- there's a subtle invariant that fetch of the markword
1735   // at [FETCH], below, will never observe a biased encoding (*101b).
1736   // If this invariant is not held we risk exclusion (safety) failure.
1737   if (UseBiasedLocking && !UseOptoBiasInlining) {
1738     biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1739   }
1740 
1741 #if INCLUDE_RTM_OPT
1742   if (UseRTMForStackLocks && use_rtm) {
1743     rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1744                       stack_rtm_counters, method_data, profile_rtm,
1745                       DONE_LABEL, IsInflated);
1746   }
1747 #endif // INCLUDE_RTM_OPT
1748 
1749   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1750   testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1751   jccb(Assembler::notZero, IsInflated);
1752 
1753   // Attempt stack-locking ...
1754   orptr (tmpReg, markOopDesc::unlocked_value);
1755   movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1756   lock();
1757   cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1758   if (counters != NULL) {
1759     cond_inc32(Assembler::equal,
1760                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1761   }
1762   jcc(Assembler::equal, DONE_LABEL);           // Success
1763 
1764   // Recursive locking.
1765   // The object is stack-locked: markword contains stack pointer to BasicLock.
1766   // Locked by current thread if difference with current SP is less than one page.
1767   subptr(tmpReg, rsp);
1768   // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1769   andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1770   movptr(Address(boxReg, 0), tmpReg);
1771   if (counters != NULL) {
1772     cond_inc32(Assembler::equal,
1773                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1774   }
1775   jmp(DONE_LABEL);
1776 
1777   bind(IsInflated);
1778   // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1779 
1780 #if INCLUDE_RTM_OPT
1781   // Use the same RTM locking code in 32- and 64-bit VM.
1782   if (use_rtm) {
1783     rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1784                          rtm_counters, method_data, profile_rtm, DONE_LABEL);
1785   } else {
1786 #endif // INCLUDE_RTM_OPT
1787 
1788 #ifndef _LP64
1789   // The object is inflated.
1790 
1791   // boxReg refers to the on-stack BasicLock in the current frame.
1792   // We'd like to write:
1793   //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1794   // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1795   // additional latency as we have another ST in the store buffer that must drain.
1796 
1797   // avoid ST-before-CAS
1798   // register juggle because we need tmpReg for cmpxchgptr below
1799   movptr(scrReg, boxReg);
1800   movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1801 
1802   // Optimistic form: consider XORL tmpReg,tmpReg
1803   movptr(tmpReg, NULL_WORD);
1804 
1805   // Appears unlocked - try to swing _owner from null to non-null.
1806   // Ideally, I'd manifest "Self" with get_thread and then attempt
1807   // to CAS the register containing Self into m->Owner.
1808   // But we don't have enough registers, so instead we can either try to CAS
1809   // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1810   // we later store "Self" into m->Owner.  Transiently storing a stack address
1811   // (rsp or the address of the box) into  m->owner is harmless.
1812   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1813   lock();
1814   cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1815   movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1816   // If we weren't able to swing _owner from NULL to the BasicLock
1817   // then take the slow path.
1818   jccb  (Assembler::notZero, DONE_LABEL);
1819   // update _owner from BasicLock to thread
1820   get_thread (scrReg);                    // beware: clobbers ICCs
1821   movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1822   xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1823 
1824   // If the CAS fails we can either retry or pass control to the slow-path.
1825   // We use the latter tactic.
1826   // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1827   // If the CAS was successful ...
1828   //   Self has acquired the lock
1829   //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1830   // Intentional fall-through into DONE_LABEL ...
1831 #else // _LP64
1832   // It's inflated
1833   movq(scrReg, tmpReg);
1834   xorq(tmpReg, tmpReg);
1835 
1836   lock();
1837   cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1838   // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1839   // Without cast to int32_t movptr will destroy r10 which is typically obj.
1840   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1841   // Intentional fall-through into DONE_LABEL ...
1842   // Propagate ICC.ZF from CAS above into DONE_LABEL.
1843 #endif // _LP64
1844 #if INCLUDE_RTM_OPT
1845   } // use_rtm()
1846 #endif
1847   // DONE_LABEL is a hot target - we'd really like to place it at the
1848   // start of cache line by padding with NOPs.
1849   // See the AMD and Intel software optimization manuals for the
1850   // most efficient "long" NOP encodings.
1851   // Unfortunately none of our alignment mechanisms suffice.
1852   bind(DONE_LABEL);
1853 
1854   // At DONE_LABEL the icc ZFlag is set as follows ...
1855   // Fast_Unlock uses the same protocol.
1856   // ZFlag == 1 -> Success
1857   // ZFlag == 0 -> Failure - force control through the slow-path
1858 }
1859 
1860 // obj: object to unlock
1861 // box: box address (displaced header location), killed.  Must be EAX.
1862 // tmp: killed, cannot be obj nor box.
1863 //
1864 // Some commentary on balanced locking:
1865 //
1866 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1867 // Methods that don't have provably balanced locking are forced to run in the
1868 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1869 // The interpreter provides two properties:
1870 // I1:  At return-time the interpreter automatically and quietly unlocks any
1871 //      objects acquired the current activation (frame).  Recall that the
1872 //      interpreter maintains an on-stack list of locks currently held by
1873 //      a frame.
1874 // I2:  If a method attempts to unlock an object that is not held by the
1875 //      the frame the interpreter throws IMSX.
1876 //
1877 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1878 // B() doesn't have provably balanced locking so it runs in the interpreter.
1879 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1880 // is still locked by A().
1881 //
1882 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1883 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1884 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1885 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1886 // Arguably given that the spec legislates the JNI case as undefined our implementation
1887 // could reasonably *avoid* checking owner in Fast_Unlock().
1888 // In the interest of performance we elide m->Owner==Self check in unlock.
1889 // A perfectly viable alternative is to elide the owner check except when
1890 // Xcheck:jni is enabled.
1891 
1892 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1893   assert(boxReg == rax, "");
1894   assert_different_registers(objReg, boxReg, tmpReg);
1895 
1896   Label DONE_LABEL, Stacked, CheckSucc;
1897 
1898   // Critically, the biased locking test must have precedence over
1899   // and appear before the (box->dhw == 0) recursive stack-lock test.
1900   if (UseBiasedLocking && !UseOptoBiasInlining) {
1901     biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1902   }
1903 
1904 #if INCLUDE_RTM_OPT
1905   if (UseRTMForStackLocks && use_rtm) {
1906     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1907     Label L_regular_unlock;
1908     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
1909     andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1910     cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1911     jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1912     xend();                                       // otherwise end...
1913     jmp(DONE_LABEL);                              // ... and we're done
1914     bind(L_regular_unlock);
1915   }
1916 #endif
1917 
1918   cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1919   jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1920   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
1921   testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
1922   jccb  (Assembler::zero, Stacked);
1923 
1924   // It's inflated.
1925 #if INCLUDE_RTM_OPT
1926   if (use_rtm) {
1927     Label L_regular_inflated_unlock;
1928     int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1929     movptr(boxReg, Address(tmpReg, owner_offset));
1930     testptr(boxReg, boxReg);
1931     jccb(Assembler::notZero, L_regular_inflated_unlock);
1932     xend();
1933     jmpb(DONE_LABEL);
1934     bind(L_regular_inflated_unlock);
1935   }
1936 #endif
1937 
1938   // Despite our balanced locking property we still check that m->_owner == Self
1939   // as java routines or native JNI code called by this thread might
1940   // have released the lock.
1941   // Refer to the comments in synchronizer.cpp for how we might encode extra
1942   // state in _succ so we can avoid fetching EntryList|cxq.
1943   //
1944   // I'd like to add more cases in fast_lock() and fast_unlock() --
1945   // such as recursive enter and exit -- but we have to be wary of
1946   // I$ bloat, T$ effects and BP$ effects.
1947   //
1948   // If there's no contention try a 1-0 exit.  That is, exit without
1949   // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
1950   // we detect and recover from the race that the 1-0 exit admits.
1951   //
1952   // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
1953   // before it STs null into _owner, releasing the lock.  Updates
1954   // to data protected by the critical section must be visible before
1955   // we drop the lock (and thus before any other thread could acquire
1956   // the lock and observe the fields protected by the lock).
1957   // IA32's memory-model is SPO, so STs are ordered with respect to
1958   // each other and there's no need for an explicit barrier (fence).
1959   // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
1960 #ifndef _LP64
1961   get_thread (boxReg);
1962 
1963   // Note that we could employ various encoding schemes to reduce
1964   // the number of loads below (currently 4) to just 2 or 3.
1965   // Refer to the comments in synchronizer.cpp.
1966   // In practice the chain of fetches doesn't seem to impact performance, however.
1967   xorptr(boxReg, boxReg);
1968   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
1969   jccb  (Assembler::notZero, DONE_LABEL);
1970   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
1971   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
1972   jccb  (Assembler::notZero, CheckSucc);
1973   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
1974   jmpb  (DONE_LABEL);
1975 
1976   bind (Stacked);
1977   // It's not inflated and it's not recursively stack-locked and it's not biased.
1978   // It must be stack-locked.
1979   // Try to reset the header to displaced header.
1980   // The "box" value on the stack is stable, so we can reload
1981   // and be assured we observe the same value as above.
1982   movptr(tmpReg, Address(boxReg, 0));
1983   lock();
1984   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
1985   // Intention fall-thru into DONE_LABEL
1986 
1987   // DONE_LABEL is a hot target - we'd really like to place it at the
1988   // start of cache line by padding with NOPs.
1989   // See the AMD and Intel software optimization manuals for the
1990   // most efficient "long" NOP encodings.
1991   // Unfortunately none of our alignment mechanisms suffice.
1992   bind (CheckSucc);
1993 #else // _LP64
1994   // It's inflated
1995   xorptr(boxReg, boxReg);
1996   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
1997   jccb  (Assembler::notZero, DONE_LABEL);
1998   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
1999   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2000   jccb  (Assembler::notZero, CheckSucc);
2001   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2002   jmpb  (DONE_LABEL);
2003 
2004   // Try to avoid passing control into the slow_path ...
2005   Label LSuccess, LGoSlowPath ;
2006   bind  (CheckSucc);
2007 
2008   // The following optional optimization can be elided if necessary
2009   // Effectively: if (succ == null) goto SlowPath
2010   // The code reduces the window for a race, however,
2011   // and thus benefits performance.
2012   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2013   jccb  (Assembler::zero, LGoSlowPath);
2014 
2015   xorptr(boxReg, boxReg);
2016   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2017 
2018   // Memory barrier/fence
2019   // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2020   // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2021   // This is faster on Nehalem and AMD Shanghai/Barcelona.
2022   // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2023   // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2024   // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2025   lock(); addl(Address(rsp, 0), 0);
2026 
2027   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2028   jccb  (Assembler::notZero, LSuccess);
2029 
2030   // Rare inopportune interleaving - race.
2031   // The successor vanished in the small window above.
2032   // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2033   // We need to ensure progress and succession.
2034   // Try to reacquire the lock.
2035   // If that fails then the new owner is responsible for succession and this
2036   // thread needs to take no further action and can exit via the fast path (success).
2037   // If the re-acquire succeeds then pass control into the slow path.
2038   // As implemented, this latter mode is horrible because we generated more
2039   // coherence traffic on the lock *and* artifically extended the critical section
2040   // length while by virtue of passing control into the slow path.
2041 
2042   // box is really RAX -- the following CMPXCHG depends on that binding
2043   // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2044   lock();
2045   cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2046   // There's no successor so we tried to regrab the lock.
2047   // If that didn't work, then another thread grabbed the
2048   // lock so we're done (and exit was a success).
2049   jccb  (Assembler::notEqual, LSuccess);
2050   // Intentional fall-through into slow-path
2051 
2052   bind  (LGoSlowPath);
2053   orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2054   jmpb  (DONE_LABEL);
2055 
2056   bind  (LSuccess);
2057   testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2058   jmpb  (DONE_LABEL);
2059 
2060   bind  (Stacked);
2061   movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2062   lock();
2063   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2064 
2065 #endif
2066   bind(DONE_LABEL);
2067 }
2068 #endif // COMPILER2
2069 
2070 void MacroAssembler::c2bool(Register x) {
2071   // implements x == 0 ? 0 : 1
2072   // note: must only look at least-significant byte of x
2073   //       since C-style booleans are stored in one byte
2074   //       only! (was bug)
2075   andl(x, 0xFF);
2076   setb(Assembler::notZero, x);
2077 }
2078 
2079 // Wouldn't need if AddressLiteral version had new name
2080 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2081   Assembler::call(L, rtype);
2082 }
2083 
2084 void MacroAssembler::call(Register entry) {
2085   Assembler::call(entry);
2086 }
2087 
2088 void MacroAssembler::call(AddressLiteral entry) {
2089   if (reachable(entry)) {
2090     Assembler::call_literal(entry.target(), entry.rspec());
2091   } else {
2092     lea(rscratch1, entry);
2093     Assembler::call(rscratch1);
2094   }
2095 }
2096 
2097 void MacroAssembler::ic_call(address entry, jint method_index) {
2098   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2099   movptr(rax, (intptr_t)Universe::non_oop_word());
2100   call(AddressLiteral(entry, rh));
2101 }
2102 
2103 // Implementation of call_VM versions
2104 
2105 void MacroAssembler::call_VM(Register oop_result,
2106                              address entry_point,
2107                              bool check_exceptions) {
2108   Label C, E;
2109   call(C, relocInfo::none);
2110   jmp(E);
2111 
2112   bind(C);
2113   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2114   ret(0);
2115 
2116   bind(E);
2117 }
2118 
2119 void MacroAssembler::call_VM(Register oop_result,
2120                              address entry_point,
2121                              Register arg_1,
2122                              bool check_exceptions) {
2123   Label C, E;
2124   call(C, relocInfo::none);
2125   jmp(E);
2126 
2127   bind(C);
2128   pass_arg1(this, arg_1);
2129   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2130   ret(0);
2131 
2132   bind(E);
2133 }
2134 
2135 void MacroAssembler::call_VM(Register oop_result,
2136                              address entry_point,
2137                              Register arg_1,
2138                              Register arg_2,
2139                              bool check_exceptions) {
2140   Label C, E;
2141   call(C, relocInfo::none);
2142   jmp(E);
2143 
2144   bind(C);
2145 
2146   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2147 
2148   pass_arg2(this, arg_2);
2149   pass_arg1(this, arg_1);
2150   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2151   ret(0);
2152 
2153   bind(E);
2154 }
2155 
2156 void MacroAssembler::call_VM(Register oop_result,
2157                              address entry_point,
2158                              Register arg_1,
2159                              Register arg_2,
2160                              Register arg_3,
2161                              bool check_exceptions) {
2162   Label C, E;
2163   call(C, relocInfo::none);
2164   jmp(E);
2165 
2166   bind(C);
2167 
2168   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2169   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2170   pass_arg3(this, arg_3);
2171 
2172   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2173   pass_arg2(this, arg_2);
2174 
2175   pass_arg1(this, arg_1);
2176   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2177   ret(0);
2178 
2179   bind(E);
2180 }
2181 
2182 void MacroAssembler::call_VM(Register oop_result,
2183                              Register last_java_sp,
2184                              address entry_point,
2185                              int number_of_arguments,
2186                              bool check_exceptions) {
2187   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2188   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2189 }
2190 
2191 void MacroAssembler::call_VM(Register oop_result,
2192                              Register last_java_sp,
2193                              address entry_point,
2194                              Register arg_1,
2195                              bool check_exceptions) {
2196   pass_arg1(this, arg_1);
2197   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2198 }
2199 
2200 void MacroAssembler::call_VM(Register oop_result,
2201                              Register last_java_sp,
2202                              address entry_point,
2203                              Register arg_1,
2204                              Register arg_2,
2205                              bool check_exceptions) {
2206 
2207   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2208   pass_arg2(this, arg_2);
2209   pass_arg1(this, arg_1);
2210   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2211 }
2212 
2213 void MacroAssembler::call_VM(Register oop_result,
2214                              Register last_java_sp,
2215                              address entry_point,
2216                              Register arg_1,
2217                              Register arg_2,
2218                              Register arg_3,
2219                              bool check_exceptions) {
2220   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2221   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2222   pass_arg3(this, arg_3);
2223   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2224   pass_arg2(this, arg_2);
2225   pass_arg1(this, arg_1);
2226   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2227 }
2228 
2229 void MacroAssembler::super_call_VM(Register oop_result,
2230                                    Register last_java_sp,
2231                                    address entry_point,
2232                                    int number_of_arguments,
2233                                    bool check_exceptions) {
2234   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2235   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2236 }
2237 
2238 void MacroAssembler::super_call_VM(Register oop_result,
2239                                    Register last_java_sp,
2240                                    address entry_point,
2241                                    Register arg_1,
2242                                    bool check_exceptions) {
2243   pass_arg1(this, arg_1);
2244   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2245 }
2246 
2247 void MacroAssembler::super_call_VM(Register oop_result,
2248                                    Register last_java_sp,
2249                                    address entry_point,
2250                                    Register arg_1,
2251                                    Register arg_2,
2252                                    bool check_exceptions) {
2253 
2254   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2255   pass_arg2(this, arg_2);
2256   pass_arg1(this, arg_1);
2257   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2258 }
2259 
2260 void MacroAssembler::super_call_VM(Register oop_result,
2261                                    Register last_java_sp,
2262                                    address entry_point,
2263                                    Register arg_1,
2264                                    Register arg_2,
2265                                    Register arg_3,
2266                                    bool check_exceptions) {
2267   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2268   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2269   pass_arg3(this, arg_3);
2270   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2271   pass_arg2(this, arg_2);
2272   pass_arg1(this, arg_1);
2273   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2274 }
2275 
2276 void MacroAssembler::call_VM_base(Register oop_result,
2277                                   Register java_thread,
2278                                   Register last_java_sp,
2279                                   address  entry_point,
2280                                   int      number_of_arguments,
2281                                   bool     check_exceptions) {
2282   // determine java_thread register
2283   if (!java_thread->is_valid()) {
2284 #ifdef _LP64
2285     java_thread = r15_thread;
2286 #else
2287     java_thread = rdi;
2288     get_thread(java_thread);
2289 #endif // LP64
2290   }
2291   // determine last_java_sp register
2292   if (!last_java_sp->is_valid()) {
2293     last_java_sp = rsp;
2294   }
2295   // debugging support
2296   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2297   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2298 #ifdef ASSERT
2299   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2300   // r12 is the heapbase.
2301   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2302 #endif // ASSERT
2303 
2304   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2305   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2306 
2307   // push java thread (becomes first argument of C function)
2308 
2309   NOT_LP64(push(java_thread); number_of_arguments++);
2310   LP64_ONLY(mov(c_rarg0, r15_thread));
2311 
2312   // set last Java frame before call
2313   assert(last_java_sp != rbp, "can't use ebp/rbp");
2314 
2315   // Only interpreter should have to set fp
2316   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2317 
2318   // do the call, remove parameters
2319   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2320 
2321   // restore the thread (cannot use the pushed argument since arguments
2322   // may be overwritten by C code generated by an optimizing compiler);
2323   // however can use the register value directly if it is callee saved.
2324   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2325     // rdi & rsi (also r15) are callee saved -> nothing to do
2326 #ifdef ASSERT
2327     guarantee(java_thread != rax, "change this code");
2328     push(rax);
2329     { Label L;
2330       get_thread(rax);
2331       cmpptr(java_thread, rax);
2332       jcc(Assembler::equal, L);
2333       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2334       bind(L);
2335     }
2336     pop(rax);
2337 #endif
2338   } else {
2339     get_thread(java_thread);
2340   }
2341   // reset last Java frame
2342   // Only interpreter should have to clear fp
2343   reset_last_Java_frame(java_thread, true);
2344 
2345    // C++ interp handles this in the interpreter
2346   check_and_handle_popframe(java_thread);
2347   check_and_handle_earlyret(java_thread);
2348 
2349   if (check_exceptions) {
2350     // check for pending exceptions (java_thread is set upon return)
2351     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2352 #ifndef _LP64
2353     jump_cc(Assembler::notEqual,
2354             RuntimeAddress(StubRoutines::forward_exception_entry()));
2355 #else
2356     // This used to conditionally jump to forward_exception however it is
2357     // possible if we relocate that the branch will not reach. So we must jump
2358     // around so we can always reach
2359 
2360     Label ok;
2361     jcc(Assembler::equal, ok);
2362     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2363     bind(ok);
2364 #endif // LP64
2365   }
2366 
2367   // get oop result if there is one and reset the value in the thread
2368   if (oop_result->is_valid()) {
2369     get_vm_result(oop_result, java_thread);
2370   }
2371 }
2372 
2373 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2374 
2375   // Calculate the value for last_Java_sp
2376   // somewhat subtle. call_VM does an intermediate call
2377   // which places a return address on the stack just under the
2378   // stack pointer as the user finsihed with it. This allows
2379   // use to retrieve last_Java_pc from last_Java_sp[-1].
2380   // On 32bit we then have to push additional args on the stack to accomplish
2381   // the actual requested call. On 64bit call_VM only can use register args
2382   // so the only extra space is the return address that call_VM created.
2383   // This hopefully explains the calculations here.
2384 
2385 #ifdef _LP64
2386   // We've pushed one address, correct last_Java_sp
2387   lea(rax, Address(rsp, wordSize));
2388 #else
2389   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2390 #endif // LP64
2391 
2392   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2393 
2394 }
2395 
2396 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2397 void MacroAssembler::call_VM_leaf0(address entry_point) {
2398   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2399 }
2400 
2401 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2402   call_VM_leaf_base(entry_point, number_of_arguments);
2403 }
2404 
2405 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2406   pass_arg0(this, arg_0);
2407   call_VM_leaf(entry_point, 1);
2408 }
2409 
2410 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2411 
2412   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2413   pass_arg1(this, arg_1);
2414   pass_arg0(this, arg_0);
2415   call_VM_leaf(entry_point, 2);
2416 }
2417 
2418 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2419   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2420   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2421   pass_arg2(this, arg_2);
2422   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2423   pass_arg1(this, arg_1);
2424   pass_arg0(this, arg_0);
2425   call_VM_leaf(entry_point, 3);
2426 }
2427 
2428 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2429   pass_arg0(this, arg_0);
2430   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2431 }
2432 
2433 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2434 
2435   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2436   pass_arg1(this, arg_1);
2437   pass_arg0(this, arg_0);
2438   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2439 }
2440 
2441 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2442   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2443   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2444   pass_arg2(this, arg_2);
2445   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2446   pass_arg1(this, arg_1);
2447   pass_arg0(this, arg_0);
2448   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2449 }
2450 
2451 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2452   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2453   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2454   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2455   pass_arg3(this, arg_3);
2456   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2457   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2458   pass_arg2(this, arg_2);
2459   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2460   pass_arg1(this, arg_1);
2461   pass_arg0(this, arg_0);
2462   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2463 }
2464 
2465 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2466   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2467   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2468   verify_oop(oop_result, "broken oop in call_VM_base");
2469 }
2470 
2471 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2472   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2473   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2474 }
2475 
2476 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2477 }
2478 
2479 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2480 }
2481 
2482 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2483   if (reachable(src1)) {
2484     cmpl(as_Address(src1), imm);
2485   } else {
2486     lea(rscratch1, src1);
2487     cmpl(Address(rscratch1, 0), imm);
2488   }
2489 }
2490 
2491 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2492   assert(!src2.is_lval(), "use cmpptr");
2493   if (reachable(src2)) {
2494     cmpl(src1, as_Address(src2));
2495   } else {
2496     lea(rscratch1, src2);
2497     cmpl(src1, Address(rscratch1, 0));
2498   }
2499 }
2500 
2501 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2502   Assembler::cmpl(src1, imm);
2503 }
2504 
2505 void MacroAssembler::cmp32(Register src1, Address src2) {
2506   Assembler::cmpl(src1, src2);
2507 }
2508 
2509 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2510   ucomisd(opr1, opr2);
2511 
2512   Label L;
2513   if (unordered_is_less) {
2514     movl(dst, -1);
2515     jcc(Assembler::parity, L);
2516     jcc(Assembler::below , L);
2517     movl(dst, 0);
2518     jcc(Assembler::equal , L);
2519     increment(dst);
2520   } else { // unordered is greater
2521     movl(dst, 1);
2522     jcc(Assembler::parity, L);
2523     jcc(Assembler::above , L);
2524     movl(dst, 0);
2525     jcc(Assembler::equal , L);
2526     decrementl(dst);
2527   }
2528   bind(L);
2529 }
2530 
2531 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2532   ucomiss(opr1, opr2);
2533 
2534   Label L;
2535   if (unordered_is_less) {
2536     movl(dst, -1);
2537     jcc(Assembler::parity, L);
2538     jcc(Assembler::below , L);
2539     movl(dst, 0);
2540     jcc(Assembler::equal , L);
2541     increment(dst);
2542   } else { // unordered is greater
2543     movl(dst, 1);
2544     jcc(Assembler::parity, L);
2545     jcc(Assembler::above , L);
2546     movl(dst, 0);
2547     jcc(Assembler::equal , L);
2548     decrementl(dst);
2549   }
2550   bind(L);
2551 }
2552 
2553 
2554 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2555   if (reachable(src1)) {
2556     cmpb(as_Address(src1), imm);
2557   } else {
2558     lea(rscratch1, src1);
2559     cmpb(Address(rscratch1, 0), imm);
2560   }
2561 }
2562 
2563 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2564 #ifdef _LP64
2565   if (src2.is_lval()) {
2566     movptr(rscratch1, src2);
2567     Assembler::cmpq(src1, rscratch1);
2568   } else if (reachable(src2)) {
2569     cmpq(src1, as_Address(src2));
2570   } else {
2571     lea(rscratch1, src2);
2572     Assembler::cmpq(src1, Address(rscratch1, 0));
2573   }
2574 #else
2575   if (src2.is_lval()) {
2576     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2577   } else {
2578     cmpl(src1, as_Address(src2));
2579   }
2580 #endif // _LP64
2581 }
2582 
2583 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2584   assert(src2.is_lval(), "not a mem-mem compare");
2585 #ifdef _LP64
2586   // moves src2's literal address
2587   movptr(rscratch1, src2);
2588   Assembler::cmpq(src1, rscratch1);
2589 #else
2590   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2591 #endif // _LP64
2592 }
2593 
2594 void MacroAssembler::cmpoop(Register src1, Register src2) {
2595   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2596   bs->obj_equals(this, src1, src2);
2597 }
2598 
2599 void MacroAssembler::cmpoop(Register src1, Address src2) {
2600   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2601   bs->obj_equals(this, src1, src2);
2602 }
2603 
2604 #ifdef _LP64
2605 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2606   movoop(rscratch1, src2);
2607   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2608   bs->obj_equals(this, src1, rscratch1);
2609 }
2610 #endif
2611 
2612 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2613   if (reachable(adr)) {
2614     lock();
2615     cmpxchgptr(reg, as_Address(adr));
2616   } else {
2617     lea(rscratch1, adr);
2618     lock();
2619     cmpxchgptr(reg, Address(rscratch1, 0));
2620   }
2621 }
2622 
2623 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2624   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2625 }
2626 
2627 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2628   if (reachable(src)) {
2629     Assembler::comisd(dst, as_Address(src));
2630   } else {
2631     lea(rscratch1, src);
2632     Assembler::comisd(dst, Address(rscratch1, 0));
2633   }
2634 }
2635 
2636 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2637   if (reachable(src)) {
2638     Assembler::comiss(dst, as_Address(src));
2639   } else {
2640     lea(rscratch1, src);
2641     Assembler::comiss(dst, Address(rscratch1, 0));
2642   }
2643 }
2644 
2645 
2646 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2647   Condition negated_cond = negate_condition(cond);
2648   Label L;
2649   jcc(negated_cond, L);
2650   pushf(); // Preserve flags
2651   atomic_incl(counter_addr);
2652   popf();
2653   bind(L);
2654 }
2655 
2656 int MacroAssembler::corrected_idivl(Register reg) {
2657   // Full implementation of Java idiv and irem; checks for
2658   // special case as described in JVM spec., p.243 & p.271.
2659   // The function returns the (pc) offset of the idivl
2660   // instruction - may be needed for implicit exceptions.
2661   //
2662   //         normal case                           special case
2663   //
2664   // input : rax,: dividend                         min_int
2665   //         reg: divisor   (may not be rax,/rdx)   -1
2666   //
2667   // output: rax,: quotient  (= rax, idiv reg)       min_int
2668   //         rdx: remainder (= rax, irem reg)       0
2669   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2670   const int min_int = 0x80000000;
2671   Label normal_case, special_case;
2672 
2673   // check for special case
2674   cmpl(rax, min_int);
2675   jcc(Assembler::notEqual, normal_case);
2676   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2677   cmpl(reg, -1);
2678   jcc(Assembler::equal, special_case);
2679 
2680   // handle normal case
2681   bind(normal_case);
2682   cdql();
2683   int idivl_offset = offset();
2684   idivl(reg);
2685 
2686   // normal and special case exit
2687   bind(special_case);
2688 
2689   return idivl_offset;
2690 }
2691 
2692 
2693 
2694 void MacroAssembler::decrementl(Register reg, int value) {
2695   if (value == min_jint) {subl(reg, value) ; return; }
2696   if (value <  0) { incrementl(reg, -value); return; }
2697   if (value == 0) {                        ; return; }
2698   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2699   /* else */      { subl(reg, value)       ; return; }
2700 }
2701 
2702 void MacroAssembler::decrementl(Address dst, int value) {
2703   if (value == min_jint) {subl(dst, value) ; return; }
2704   if (value <  0) { incrementl(dst, -value); return; }
2705   if (value == 0) {                        ; return; }
2706   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2707   /* else */      { subl(dst, value)       ; return; }
2708 }
2709 
2710 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2711   assert (shift_value > 0, "illegal shift value");
2712   Label _is_positive;
2713   testl (reg, reg);
2714   jcc (Assembler::positive, _is_positive);
2715   int offset = (1 << shift_value) - 1 ;
2716 
2717   if (offset == 1) {
2718     incrementl(reg);
2719   } else {
2720     addl(reg, offset);
2721   }
2722 
2723   bind (_is_positive);
2724   sarl(reg, shift_value);
2725 }
2726 
2727 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2728   if (reachable(src)) {
2729     Assembler::divsd(dst, as_Address(src));
2730   } else {
2731     lea(rscratch1, src);
2732     Assembler::divsd(dst, Address(rscratch1, 0));
2733   }
2734 }
2735 
2736 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2737   if (reachable(src)) {
2738     Assembler::divss(dst, as_Address(src));
2739   } else {
2740     lea(rscratch1, src);
2741     Assembler::divss(dst, Address(rscratch1, 0));
2742   }
2743 }
2744 
2745 // !defined(COMPILER2) is because of stupid core builds
2746 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2747 void MacroAssembler::empty_FPU_stack() {
2748   if (VM_Version::supports_mmx()) {
2749     emms();
2750   } else {
2751     for (int i = 8; i-- > 0; ) ffree(i);
2752   }
2753 }
2754 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2755 
2756 
2757 void MacroAssembler::enter() {
2758   push(rbp);
2759   mov(rbp, rsp);
2760 }
2761 
2762 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2763 void MacroAssembler::fat_nop() {
2764   if (UseAddressNop) {
2765     addr_nop_5();
2766   } else {
2767     emit_int8(0x26); // es:
2768     emit_int8(0x2e); // cs:
2769     emit_int8(0x64); // fs:
2770     emit_int8(0x65); // gs:
2771     emit_int8((unsigned char)0x90);
2772   }
2773 }
2774 
2775 void MacroAssembler::fcmp(Register tmp) {
2776   fcmp(tmp, 1, true, true);
2777 }
2778 
2779 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2780   assert(!pop_right || pop_left, "usage error");
2781   if (VM_Version::supports_cmov()) {
2782     assert(tmp == noreg, "unneeded temp");
2783     if (pop_left) {
2784       fucomip(index);
2785     } else {
2786       fucomi(index);
2787     }
2788     if (pop_right) {
2789       fpop();
2790     }
2791   } else {
2792     assert(tmp != noreg, "need temp");
2793     if (pop_left) {
2794       if (pop_right) {
2795         fcompp();
2796       } else {
2797         fcomp(index);
2798       }
2799     } else {
2800       fcom(index);
2801     }
2802     // convert FPU condition into eflags condition via rax,
2803     save_rax(tmp);
2804     fwait(); fnstsw_ax();
2805     sahf();
2806     restore_rax(tmp);
2807   }
2808   // condition codes set as follows:
2809   //
2810   // CF (corresponds to C0) if x < y
2811   // PF (corresponds to C2) if unordered
2812   // ZF (corresponds to C3) if x = y
2813 }
2814 
2815 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2816   fcmp2int(dst, unordered_is_less, 1, true, true);
2817 }
2818 
2819 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2820   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
2821   Label L;
2822   if (unordered_is_less) {
2823     movl(dst, -1);
2824     jcc(Assembler::parity, L);
2825     jcc(Assembler::below , L);
2826     movl(dst, 0);
2827     jcc(Assembler::equal , L);
2828     increment(dst);
2829   } else { // unordered is greater
2830     movl(dst, 1);
2831     jcc(Assembler::parity, L);
2832     jcc(Assembler::above , L);
2833     movl(dst, 0);
2834     jcc(Assembler::equal , L);
2835     decrementl(dst);
2836   }
2837   bind(L);
2838 }
2839 
2840 void MacroAssembler::fld_d(AddressLiteral src) {
2841   fld_d(as_Address(src));
2842 }
2843 
2844 void MacroAssembler::fld_s(AddressLiteral src) {
2845   fld_s(as_Address(src));
2846 }
2847 
2848 void MacroAssembler::fld_x(AddressLiteral src) {
2849   Assembler::fld_x(as_Address(src));
2850 }
2851 
2852 void MacroAssembler::fldcw(AddressLiteral src) {
2853   Assembler::fldcw(as_Address(src));
2854 }
2855 
2856 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
2857   if (reachable(src)) {
2858     Assembler::mulpd(dst, as_Address(src));
2859   } else {
2860     lea(rscratch1, src);
2861     Assembler::mulpd(dst, Address(rscratch1, 0));
2862   }
2863 }
2864 
2865 void MacroAssembler::increase_precision() {
2866   subptr(rsp, BytesPerWord);
2867   fnstcw(Address(rsp, 0));
2868   movl(rax, Address(rsp, 0));
2869   orl(rax, 0x300);
2870   push(rax);
2871   fldcw(Address(rsp, 0));
2872   pop(rax);
2873 }
2874 
2875 void MacroAssembler::restore_precision() {
2876   fldcw(Address(rsp, 0));
2877   addptr(rsp, BytesPerWord);
2878 }
2879 
2880 void MacroAssembler::fpop() {
2881   ffree();
2882   fincstp();
2883 }
2884 
2885 void MacroAssembler::load_float(Address src) {
2886   if (UseSSE >= 1) {
2887     movflt(xmm0, src);
2888   } else {
2889     LP64_ONLY(ShouldNotReachHere());
2890     NOT_LP64(fld_s(src));
2891   }
2892 }
2893 
2894 void MacroAssembler::store_float(Address dst) {
2895   if (UseSSE >= 1) {
2896     movflt(dst, xmm0);
2897   } else {
2898     LP64_ONLY(ShouldNotReachHere());
2899     NOT_LP64(fstp_s(dst));
2900   }
2901 }
2902 
2903 void MacroAssembler::load_double(Address src) {
2904   if (UseSSE >= 2) {
2905     movdbl(xmm0, src);
2906   } else {
2907     LP64_ONLY(ShouldNotReachHere());
2908     NOT_LP64(fld_d(src));
2909   }
2910 }
2911 
2912 void MacroAssembler::store_double(Address dst) {
2913   if (UseSSE >= 2) {
2914     movdbl(dst, xmm0);
2915   } else {
2916     LP64_ONLY(ShouldNotReachHere());
2917     NOT_LP64(fstp_d(dst));
2918   }
2919 }
2920 
2921 void MacroAssembler::fremr(Register tmp) {
2922   save_rax(tmp);
2923   { Label L;
2924     bind(L);
2925     fprem();
2926     fwait(); fnstsw_ax();
2927 #ifdef _LP64
2928     testl(rax, 0x400);
2929     jcc(Assembler::notEqual, L);
2930 #else
2931     sahf();
2932     jcc(Assembler::parity, L);
2933 #endif // _LP64
2934   }
2935   restore_rax(tmp);
2936   // Result is in ST0.
2937   // Note: fxch & fpop to get rid of ST1
2938   // (otherwise FPU stack could overflow eventually)
2939   fxch(1);
2940   fpop();
2941 }
2942 
2943 // dst = c = a * b + c
2944 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2945   Assembler::vfmadd231sd(c, a, b);
2946   if (dst != c) {
2947     movdbl(dst, c);
2948   }
2949 }
2950 
2951 // dst = c = a * b + c
2952 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2953   Assembler::vfmadd231ss(c, a, b);
2954   if (dst != c) {
2955     movflt(dst, c);
2956   }
2957 }
2958 
2959 // dst = c = a * b + c
2960 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2961   Assembler::vfmadd231pd(c, a, b, vector_len);
2962   if (dst != c) {
2963     vmovdqu(dst, c);
2964   }
2965 }
2966 
2967 // dst = c = a * b + c
2968 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2969   Assembler::vfmadd231ps(c, a, b, vector_len);
2970   if (dst != c) {
2971     vmovdqu(dst, c);
2972   }
2973 }
2974 
2975 // dst = c = a * b + c
2976 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2977   Assembler::vfmadd231pd(c, a, b, vector_len);
2978   if (dst != c) {
2979     vmovdqu(dst, c);
2980   }
2981 }
2982 
2983 // dst = c = a * b + c
2984 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2985   Assembler::vfmadd231ps(c, a, b, vector_len);
2986   if (dst != c) {
2987     vmovdqu(dst, c);
2988   }
2989 }
2990 
2991 void MacroAssembler::incrementl(AddressLiteral dst) {
2992   if (reachable(dst)) {
2993     incrementl(as_Address(dst));
2994   } else {
2995     lea(rscratch1, dst);
2996     incrementl(Address(rscratch1, 0));
2997   }
2998 }
2999 
3000 void MacroAssembler::incrementl(ArrayAddress dst) {
3001   incrementl(as_Address(dst));
3002 }
3003 
3004 void MacroAssembler::incrementl(Register reg, int value) {
3005   if (value == min_jint) {addl(reg, value) ; return; }
3006   if (value <  0) { decrementl(reg, -value); return; }
3007   if (value == 0) {                        ; return; }
3008   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3009   /* else */      { addl(reg, value)       ; return; }
3010 }
3011 
3012 void MacroAssembler::incrementl(Address dst, int value) {
3013   if (value == min_jint) {addl(dst, value) ; return; }
3014   if (value <  0) { decrementl(dst, -value); return; }
3015   if (value == 0) {                        ; return; }
3016   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3017   /* else */      { addl(dst, value)       ; return; }
3018 }
3019 
3020 void MacroAssembler::jump(AddressLiteral dst) {
3021   if (reachable(dst)) {
3022     jmp_literal(dst.target(), dst.rspec());
3023   } else {
3024     lea(rscratch1, dst);
3025     jmp(rscratch1);
3026   }
3027 }
3028 
3029 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3030   if (reachable(dst)) {
3031     InstructionMark im(this);
3032     relocate(dst.reloc());
3033     const int short_size = 2;
3034     const int long_size = 6;
3035     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3036     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3037       // 0111 tttn #8-bit disp
3038       emit_int8(0x70 | cc);
3039       emit_int8((offs - short_size) & 0xFF);
3040     } else {
3041       // 0000 1111 1000 tttn #32-bit disp
3042       emit_int8(0x0F);
3043       emit_int8((unsigned char)(0x80 | cc));
3044       emit_int32(offs - long_size);
3045     }
3046   } else {
3047 #ifdef ASSERT
3048     warning("reversing conditional branch");
3049 #endif /* ASSERT */
3050     Label skip;
3051     jccb(reverse[cc], skip);
3052     lea(rscratch1, dst);
3053     Assembler::jmp(rscratch1);
3054     bind(skip);
3055   }
3056 }
3057 
3058 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3059   if (reachable(src)) {
3060     Assembler::ldmxcsr(as_Address(src));
3061   } else {
3062     lea(rscratch1, src);
3063     Assembler::ldmxcsr(Address(rscratch1, 0));
3064   }
3065 }
3066 
3067 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3068   int off;
3069   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3070     off = offset();
3071     movsbl(dst, src); // movsxb
3072   } else {
3073     off = load_unsigned_byte(dst, src);
3074     shll(dst, 24);
3075     sarl(dst, 24);
3076   }
3077   return off;
3078 }
3079 
3080 // Note: load_signed_short used to be called load_signed_word.
3081 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3082 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3083 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3084 int MacroAssembler::load_signed_short(Register dst, Address src) {
3085   int off;
3086   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3087     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3088     // version but this is what 64bit has always done. This seems to imply
3089     // that users are only using 32bits worth.
3090     off = offset();
3091     movswl(dst, src); // movsxw
3092   } else {
3093     off = load_unsigned_short(dst, src);
3094     shll(dst, 16);
3095     sarl(dst, 16);
3096   }
3097   return off;
3098 }
3099 
3100 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3101   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3102   // and "3.9 Partial Register Penalties", p. 22).
3103   int off;
3104   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3105     off = offset();
3106     movzbl(dst, src); // movzxb
3107   } else {
3108     xorl(dst, dst);
3109     off = offset();
3110     movb(dst, src);
3111   }
3112   return off;
3113 }
3114 
3115 // Note: load_unsigned_short used to be called load_unsigned_word.
3116 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3117   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3118   // and "3.9 Partial Register Penalties", p. 22).
3119   int off;
3120   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3121     off = offset();
3122     movzwl(dst, src); // movzxw
3123   } else {
3124     xorl(dst, dst);
3125     off = offset();
3126     movw(dst, src);
3127   }
3128   return off;
3129 }
3130 
3131 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3132   switch (size_in_bytes) {
3133 #ifndef _LP64
3134   case  8:
3135     assert(dst2 != noreg, "second dest register required");
3136     movl(dst,  src);
3137     movl(dst2, src.plus_disp(BytesPerInt));
3138     break;
3139 #else
3140   case  8:  movq(dst, src); break;
3141 #endif
3142   case  4:  movl(dst, src); break;
3143   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3144   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3145   default:  ShouldNotReachHere();
3146   }
3147 }
3148 
3149 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3150   switch (size_in_bytes) {
3151 #ifndef _LP64
3152   case  8:
3153     assert(src2 != noreg, "second source register required");
3154     movl(dst,                        src);
3155     movl(dst.plus_disp(BytesPerInt), src2);
3156     break;
3157 #else
3158   case  8:  movq(dst, src); break;
3159 #endif
3160   case  4:  movl(dst, src); break;
3161   case  2:  movw(dst, src); break;
3162   case  1:  movb(dst, src); break;
3163   default:  ShouldNotReachHere();
3164   }
3165 }
3166 
3167 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3168   if (reachable(dst)) {
3169     movl(as_Address(dst), src);
3170   } else {
3171     lea(rscratch1, dst);
3172     movl(Address(rscratch1, 0), src);
3173   }
3174 }
3175 
3176 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3177   if (reachable(src)) {
3178     movl(dst, as_Address(src));
3179   } else {
3180     lea(rscratch1, src);
3181     movl(dst, Address(rscratch1, 0));
3182   }
3183 }
3184 
3185 // C++ bool manipulation
3186 
3187 void MacroAssembler::movbool(Register dst, Address src) {
3188   if(sizeof(bool) == 1)
3189     movb(dst, src);
3190   else if(sizeof(bool) == 2)
3191     movw(dst, src);
3192   else if(sizeof(bool) == 4)
3193     movl(dst, src);
3194   else
3195     // unsupported
3196     ShouldNotReachHere();
3197 }
3198 
3199 void MacroAssembler::movbool(Address dst, bool boolconst) {
3200   if(sizeof(bool) == 1)
3201     movb(dst, (int) boolconst);
3202   else if(sizeof(bool) == 2)
3203     movw(dst, (int) boolconst);
3204   else if(sizeof(bool) == 4)
3205     movl(dst, (int) boolconst);
3206   else
3207     // unsupported
3208     ShouldNotReachHere();
3209 }
3210 
3211 void MacroAssembler::movbool(Address dst, Register src) {
3212   if(sizeof(bool) == 1)
3213     movb(dst, src);
3214   else if(sizeof(bool) == 2)
3215     movw(dst, src);
3216   else if(sizeof(bool) == 4)
3217     movl(dst, src);
3218   else
3219     // unsupported
3220     ShouldNotReachHere();
3221 }
3222 
3223 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3224   movb(as_Address(dst), src);
3225 }
3226 
3227 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3228   if (reachable(src)) {
3229     movdl(dst, as_Address(src));
3230   } else {
3231     lea(rscratch1, src);
3232     movdl(dst, Address(rscratch1, 0));
3233   }
3234 }
3235 
3236 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3237   if (reachable(src)) {
3238     movq(dst, as_Address(src));
3239   } else {
3240     lea(rscratch1, src);
3241     movq(dst, Address(rscratch1, 0));
3242   }
3243 }
3244 
3245 #ifdef COMPILER2
3246 void MacroAssembler::setvectmask(Register dst, Register src) {
3247   guarantee(PostLoopMultiversioning, "must be");
3248   Assembler::movl(dst, 1);
3249   Assembler::shlxl(dst, dst, src);
3250   Assembler::decl(dst);
3251   Assembler::kmovdl(k1, dst);
3252   Assembler::movl(dst, src);
3253 }
3254 
3255 void MacroAssembler::restorevectmask() {
3256   guarantee(PostLoopMultiversioning, "must be");
3257   Assembler::knotwl(k1, k0);
3258 }
3259 #endif // COMPILER2
3260 
3261 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3262   if (reachable(src)) {
3263     if (UseXmmLoadAndClearUpper) {
3264       movsd (dst, as_Address(src));
3265     } else {
3266       movlpd(dst, as_Address(src));
3267     }
3268   } else {
3269     lea(rscratch1, src);
3270     if (UseXmmLoadAndClearUpper) {
3271       movsd (dst, Address(rscratch1, 0));
3272     } else {
3273       movlpd(dst, Address(rscratch1, 0));
3274     }
3275   }
3276 }
3277 
3278 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3279   if (reachable(src)) {
3280     movss(dst, as_Address(src));
3281   } else {
3282     lea(rscratch1, src);
3283     movss(dst, Address(rscratch1, 0));
3284   }
3285 }
3286 
3287 void MacroAssembler::movptr(Register dst, Register src) {
3288   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3289 }
3290 
3291 void MacroAssembler::movptr(Register dst, Address src) {
3292   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3293 }
3294 
3295 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3296 void MacroAssembler::movptr(Register dst, intptr_t src) {
3297   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3298 }
3299 
3300 void MacroAssembler::movptr(Address dst, Register src) {
3301   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3302 }
3303 
3304 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3305     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3306     Assembler::movdqu(dst, src);
3307 }
3308 
3309 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3310     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3311     Assembler::movdqu(dst, src);
3312 }
3313 
3314 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3315     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3316     Assembler::movdqu(dst, src);
3317 }
3318 
3319 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3320   if (reachable(src)) {
3321     movdqu(dst, as_Address(src));
3322   } else {
3323     lea(scratchReg, src);
3324     movdqu(dst, Address(scratchReg, 0));
3325   }
3326 }
3327 
3328 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3329     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3330     Assembler::vmovdqu(dst, src);
3331 }
3332 
3333 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3334     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3335     Assembler::vmovdqu(dst, src);
3336 }
3337 
3338 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3339     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3340     Assembler::vmovdqu(dst, src);
3341 }
3342 
3343 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3344   if (reachable(src)) {
3345     vmovdqu(dst, as_Address(src));
3346   }
3347   else {
3348     lea(scratch_reg, src);
3349     vmovdqu(dst, Address(scratch_reg, 0));
3350   }
3351 }
3352 
3353 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3354   if (reachable(src)) {
3355     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3356   } else {
3357     lea(rscratch, src);
3358     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3359   }
3360 }
3361 
3362 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3363   if (reachable(src)) {
3364     Assembler::movdqa(dst, as_Address(src));
3365   } else {
3366     lea(rscratch1, src);
3367     Assembler::movdqa(dst, Address(rscratch1, 0));
3368   }
3369 }
3370 
3371 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3372   if (reachable(src)) {
3373     Assembler::movsd(dst, as_Address(src));
3374   } else {
3375     lea(rscratch1, src);
3376     Assembler::movsd(dst, Address(rscratch1, 0));
3377   }
3378 }
3379 
3380 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3381   if (reachable(src)) {
3382     Assembler::movss(dst, as_Address(src));
3383   } else {
3384     lea(rscratch1, src);
3385     Assembler::movss(dst, Address(rscratch1, 0));
3386   }
3387 }
3388 
3389 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3390   if (reachable(src)) {
3391     Assembler::mulsd(dst, as_Address(src));
3392   } else {
3393     lea(rscratch1, src);
3394     Assembler::mulsd(dst, Address(rscratch1, 0));
3395   }
3396 }
3397 
3398 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3399   if (reachable(src)) {
3400     Assembler::mulss(dst, as_Address(src));
3401   } else {
3402     lea(rscratch1, src);
3403     Assembler::mulss(dst, Address(rscratch1, 0));
3404   }
3405 }
3406 
3407 void MacroAssembler::null_check(Register reg, int offset) {
3408   if (needs_explicit_null_check(offset)) {
3409     // provoke OS NULL exception if reg = NULL by
3410     // accessing M[reg] w/o changing any (non-CC) registers
3411     // NOTE: cmpl is plenty here to provoke a segv
3412     cmpptr(rax, Address(reg, 0));
3413     // Note: should probably use testl(rax, Address(reg, 0));
3414     //       may be shorter code (however, this version of
3415     //       testl needs to be implemented first)
3416   } else {
3417     // nothing to do, (later) access of M[reg + offset]
3418     // will provoke OS NULL exception if reg = NULL
3419   }
3420 }
3421 
3422 void MacroAssembler::os_breakpoint() {
3423   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3424   // (e.g., MSVC can't call ps() otherwise)
3425   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3426 }
3427 
3428 void MacroAssembler::unimplemented(const char* what) {
3429   const char* buf = NULL;
3430   {
3431     ResourceMark rm;
3432     stringStream ss;
3433     ss.print("unimplemented: %s", what);
3434     buf = code_string(ss.as_string());
3435   }
3436   stop(buf);
3437 }
3438 
3439 #ifdef _LP64
3440 #define XSTATE_BV 0x200
3441 #endif
3442 
3443 void MacroAssembler::pop_CPU_state() {
3444   pop_FPU_state();
3445   pop_IU_state();
3446 }
3447 
3448 void MacroAssembler::pop_FPU_state() {
3449 #ifndef _LP64
3450   frstor(Address(rsp, 0));
3451 #else
3452   fxrstor(Address(rsp, 0));
3453 #endif
3454   addptr(rsp, FPUStateSizeInWords * wordSize);
3455 }
3456 
3457 void MacroAssembler::pop_IU_state() {
3458   popa();
3459   LP64_ONLY(addq(rsp, 8));
3460   popf();
3461 }
3462 
3463 // Save Integer and Float state
3464 // Warning: Stack must be 16 byte aligned (64bit)
3465 void MacroAssembler::push_CPU_state() {
3466   push_IU_state();
3467   push_FPU_state();
3468 }
3469 
3470 void MacroAssembler::push_FPU_state() {
3471   subptr(rsp, FPUStateSizeInWords * wordSize);
3472 #ifndef _LP64
3473   fnsave(Address(rsp, 0));
3474   fwait();
3475 #else
3476   fxsave(Address(rsp, 0));
3477 #endif // LP64
3478 }
3479 
3480 void MacroAssembler::push_IU_state() {
3481   // Push flags first because pusha kills them
3482   pushf();
3483   // Make sure rsp stays 16-byte aligned
3484   LP64_ONLY(subq(rsp, 8));
3485   pusha();
3486 }
3487 
3488 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3489   if (!java_thread->is_valid()) {
3490     java_thread = rdi;
3491     get_thread(java_thread);
3492   }
3493   // we must set sp to zero to clear frame
3494   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3495   if (clear_fp) {
3496     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3497   }
3498 
3499   // Always clear the pc because it could have been set by make_walkable()
3500   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3501 
3502   vzeroupper();
3503 }
3504 
3505 void MacroAssembler::restore_rax(Register tmp) {
3506   if (tmp == noreg) pop(rax);
3507   else if (tmp != rax) mov(rax, tmp);
3508 }
3509 
3510 void MacroAssembler::round_to(Register reg, int modulus) {
3511   addptr(reg, modulus - 1);
3512   andptr(reg, -modulus);
3513 }
3514 
3515 void MacroAssembler::save_rax(Register tmp) {
3516   if (tmp == noreg) push(rax);
3517   else if (tmp != rax) mov(tmp, rax);
3518 }
3519 
3520 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3521   if (SafepointMechanism::uses_thread_local_poll()) {
3522 #ifdef _LP64
3523     assert(thread_reg == r15_thread, "should be");
3524 #else
3525     if (thread_reg == noreg) {
3526       thread_reg = temp_reg;
3527       get_thread(thread_reg);
3528     }
3529 #endif
3530     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3531     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3532   } else {
3533     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3534         SafepointSynchronize::_not_synchronized);
3535     jcc(Assembler::notEqual, slow_path);
3536   }
3537 }
3538 
3539 // Calls to C land
3540 //
3541 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3542 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3543 // has to be reset to 0. This is required to allow proper stack traversal.
3544 void MacroAssembler::set_last_Java_frame(Register java_thread,
3545                                          Register last_java_sp,
3546                                          Register last_java_fp,
3547                                          address  last_java_pc) {
3548   vzeroupper();
3549   // determine java_thread register
3550   if (!java_thread->is_valid()) {
3551     java_thread = rdi;
3552     get_thread(java_thread);
3553   }
3554   // determine last_java_sp register
3555   if (!last_java_sp->is_valid()) {
3556     last_java_sp = rsp;
3557   }
3558 
3559   // last_java_fp is optional
3560 
3561   if (last_java_fp->is_valid()) {
3562     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3563   }
3564 
3565   // last_java_pc is optional
3566 
3567   if (last_java_pc != NULL) {
3568     lea(Address(java_thread,
3569                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3570         InternalAddress(last_java_pc));
3571 
3572   }
3573   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3574 }
3575 
3576 void MacroAssembler::shlptr(Register dst, int imm8) {
3577   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3578 }
3579 
3580 void MacroAssembler::shrptr(Register dst, int imm8) {
3581   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3582 }
3583 
3584 void MacroAssembler::sign_extend_byte(Register reg) {
3585   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3586     movsbl(reg, reg); // movsxb
3587   } else {
3588     shll(reg, 24);
3589     sarl(reg, 24);
3590   }
3591 }
3592 
3593 void MacroAssembler::sign_extend_short(Register reg) {
3594   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3595     movswl(reg, reg); // movsxw
3596   } else {
3597     shll(reg, 16);
3598     sarl(reg, 16);
3599   }
3600 }
3601 
3602 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3603   assert(reachable(src), "Address should be reachable");
3604   testl(dst, as_Address(src));
3605 }
3606 
3607 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3608   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3609   Assembler::pcmpeqb(dst, src);
3610 }
3611 
3612 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3613   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3614   Assembler::pcmpeqw(dst, src);
3615 }
3616 
3617 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3618   assert((dst->encoding() < 16),"XMM register should be 0-15");
3619   Assembler::pcmpestri(dst, src, imm8);
3620 }
3621 
3622 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3623   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3624   Assembler::pcmpestri(dst, src, imm8);
3625 }
3626 
3627 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3628   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3629   Assembler::pmovzxbw(dst, src);
3630 }
3631 
3632 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3633   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3634   Assembler::pmovzxbw(dst, src);
3635 }
3636 
3637 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3638   assert((src->encoding() < 16),"XMM register should be 0-15");
3639   Assembler::pmovmskb(dst, src);
3640 }
3641 
3642 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3643   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3644   Assembler::ptest(dst, src);
3645 }
3646 
3647 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3648   if (reachable(src)) {
3649     Assembler::sqrtsd(dst, as_Address(src));
3650   } else {
3651     lea(rscratch1, src);
3652     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3653   }
3654 }
3655 
3656 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3657   if (reachable(src)) {
3658     Assembler::sqrtss(dst, as_Address(src));
3659   } else {
3660     lea(rscratch1, src);
3661     Assembler::sqrtss(dst, Address(rscratch1, 0));
3662   }
3663 }
3664 
3665 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3666   if (reachable(src)) {
3667     Assembler::subsd(dst, as_Address(src));
3668   } else {
3669     lea(rscratch1, src);
3670     Assembler::subsd(dst, Address(rscratch1, 0));
3671   }
3672 }
3673 
3674 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3675   if (reachable(src)) {
3676     Assembler::subss(dst, as_Address(src));
3677   } else {
3678     lea(rscratch1, src);
3679     Assembler::subss(dst, Address(rscratch1, 0));
3680   }
3681 }
3682 
3683 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3684   if (reachable(src)) {
3685     Assembler::ucomisd(dst, as_Address(src));
3686   } else {
3687     lea(rscratch1, src);
3688     Assembler::ucomisd(dst, Address(rscratch1, 0));
3689   }
3690 }
3691 
3692 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3693   if (reachable(src)) {
3694     Assembler::ucomiss(dst, as_Address(src));
3695   } else {
3696     lea(rscratch1, src);
3697     Assembler::ucomiss(dst, Address(rscratch1, 0));
3698   }
3699 }
3700 
3701 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3702   // Used in sign-bit flipping with aligned address.
3703   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3704   if (reachable(src)) {
3705     Assembler::xorpd(dst, as_Address(src));
3706   } else {
3707     lea(scratch_reg, src);
3708     Assembler::xorpd(dst, Address(scratch_reg, 0));
3709   }
3710 }
3711 
3712 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
3713   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3714     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3715   }
3716   else {
3717     Assembler::xorpd(dst, src);
3718   }
3719 }
3720 
3721 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
3722   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3723     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3724   } else {
3725     Assembler::xorps(dst, src);
3726   }
3727 }
3728 
3729 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3730   // Used in sign-bit flipping with aligned address.
3731   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3732   if (reachable(src)) {
3733     Assembler::xorps(dst, as_Address(src));
3734   } else {
3735     lea(scratch_reg, src);
3736     Assembler::xorps(dst, Address(scratch_reg, 0));
3737   }
3738 }
3739 
3740 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3741   // Used in sign-bit flipping with aligned address.
3742   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3743   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3744   if (reachable(src)) {
3745     Assembler::pshufb(dst, as_Address(src));
3746   } else {
3747     lea(rscratch1, src);
3748     Assembler::pshufb(dst, Address(rscratch1, 0));
3749   }
3750 }
3751 
3752 // AVX 3-operands instructions
3753 
3754 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3755   if (reachable(src)) {
3756     vaddsd(dst, nds, as_Address(src));
3757   } else {
3758     lea(rscratch1, src);
3759     vaddsd(dst, nds, Address(rscratch1, 0));
3760   }
3761 }
3762 
3763 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3764   if (reachable(src)) {
3765     vaddss(dst, nds, as_Address(src));
3766   } else {
3767     lea(rscratch1, src);
3768     vaddss(dst, nds, Address(rscratch1, 0));
3769   }
3770 }
3771 
3772 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3773   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3774   vandps(dst, nds, negate_field, vector_len);
3775 }
3776 
3777 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3778   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3779   vandpd(dst, nds, negate_field, vector_len);
3780 }
3781 
3782 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3783   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3784   Assembler::vpaddb(dst, nds, src, vector_len);
3785 }
3786 
3787 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3788   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3789   Assembler::vpaddb(dst, nds, src, vector_len);
3790 }
3791 
3792 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3793   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3794   Assembler::vpaddw(dst, nds, src, vector_len);
3795 }
3796 
3797 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3798   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3799   Assembler::vpaddw(dst, nds, src, vector_len);
3800 }
3801 
3802 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3803   if (reachable(src)) {
3804     Assembler::vpand(dst, nds, as_Address(src), vector_len);
3805   } else {
3806     lea(scratch_reg, src);
3807     Assembler::vpand(dst, nds, Address(scratch_reg, 0), vector_len);
3808   }
3809 }
3810 
3811 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
3812   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3813   Assembler::vpbroadcastw(dst, src, vector_len);
3814 }
3815 
3816 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3817   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3818   Assembler::vpcmpeqb(dst, nds, src, vector_len);
3819 }
3820 
3821 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3822   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3823   Assembler::vpcmpeqw(dst, nds, src, vector_len);
3824 }
3825 
3826 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3827   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3828   Assembler::vpmovzxbw(dst, src, vector_len);
3829 }
3830 
3831 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
3832   assert((src->encoding() < 16),"XMM register should be 0-15");
3833   Assembler::vpmovmskb(dst, src);
3834 }
3835 
3836 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3837   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3838   Assembler::vpmullw(dst, nds, src, vector_len);
3839 }
3840 
3841 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3842   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3843   Assembler::vpmullw(dst, nds, src, vector_len);
3844 }
3845 
3846 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3847   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3848   Assembler::vpsubb(dst, nds, src, vector_len);
3849 }
3850 
3851 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3852   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3853   Assembler::vpsubb(dst, nds, src, vector_len);
3854 }
3855 
3856 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3857   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3858   Assembler::vpsubw(dst, nds, src, vector_len);
3859 }
3860 
3861 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3862   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3863   Assembler::vpsubw(dst, nds, src, vector_len);
3864 }
3865 
3866 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3867   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3868   Assembler::vpsraw(dst, nds, shift, vector_len);
3869 }
3870 
3871 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3872   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3873   Assembler::vpsraw(dst, nds, shift, vector_len);
3874 }
3875 
3876 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3877   assert(UseAVX > 2,"");
3878   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3879      vector_len = 2;
3880   }
3881   Assembler::evpsraq(dst, nds, shift, vector_len);
3882 }
3883 
3884 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3885   assert(UseAVX > 2,"");
3886   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3887      vector_len = 2;
3888   }
3889   Assembler::evpsraq(dst, nds, shift, vector_len);
3890 }
3891 
3892 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3893   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3894   Assembler::vpsrlw(dst, nds, shift, vector_len);
3895 }
3896 
3897 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3898   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3899   Assembler::vpsrlw(dst, nds, shift, vector_len);
3900 }
3901 
3902 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3903   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3904   Assembler::vpsllw(dst, nds, shift, vector_len);
3905 }
3906 
3907 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3908   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3909   Assembler::vpsllw(dst, nds, shift, vector_len);
3910 }
3911 
3912 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
3913   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3914   Assembler::vptest(dst, src);
3915 }
3916 
3917 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3918   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3919   Assembler::punpcklbw(dst, src);
3920 }
3921 
3922 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
3923   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3924   Assembler::pshufd(dst, src, mode);
3925 }
3926 
3927 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3928   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3929   Assembler::pshuflw(dst, src, mode);
3930 }
3931 
3932 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3933   if (reachable(src)) {
3934     vandpd(dst, nds, as_Address(src), vector_len);
3935   } else {
3936     lea(scratch_reg, src);
3937     vandpd(dst, nds, Address(scratch_reg, 0), vector_len);
3938   }
3939 }
3940 
3941 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3942   if (reachable(src)) {
3943     vandps(dst, nds, as_Address(src), vector_len);
3944   } else {
3945     lea(scratch_reg, src);
3946     vandps(dst, nds, Address(scratch_reg, 0), vector_len);
3947   }
3948 }
3949 
3950 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3951   if (reachable(src)) {
3952     vdivsd(dst, nds, as_Address(src));
3953   } else {
3954     lea(rscratch1, src);
3955     vdivsd(dst, nds, Address(rscratch1, 0));
3956   }
3957 }
3958 
3959 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3960   if (reachable(src)) {
3961     vdivss(dst, nds, as_Address(src));
3962   } else {
3963     lea(rscratch1, src);
3964     vdivss(dst, nds, Address(rscratch1, 0));
3965   }
3966 }
3967 
3968 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3969   if (reachable(src)) {
3970     vmulsd(dst, nds, as_Address(src));
3971   } else {
3972     lea(rscratch1, src);
3973     vmulsd(dst, nds, Address(rscratch1, 0));
3974   }
3975 }
3976 
3977 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3978   if (reachable(src)) {
3979     vmulss(dst, nds, as_Address(src));
3980   } else {
3981     lea(rscratch1, src);
3982     vmulss(dst, nds, Address(rscratch1, 0));
3983   }
3984 }
3985 
3986 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3987   if (reachable(src)) {
3988     vsubsd(dst, nds, as_Address(src));
3989   } else {
3990     lea(rscratch1, src);
3991     vsubsd(dst, nds, Address(rscratch1, 0));
3992   }
3993 }
3994 
3995 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3996   if (reachable(src)) {
3997     vsubss(dst, nds, as_Address(src));
3998   } else {
3999     lea(rscratch1, src);
4000     vsubss(dst, nds, Address(rscratch1, 0));
4001   }
4002 }
4003 
4004 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4005   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4006   vxorps(dst, nds, src, Assembler::AVX_128bit);
4007 }
4008 
4009 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4010   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4011   vxorpd(dst, nds, src, Assembler::AVX_128bit);
4012 }
4013 
4014 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4015   if (reachable(src)) {
4016     vxorpd(dst, nds, as_Address(src), vector_len);
4017   } else {
4018     lea(scratch_reg, src);
4019     vxorpd(dst, nds, Address(scratch_reg, 0), vector_len);
4020   }
4021 }
4022 
4023 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4024   if (reachable(src)) {
4025     vxorps(dst, nds, as_Address(src), vector_len);
4026   } else {
4027     lea(scratch_reg, src);
4028     vxorps(dst, nds, Address(scratch_reg, 0), vector_len);
4029   }
4030 }
4031 
4032 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4033   if (UseAVX > 1 || (vector_len < 1)) {
4034     if (reachable(src)) {
4035       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
4036     } else {
4037       lea(scratch_reg, src);
4038       Assembler::vpxor(dst, nds, Address(scratch_reg, 0), vector_len);
4039     }
4040   }
4041   else {
4042     MacroAssembler::vxorpd(dst, nds, src, vector_len, scratch_reg);
4043   }
4044 }
4045 
4046 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
4047   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
4048   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
4049   // The inverted mask is sign-extended
4050   andptr(possibly_jweak, inverted_jweak_mask);
4051 }
4052 
4053 void MacroAssembler::resolve_jobject(Register value,
4054                                      Register thread,
4055                                      Register tmp) {
4056   assert_different_registers(value, thread, tmp);
4057   Label done, not_weak;
4058   testptr(value, value);
4059   jcc(Assembler::zero, done);                // Use NULL as-is.
4060   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
4061   jcc(Assembler::zero, not_weak);
4062   // Resolve jweak.
4063   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4064                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
4065   verify_oop(value);
4066   jmp(done);
4067   bind(not_weak);
4068   // Resolve (untagged) jobject.
4069   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
4070   verify_oop(value);
4071   bind(done);
4072 }
4073 
4074 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4075   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4076 }
4077 
4078 // Force generation of a 4 byte immediate value even if it fits into 8bit
4079 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4080   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4081 }
4082 
4083 void MacroAssembler::subptr(Register dst, Register src) {
4084   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4085 }
4086 
4087 // C++ bool manipulation
4088 void MacroAssembler::testbool(Register dst) {
4089   if(sizeof(bool) == 1)
4090     testb(dst, 0xff);
4091   else if(sizeof(bool) == 2) {
4092     // testw implementation needed for two byte bools
4093     ShouldNotReachHere();
4094   } else if(sizeof(bool) == 4)
4095     testl(dst, dst);
4096   else
4097     // unsupported
4098     ShouldNotReachHere();
4099 }
4100 
4101 void MacroAssembler::testptr(Register dst, Register src) {
4102   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4103 }
4104 
4105 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4106 void MacroAssembler::tlab_allocate(Register thread, Register obj,
4107                                    Register var_size_in_bytes,
4108                                    int con_size_in_bytes,
4109                                    Register t1,
4110                                    Register t2,
4111                                    Label& slow_case) {
4112   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4113   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4114 }
4115 
4116 // Defines obj, preserves var_size_in_bytes
4117 void MacroAssembler::eden_allocate(Register thread, Register obj,
4118                                    Register var_size_in_bytes,
4119                                    int con_size_in_bytes,
4120                                    Register t1,
4121                                    Label& slow_case) {
4122   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4123   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
4124 }
4125 
4126 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
4127 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
4128   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
4129   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
4130   Label done;
4131 
4132   testptr(length_in_bytes, length_in_bytes);
4133   jcc(Assembler::zero, done);
4134 
4135   // initialize topmost word, divide index by 2, check if odd and test if zero
4136   // note: for the remaining code to work, index must be a multiple of BytesPerWord
4137 #ifdef ASSERT
4138   {
4139     Label L;
4140     testptr(length_in_bytes, BytesPerWord - 1);
4141     jcc(Assembler::zero, L);
4142     stop("length must be a multiple of BytesPerWord");
4143     bind(L);
4144   }
4145 #endif
4146   Register index = length_in_bytes;
4147   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
4148   if (UseIncDec) {
4149     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
4150   } else {
4151     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
4152     shrptr(index, 1);
4153   }
4154 #ifndef _LP64
4155   // index could have not been a multiple of 8 (i.e., bit 2 was set)
4156   {
4157     Label even;
4158     // note: if index was a multiple of 8, then it cannot
4159     //       be 0 now otherwise it must have been 0 before
4160     //       => if it is even, we don't need to check for 0 again
4161     jcc(Assembler::carryClear, even);
4162     // clear topmost word (no jump would be needed if conditional assignment worked here)
4163     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
4164     // index could be 0 now, must check again
4165     jcc(Assembler::zero, done);
4166     bind(even);
4167   }
4168 #endif // !_LP64
4169   // initialize remaining object fields: index is a multiple of 2 now
4170   {
4171     Label loop;
4172     bind(loop);
4173     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
4174     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
4175     decrement(index);
4176     jcc(Assembler::notZero, loop);
4177   }
4178 
4179   bind(done);
4180 }
4181 
4182 // Look up the method for a megamorphic invokeinterface call.
4183 // The target method is determined by <intf_klass, itable_index>.
4184 // The receiver klass is in recv_klass.
4185 // On success, the result will be in method_result, and execution falls through.
4186 // On failure, execution transfers to the given label.
4187 void MacroAssembler::lookup_interface_method(Register recv_klass,
4188                                              Register intf_klass,
4189                                              RegisterOrConstant itable_index,
4190                                              Register method_result,
4191                                              Register scan_temp,
4192                                              Label& L_no_such_interface,
4193                                              bool return_method) {
4194   assert_different_registers(recv_klass, intf_klass, scan_temp);
4195   assert_different_registers(method_result, intf_klass, scan_temp);
4196   assert(recv_klass != method_result || !return_method,
4197          "recv_klass can be destroyed when method isn't needed");
4198 
4199   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4200          "caller must use same register for non-constant itable index as for method");
4201 
4202   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4203   int vtable_base = in_bytes(Klass::vtable_start_offset());
4204   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4205   int scan_step   = itableOffsetEntry::size() * wordSize;
4206   int vte_size    = vtableEntry::size_in_bytes();
4207   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4208   assert(vte_size == wordSize, "else adjust times_vte_scale");
4209 
4210   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
4211 
4212   // %%% Could store the aligned, prescaled offset in the klassoop.
4213   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4214 
4215   if (return_method) {
4216     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4217     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4218     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4219   }
4220 
4221   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4222   //   if (scan->interface() == intf) {
4223   //     result = (klass + scan->offset() + itable_index);
4224   //   }
4225   // }
4226   Label search, found_method;
4227 
4228   for (int peel = 1; peel >= 0; peel--) {
4229     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4230     cmpptr(intf_klass, method_result);
4231 
4232     if (peel) {
4233       jccb(Assembler::equal, found_method);
4234     } else {
4235       jccb(Assembler::notEqual, search);
4236       // (invert the test to fall through to found_method...)
4237     }
4238 
4239     if (!peel)  break;
4240 
4241     bind(search);
4242 
4243     // Check that the previous entry is non-null.  A null entry means that
4244     // the receiver class doesn't implement the interface, and wasn't the
4245     // same as when the caller was compiled.
4246     testptr(method_result, method_result);
4247     jcc(Assembler::zero, L_no_such_interface);
4248     addptr(scan_temp, scan_step);
4249   }
4250 
4251   bind(found_method);
4252 
4253   if (return_method) {
4254     // Got a hit.
4255     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4256     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4257   }
4258 }
4259 
4260 
4261 // virtual method calling
4262 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4263                                            RegisterOrConstant vtable_index,
4264                                            Register method_result) {
4265   const int base = in_bytes(Klass::vtable_start_offset());
4266   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4267   Address vtable_entry_addr(recv_klass,
4268                             vtable_index, Address::times_ptr,
4269                             base + vtableEntry::method_offset_in_bytes());
4270   movptr(method_result, vtable_entry_addr);
4271 }
4272 
4273 
4274 void MacroAssembler::check_klass_subtype(Register sub_klass,
4275                            Register super_klass,
4276                            Register temp_reg,
4277                            Label& L_success) {
4278   Label L_failure;
4279   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4280   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4281   bind(L_failure);
4282 }
4283 
4284 
4285 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4286                                                    Register super_klass,
4287                                                    Register temp_reg,
4288                                                    Label* L_success,
4289                                                    Label* L_failure,
4290                                                    Label* L_slow_path,
4291                                         RegisterOrConstant super_check_offset) {
4292   assert_different_registers(sub_klass, super_klass, temp_reg);
4293   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4294   if (super_check_offset.is_register()) {
4295     assert_different_registers(sub_klass, super_klass,
4296                                super_check_offset.as_register());
4297   } else if (must_load_sco) {
4298     assert(temp_reg != noreg, "supply either a temp or a register offset");
4299   }
4300 
4301   Label L_fallthrough;
4302   int label_nulls = 0;
4303   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4304   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4305   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4306   assert(label_nulls <= 1, "at most one NULL in the batch");
4307 
4308   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4309   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4310   Address super_check_offset_addr(super_klass, sco_offset);
4311 
4312   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4313   // range of a jccb.  If this routine grows larger, reconsider at
4314   // least some of these.
4315 #define local_jcc(assembler_cond, label)                                \
4316   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4317   else                             jcc( assembler_cond, label) /*omit semi*/
4318 
4319   // Hacked jmp, which may only be used just before L_fallthrough.
4320 #define final_jmp(label)                                                \
4321   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4322   else                            jmp(label)                /*omit semi*/
4323 
4324   // If the pointers are equal, we are done (e.g., String[] elements).
4325   // This self-check enables sharing of secondary supertype arrays among
4326   // non-primary types such as array-of-interface.  Otherwise, each such
4327   // type would need its own customized SSA.
4328   // We move this check to the front of the fast path because many
4329   // type checks are in fact trivially successful in this manner,
4330   // so we get a nicely predicted branch right at the start of the check.
4331   cmpptr(sub_klass, super_klass);
4332   local_jcc(Assembler::equal, *L_success);
4333 
4334   // Check the supertype display:
4335   if (must_load_sco) {
4336     // Positive movl does right thing on LP64.
4337     movl(temp_reg, super_check_offset_addr);
4338     super_check_offset = RegisterOrConstant(temp_reg);
4339   }
4340   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4341   cmpptr(super_klass, super_check_addr); // load displayed supertype
4342 
4343   // This check has worked decisively for primary supers.
4344   // Secondary supers are sought in the super_cache ('super_cache_addr').
4345   // (Secondary supers are interfaces and very deeply nested subtypes.)
4346   // This works in the same check above because of a tricky aliasing
4347   // between the super_cache and the primary super display elements.
4348   // (The 'super_check_addr' can address either, as the case requires.)
4349   // Note that the cache is updated below if it does not help us find
4350   // what we need immediately.
4351   // So if it was a primary super, we can just fail immediately.
4352   // Otherwise, it's the slow path for us (no success at this point).
4353 
4354   if (super_check_offset.is_register()) {
4355     local_jcc(Assembler::equal, *L_success);
4356     cmpl(super_check_offset.as_register(), sc_offset);
4357     if (L_failure == &L_fallthrough) {
4358       local_jcc(Assembler::equal, *L_slow_path);
4359     } else {
4360       local_jcc(Assembler::notEqual, *L_failure);
4361       final_jmp(*L_slow_path);
4362     }
4363   } else if (super_check_offset.as_constant() == sc_offset) {
4364     // Need a slow path; fast failure is impossible.
4365     if (L_slow_path == &L_fallthrough) {
4366       local_jcc(Assembler::equal, *L_success);
4367     } else {
4368       local_jcc(Assembler::notEqual, *L_slow_path);
4369       final_jmp(*L_success);
4370     }
4371   } else {
4372     // No slow path; it's a fast decision.
4373     if (L_failure == &L_fallthrough) {
4374       local_jcc(Assembler::equal, *L_success);
4375     } else {
4376       local_jcc(Assembler::notEqual, *L_failure);
4377       final_jmp(*L_success);
4378     }
4379   }
4380 
4381   bind(L_fallthrough);
4382 
4383 #undef local_jcc
4384 #undef final_jmp
4385 }
4386 
4387 
4388 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4389                                                    Register super_klass,
4390                                                    Register temp_reg,
4391                                                    Register temp2_reg,
4392                                                    Label* L_success,
4393                                                    Label* L_failure,
4394                                                    bool set_cond_codes) {
4395   assert_different_registers(sub_klass, super_klass, temp_reg);
4396   if (temp2_reg != noreg)
4397     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
4398 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
4399 
4400   Label L_fallthrough;
4401   int label_nulls = 0;
4402   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4403   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4404   assert(label_nulls <= 1, "at most one NULL in the batch");
4405 
4406   // a couple of useful fields in sub_klass:
4407   int ss_offset = in_bytes(Klass::secondary_supers_offset());
4408   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4409   Address secondary_supers_addr(sub_klass, ss_offset);
4410   Address super_cache_addr(     sub_klass, sc_offset);
4411 
4412   // Do a linear scan of the secondary super-klass chain.
4413   // This code is rarely used, so simplicity is a virtue here.
4414   // The repne_scan instruction uses fixed registers, which we must spill.
4415   // Don't worry too much about pre-existing connections with the input regs.
4416 
4417   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
4418   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
4419 
4420   // Get super_klass value into rax (even if it was in rdi or rcx).
4421   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
4422   if (super_klass != rax || UseCompressedOops) {
4423     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
4424     mov(rax, super_klass);
4425   }
4426   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
4427   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
4428 
4429 #ifndef PRODUCT
4430   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
4431   ExternalAddress pst_counter_addr((address) pst_counter);
4432   NOT_LP64(  incrementl(pst_counter_addr) );
4433   LP64_ONLY( lea(rcx, pst_counter_addr) );
4434   LP64_ONLY( incrementl(Address(rcx, 0)) );
4435 #endif //PRODUCT
4436 
4437   // We will consult the secondary-super array.
4438   movptr(rdi, secondary_supers_addr);
4439   // Load the array length.  (Positive movl does right thing on LP64.)
4440   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
4441   // Skip to start of data.
4442   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
4443 
4444   // Scan RCX words at [RDI] for an occurrence of RAX.
4445   // Set NZ/Z based on last compare.
4446   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
4447   // not change flags (only scas instruction which is repeated sets flags).
4448   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
4449 
4450     testptr(rax,rax); // Set Z = 0
4451     repne_scan();
4452 
4453   // Unspill the temp. registers:
4454   if (pushed_rdi)  pop(rdi);
4455   if (pushed_rcx)  pop(rcx);
4456   if (pushed_rax)  pop(rax);
4457 
4458   if (set_cond_codes) {
4459     // Special hack for the AD files:  rdi is guaranteed non-zero.
4460     assert(!pushed_rdi, "rdi must be left non-NULL");
4461     // Also, the condition codes are properly set Z/NZ on succeed/failure.
4462   }
4463 
4464   if (L_failure == &L_fallthrough)
4465         jccb(Assembler::notEqual, *L_failure);
4466   else  jcc(Assembler::notEqual, *L_failure);
4467 
4468   // Success.  Cache the super we found and proceed in triumph.
4469   movptr(super_cache_addr, super_klass);
4470 
4471   if (L_success != &L_fallthrough) {
4472     jmp(*L_success);
4473   }
4474 
4475 #undef IS_A_TEMP
4476 
4477   bind(L_fallthrough);
4478 }
4479 
4480 
4481 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
4482   if (VM_Version::supports_cmov()) {
4483     cmovl(cc, dst, src);
4484   } else {
4485     Label L;
4486     jccb(negate_condition(cc), L);
4487     movl(dst, src);
4488     bind(L);
4489   }
4490 }
4491 
4492 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
4493   if (VM_Version::supports_cmov()) {
4494     cmovl(cc, dst, src);
4495   } else {
4496     Label L;
4497     jccb(negate_condition(cc), L);
4498     movl(dst, src);
4499     bind(L);
4500   }
4501 }
4502 
4503 void MacroAssembler::verify_oop(Register reg, const char* s) {
4504   if (!VerifyOops) return;
4505 
4506   // Pass register number to verify_oop_subroutine
4507   const char* b = NULL;
4508   {
4509     ResourceMark rm;
4510     stringStream ss;
4511     ss.print("verify_oop: %s: %s", reg->name(), s);
4512     b = code_string(ss.as_string());
4513   }
4514   BLOCK_COMMENT("verify_oop {");
4515 #ifdef _LP64
4516   push(rscratch1);                    // save r10, trashed by movptr()
4517 #endif
4518   push(rax);                          // save rax,
4519   push(reg);                          // pass register argument
4520   ExternalAddress buffer((address) b);
4521   // avoid using pushptr, as it modifies scratch registers
4522   // and our contract is not to modify anything
4523   movptr(rax, buffer.addr());
4524   push(rax);
4525   // call indirectly to solve generation ordering problem
4526   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4527   call(rax);
4528   // Caller pops the arguments (oop, message) and restores rax, r10
4529   BLOCK_COMMENT("} verify_oop");
4530 }
4531 
4532 
4533 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
4534                                                       Register tmp,
4535                                                       int offset) {
4536   intptr_t value = *delayed_value_addr;
4537   if (value != 0)
4538     return RegisterOrConstant(value + offset);
4539 
4540   // load indirectly to solve generation ordering problem
4541   movptr(tmp, ExternalAddress((address) delayed_value_addr));
4542 
4543 #ifdef ASSERT
4544   { Label L;
4545     testptr(tmp, tmp);
4546     if (WizardMode) {
4547       const char* buf = NULL;
4548       {
4549         ResourceMark rm;
4550         stringStream ss;
4551         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
4552         buf = code_string(ss.as_string());
4553       }
4554       jcc(Assembler::notZero, L);
4555       STOP(buf);
4556     } else {
4557       jccb(Assembler::notZero, L);
4558       hlt();
4559     }
4560     bind(L);
4561   }
4562 #endif
4563 
4564   if (offset != 0)
4565     addptr(tmp, offset);
4566 
4567   return RegisterOrConstant(tmp);
4568 }
4569 
4570 
4571 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
4572                                          int extra_slot_offset) {
4573   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
4574   int stackElementSize = Interpreter::stackElementSize;
4575   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
4576 #ifdef ASSERT
4577   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
4578   assert(offset1 - offset == stackElementSize, "correct arithmetic");
4579 #endif
4580   Register             scale_reg    = noreg;
4581   Address::ScaleFactor scale_factor = Address::no_scale;
4582   if (arg_slot.is_constant()) {
4583     offset += arg_slot.as_constant() * stackElementSize;
4584   } else {
4585     scale_reg    = arg_slot.as_register();
4586     scale_factor = Address::times(stackElementSize);
4587   }
4588   offset += wordSize;           // return PC is on stack
4589   return Address(rsp, scale_reg, scale_factor, offset);
4590 }
4591 
4592 
4593 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
4594   if (!VerifyOops) return;
4595 
4596   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
4597   // Pass register number to verify_oop_subroutine
4598   const char* b = NULL;
4599   {
4600     ResourceMark rm;
4601     stringStream ss;
4602     ss.print("verify_oop_addr: %s", s);
4603     b = code_string(ss.as_string());
4604   }
4605 #ifdef _LP64
4606   push(rscratch1);                    // save r10, trashed by movptr()
4607 #endif
4608   push(rax);                          // save rax,
4609   // addr may contain rsp so we will have to adjust it based on the push
4610   // we just did (and on 64 bit we do two pushes)
4611   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
4612   // stores rax into addr which is backwards of what was intended.
4613   if (addr.uses(rsp)) {
4614     lea(rax, addr);
4615     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
4616   } else {
4617     pushptr(addr);
4618   }
4619 
4620   ExternalAddress buffer((address) b);
4621   // pass msg argument
4622   // avoid using pushptr, as it modifies scratch registers
4623   // and our contract is not to modify anything
4624   movptr(rax, buffer.addr());
4625   push(rax);
4626 
4627   // call indirectly to solve generation ordering problem
4628   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4629   call(rax);
4630   // Caller pops the arguments (addr, message) and restores rax, r10.
4631 }
4632 
4633 void MacroAssembler::verify_tlab() {
4634 #ifdef ASSERT
4635   if (UseTLAB && VerifyOops) {
4636     Label next, ok;
4637     Register t1 = rsi;
4638     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
4639 
4640     push(t1);
4641     NOT_LP64(push(thread_reg));
4642     NOT_LP64(get_thread(thread_reg));
4643 
4644     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4645     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4646     jcc(Assembler::aboveEqual, next);
4647     STOP("assert(top >= start)");
4648     should_not_reach_here();
4649 
4650     bind(next);
4651     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4652     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4653     jcc(Assembler::aboveEqual, ok);
4654     STOP("assert(top <= end)");
4655     should_not_reach_here();
4656 
4657     bind(ok);
4658     NOT_LP64(pop(thread_reg));
4659     pop(t1);
4660   }
4661 #endif
4662 }
4663 
4664 class ControlWord {
4665  public:
4666   int32_t _value;
4667 
4668   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
4669   int  precision_control() const       { return  (_value >>  8) & 3      ; }
4670   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4671   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4672   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4673   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4674   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4675   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4676 
4677   void print() const {
4678     // rounding control
4679     const char* rc;
4680     switch (rounding_control()) {
4681       case 0: rc = "round near"; break;
4682       case 1: rc = "round down"; break;
4683       case 2: rc = "round up  "; break;
4684       case 3: rc = "chop      "; break;
4685     };
4686     // precision control
4687     const char* pc;
4688     switch (precision_control()) {
4689       case 0: pc = "24 bits "; break;
4690       case 1: pc = "reserved"; break;
4691       case 2: pc = "53 bits "; break;
4692       case 3: pc = "64 bits "; break;
4693     };
4694     // flags
4695     char f[9];
4696     f[0] = ' ';
4697     f[1] = ' ';
4698     f[2] = (precision   ()) ? 'P' : 'p';
4699     f[3] = (underflow   ()) ? 'U' : 'u';
4700     f[4] = (overflow    ()) ? 'O' : 'o';
4701     f[5] = (zero_divide ()) ? 'Z' : 'z';
4702     f[6] = (denormalized()) ? 'D' : 'd';
4703     f[7] = (invalid     ()) ? 'I' : 'i';
4704     f[8] = '\x0';
4705     // output
4706     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
4707   }
4708 
4709 };
4710 
4711 class StatusWord {
4712  public:
4713   int32_t _value;
4714 
4715   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
4716   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
4717   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
4718   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
4719   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
4720   int  top() const                     { return  (_value >> 11) & 7      ; }
4721   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
4722   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
4723   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4724   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4725   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4726   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4727   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4728   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4729 
4730   void print() const {
4731     // condition codes
4732     char c[5];
4733     c[0] = (C3()) ? '3' : '-';
4734     c[1] = (C2()) ? '2' : '-';
4735     c[2] = (C1()) ? '1' : '-';
4736     c[3] = (C0()) ? '0' : '-';
4737     c[4] = '\x0';
4738     // flags
4739     char f[9];
4740     f[0] = (error_status()) ? 'E' : '-';
4741     f[1] = (stack_fault ()) ? 'S' : '-';
4742     f[2] = (precision   ()) ? 'P' : '-';
4743     f[3] = (underflow   ()) ? 'U' : '-';
4744     f[4] = (overflow    ()) ? 'O' : '-';
4745     f[5] = (zero_divide ()) ? 'Z' : '-';
4746     f[6] = (denormalized()) ? 'D' : '-';
4747     f[7] = (invalid     ()) ? 'I' : '-';
4748     f[8] = '\x0';
4749     // output
4750     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
4751   }
4752 
4753 };
4754 
4755 class TagWord {
4756  public:
4757   int32_t _value;
4758 
4759   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
4760 
4761   void print() const {
4762     printf("%04x", _value & 0xFFFF);
4763   }
4764 
4765 };
4766 
4767 class FPU_Register {
4768  public:
4769   int32_t _m0;
4770   int32_t _m1;
4771   int16_t _ex;
4772 
4773   bool is_indefinite() const           {
4774     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
4775   }
4776 
4777   void print() const {
4778     char  sign = (_ex < 0) ? '-' : '+';
4779     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
4780     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
4781   };
4782 
4783 };
4784 
4785 class FPU_State {
4786  public:
4787   enum {
4788     register_size       = 10,
4789     number_of_registers =  8,
4790     register_mask       =  7
4791   };
4792 
4793   ControlWord  _control_word;
4794   StatusWord   _status_word;
4795   TagWord      _tag_word;
4796   int32_t      _error_offset;
4797   int32_t      _error_selector;
4798   int32_t      _data_offset;
4799   int32_t      _data_selector;
4800   int8_t       _register[register_size * number_of_registers];
4801 
4802   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
4803   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
4804 
4805   const char* tag_as_string(int tag) const {
4806     switch (tag) {
4807       case 0: return "valid";
4808       case 1: return "zero";
4809       case 2: return "special";
4810       case 3: return "empty";
4811     }
4812     ShouldNotReachHere();
4813     return NULL;
4814   }
4815 
4816   void print() const {
4817     // print computation registers
4818     { int t = _status_word.top();
4819       for (int i = 0; i < number_of_registers; i++) {
4820         int j = (i - t) & register_mask;
4821         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
4822         st(j)->print();
4823         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
4824       }
4825     }
4826     printf("\n");
4827     // print control registers
4828     printf("ctrl = "); _control_word.print(); printf("\n");
4829     printf("stat = "); _status_word .print(); printf("\n");
4830     printf("tags = "); _tag_word    .print(); printf("\n");
4831   }
4832 
4833 };
4834 
4835 class Flag_Register {
4836  public:
4837   int32_t _value;
4838 
4839   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
4840   bool direction() const               { return ((_value >> 10) & 1) != 0; }
4841   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
4842   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
4843   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
4844   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
4845   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
4846 
4847   void print() const {
4848     // flags
4849     char f[8];
4850     f[0] = (overflow       ()) ? 'O' : '-';
4851     f[1] = (direction      ()) ? 'D' : '-';
4852     f[2] = (sign           ()) ? 'S' : '-';
4853     f[3] = (zero           ()) ? 'Z' : '-';
4854     f[4] = (auxiliary_carry()) ? 'A' : '-';
4855     f[5] = (parity         ()) ? 'P' : '-';
4856     f[6] = (carry          ()) ? 'C' : '-';
4857     f[7] = '\x0';
4858     // output
4859     printf("%08x  flags = %s", _value, f);
4860   }
4861 
4862 };
4863 
4864 class IU_Register {
4865  public:
4866   int32_t _value;
4867 
4868   void print() const {
4869     printf("%08x  %11d", _value, _value);
4870   }
4871 
4872 };
4873 
4874 class IU_State {
4875  public:
4876   Flag_Register _eflags;
4877   IU_Register   _rdi;
4878   IU_Register   _rsi;
4879   IU_Register   _rbp;
4880   IU_Register   _rsp;
4881   IU_Register   _rbx;
4882   IU_Register   _rdx;
4883   IU_Register   _rcx;
4884   IU_Register   _rax;
4885 
4886   void print() const {
4887     // computation registers
4888     printf("rax,  = "); _rax.print(); printf("\n");
4889     printf("rbx,  = "); _rbx.print(); printf("\n");
4890     printf("rcx  = "); _rcx.print(); printf("\n");
4891     printf("rdx  = "); _rdx.print(); printf("\n");
4892     printf("rdi  = "); _rdi.print(); printf("\n");
4893     printf("rsi  = "); _rsi.print(); printf("\n");
4894     printf("rbp,  = "); _rbp.print(); printf("\n");
4895     printf("rsp  = "); _rsp.print(); printf("\n");
4896     printf("\n");
4897     // control registers
4898     printf("flgs = "); _eflags.print(); printf("\n");
4899   }
4900 };
4901 
4902 
4903 class CPU_State {
4904  public:
4905   FPU_State _fpu_state;
4906   IU_State  _iu_state;
4907 
4908   void print() const {
4909     printf("--------------------------------------------------\n");
4910     _iu_state .print();
4911     printf("\n");
4912     _fpu_state.print();
4913     printf("--------------------------------------------------\n");
4914   }
4915 
4916 };
4917 
4918 
4919 static void _print_CPU_state(CPU_State* state) {
4920   state->print();
4921 };
4922 
4923 
4924 void MacroAssembler::print_CPU_state() {
4925   push_CPU_state();
4926   push(rsp);                // pass CPU state
4927   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
4928   addptr(rsp, wordSize);       // discard argument
4929   pop_CPU_state();
4930 }
4931 
4932 
4933 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
4934   static int counter = 0;
4935   FPU_State* fs = &state->_fpu_state;
4936   counter++;
4937   // For leaf calls, only verify that the top few elements remain empty.
4938   // We only need 1 empty at the top for C2 code.
4939   if( stack_depth < 0 ) {
4940     if( fs->tag_for_st(7) != 3 ) {
4941       printf("FPR7 not empty\n");
4942       state->print();
4943       assert(false, "error");
4944       return false;
4945     }
4946     return true;                // All other stack states do not matter
4947   }
4948 
4949   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
4950          "bad FPU control word");
4951 
4952   // compute stack depth
4953   int i = 0;
4954   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
4955   int d = i;
4956   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
4957   // verify findings
4958   if (i != FPU_State::number_of_registers) {
4959     // stack not contiguous
4960     printf("%s: stack not contiguous at ST%d\n", s, i);
4961     state->print();
4962     assert(false, "error");
4963     return false;
4964   }
4965   // check if computed stack depth corresponds to expected stack depth
4966   if (stack_depth < 0) {
4967     // expected stack depth is -stack_depth or less
4968     if (d > -stack_depth) {
4969       // too many elements on the stack
4970       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
4971       state->print();
4972       assert(false, "error");
4973       return false;
4974     }
4975   } else {
4976     // expected stack depth is stack_depth
4977     if (d != stack_depth) {
4978       // wrong stack depth
4979       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
4980       state->print();
4981       assert(false, "error");
4982       return false;
4983     }
4984   }
4985   // everything is cool
4986   return true;
4987 }
4988 
4989 
4990 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
4991   if (!VerifyFPU) return;
4992   push_CPU_state();
4993   push(rsp);                // pass CPU state
4994   ExternalAddress msg((address) s);
4995   // pass message string s
4996   pushptr(msg.addr());
4997   push(stack_depth);        // pass stack depth
4998   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
4999   addptr(rsp, 3 * wordSize);   // discard arguments
5000   // check for error
5001   { Label L;
5002     testl(rax, rax);
5003     jcc(Assembler::notZero, L);
5004     int3();                  // break if error condition
5005     bind(L);
5006   }
5007   pop_CPU_state();
5008 }
5009 
5010 void MacroAssembler::restore_cpu_control_state_after_jni() {
5011   // Either restore the MXCSR register after returning from the JNI Call
5012   // or verify that it wasn't changed (with -Xcheck:jni flag).
5013   if (VM_Version::supports_sse()) {
5014     if (RestoreMXCSROnJNICalls) {
5015       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5016     } else if (CheckJNICalls) {
5017       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5018     }
5019   }
5020   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5021   vzeroupper();
5022   // Reset k1 to 0xffff.
5023 
5024 #ifdef COMPILER2
5025   if (PostLoopMultiversioning && VM_Version::supports_evex()) {
5026     push(rcx);
5027     movl(rcx, 0xffff);
5028     kmovwl(k1, rcx);
5029     pop(rcx);
5030   }
5031 #endif // COMPILER2
5032 
5033 #ifndef _LP64
5034   // Either restore the x87 floating pointer control word after returning
5035   // from the JNI call or verify that it wasn't changed.
5036   if (CheckJNICalls) {
5037     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5038   }
5039 #endif // _LP64
5040 }
5041 
5042 // ((OopHandle)result).resolve();
5043 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
5044   assert_different_registers(result, tmp);
5045 
5046   // Only 64 bit platforms support GCs that require a tmp register
5047   // Only IN_HEAP loads require a thread_tmp register
5048   // OopHandle::resolve is an indirection like jobject.
5049   access_load_at(T_OBJECT, IN_NATIVE,
5050                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
5051 }
5052 
5053 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
5054   // get mirror
5055   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
5056   movptr(mirror, Address(method, Method::const_offset()));
5057   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
5058   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
5059   movptr(mirror, Address(mirror, mirror_offset));
5060   resolve_oop_handle(mirror, tmp);
5061 }
5062 
5063 void MacroAssembler::load_klass(Register dst, Register src) {
5064 #ifdef _LP64
5065   if (UseCompressedClassPointers) {
5066     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5067     decode_klass_not_null(dst);
5068   } else
5069 #endif
5070     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5071 }
5072 
5073 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5074   load_klass(dst, src);
5075   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5076 }
5077 
5078 void MacroAssembler::store_klass(Register dst, Register src) {
5079 #ifdef _LP64
5080   if (UseCompressedClassPointers) {
5081     encode_klass_not_null(src);
5082     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5083   } else
5084 #endif
5085     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5086 }
5087 
5088 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
5089                                     Register tmp1, Register thread_tmp) {
5090   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5091   decorators = AccessInternal::decorator_fixup(decorators);
5092   bool as_raw = (decorators & AS_RAW) != 0;
5093   if (as_raw) {
5094     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5095   } else {
5096     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5097   }
5098 }
5099 
5100 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
5101                                      Register tmp1, Register tmp2) {
5102   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5103   decorators = AccessInternal::decorator_fixup(decorators);
5104   bool as_raw = (decorators & AS_RAW) != 0;
5105   if (as_raw) {
5106     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
5107   } else {
5108     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
5109   }
5110 }
5111 
5112 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
5113   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
5114   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
5115     decorators |= ACCESS_READ | ACCESS_WRITE;
5116   }
5117   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5118   return bs->resolve(this, decorators, obj);
5119 }
5120 
5121 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5122                                    Register thread_tmp, DecoratorSet decorators) {
5123   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
5124 }
5125 
5126 // Doesn't do verfication, generates fixed size code
5127 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5128                                             Register thread_tmp, DecoratorSet decorators) {
5129   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
5130 }
5131 
5132 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
5133                                     Register tmp2, DecoratorSet decorators) {
5134   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5135 }
5136 
5137 // Used for storing NULLs.
5138 void MacroAssembler::store_heap_oop_null(Address dst) {
5139   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
5140 }
5141 
5142 #ifdef _LP64
5143 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5144   if (UseCompressedClassPointers) {
5145     // Store to klass gap in destination
5146     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5147   }
5148 }
5149 
5150 #ifdef ASSERT
5151 void MacroAssembler::verify_heapbase(const char* msg) {
5152   assert (UseCompressedOops, "should be compressed");
5153   assert (Universe::heap() != NULL, "java heap should be initialized");
5154   if (CheckCompressedOops) {
5155     Label ok;
5156     push(rscratch1); // cmpptr trashes rscratch1
5157     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5158     jcc(Assembler::equal, ok);
5159     STOP(msg);
5160     bind(ok);
5161     pop(rscratch1);
5162   }
5163 }
5164 #endif
5165 
5166 // Algorithm must match oop.inline.hpp encode_heap_oop.
5167 void MacroAssembler::encode_heap_oop(Register r) {
5168 #ifdef ASSERT
5169   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5170 #endif
5171   verify_oop(r, "broken oop in encode_heap_oop");
5172   if (Universe::narrow_oop_base() == NULL) {
5173     if (Universe::narrow_oop_shift() != 0) {
5174       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5175       shrq(r, LogMinObjAlignmentInBytes);
5176     }
5177     return;
5178   }
5179   testq(r, r);
5180   cmovq(Assembler::equal, r, r12_heapbase);
5181   subq(r, r12_heapbase);
5182   shrq(r, LogMinObjAlignmentInBytes);
5183 }
5184 
5185 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5186 #ifdef ASSERT
5187   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5188   if (CheckCompressedOops) {
5189     Label ok;
5190     testq(r, r);
5191     jcc(Assembler::notEqual, ok);
5192     STOP("null oop passed to encode_heap_oop_not_null");
5193     bind(ok);
5194   }
5195 #endif
5196   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5197   if (Universe::narrow_oop_base() != NULL) {
5198     subq(r, r12_heapbase);
5199   }
5200   if (Universe::narrow_oop_shift() != 0) {
5201     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5202     shrq(r, LogMinObjAlignmentInBytes);
5203   }
5204 }
5205 
5206 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5207 #ifdef ASSERT
5208   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5209   if (CheckCompressedOops) {
5210     Label ok;
5211     testq(src, src);
5212     jcc(Assembler::notEqual, ok);
5213     STOP("null oop passed to encode_heap_oop_not_null2");
5214     bind(ok);
5215   }
5216 #endif
5217   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5218   if (dst != src) {
5219     movq(dst, src);
5220   }
5221   if (Universe::narrow_oop_base() != NULL) {
5222     subq(dst, r12_heapbase);
5223   }
5224   if (Universe::narrow_oop_shift() != 0) {
5225     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5226     shrq(dst, LogMinObjAlignmentInBytes);
5227   }
5228 }
5229 
5230 void  MacroAssembler::decode_heap_oop(Register r) {
5231 #ifdef ASSERT
5232   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5233 #endif
5234   if (Universe::narrow_oop_base() == NULL) {
5235     if (Universe::narrow_oop_shift() != 0) {
5236       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5237       shlq(r, LogMinObjAlignmentInBytes);
5238     }
5239   } else {
5240     Label done;
5241     shlq(r, LogMinObjAlignmentInBytes);
5242     jccb(Assembler::equal, done);
5243     addq(r, r12_heapbase);
5244     bind(done);
5245   }
5246   verify_oop(r, "broken oop in decode_heap_oop");
5247 }
5248 
5249 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5250   // Note: it will change flags
5251   assert (UseCompressedOops, "should only be used for compressed headers");
5252   assert (Universe::heap() != NULL, "java heap should be initialized");
5253   // Cannot assert, unverified entry point counts instructions (see .ad file)
5254   // vtableStubs also counts instructions in pd_code_size_limit.
5255   // Also do not verify_oop as this is called by verify_oop.
5256   if (Universe::narrow_oop_shift() != 0) {
5257     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5258     shlq(r, LogMinObjAlignmentInBytes);
5259     if (Universe::narrow_oop_base() != NULL) {
5260       addq(r, r12_heapbase);
5261     }
5262   } else {
5263     assert (Universe::narrow_oop_base() == NULL, "sanity");
5264   }
5265 }
5266 
5267 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5268   // Note: it will change flags
5269   assert (UseCompressedOops, "should only be used for compressed headers");
5270   assert (Universe::heap() != NULL, "java heap should be initialized");
5271   // Cannot assert, unverified entry point counts instructions (see .ad file)
5272   // vtableStubs also counts instructions in pd_code_size_limit.
5273   // Also do not verify_oop as this is called by verify_oop.
5274   if (Universe::narrow_oop_shift() != 0) {
5275     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5276     if (LogMinObjAlignmentInBytes == Address::times_8) {
5277       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5278     } else {
5279       if (dst != src) {
5280         movq(dst, src);
5281       }
5282       shlq(dst, LogMinObjAlignmentInBytes);
5283       if (Universe::narrow_oop_base() != NULL) {
5284         addq(dst, r12_heapbase);
5285       }
5286     }
5287   } else {
5288     assert (Universe::narrow_oop_base() == NULL, "sanity");
5289     if (dst != src) {
5290       movq(dst, src);
5291     }
5292   }
5293 }
5294 
5295 void MacroAssembler::encode_klass_not_null(Register r) {
5296   if (Universe::narrow_klass_base() != NULL) {
5297     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5298     assert(r != r12_heapbase, "Encoding a klass in r12");
5299     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5300     subq(r, r12_heapbase);
5301   }
5302   if (Universe::narrow_klass_shift() != 0) {
5303     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5304     shrq(r, LogKlassAlignmentInBytes);
5305   }
5306   if (Universe::narrow_klass_base() != NULL) {
5307     reinit_heapbase();
5308   }
5309 }
5310 
5311 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5312   if (dst == src) {
5313     encode_klass_not_null(src);
5314   } else {
5315     if (Universe::narrow_klass_base() != NULL) {
5316       mov64(dst, (int64_t)Universe::narrow_klass_base());
5317       negq(dst);
5318       addq(dst, src);
5319     } else {
5320       movptr(dst, src);
5321     }
5322     if (Universe::narrow_klass_shift() != 0) {
5323       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5324       shrq(dst, LogKlassAlignmentInBytes);
5325     }
5326   }
5327 }
5328 
5329 // Function instr_size_for_decode_klass_not_null() counts the instructions
5330 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5331 // when (Universe::heap() != NULL).  Hence, if the instructions they
5332 // generate change, then this method needs to be updated.
5333 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5334   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5335   if (Universe::narrow_klass_base() != NULL) {
5336     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5337     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
5338   } else {
5339     // longest load decode klass function, mov64, leaq
5340     return 16;
5341   }
5342 }
5343 
5344 // !!! If the instructions that get generated here change then function
5345 // instr_size_for_decode_klass_not_null() needs to get updated.
5346 void  MacroAssembler::decode_klass_not_null(Register r) {
5347   // Note: it will change flags
5348   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5349   assert(r != r12_heapbase, "Decoding a klass in r12");
5350   // Cannot assert, unverified entry point counts instructions (see .ad file)
5351   // vtableStubs also counts instructions in pd_code_size_limit.
5352   // Also do not verify_oop as this is called by verify_oop.
5353   if (Universe::narrow_klass_shift() != 0) {
5354     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5355     shlq(r, LogKlassAlignmentInBytes);
5356   }
5357   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5358   if (Universe::narrow_klass_base() != NULL) {
5359     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5360     addq(r, r12_heapbase);
5361     reinit_heapbase();
5362   }
5363 }
5364 
5365 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5366   // Note: it will change flags
5367   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5368   if (dst == src) {
5369     decode_klass_not_null(dst);
5370   } else {
5371     // Cannot assert, unverified entry point counts instructions (see .ad file)
5372     // vtableStubs also counts instructions in pd_code_size_limit.
5373     // Also do not verify_oop as this is called by verify_oop.
5374     mov64(dst, (int64_t)Universe::narrow_klass_base());
5375     if (Universe::narrow_klass_shift() != 0) {
5376       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5377       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5378       leaq(dst, Address(dst, src, Address::times_8, 0));
5379     } else {
5380       addq(dst, src);
5381     }
5382   }
5383 }
5384 
5385 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5386   assert (UseCompressedOops, "should only be used for compressed headers");
5387   assert (Universe::heap() != NULL, "java heap should be initialized");
5388   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5389   int oop_index = oop_recorder()->find_index(obj);
5390   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5391   mov_narrow_oop(dst, oop_index, rspec);
5392 }
5393 
5394 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5395   assert (UseCompressedOops, "should only be used for compressed headers");
5396   assert (Universe::heap() != NULL, "java heap should be initialized");
5397   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5398   int oop_index = oop_recorder()->find_index(obj);
5399   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5400   mov_narrow_oop(dst, oop_index, rspec);
5401 }
5402 
5403 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5404   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5405   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5406   int klass_index = oop_recorder()->find_index(k);
5407   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5408   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
5409 }
5410 
5411 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5412   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5413   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5414   int klass_index = oop_recorder()->find_index(k);
5415   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5416   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
5417 }
5418 
5419 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5420   assert (UseCompressedOops, "should only be used for compressed headers");
5421   assert (Universe::heap() != NULL, "java heap should be initialized");
5422   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5423   int oop_index = oop_recorder()->find_index(obj);
5424   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5425   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5426 }
5427 
5428 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
5429   assert (UseCompressedOops, "should only be used for compressed headers");
5430   assert (Universe::heap() != NULL, "java heap should be initialized");
5431   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5432   int oop_index = oop_recorder()->find_index(obj);
5433   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5434   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5435 }
5436 
5437 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
5438   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5439   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5440   int klass_index = oop_recorder()->find_index(k);
5441   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5442   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
5443 }
5444 
5445 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
5446   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5447   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5448   int klass_index = oop_recorder()->find_index(k);
5449   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5450   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
5451 }
5452 
5453 void MacroAssembler::reinit_heapbase() {
5454   if (UseCompressedOops || UseCompressedClassPointers) {
5455     if (Universe::heap() != NULL) {
5456       if (Universe::narrow_oop_base() == NULL) {
5457         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
5458       } else {
5459         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
5460       }
5461     } else {
5462       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5463     }
5464   }
5465 }
5466 
5467 #endif // _LP64
5468 
5469 // C2 compiled method's prolog code.
5470 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub) {
5471 
5472   // WARNING: Initial instruction MUST be 5 bytes or longer so that
5473   // NativeJump::patch_verified_entry will be able to patch out the entry
5474   // code safely. The push to verify stack depth is ok at 5 bytes,
5475   // the frame allocation can be either 3 or 6 bytes. So if we don't do
5476   // stack bang then we must use the 6 byte frame allocation even if
5477   // we have no frame. :-(
5478   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
5479 
5480   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
5481   // Remove word for return addr
5482   framesize -= wordSize;
5483   stack_bang_size -= wordSize;
5484 
5485   // Calls to C2R adapters often do not accept exceptional returns.
5486   // We require that their callers must bang for them.  But be careful, because
5487   // some VM calls (such as call site linkage) can use several kilobytes of
5488   // stack.  But the stack safety zone should account for that.
5489   // See bugs 4446381, 4468289, 4497237.
5490   if (stack_bang_size > 0) {
5491     generate_stack_overflow_check(stack_bang_size);
5492 
5493     // We always push rbp, so that on return to interpreter rbp, will be
5494     // restored correctly and we can correct the stack.
5495     push(rbp);
5496     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5497     if (PreserveFramePointer) {
5498       mov(rbp, rsp);
5499     }
5500     // Remove word for ebp
5501     framesize -= wordSize;
5502 
5503     // Create frame
5504     if (framesize) {
5505       subptr(rsp, framesize);
5506     }
5507   } else {
5508     // Create frame (force generation of a 4 byte immediate value)
5509     subptr_imm32(rsp, framesize);
5510 
5511     // Save RBP register now.
5512     framesize -= wordSize;
5513     movptr(Address(rsp, framesize), rbp);
5514     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5515     if (PreserveFramePointer) {
5516       movptr(rbp, rsp);
5517       if (framesize > 0) {
5518         addptr(rbp, framesize);
5519       }
5520     }
5521   }
5522 
5523   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
5524     framesize -= wordSize;
5525     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
5526   }
5527 
5528 #ifndef _LP64
5529   // If method sets FPU control word do it now
5530   if (fp_mode_24b) {
5531     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
5532   }
5533   if (UseSSE >= 2 && VerifyFPU) {
5534     verify_FPU(0, "FPU stack must be clean on entry");
5535   }
5536 #endif
5537 
5538 #ifdef ASSERT
5539   if (VerifyStackAtCalls) {
5540     Label L;
5541     push(rax);
5542     mov(rax, rsp);
5543     andptr(rax, StackAlignmentInBytes-1);
5544     cmpptr(rax, StackAlignmentInBytes-wordSize);
5545     pop(rax);
5546     jcc(Assembler::equal, L);
5547     STOP("Stack is not properly aligned!");
5548     bind(L);
5549   }
5550 #endif
5551 
5552   if (!is_stub) {
5553     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5554     bs->nmethod_entry_barrier(this);
5555   }
5556 }
5557 
5558 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
5559 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
5560   // cnt - number of qwords (8-byte words).
5561   // base - start address, qword aligned.
5562   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
5563   if (UseAVX >= 2) {
5564     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
5565   } else {
5566     pxor(xtmp, xtmp);
5567   }
5568   jmp(L_zero_64_bytes);
5569 
5570   BIND(L_loop);
5571   if (UseAVX >= 2) {
5572     vmovdqu(Address(base,  0), xtmp);
5573     vmovdqu(Address(base, 32), xtmp);
5574   } else {
5575     movdqu(Address(base,  0), xtmp);
5576     movdqu(Address(base, 16), xtmp);
5577     movdqu(Address(base, 32), xtmp);
5578     movdqu(Address(base, 48), xtmp);
5579   }
5580   addptr(base, 64);
5581 
5582   BIND(L_zero_64_bytes);
5583   subptr(cnt, 8);
5584   jccb(Assembler::greaterEqual, L_loop);
5585   addptr(cnt, 4);
5586   jccb(Assembler::less, L_tail);
5587   // Copy trailing 32 bytes
5588   if (UseAVX >= 2) {
5589     vmovdqu(Address(base, 0), xtmp);
5590   } else {
5591     movdqu(Address(base,  0), xtmp);
5592     movdqu(Address(base, 16), xtmp);
5593   }
5594   addptr(base, 32);
5595   subptr(cnt, 4);
5596 
5597   BIND(L_tail);
5598   addptr(cnt, 4);
5599   jccb(Assembler::lessEqual, L_end);
5600   decrement(cnt);
5601 
5602   BIND(L_sloop);
5603   movq(Address(base, 0), xtmp);
5604   addptr(base, 8);
5605   decrement(cnt);
5606   jccb(Assembler::greaterEqual, L_sloop);
5607   BIND(L_end);
5608 }
5609 
5610 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
5611   // cnt - number of qwords (8-byte words).
5612   // base - start address, qword aligned.
5613   // is_large - if optimizers know cnt is larger than InitArrayShortSize
5614   assert(base==rdi, "base register must be edi for rep stos");
5615   assert(tmp==rax,   "tmp register must be eax for rep stos");
5616   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
5617   assert(InitArrayShortSize % BytesPerLong == 0,
5618     "InitArrayShortSize should be the multiple of BytesPerLong");
5619 
5620   Label DONE;
5621 
5622   if (!is_large || !UseXMMForObjInit) {
5623     xorptr(tmp, tmp);
5624   }
5625 
5626   if (!is_large) {
5627     Label LOOP, LONG;
5628     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
5629     jccb(Assembler::greater, LONG);
5630 
5631     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5632 
5633     decrement(cnt);
5634     jccb(Assembler::negative, DONE); // Zero length
5635 
5636     // Use individual pointer-sized stores for small counts:
5637     BIND(LOOP);
5638     movptr(Address(base, cnt, Address::times_ptr), tmp);
5639     decrement(cnt);
5640     jccb(Assembler::greaterEqual, LOOP);
5641     jmpb(DONE);
5642 
5643     BIND(LONG);
5644   }
5645 
5646   // Use longer rep-prefixed ops for non-small counts:
5647   if (UseFastStosb) {
5648     shlptr(cnt, 3); // convert to number of bytes
5649     rep_stosb();
5650   } else if (UseXMMForObjInit) {
5651     movptr(tmp, base);
5652     xmm_clear_mem(tmp, cnt, xtmp);
5653   } else {
5654     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5655     rep_stos();
5656   }
5657 
5658   BIND(DONE);
5659 }
5660 
5661 #ifdef COMPILER2
5662 
5663 // IndexOf for constant substrings with size >= 8 chars
5664 // which don't need to be loaded through stack.
5665 void MacroAssembler::string_indexofC8(Register str1, Register str2,
5666                                       Register cnt1, Register cnt2,
5667                                       int int_cnt2,  Register result,
5668                                       XMMRegister vec, Register tmp,
5669                                       int ae) {
5670   ShortBranchVerifier sbv(this);
5671   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
5672   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5673 
5674   // This method uses the pcmpestri instruction with bound registers
5675   //   inputs:
5676   //     xmm - substring
5677   //     rax - substring length (elements count)
5678   //     mem - scanned string
5679   //     rdx - string length (elements count)
5680   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
5681   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
5682   //   outputs:
5683   //     rcx - matched index in string
5684   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5685   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
5686   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
5687   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
5688   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
5689 
5690   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
5691         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
5692         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
5693 
5694   // Note, inline_string_indexOf() generates checks:
5695   // if (substr.count > string.count) return -1;
5696   // if (substr.count == 0) return 0;
5697   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
5698 
5699   // Load substring.
5700   if (ae == StrIntrinsicNode::UL) {
5701     pmovzxbw(vec, Address(str2, 0));
5702   } else {
5703     movdqu(vec, Address(str2, 0));
5704   }
5705   movl(cnt2, int_cnt2);
5706   movptr(result, str1); // string addr
5707 
5708   if (int_cnt2 > stride) {
5709     jmpb(SCAN_TO_SUBSTR);
5710 
5711     // Reload substr for rescan, this code
5712     // is executed only for large substrings (> 8 chars)
5713     bind(RELOAD_SUBSTR);
5714     if (ae == StrIntrinsicNode::UL) {
5715       pmovzxbw(vec, Address(str2, 0));
5716     } else {
5717       movdqu(vec, Address(str2, 0));
5718     }
5719     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
5720 
5721     bind(RELOAD_STR);
5722     // We came here after the beginning of the substring was
5723     // matched but the rest of it was not so we need to search
5724     // again. Start from the next element after the previous match.
5725 
5726     // cnt2 is number of substring reminding elements and
5727     // cnt1 is number of string reminding elements when cmp failed.
5728     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
5729     subl(cnt1, cnt2);
5730     addl(cnt1, int_cnt2);
5731     movl(cnt2, int_cnt2); // Now restore cnt2
5732 
5733     decrementl(cnt1);     // Shift to next element
5734     cmpl(cnt1, cnt2);
5735     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5736 
5737     addptr(result, (1<<scale1));
5738 
5739   } // (int_cnt2 > 8)
5740 
5741   // Scan string for start of substr in 16-byte vectors
5742   bind(SCAN_TO_SUBSTR);
5743   pcmpestri(vec, Address(result, 0), mode);
5744   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
5745   subl(cnt1, stride);
5746   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
5747   cmpl(cnt1, cnt2);
5748   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5749   addptr(result, 16);
5750   jmpb(SCAN_TO_SUBSTR);
5751 
5752   // Found a potential substr
5753   bind(FOUND_CANDIDATE);
5754   // Matched whole vector if first element matched (tmp(rcx) == 0).
5755   if (int_cnt2 == stride) {
5756     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
5757   } else { // int_cnt2 > 8
5758     jccb(Assembler::overflow, FOUND_SUBSTR);
5759   }
5760   // After pcmpestri tmp(rcx) contains matched element index
5761   // Compute start addr of substr
5762   lea(result, Address(result, tmp, scale1));
5763 
5764   // Make sure string is still long enough
5765   subl(cnt1, tmp);
5766   cmpl(cnt1, cnt2);
5767   if (int_cnt2 == stride) {
5768     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
5769   } else { // int_cnt2 > 8
5770     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
5771   }
5772   // Left less then substring.
5773 
5774   bind(RET_NOT_FOUND);
5775   movl(result, -1);
5776   jmp(EXIT);
5777 
5778   if (int_cnt2 > stride) {
5779     // This code is optimized for the case when whole substring
5780     // is matched if its head is matched.
5781     bind(MATCH_SUBSTR_HEAD);
5782     pcmpestri(vec, Address(result, 0), mode);
5783     // Reload only string if does not match
5784     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
5785 
5786     Label CONT_SCAN_SUBSTR;
5787     // Compare the rest of substring (> 8 chars).
5788     bind(FOUND_SUBSTR);
5789     // First 8 chars are already matched.
5790     negptr(cnt2);
5791     addptr(cnt2, stride);
5792 
5793     bind(SCAN_SUBSTR);
5794     subl(cnt1, stride);
5795     cmpl(cnt2, -stride); // Do not read beyond substring
5796     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
5797     // Back-up strings to avoid reading beyond substring:
5798     // cnt1 = cnt1 - cnt2 + 8
5799     addl(cnt1, cnt2); // cnt2 is negative
5800     addl(cnt1, stride);
5801     movl(cnt2, stride); negptr(cnt2);
5802     bind(CONT_SCAN_SUBSTR);
5803     if (int_cnt2 < (int)G) {
5804       int tail_off1 = int_cnt2<<scale1;
5805       int tail_off2 = int_cnt2<<scale2;
5806       if (ae == StrIntrinsicNode::UL) {
5807         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
5808       } else {
5809         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
5810       }
5811       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
5812     } else {
5813       // calculate index in register to avoid integer overflow (int_cnt2*2)
5814       movl(tmp, int_cnt2);
5815       addptr(tmp, cnt2);
5816       if (ae == StrIntrinsicNode::UL) {
5817         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
5818       } else {
5819         movdqu(vec, Address(str2, tmp, scale2, 0));
5820       }
5821       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
5822     }
5823     // Need to reload strings pointers if not matched whole vector
5824     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
5825     addptr(cnt2, stride);
5826     jcc(Assembler::negative, SCAN_SUBSTR);
5827     // Fall through if found full substring
5828 
5829   } // (int_cnt2 > 8)
5830 
5831   bind(RET_FOUND);
5832   // Found result if we matched full small substring.
5833   // Compute substr offset
5834   subptr(result, str1);
5835   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
5836     shrl(result, 1); // index
5837   }
5838   bind(EXIT);
5839 
5840 } // string_indexofC8
5841 
5842 // Small strings are loaded through stack if they cross page boundary.
5843 void MacroAssembler::string_indexof(Register str1, Register str2,
5844                                     Register cnt1, Register cnt2,
5845                                     int int_cnt2,  Register result,
5846                                     XMMRegister vec, Register tmp,
5847                                     int ae) {
5848   ShortBranchVerifier sbv(this);
5849   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
5850   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5851 
5852   //
5853   // int_cnt2 is length of small (< 8 chars) constant substring
5854   // or (-1) for non constant substring in which case its length
5855   // is in cnt2 register.
5856   //
5857   // Note, inline_string_indexOf() generates checks:
5858   // if (substr.count > string.count) return -1;
5859   // if (substr.count == 0) return 0;
5860   //
5861   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
5862   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
5863   // This method uses the pcmpestri instruction with bound registers
5864   //   inputs:
5865   //     xmm - substring
5866   //     rax - substring length (elements count)
5867   //     mem - scanned string
5868   //     rdx - string length (elements count)
5869   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
5870   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
5871   //   outputs:
5872   //     rcx - matched index in string
5873   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5874   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
5875   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
5876   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
5877 
5878   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
5879         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
5880         FOUND_CANDIDATE;
5881 
5882   { //========================================================
5883     // We don't know where these strings are located
5884     // and we can't read beyond them. Load them through stack.
5885     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
5886 
5887     movptr(tmp, rsp); // save old SP
5888 
5889     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
5890       if (int_cnt2 == (1>>scale2)) { // One byte
5891         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
5892         load_unsigned_byte(result, Address(str2, 0));
5893         movdl(vec, result); // move 32 bits
5894       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
5895         // Not enough header space in 32-bit VM: 12+3 = 15.
5896         movl(result, Address(str2, -1));
5897         shrl(result, 8);
5898         movdl(vec, result); // move 32 bits
5899       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
5900         load_unsigned_short(result, Address(str2, 0));
5901         movdl(vec, result); // move 32 bits
5902       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
5903         movdl(vec, Address(str2, 0)); // move 32 bits
5904       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
5905         movq(vec, Address(str2, 0));  // move 64 bits
5906       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
5907         // Array header size is 12 bytes in 32-bit VM
5908         // + 6 bytes for 3 chars == 18 bytes,
5909         // enough space to load vec and shift.
5910         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
5911         if (ae == StrIntrinsicNode::UL) {
5912           int tail_off = int_cnt2-8;
5913           pmovzxbw(vec, Address(str2, tail_off));
5914           psrldq(vec, -2*tail_off);
5915         }
5916         else {
5917           int tail_off = int_cnt2*(1<<scale2);
5918           movdqu(vec, Address(str2, tail_off-16));
5919           psrldq(vec, 16-tail_off);
5920         }
5921       }
5922     } else { // not constant substring
5923       cmpl(cnt2, stride);
5924       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
5925 
5926       // We can read beyond string if srt+16 does not cross page boundary
5927       // since heaps are aligned and mapped by pages.
5928       assert(os::vm_page_size() < (int)G, "default page should be small");
5929       movl(result, str2); // We need only low 32 bits
5930       andl(result, (os::vm_page_size()-1));
5931       cmpl(result, (os::vm_page_size()-16));
5932       jccb(Assembler::belowEqual, CHECK_STR);
5933 
5934       // Move small strings to stack to allow load 16 bytes into vec.
5935       subptr(rsp, 16);
5936       int stk_offset = wordSize-(1<<scale2);
5937       push(cnt2);
5938 
5939       bind(COPY_SUBSTR);
5940       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
5941         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
5942         movb(Address(rsp, cnt2, scale2, stk_offset), result);
5943       } else if (ae == StrIntrinsicNode::UU) {
5944         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
5945         movw(Address(rsp, cnt2, scale2, stk_offset), result);
5946       }
5947       decrement(cnt2);
5948       jccb(Assembler::notZero, COPY_SUBSTR);
5949 
5950       pop(cnt2);
5951       movptr(str2, rsp);  // New substring address
5952     } // non constant
5953 
5954     bind(CHECK_STR);
5955     cmpl(cnt1, stride);
5956     jccb(Assembler::aboveEqual, BIG_STRINGS);
5957 
5958     // Check cross page boundary.
5959     movl(result, str1); // We need only low 32 bits
5960     andl(result, (os::vm_page_size()-1));
5961     cmpl(result, (os::vm_page_size()-16));
5962     jccb(Assembler::belowEqual, BIG_STRINGS);
5963 
5964     subptr(rsp, 16);
5965     int stk_offset = -(1<<scale1);
5966     if (int_cnt2 < 0) { // not constant
5967       push(cnt2);
5968       stk_offset += wordSize;
5969     }
5970     movl(cnt2, cnt1);
5971 
5972     bind(COPY_STR);
5973     if (ae == StrIntrinsicNode::LL) {
5974       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
5975       movb(Address(rsp, cnt2, scale1, stk_offset), result);
5976     } else {
5977       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
5978       movw(Address(rsp, cnt2, scale1, stk_offset), result);
5979     }
5980     decrement(cnt2);
5981     jccb(Assembler::notZero, COPY_STR);
5982 
5983     if (int_cnt2 < 0) { // not constant
5984       pop(cnt2);
5985     }
5986     movptr(str1, rsp);  // New string address
5987 
5988     bind(BIG_STRINGS);
5989     // Load substring.
5990     if (int_cnt2 < 0) { // -1
5991       if (ae == StrIntrinsicNode::UL) {
5992         pmovzxbw(vec, Address(str2, 0));
5993       } else {
5994         movdqu(vec, Address(str2, 0));
5995       }
5996       push(cnt2);       // substr count
5997       push(str2);       // substr addr
5998       push(str1);       // string addr
5999     } else {
6000       // Small (< 8 chars) constant substrings are loaded already.
6001       movl(cnt2, int_cnt2);
6002     }
6003     push(tmp);  // original SP
6004 
6005   } // Finished loading
6006 
6007   //========================================================
6008   // Start search
6009   //
6010 
6011   movptr(result, str1); // string addr
6012 
6013   if (int_cnt2  < 0) {  // Only for non constant substring
6014     jmpb(SCAN_TO_SUBSTR);
6015 
6016     // SP saved at sp+0
6017     // String saved at sp+1*wordSize
6018     // Substr saved at sp+2*wordSize
6019     // Substr count saved at sp+3*wordSize
6020 
6021     // Reload substr for rescan, this code
6022     // is executed only for large substrings (> 8 chars)
6023     bind(RELOAD_SUBSTR);
6024     movptr(str2, Address(rsp, 2*wordSize));
6025     movl(cnt2, Address(rsp, 3*wordSize));
6026     if (ae == StrIntrinsicNode::UL) {
6027       pmovzxbw(vec, Address(str2, 0));
6028     } else {
6029       movdqu(vec, Address(str2, 0));
6030     }
6031     // We came here after the beginning of the substring was
6032     // matched but the rest of it was not so we need to search
6033     // again. Start from the next element after the previous match.
6034     subptr(str1, result); // Restore counter
6035     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6036       shrl(str1, 1);
6037     }
6038     addl(cnt1, str1);
6039     decrementl(cnt1);   // Shift to next element
6040     cmpl(cnt1, cnt2);
6041     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6042 
6043     addptr(result, (1<<scale1));
6044   } // non constant
6045 
6046   // Scan string for start of substr in 16-byte vectors
6047   bind(SCAN_TO_SUBSTR);
6048   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6049   pcmpestri(vec, Address(result, 0), mode);
6050   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6051   subl(cnt1, stride);
6052   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6053   cmpl(cnt1, cnt2);
6054   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6055   addptr(result, 16);
6056 
6057   bind(ADJUST_STR);
6058   cmpl(cnt1, stride); // Do not read beyond string
6059   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6060   // Back-up string to avoid reading beyond string.
6061   lea(result, Address(result, cnt1, scale1, -16));
6062   movl(cnt1, stride);
6063   jmpb(SCAN_TO_SUBSTR);
6064 
6065   // Found a potential substr
6066   bind(FOUND_CANDIDATE);
6067   // After pcmpestri tmp(rcx) contains matched element index
6068 
6069   // Make sure string is still long enough
6070   subl(cnt1, tmp);
6071   cmpl(cnt1, cnt2);
6072   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6073   // Left less then substring.
6074 
6075   bind(RET_NOT_FOUND);
6076   movl(result, -1);
6077   jmp(CLEANUP);
6078 
6079   bind(FOUND_SUBSTR);
6080   // Compute start addr of substr
6081   lea(result, Address(result, tmp, scale1));
6082   if (int_cnt2 > 0) { // Constant substring
6083     // Repeat search for small substring (< 8 chars)
6084     // from new point without reloading substring.
6085     // Have to check that we don't read beyond string.
6086     cmpl(tmp, stride-int_cnt2);
6087     jccb(Assembler::greater, ADJUST_STR);
6088     // Fall through if matched whole substring.
6089   } else { // non constant
6090     assert(int_cnt2 == -1, "should be != 0");
6091 
6092     addl(tmp, cnt2);
6093     // Found result if we matched whole substring.
6094     cmpl(tmp, stride);
6095     jcc(Assembler::lessEqual, RET_FOUND);
6096 
6097     // Repeat search for small substring (<= 8 chars)
6098     // from new point 'str1' without reloading substring.
6099     cmpl(cnt2, stride);
6100     // Have to check that we don't read beyond string.
6101     jccb(Assembler::lessEqual, ADJUST_STR);
6102 
6103     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6104     // Compare the rest of substring (> 8 chars).
6105     movptr(str1, result);
6106 
6107     cmpl(tmp, cnt2);
6108     // First 8 chars are already matched.
6109     jccb(Assembler::equal, CHECK_NEXT);
6110 
6111     bind(SCAN_SUBSTR);
6112     pcmpestri(vec, Address(str1, 0), mode);
6113     // Need to reload strings pointers if not matched whole vector
6114     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6115 
6116     bind(CHECK_NEXT);
6117     subl(cnt2, stride);
6118     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6119     addptr(str1, 16);
6120     if (ae == StrIntrinsicNode::UL) {
6121       addptr(str2, 8);
6122     } else {
6123       addptr(str2, 16);
6124     }
6125     subl(cnt1, stride);
6126     cmpl(cnt2, stride); // Do not read beyond substring
6127     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6128     // Back-up strings to avoid reading beyond substring.
6129 
6130     if (ae == StrIntrinsicNode::UL) {
6131       lea(str2, Address(str2, cnt2, scale2, -8));
6132       lea(str1, Address(str1, cnt2, scale1, -16));
6133     } else {
6134       lea(str2, Address(str2, cnt2, scale2, -16));
6135       lea(str1, Address(str1, cnt2, scale1, -16));
6136     }
6137     subl(cnt1, cnt2);
6138     movl(cnt2, stride);
6139     addl(cnt1, stride);
6140     bind(CONT_SCAN_SUBSTR);
6141     if (ae == StrIntrinsicNode::UL) {
6142       pmovzxbw(vec, Address(str2, 0));
6143     } else {
6144       movdqu(vec, Address(str2, 0));
6145     }
6146     jmp(SCAN_SUBSTR);
6147 
6148     bind(RET_FOUND_LONG);
6149     movptr(str1, Address(rsp, wordSize));
6150   } // non constant
6151 
6152   bind(RET_FOUND);
6153   // Compute substr offset
6154   subptr(result, str1);
6155   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6156     shrl(result, 1); // index
6157   }
6158   bind(CLEANUP);
6159   pop(rsp); // restore SP
6160 
6161 } // string_indexof
6162 
6163 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
6164                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
6165   ShortBranchVerifier sbv(this);
6166   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6167 
6168   int stride = 8;
6169 
6170   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
6171         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
6172         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
6173         FOUND_SEQ_CHAR, DONE_LABEL;
6174 
6175   movptr(result, str1);
6176   if (UseAVX >= 2) {
6177     cmpl(cnt1, stride);
6178     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
6179     cmpl(cnt1, 2*stride);
6180     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
6181     movdl(vec1, ch);
6182     vpbroadcastw(vec1, vec1, Assembler::AVX_256bit);
6183     vpxor(vec2, vec2);
6184     movl(tmp, cnt1);
6185     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
6186     andl(cnt1,0x0000000F);  //tail count (in chars)
6187 
6188     bind(SCAN_TO_16_CHAR_LOOP);
6189     vmovdqu(vec3, Address(result, 0));
6190     vpcmpeqw(vec3, vec3, vec1, 1);
6191     vptest(vec2, vec3);
6192     jcc(Assembler::carryClear, FOUND_CHAR);
6193     addptr(result, 32);
6194     subl(tmp, 2*stride);
6195     jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
6196     jmp(SCAN_TO_8_CHAR);
6197     bind(SCAN_TO_8_CHAR_INIT);
6198     movdl(vec1, ch);
6199     pshuflw(vec1, vec1, 0x00);
6200     pshufd(vec1, vec1, 0);
6201     pxor(vec2, vec2);
6202   }
6203   bind(SCAN_TO_8_CHAR);
6204   cmpl(cnt1, stride);
6205   if (UseAVX >= 2) {
6206     jcc(Assembler::less, SCAN_TO_CHAR);
6207   } else {
6208     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
6209     movdl(vec1, ch);
6210     pshuflw(vec1, vec1, 0x00);
6211     pshufd(vec1, vec1, 0);
6212     pxor(vec2, vec2);
6213   }
6214   movl(tmp, cnt1);
6215   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
6216   andl(cnt1,0x00000007);  //tail count (in chars)
6217 
6218   bind(SCAN_TO_8_CHAR_LOOP);
6219   movdqu(vec3, Address(result, 0));
6220   pcmpeqw(vec3, vec1);
6221   ptest(vec2, vec3);
6222   jcc(Assembler::carryClear, FOUND_CHAR);
6223   addptr(result, 16);
6224   subl(tmp, stride);
6225   jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
6226   bind(SCAN_TO_CHAR);
6227   testl(cnt1, cnt1);
6228   jcc(Assembler::zero, RET_NOT_FOUND);
6229   bind(SCAN_TO_CHAR_LOOP);
6230   load_unsigned_short(tmp, Address(result, 0));
6231   cmpl(ch, tmp);
6232   jccb(Assembler::equal, FOUND_SEQ_CHAR);
6233   addptr(result, 2);
6234   subl(cnt1, 1);
6235   jccb(Assembler::zero, RET_NOT_FOUND);
6236   jmp(SCAN_TO_CHAR_LOOP);
6237 
6238   bind(RET_NOT_FOUND);
6239   movl(result, -1);
6240   jmpb(DONE_LABEL);
6241 
6242   bind(FOUND_CHAR);
6243   if (UseAVX >= 2) {
6244     vpmovmskb(tmp, vec3);
6245   } else {
6246     pmovmskb(tmp, vec3);
6247   }
6248   bsfl(ch, tmp);
6249   addl(result, ch);
6250 
6251   bind(FOUND_SEQ_CHAR);
6252   subptr(result, str1);
6253   shrl(result, 1);
6254 
6255   bind(DONE_LABEL);
6256 } // string_indexof_char
6257 
6258 // helper function for string_compare
6259 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
6260                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
6261                                         Address::ScaleFactor scale2, Register index, int ae) {
6262   if (ae == StrIntrinsicNode::LL) {
6263     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
6264     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
6265   } else if (ae == StrIntrinsicNode::UU) {
6266     load_unsigned_short(elem1, Address(str1, index, scale, 0));
6267     load_unsigned_short(elem2, Address(str2, index, scale, 0));
6268   } else {
6269     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
6270     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
6271   }
6272 }
6273 
6274 // Compare strings, used for char[] and byte[].
6275 void MacroAssembler::string_compare(Register str1, Register str2,
6276                                     Register cnt1, Register cnt2, Register result,
6277                                     XMMRegister vec1, int ae) {
6278   ShortBranchVerifier sbv(this);
6279   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6280   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
6281   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
6282   int stride2x2 = 0x40;
6283   Address::ScaleFactor scale = Address::no_scale;
6284   Address::ScaleFactor scale1 = Address::no_scale;
6285   Address::ScaleFactor scale2 = Address::no_scale;
6286 
6287   if (ae != StrIntrinsicNode::LL) {
6288     stride2x2 = 0x20;
6289   }
6290 
6291   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
6292     shrl(cnt2, 1);
6293   }
6294   // Compute the minimum of the string lengths and the
6295   // difference of the string lengths (stack).
6296   // Do the conditional move stuff
6297   movl(result, cnt1);
6298   subl(cnt1, cnt2);
6299   push(cnt1);
6300   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
6301 
6302   // Is the minimum length zero?
6303   testl(cnt2, cnt2);
6304   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6305   if (ae == StrIntrinsicNode::LL) {
6306     // Load first bytes
6307     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
6308     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
6309   } else if (ae == StrIntrinsicNode::UU) {
6310     // Load first characters
6311     load_unsigned_short(result, Address(str1, 0));
6312     load_unsigned_short(cnt1, Address(str2, 0));
6313   } else {
6314     load_unsigned_byte(result, Address(str1, 0));
6315     load_unsigned_short(cnt1, Address(str2, 0));
6316   }
6317   subl(result, cnt1);
6318   jcc(Assembler::notZero,  POP_LABEL);
6319 
6320   if (ae == StrIntrinsicNode::UU) {
6321     // Divide length by 2 to get number of chars
6322     shrl(cnt2, 1);
6323   }
6324   cmpl(cnt2, 1);
6325   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6326 
6327   // Check if the strings start at the same location and setup scale and stride
6328   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6329     cmpptr(str1, str2);
6330     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6331     if (ae == StrIntrinsicNode::LL) {
6332       scale = Address::times_1;
6333       stride = 16;
6334     } else {
6335       scale = Address::times_2;
6336       stride = 8;
6337     }
6338   } else {
6339     scale1 = Address::times_1;
6340     scale2 = Address::times_2;
6341     // scale not used
6342     stride = 8;
6343   }
6344 
6345   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6346     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6347     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6348     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
6349     Label COMPARE_TAIL_LONG;
6350     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
6351 
6352     int pcmpmask = 0x19;
6353     if (ae == StrIntrinsicNode::LL) {
6354       pcmpmask &= ~0x01;
6355     }
6356 
6357     // Setup to compare 16-chars (32-bytes) vectors,
6358     // start from first character again because it has aligned address.
6359     if (ae == StrIntrinsicNode::LL) {
6360       stride2 = 32;
6361     } else {
6362       stride2 = 16;
6363     }
6364     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6365       adr_stride = stride << scale;
6366     } else {
6367       adr_stride1 = 8;  //stride << scale1;
6368       adr_stride2 = 16; //stride << scale2;
6369     }
6370 
6371     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6372     // rax and rdx are used by pcmpestri as elements counters
6373     movl(result, cnt2);
6374     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6375     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6376 
6377     // fast path : compare first 2 8-char vectors.
6378     bind(COMPARE_16_CHARS);
6379     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6380       movdqu(vec1, Address(str1, 0));
6381     } else {
6382       pmovzxbw(vec1, Address(str1, 0));
6383     }
6384     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6385     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6386 
6387     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6388       movdqu(vec1, Address(str1, adr_stride));
6389       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6390     } else {
6391       pmovzxbw(vec1, Address(str1, adr_stride1));
6392       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
6393     }
6394     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6395     addl(cnt1, stride);
6396 
6397     // Compare the characters at index in cnt1
6398     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
6399     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6400     subl(result, cnt2);
6401     jmp(POP_LABEL);
6402 
6403     // Setup the registers to start vector comparison loop
6404     bind(COMPARE_WIDE_VECTORS);
6405     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6406       lea(str1, Address(str1, result, scale));
6407       lea(str2, Address(str2, result, scale));
6408     } else {
6409       lea(str1, Address(str1, result, scale1));
6410       lea(str2, Address(str2, result, scale2));
6411     }
6412     subl(result, stride2);
6413     subl(cnt2, stride2);
6414     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
6415     negptr(result);
6416 
6417     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6418     bind(COMPARE_WIDE_VECTORS_LOOP);
6419 
6420 #ifdef _LP64
6421     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
6422       cmpl(cnt2, stride2x2);
6423       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
6424       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
6425       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
6426 
6427       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
6428       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6429         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
6430         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6431       } else {
6432         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
6433         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6434       }
6435       kortestql(k7, k7);
6436       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
6437       addptr(result, stride2x2);  // update since we already compared at this addr
6438       subl(cnt2, stride2x2);      // and sub the size too
6439       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
6440 
6441       vpxor(vec1, vec1);
6442       jmpb(COMPARE_WIDE_TAIL);
6443     }//if (VM_Version::supports_avx512vlbw())
6444 #endif // _LP64
6445 
6446 
6447     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6448     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6449       vmovdqu(vec1, Address(str1, result, scale));
6450       vpxor(vec1, Address(str2, result, scale));
6451     } else {
6452       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
6453       vpxor(vec1, Address(str2, result, scale2));
6454     }
6455     vptest(vec1, vec1);
6456     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
6457     addptr(result, stride2);
6458     subl(cnt2, stride2);
6459     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6460     // clean upper bits of YMM registers
6461     vpxor(vec1, vec1);
6462 
6463     // compare wide vectors tail
6464     bind(COMPARE_WIDE_TAIL);
6465     testptr(result, result);
6466     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6467 
6468     movl(result, stride2);
6469     movl(cnt2, result);
6470     negptr(result);
6471     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6472 
6473     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6474     bind(VECTOR_NOT_EQUAL);
6475     // clean upper bits of YMM registers
6476     vpxor(vec1, vec1);
6477     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6478       lea(str1, Address(str1, result, scale));
6479       lea(str2, Address(str2, result, scale));
6480     } else {
6481       lea(str1, Address(str1, result, scale1));
6482       lea(str2, Address(str2, result, scale2));
6483     }
6484     jmp(COMPARE_16_CHARS);
6485 
6486     // Compare tail chars, length between 1 to 15 chars
6487     bind(COMPARE_TAIL_LONG);
6488     movl(cnt2, result);
6489     cmpl(cnt2, stride);
6490     jcc(Assembler::less, COMPARE_SMALL_STR);
6491 
6492     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6493       movdqu(vec1, Address(str1, 0));
6494     } else {
6495       pmovzxbw(vec1, Address(str1, 0));
6496     }
6497     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6498     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6499     subptr(cnt2, stride);
6500     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6501     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6502       lea(str1, Address(str1, result, scale));
6503       lea(str2, Address(str2, result, scale));
6504     } else {
6505       lea(str1, Address(str1, result, scale1));
6506       lea(str2, Address(str2, result, scale2));
6507     }
6508     negptr(cnt2);
6509     jmpb(WHILE_HEAD_LABEL);
6510 
6511     bind(COMPARE_SMALL_STR);
6512   } else if (UseSSE42Intrinsics) {
6513     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6514     int pcmpmask = 0x19;
6515     // Setup to compare 8-char (16-byte) vectors,
6516     // start from first character again because it has aligned address.
6517     movl(result, cnt2);
6518     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6519     if (ae == StrIntrinsicNode::LL) {
6520       pcmpmask &= ~0x01;
6521     }
6522     jcc(Assembler::zero, COMPARE_TAIL);
6523     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6524       lea(str1, Address(str1, result, scale));
6525       lea(str2, Address(str2, result, scale));
6526     } else {
6527       lea(str1, Address(str1, result, scale1));
6528       lea(str2, Address(str2, result, scale2));
6529     }
6530     negptr(result);
6531 
6532     // pcmpestri
6533     //   inputs:
6534     //     vec1- substring
6535     //     rax - negative string length (elements count)
6536     //     mem - scanned string
6537     //     rdx - string length (elements count)
6538     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6539     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6540     //   outputs:
6541     //     rcx - first mismatched element index
6542     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6543 
6544     bind(COMPARE_WIDE_VECTORS);
6545     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6546       movdqu(vec1, Address(str1, result, scale));
6547       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6548     } else {
6549       pmovzxbw(vec1, Address(str1, result, scale1));
6550       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6551     }
6552     // After pcmpestri cnt1(rcx) contains mismatched element index
6553 
6554     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6555     addptr(result, stride);
6556     subptr(cnt2, stride);
6557     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6558 
6559     // compare wide vectors tail
6560     testptr(result, result);
6561     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6562 
6563     movl(cnt2, stride);
6564     movl(result, stride);
6565     negptr(result);
6566     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6567       movdqu(vec1, Address(str1, result, scale));
6568       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6569     } else {
6570       pmovzxbw(vec1, Address(str1, result, scale1));
6571       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6572     }
6573     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6574 
6575     // Mismatched characters in the vectors
6576     bind(VECTOR_NOT_EQUAL);
6577     addptr(cnt1, result);
6578     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6579     subl(result, cnt2);
6580     jmpb(POP_LABEL);
6581 
6582     bind(COMPARE_TAIL); // limit is zero
6583     movl(cnt2, result);
6584     // Fallthru to tail compare
6585   }
6586   // Shift str2 and str1 to the end of the arrays, negate min
6587   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6588     lea(str1, Address(str1, cnt2, scale));
6589     lea(str2, Address(str2, cnt2, scale));
6590   } else {
6591     lea(str1, Address(str1, cnt2, scale1));
6592     lea(str2, Address(str2, cnt2, scale2));
6593   }
6594   decrementl(cnt2);  // first character was compared already
6595   negptr(cnt2);
6596 
6597   // Compare the rest of the elements
6598   bind(WHILE_HEAD_LABEL);
6599   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
6600   subl(result, cnt1);
6601   jccb(Assembler::notZero, POP_LABEL);
6602   increment(cnt2);
6603   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6604 
6605   // Strings are equal up to min length.  Return the length difference.
6606   bind(LENGTH_DIFF_LABEL);
6607   pop(result);
6608   if (ae == StrIntrinsicNode::UU) {
6609     // Divide diff by 2 to get number of chars
6610     sarl(result, 1);
6611   }
6612   jmpb(DONE_LABEL);
6613 
6614 #ifdef _LP64
6615   if (VM_Version::supports_avx512vlbw()) {
6616 
6617     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
6618 
6619     kmovql(cnt1, k7);
6620     notq(cnt1);
6621     bsfq(cnt2, cnt1);
6622     if (ae != StrIntrinsicNode::LL) {
6623       // Divide diff by 2 to get number of chars
6624       sarl(cnt2, 1);
6625     }
6626     addq(result, cnt2);
6627     if (ae == StrIntrinsicNode::LL) {
6628       load_unsigned_byte(cnt1, Address(str2, result));
6629       load_unsigned_byte(result, Address(str1, result));
6630     } else if (ae == StrIntrinsicNode::UU) {
6631       load_unsigned_short(cnt1, Address(str2, result, scale));
6632       load_unsigned_short(result, Address(str1, result, scale));
6633     } else {
6634       load_unsigned_short(cnt1, Address(str2, result, scale2));
6635       load_unsigned_byte(result, Address(str1, result, scale1));
6636     }
6637     subl(result, cnt1);
6638     jmpb(POP_LABEL);
6639   }//if (VM_Version::supports_avx512vlbw())
6640 #endif // _LP64
6641 
6642   // Discard the stored length difference
6643   bind(POP_LABEL);
6644   pop(cnt1);
6645 
6646   // That's it
6647   bind(DONE_LABEL);
6648   if(ae == StrIntrinsicNode::UL) {
6649     negl(result);
6650   }
6651 
6652 }
6653 
6654 // Search for Non-ASCII character (Negative byte value) in a byte array,
6655 // return true if it has any and false otherwise.
6656 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
6657 //   @HotSpotIntrinsicCandidate
6658 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
6659 //     for (int i = off; i < off + len; i++) {
6660 //       if (ba[i] < 0) {
6661 //         return true;
6662 //       }
6663 //     }
6664 //     return false;
6665 //   }
6666 void MacroAssembler::has_negatives(Register ary1, Register len,
6667   Register result, Register tmp1,
6668   XMMRegister vec1, XMMRegister vec2) {
6669   // rsi: byte array
6670   // rcx: len
6671   // rax: result
6672   ShortBranchVerifier sbv(this);
6673   assert_different_registers(ary1, len, result, tmp1);
6674   assert_different_registers(vec1, vec2);
6675   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
6676 
6677   // len == 0
6678   testl(len, len);
6679   jcc(Assembler::zero, FALSE_LABEL);
6680 
6681   if ((UseAVX > 2) && // AVX512
6682     VM_Version::supports_avx512vlbw() &&
6683     VM_Version::supports_bmi2()) {
6684 
6685     Label test_64_loop, test_tail;
6686     Register tmp3_aliased = len;
6687 
6688     movl(tmp1, len);
6689     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
6690 
6691     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
6692     andl(len, ~(64 - 1));    // vector count (in chars)
6693     jccb(Assembler::zero, test_tail);
6694 
6695     lea(ary1, Address(ary1, len, Address::times_1));
6696     negptr(len);
6697 
6698     bind(test_64_loop);
6699     // Check whether our 64 elements of size byte contain negatives
6700     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
6701     kortestql(k2, k2);
6702     jcc(Assembler::notZero, TRUE_LABEL);
6703 
6704     addptr(len, 64);
6705     jccb(Assembler::notZero, test_64_loop);
6706 
6707 
6708     bind(test_tail);
6709     // bail out when there is nothing to be done
6710     testl(tmp1, -1);
6711     jcc(Assembler::zero, FALSE_LABEL);
6712 
6713     // ~(~0 << len) applied up to two times (for 32-bit scenario)
6714 #ifdef _LP64
6715     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
6716     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
6717     notq(tmp3_aliased);
6718     kmovql(k3, tmp3_aliased);
6719 #else
6720     Label k_init;
6721     jmp(k_init);
6722 
6723     // We could not read 64-bits from a general purpose register thus we move
6724     // data required to compose 64 1's to the instruction stream
6725     // We emit 64 byte wide series of elements from 0..63 which later on would
6726     // be used as a compare targets with tail count contained in tmp1 register.
6727     // Result would be a k register having tmp1 consecutive number or 1
6728     // counting from least significant bit.
6729     address tmp = pc();
6730     emit_int64(0x0706050403020100);
6731     emit_int64(0x0F0E0D0C0B0A0908);
6732     emit_int64(0x1716151413121110);
6733     emit_int64(0x1F1E1D1C1B1A1918);
6734     emit_int64(0x2726252423222120);
6735     emit_int64(0x2F2E2D2C2B2A2928);
6736     emit_int64(0x3736353433323130);
6737     emit_int64(0x3F3E3D3C3B3A3938);
6738 
6739     bind(k_init);
6740     lea(len, InternalAddress(tmp));
6741     // create mask to test for negative byte inside a vector
6742     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
6743     evpcmpgtb(k3, vec1, Address(len, 0), Assembler::AVX_512bit);
6744 
6745 #endif
6746     evpcmpgtb(k2, k3, vec2, Address(ary1, 0), Assembler::AVX_512bit);
6747     ktestq(k2, k3);
6748     jcc(Assembler::notZero, TRUE_LABEL);
6749 
6750     jmp(FALSE_LABEL);
6751   } else {
6752     movl(result, len); // copy
6753 
6754     if (UseAVX == 2 && UseSSE >= 2) {
6755       // With AVX2, use 32-byte vector compare
6756       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6757 
6758       // Compare 32-byte vectors
6759       andl(result, 0x0000001f);  //   tail count (in bytes)
6760       andl(len, 0xffffffe0);   // vector count (in bytes)
6761       jccb(Assembler::zero, COMPARE_TAIL);
6762 
6763       lea(ary1, Address(ary1, len, Address::times_1));
6764       negptr(len);
6765 
6766       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
6767       movdl(vec2, tmp1);
6768       vpbroadcastd(vec2, vec2, Assembler::AVX_256bit);
6769 
6770       bind(COMPARE_WIDE_VECTORS);
6771       vmovdqu(vec1, Address(ary1, len, Address::times_1));
6772       vptest(vec1, vec2);
6773       jccb(Assembler::notZero, TRUE_LABEL);
6774       addptr(len, 32);
6775       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6776 
6777       testl(result, result);
6778       jccb(Assembler::zero, FALSE_LABEL);
6779 
6780       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6781       vptest(vec1, vec2);
6782       jccb(Assembler::notZero, TRUE_LABEL);
6783       jmpb(FALSE_LABEL);
6784 
6785       bind(COMPARE_TAIL); // len is zero
6786       movl(len, result);
6787       // Fallthru to tail compare
6788     } else if (UseSSE42Intrinsics) {
6789       // With SSE4.2, use double quad vector compare
6790       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6791 
6792       // Compare 16-byte vectors
6793       andl(result, 0x0000000f);  //   tail count (in bytes)
6794       andl(len, 0xfffffff0);   // vector count (in bytes)
6795       jcc(Assembler::zero, COMPARE_TAIL);
6796 
6797       lea(ary1, Address(ary1, len, Address::times_1));
6798       negptr(len);
6799 
6800       movl(tmp1, 0x80808080);
6801       movdl(vec2, tmp1);
6802       pshufd(vec2, vec2, 0);
6803 
6804       bind(COMPARE_WIDE_VECTORS);
6805       movdqu(vec1, Address(ary1, len, Address::times_1));
6806       ptest(vec1, vec2);
6807       jcc(Assembler::notZero, TRUE_LABEL);
6808       addptr(len, 16);
6809       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6810 
6811       testl(result, result);
6812       jcc(Assembler::zero, FALSE_LABEL);
6813 
6814       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6815       ptest(vec1, vec2);
6816       jccb(Assembler::notZero, TRUE_LABEL);
6817       jmpb(FALSE_LABEL);
6818 
6819       bind(COMPARE_TAIL); // len is zero
6820       movl(len, result);
6821       // Fallthru to tail compare
6822     }
6823   }
6824   // Compare 4-byte vectors
6825   andl(len, 0xfffffffc); // vector count (in bytes)
6826   jccb(Assembler::zero, COMPARE_CHAR);
6827 
6828   lea(ary1, Address(ary1, len, Address::times_1));
6829   negptr(len);
6830 
6831   bind(COMPARE_VECTORS);
6832   movl(tmp1, Address(ary1, len, Address::times_1));
6833   andl(tmp1, 0x80808080);
6834   jccb(Assembler::notZero, TRUE_LABEL);
6835   addptr(len, 4);
6836   jcc(Assembler::notZero, COMPARE_VECTORS);
6837 
6838   // Compare trailing char (final 2 bytes), if any
6839   bind(COMPARE_CHAR);
6840   testl(result, 0x2);   // tail  char
6841   jccb(Assembler::zero, COMPARE_BYTE);
6842   load_unsigned_short(tmp1, Address(ary1, 0));
6843   andl(tmp1, 0x00008080);
6844   jccb(Assembler::notZero, TRUE_LABEL);
6845   subptr(result, 2);
6846   lea(ary1, Address(ary1, 2));
6847 
6848   bind(COMPARE_BYTE);
6849   testl(result, 0x1);   // tail  byte
6850   jccb(Assembler::zero, FALSE_LABEL);
6851   load_unsigned_byte(tmp1, Address(ary1, 0));
6852   andl(tmp1, 0x00000080);
6853   jccb(Assembler::notEqual, TRUE_LABEL);
6854   jmpb(FALSE_LABEL);
6855 
6856   bind(TRUE_LABEL);
6857   movl(result, 1);   // return true
6858   jmpb(DONE);
6859 
6860   bind(FALSE_LABEL);
6861   xorl(result, result); // return false
6862 
6863   // That's it
6864   bind(DONE);
6865   if (UseAVX >= 2 && UseSSE >= 2) {
6866     // clean upper bits of YMM registers
6867     vpxor(vec1, vec1);
6868     vpxor(vec2, vec2);
6869   }
6870 }
6871 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
6872 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6873                                    Register limit, Register result, Register chr,
6874                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
6875   ShortBranchVerifier sbv(this);
6876   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
6877 
6878   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6879   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
6880 
6881   if (is_array_equ) {
6882     // Check the input args
6883     cmpoop(ary1, ary2);
6884     jcc(Assembler::equal, TRUE_LABEL);
6885 
6886     // Need additional checks for arrays_equals.
6887     testptr(ary1, ary1);
6888     jcc(Assembler::zero, FALSE_LABEL);
6889     testptr(ary2, ary2);
6890     jcc(Assembler::zero, FALSE_LABEL);
6891 
6892     // Check the lengths
6893     movl(limit, Address(ary1, length_offset));
6894     cmpl(limit, Address(ary2, length_offset));
6895     jcc(Assembler::notEqual, FALSE_LABEL);
6896   }
6897 
6898   // count == 0
6899   testl(limit, limit);
6900   jcc(Assembler::zero, TRUE_LABEL);
6901 
6902   if (is_array_equ) {
6903     // Load array address
6904     lea(ary1, Address(ary1, base_offset));
6905     lea(ary2, Address(ary2, base_offset));
6906   }
6907 
6908   if (is_array_equ && is_char) {
6909     // arrays_equals when used for char[].
6910     shll(limit, 1);      // byte count != 0
6911   }
6912   movl(result, limit); // copy
6913 
6914   if (UseAVX >= 2) {
6915     // With AVX2, use 32-byte vector compare
6916     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6917 
6918     // Compare 32-byte vectors
6919     andl(result, 0x0000001f);  //   tail count (in bytes)
6920     andl(limit, 0xffffffe0);   // vector count (in bytes)
6921     jcc(Assembler::zero, COMPARE_TAIL);
6922 
6923     lea(ary1, Address(ary1, limit, Address::times_1));
6924     lea(ary2, Address(ary2, limit, Address::times_1));
6925     negptr(limit);
6926 
6927     bind(COMPARE_WIDE_VECTORS);
6928 
6929 #ifdef _LP64
6930     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
6931       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
6932 
6933       cmpl(limit, -64);
6934       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
6935 
6936       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
6937 
6938       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
6939       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
6940       kortestql(k7, k7);
6941       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
6942       addptr(limit, 64);  // update since we already compared at this addr
6943       cmpl(limit, -64);
6944       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
6945 
6946       // At this point we may still need to compare -limit+result bytes.
6947       // We could execute the next two instruction and just continue via non-wide path:
6948       //  cmpl(limit, 0);
6949       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
6950       // But since we stopped at the points ary{1,2}+limit which are
6951       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
6952       // (|limit| <= 32 and result < 32),
6953       // we may just compare the last 64 bytes.
6954       //
6955       addptr(result, -64);   // it is safe, bc we just came from this area
6956       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
6957       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
6958       kortestql(k7, k7);
6959       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
6960 
6961       jmp(TRUE_LABEL);
6962 
6963       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6964 
6965     }//if (VM_Version::supports_avx512vlbw())
6966 #endif //_LP64
6967 
6968     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6969     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6970     vpxor(vec1, vec2);
6971 
6972     vptest(vec1, vec1);
6973     jcc(Assembler::notZero, FALSE_LABEL);
6974     addptr(limit, 32);
6975     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6976 
6977     testl(result, result);
6978     jcc(Assembler::zero, TRUE_LABEL);
6979 
6980     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6981     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6982     vpxor(vec1, vec2);
6983 
6984     vptest(vec1, vec1);
6985     jccb(Assembler::notZero, FALSE_LABEL);
6986     jmpb(TRUE_LABEL);
6987 
6988     bind(COMPARE_TAIL); // limit is zero
6989     movl(limit, result);
6990     // Fallthru to tail compare
6991   } else if (UseSSE42Intrinsics) {
6992     // With SSE4.2, use double quad vector compare
6993     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6994 
6995     // Compare 16-byte vectors
6996     andl(result, 0x0000000f);  //   tail count (in bytes)
6997     andl(limit, 0xfffffff0);   // vector count (in bytes)
6998     jcc(Assembler::zero, COMPARE_TAIL);
6999 
7000     lea(ary1, Address(ary1, limit, Address::times_1));
7001     lea(ary2, Address(ary2, limit, Address::times_1));
7002     negptr(limit);
7003 
7004     bind(COMPARE_WIDE_VECTORS);
7005     movdqu(vec1, Address(ary1, limit, Address::times_1));
7006     movdqu(vec2, Address(ary2, limit, Address::times_1));
7007     pxor(vec1, vec2);
7008 
7009     ptest(vec1, vec1);
7010     jcc(Assembler::notZero, FALSE_LABEL);
7011     addptr(limit, 16);
7012     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7013 
7014     testl(result, result);
7015     jcc(Assembler::zero, TRUE_LABEL);
7016 
7017     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7018     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
7019     pxor(vec1, vec2);
7020 
7021     ptest(vec1, vec1);
7022     jccb(Assembler::notZero, FALSE_LABEL);
7023     jmpb(TRUE_LABEL);
7024 
7025     bind(COMPARE_TAIL); // limit is zero
7026     movl(limit, result);
7027     // Fallthru to tail compare
7028   }
7029 
7030   // Compare 4-byte vectors
7031   andl(limit, 0xfffffffc); // vector count (in bytes)
7032   jccb(Assembler::zero, COMPARE_CHAR);
7033 
7034   lea(ary1, Address(ary1, limit, Address::times_1));
7035   lea(ary2, Address(ary2, limit, Address::times_1));
7036   negptr(limit);
7037 
7038   bind(COMPARE_VECTORS);
7039   movl(chr, Address(ary1, limit, Address::times_1));
7040   cmpl(chr, Address(ary2, limit, Address::times_1));
7041   jccb(Assembler::notEqual, FALSE_LABEL);
7042   addptr(limit, 4);
7043   jcc(Assembler::notZero, COMPARE_VECTORS);
7044 
7045   // Compare trailing char (final 2 bytes), if any
7046   bind(COMPARE_CHAR);
7047   testl(result, 0x2);   // tail  char
7048   jccb(Assembler::zero, COMPARE_BYTE);
7049   load_unsigned_short(chr, Address(ary1, 0));
7050   load_unsigned_short(limit, Address(ary2, 0));
7051   cmpl(chr, limit);
7052   jccb(Assembler::notEqual, FALSE_LABEL);
7053 
7054   if (is_array_equ && is_char) {
7055     bind(COMPARE_BYTE);
7056   } else {
7057     lea(ary1, Address(ary1, 2));
7058     lea(ary2, Address(ary2, 2));
7059 
7060     bind(COMPARE_BYTE);
7061     testl(result, 0x1);   // tail  byte
7062     jccb(Assembler::zero, TRUE_LABEL);
7063     load_unsigned_byte(chr, Address(ary1, 0));
7064     load_unsigned_byte(limit, Address(ary2, 0));
7065     cmpl(chr, limit);
7066     jccb(Assembler::notEqual, FALSE_LABEL);
7067   }
7068   bind(TRUE_LABEL);
7069   movl(result, 1);   // return true
7070   jmpb(DONE);
7071 
7072   bind(FALSE_LABEL);
7073   xorl(result, result); // return false
7074 
7075   // That's it
7076   bind(DONE);
7077   if (UseAVX >= 2) {
7078     // clean upper bits of YMM registers
7079     vpxor(vec1, vec1);
7080     vpxor(vec2, vec2);
7081   }
7082 }
7083 
7084 #endif
7085 
7086 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7087                                    Register to, Register value, Register count,
7088                                    Register rtmp, XMMRegister xtmp) {
7089   ShortBranchVerifier sbv(this);
7090   assert_different_registers(to, value, count, rtmp);
7091   Label L_exit;
7092   Label L_fill_2_bytes, L_fill_4_bytes;
7093 
7094   int shift = -1;
7095   switch (t) {
7096     case T_BYTE:
7097       shift = 2;
7098       break;
7099     case T_SHORT:
7100       shift = 1;
7101       break;
7102     case T_INT:
7103       shift = 0;
7104       break;
7105     default: ShouldNotReachHere();
7106   }
7107 
7108   if (t == T_BYTE) {
7109     andl(value, 0xff);
7110     movl(rtmp, value);
7111     shll(rtmp, 8);
7112     orl(value, rtmp);
7113   }
7114   if (t == T_SHORT) {
7115     andl(value, 0xffff);
7116   }
7117   if (t == T_BYTE || t == T_SHORT) {
7118     movl(rtmp, value);
7119     shll(rtmp, 16);
7120     orl(value, rtmp);
7121   }
7122 
7123   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7124   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7125   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7126     Label L_skip_align2;
7127     // align source address at 4 bytes address boundary
7128     if (t == T_BYTE) {
7129       Label L_skip_align1;
7130       // One byte misalignment happens only for byte arrays
7131       testptr(to, 1);
7132       jccb(Assembler::zero, L_skip_align1);
7133       movb(Address(to, 0), value);
7134       increment(to);
7135       decrement(count);
7136       BIND(L_skip_align1);
7137     }
7138     // Two bytes misalignment happens only for byte and short (char) arrays
7139     testptr(to, 2);
7140     jccb(Assembler::zero, L_skip_align2);
7141     movw(Address(to, 0), value);
7142     addptr(to, 2);
7143     subl(count, 1<<(shift-1));
7144     BIND(L_skip_align2);
7145   }
7146   if (UseSSE < 2) {
7147     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7148     // Fill 32-byte chunks
7149     subl(count, 8 << shift);
7150     jcc(Assembler::less, L_check_fill_8_bytes);
7151     align(16);
7152 
7153     BIND(L_fill_32_bytes_loop);
7154 
7155     for (int i = 0; i < 32; i += 4) {
7156       movl(Address(to, i), value);
7157     }
7158 
7159     addptr(to, 32);
7160     subl(count, 8 << shift);
7161     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7162     BIND(L_check_fill_8_bytes);
7163     addl(count, 8 << shift);
7164     jccb(Assembler::zero, L_exit);
7165     jmpb(L_fill_8_bytes);
7166 
7167     //
7168     // length is too short, just fill qwords
7169     //
7170     BIND(L_fill_8_bytes_loop);
7171     movl(Address(to, 0), value);
7172     movl(Address(to, 4), value);
7173     addptr(to, 8);
7174     BIND(L_fill_8_bytes);
7175     subl(count, 1 << (shift + 1));
7176     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7177     // fall through to fill 4 bytes
7178   } else {
7179     Label L_fill_32_bytes;
7180     if (!UseUnalignedLoadStores) {
7181       // align to 8 bytes, we know we are 4 byte aligned to start
7182       testptr(to, 4);
7183       jccb(Assembler::zero, L_fill_32_bytes);
7184       movl(Address(to, 0), value);
7185       addptr(to, 4);
7186       subl(count, 1<<shift);
7187     }
7188     BIND(L_fill_32_bytes);
7189     {
7190       assert( UseSSE >= 2, "supported cpu only" );
7191       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7192       movdl(xtmp, value);
7193       if (UseAVX > 2 && UseUnalignedLoadStores) {
7194         // Fill 64-byte chunks
7195         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7196         vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7197 
7198         subl(count, 16 << shift);
7199         jcc(Assembler::less, L_check_fill_32_bytes);
7200         align(16);
7201 
7202         BIND(L_fill_64_bytes_loop);
7203         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
7204         addptr(to, 64);
7205         subl(count, 16 << shift);
7206         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7207 
7208         BIND(L_check_fill_32_bytes);
7209         addl(count, 8 << shift);
7210         jccb(Assembler::less, L_check_fill_8_bytes);
7211         vmovdqu(Address(to, 0), xtmp);
7212         addptr(to, 32);
7213         subl(count, 8 << shift);
7214 
7215         BIND(L_check_fill_8_bytes);
7216       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
7217         // Fill 64-byte chunks
7218         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7219         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
7220 
7221         subl(count, 16 << shift);
7222         jcc(Assembler::less, L_check_fill_32_bytes);
7223         align(16);
7224 
7225         BIND(L_fill_64_bytes_loop);
7226         vmovdqu(Address(to, 0), xtmp);
7227         vmovdqu(Address(to, 32), xtmp);
7228         addptr(to, 64);
7229         subl(count, 16 << shift);
7230         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7231 
7232         BIND(L_check_fill_32_bytes);
7233         addl(count, 8 << shift);
7234         jccb(Assembler::less, L_check_fill_8_bytes);
7235         vmovdqu(Address(to, 0), xtmp);
7236         addptr(to, 32);
7237         subl(count, 8 << shift);
7238 
7239         BIND(L_check_fill_8_bytes);
7240         // clean upper bits of YMM registers
7241         movdl(xtmp, value);
7242         pshufd(xtmp, xtmp, 0);
7243       } else {
7244         // Fill 32-byte chunks
7245         pshufd(xtmp, xtmp, 0);
7246 
7247         subl(count, 8 << shift);
7248         jcc(Assembler::less, L_check_fill_8_bytes);
7249         align(16);
7250 
7251         BIND(L_fill_32_bytes_loop);
7252 
7253         if (UseUnalignedLoadStores) {
7254           movdqu(Address(to, 0), xtmp);
7255           movdqu(Address(to, 16), xtmp);
7256         } else {
7257           movq(Address(to, 0), xtmp);
7258           movq(Address(to, 8), xtmp);
7259           movq(Address(to, 16), xtmp);
7260           movq(Address(to, 24), xtmp);
7261         }
7262 
7263         addptr(to, 32);
7264         subl(count, 8 << shift);
7265         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7266 
7267         BIND(L_check_fill_8_bytes);
7268       }
7269       addl(count, 8 << shift);
7270       jccb(Assembler::zero, L_exit);
7271       jmpb(L_fill_8_bytes);
7272 
7273       //
7274       // length is too short, just fill qwords
7275       //
7276       BIND(L_fill_8_bytes_loop);
7277       movq(Address(to, 0), xtmp);
7278       addptr(to, 8);
7279       BIND(L_fill_8_bytes);
7280       subl(count, 1 << (shift + 1));
7281       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7282     }
7283   }
7284   // fill trailing 4 bytes
7285   BIND(L_fill_4_bytes);
7286   testl(count, 1<<shift);
7287   jccb(Assembler::zero, L_fill_2_bytes);
7288   movl(Address(to, 0), value);
7289   if (t == T_BYTE || t == T_SHORT) {
7290     Label L_fill_byte;
7291     addptr(to, 4);
7292     BIND(L_fill_2_bytes);
7293     // fill trailing 2 bytes
7294     testl(count, 1<<(shift-1));
7295     jccb(Assembler::zero, L_fill_byte);
7296     movw(Address(to, 0), value);
7297     if (t == T_BYTE) {
7298       addptr(to, 2);
7299       BIND(L_fill_byte);
7300       // fill trailing byte
7301       testl(count, 1);
7302       jccb(Assembler::zero, L_exit);
7303       movb(Address(to, 0), value);
7304     } else {
7305       BIND(L_fill_byte);
7306     }
7307   } else {
7308     BIND(L_fill_2_bytes);
7309   }
7310   BIND(L_exit);
7311 }
7312 
7313 // encode char[] to byte[] in ISO_8859_1
7314    //@HotSpotIntrinsicCandidate
7315    //private static int implEncodeISOArray(byte[] sa, int sp,
7316    //byte[] da, int dp, int len) {
7317    //  int i = 0;
7318    //  for (; i < len; i++) {
7319    //    char c = StringUTF16.getChar(sa, sp++);
7320    //    if (c > '\u00FF')
7321    //      break;
7322    //    da[dp++] = (byte)c;
7323    //  }
7324    //  return i;
7325    //}
7326 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7327   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7328   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7329   Register tmp5, Register result) {
7330 
7331   // rsi: src
7332   // rdi: dst
7333   // rdx: len
7334   // rcx: tmp5
7335   // rax: result
7336   ShortBranchVerifier sbv(this);
7337   assert_different_registers(src, dst, len, tmp5, result);
7338   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7339 
7340   // set result
7341   xorl(result, result);
7342   // check for zero length
7343   testl(len, len);
7344   jcc(Assembler::zero, L_done);
7345 
7346   movl(result, len);
7347 
7348   // Setup pointers
7349   lea(src, Address(src, len, Address::times_2)); // char[]
7350   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7351   negptr(len);
7352 
7353   if (UseSSE42Intrinsics || UseAVX >= 2) {
7354     Label L_copy_8_chars, L_copy_8_chars_exit;
7355     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7356 
7357     if (UseAVX >= 2) {
7358       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7359       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7360       movdl(tmp1Reg, tmp5);
7361       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
7362       jmp(L_chars_32_check);
7363 
7364       bind(L_copy_32_chars);
7365       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7366       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7367       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7368       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7369       jccb(Assembler::notZero, L_copy_32_chars_exit);
7370       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7371       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7372       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7373 
7374       bind(L_chars_32_check);
7375       addptr(len, 32);
7376       jcc(Assembler::lessEqual, L_copy_32_chars);
7377 
7378       bind(L_copy_32_chars_exit);
7379       subptr(len, 16);
7380       jccb(Assembler::greater, L_copy_16_chars_exit);
7381 
7382     } else if (UseSSE42Intrinsics) {
7383       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7384       movdl(tmp1Reg, tmp5);
7385       pshufd(tmp1Reg, tmp1Reg, 0);
7386       jmpb(L_chars_16_check);
7387     }
7388 
7389     bind(L_copy_16_chars);
7390     if (UseAVX >= 2) {
7391       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7392       vptest(tmp2Reg, tmp1Reg);
7393       jcc(Assembler::notZero, L_copy_16_chars_exit);
7394       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7395       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7396     } else {
7397       if (UseAVX > 0) {
7398         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7399         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7400         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7401       } else {
7402         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7403         por(tmp2Reg, tmp3Reg);
7404         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7405         por(tmp2Reg, tmp4Reg);
7406       }
7407       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7408       jccb(Assembler::notZero, L_copy_16_chars_exit);
7409       packuswb(tmp3Reg, tmp4Reg);
7410     }
7411     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7412 
7413     bind(L_chars_16_check);
7414     addptr(len, 16);
7415     jcc(Assembler::lessEqual, L_copy_16_chars);
7416 
7417     bind(L_copy_16_chars_exit);
7418     if (UseAVX >= 2) {
7419       // clean upper bits of YMM registers
7420       vpxor(tmp2Reg, tmp2Reg);
7421       vpxor(tmp3Reg, tmp3Reg);
7422       vpxor(tmp4Reg, tmp4Reg);
7423       movdl(tmp1Reg, tmp5);
7424       pshufd(tmp1Reg, tmp1Reg, 0);
7425     }
7426     subptr(len, 8);
7427     jccb(Assembler::greater, L_copy_8_chars_exit);
7428 
7429     bind(L_copy_8_chars);
7430     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7431     ptest(tmp3Reg, tmp1Reg);
7432     jccb(Assembler::notZero, L_copy_8_chars_exit);
7433     packuswb(tmp3Reg, tmp1Reg);
7434     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7435     addptr(len, 8);
7436     jccb(Assembler::lessEqual, L_copy_8_chars);
7437 
7438     bind(L_copy_8_chars_exit);
7439     subptr(len, 8);
7440     jccb(Assembler::zero, L_done);
7441   }
7442 
7443   bind(L_copy_1_char);
7444   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7445   testl(tmp5, 0xff00);      // check if Unicode char
7446   jccb(Assembler::notZero, L_copy_1_char_exit);
7447   movb(Address(dst, len, Address::times_1, 0), tmp5);
7448   addptr(len, 1);
7449   jccb(Assembler::less, L_copy_1_char);
7450 
7451   bind(L_copy_1_char_exit);
7452   addptr(result, len); // len is negative count of not processed elements
7453 
7454   bind(L_done);
7455 }
7456 
7457 #ifdef _LP64
7458 /**
7459  * Helper for multiply_to_len().
7460  */
7461 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7462   addq(dest_lo, src1);
7463   adcq(dest_hi, 0);
7464   addq(dest_lo, src2);
7465   adcq(dest_hi, 0);
7466 }
7467 
7468 /**
7469  * Multiply 64 bit by 64 bit first loop.
7470  */
7471 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7472                                            Register y, Register y_idx, Register z,
7473                                            Register carry, Register product,
7474                                            Register idx, Register kdx) {
7475   //
7476   //  jlong carry, x[], y[], z[];
7477   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7478   //    huge_128 product = y[idx] * x[xstart] + carry;
7479   //    z[kdx] = (jlong)product;
7480   //    carry  = (jlong)(product >>> 64);
7481   //  }
7482   //  z[xstart] = carry;
7483   //
7484 
7485   Label L_first_loop, L_first_loop_exit;
7486   Label L_one_x, L_one_y, L_multiply;
7487 
7488   decrementl(xstart);
7489   jcc(Assembler::negative, L_one_x);
7490 
7491   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7492   rorq(x_xstart, 32); // convert big-endian to little-endian
7493 
7494   bind(L_first_loop);
7495   decrementl(idx);
7496   jcc(Assembler::negative, L_first_loop_exit);
7497   decrementl(idx);
7498   jcc(Assembler::negative, L_one_y);
7499   movq(y_idx, Address(y, idx, Address::times_4,  0));
7500   rorq(y_idx, 32); // convert big-endian to little-endian
7501   bind(L_multiply);
7502   movq(product, x_xstart);
7503   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7504   addq(product, carry);
7505   adcq(rdx, 0);
7506   subl(kdx, 2);
7507   movl(Address(z, kdx, Address::times_4,  4), product);
7508   shrq(product, 32);
7509   movl(Address(z, kdx, Address::times_4,  0), product);
7510   movq(carry, rdx);
7511   jmp(L_first_loop);
7512 
7513   bind(L_one_y);
7514   movl(y_idx, Address(y,  0));
7515   jmp(L_multiply);
7516 
7517   bind(L_one_x);
7518   movl(x_xstart, Address(x,  0));
7519   jmp(L_first_loop);
7520 
7521   bind(L_first_loop_exit);
7522 }
7523 
7524 /**
7525  * Multiply 64 bit by 64 bit and add 128 bit.
7526  */
7527 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7528                                             Register yz_idx, Register idx,
7529                                             Register carry, Register product, int offset) {
7530   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7531   //     z[kdx] = (jlong)product;
7532 
7533   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7534   rorq(yz_idx, 32); // convert big-endian to little-endian
7535   movq(product, x_xstart);
7536   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7537   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7538   rorq(yz_idx, 32); // convert big-endian to little-endian
7539 
7540   add2_with_carry(rdx, product, carry, yz_idx);
7541 
7542   movl(Address(z, idx, Address::times_4,  offset+4), product);
7543   shrq(product, 32);
7544   movl(Address(z, idx, Address::times_4,  offset), product);
7545 
7546 }
7547 
7548 /**
7549  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7550  */
7551 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7552                                              Register yz_idx, Register idx, Register jdx,
7553                                              Register carry, Register product,
7554                                              Register carry2) {
7555   //   jlong carry, x[], y[], z[];
7556   //   int kdx = ystart+1;
7557   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7558   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7559   //     z[kdx+idx+1] = (jlong)product;
7560   //     jlong carry2  = (jlong)(product >>> 64);
7561   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7562   //     z[kdx+idx] = (jlong)product;
7563   //     carry  = (jlong)(product >>> 64);
7564   //   }
7565   //   idx += 2;
7566   //   if (idx > 0) {
7567   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7568   //     z[kdx+idx] = (jlong)product;
7569   //     carry  = (jlong)(product >>> 64);
7570   //   }
7571   //
7572 
7573   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7574 
7575   movl(jdx, idx);
7576   andl(jdx, 0xFFFFFFFC);
7577   shrl(jdx, 2);
7578 
7579   bind(L_third_loop);
7580   subl(jdx, 1);
7581   jcc(Assembler::negative, L_third_loop_exit);
7582   subl(idx, 4);
7583 
7584   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7585   movq(carry2, rdx);
7586 
7587   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7588   movq(carry, rdx);
7589   jmp(L_third_loop);
7590 
7591   bind (L_third_loop_exit);
7592 
7593   andl (idx, 0x3);
7594   jcc(Assembler::zero, L_post_third_loop_done);
7595 
7596   Label L_check_1;
7597   subl(idx, 2);
7598   jcc(Assembler::negative, L_check_1);
7599 
7600   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7601   movq(carry, rdx);
7602 
7603   bind (L_check_1);
7604   addl (idx, 0x2);
7605   andl (idx, 0x1);
7606   subl(idx, 1);
7607   jcc(Assembler::negative, L_post_third_loop_done);
7608 
7609   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7610   movq(product, x_xstart);
7611   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7612   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7613 
7614   add2_with_carry(rdx, product, yz_idx, carry);
7615 
7616   movl(Address(z, idx, Address::times_4,  0), product);
7617   shrq(product, 32);
7618 
7619   shlq(rdx, 32);
7620   orq(product, rdx);
7621   movq(carry, product);
7622 
7623   bind(L_post_third_loop_done);
7624 }
7625 
7626 /**
7627  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7628  *
7629  */
7630 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7631                                                   Register carry, Register carry2,
7632                                                   Register idx, Register jdx,
7633                                                   Register yz_idx1, Register yz_idx2,
7634                                                   Register tmp, Register tmp3, Register tmp4) {
7635   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7636 
7637   //   jlong carry, x[], y[], z[];
7638   //   int kdx = ystart+1;
7639   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7640   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7641   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7642   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7643   //     carry  = (jlong)(tmp4 >>> 64);
7644   //     z[kdx+idx+1] = (jlong)tmp3;
7645   //     z[kdx+idx] = (jlong)tmp4;
7646   //   }
7647   //   idx += 2;
7648   //   if (idx > 0) {
7649   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7650   //     z[kdx+idx] = (jlong)yz_idx1;
7651   //     carry  = (jlong)(yz_idx1 >>> 64);
7652   //   }
7653   //
7654 
7655   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7656 
7657   movl(jdx, idx);
7658   andl(jdx, 0xFFFFFFFC);
7659   shrl(jdx, 2);
7660 
7661   bind(L_third_loop);
7662   subl(jdx, 1);
7663   jcc(Assembler::negative, L_third_loop_exit);
7664   subl(idx, 4);
7665 
7666   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7667   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7668   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7669   rorxq(yz_idx2, yz_idx2, 32);
7670 
7671   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7672   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7673 
7674   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7675   rorxq(yz_idx1, yz_idx1, 32);
7676   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7677   rorxq(yz_idx2, yz_idx2, 32);
7678 
7679   if (VM_Version::supports_adx()) {
7680     adcxq(tmp3, carry);
7681     adoxq(tmp3, yz_idx1);
7682 
7683     adcxq(tmp4, tmp);
7684     adoxq(tmp4, yz_idx2);
7685 
7686     movl(carry, 0); // does not affect flags
7687     adcxq(carry2, carry);
7688     adoxq(carry2, carry);
7689   } else {
7690     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7691     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7692   }
7693   movq(carry, carry2);
7694 
7695   movl(Address(z, idx, Address::times_4, 12), tmp3);
7696   shrq(tmp3, 32);
7697   movl(Address(z, idx, Address::times_4,  8), tmp3);
7698 
7699   movl(Address(z, idx, Address::times_4,  4), tmp4);
7700   shrq(tmp4, 32);
7701   movl(Address(z, idx, Address::times_4,  0), tmp4);
7702 
7703   jmp(L_third_loop);
7704 
7705   bind (L_third_loop_exit);
7706 
7707   andl (idx, 0x3);
7708   jcc(Assembler::zero, L_post_third_loop_done);
7709 
7710   Label L_check_1;
7711   subl(idx, 2);
7712   jcc(Assembler::negative, L_check_1);
7713 
7714   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7715   rorxq(yz_idx1, yz_idx1, 32);
7716   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7717   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7718   rorxq(yz_idx2, yz_idx2, 32);
7719 
7720   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7721 
7722   movl(Address(z, idx, Address::times_4,  4), tmp3);
7723   shrq(tmp3, 32);
7724   movl(Address(z, idx, Address::times_4,  0), tmp3);
7725   movq(carry, tmp4);
7726 
7727   bind (L_check_1);
7728   addl (idx, 0x2);
7729   andl (idx, 0x1);
7730   subl(idx, 1);
7731   jcc(Assembler::negative, L_post_third_loop_done);
7732   movl(tmp4, Address(y, idx, Address::times_4,  0));
7733   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7734   movl(tmp4, Address(z, idx, Address::times_4,  0));
7735 
7736   add2_with_carry(carry2, tmp3, tmp4, carry);
7737 
7738   movl(Address(z, idx, Address::times_4,  0), tmp3);
7739   shrq(tmp3, 32);
7740 
7741   shlq(carry2, 32);
7742   orq(tmp3, carry2);
7743   movq(carry, tmp3);
7744 
7745   bind(L_post_third_loop_done);
7746 }
7747 
7748 /**
7749  * Code for BigInteger::multiplyToLen() instrinsic.
7750  *
7751  * rdi: x
7752  * rax: xlen
7753  * rsi: y
7754  * rcx: ylen
7755  * r8:  z
7756  * r11: zlen
7757  * r12: tmp1
7758  * r13: tmp2
7759  * r14: tmp3
7760  * r15: tmp4
7761  * rbx: tmp5
7762  *
7763  */
7764 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7765                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7766   ShortBranchVerifier sbv(this);
7767   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7768 
7769   push(tmp1);
7770   push(tmp2);
7771   push(tmp3);
7772   push(tmp4);
7773   push(tmp5);
7774 
7775   push(xlen);
7776   push(zlen);
7777 
7778   const Register idx = tmp1;
7779   const Register kdx = tmp2;
7780   const Register xstart = tmp3;
7781 
7782   const Register y_idx = tmp4;
7783   const Register carry = tmp5;
7784   const Register product  = xlen;
7785   const Register x_xstart = zlen;  // reuse register
7786 
7787   // First Loop.
7788   //
7789   //  final static long LONG_MASK = 0xffffffffL;
7790   //  int xstart = xlen - 1;
7791   //  int ystart = ylen - 1;
7792   //  long carry = 0;
7793   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7794   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7795   //    z[kdx] = (int)product;
7796   //    carry = product >>> 32;
7797   //  }
7798   //  z[xstart] = (int)carry;
7799   //
7800 
7801   movl(idx, ylen);      // idx = ylen;
7802   movl(kdx, zlen);      // kdx = xlen+ylen;
7803   xorq(carry, carry);   // carry = 0;
7804 
7805   Label L_done;
7806 
7807   movl(xstart, xlen);
7808   decrementl(xstart);
7809   jcc(Assembler::negative, L_done);
7810 
7811   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7812 
7813   Label L_second_loop;
7814   testl(kdx, kdx);
7815   jcc(Assembler::zero, L_second_loop);
7816 
7817   Label L_carry;
7818   subl(kdx, 1);
7819   jcc(Assembler::zero, L_carry);
7820 
7821   movl(Address(z, kdx, Address::times_4,  0), carry);
7822   shrq(carry, 32);
7823   subl(kdx, 1);
7824 
7825   bind(L_carry);
7826   movl(Address(z, kdx, Address::times_4,  0), carry);
7827 
7828   // Second and third (nested) loops.
7829   //
7830   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7831   //   carry = 0;
7832   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7833   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7834   //                    (z[k] & LONG_MASK) + carry;
7835   //     z[k] = (int)product;
7836   //     carry = product >>> 32;
7837   //   }
7838   //   z[i] = (int)carry;
7839   // }
7840   //
7841   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7842 
7843   const Register jdx = tmp1;
7844 
7845   bind(L_second_loop);
7846   xorl(carry, carry);    // carry = 0;
7847   movl(jdx, ylen);       // j = ystart+1
7848 
7849   subl(xstart, 1);       // i = xstart-1;
7850   jcc(Assembler::negative, L_done);
7851 
7852   push (z);
7853 
7854   Label L_last_x;
7855   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7856   subl(xstart, 1);       // i = xstart-1;
7857   jcc(Assembler::negative, L_last_x);
7858 
7859   if (UseBMI2Instructions) {
7860     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7861     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7862   } else {
7863     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7864     rorq(x_xstart, 32);  // convert big-endian to little-endian
7865   }
7866 
7867   Label L_third_loop_prologue;
7868   bind(L_third_loop_prologue);
7869 
7870   push (x);
7871   push (xstart);
7872   push (ylen);
7873 
7874 
7875   if (UseBMI2Instructions) {
7876     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7877   } else { // !UseBMI2Instructions
7878     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7879   }
7880 
7881   pop(ylen);
7882   pop(xlen);
7883   pop(x);
7884   pop(z);
7885 
7886   movl(tmp3, xlen);
7887   addl(tmp3, 1);
7888   movl(Address(z, tmp3, Address::times_4,  0), carry);
7889   subl(tmp3, 1);
7890   jccb(Assembler::negative, L_done);
7891 
7892   shrq(carry, 32);
7893   movl(Address(z, tmp3, Address::times_4,  0), carry);
7894   jmp(L_second_loop);
7895 
7896   // Next infrequent code is moved outside loops.
7897   bind(L_last_x);
7898   if (UseBMI2Instructions) {
7899     movl(rdx, Address(x,  0));
7900   } else {
7901     movl(x_xstart, Address(x,  0));
7902   }
7903   jmp(L_third_loop_prologue);
7904 
7905   bind(L_done);
7906 
7907   pop(zlen);
7908   pop(xlen);
7909 
7910   pop(tmp5);
7911   pop(tmp4);
7912   pop(tmp3);
7913   pop(tmp2);
7914   pop(tmp1);
7915 }
7916 
7917 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
7918   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
7919   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
7920   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
7921   Label VECTOR8_TAIL, VECTOR4_TAIL;
7922   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
7923   Label SAME_TILL_END, DONE;
7924   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
7925 
7926   //scale is in rcx in both Win64 and Unix
7927   ShortBranchVerifier sbv(this);
7928 
7929   shlq(length);
7930   xorq(result, result);
7931 
7932   if ((UseAVX > 2) &&
7933       VM_Version::supports_avx512vlbw()) {
7934     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
7935 
7936     cmpq(length, 64);
7937     jcc(Assembler::less, VECTOR32_TAIL);
7938     movq(tmp1, length);
7939     andq(tmp1, 0x3F);      // tail count
7940     andq(length, ~(0x3F)); //vector count
7941 
7942     bind(VECTOR64_LOOP);
7943     // AVX512 code to compare 64 byte vectors.
7944     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
7945     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
7946     kortestql(k7, k7);
7947     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
7948     addq(result, 64);
7949     subq(length, 64);
7950     jccb(Assembler::notZero, VECTOR64_LOOP);
7951 
7952     //bind(VECTOR64_TAIL);
7953     testq(tmp1, tmp1);
7954     jcc(Assembler::zero, SAME_TILL_END);
7955 
7956     //bind(VECTOR64_TAIL);
7957     // AVX512 code to compare upto 63 byte vectors.
7958     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
7959     shlxq(tmp2, tmp2, tmp1);
7960     notq(tmp2);
7961     kmovql(k3, tmp2);
7962 
7963     evmovdqub(rymm0, k3, Address(obja, result), Assembler::AVX_512bit);
7964     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
7965 
7966     ktestql(k7, k3);
7967     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
7968 
7969     bind(VECTOR64_NOT_EQUAL);
7970     kmovql(tmp1, k7);
7971     notq(tmp1);
7972     tzcntq(tmp1, tmp1);
7973     addq(result, tmp1);
7974     shrq(result);
7975     jmp(DONE);
7976     bind(VECTOR32_TAIL);
7977   }
7978 
7979   cmpq(length, 8);
7980   jcc(Assembler::equal, VECTOR8_LOOP);
7981   jcc(Assembler::less, VECTOR4_TAIL);
7982 
7983   if (UseAVX >= 2) {
7984     Label VECTOR16_TAIL, VECTOR32_LOOP;
7985 
7986     cmpq(length, 16);
7987     jcc(Assembler::equal, VECTOR16_LOOP);
7988     jcc(Assembler::less, VECTOR8_LOOP);
7989 
7990     cmpq(length, 32);
7991     jccb(Assembler::less, VECTOR16_TAIL);
7992 
7993     subq(length, 32);
7994     bind(VECTOR32_LOOP);
7995     vmovdqu(rymm0, Address(obja, result));
7996     vmovdqu(rymm1, Address(objb, result));
7997     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
7998     vptest(rymm2, rymm2);
7999     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
8000     addq(result, 32);
8001     subq(length, 32);
8002     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
8003     addq(length, 32);
8004     jcc(Assembler::equal, SAME_TILL_END);
8005     //falling through if less than 32 bytes left //close the branch here.
8006 
8007     bind(VECTOR16_TAIL);
8008     cmpq(length, 16);
8009     jccb(Assembler::less, VECTOR8_TAIL);
8010     bind(VECTOR16_LOOP);
8011     movdqu(rymm0, Address(obja, result));
8012     movdqu(rymm1, Address(objb, result));
8013     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
8014     ptest(rymm2, rymm2);
8015     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8016     addq(result, 16);
8017     subq(length, 16);
8018     jcc(Assembler::equal, SAME_TILL_END);
8019     //falling through if less than 16 bytes left
8020   } else {//regular intrinsics
8021 
8022     cmpq(length, 16);
8023     jccb(Assembler::less, VECTOR8_TAIL);
8024 
8025     subq(length, 16);
8026     bind(VECTOR16_LOOP);
8027     movdqu(rymm0, Address(obja, result));
8028     movdqu(rymm1, Address(objb, result));
8029     pxor(rymm0, rymm1);
8030     ptest(rymm0, rymm0);
8031     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8032     addq(result, 16);
8033     subq(length, 16);
8034     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
8035     addq(length, 16);
8036     jcc(Assembler::equal, SAME_TILL_END);
8037     //falling through if less than 16 bytes left
8038   }
8039 
8040   bind(VECTOR8_TAIL);
8041   cmpq(length, 8);
8042   jccb(Assembler::less, VECTOR4_TAIL);
8043   bind(VECTOR8_LOOP);
8044   movq(tmp1, Address(obja, result));
8045   movq(tmp2, Address(objb, result));
8046   xorq(tmp1, tmp2);
8047   testq(tmp1, tmp1);
8048   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
8049   addq(result, 8);
8050   subq(length, 8);
8051   jcc(Assembler::equal, SAME_TILL_END);
8052   //falling through if less than 8 bytes left
8053 
8054   bind(VECTOR4_TAIL);
8055   cmpq(length, 4);
8056   jccb(Assembler::less, BYTES_TAIL);
8057   bind(VECTOR4_LOOP);
8058   movl(tmp1, Address(obja, result));
8059   xorl(tmp1, Address(objb, result));
8060   testl(tmp1, tmp1);
8061   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
8062   addq(result, 4);
8063   subq(length, 4);
8064   jcc(Assembler::equal, SAME_TILL_END);
8065   //falling through if less than 4 bytes left
8066 
8067   bind(BYTES_TAIL);
8068   bind(BYTES_LOOP);
8069   load_unsigned_byte(tmp1, Address(obja, result));
8070   load_unsigned_byte(tmp2, Address(objb, result));
8071   xorl(tmp1, tmp2);
8072   testl(tmp1, tmp1);
8073   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8074   decq(length);
8075   jcc(Assembler::zero, SAME_TILL_END);
8076   incq(result);
8077   load_unsigned_byte(tmp1, Address(obja, result));
8078   load_unsigned_byte(tmp2, Address(objb, result));
8079   xorl(tmp1, tmp2);
8080   testl(tmp1, tmp1);
8081   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8082   decq(length);
8083   jcc(Assembler::zero, SAME_TILL_END);
8084   incq(result);
8085   load_unsigned_byte(tmp1, Address(obja, result));
8086   load_unsigned_byte(tmp2, Address(objb, result));
8087   xorl(tmp1, tmp2);
8088   testl(tmp1, tmp1);
8089   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8090   jmp(SAME_TILL_END);
8091 
8092   if (UseAVX >= 2) {
8093     bind(VECTOR32_NOT_EQUAL);
8094     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
8095     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
8096     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
8097     vpmovmskb(tmp1, rymm0);
8098     bsfq(tmp1, tmp1);
8099     addq(result, tmp1);
8100     shrq(result);
8101     jmp(DONE);
8102   }
8103 
8104   bind(VECTOR16_NOT_EQUAL);
8105   if (UseAVX >= 2) {
8106     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
8107     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
8108     pxor(rymm0, rymm2);
8109   } else {
8110     pcmpeqb(rymm2, rymm2);
8111     pxor(rymm0, rymm1);
8112     pcmpeqb(rymm0, rymm1);
8113     pxor(rymm0, rymm2);
8114   }
8115   pmovmskb(tmp1, rymm0);
8116   bsfq(tmp1, tmp1);
8117   addq(result, tmp1);
8118   shrq(result);
8119   jmpb(DONE);
8120 
8121   bind(VECTOR8_NOT_EQUAL);
8122   bind(VECTOR4_NOT_EQUAL);
8123   bsfq(tmp1, tmp1);
8124   shrq(tmp1, 3);
8125   addq(result, tmp1);
8126   bind(BYTES_NOT_EQUAL);
8127   shrq(result);
8128   jmpb(DONE);
8129 
8130   bind(SAME_TILL_END);
8131   mov64(result, -1);
8132 
8133   bind(DONE);
8134 }
8135 
8136 //Helper functions for square_to_len()
8137 
8138 /**
8139  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
8140  * Preserves x and z and modifies rest of the registers.
8141  */
8142 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8143   // Perform square and right shift by 1
8144   // Handle odd xlen case first, then for even xlen do the following
8145   // jlong carry = 0;
8146   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
8147   //     huge_128 product = x[j:j+1] * x[j:j+1];
8148   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
8149   //     z[i+2:i+3] = (jlong)(product >>> 1);
8150   //     carry = (jlong)product;
8151   // }
8152 
8153   xorq(tmp5, tmp5);     // carry
8154   xorq(rdxReg, rdxReg);
8155   xorl(tmp1, tmp1);     // index for x
8156   xorl(tmp4, tmp4);     // index for z
8157 
8158   Label L_first_loop, L_first_loop_exit;
8159 
8160   testl(xlen, 1);
8161   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
8162 
8163   // Square and right shift by 1 the odd element using 32 bit multiply
8164   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
8165   imulq(raxReg, raxReg);
8166   shrq(raxReg, 1);
8167   adcq(tmp5, 0);
8168   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
8169   incrementl(tmp1);
8170   addl(tmp4, 2);
8171 
8172   // Square and  right shift by 1 the rest using 64 bit multiply
8173   bind(L_first_loop);
8174   cmpptr(tmp1, xlen);
8175   jccb(Assembler::equal, L_first_loop_exit);
8176 
8177   // Square
8178   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
8179   rorq(raxReg, 32);    // convert big-endian to little-endian
8180   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
8181 
8182   // Right shift by 1 and save carry
8183   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
8184   rcrq(rdxReg, 1);
8185   rcrq(raxReg, 1);
8186   adcq(tmp5, 0);
8187 
8188   // Store result in z
8189   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
8190   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
8191 
8192   // Update indices for x and z
8193   addl(tmp1, 2);
8194   addl(tmp4, 4);
8195   jmp(L_first_loop);
8196 
8197   bind(L_first_loop_exit);
8198 }
8199 
8200 
8201 /**
8202  * Perform the following multiply add operation using BMI2 instructions
8203  * carry:sum = sum + op1*op2 + carry
8204  * op2 should be in rdx
8205  * op2 is preserved, all other registers are modified
8206  */
8207 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
8208   // assert op2 is rdx
8209   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
8210   addq(sum, carry);
8211   adcq(tmp2, 0);
8212   addq(sum, op1);
8213   adcq(tmp2, 0);
8214   movq(carry, tmp2);
8215 }
8216 
8217 /**
8218  * Perform the following multiply add operation:
8219  * carry:sum = sum + op1*op2 + carry
8220  * Preserves op1, op2 and modifies rest of registers
8221  */
8222 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
8223   // rdx:rax = op1 * op2
8224   movq(raxReg, op2);
8225   mulq(op1);
8226 
8227   //  rdx:rax = sum + carry + rdx:rax
8228   addq(sum, carry);
8229   adcq(rdxReg, 0);
8230   addq(sum, raxReg);
8231   adcq(rdxReg, 0);
8232 
8233   // carry:sum = rdx:sum
8234   movq(carry, rdxReg);
8235 }
8236 
8237 /**
8238  * Add 64 bit long carry into z[] with carry propogation.
8239  * Preserves z and carry register values and modifies rest of registers.
8240  *
8241  */
8242 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
8243   Label L_fourth_loop, L_fourth_loop_exit;
8244 
8245   movl(tmp1, 1);
8246   subl(zlen, 2);
8247   addq(Address(z, zlen, Address::times_4, 0), carry);
8248 
8249   bind(L_fourth_loop);
8250   jccb(Assembler::carryClear, L_fourth_loop_exit);
8251   subl(zlen, 2);
8252   jccb(Assembler::negative, L_fourth_loop_exit);
8253   addq(Address(z, zlen, Address::times_4, 0), tmp1);
8254   jmp(L_fourth_loop);
8255   bind(L_fourth_loop_exit);
8256 }
8257 
8258 /**
8259  * Shift z[] left by 1 bit.
8260  * Preserves x, len, z and zlen registers and modifies rest of the registers.
8261  *
8262  */
8263 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
8264 
8265   Label L_fifth_loop, L_fifth_loop_exit;
8266 
8267   // Fifth loop
8268   // Perform primitiveLeftShift(z, zlen, 1)
8269 
8270   const Register prev_carry = tmp1;
8271   const Register new_carry = tmp4;
8272   const Register value = tmp2;
8273   const Register zidx = tmp3;
8274 
8275   // int zidx, carry;
8276   // long value;
8277   // carry = 0;
8278   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
8279   //    (carry:value)  = (z[i] << 1) | carry ;
8280   //    z[i] = value;
8281   // }
8282 
8283   movl(zidx, zlen);
8284   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
8285 
8286   bind(L_fifth_loop);
8287   decl(zidx);  // Use decl to preserve carry flag
8288   decl(zidx);
8289   jccb(Assembler::negative, L_fifth_loop_exit);
8290 
8291   if (UseBMI2Instructions) {
8292      movq(value, Address(z, zidx, Address::times_4, 0));
8293      rclq(value, 1);
8294      rorxq(value, value, 32);
8295      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8296   }
8297   else {
8298     // clear new_carry
8299     xorl(new_carry, new_carry);
8300 
8301     // Shift z[i] by 1, or in previous carry and save new carry
8302     movq(value, Address(z, zidx, Address::times_4, 0));
8303     shlq(value, 1);
8304     adcl(new_carry, 0);
8305 
8306     orq(value, prev_carry);
8307     rorq(value, 0x20);
8308     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8309 
8310     // Set previous carry = new carry
8311     movl(prev_carry, new_carry);
8312   }
8313   jmp(L_fifth_loop);
8314 
8315   bind(L_fifth_loop_exit);
8316 }
8317 
8318 
8319 /**
8320  * Code for BigInteger::squareToLen() intrinsic
8321  *
8322  * rdi: x
8323  * rsi: len
8324  * r8:  z
8325  * rcx: zlen
8326  * r12: tmp1
8327  * r13: tmp2
8328  * r14: tmp3
8329  * r15: tmp4
8330  * rbx: tmp5
8331  *
8332  */
8333 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8334 
8335   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
8336   push(tmp1);
8337   push(tmp2);
8338   push(tmp3);
8339   push(tmp4);
8340   push(tmp5);
8341 
8342   // First loop
8343   // Store the squares, right shifted one bit (i.e., divided by 2).
8344   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8345 
8346   // Add in off-diagonal sums.
8347   //
8348   // Second, third (nested) and fourth loops.
8349   // zlen +=2;
8350   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8351   //    carry = 0;
8352   //    long op2 = x[xidx:xidx+1];
8353   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8354   //       k -= 2;
8355   //       long op1 = x[j:j+1];
8356   //       long sum = z[k:k+1];
8357   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8358   //       z[k:k+1] = sum;
8359   //    }
8360   //    add_one_64(z, k, carry, tmp_regs);
8361   // }
8362 
8363   const Register carry = tmp5;
8364   const Register sum = tmp3;
8365   const Register op1 = tmp4;
8366   Register op2 = tmp2;
8367 
8368   push(zlen);
8369   push(len);
8370   addl(zlen,2);
8371   bind(L_second_loop);
8372   xorq(carry, carry);
8373   subl(zlen, 4);
8374   subl(len, 2);
8375   push(zlen);
8376   push(len);
8377   cmpl(len, 0);
8378   jccb(Assembler::lessEqual, L_second_loop_exit);
8379 
8380   // Multiply an array by one 64 bit long.
8381   if (UseBMI2Instructions) {
8382     op2 = rdxReg;
8383     movq(op2, Address(x, len, Address::times_4,  0));
8384     rorxq(op2, op2, 32);
8385   }
8386   else {
8387     movq(op2, Address(x, len, Address::times_4,  0));
8388     rorq(op2, 32);
8389   }
8390 
8391   bind(L_third_loop);
8392   decrementl(len);
8393   jccb(Assembler::negative, L_third_loop_exit);
8394   decrementl(len);
8395   jccb(Assembler::negative, L_last_x);
8396 
8397   movq(op1, Address(x, len, Address::times_4,  0));
8398   rorq(op1, 32);
8399 
8400   bind(L_multiply);
8401   subl(zlen, 2);
8402   movq(sum, Address(z, zlen, Address::times_4,  0));
8403 
8404   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8405   if (UseBMI2Instructions) {
8406     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8407   }
8408   else {
8409     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8410   }
8411 
8412   movq(Address(z, zlen, Address::times_4, 0), sum);
8413 
8414   jmp(L_third_loop);
8415   bind(L_third_loop_exit);
8416 
8417   // Fourth loop
8418   // Add 64 bit long carry into z with carry propogation.
8419   // Uses offsetted zlen.
8420   add_one_64(z, zlen, carry, tmp1);
8421 
8422   pop(len);
8423   pop(zlen);
8424   jmp(L_second_loop);
8425 
8426   // Next infrequent code is moved outside loops.
8427   bind(L_last_x);
8428   movl(op1, Address(x, 0));
8429   jmp(L_multiply);
8430 
8431   bind(L_second_loop_exit);
8432   pop(len);
8433   pop(zlen);
8434   pop(len);
8435   pop(zlen);
8436 
8437   // Fifth loop
8438   // Shift z left 1 bit.
8439   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8440 
8441   // z[zlen-1] |= x[len-1] & 1;
8442   movl(tmp3, Address(x, len, Address::times_4, -4));
8443   andl(tmp3, 1);
8444   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8445 
8446   pop(tmp5);
8447   pop(tmp4);
8448   pop(tmp3);
8449   pop(tmp2);
8450   pop(tmp1);
8451 }
8452 
8453 /**
8454  * Helper function for mul_add()
8455  * Multiply the in[] by int k and add to out[] starting at offset offs using
8456  * 128 bit by 32 bit multiply and return the carry in tmp5.
8457  * Only quad int aligned length of in[] is operated on in this function.
8458  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8459  * This function preserves out, in and k registers.
8460  * len and offset point to the appropriate index in "in" & "out" correspondingly
8461  * tmp5 has the carry.
8462  * other registers are temporary and are modified.
8463  *
8464  */
8465 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8466   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8467   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8468 
8469   Label L_first_loop, L_first_loop_exit;
8470 
8471   movl(tmp1, len);
8472   shrl(tmp1, 2);
8473 
8474   bind(L_first_loop);
8475   subl(tmp1, 1);
8476   jccb(Assembler::negative, L_first_loop_exit);
8477 
8478   subl(len, 4);
8479   subl(offset, 4);
8480 
8481   Register op2 = tmp2;
8482   const Register sum = tmp3;
8483   const Register op1 = tmp4;
8484   const Register carry = tmp5;
8485 
8486   if (UseBMI2Instructions) {
8487     op2 = rdxReg;
8488   }
8489 
8490   movq(op1, Address(in, len, Address::times_4,  8));
8491   rorq(op1, 32);
8492   movq(sum, Address(out, offset, Address::times_4,  8));
8493   rorq(sum, 32);
8494   if (UseBMI2Instructions) {
8495     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8496   }
8497   else {
8498     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8499   }
8500   // Store back in big endian from little endian
8501   rorq(sum, 0x20);
8502   movq(Address(out, offset, Address::times_4,  8), sum);
8503 
8504   movq(op1, Address(in, len, Address::times_4,  0));
8505   rorq(op1, 32);
8506   movq(sum, Address(out, offset, Address::times_4,  0));
8507   rorq(sum, 32);
8508   if (UseBMI2Instructions) {
8509     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8510   }
8511   else {
8512     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8513   }
8514   // Store back in big endian from little endian
8515   rorq(sum, 0x20);
8516   movq(Address(out, offset, Address::times_4,  0), sum);
8517 
8518   jmp(L_first_loop);
8519   bind(L_first_loop_exit);
8520 }
8521 
8522 /**
8523  * Code for BigInteger::mulAdd() intrinsic
8524  *
8525  * rdi: out
8526  * rsi: in
8527  * r11: offs (out.length - offset)
8528  * rcx: len
8529  * r8:  k
8530  * r12: tmp1
8531  * r13: tmp2
8532  * r14: tmp3
8533  * r15: tmp4
8534  * rbx: tmp5
8535  * Multiply the in[] by word k and add to out[], return the carry in rax
8536  */
8537 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8538    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8539    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8540 
8541   Label L_carry, L_last_in, L_done;
8542 
8543 // carry = 0;
8544 // for (int j=len-1; j >= 0; j--) {
8545 //    long product = (in[j] & LONG_MASK) * kLong +
8546 //                   (out[offs] & LONG_MASK) + carry;
8547 //    out[offs--] = (int)product;
8548 //    carry = product >>> 32;
8549 // }
8550 //
8551   push(tmp1);
8552   push(tmp2);
8553   push(tmp3);
8554   push(tmp4);
8555   push(tmp5);
8556 
8557   Register op2 = tmp2;
8558   const Register sum = tmp3;
8559   const Register op1 = tmp4;
8560   const Register carry =  tmp5;
8561 
8562   if (UseBMI2Instructions) {
8563     op2 = rdxReg;
8564     movl(op2, k);
8565   }
8566   else {
8567     movl(op2, k);
8568   }
8569 
8570   xorq(carry, carry);
8571 
8572   //First loop
8573 
8574   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8575   //The carry is in tmp5
8576   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8577 
8578   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8579   decrementl(len);
8580   jccb(Assembler::negative, L_carry);
8581   decrementl(len);
8582   jccb(Assembler::negative, L_last_in);
8583 
8584   movq(op1, Address(in, len, Address::times_4,  0));
8585   rorq(op1, 32);
8586 
8587   subl(offs, 2);
8588   movq(sum, Address(out, offs, Address::times_4,  0));
8589   rorq(sum, 32);
8590 
8591   if (UseBMI2Instructions) {
8592     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8593   }
8594   else {
8595     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8596   }
8597 
8598   // Store back in big endian from little endian
8599   rorq(sum, 0x20);
8600   movq(Address(out, offs, Address::times_4,  0), sum);
8601 
8602   testl(len, len);
8603   jccb(Assembler::zero, L_carry);
8604 
8605   //Multiply the last in[] entry, if any
8606   bind(L_last_in);
8607   movl(op1, Address(in, 0));
8608   movl(sum, Address(out, offs, Address::times_4,  -4));
8609 
8610   movl(raxReg, k);
8611   mull(op1); //tmp4 * eax -> edx:eax
8612   addl(sum, carry);
8613   adcl(rdxReg, 0);
8614   addl(sum, raxReg);
8615   adcl(rdxReg, 0);
8616   movl(carry, rdxReg);
8617 
8618   movl(Address(out, offs, Address::times_4,  -4), sum);
8619 
8620   bind(L_carry);
8621   //return tmp5/carry as carry in rax
8622   movl(rax, carry);
8623 
8624   bind(L_done);
8625   pop(tmp5);
8626   pop(tmp4);
8627   pop(tmp3);
8628   pop(tmp2);
8629   pop(tmp1);
8630 }
8631 #endif
8632 
8633 /**
8634  * Emits code to update CRC-32 with a byte value according to constants in table
8635  *
8636  * @param [in,out]crc   Register containing the crc.
8637  * @param [in]val       Register containing the byte to fold into the CRC.
8638  * @param [in]table     Register containing the table of crc constants.
8639  *
8640  * uint32_t crc;
8641  * val = crc_table[(val ^ crc) & 0xFF];
8642  * crc = val ^ (crc >> 8);
8643  *
8644  */
8645 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8646   xorl(val, crc);
8647   andl(val, 0xFF);
8648   shrl(crc, 8); // unsigned shift
8649   xorl(crc, Address(table, val, Address::times_4, 0));
8650 }
8651 
8652 /**
8653 * Fold four 128-bit data chunks
8654 */
8655 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8656   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
8657   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
8658   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
8659   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
8660 }
8661 
8662 /**
8663  * Fold 128-bit data chunk
8664  */
8665 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8666   if (UseAVX > 0) {
8667     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8668     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8669     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8670     pxor(xcrc, xtmp);
8671   } else {
8672     movdqa(xtmp, xcrc);
8673     pclmulhdq(xtmp, xK);   // [123:64]
8674     pclmulldq(xcrc, xK);   // [63:0]
8675     pxor(xcrc, xtmp);
8676     movdqu(xtmp, Address(buf, offset));
8677     pxor(xcrc, xtmp);
8678   }
8679 }
8680 
8681 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8682   if (UseAVX > 0) {
8683     vpclmulhdq(xtmp, xK, xcrc);
8684     vpclmulldq(xcrc, xK, xcrc);
8685     pxor(xcrc, xbuf);
8686     pxor(xcrc, xtmp);
8687   } else {
8688     movdqa(xtmp, xcrc);
8689     pclmulhdq(xtmp, xK);
8690     pclmulldq(xcrc, xK);
8691     pxor(xcrc, xbuf);
8692     pxor(xcrc, xtmp);
8693   }
8694 }
8695 
8696 /**
8697  * 8-bit folds to compute 32-bit CRC
8698  *
8699  * uint64_t xcrc;
8700  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8701  */
8702 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8703   movdl(tmp, xcrc);
8704   andl(tmp, 0xFF);
8705   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8706   psrldq(xcrc, 1); // unsigned shift one byte
8707   pxor(xcrc, xtmp);
8708 }
8709 
8710 /**
8711  * uint32_t crc;
8712  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8713  */
8714 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8715   movl(tmp, crc);
8716   andl(tmp, 0xFF);
8717   shrl(crc, 8);
8718   xorl(crc, Address(table, tmp, Address::times_4, 0));
8719 }
8720 
8721 /**
8722  * @param crc   register containing existing CRC (32-bit)
8723  * @param buf   register pointing to input byte buffer (byte*)
8724  * @param len   register containing number of bytes
8725  * @param table register that will contain address of CRC table
8726  * @param tmp   scratch register
8727  */
8728 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8729   assert_different_registers(crc, buf, len, table, tmp, rax);
8730 
8731   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8732   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8733 
8734   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
8735   // context for the registers used, where all instructions below are using 128-bit mode
8736   // On EVEX without VL and BW, these instructions will all be AVX.
8737   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8738   notl(crc); // ~crc
8739   cmpl(len, 16);
8740   jcc(Assembler::less, L_tail);
8741 
8742   // Align buffer to 16 bytes
8743   movl(tmp, buf);
8744   andl(tmp, 0xF);
8745   jccb(Assembler::zero, L_aligned);
8746   subl(tmp,  16);
8747   addl(len, tmp);
8748 
8749   align(4);
8750   BIND(L_align_loop);
8751   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8752   update_byte_crc32(crc, rax, table);
8753   increment(buf);
8754   incrementl(tmp);
8755   jccb(Assembler::less, L_align_loop);
8756 
8757   BIND(L_aligned);
8758   movl(tmp, len); // save
8759   shrl(len, 4);
8760   jcc(Assembler::zero, L_tail_restore);
8761 
8762   // Fold total 512 bits of polynomial on each iteration
8763   if (VM_Version::supports_vpclmulqdq()) {
8764     Label Parallel_loop, L_No_Parallel;
8765 
8766     cmpl(len, 8);
8767     jccb(Assembler::less, L_No_Parallel);
8768 
8769     movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8770     evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
8771     movdl(xmm5, crc);
8772     evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
8773     addptr(buf, 64);
8774     subl(len, 7);
8775     evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
8776 
8777     BIND(Parallel_loop);
8778     fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
8779     addptr(buf, 64);
8780     subl(len, 4);
8781     jcc(Assembler::greater, Parallel_loop);
8782 
8783     vextracti64x2(xmm2, xmm1, 0x01);
8784     vextracti64x2(xmm3, xmm1, 0x02);
8785     vextracti64x2(xmm4, xmm1, 0x03);
8786     jmp(L_fold_512b);
8787 
8788     BIND(L_No_Parallel);
8789   }
8790   // Fold crc into first bytes of vector
8791   movdqa(xmm1, Address(buf, 0));
8792   movdl(rax, xmm1);
8793   xorl(crc, rax);
8794   if (VM_Version::supports_sse4_1()) {
8795     pinsrd(xmm1, crc, 0);
8796   } else {
8797     pinsrw(xmm1, crc, 0);
8798     shrl(crc, 16);
8799     pinsrw(xmm1, crc, 1);
8800   }
8801   addptr(buf, 16);
8802   subl(len, 4); // len > 0
8803   jcc(Assembler::less, L_fold_tail);
8804 
8805   movdqa(xmm2, Address(buf,  0));
8806   movdqa(xmm3, Address(buf, 16));
8807   movdqa(xmm4, Address(buf, 32));
8808   addptr(buf, 48);
8809   subl(len, 3);
8810   jcc(Assembler::lessEqual, L_fold_512b);
8811 
8812   // Fold total 512 bits of polynomial on each iteration,
8813   // 128 bits per each of 4 parallel streams.
8814   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8815 
8816   align(32);
8817   BIND(L_fold_512b_loop);
8818   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8819   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8820   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8821   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
8822   addptr(buf, 64);
8823   subl(len, 4);
8824   jcc(Assembler::greater, L_fold_512b_loop);
8825 
8826   // Fold 512 bits to 128 bits.
8827   BIND(L_fold_512b);
8828   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8829   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
8830   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
8831   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
8832 
8833   // Fold the rest of 128 bits data chunks
8834   BIND(L_fold_tail);
8835   addl(len, 3);
8836   jccb(Assembler::lessEqual, L_fold_128b);
8837   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8838 
8839   BIND(L_fold_tail_loop);
8840   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8841   addptr(buf, 16);
8842   decrementl(len);
8843   jccb(Assembler::greater, L_fold_tail_loop);
8844 
8845   // Fold 128 bits in xmm1 down into 32 bits in crc register.
8846   BIND(L_fold_128b);
8847   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
8848   if (UseAVX > 0) {
8849     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
8850     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
8851     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
8852   } else {
8853     movdqa(xmm2, xmm0);
8854     pclmulqdq(xmm2, xmm1, 0x1);
8855     movdqa(xmm3, xmm0);
8856     pand(xmm3, xmm2);
8857     pclmulqdq(xmm0, xmm3, 0x1);
8858   }
8859   psrldq(xmm1, 8);
8860   psrldq(xmm2, 4);
8861   pxor(xmm0, xmm1);
8862   pxor(xmm0, xmm2);
8863 
8864   // 8 8-bit folds to compute 32-bit CRC.
8865   for (int j = 0; j < 4; j++) {
8866     fold_8bit_crc32(xmm0, table, xmm1, rax);
8867   }
8868   movdl(crc, xmm0); // mov 32 bits to general register
8869   for (int j = 0; j < 4; j++) {
8870     fold_8bit_crc32(crc, table, rax);
8871   }
8872 
8873   BIND(L_tail_restore);
8874   movl(len, tmp); // restore
8875   BIND(L_tail);
8876   andl(len, 0xf);
8877   jccb(Assembler::zero, L_exit);
8878 
8879   // Fold the rest of bytes
8880   align(4);
8881   BIND(L_tail_loop);
8882   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8883   update_byte_crc32(crc, rax, table);
8884   increment(buf);
8885   decrementl(len);
8886   jccb(Assembler::greater, L_tail_loop);
8887 
8888   BIND(L_exit);
8889   notl(crc); // ~c
8890 }
8891 
8892 #ifdef _LP64
8893 // S. Gueron / Information Processing Letters 112 (2012) 184
8894 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
8895 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
8896 // Output: the 64-bit carry-less product of B * CONST
8897 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
8898                                      Register tmp1, Register tmp2, Register tmp3) {
8899   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
8900   if (n > 0) {
8901     addq(tmp3, n * 256 * 8);
8902   }
8903   //    Q1 = TABLEExt[n][B & 0xFF];
8904   movl(tmp1, in);
8905   andl(tmp1, 0x000000FF);
8906   shll(tmp1, 3);
8907   addq(tmp1, tmp3);
8908   movq(tmp1, Address(tmp1, 0));
8909 
8910   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
8911   movl(tmp2, in);
8912   shrl(tmp2, 8);
8913   andl(tmp2, 0x000000FF);
8914   shll(tmp2, 3);
8915   addq(tmp2, tmp3);
8916   movq(tmp2, Address(tmp2, 0));
8917 
8918   shlq(tmp2, 8);
8919   xorq(tmp1, tmp2);
8920 
8921   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
8922   movl(tmp2, in);
8923   shrl(tmp2, 16);
8924   andl(tmp2, 0x000000FF);
8925   shll(tmp2, 3);
8926   addq(tmp2, tmp3);
8927   movq(tmp2, Address(tmp2, 0));
8928 
8929   shlq(tmp2, 16);
8930   xorq(tmp1, tmp2);
8931 
8932   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
8933   shrl(in, 24);
8934   andl(in, 0x000000FF);
8935   shll(in, 3);
8936   addq(in, tmp3);
8937   movq(in, Address(in, 0));
8938 
8939   shlq(in, 24);
8940   xorq(in, tmp1);
8941   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
8942 }
8943 
8944 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
8945                                       Register in_out,
8946                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
8947                                       XMMRegister w_xtmp2,
8948                                       Register tmp1,
8949                                       Register n_tmp2, Register n_tmp3) {
8950   if (is_pclmulqdq_supported) {
8951     movdl(w_xtmp1, in_out); // modified blindly
8952 
8953     movl(tmp1, const_or_pre_comp_const_index);
8954     movdl(w_xtmp2, tmp1);
8955     pclmulqdq(w_xtmp1, w_xtmp2, 0);
8956 
8957     movdq(in_out, w_xtmp1);
8958   } else {
8959     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
8960   }
8961 }
8962 
8963 // Recombination Alternative 2: No bit-reflections
8964 // T1 = (CRC_A * U1) << 1
8965 // T2 = (CRC_B * U2) << 1
8966 // C1 = T1 >> 32
8967 // C2 = T2 >> 32
8968 // T1 = T1 & 0xFFFFFFFF
8969 // T2 = T2 & 0xFFFFFFFF
8970 // T1 = CRC32(0, T1)
8971 // T2 = CRC32(0, T2)
8972 // C1 = C1 ^ T1
8973 // C2 = C2 ^ T2
8974 // CRC = C1 ^ C2 ^ CRC_C
8975 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
8976                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8977                                      Register tmp1, Register tmp2,
8978                                      Register n_tmp3) {
8979   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8980   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8981   shlq(in_out, 1);
8982   movl(tmp1, in_out);
8983   shrq(in_out, 32);
8984   xorl(tmp2, tmp2);
8985   crc32(tmp2, tmp1, 4);
8986   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
8987   shlq(in1, 1);
8988   movl(tmp1, in1);
8989   shrq(in1, 32);
8990   xorl(tmp2, tmp2);
8991   crc32(tmp2, tmp1, 4);
8992   xorl(in1, tmp2);
8993   xorl(in_out, in1);
8994   xorl(in_out, in2);
8995 }
8996 
8997 // Set N to predefined value
8998 // Subtract from a lenght of a buffer
8999 // execute in a loop:
9000 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
9001 // for i = 1 to N do
9002 //  CRC_A = CRC32(CRC_A, A[i])
9003 //  CRC_B = CRC32(CRC_B, B[i])
9004 //  CRC_C = CRC32(CRC_C, C[i])
9005 // end for
9006 // Recombine
9007 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9008                                        Register in_out1, Register in_out2, Register in_out3,
9009                                        Register tmp1, Register tmp2, Register tmp3,
9010                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9011                                        Register tmp4, Register tmp5,
9012                                        Register n_tmp6) {
9013   Label L_processPartitions;
9014   Label L_processPartition;
9015   Label L_exit;
9016 
9017   bind(L_processPartitions);
9018   cmpl(in_out1, 3 * size);
9019   jcc(Assembler::less, L_exit);
9020     xorl(tmp1, tmp1);
9021     xorl(tmp2, tmp2);
9022     movq(tmp3, in_out2);
9023     addq(tmp3, size);
9024 
9025     bind(L_processPartition);
9026       crc32(in_out3, Address(in_out2, 0), 8);
9027       crc32(tmp1, Address(in_out2, size), 8);
9028       crc32(tmp2, Address(in_out2, size * 2), 8);
9029       addq(in_out2, 8);
9030       cmpq(in_out2, tmp3);
9031       jcc(Assembler::less, L_processPartition);
9032     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9033             w_xtmp1, w_xtmp2, w_xtmp3,
9034             tmp4, tmp5,
9035             n_tmp6);
9036     addq(in_out2, 2 * size);
9037     subl(in_out1, 3 * size);
9038     jmp(L_processPartitions);
9039 
9040   bind(L_exit);
9041 }
9042 #else
9043 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
9044                                      Register tmp1, Register tmp2, Register tmp3,
9045                                      XMMRegister xtmp1, XMMRegister xtmp2) {
9046   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9047   if (n > 0) {
9048     addl(tmp3, n * 256 * 8);
9049   }
9050   //    Q1 = TABLEExt[n][B & 0xFF];
9051   movl(tmp1, in_out);
9052   andl(tmp1, 0x000000FF);
9053   shll(tmp1, 3);
9054   addl(tmp1, tmp3);
9055   movq(xtmp1, Address(tmp1, 0));
9056 
9057   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9058   movl(tmp2, in_out);
9059   shrl(tmp2, 8);
9060   andl(tmp2, 0x000000FF);
9061   shll(tmp2, 3);
9062   addl(tmp2, tmp3);
9063   movq(xtmp2, Address(tmp2, 0));
9064 
9065   psllq(xtmp2, 8);
9066   pxor(xtmp1, xtmp2);
9067 
9068   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9069   movl(tmp2, in_out);
9070   shrl(tmp2, 16);
9071   andl(tmp2, 0x000000FF);
9072   shll(tmp2, 3);
9073   addl(tmp2, tmp3);
9074   movq(xtmp2, Address(tmp2, 0));
9075 
9076   psllq(xtmp2, 16);
9077   pxor(xtmp1, xtmp2);
9078 
9079   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9080   shrl(in_out, 24);
9081   andl(in_out, 0x000000FF);
9082   shll(in_out, 3);
9083   addl(in_out, tmp3);
9084   movq(xtmp2, Address(in_out, 0));
9085 
9086   psllq(xtmp2, 24);
9087   pxor(xtmp1, xtmp2); // Result in CXMM
9088   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9089 }
9090 
9091 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9092                                       Register in_out,
9093                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9094                                       XMMRegister w_xtmp2,
9095                                       Register tmp1,
9096                                       Register n_tmp2, Register n_tmp3) {
9097   if (is_pclmulqdq_supported) {
9098     movdl(w_xtmp1, in_out);
9099 
9100     movl(tmp1, const_or_pre_comp_const_index);
9101     movdl(w_xtmp2, tmp1);
9102     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9103     // Keep result in XMM since GPR is 32 bit in length
9104   } else {
9105     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
9106   }
9107 }
9108 
9109 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9110                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9111                                      Register tmp1, Register tmp2,
9112                                      Register n_tmp3) {
9113   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9114   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9115 
9116   psllq(w_xtmp1, 1);
9117   movdl(tmp1, w_xtmp1);
9118   psrlq(w_xtmp1, 32);
9119   movdl(in_out, w_xtmp1);
9120 
9121   xorl(tmp2, tmp2);
9122   crc32(tmp2, tmp1, 4);
9123   xorl(in_out, tmp2);
9124 
9125   psllq(w_xtmp2, 1);
9126   movdl(tmp1, w_xtmp2);
9127   psrlq(w_xtmp2, 32);
9128   movdl(in1, w_xtmp2);
9129 
9130   xorl(tmp2, tmp2);
9131   crc32(tmp2, tmp1, 4);
9132   xorl(in1, tmp2);
9133   xorl(in_out, in1);
9134   xorl(in_out, in2);
9135 }
9136 
9137 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9138                                        Register in_out1, Register in_out2, Register in_out3,
9139                                        Register tmp1, Register tmp2, Register tmp3,
9140                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9141                                        Register tmp4, Register tmp5,
9142                                        Register n_tmp6) {
9143   Label L_processPartitions;
9144   Label L_processPartition;
9145   Label L_exit;
9146 
9147   bind(L_processPartitions);
9148   cmpl(in_out1, 3 * size);
9149   jcc(Assembler::less, L_exit);
9150     xorl(tmp1, tmp1);
9151     xorl(tmp2, tmp2);
9152     movl(tmp3, in_out2);
9153     addl(tmp3, size);
9154 
9155     bind(L_processPartition);
9156       crc32(in_out3, Address(in_out2, 0), 4);
9157       crc32(tmp1, Address(in_out2, size), 4);
9158       crc32(tmp2, Address(in_out2, size*2), 4);
9159       crc32(in_out3, Address(in_out2, 0+4), 4);
9160       crc32(tmp1, Address(in_out2, size+4), 4);
9161       crc32(tmp2, Address(in_out2, size*2+4), 4);
9162       addl(in_out2, 8);
9163       cmpl(in_out2, tmp3);
9164       jcc(Assembler::less, L_processPartition);
9165 
9166         push(tmp3);
9167         push(in_out1);
9168         push(in_out2);
9169         tmp4 = tmp3;
9170         tmp5 = in_out1;
9171         n_tmp6 = in_out2;
9172 
9173       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9174             w_xtmp1, w_xtmp2, w_xtmp3,
9175             tmp4, tmp5,
9176             n_tmp6);
9177 
9178         pop(in_out2);
9179         pop(in_out1);
9180         pop(tmp3);
9181 
9182     addl(in_out2, 2 * size);
9183     subl(in_out1, 3 * size);
9184     jmp(L_processPartitions);
9185 
9186   bind(L_exit);
9187 }
9188 #endif //LP64
9189 
9190 #ifdef _LP64
9191 // Algorithm 2: Pipelined usage of the CRC32 instruction.
9192 // Input: A buffer I of L bytes.
9193 // Output: the CRC32C value of the buffer.
9194 // Notations:
9195 // Write L = 24N + r, with N = floor (L/24).
9196 // r = L mod 24 (0 <= r < 24).
9197 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
9198 // N quadwords, and R consists of r bytes.
9199 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
9200 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
9201 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
9202 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
9203 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9204                                           Register tmp1, Register tmp2, Register tmp3,
9205                                           Register tmp4, Register tmp5, Register tmp6,
9206                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9207                                           bool is_pclmulqdq_supported) {
9208   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9209   Label L_wordByWord;
9210   Label L_byteByByteProlog;
9211   Label L_byteByByte;
9212   Label L_exit;
9213 
9214   if (is_pclmulqdq_supported ) {
9215     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9216     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
9217 
9218     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9219     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9220 
9221     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9222     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9223     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
9224   } else {
9225     const_or_pre_comp_const_index[0] = 1;
9226     const_or_pre_comp_const_index[1] = 0;
9227 
9228     const_or_pre_comp_const_index[2] = 3;
9229     const_or_pre_comp_const_index[3] = 2;
9230 
9231     const_or_pre_comp_const_index[4] = 5;
9232     const_or_pre_comp_const_index[5] = 4;
9233    }
9234   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9235                     in2, in1, in_out,
9236                     tmp1, tmp2, tmp3,
9237                     w_xtmp1, w_xtmp2, w_xtmp3,
9238                     tmp4, tmp5,
9239                     tmp6);
9240   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9241                     in2, in1, in_out,
9242                     tmp1, tmp2, tmp3,
9243                     w_xtmp1, w_xtmp2, w_xtmp3,
9244                     tmp4, tmp5,
9245                     tmp6);
9246   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9247                     in2, in1, in_out,
9248                     tmp1, tmp2, tmp3,
9249                     w_xtmp1, w_xtmp2, w_xtmp3,
9250                     tmp4, tmp5,
9251                     tmp6);
9252   movl(tmp1, in2);
9253   andl(tmp1, 0x00000007);
9254   negl(tmp1);
9255   addl(tmp1, in2);
9256   addq(tmp1, in1);
9257 
9258   BIND(L_wordByWord);
9259   cmpq(in1, tmp1);
9260   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9261     crc32(in_out, Address(in1, 0), 4);
9262     addq(in1, 4);
9263     jmp(L_wordByWord);
9264 
9265   BIND(L_byteByByteProlog);
9266   andl(in2, 0x00000007);
9267   movl(tmp2, 1);
9268 
9269   BIND(L_byteByByte);
9270   cmpl(tmp2, in2);
9271   jccb(Assembler::greater, L_exit);
9272     crc32(in_out, Address(in1, 0), 1);
9273     incq(in1);
9274     incl(tmp2);
9275     jmp(L_byteByByte);
9276 
9277   BIND(L_exit);
9278 }
9279 #else
9280 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9281                                           Register tmp1, Register  tmp2, Register tmp3,
9282                                           Register tmp4, Register  tmp5, Register tmp6,
9283                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9284                                           bool is_pclmulqdq_supported) {
9285   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9286   Label L_wordByWord;
9287   Label L_byteByByteProlog;
9288   Label L_byteByByte;
9289   Label L_exit;
9290 
9291   if (is_pclmulqdq_supported) {
9292     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9293     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
9294 
9295     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9296     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9297 
9298     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9299     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9300   } else {
9301     const_or_pre_comp_const_index[0] = 1;
9302     const_or_pre_comp_const_index[1] = 0;
9303 
9304     const_or_pre_comp_const_index[2] = 3;
9305     const_or_pre_comp_const_index[3] = 2;
9306 
9307     const_or_pre_comp_const_index[4] = 5;
9308     const_or_pre_comp_const_index[5] = 4;
9309   }
9310   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9311                     in2, in1, in_out,
9312                     tmp1, tmp2, tmp3,
9313                     w_xtmp1, w_xtmp2, w_xtmp3,
9314                     tmp4, tmp5,
9315                     tmp6);
9316   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9317                     in2, in1, in_out,
9318                     tmp1, tmp2, tmp3,
9319                     w_xtmp1, w_xtmp2, w_xtmp3,
9320                     tmp4, tmp5,
9321                     tmp6);
9322   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9323                     in2, in1, in_out,
9324                     tmp1, tmp2, tmp3,
9325                     w_xtmp1, w_xtmp2, w_xtmp3,
9326                     tmp4, tmp5,
9327                     tmp6);
9328   movl(tmp1, in2);
9329   andl(tmp1, 0x00000007);
9330   negl(tmp1);
9331   addl(tmp1, in2);
9332   addl(tmp1, in1);
9333 
9334   BIND(L_wordByWord);
9335   cmpl(in1, tmp1);
9336   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9337     crc32(in_out, Address(in1,0), 4);
9338     addl(in1, 4);
9339     jmp(L_wordByWord);
9340 
9341   BIND(L_byteByByteProlog);
9342   andl(in2, 0x00000007);
9343   movl(tmp2, 1);
9344 
9345   BIND(L_byteByByte);
9346   cmpl(tmp2, in2);
9347   jccb(Assembler::greater, L_exit);
9348     movb(tmp1, Address(in1, 0));
9349     crc32(in_out, tmp1, 1);
9350     incl(in1);
9351     incl(tmp2);
9352     jmp(L_byteByByte);
9353 
9354   BIND(L_exit);
9355 }
9356 #endif // LP64
9357 #undef BIND
9358 #undef BLOCK_COMMENT
9359 
9360 // Compress char[] array to byte[].
9361 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
9362 //   @HotSpotIntrinsicCandidate
9363 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
9364 //     for (int i = 0; i < len; i++) {
9365 //       int c = src[srcOff++];
9366 //       if (c >>> 8 != 0) {
9367 //         return 0;
9368 //       }
9369 //       dst[dstOff++] = (byte)c;
9370 //     }
9371 //     return len;
9372 //   }
9373 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
9374   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
9375   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
9376   Register tmp5, Register result) {
9377   Label copy_chars_loop, return_length, return_zero, done;
9378 
9379   // rsi: src
9380   // rdi: dst
9381   // rdx: len
9382   // rcx: tmp5
9383   // rax: result
9384 
9385   // rsi holds start addr of source char[] to be compressed
9386   // rdi holds start addr of destination byte[]
9387   // rdx holds length
9388 
9389   assert(len != result, "");
9390 
9391   // save length for return
9392   push(len);
9393 
9394   if ((UseAVX > 2) && // AVX512
9395     VM_Version::supports_avx512vlbw() &&
9396     VM_Version::supports_bmi2()) {
9397 
9398     Label copy_32_loop, copy_loop_tail, below_threshold;
9399 
9400     // alignment
9401     Label post_alignment;
9402 
9403     // if length of the string is less than 16, handle it in an old fashioned way
9404     testl(len, -32);
9405     jcc(Assembler::zero, below_threshold);
9406 
9407     // First check whether a character is compressable ( <= 0xFF).
9408     // Create mask to test for Unicode chars inside zmm vector
9409     movl(result, 0x00FF);
9410     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
9411 
9412     testl(len, -64);
9413     jcc(Assembler::zero, post_alignment);
9414 
9415     movl(tmp5, dst);
9416     andl(tmp5, (32 - 1));
9417     negl(tmp5);
9418     andl(tmp5, (32 - 1));
9419 
9420     // bail out when there is nothing to be done
9421     testl(tmp5, 0xFFFFFFFF);
9422     jcc(Assembler::zero, post_alignment);
9423 
9424     // ~(~0 << len), where len is the # of remaining elements to process
9425     movl(result, 0xFFFFFFFF);
9426     shlxl(result, result, tmp5);
9427     notl(result);
9428     kmovdl(k3, result);
9429 
9430     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9431     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9432     ktestd(k2, k3);
9433     jcc(Assembler::carryClear, return_zero);
9434 
9435     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9436 
9437     addptr(src, tmp5);
9438     addptr(src, tmp5);
9439     addptr(dst, tmp5);
9440     subl(len, tmp5);
9441 
9442     bind(post_alignment);
9443     // end of alignment
9444 
9445     movl(tmp5, len);
9446     andl(tmp5, (32 - 1));    // tail count (in chars)
9447     andl(len, ~(32 - 1));    // vector count (in chars)
9448     jcc(Assembler::zero, copy_loop_tail);
9449 
9450     lea(src, Address(src, len, Address::times_2));
9451     lea(dst, Address(dst, len, Address::times_1));
9452     negptr(len);
9453 
9454     bind(copy_32_loop);
9455     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
9456     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9457     kortestdl(k2, k2);
9458     jcc(Assembler::carryClear, return_zero);
9459 
9460     // All elements in current processed chunk are valid candidates for
9461     // compression. Write a truncated byte elements to the memory.
9462     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
9463     addptr(len, 32);
9464     jcc(Assembler::notZero, copy_32_loop);
9465 
9466     bind(copy_loop_tail);
9467     // bail out when there is nothing to be done
9468     testl(tmp5, 0xFFFFFFFF);
9469     jcc(Assembler::zero, return_length);
9470 
9471     movl(len, tmp5);
9472 
9473     // ~(~0 << len), where len is the # of remaining elements to process
9474     movl(result, 0xFFFFFFFF);
9475     shlxl(result, result, len);
9476     notl(result);
9477 
9478     kmovdl(k3, result);
9479 
9480     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9481     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9482     ktestd(k2, k3);
9483     jcc(Assembler::carryClear, return_zero);
9484 
9485     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9486     jmp(return_length);
9487 
9488     bind(below_threshold);
9489   }
9490 
9491   if (UseSSE42Intrinsics) {
9492     Label copy_32_loop, copy_16, copy_tail;
9493 
9494     movl(result, len);
9495 
9496     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
9497 
9498     // vectored compression
9499     andl(len, 0xfffffff0);    // vector count (in chars)
9500     andl(result, 0x0000000f);    // tail count (in chars)
9501     testl(len, len);
9502     jcc(Assembler::zero, copy_16);
9503 
9504     // compress 16 chars per iter
9505     movdl(tmp1Reg, tmp5);
9506     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9507     pxor(tmp4Reg, tmp4Reg);
9508 
9509     lea(src, Address(src, len, Address::times_2));
9510     lea(dst, Address(dst, len, Address::times_1));
9511     negptr(len);
9512 
9513     bind(copy_32_loop);
9514     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
9515     por(tmp4Reg, tmp2Reg);
9516     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
9517     por(tmp4Reg, tmp3Reg);
9518     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
9519     jcc(Assembler::notZero, return_zero);
9520     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
9521     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
9522     addptr(len, 16);
9523     jcc(Assembler::notZero, copy_32_loop);
9524 
9525     // compress next vector of 8 chars (if any)
9526     bind(copy_16);
9527     movl(len, result);
9528     andl(len, 0xfffffff8);    // vector count (in chars)
9529     andl(result, 0x00000007);    // tail count (in chars)
9530     testl(len, len);
9531     jccb(Assembler::zero, copy_tail);
9532 
9533     movdl(tmp1Reg, tmp5);
9534     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9535     pxor(tmp3Reg, tmp3Reg);
9536 
9537     movdqu(tmp2Reg, Address(src, 0));
9538     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
9539     jccb(Assembler::notZero, return_zero);
9540     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
9541     movq(Address(dst, 0), tmp2Reg);
9542     addptr(src, 16);
9543     addptr(dst, 8);
9544 
9545     bind(copy_tail);
9546     movl(len, result);
9547   }
9548   // compress 1 char per iter
9549   testl(len, len);
9550   jccb(Assembler::zero, return_length);
9551   lea(src, Address(src, len, Address::times_2));
9552   lea(dst, Address(dst, len, Address::times_1));
9553   negptr(len);
9554 
9555   bind(copy_chars_loop);
9556   load_unsigned_short(result, Address(src, len, Address::times_2));
9557   testl(result, 0xff00);      // check if Unicode char
9558   jccb(Assembler::notZero, return_zero);
9559   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
9560   increment(len);
9561   jcc(Assembler::notZero, copy_chars_loop);
9562 
9563   // if compression succeeded, return length
9564   bind(return_length);
9565   pop(result);
9566   jmpb(done);
9567 
9568   // if compression failed, return 0
9569   bind(return_zero);
9570   xorl(result, result);
9571   addptr(rsp, wordSize);
9572 
9573   bind(done);
9574 }
9575 
9576 // Inflate byte[] array to char[].
9577 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
9578 //   @HotSpotIntrinsicCandidate
9579 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
9580 //     for (int i = 0; i < len; i++) {
9581 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
9582 //     }
9583 //   }
9584 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
9585   XMMRegister tmp1, Register tmp2) {
9586   Label copy_chars_loop, done, below_threshold;
9587   // rsi: src
9588   // rdi: dst
9589   // rdx: len
9590   // rcx: tmp2
9591 
9592   // rsi holds start addr of source byte[] to be inflated
9593   // rdi holds start addr of destination char[]
9594   // rdx holds length
9595   assert_different_registers(src, dst, len, tmp2);
9596 
9597   if ((UseAVX > 2) && // AVX512
9598     VM_Version::supports_avx512vlbw() &&
9599     VM_Version::supports_bmi2()) {
9600 
9601     Label copy_32_loop, copy_tail;
9602     Register tmp3_aliased = len;
9603 
9604     // if length of the string is less than 16, handle it in an old fashioned way
9605     testl(len, -16);
9606     jcc(Assembler::zero, below_threshold);
9607 
9608     // In order to use only one arithmetic operation for the main loop we use
9609     // this pre-calculation
9610     movl(tmp2, len);
9611     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
9612     andl(len, -32);     // vector count
9613     jccb(Assembler::zero, copy_tail);
9614 
9615     lea(src, Address(src, len, Address::times_1));
9616     lea(dst, Address(dst, len, Address::times_2));
9617     negptr(len);
9618 
9619 
9620     // inflate 32 chars per iter
9621     bind(copy_32_loop);
9622     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
9623     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
9624     addptr(len, 32);
9625     jcc(Assembler::notZero, copy_32_loop);
9626 
9627     bind(copy_tail);
9628     // bail out when there is nothing to be done
9629     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
9630     jcc(Assembler::zero, done);
9631 
9632     // ~(~0 << length), where length is the # of remaining elements to process
9633     movl(tmp3_aliased, -1);
9634     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
9635     notl(tmp3_aliased);
9636     kmovdl(k2, tmp3_aliased);
9637     evpmovzxbw(tmp1, k2, Address(src, 0), Assembler::AVX_512bit);
9638     evmovdquw(Address(dst, 0), k2, tmp1, Assembler::AVX_512bit);
9639 
9640     jmp(done);
9641   }
9642   if (UseSSE42Intrinsics) {
9643     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
9644 
9645     movl(tmp2, len);
9646 
9647     if (UseAVX > 1) {
9648       andl(tmp2, (16 - 1));
9649       andl(len, -16);
9650       jccb(Assembler::zero, copy_new_tail);
9651     } else {
9652       andl(tmp2, 0x00000007);   // tail count (in chars)
9653       andl(len, 0xfffffff8);    // vector count (in chars)
9654       jccb(Assembler::zero, copy_tail);
9655     }
9656 
9657     // vectored inflation
9658     lea(src, Address(src, len, Address::times_1));
9659     lea(dst, Address(dst, len, Address::times_2));
9660     negptr(len);
9661 
9662     if (UseAVX > 1) {
9663       bind(copy_16_loop);
9664       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
9665       vmovdqu(Address(dst, len, Address::times_2), tmp1);
9666       addptr(len, 16);
9667       jcc(Assembler::notZero, copy_16_loop);
9668 
9669       bind(below_threshold);
9670       bind(copy_new_tail);
9671       if ((UseAVX > 2) &&
9672         VM_Version::supports_avx512vlbw() &&
9673         VM_Version::supports_bmi2()) {
9674         movl(tmp2, len);
9675       } else {
9676         movl(len, tmp2);
9677       }
9678       andl(tmp2, 0x00000007);
9679       andl(len, 0xFFFFFFF8);
9680       jccb(Assembler::zero, copy_tail);
9681 
9682       pmovzxbw(tmp1, Address(src, 0));
9683       movdqu(Address(dst, 0), tmp1);
9684       addptr(src, 8);
9685       addptr(dst, 2 * 8);
9686 
9687       jmp(copy_tail, true);
9688     }
9689 
9690     // inflate 8 chars per iter
9691     bind(copy_8_loop);
9692     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
9693     movdqu(Address(dst, len, Address::times_2), tmp1);
9694     addptr(len, 8);
9695     jcc(Assembler::notZero, copy_8_loop);
9696 
9697     bind(copy_tail);
9698     movl(len, tmp2);
9699 
9700     cmpl(len, 4);
9701     jccb(Assembler::less, copy_bytes);
9702 
9703     movdl(tmp1, Address(src, 0));  // load 4 byte chars
9704     pmovzxbw(tmp1, tmp1);
9705     movq(Address(dst, 0), tmp1);
9706     subptr(len, 4);
9707     addptr(src, 4);
9708     addptr(dst, 8);
9709 
9710     bind(copy_bytes);
9711   } else {
9712     bind(below_threshold);
9713   }
9714 
9715   testl(len, len);
9716   jccb(Assembler::zero, done);
9717   lea(src, Address(src, len, Address::times_1));
9718   lea(dst, Address(dst, len, Address::times_2));
9719   negptr(len);
9720 
9721   // inflate 1 char per iter
9722   bind(copy_chars_loop);
9723   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
9724   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
9725   increment(len);
9726   jcc(Assembler::notZero, copy_chars_loop);
9727 
9728   bind(done);
9729 }
9730 
9731 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9732   switch (cond) {
9733     // Note some conditions are synonyms for others
9734     case Assembler::zero:         return Assembler::notZero;
9735     case Assembler::notZero:      return Assembler::zero;
9736     case Assembler::less:         return Assembler::greaterEqual;
9737     case Assembler::lessEqual:    return Assembler::greater;
9738     case Assembler::greater:      return Assembler::lessEqual;
9739     case Assembler::greaterEqual: return Assembler::less;
9740     case Assembler::below:        return Assembler::aboveEqual;
9741     case Assembler::belowEqual:   return Assembler::above;
9742     case Assembler::above:        return Assembler::belowEqual;
9743     case Assembler::aboveEqual:   return Assembler::below;
9744     case Assembler::overflow:     return Assembler::noOverflow;
9745     case Assembler::noOverflow:   return Assembler::overflow;
9746     case Assembler::negative:     return Assembler::positive;
9747     case Assembler::positive:     return Assembler::negative;
9748     case Assembler::parity:       return Assembler::noParity;
9749     case Assembler::noParity:     return Assembler::parity;
9750   }
9751   ShouldNotReachHere(); return Assembler::overflow;
9752 }
9753 
9754 SkipIfEqual::SkipIfEqual(
9755     MacroAssembler* masm, const bool* flag_addr, bool value) {
9756   _masm = masm;
9757   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9758   _masm->jcc(Assembler::equal, _label);
9759 }
9760 
9761 SkipIfEqual::~SkipIfEqual() {
9762   _masm->bind(_label);
9763 }
9764 
9765 // 32-bit Windows has its own fast-path implementation
9766 // of get_thread
9767 #if !defined(WIN32) || defined(_LP64)
9768 
9769 // This is simply a call to Thread::current()
9770 void MacroAssembler::get_thread(Register thread) {
9771   if (thread != rax) {
9772     push(rax);
9773   }
9774   LP64_ONLY(push(rdi);)
9775   LP64_ONLY(push(rsi);)
9776   push(rdx);
9777   push(rcx);
9778 #ifdef _LP64
9779   push(r8);
9780   push(r9);
9781   push(r10);
9782   push(r11);
9783 #endif
9784 
9785   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
9786 
9787 #ifdef _LP64
9788   pop(r11);
9789   pop(r10);
9790   pop(r9);
9791   pop(r8);
9792 #endif
9793   pop(rcx);
9794   pop(rdx);
9795   LP64_ONLY(pop(rsi);)
9796   LP64_ONLY(pop(rdi);)
9797   if (thread != rax) {
9798     mov(thread, rax);
9799     pop(rax);
9800   }
9801 }
9802 
9803 #endif