1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableBarrierSet.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/os.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifdef PRODUCT
  41 #define BLOCK_COMMENT(str) /* nothing */
  42 #define STOP(error) stop(error)
  43 #else
  44 #define BLOCK_COMMENT(str) block_comment(str)
  45 #define STOP(error) block_comment(error); stop(error)
  46 #endif
  47 
  48 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  49 // Implementation of AddressLiteral
  50 
  51 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  52 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  53   // -----------------Table 4.5 -------------------- //
  54   16, 32, 64,  // EVEX_FV(0)
  55   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  56   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  57   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  58   8,  16, 32,  // EVEX_HV(0)
  59   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  60   // -----------------Table 4.6 -------------------- //
  61   16, 32, 64,  // EVEX_FVM(0)
  62   1,  1,  1,   // EVEX_T1S(0)
  63   2,  2,  2,   // EVEX_T1S(1)
  64   4,  4,  4,   // EVEX_T1S(2)
  65   8,  8,  8,   // EVEX_T1S(3)
  66   4,  4,  4,   // EVEX_T1F(0)
  67   8,  8,  8,   // EVEX_T1F(1)
  68   8,  8,  8,   // EVEX_T2(0)
  69   0,  16, 16,  // EVEX_T2(1)
  70   0,  16, 16,  // EVEX_T4(0)
  71   0,  0,  32,  // EVEX_T4(1)
  72   0,  0,  32,  // EVEX_T8(0)
  73   8,  16, 32,  // EVEX_HVM(0)
  74   4,  8,  16,  // EVEX_QVM(0)
  75   2,  4,  8,   // EVEX_OVM(0)
  76   16, 16, 16,  // EVEX_M128(0)
  77   8,  32, 64,  // EVEX_DUP(0)
  78   0,  0,  0    // EVEX_NTUP
  79 };
  80 
  81 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  82   _is_lval = false;
  83   _target = target;
  84   switch (rtype) {
  85   case relocInfo::oop_type:
  86   case relocInfo::metadata_type:
  87     // Oops are a special case. Normally they would be their own section
  88     // but in cases like icBuffer they are literals in the code stream that
  89     // we don't have a section for. We use none so that we get a literal address
  90     // which is always patchable.
  91     break;
  92   case relocInfo::external_word_type:
  93     _rspec = external_word_Relocation::spec(target);
  94     break;
  95   case relocInfo::internal_word_type:
  96     _rspec = internal_word_Relocation::spec(target);
  97     break;
  98   case relocInfo::opt_virtual_call_type:
  99     _rspec = opt_virtual_call_Relocation::spec();
 100     break;
 101   case relocInfo::static_call_type:
 102     _rspec = static_call_Relocation::spec();
 103     break;
 104   case relocInfo::runtime_call_type:
 105     _rspec = runtime_call_Relocation::spec();
 106     break;
 107   case relocInfo::poll_type:
 108   case relocInfo::poll_return_type:
 109     _rspec = Relocation::spec_simple(rtype);
 110     break;
 111   case relocInfo::none:
 112     break;
 113   default:
 114     ShouldNotReachHere();
 115     break;
 116   }
 117 }
 118 
 119 // Implementation of Address
 120 
 121 #ifdef _LP64
 122 
 123 Address Address::make_array(ArrayAddress adr) {
 124   // Not implementable on 64bit machines
 125   // Should have been handled higher up the call chain.
 126   ShouldNotReachHere();
 127   return Address();
 128 }
 129 
 130 // exceedingly dangerous constructor
 131 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 132   _base  = noreg;
 133   _index = noreg;
 134   _scale = no_scale;
 135   _disp  = disp;
 136   _xmmindex = xnoreg;
 137   _isxmmindex = false;
 138   switch (rtype) {
 139     case relocInfo::external_word_type:
 140       _rspec = external_word_Relocation::spec(loc);
 141       break;
 142     case relocInfo::internal_word_type:
 143       _rspec = internal_word_Relocation::spec(loc);
 144       break;
 145     case relocInfo::runtime_call_type:
 146       // HMM
 147       _rspec = runtime_call_Relocation::spec();
 148       break;
 149     case relocInfo::poll_type:
 150     case relocInfo::poll_return_type:
 151       _rspec = Relocation::spec_simple(rtype);
 152       break;
 153     case relocInfo::none:
 154       break;
 155     default:
 156       ShouldNotReachHere();
 157   }
 158 }
 159 #else // LP64
 160 
 161 Address Address::make_array(ArrayAddress adr) {
 162   AddressLiteral base = adr.base();
 163   Address index = adr.index();
 164   assert(index._disp == 0, "must not have disp"); // maybe it can?
 165   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 166   array._rspec = base._rspec;
 167   return array;
 168 }
 169 
 170 // exceedingly dangerous constructor
 171 Address::Address(address loc, RelocationHolder spec) {
 172   _base  = noreg;
 173   _index = noreg;
 174   _scale = no_scale;
 175   _disp  = (intptr_t) loc;
 176   _rspec = spec;
 177   _xmmindex = xnoreg;
 178   _isxmmindex = false;
 179 }
 180 
 181 #endif // _LP64
 182 
 183 
 184 
 185 // Convert the raw encoding form into the form expected by the constructor for
 186 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 187 // that to noreg for the Address constructor.
 188 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 189   RelocationHolder rspec;
 190   if (disp_reloc != relocInfo::none) {
 191     rspec = Relocation::spec_simple(disp_reloc);
 192   }
 193   bool valid_index = index != rsp->encoding();
 194   if (valid_index) {
 195     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 196     madr._rspec = rspec;
 197     return madr;
 198   } else {
 199     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 200     madr._rspec = rspec;
 201     return madr;
 202   }
 203 }
 204 
 205 // Implementation of Assembler
 206 
 207 int AbstractAssembler::code_fill_byte() {
 208   return (u_char)'\xF4'; // hlt
 209 }
 210 
 211 // make this go away someday
 212 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 213   if (rtype == relocInfo::none)
 214     emit_int32(data);
 215   else
 216     emit_data(data, Relocation::spec_simple(rtype), format);
 217 }
 218 
 219 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 220   assert(imm_operand == 0, "default format must be immediate in this file");
 221   assert(inst_mark() != NULL, "must be inside InstructionMark");
 222   if (rspec.type() !=  relocInfo::none) {
 223     #ifdef ASSERT
 224       check_relocation(rspec, format);
 225     #endif
 226     // Do not use AbstractAssembler::relocate, which is not intended for
 227     // embedded words.  Instead, relocate to the enclosing instruction.
 228 
 229     // hack. call32 is too wide for mask so use disp32
 230     if (format == call32_operand)
 231       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 232     else
 233       code_section()->relocate(inst_mark(), rspec, format);
 234   }
 235   emit_int32(data);
 236 }
 237 
 238 static int encode(Register r) {
 239   int enc = r->encoding();
 240   if (enc >= 8) {
 241     enc -= 8;
 242   }
 243   return enc;
 244 }
 245 
 246 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 247   assert(dst->has_byte_register(), "must have byte register");
 248   assert(isByte(op1) && isByte(op2), "wrong opcode");
 249   assert(isByte(imm8), "not a byte");
 250   assert((op1 & 0x01) == 0, "should be 8bit operation");
 251   emit_int8(op1);
 252   emit_int8(op2 | encode(dst));
 253   emit_int8(imm8);
 254 }
 255 
 256 
 257 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 258   assert(isByte(op1) && isByte(op2), "wrong opcode");
 259   assert((op1 & 0x01) == 1, "should be 32bit operation");
 260   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 261   if (is8bit(imm32)) {
 262     emit_int8(op1 | 0x02); // set sign bit
 263     emit_int8(op2 | encode(dst));
 264     emit_int8(imm32 & 0xFF);
 265   } else {
 266     emit_int8(op1);
 267     emit_int8(op2 | encode(dst));
 268     emit_int32(imm32);
 269   }
 270 }
 271 
 272 // Force generation of a 4 byte immediate value even if it fits into 8bit
 273 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 274   assert(isByte(op1) && isByte(op2), "wrong opcode");
 275   assert((op1 & 0x01) == 1, "should be 32bit operation");
 276   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 277   emit_int8(op1);
 278   emit_int8(op2 | encode(dst));
 279   emit_int32(imm32);
 280 }
 281 
 282 // immediate-to-memory forms
 283 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 284   assert((op1 & 0x01) == 1, "should be 32bit operation");
 285   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 286   if (is8bit(imm32)) {
 287     emit_int8(op1 | 0x02); // set sign bit
 288     emit_operand(rm, adr, 1);
 289     emit_int8(imm32 & 0xFF);
 290   } else {
 291     emit_int8(op1);
 292     emit_operand(rm, adr, 4);
 293     emit_int32(imm32);
 294   }
 295 }
 296 
 297 
 298 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 299   assert(isByte(op1) && isByte(op2), "wrong opcode");
 300   emit_int8(op1);
 301   emit_int8(op2 | encode(dst) << 3 | encode(src));
 302 }
 303 
 304 
 305 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 306                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 307   int mod_idx = 0;
 308   // We will test if the displacement fits the compressed format and if so
 309   // apply the compression to the displacment iff the result is8bit.
 310   if (VM_Version::supports_evex() && is_evex_inst) {
 311     switch (cur_tuple_type) {
 312     case EVEX_FV:
 313       if ((cur_encoding & VEX_W) == VEX_W) {
 314         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 315       } else {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       }
 318       break;
 319 
 320     case EVEX_HV:
 321       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 322       break;
 323 
 324     case EVEX_FVM:
 325       break;
 326 
 327     case EVEX_T1S:
 328       switch (in_size_in_bits) {
 329       case EVEX_8bit:
 330         break;
 331 
 332       case EVEX_16bit:
 333         mod_idx = 1;
 334         break;
 335 
 336       case EVEX_32bit:
 337         mod_idx = 2;
 338         break;
 339 
 340       case EVEX_64bit:
 341         mod_idx = 3;
 342         break;
 343       }
 344       break;
 345 
 346     case EVEX_T1F:
 347     case EVEX_T2:
 348     case EVEX_T4:
 349       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 350       break;
 351 
 352     case EVEX_T8:
 353       break;
 354 
 355     case EVEX_HVM:
 356       break;
 357 
 358     case EVEX_QVM:
 359       break;
 360 
 361     case EVEX_OVM:
 362       break;
 363 
 364     case EVEX_M128:
 365       break;
 366 
 367     case EVEX_DUP:
 368       break;
 369 
 370     default:
 371       assert(0, "no valid evex tuple_table entry");
 372       break;
 373     }
 374 
 375     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 376       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 377       if ((disp % disp_factor) == 0) {
 378         int new_disp = disp / disp_factor;
 379         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 380           disp = new_disp;
 381         }
 382       } else {
 383         return false;
 384       }
 385     }
 386   }
 387   return (-0x80 <= disp && disp < 0x80);
 388 }
 389 
 390 
 391 bool Assembler::emit_compressed_disp_byte(int &disp) {
 392   int mod_idx = 0;
 393   // We will test if the displacement fits the compressed format and if so
 394   // apply the compression to the displacment iff the result is8bit.
 395   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 396     int evex_encoding = _attributes->get_evex_encoding();
 397     int tuple_type = _attributes->get_tuple_type();
 398     switch (tuple_type) {
 399     case EVEX_FV:
 400       if ((evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 402       } else {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (_attributes->get_input_size()) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     int vector_len = _attributes->get_vector_len();
 463     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 464       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 465       if ((disp % disp_factor) == 0) {
 466         int new_disp = disp / disp_factor;
 467         if (is8bit(new_disp)) {
 468           disp = new_disp;
 469         }
 470       } else {
 471         return false;
 472       }
 473     }
 474   }
 475   return is8bit(disp);
 476 }
 477 
 478 
 479 void Assembler::emit_operand(Register reg, Register base, Register index,
 480                              Address::ScaleFactor scale, int disp,
 481                              RelocationHolder const& rspec,
 482                              int rip_relative_correction) {
 483   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 484 
 485   // Encode the registers as needed in the fields they are used in
 486 
 487   int regenc = encode(reg) << 3;
 488   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 489   int baseenc = base->is_valid() ? encode(base) : 0;
 490 
 491   if (base->is_valid()) {
 492     if (index->is_valid()) {
 493       assert(scale != Address::no_scale, "inconsistent address");
 494       // [base + index*scale + disp]
 495       if (disp == 0 && rtype == relocInfo::none  &&
 496           base != rbp LP64_ONLY(&& base != r13)) {
 497         // [base + index*scale]
 498         // [00 reg 100][ss index base]
 499         assert(index != rsp, "illegal addressing mode");
 500         emit_int8(0x04 | regenc);
 501         emit_int8(scale << 6 | indexenc | baseenc);
 502       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 503         // [base + index*scale + imm8]
 504         // [01 reg 100][ss index base] imm8
 505         assert(index != rsp, "illegal addressing mode");
 506         emit_int8(0x44 | regenc);
 507         emit_int8(scale << 6 | indexenc | baseenc);
 508         emit_int8(disp & 0xFF);
 509       } else {
 510         // [base + index*scale + disp32]
 511         // [10 reg 100][ss index base] disp32
 512         assert(index != rsp, "illegal addressing mode");
 513         emit_int8(0x84 | regenc);
 514         emit_int8(scale << 6 | indexenc | baseenc);
 515         emit_data(disp, rspec, disp32_operand);
 516       }
 517     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 518       // [rsp + disp]
 519       if (disp == 0 && rtype == relocInfo::none) {
 520         // [rsp]
 521         // [00 reg 100][00 100 100]
 522         emit_int8(0x04 | regenc);
 523         emit_int8(0x24);
 524       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 525         // [rsp + imm8]
 526         // [01 reg 100][00 100 100] disp8
 527         emit_int8(0x44 | regenc);
 528         emit_int8(0x24);
 529         emit_int8(disp & 0xFF);
 530       } else {
 531         // [rsp + imm32]
 532         // [10 reg 100][00 100 100] disp32
 533         emit_int8(0x84 | regenc);
 534         emit_int8(0x24);
 535         emit_data(disp, rspec, disp32_operand);
 536       }
 537     } else {
 538       // [base + disp]
 539       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 540       if (disp == 0 && rtype == relocInfo::none &&
 541           base != rbp LP64_ONLY(&& base != r13)) {
 542         // [base]
 543         // [00 reg base]
 544         emit_int8(0x00 | regenc | baseenc);
 545       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 546         // [base + disp8]
 547         // [01 reg base] disp8
 548         emit_int8(0x40 | regenc | baseenc);
 549         emit_int8(disp & 0xFF);
 550       } else {
 551         // [base + disp32]
 552         // [10 reg base] disp32
 553         emit_int8(0x80 | regenc | baseenc);
 554         emit_data(disp, rspec, disp32_operand);
 555       }
 556     }
 557   } else {
 558     if (index->is_valid()) {
 559       assert(scale != Address::no_scale, "inconsistent address");
 560       // [index*scale + disp]
 561       // [00 reg 100][ss index 101] disp32
 562       assert(index != rsp, "illegal addressing mode");
 563       emit_int8(0x04 | regenc);
 564       emit_int8(scale << 6 | indexenc | 0x05);
 565       emit_data(disp, rspec, disp32_operand);
 566     } else if (rtype != relocInfo::none ) {
 567       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 568       // [00 000 101] disp32
 569 
 570       emit_int8(0x05 | regenc);
 571       // Note that the RIP-rel. correction applies to the generated
 572       // disp field, but _not_ to the target address in the rspec.
 573 
 574       // disp was created by converting the target address minus the pc
 575       // at the start of the instruction. That needs more correction here.
 576       // intptr_t disp = target - next_ip;
 577       assert(inst_mark() != NULL, "must be inside InstructionMark");
 578       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 579       int64_t adjusted = disp;
 580       // Do rip-rel adjustment for 64bit
 581       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 582       assert(is_simm32(adjusted),
 583              "must be 32bit offset (RIP relative address)");
 584       emit_data((int32_t) adjusted, rspec, disp32_operand);
 585 
 586     } else {
 587       // 32bit never did this, did everything as the rip-rel/disp code above
 588       // [disp] ABSOLUTE
 589       // [00 reg 100][00 100 101] disp32
 590       emit_int8(0x04 | regenc);
 591       emit_int8(0x25);
 592       emit_data(disp, rspec, disp32_operand);
 593     }
 594   }
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 void Assembler::emit_operand(XMMRegister reg, Register base, XMMRegister index,
 612                              Address::ScaleFactor scale, int disp,
 613                              RelocationHolder const& rspec) {
 614   if (UseAVX > 2) {
 615     int xreg_enc = reg->encoding();
 616     int xmmindex_enc = index->encoding();
 617     XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 618     XMMRegister new_index = as_XMMRegister(xmmindex_enc & 0xf);
 619     emit_operand((Register)new_reg, base, (Register)new_index, scale, disp, rspec);
 620   } else {
 621     emit_operand((Register)reg, base, (Register)index, scale, disp, rspec);
 622   }
 623 }
 624 
 625 
 626 // Secret local extension to Assembler::WhichOperand:
 627 #define end_pc_operand (_WhichOperand_limit)
 628 
 629 address Assembler::locate_operand(address inst, WhichOperand which) {
 630   // Decode the given instruction, and return the address of
 631   // an embedded 32-bit operand word.
 632 
 633   // If "which" is disp32_operand, selects the displacement portion
 634   // of an effective address specifier.
 635   // If "which" is imm64_operand, selects the trailing immediate constant.
 636   // If "which" is call32_operand, selects the displacement of a call or jump.
 637   // Caller is responsible for ensuring that there is such an operand,
 638   // and that it is 32/64 bits wide.
 639 
 640   // If "which" is end_pc_operand, find the end of the instruction.
 641 
 642   address ip = inst;
 643   bool is_64bit = false;
 644 
 645   debug_only(bool has_disp32 = false);
 646   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 647 
 648   again_after_prefix:
 649   switch (0xFF & *ip++) {
 650 
 651   // These convenience macros generate groups of "case" labels for the switch.
 652 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 653 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 654              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 655 #define REP16(x) REP8((x)+0): \
 656               case REP8((x)+8)
 657 
 658   case CS_segment:
 659   case SS_segment:
 660   case DS_segment:
 661   case ES_segment:
 662   case FS_segment:
 663   case GS_segment:
 664     // Seems dubious
 665     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 666     assert(ip == inst+1, "only one prefix allowed");
 667     goto again_after_prefix;
 668 
 669   case 0x67:
 670   case REX:
 671   case REX_B:
 672   case REX_X:
 673   case REX_XB:
 674   case REX_R:
 675   case REX_RB:
 676   case REX_RX:
 677   case REX_RXB:
 678     NOT_LP64(assert(false, "64bit prefixes"));
 679     goto again_after_prefix;
 680 
 681   case REX_W:
 682   case REX_WB:
 683   case REX_WX:
 684   case REX_WXB:
 685   case REX_WR:
 686   case REX_WRB:
 687   case REX_WRX:
 688   case REX_WRXB:
 689     NOT_LP64(assert(false, "64bit prefixes"));
 690     is_64bit = true;
 691     goto again_after_prefix;
 692 
 693   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 694   case 0x88: // movb a, r
 695   case 0x89: // movl a, r
 696   case 0x8A: // movb r, a
 697   case 0x8B: // movl r, a
 698   case 0x8F: // popl a
 699     debug_only(has_disp32 = true);
 700     break;
 701 
 702   case 0x68: // pushq #32
 703     if (which == end_pc_operand) {
 704       return ip + 4;
 705     }
 706     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 707     return ip;                  // not produced by emit_operand
 708 
 709   case 0x66: // movw ... (size prefix)
 710     again_after_size_prefix2:
 711     switch (0xFF & *ip++) {
 712     case REX:
 713     case REX_B:
 714     case REX_X:
 715     case REX_XB:
 716     case REX_R:
 717     case REX_RB:
 718     case REX_RX:
 719     case REX_RXB:
 720     case REX_W:
 721     case REX_WB:
 722     case REX_WX:
 723     case REX_WXB:
 724     case REX_WR:
 725     case REX_WRB:
 726     case REX_WRX:
 727     case REX_WRXB:
 728       NOT_LP64(assert(false, "64bit prefix found"));
 729       goto again_after_size_prefix2;
 730     case 0x8B: // movw r, a
 731     case 0x89: // movw a, r
 732       debug_only(has_disp32 = true);
 733       break;
 734     case 0xC7: // movw a, #16
 735       debug_only(has_disp32 = true);
 736       tail_size = 2;  // the imm16
 737       break;
 738     case 0x0F: // several SSE/SSE2 variants
 739       ip--;    // reparse the 0x0F
 740       goto again_after_prefix;
 741     default:
 742       ShouldNotReachHere();
 743     }
 744     break;
 745 
 746   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 747     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 748     // these asserts are somewhat nonsensical
 749 #ifndef _LP64
 750     assert(which == imm_operand || which == disp32_operand,
 751            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 752 #else
 753     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 754            which == narrow_oop_operand && !is_64bit,
 755            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 756 #endif // _LP64
 757     return ip;
 758 
 759   case 0x69: // imul r, a, #32
 760   case 0xC7: // movl a, #32(oop?)
 761     tail_size = 4;
 762     debug_only(has_disp32 = true); // has both kinds of operands!
 763     break;
 764 
 765   case 0x0F: // movx..., etc.
 766     switch (0xFF & *ip++) {
 767     case 0x3A: // pcmpestri
 768       tail_size = 1;
 769     case 0x38: // ptest, pmovzxbw
 770       ip++; // skip opcode
 771       debug_only(has_disp32 = true); // has both kinds of operands!
 772       break;
 773 
 774     case 0x70: // pshufd r, r/a, #8
 775       debug_only(has_disp32 = true); // has both kinds of operands!
 776     case 0x73: // psrldq r, #8
 777       tail_size = 1;
 778       break;
 779 
 780     case 0x12: // movlps
 781     case 0x28: // movaps
 782     case 0x2E: // ucomiss
 783     case 0x2F: // comiss
 784     case 0x54: // andps
 785     case 0x55: // andnps
 786     case 0x56: // orps
 787     case 0x57: // xorps
 788     case 0x58: // addpd
 789     case 0x59: // mulpd
 790     case 0x6E: // movd
 791     case 0x7E: // movd
 792     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 793     case 0xFE: // paddd
 794       debug_only(has_disp32 = true);
 795       break;
 796 
 797     case 0xAD: // shrd r, a, %cl
 798     case 0xAF: // imul r, a
 799     case 0xBE: // movsbl r, a (movsxb)
 800     case 0xBF: // movswl r, a (movsxw)
 801     case 0xB6: // movzbl r, a (movzxb)
 802     case 0xB7: // movzwl r, a (movzxw)
 803     case REP16(0x40): // cmovl cc, r, a
 804     case 0xB0: // cmpxchgb
 805     case 0xB1: // cmpxchg
 806     case 0xC1: // xaddl
 807     case 0xC7: // cmpxchg8
 808     case REP16(0x90): // setcc a
 809       debug_only(has_disp32 = true);
 810       // fall out of the switch to decode the address
 811       break;
 812 
 813     case 0xC4: // pinsrw r, a, #8
 814       debug_only(has_disp32 = true);
 815     case 0xC5: // pextrw r, r, #8
 816       tail_size = 1;  // the imm8
 817       break;
 818 
 819     case 0xAC: // shrd r, a, #8
 820       debug_only(has_disp32 = true);
 821       tail_size = 1;  // the imm8
 822       break;
 823 
 824     case REP16(0x80): // jcc rdisp32
 825       if (which == end_pc_operand)  return ip + 4;
 826       assert(which == call32_operand, "jcc has no disp32 or imm");
 827       return ip;
 828     default:
 829       ShouldNotReachHere();
 830     }
 831     break;
 832 
 833   case 0x81: // addl a, #32; addl r, #32
 834     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 835     // on 32bit in the case of cmpl, the imm might be an oop
 836     tail_size = 4;
 837     debug_only(has_disp32 = true); // has both kinds of operands!
 838     break;
 839 
 840   case 0x83: // addl a, #8; addl r, #8
 841     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 842     debug_only(has_disp32 = true); // has both kinds of operands!
 843     tail_size = 1;
 844     break;
 845 
 846   case 0x9B:
 847     switch (0xFF & *ip++) {
 848     case 0xD9: // fnstcw a
 849       debug_only(has_disp32 = true);
 850       break;
 851     default:
 852       ShouldNotReachHere();
 853     }
 854     break;
 855 
 856   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 857   case REP4(0x10): // adc...
 858   case REP4(0x20): // and...
 859   case REP4(0x30): // xor...
 860   case REP4(0x08): // or...
 861   case REP4(0x18): // sbb...
 862   case REP4(0x28): // sub...
 863   case 0xF7: // mull a
 864   case 0x8D: // lea r, a
 865   case 0x87: // xchg r, a
 866   case REP4(0x38): // cmp...
 867   case 0x85: // test r, a
 868     debug_only(has_disp32 = true); // has both kinds of operands!
 869     break;
 870 
 871   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 872   case 0xC6: // movb a, #8
 873   case 0x80: // cmpb a, #8
 874   case 0x6B: // imul r, a, #8
 875     debug_only(has_disp32 = true); // has both kinds of operands!
 876     tail_size = 1; // the imm8
 877     break;
 878 
 879   case 0xC4: // VEX_3bytes
 880   case 0xC5: // VEX_2bytes
 881     assert((UseAVX > 0), "shouldn't have VEX prefix");
 882     assert(ip == inst+1, "no prefixes allowed");
 883     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 884     // but they have prefix 0x0F and processed when 0x0F processed above.
 885     //
 886     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 887     // instructions (these instructions are not supported in 64-bit mode).
 888     // To distinguish them bits [7:6] are set in the VEX second byte since
 889     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 890     // those VEX bits REX and vvvv bits are inverted.
 891     //
 892     // Fortunately C2 doesn't generate these instructions so we don't need
 893     // to check for them in product version.
 894 
 895     // Check second byte
 896     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 897 
 898     int vex_opcode;
 899     // First byte
 900     if ((0xFF & *inst) == VEX_3bytes) {
 901       vex_opcode = VEX_OPCODE_MASK & *ip;
 902       ip++; // third byte
 903       is_64bit = ((VEX_W & *ip) == VEX_W);
 904     } else {
 905       vex_opcode = VEX_OPCODE_0F;
 906     }
 907     ip++; // opcode
 908     // To find the end of instruction (which == end_pc_operand).
 909     switch (vex_opcode) {
 910       case VEX_OPCODE_0F:
 911         switch (0xFF & *ip) {
 912         case 0x70: // pshufd r, r/a, #8
 913         case 0x71: // ps[rl|ra|ll]w r, #8
 914         case 0x72: // ps[rl|ra|ll]d r, #8
 915         case 0x73: // ps[rl|ra|ll]q r, #8
 916         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 917         case 0xC4: // pinsrw r, r, r/a, #8
 918         case 0xC5: // pextrw r/a, r, #8
 919         case 0xC6: // shufp[s|d] r, r, r/a, #8
 920           tail_size = 1;  // the imm8
 921           break;
 922         }
 923         break;
 924       case VEX_OPCODE_0F_3A:
 925         tail_size = 1;
 926         break;
 927     }
 928     ip++; // skip opcode
 929     debug_only(has_disp32 = true); // has both kinds of operands!
 930     break;
 931 
 932   case 0x62: // EVEX_4bytes
 933     assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix");
 934     assert(ip == inst+1, "no prefixes allowed");
 935     // no EVEX collisions, all instructions that have 0x62 opcodes
 936     // have EVEX versions and are subopcodes of 0x66
 937     ip++; // skip P0 and exmaine W in P1
 938     is_64bit = ((VEX_W & *ip) == VEX_W);
 939     ip++; // move to P2
 940     ip++; // skip P2, move to opcode
 941     // To find the end of instruction (which == end_pc_operand).
 942     switch (0xFF & *ip) {
 943     case 0x22: // pinsrd r, r/a, #8
 944     case 0x61: // pcmpestri r, r/a, #8
 945     case 0x70: // pshufd r, r/a, #8
 946     case 0x73: // psrldq r, #8
 947       tail_size = 1;  // the imm8
 948       break;
 949     default:
 950       break;
 951     }
 952     ip++; // skip opcode
 953     debug_only(has_disp32 = true); // has both kinds of operands!
 954     break;
 955 
 956   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 957   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 958   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 959   case 0xDD: // fld_d a; fst_d a; fstp_d a
 960   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 961   case 0xDF: // fild_d a; fistp_d a
 962   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 963   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 964   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 965     debug_only(has_disp32 = true);
 966     break;
 967 
 968   case 0xE8: // call rdisp32
 969   case 0xE9: // jmp  rdisp32
 970     if (which == end_pc_operand)  return ip + 4;
 971     assert(which == call32_operand, "call has no disp32 or imm");
 972     return ip;
 973 
 974   case 0xF0:                    // Lock
 975     goto again_after_prefix;
 976 
 977   case 0xF3:                    // For SSE
 978   case 0xF2:                    // For SSE2
 979     switch (0xFF & *ip++) {
 980     case REX:
 981     case REX_B:
 982     case REX_X:
 983     case REX_XB:
 984     case REX_R:
 985     case REX_RB:
 986     case REX_RX:
 987     case REX_RXB:
 988     case REX_W:
 989     case REX_WB:
 990     case REX_WX:
 991     case REX_WXB:
 992     case REX_WR:
 993     case REX_WRB:
 994     case REX_WRX:
 995     case REX_WRXB:
 996       NOT_LP64(assert(false, "found 64bit prefix"));
 997       ip++;
 998     default:
 999       ip++;
1000     }
1001     debug_only(has_disp32 = true); // has both kinds of operands!
1002     break;
1003 
1004   default:
1005     ShouldNotReachHere();
1006 
1007 #undef REP8
1008 #undef REP16
1009   }
1010 
1011   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1012 #ifdef _LP64
1013   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1014 #else
1015   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1016   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1017 #endif // LP64
1018   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1019 
1020   // parse the output of emit_operand
1021   int op2 = 0xFF & *ip++;
1022   int base = op2 & 0x07;
1023   int op3 = -1;
1024   const int b100 = 4;
1025   const int b101 = 5;
1026   if (base == b100 && (op2 >> 6) != 3) {
1027     op3 = 0xFF & *ip++;
1028     base = op3 & 0x07;   // refetch the base
1029   }
1030   // now ip points at the disp (if any)
1031 
1032   switch (op2 >> 6) {
1033   case 0:
1034     // [00 reg  100][ss index base]
1035     // [00 reg  100][00   100  esp]
1036     // [00 reg base]
1037     // [00 reg  100][ss index  101][disp32]
1038     // [00 reg  101]               [disp32]
1039 
1040     if (base == b101) {
1041       if (which == disp32_operand)
1042         return ip;              // caller wants the disp32
1043       ip += 4;                  // skip the disp32
1044     }
1045     break;
1046 
1047   case 1:
1048     // [01 reg  100][ss index base][disp8]
1049     // [01 reg  100][00   100  esp][disp8]
1050     // [01 reg base]               [disp8]
1051     ip += 1;                    // skip the disp8
1052     break;
1053 
1054   case 2:
1055     // [10 reg  100][ss index base][disp32]
1056     // [10 reg  100][00   100  esp][disp32]
1057     // [10 reg base]               [disp32]
1058     if (which == disp32_operand)
1059       return ip;                // caller wants the disp32
1060     ip += 4;                    // skip the disp32
1061     break;
1062 
1063   case 3:
1064     // [11 reg base]  (not a memory addressing mode)
1065     break;
1066   }
1067 
1068   if (which == end_pc_operand) {
1069     return ip + tail_size;
1070   }
1071 
1072 #ifdef _LP64
1073   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1074 #else
1075   assert(which == imm_operand, "instruction has only an imm field");
1076 #endif // LP64
1077   return ip;
1078 }
1079 
1080 address Assembler::locate_next_instruction(address inst) {
1081   // Secretly share code with locate_operand:
1082   return locate_operand(inst, end_pc_operand);
1083 }
1084 
1085 
1086 #ifdef ASSERT
1087 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1088   address inst = inst_mark();
1089   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1090   address opnd;
1091 
1092   Relocation* r = rspec.reloc();
1093   if (r->type() == relocInfo::none) {
1094     return;
1095   } else if (r->is_call() || format == call32_operand) {
1096     // assert(format == imm32_operand, "cannot specify a nonzero format");
1097     opnd = locate_operand(inst, call32_operand);
1098   } else if (r->is_data()) {
1099     assert(format == imm_operand || format == disp32_operand
1100            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1101     opnd = locate_operand(inst, (WhichOperand)format);
1102   } else {
1103     assert(format == imm_operand, "cannot specify a format");
1104     return;
1105   }
1106   assert(opnd == pc(), "must put operand where relocs can find it");
1107 }
1108 #endif // ASSERT
1109 
1110 void Assembler::emit_operand32(Register reg, Address adr) {
1111   assert(reg->encoding() < 8, "no extended registers");
1112   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1113   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1114                adr._rspec);
1115 }
1116 
1117 void Assembler::emit_operand(Register reg, Address adr,
1118                              int rip_relative_correction) {
1119   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1120                adr._rspec,
1121                rip_relative_correction);
1122 }
1123 
1124 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1125     if (adr.isxmmindex()) {
1126        emit_operand(reg, adr._base, adr._xmmindex, adr._scale, adr._disp, adr._rspec);
1127     } else {
1128        emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1129        adr._rspec);
1130     }
1131 }
1132 
1133 // MMX operations
1134 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1135   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1136   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1137 }
1138 
1139 // work around gcc (3.2.1-7a) bug
1140 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1141   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1142   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1143 }
1144 
1145 
1146 void Assembler::emit_farith(int b1, int b2, int i) {
1147   assert(isByte(b1) && isByte(b2), "wrong opcode");
1148   assert(0 <= i &&  i < 8, "illegal stack offset");
1149   emit_int8(b1);
1150   emit_int8(b2 + i);
1151 }
1152 
1153 
1154 // Now the Assembler instructions (identical for 32/64 bits)
1155 
1156 void Assembler::adcl(Address dst, int32_t imm32) {
1157   InstructionMark im(this);
1158   prefix(dst);
1159   emit_arith_operand(0x81, rdx, dst, imm32);
1160 }
1161 
1162 void Assembler::adcl(Address dst, Register src) {
1163   InstructionMark im(this);
1164   prefix(dst, src);
1165   emit_int8(0x11);
1166   emit_operand(src, dst);
1167 }
1168 
1169 void Assembler::adcl(Register dst, int32_t imm32) {
1170   prefix(dst);
1171   emit_arith(0x81, 0xD0, dst, imm32);
1172 }
1173 
1174 void Assembler::adcl(Register dst, Address src) {
1175   InstructionMark im(this);
1176   prefix(src, dst);
1177   emit_int8(0x13);
1178   emit_operand(dst, src);
1179 }
1180 
1181 void Assembler::adcl(Register dst, Register src) {
1182   (void) prefix_and_encode(dst->encoding(), src->encoding());
1183   emit_arith(0x13, 0xC0, dst, src);
1184 }
1185 
1186 void Assembler::addl(Address dst, int32_t imm32) {
1187   InstructionMark im(this);
1188   prefix(dst);
1189   emit_arith_operand(0x81, rax, dst, imm32);
1190 }
1191 
1192 void Assembler::addb(Address dst, int imm8) {
1193   InstructionMark im(this);
1194   prefix(dst);
1195   emit_int8((unsigned char)0x80);
1196   emit_operand(rax, dst, 1);
1197   emit_int8(imm8);
1198 }
1199 
1200 void Assembler::addw(Address dst, int imm16) {
1201   InstructionMark im(this);
1202   emit_int8(0x66);
1203   prefix(dst);
1204   emit_int8((unsigned char)0x81);
1205   emit_operand(rax, dst, 2);
1206   emit_int16(imm16);
1207 }
1208 
1209 void Assembler::addl(Address dst, Register src) {
1210   InstructionMark im(this);
1211   prefix(dst, src);
1212   emit_int8(0x01);
1213   emit_operand(src, dst);
1214 }
1215 
1216 void Assembler::addl(Register dst, int32_t imm32) {
1217   prefix(dst);
1218   emit_arith(0x81, 0xC0, dst, imm32);
1219 }
1220 
1221 void Assembler::addl(Register dst, Address src) {
1222   InstructionMark im(this);
1223   prefix(src, dst);
1224   emit_int8(0x03);
1225   emit_operand(dst, src);
1226 }
1227 
1228 void Assembler::addl(Register dst, Register src) {
1229   (void) prefix_and_encode(dst->encoding(), src->encoding());
1230   emit_arith(0x03, 0xC0, dst, src);
1231 }
1232 
1233 void Assembler::addr_nop_4() {
1234   assert(UseAddressNop, "no CPU support");
1235   // 4 bytes: NOP DWORD PTR [EAX+0]
1236   emit_int8(0x0F);
1237   emit_int8(0x1F);
1238   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1239   emit_int8(0);    // 8-bits offset (1 byte)
1240 }
1241 
1242 void Assembler::addr_nop_5() {
1243   assert(UseAddressNop, "no CPU support");
1244   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1245   emit_int8(0x0F);
1246   emit_int8(0x1F);
1247   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1248   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1249   emit_int8(0);    // 8-bits offset (1 byte)
1250 }
1251 
1252 void Assembler::addr_nop_7() {
1253   assert(UseAddressNop, "no CPU support");
1254   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1255   emit_int8(0x0F);
1256   emit_int8(0x1F);
1257   emit_int8((unsigned char)0x80);
1258                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1259   emit_int32(0);   // 32-bits offset (4 bytes)
1260 }
1261 
1262 void Assembler::addr_nop_8() {
1263   assert(UseAddressNop, "no CPU support");
1264   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1265   emit_int8(0x0F);
1266   emit_int8(0x1F);
1267   emit_int8((unsigned char)0x84);
1268                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1269   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1270   emit_int32(0);   // 32-bits offset (4 bytes)
1271 }
1272 
1273 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1274   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1275   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1276   attributes.set_rex_vex_w_reverted();
1277   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1278   emit_int8(0x58);
1279   emit_int8((unsigned char)(0xC0 | encode));
1280 }
1281 
1282 void Assembler::addsd(XMMRegister dst, Address src) {
1283   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1284   InstructionMark im(this);
1285   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1286   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1287   attributes.set_rex_vex_w_reverted();
1288   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1289   emit_int8(0x58);
1290   emit_operand(dst, src);
1291 }
1292 
1293 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1294   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1295   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1296   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1297   emit_int8(0x58);
1298   emit_int8((unsigned char)(0xC0 | encode));
1299 }
1300 
1301 void Assembler::addss(XMMRegister dst, Address src) {
1302   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1303   InstructionMark im(this);
1304   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1305   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1306   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1307   emit_int8(0x58);
1308   emit_operand(dst, src);
1309 }
1310 
1311 void Assembler::aesdec(XMMRegister dst, Address src) {
1312   assert(VM_Version::supports_aes(), "");
1313   InstructionMark im(this);
1314   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1315   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1316   emit_int8((unsigned char)0xDE);
1317   emit_operand(dst, src);
1318 }
1319 
1320 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1321   assert(VM_Version::supports_aes(), "");
1322   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1323   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1324   emit_int8((unsigned char)0xDE);
1325   emit_int8(0xC0 | encode);
1326 }
1327 
1328 void Assembler::vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1329   assert(VM_Version::supports_vaes(), "");
1330   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1331   attributes.set_is_evex_instruction();
1332   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1333   emit_int8((unsigned char)0xDE);
1334   emit_int8((unsigned char)(0xC0 | encode));
1335 }
1336 
1337 
1338 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1339   assert(VM_Version::supports_aes(), "");
1340   InstructionMark im(this);
1341   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1342   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1343   emit_int8((unsigned char)0xDF);
1344   emit_operand(dst, src);
1345 }
1346 
1347 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1348   assert(VM_Version::supports_aes(), "");
1349   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1350   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1351   emit_int8((unsigned char)0xDF);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1356   assert(VM_Version::supports_vaes(), "");
1357   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1358   attributes.set_is_evex_instruction();
1359   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1360   emit_int8((unsigned char)0xDF);
1361   emit_int8((unsigned char)(0xC0 | encode));
1362 }
1363 
1364 void Assembler::aesenc(XMMRegister dst, Address src) {
1365   assert(VM_Version::supports_aes(), "");
1366   InstructionMark im(this);
1367   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1368   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1369   emit_int8((unsigned char)0xDC);
1370   emit_operand(dst, src);
1371 }
1372 
1373 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1374   assert(VM_Version::supports_aes(), "");
1375   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1376   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1377   emit_int8((unsigned char)0xDC);
1378   emit_int8(0xC0 | encode);
1379 }
1380 
1381 void Assembler::aesenclast(XMMRegister dst, Address src) {
1382   assert(VM_Version::supports_aes(), "");
1383   InstructionMark im(this);
1384   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1385   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1386   emit_int8((unsigned char)0xDD);
1387   emit_operand(dst, src);
1388 }
1389 
1390 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1391   assert(VM_Version::supports_aes(), "");
1392   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1393   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1394   emit_int8((unsigned char)0xDD);
1395   emit_int8((unsigned char)(0xC0 | encode));
1396 }
1397 
1398 void Assembler::andl(Address dst, int32_t imm32) {
1399   InstructionMark im(this);
1400   prefix(dst);
1401   emit_int8((unsigned char)0x81);
1402   emit_operand(rsp, dst, 4);
1403   emit_int32(imm32);
1404 }
1405 
1406 void Assembler::andl(Register dst, int32_t imm32) {
1407   prefix(dst);
1408   emit_arith(0x81, 0xE0, dst, imm32);
1409 }
1410 
1411 void Assembler::andl(Register dst, Address src) {
1412   InstructionMark im(this);
1413   prefix(src, dst);
1414   emit_int8(0x23);
1415   emit_operand(dst, src);
1416 }
1417 
1418 void Assembler::andl(Register dst, Register src) {
1419   (void) prefix_and_encode(dst->encoding(), src->encoding());
1420   emit_arith(0x23, 0xC0, dst, src);
1421 }
1422 
1423 void Assembler::andnl(Register dst, Register src1, Register src2) {
1424   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1425   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1426   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1427   emit_int8((unsigned char)0xF2);
1428   emit_int8((unsigned char)(0xC0 | encode));
1429 }
1430 
1431 void Assembler::andnl(Register dst, Register src1, Address src2) {
1432   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1433   InstructionMark im(this);
1434   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1435   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1436   emit_int8((unsigned char)0xF2);
1437   emit_operand(dst, src2);
1438 }
1439 
1440 void Assembler::bsfl(Register dst, Register src) {
1441   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1442   emit_int8(0x0F);
1443   emit_int8((unsigned char)0xBC);
1444   emit_int8((unsigned char)(0xC0 | encode));
1445 }
1446 
1447 void Assembler::bsrl(Register dst, Register src) {
1448   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1449   emit_int8(0x0F);
1450   emit_int8((unsigned char)0xBD);
1451   emit_int8((unsigned char)(0xC0 | encode));
1452 }
1453 
1454 void Assembler::bswapl(Register reg) { // bswap
1455   int encode = prefix_and_encode(reg->encoding());
1456   emit_int8(0x0F);
1457   emit_int8((unsigned char)(0xC8 | encode));
1458 }
1459 
1460 void Assembler::blsil(Register dst, Register src) {
1461   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1462   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1463   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1464   emit_int8((unsigned char)0xF3);
1465   emit_int8((unsigned char)(0xC0 | encode));
1466 }
1467 
1468 void Assembler::blsil(Register dst, Address src) {
1469   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1470   InstructionMark im(this);
1471   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1472   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1473   emit_int8((unsigned char)0xF3);
1474   emit_operand(rbx, src);
1475 }
1476 
1477 void Assembler::blsmskl(Register dst, Register src) {
1478   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1479   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1480   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1481   emit_int8((unsigned char)0xF3);
1482   emit_int8((unsigned char)(0xC0 | encode));
1483 }
1484 
1485 void Assembler::blsmskl(Register dst, Address src) {
1486   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1487   InstructionMark im(this);
1488   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1489   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1490   emit_int8((unsigned char)0xF3);
1491   emit_operand(rdx, src);
1492 }
1493 
1494 void Assembler::blsrl(Register dst, Register src) {
1495   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1496   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1497   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1498   emit_int8((unsigned char)0xF3);
1499   emit_int8((unsigned char)(0xC0 | encode));
1500 }
1501 
1502 void Assembler::blsrl(Register dst, Address src) {
1503   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1504   InstructionMark im(this);
1505   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1506   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1507   emit_int8((unsigned char)0xF3);
1508   emit_operand(rcx, src);
1509 }
1510 
1511 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1512   // suspect disp32 is always good
1513   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1514 
1515   if (L.is_bound()) {
1516     const int long_size = 5;
1517     int offs = (int)( target(L) - pc() );
1518     assert(offs <= 0, "assembler error");
1519     InstructionMark im(this);
1520     // 1110 1000 #32-bit disp
1521     emit_int8((unsigned char)0xE8);
1522     emit_data(offs - long_size, rtype, operand);
1523   } else {
1524     InstructionMark im(this);
1525     // 1110 1000 #32-bit disp
1526     L.add_patch_at(code(), locator());
1527 
1528     emit_int8((unsigned char)0xE8);
1529     emit_data(int(0), rtype, operand);
1530   }
1531 }
1532 
1533 void Assembler::call(Register dst) {
1534   int encode = prefix_and_encode(dst->encoding());
1535   emit_int8((unsigned char)0xFF);
1536   emit_int8((unsigned char)(0xD0 | encode));
1537 }
1538 
1539 
1540 void Assembler::call(Address adr) {
1541   InstructionMark im(this);
1542   prefix(adr);
1543   emit_int8((unsigned char)0xFF);
1544   emit_operand(rdx, adr);
1545 }
1546 
1547 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1548   InstructionMark im(this);
1549   emit_int8((unsigned char)0xE8);
1550   intptr_t disp = entry - (pc() + sizeof(int32_t));
1551   // Entry is NULL in case of a scratch emit.
1552   assert(entry == NULL || is_simm32(disp), "disp=" INTPTR_FORMAT " must be 32bit offset (call2)", disp);
1553   // Technically, should use call32_operand, but this format is
1554   // implied by the fact that we're emitting a call instruction.
1555 
1556   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1557   emit_data((int) disp, rspec, operand);
1558 }
1559 
1560 void Assembler::cdql() {
1561   emit_int8((unsigned char)0x99);
1562 }
1563 
1564 void Assembler::cld() {
1565   emit_int8((unsigned char)0xFC);
1566 }
1567 
1568 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1569   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1570   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1571   emit_int8(0x0F);
1572   emit_int8(0x40 | cc);
1573   emit_int8((unsigned char)(0xC0 | encode));
1574 }
1575 
1576 
1577 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1578   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1579   prefix(src, dst);
1580   emit_int8(0x0F);
1581   emit_int8(0x40 | cc);
1582   emit_operand(dst, src);
1583 }
1584 
1585 void Assembler::cmpb(Address dst, int imm8) {
1586   InstructionMark im(this);
1587   prefix(dst);
1588   emit_int8((unsigned char)0x80);
1589   emit_operand(rdi, dst, 1);
1590   emit_int8(imm8);
1591 }
1592 
1593 void Assembler::cmpl(Address dst, int32_t imm32) {
1594   InstructionMark im(this);
1595   prefix(dst);
1596   emit_int8((unsigned char)0x81);
1597   emit_operand(rdi, dst, 4);
1598   emit_int32(imm32);
1599 }
1600 
1601 void Assembler::cmpl(Register dst, int32_t imm32) {
1602   prefix(dst);
1603   emit_arith(0x81, 0xF8, dst, imm32);
1604 }
1605 
1606 void Assembler::cmpl(Register dst, Register src) {
1607   (void) prefix_and_encode(dst->encoding(), src->encoding());
1608   emit_arith(0x3B, 0xC0, dst, src);
1609 }
1610 
1611 void Assembler::cmpl(Register dst, Address  src) {
1612   InstructionMark im(this);
1613   prefix(src, dst);
1614   emit_int8((unsigned char)0x3B);
1615   emit_operand(dst, src);
1616 }
1617 
1618 void Assembler::cmpw(Address dst, int imm16) {
1619   InstructionMark im(this);
1620   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1621   emit_int8(0x66);
1622   emit_int8((unsigned char)0x81);
1623   emit_operand(rdi, dst, 2);
1624   emit_int16(imm16);
1625 }
1626 
1627 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1628 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1629 // The ZF is set if the compared values were equal, and cleared otherwise.
1630 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1631   InstructionMark im(this);
1632   prefix(adr, reg);
1633   emit_int8(0x0F);
1634   emit_int8((unsigned char)0xB1);
1635   emit_operand(reg, adr);
1636 }
1637 
1638 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1639 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1640 // The ZF is set if the compared values were equal, and cleared otherwise.
1641 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1642   InstructionMark im(this);
1643   prefix(adr, reg, true);
1644   emit_int8(0x0F);
1645   emit_int8((unsigned char)0xB0);
1646   emit_operand(reg, adr);
1647 }
1648 
1649 void Assembler::comisd(XMMRegister dst, Address src) {
1650   // NOTE: dbx seems to decode this as comiss even though the
1651   // 0x66 is there. Strangly ucomisd comes out correct
1652   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1653   InstructionMark im(this);
1654   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1655   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1656   attributes.set_rex_vex_w_reverted();
1657   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1658   emit_int8(0x2F);
1659   emit_operand(dst, src);
1660 }
1661 
1662 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1663   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1664   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1665   attributes.set_rex_vex_w_reverted();
1666   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1667   emit_int8(0x2F);
1668   emit_int8((unsigned char)(0xC0 | encode));
1669 }
1670 
1671 void Assembler::comiss(XMMRegister dst, Address src) {
1672   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1673   InstructionMark im(this);
1674   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1675   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1676   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1677   emit_int8(0x2F);
1678   emit_operand(dst, src);
1679 }
1680 
1681 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1682   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1683   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1684   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1685   emit_int8(0x2F);
1686   emit_int8((unsigned char)(0xC0 | encode));
1687 }
1688 
1689 void Assembler::cpuid() {
1690   emit_int8(0x0F);
1691   emit_int8((unsigned char)0xA2);
1692 }
1693 
1694 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1695 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1696 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1697 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1698 //
1699 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1700 //
1701 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1702 //
1703 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1704 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1705   assert(VM_Version::supports_sse4_2(), "");
1706   int8_t w = 0x01;
1707   Prefix p = Prefix_EMPTY;
1708 
1709   emit_int8((int8_t)0xF2);
1710   switch (sizeInBytes) {
1711   case 1:
1712     w = 0;
1713     break;
1714   case 2:
1715   case 4:
1716     break;
1717   LP64_ONLY(case 8:)
1718     // This instruction is not valid in 32 bits
1719     // Note:
1720     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1721     //
1722     // Page B - 72   Vol. 2C says
1723     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1724     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1725     //                                                                            F0!!!
1726     // while 3 - 208 Vol. 2A
1727     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1728     //
1729     // the 0 on a last bit is reserved for a different flavor of this instruction :
1730     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1731     p = REX_W;
1732     break;
1733   default:
1734     assert(0, "Unsupported value for a sizeInBytes argument");
1735     break;
1736   }
1737   LP64_ONLY(prefix(crc, v, p);)
1738   emit_int8((int8_t)0x0F);
1739   emit_int8(0x38);
1740   emit_int8((int8_t)(0xF0 | w));
1741   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1742 }
1743 
1744 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1745   assert(VM_Version::supports_sse4_2(), "");
1746   InstructionMark im(this);
1747   int8_t w = 0x01;
1748   Prefix p = Prefix_EMPTY;
1749 
1750   emit_int8((int8_t)0xF2);
1751   switch (sizeInBytes) {
1752   case 1:
1753     w = 0;
1754     break;
1755   case 2:
1756   case 4:
1757     break;
1758   LP64_ONLY(case 8:)
1759     // This instruction is not valid in 32 bits
1760     p = REX_W;
1761     break;
1762   default:
1763     assert(0, "Unsupported value for a sizeInBytes argument");
1764     break;
1765   }
1766   LP64_ONLY(prefix(crc, adr, p);)
1767   emit_int8((int8_t)0x0F);
1768   emit_int8(0x38);
1769   emit_int8((int8_t)(0xF0 | w));
1770   emit_operand(crc, adr);
1771 }
1772 
1773 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1774   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1775   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1776   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1777   emit_int8((unsigned char)0xE6);
1778   emit_int8((unsigned char)(0xC0 | encode));
1779 }
1780 
1781 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1782   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1783   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1784   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1785   emit_int8(0x5B);
1786   emit_int8((unsigned char)(0xC0 | encode));
1787 }
1788 
1789 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1790   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1791   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1792   attributes.set_rex_vex_w_reverted();
1793   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1794   emit_int8(0x5A);
1795   emit_int8((unsigned char)(0xC0 | encode));
1796 }
1797 
1798 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1799   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1800   InstructionMark im(this);
1801   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1802   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1803   attributes.set_rex_vex_w_reverted();
1804   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1805   emit_int8(0x5A);
1806   emit_operand(dst, src);
1807 }
1808 
1809 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1810   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1811   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1812   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1813   emit_int8(0x2A);
1814   emit_int8((unsigned char)(0xC0 | encode));
1815 }
1816 
1817 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1818   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1819   InstructionMark im(this);
1820   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1821   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1822   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1823   emit_int8(0x2A);
1824   emit_operand(dst, src);
1825 }
1826 
1827 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1828   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1829   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1830   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1831   emit_int8(0x2A);
1832   emit_int8((unsigned char)(0xC0 | encode));
1833 }
1834 
1835 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1836   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1837   InstructionMark im(this);
1838   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1839   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1840   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1841   emit_int8(0x2A);
1842   emit_operand(dst, src);
1843 }
1844 
1845 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1846   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1847   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1848   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1849   emit_int8(0x2A);
1850   emit_int8((unsigned char)(0xC0 | encode));
1851 }
1852 
1853 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1854   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1855   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1856   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1857   emit_int8(0x5A);
1858   emit_int8((unsigned char)(0xC0 | encode));
1859 }
1860 
1861 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1862   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1863   InstructionMark im(this);
1864   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1865   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1866   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1867   emit_int8(0x5A);
1868   emit_operand(dst, src);
1869 }
1870 
1871 
1872 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1873   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1874   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1875   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1876   emit_int8(0x2C);
1877   emit_int8((unsigned char)(0xC0 | encode));
1878 }
1879 
1880 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1881   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1882   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1883   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1884   emit_int8(0x2C);
1885   emit_int8((unsigned char)(0xC0 | encode));
1886 }
1887 
1888 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1889   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1890   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1891   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1892   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1893   emit_int8((unsigned char)0xE6);
1894   emit_int8((unsigned char)(0xC0 | encode));
1895 }
1896 
1897 void Assembler::decl(Address dst) {
1898   // Don't use it directly. Use MacroAssembler::decrement() instead.
1899   InstructionMark im(this);
1900   prefix(dst);
1901   emit_int8((unsigned char)0xFF);
1902   emit_operand(rcx, dst);
1903 }
1904 
1905 void Assembler::divsd(XMMRegister dst, Address src) {
1906   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1907   InstructionMark im(this);
1908   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1909   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1910   attributes.set_rex_vex_w_reverted();
1911   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1912   emit_int8(0x5E);
1913   emit_operand(dst, src);
1914 }
1915 
1916 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1917   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1918   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1919   attributes.set_rex_vex_w_reverted();
1920   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1921   emit_int8(0x5E);
1922   emit_int8((unsigned char)(0xC0 | encode));
1923 }
1924 
1925 void Assembler::divss(XMMRegister dst, Address src) {
1926   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1927   InstructionMark im(this);
1928   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1929   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1930   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1931   emit_int8(0x5E);
1932   emit_operand(dst, src);
1933 }
1934 
1935 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1936   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1937   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1938   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1939   emit_int8(0x5E);
1940   emit_int8((unsigned char)(0xC0 | encode));
1941 }
1942 
1943 void Assembler::emms() {
1944   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1945   emit_int8(0x0F);
1946   emit_int8(0x77);
1947 }
1948 
1949 void Assembler::hlt() {
1950   emit_int8((unsigned char)0xF4);
1951 }
1952 
1953 void Assembler::idivl(Register src) {
1954   int encode = prefix_and_encode(src->encoding());
1955   emit_int8((unsigned char)0xF7);
1956   emit_int8((unsigned char)(0xF8 | encode));
1957 }
1958 
1959 void Assembler::divl(Register src) { // Unsigned
1960   int encode = prefix_and_encode(src->encoding());
1961   emit_int8((unsigned char)0xF7);
1962   emit_int8((unsigned char)(0xF0 | encode));
1963 }
1964 
1965 void Assembler::imull(Register src) {
1966   int encode = prefix_and_encode(src->encoding());
1967   emit_int8((unsigned char)0xF7);
1968   emit_int8((unsigned char)(0xE8 | encode));
1969 }
1970 
1971 void Assembler::imull(Register dst, Register src) {
1972   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1973   emit_int8(0x0F);
1974   emit_int8((unsigned char)0xAF);
1975   emit_int8((unsigned char)(0xC0 | encode));
1976 }
1977 
1978 
1979 void Assembler::imull(Register dst, Register src, int value) {
1980   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1981   if (is8bit(value)) {
1982     emit_int8(0x6B);
1983     emit_int8((unsigned char)(0xC0 | encode));
1984     emit_int8(value & 0xFF);
1985   } else {
1986     emit_int8(0x69);
1987     emit_int8((unsigned char)(0xC0 | encode));
1988     emit_int32(value);
1989   }
1990 }
1991 
1992 void Assembler::imull(Register dst, Address src) {
1993   InstructionMark im(this);
1994   prefix(src, dst);
1995   emit_int8(0x0F);
1996   emit_int8((unsigned char) 0xAF);
1997   emit_operand(dst, src);
1998 }
1999 
2000 
2001 void Assembler::incl(Address dst) {
2002   // Don't use it directly. Use MacroAssembler::increment() instead.
2003   InstructionMark im(this);
2004   prefix(dst);
2005   emit_int8((unsigned char)0xFF);
2006   emit_operand(rax, dst);
2007 }
2008 
2009 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
2010   InstructionMark im(this);
2011   assert((0 <= cc) && (cc < 16), "illegal cc");
2012   if (L.is_bound()) {
2013     address dst = target(L);
2014     assert(dst != NULL, "jcc most probably wrong");
2015 
2016     const int short_size = 2;
2017     const int long_size = 6;
2018     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
2019     if (maybe_short && is8bit(offs - short_size)) {
2020       // 0111 tttn #8-bit disp
2021       emit_int8(0x70 | cc);
2022       emit_int8((offs - short_size) & 0xFF);
2023     } else {
2024       // 0000 1111 1000 tttn #32-bit disp
2025       assert(is_simm32(offs - long_size),
2026              "must be 32bit offset (call4)");
2027       emit_int8(0x0F);
2028       emit_int8((unsigned char)(0x80 | cc));
2029       emit_int32(offs - long_size);
2030     }
2031   } else {
2032     // Note: could eliminate cond. jumps to this jump if condition
2033     //       is the same however, seems to be rather unlikely case.
2034     // Note: use jccb() if label to be bound is very close to get
2035     //       an 8-bit displacement
2036     L.add_patch_at(code(), locator());
2037     emit_int8(0x0F);
2038     emit_int8((unsigned char)(0x80 | cc));
2039     emit_int32(0);
2040   }
2041 }
2042 
2043 void Assembler::jccb_0(Condition cc, Label& L, const char* file, int line) {
2044   if (L.is_bound()) {
2045     const int short_size = 2;
2046     address entry = target(L);
2047 #ifdef ASSERT
2048     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2049     intptr_t delta = short_branch_delta();
2050     if (delta != 0) {
2051       dist += (dist < 0 ? (-delta) :delta);
2052     }
2053     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2054 #endif
2055     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2056     // 0111 tttn #8-bit disp
2057     emit_int8(0x70 | cc);
2058     emit_int8((offs - short_size) & 0xFF);
2059   } else {
2060     InstructionMark im(this);
2061     L.add_patch_at(code(), locator(), file, line);
2062     emit_int8(0x70 | cc);
2063     emit_int8(0);
2064   }
2065 }
2066 
2067 void Assembler::jmp(Address adr) {
2068   InstructionMark im(this);
2069   prefix(adr);
2070   emit_int8((unsigned char)0xFF);
2071   emit_operand(rsp, adr);
2072 }
2073 
2074 void Assembler::jmp(Label& L, bool maybe_short) {
2075   if (L.is_bound()) {
2076     address entry = target(L);
2077     assert(entry != NULL, "jmp most probably wrong");
2078     InstructionMark im(this);
2079     const int short_size = 2;
2080     const int long_size = 5;
2081     intptr_t offs = entry - pc();
2082     if (maybe_short && is8bit(offs - short_size)) {
2083       emit_int8((unsigned char)0xEB);
2084       emit_int8((offs - short_size) & 0xFF);
2085     } else {
2086       emit_int8((unsigned char)0xE9);
2087       emit_int32(offs - long_size);
2088     }
2089   } else {
2090     // By default, forward jumps are always 32-bit displacements, since
2091     // we can't yet know where the label will be bound.  If you're sure that
2092     // the forward jump will not run beyond 256 bytes, use jmpb to
2093     // force an 8-bit displacement.
2094     InstructionMark im(this);
2095     L.add_patch_at(code(), locator());
2096     emit_int8((unsigned char)0xE9);
2097     emit_int32(0);
2098   }
2099 }
2100 
2101 void Assembler::jmp(Register entry) {
2102   int encode = prefix_and_encode(entry->encoding());
2103   emit_int8((unsigned char)0xFF);
2104   emit_int8((unsigned char)(0xE0 | encode));
2105 }
2106 
2107 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2108   InstructionMark im(this);
2109   emit_int8((unsigned char)0xE9);
2110   assert(dest != NULL, "must have a target");
2111   intptr_t disp = dest - (pc() + sizeof(int32_t));
2112   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2113   emit_data(disp, rspec.reloc(), call32_operand);
2114 }
2115 
2116 void Assembler::jmpb_0(Label& L, const char* file, int line) {
2117   if (L.is_bound()) {
2118     const int short_size = 2;
2119     address entry = target(L);
2120     assert(entry != NULL, "jmp most probably wrong");
2121 #ifdef ASSERT
2122     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2123     intptr_t delta = short_branch_delta();
2124     if (delta != 0) {
2125       dist += (dist < 0 ? (-delta) :delta);
2126     }
2127     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2128 #endif
2129     intptr_t offs = entry - pc();
2130     emit_int8((unsigned char)0xEB);
2131     emit_int8((offs - short_size) & 0xFF);
2132   } else {
2133     InstructionMark im(this);
2134     L.add_patch_at(code(), locator(), file, line);
2135     emit_int8((unsigned char)0xEB);
2136     emit_int8(0);
2137   }
2138 }
2139 
2140 void Assembler::ldmxcsr( Address src) {
2141   if (UseAVX > 0 ) {
2142     InstructionMark im(this);
2143     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2144     vex_prefix(src, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2145     emit_int8((unsigned char)0xAE);
2146     emit_operand(as_Register(2), src);
2147   } else {
2148     NOT_LP64(assert(VM_Version::supports_sse(), ""));
2149     InstructionMark im(this);
2150     prefix(src);
2151     emit_int8(0x0F);
2152     emit_int8((unsigned char)0xAE);
2153     emit_operand(as_Register(2), src);
2154   }
2155 }
2156 
2157 void Assembler::leal(Register dst, Address src) {
2158   InstructionMark im(this);
2159 #ifdef _LP64
2160   emit_int8(0x67); // addr32
2161   prefix(src, dst);
2162 #endif // LP64
2163   emit_int8((unsigned char)0x8D);
2164   emit_operand(dst, src);
2165 }
2166 
2167 void Assembler::lfence() {
2168   emit_int8(0x0F);
2169   emit_int8((unsigned char)0xAE);
2170   emit_int8((unsigned char)0xE8);
2171 }
2172 
2173 void Assembler::lock() {
2174   emit_int8((unsigned char)0xF0);
2175 }
2176 
2177 void Assembler::lzcntl(Register dst, Register src) {
2178   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2179   emit_int8((unsigned char)0xF3);
2180   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2181   emit_int8(0x0F);
2182   emit_int8((unsigned char)0xBD);
2183   emit_int8((unsigned char)(0xC0 | encode));
2184 }
2185 
2186 // Emit mfence instruction
2187 void Assembler::mfence() {
2188   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2189   emit_int8(0x0F);
2190   emit_int8((unsigned char)0xAE);
2191   emit_int8((unsigned char)0xF0);
2192 }
2193 
2194 void Assembler::mov(Register dst, Register src) {
2195   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2196 }
2197 
2198 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2199   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2200   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2201   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2202   attributes.set_rex_vex_w_reverted();
2203   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2204   emit_int8(0x28);
2205   emit_int8((unsigned char)(0xC0 | encode));
2206 }
2207 
2208 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2209   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2210   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2211   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2212   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2213   emit_int8(0x28);
2214   emit_int8((unsigned char)(0xC0 | encode));
2215 }
2216 
2217 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2218   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2219   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2220   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2221   emit_int8(0x16);
2222   emit_int8((unsigned char)(0xC0 | encode));
2223 }
2224 
2225 void Assembler::movb(Register dst, Address src) {
2226   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2227   InstructionMark im(this);
2228   prefix(src, dst, true);
2229   emit_int8((unsigned char)0x8A);
2230   emit_operand(dst, src);
2231 }
2232 
2233 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2234   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2235   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2236   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2237   attributes.set_rex_vex_w_reverted();
2238   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2239   emit_int8(0x12);
2240   emit_int8(0xC0 | encode);
2241 }
2242 
2243 void Assembler::kmovbl(KRegister dst, Register src) {
2244   assert(VM_Version::supports_avx512dq(), "");
2245   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2246   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2247   emit_int8((unsigned char)0x92);
2248   emit_int8((unsigned char)(0xC0 | encode));
2249 }
2250 
2251 void Assembler::kmovbl(Register dst, KRegister src) {
2252   assert(VM_Version::supports_avx512dq(), "");
2253   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2254   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2255   emit_int8((unsigned char)0x93);
2256   emit_int8((unsigned char)(0xC0 | encode));
2257 }
2258 
2259 void Assembler::kmovwl(KRegister dst, Register src) {
2260   assert(VM_Version::supports_evex(), "");
2261   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2262   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2263   emit_int8((unsigned char)0x92);
2264   emit_int8((unsigned char)(0xC0 | encode));
2265 }
2266 
2267 void Assembler::kmovwl(Register dst, KRegister src) {
2268   assert(VM_Version::supports_evex(), "");
2269   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2270   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2271   emit_int8((unsigned char)0x93);
2272   emit_int8((unsigned char)(0xC0 | encode));
2273 }
2274 
2275 void Assembler::kmovwl(KRegister dst, Address src) {
2276   assert(VM_Version::supports_evex(), "");
2277   InstructionMark im(this);
2278   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2279   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2280   emit_int8((unsigned char)0x90);
2281   emit_operand((Register)dst, src);
2282 }
2283 
2284 void Assembler::kmovdl(KRegister dst, Register src) {
2285   assert(VM_Version::supports_avx512bw(), "");
2286   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2287   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2288   emit_int8((unsigned char)0x92);
2289   emit_int8((unsigned char)(0xC0 | encode));
2290 }
2291 
2292 void Assembler::kmovdl(Register dst, KRegister src) {
2293   assert(VM_Version::supports_avx512bw(), "");
2294   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2295   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2296   emit_int8((unsigned char)0x93);
2297   emit_int8((unsigned char)(0xC0 | encode));
2298 }
2299 
2300 void Assembler::kmovql(KRegister dst, KRegister src) {
2301   assert(VM_Version::supports_avx512bw(), "");
2302   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2303   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2304   emit_int8((unsigned char)0x90);
2305   emit_int8((unsigned char)(0xC0 | encode));
2306 }
2307 
2308 void Assembler::kmovql(KRegister dst, Address src) {
2309   assert(VM_Version::supports_avx512bw(), "");
2310   InstructionMark im(this);
2311   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2312   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2313   emit_int8((unsigned char)0x90);
2314   emit_operand((Register)dst, src);
2315 }
2316 
2317 void Assembler::kmovql(Address dst, KRegister src) {
2318   assert(VM_Version::supports_avx512bw(), "");
2319   InstructionMark im(this);
2320   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2321   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2322   emit_int8((unsigned char)0x90);
2323   emit_operand((Register)src, dst);
2324 }
2325 
2326 void Assembler::kmovql(KRegister dst, Register src) {
2327   assert(VM_Version::supports_avx512bw(), "");
2328   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2329   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2330   emit_int8((unsigned char)0x92);
2331   emit_int8((unsigned char)(0xC0 | encode));
2332 }
2333 
2334 void Assembler::kmovql(Register dst, KRegister src) {
2335   assert(VM_Version::supports_avx512bw(), "");
2336   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2337   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2338   emit_int8((unsigned char)0x93);
2339   emit_int8((unsigned char)(0xC0 | encode));
2340 }
2341 
2342 void Assembler::knotwl(KRegister dst, KRegister src) {
2343   assert(VM_Version::supports_evex(), "");
2344   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2345   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2346   emit_int8((unsigned char)0x44);
2347   emit_int8((unsigned char)(0xC0 | encode));
2348 }
2349 
2350 // This instruction produces ZF or CF flags
2351 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2352   assert(VM_Version::supports_avx512dq(), "");
2353   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2354   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2355   emit_int8((unsigned char)0x98);
2356   emit_int8((unsigned char)(0xC0 | encode));
2357 }
2358 
2359 // This instruction produces ZF or CF flags
2360 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2361   assert(VM_Version::supports_evex(), "");
2362   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2363   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2364   emit_int8((unsigned char)0x98);
2365   emit_int8((unsigned char)(0xC0 | encode));
2366 }
2367 
2368 // This instruction produces ZF or CF flags
2369 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2370   assert(VM_Version::supports_avx512bw(), "");
2371   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2372   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2373   emit_int8((unsigned char)0x98);
2374   emit_int8((unsigned char)(0xC0 | encode));
2375 }
2376 
2377 // This instruction produces ZF or CF flags
2378 void Assembler::kortestql(KRegister src1, KRegister src2) {
2379   assert(VM_Version::supports_avx512bw(), "");
2380   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2381   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2382   emit_int8((unsigned char)0x98);
2383   emit_int8((unsigned char)(0xC0 | encode));
2384 }
2385 
2386 // This instruction produces ZF or CF flags
2387 void Assembler::ktestql(KRegister src1, KRegister src2) {
2388   assert(VM_Version::supports_avx512bw(), "");
2389   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2390   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2391   emit_int8((unsigned char)0x99);
2392   emit_int8((unsigned char)(0xC0 | encode));
2393 }
2394 
2395 void Assembler::ktestq(KRegister src1, KRegister src2) {
2396   assert(VM_Version::supports_avx512bw(), "");
2397   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2398   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2399   emit_int8((unsigned char)0x99);
2400   emit_int8((unsigned char)(0xC0 | encode));
2401 }
2402 
2403 void Assembler::ktestd(KRegister src1, KRegister src2) {
2404   assert(VM_Version::supports_avx512bw(), "");
2405   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2406   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2407   emit_int8((unsigned char)0x99);
2408   emit_int8((unsigned char)(0xC0 | encode));
2409 }
2410 
2411 void Assembler::movb(Address dst, int imm8) {
2412   InstructionMark im(this);
2413    prefix(dst);
2414   emit_int8((unsigned char)0xC6);
2415   emit_operand(rax, dst, 1);
2416   emit_int8(imm8);
2417 }
2418 
2419 
2420 void Assembler::movb(Address dst, Register src) {
2421   assert(src->has_byte_register(), "must have byte register");
2422   InstructionMark im(this);
2423   prefix(dst, src, true);
2424   emit_int8((unsigned char)0x88);
2425   emit_operand(src, dst);
2426 }
2427 
2428 void Assembler::movdl(XMMRegister dst, Register src) {
2429   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2430   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2431   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2432   emit_int8(0x6E);
2433   emit_int8((unsigned char)(0xC0 | encode));
2434 }
2435 
2436 void Assembler::movdl(Register dst, XMMRegister src) {
2437   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2438   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2439   // swap src/dst to get correct prefix
2440   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2441   emit_int8(0x7E);
2442   emit_int8((unsigned char)(0xC0 | encode));
2443 }
2444 
2445 void Assembler::movdl(XMMRegister dst, Address src) {
2446   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2447   InstructionMark im(this);
2448   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2449   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2450   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2451   emit_int8(0x6E);
2452   emit_operand(dst, src);
2453 }
2454 
2455 void Assembler::movdl(Address dst, XMMRegister src) {
2456   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2457   InstructionMark im(this);
2458   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2459   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2460   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2461   emit_int8(0x7E);
2462   emit_operand(src, dst);
2463 }
2464 
2465 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2466   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2467   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2468   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2469   emit_int8(0x6F);
2470   emit_int8((unsigned char)(0xC0 | encode));
2471 }
2472 
2473 void Assembler::movdqa(XMMRegister dst, Address src) {
2474   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2475   InstructionMark im(this);
2476   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2477   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2478   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2479   emit_int8(0x6F);
2480   emit_operand(dst, src);
2481 }
2482 
2483 void Assembler::movdqu(XMMRegister dst, Address src) {
2484   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2485   InstructionMark im(this);
2486   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2487   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2488   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2489   emit_int8(0x6F);
2490   emit_operand(dst, src);
2491 }
2492 
2493 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2494   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2495   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2496   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2497   emit_int8(0x6F);
2498   emit_int8((unsigned char)(0xC0 | encode));
2499 }
2500 
2501 void Assembler::movdqu(Address dst, XMMRegister src) {
2502   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2503   InstructionMark im(this);
2504   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2505   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2506   attributes.reset_is_clear_context();
2507   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2508   emit_int8(0x7F);
2509   emit_operand(src, dst);
2510 }
2511 
2512 // Move Unaligned 256bit Vector
2513 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2514   assert(UseAVX > 0, "");
2515   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2516   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2517   emit_int8(0x6F);
2518   emit_int8((unsigned char)(0xC0 | encode));
2519 }
2520 
2521 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2522   assert(UseAVX > 0, "");
2523   InstructionMark im(this);
2524   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2525   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2526   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2527   emit_int8(0x6F);
2528   emit_operand(dst, src);
2529 }
2530 
2531 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2532   assert(UseAVX > 0, "");
2533   InstructionMark im(this);
2534   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2535   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2536   attributes.reset_is_clear_context();
2537   // swap src<->dst for encoding
2538   assert(src != xnoreg, "sanity");
2539   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2540   emit_int8(0x7F);
2541   emit_operand(src, dst);
2542 }
2543 
2544 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2545 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2546   assert(VM_Version::supports_evex(), "");
2547   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2548   attributes.set_is_evex_instruction();
2549   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2550   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2551   emit_int8(0x6F);
2552   emit_int8((unsigned char)(0xC0 | encode));
2553 }
2554 
2555 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2556   assert(VM_Version::supports_evex(), "");
2557   InstructionMark im(this);
2558   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2559   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2560   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2561   attributes.set_is_evex_instruction();
2562   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2563   emit_int8(0x6F);
2564   emit_operand(dst, src);
2565 }
2566 
2567 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2568   assert(VM_Version::supports_evex(), "");
2569   assert(src != xnoreg, "sanity");
2570   InstructionMark im(this);
2571   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2572   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2573   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2574   attributes.set_is_evex_instruction();
2575   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2576   emit_int8(0x7F);
2577   emit_operand(src, dst);
2578 }
2579 
2580 void Assembler::evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2581   assert(VM_Version::supports_avx512vlbw(), "");
2582   InstructionMark im(this);
2583   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2584   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2585   attributes.set_embedded_opmask_register_specifier(mask);
2586   attributes.set_is_evex_instruction();
2587   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2588   emit_int8(0x6F);
2589   emit_operand(dst, src);
2590 }
2591 
2592 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2593   assert(VM_Version::supports_evex(), "");
2594   InstructionMark im(this);
2595   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2596   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2597   attributes.set_is_evex_instruction();
2598   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2599   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2600   emit_int8(0x6F);
2601   emit_operand(dst, src);
2602 }
2603 
2604 void Assembler::evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2605   assert(VM_Version::supports_avx512vlbw(), "");
2606   InstructionMark im(this);
2607   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2608   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2609   attributes.set_embedded_opmask_register_specifier(mask);
2610   attributes.set_is_evex_instruction();
2611   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2612   emit_int8(0x6F);
2613   emit_operand(dst, src);
2614 }
2615 
2616 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2617   assert(VM_Version::supports_evex(), "");
2618   assert(src != xnoreg, "sanity");
2619   InstructionMark im(this);
2620   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2621   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2622   attributes.set_is_evex_instruction();
2623   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2624   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2625   emit_int8(0x7F);
2626   emit_operand(src, dst);
2627 }
2628 
2629 void Assembler::evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len) {
2630   assert(VM_Version::supports_avx512vlbw(), "");
2631   assert(src != xnoreg, "sanity");
2632   InstructionMark im(this);
2633   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2634   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2635   attributes.reset_is_clear_context();
2636   attributes.set_embedded_opmask_register_specifier(mask);
2637   attributes.set_is_evex_instruction();
2638   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2639   emit_int8(0x7F);
2640   emit_operand(src, dst);
2641 }
2642 
2643 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2644   assert(VM_Version::supports_evex(), "");
2645   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2646   attributes.set_is_evex_instruction();
2647   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2648   emit_int8(0x6F);
2649   emit_int8((unsigned char)(0xC0 | encode));
2650 }
2651 
2652 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2653   assert(VM_Version::supports_evex(), "");
2654   InstructionMark im(this);
2655   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ true);
2656   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2657   attributes.set_is_evex_instruction();
2658   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2659   emit_int8(0x6F);
2660   emit_operand(dst, src);
2661 }
2662 
2663 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2664   assert(VM_Version::supports_evex(), "");
2665   assert(src != xnoreg, "sanity");
2666   InstructionMark im(this);
2667   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2668   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2669   attributes.reset_is_clear_context();
2670   attributes.set_is_evex_instruction();
2671   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2672   emit_int8(0x7F);
2673   emit_operand(src, dst);
2674 }
2675 
2676 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2677   assert(VM_Version::supports_evex(), "");
2678   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2679   attributes.set_is_evex_instruction();
2680   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2681   emit_int8(0x6F);
2682   emit_int8((unsigned char)(0xC0 | encode));
2683 }
2684 
2685 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2686   assert(VM_Version::supports_evex(), "");
2687   InstructionMark im(this);
2688   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2689   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2690   attributes.set_is_evex_instruction();
2691   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2692   emit_int8(0x6F);
2693   emit_operand(dst, src);
2694 }
2695 
2696 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2697   assert(VM_Version::supports_evex(), "");
2698   assert(src != xnoreg, "sanity");
2699   InstructionMark im(this);
2700   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2701   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2702   attributes.reset_is_clear_context();
2703   attributes.set_is_evex_instruction();
2704   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2705   emit_int8(0x7F);
2706   emit_operand(src, dst);
2707 }
2708 
2709 // Uses zero extension on 64bit
2710 
2711 void Assembler::movl(Register dst, int32_t imm32) {
2712   int encode = prefix_and_encode(dst->encoding());
2713   emit_int8((unsigned char)(0xB8 | encode));
2714   emit_int32(imm32);
2715 }
2716 
2717 void Assembler::movl(Register dst, Register src) {
2718   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2719   emit_int8((unsigned char)0x8B);
2720   emit_int8((unsigned char)(0xC0 | encode));
2721 }
2722 
2723 void Assembler::movl(Register dst, Address src) {
2724   InstructionMark im(this);
2725   prefix(src, dst);
2726   emit_int8((unsigned char)0x8B);
2727   emit_operand(dst, src);
2728 }
2729 
2730 void Assembler::movl(Address dst, int32_t imm32) {
2731   InstructionMark im(this);
2732   prefix(dst);
2733   emit_int8((unsigned char)0xC7);
2734   emit_operand(rax, dst, 4);
2735   emit_int32(imm32);
2736 }
2737 
2738 void Assembler::movl(Address dst, Register src) {
2739   InstructionMark im(this);
2740   prefix(dst, src);
2741   emit_int8((unsigned char)0x89);
2742   emit_operand(src, dst);
2743 }
2744 
2745 // New cpus require to use movsd and movss to avoid partial register stall
2746 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2747 // The selection is done in MacroAssembler::movdbl() and movflt().
2748 void Assembler::movlpd(XMMRegister dst, Address src) {
2749   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2750   InstructionMark im(this);
2751   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2752   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2753   attributes.set_rex_vex_w_reverted();
2754   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2755   emit_int8(0x12);
2756   emit_operand(dst, src);
2757 }
2758 
2759 void Assembler::movq( MMXRegister dst, Address src ) {
2760   assert( VM_Version::supports_mmx(), "" );
2761   emit_int8(0x0F);
2762   emit_int8(0x6F);
2763   emit_operand(dst, src);
2764 }
2765 
2766 void Assembler::movq( Address dst, MMXRegister src ) {
2767   assert( VM_Version::supports_mmx(), "" );
2768   emit_int8(0x0F);
2769   emit_int8(0x7F);
2770   // workaround gcc (3.2.1-7a) bug
2771   // In that version of gcc with only an emit_operand(MMX, Address)
2772   // gcc will tail jump and try and reverse the parameters completely
2773   // obliterating dst in the process. By having a version available
2774   // that doesn't need to swap the args at the tail jump the bug is
2775   // avoided.
2776   emit_operand(dst, src);
2777 }
2778 
2779 void Assembler::movq(XMMRegister dst, Address src) {
2780   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2781   InstructionMark im(this);
2782   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2783   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2784   attributes.set_rex_vex_w_reverted();
2785   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2786   emit_int8(0x7E);
2787   emit_operand(dst, src);
2788 }
2789 
2790 void Assembler::movq(Address dst, XMMRegister src) {
2791   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2792   InstructionMark im(this);
2793   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2794   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2795   attributes.set_rex_vex_w_reverted();
2796   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2797   emit_int8((unsigned char)0xD6);
2798   emit_operand(src, dst);
2799 }
2800 
2801 void Assembler::movsbl(Register dst, Address src) { // movsxb
2802   InstructionMark im(this);
2803   prefix(src, dst);
2804   emit_int8(0x0F);
2805   emit_int8((unsigned char)0xBE);
2806   emit_operand(dst, src);
2807 }
2808 
2809 void Assembler::movsbl(Register dst, Register src) { // movsxb
2810   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2811   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2812   emit_int8(0x0F);
2813   emit_int8((unsigned char)0xBE);
2814   emit_int8((unsigned char)(0xC0 | encode));
2815 }
2816 
2817 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2818   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2819   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2820   attributes.set_rex_vex_w_reverted();
2821   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2822   emit_int8(0x10);
2823   emit_int8((unsigned char)(0xC0 | encode));
2824 }
2825 
2826 void Assembler::movsd(XMMRegister dst, Address src) {
2827   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2828   InstructionMark im(this);
2829   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2830   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2831   attributes.set_rex_vex_w_reverted();
2832   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2833   emit_int8(0x10);
2834   emit_operand(dst, src);
2835 }
2836 
2837 void Assembler::movsd(Address dst, XMMRegister src) {
2838   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2839   InstructionMark im(this);
2840   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2841   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2842   attributes.reset_is_clear_context();
2843   attributes.set_rex_vex_w_reverted();
2844   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2845   emit_int8(0x11);
2846   emit_operand(src, dst);
2847 }
2848 
2849 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2850   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2851   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2852   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2853   emit_int8(0x10);
2854   emit_int8((unsigned char)(0xC0 | encode));
2855 }
2856 
2857 void Assembler::movss(XMMRegister dst, Address src) {
2858   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2859   InstructionMark im(this);
2860   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2861   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2862   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2863   emit_int8(0x10);
2864   emit_operand(dst, src);
2865 }
2866 
2867 void Assembler::movss(Address dst, XMMRegister src) {
2868   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2869   InstructionMark im(this);
2870   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2871   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2872   attributes.reset_is_clear_context();
2873   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2874   emit_int8(0x11);
2875   emit_operand(src, dst);
2876 }
2877 
2878 void Assembler::movswl(Register dst, Address src) { // movsxw
2879   InstructionMark im(this);
2880   prefix(src, dst);
2881   emit_int8(0x0F);
2882   emit_int8((unsigned char)0xBF);
2883   emit_operand(dst, src);
2884 }
2885 
2886 void Assembler::movswl(Register dst, Register src) { // movsxw
2887   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2888   emit_int8(0x0F);
2889   emit_int8((unsigned char)0xBF);
2890   emit_int8((unsigned char)(0xC0 | encode));
2891 }
2892 
2893 void Assembler::movw(Address dst, int imm16) {
2894   InstructionMark im(this);
2895 
2896   emit_int8(0x66); // switch to 16-bit mode
2897   prefix(dst);
2898   emit_int8((unsigned char)0xC7);
2899   emit_operand(rax, dst, 2);
2900   emit_int16(imm16);
2901 }
2902 
2903 void Assembler::movw(Register dst, Address src) {
2904   InstructionMark im(this);
2905   emit_int8(0x66);
2906   prefix(src, dst);
2907   emit_int8((unsigned char)0x8B);
2908   emit_operand(dst, src);
2909 }
2910 
2911 void Assembler::movw(Address dst, Register src) {
2912   InstructionMark im(this);
2913   emit_int8(0x66);
2914   prefix(dst, src);
2915   emit_int8((unsigned char)0x89);
2916   emit_operand(src, dst);
2917 }
2918 
2919 void Assembler::movzbl(Register dst, Address src) { // movzxb
2920   InstructionMark im(this);
2921   prefix(src, dst);
2922   emit_int8(0x0F);
2923   emit_int8((unsigned char)0xB6);
2924   emit_operand(dst, src);
2925 }
2926 
2927 void Assembler::movzbl(Register dst, Register src) { // movzxb
2928   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2929   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2930   emit_int8(0x0F);
2931   emit_int8((unsigned char)0xB6);
2932   emit_int8(0xC0 | encode);
2933 }
2934 
2935 void Assembler::movzwl(Register dst, Address src) { // movzxw
2936   InstructionMark im(this);
2937   prefix(src, dst);
2938   emit_int8(0x0F);
2939   emit_int8((unsigned char)0xB7);
2940   emit_operand(dst, src);
2941 }
2942 
2943 void Assembler::movzwl(Register dst, Register src) { // movzxw
2944   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2945   emit_int8(0x0F);
2946   emit_int8((unsigned char)0xB7);
2947   emit_int8(0xC0 | encode);
2948 }
2949 
2950 void Assembler::mull(Address src) {
2951   InstructionMark im(this);
2952   prefix(src);
2953   emit_int8((unsigned char)0xF7);
2954   emit_operand(rsp, src);
2955 }
2956 
2957 void Assembler::mull(Register src) {
2958   int encode = prefix_and_encode(src->encoding());
2959   emit_int8((unsigned char)0xF7);
2960   emit_int8((unsigned char)(0xE0 | encode));
2961 }
2962 
2963 void Assembler::mulsd(XMMRegister dst, Address src) {
2964   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2965   InstructionMark im(this);
2966   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2967   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2968   attributes.set_rex_vex_w_reverted();
2969   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2970   emit_int8(0x59);
2971   emit_operand(dst, src);
2972 }
2973 
2974 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2975   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2976   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2977   attributes.set_rex_vex_w_reverted();
2978   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2979   emit_int8(0x59);
2980   emit_int8((unsigned char)(0xC0 | encode));
2981 }
2982 
2983 void Assembler::mulss(XMMRegister dst, Address src) {
2984   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2985   InstructionMark im(this);
2986   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2987   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2988   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2989   emit_int8(0x59);
2990   emit_operand(dst, src);
2991 }
2992 
2993 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2994   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2995   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2996   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2997   emit_int8(0x59);
2998   emit_int8((unsigned char)(0xC0 | encode));
2999 }
3000 
3001 void Assembler::negl(Register dst) {
3002   int encode = prefix_and_encode(dst->encoding());
3003   emit_int8((unsigned char)0xF7);
3004   emit_int8((unsigned char)(0xD8 | encode));
3005 }
3006 
3007 void Assembler::nop(int i) {
3008 #ifdef ASSERT
3009   assert(i > 0, " ");
3010   // The fancy nops aren't currently recognized by debuggers making it a
3011   // pain to disassemble code while debugging. If asserts are on clearly
3012   // speed is not an issue so simply use the single byte traditional nop
3013   // to do alignment.
3014 
3015   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
3016   return;
3017 
3018 #endif // ASSERT
3019 
3020   if (UseAddressNop && VM_Version::is_intel()) {
3021     //
3022     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
3023     //  1: 0x90
3024     //  2: 0x66 0x90
3025     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3026     //  4: 0x0F 0x1F 0x40 0x00
3027     //  5: 0x0F 0x1F 0x44 0x00 0x00
3028     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3029     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3030     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3031     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3032     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3033     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3034 
3035     // The rest coding is Intel specific - don't use consecutive address nops
3036 
3037     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3038     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3039     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3040     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3041 
3042     while(i >= 15) {
3043       // For Intel don't generate consecutive addess nops (mix with regular nops)
3044       i -= 15;
3045       emit_int8(0x66);   // size prefix
3046       emit_int8(0x66);   // size prefix
3047       emit_int8(0x66);   // size prefix
3048       addr_nop_8();
3049       emit_int8(0x66);   // size prefix
3050       emit_int8(0x66);   // size prefix
3051       emit_int8(0x66);   // size prefix
3052       emit_int8((unsigned char)0x90);
3053                          // nop
3054     }
3055     switch (i) {
3056       case 14:
3057         emit_int8(0x66); // size prefix
3058       case 13:
3059         emit_int8(0x66); // size prefix
3060       case 12:
3061         addr_nop_8();
3062         emit_int8(0x66); // size prefix
3063         emit_int8(0x66); // size prefix
3064         emit_int8(0x66); // size prefix
3065         emit_int8((unsigned char)0x90);
3066                          // nop
3067         break;
3068       case 11:
3069         emit_int8(0x66); // size prefix
3070       case 10:
3071         emit_int8(0x66); // size prefix
3072       case 9:
3073         emit_int8(0x66); // size prefix
3074       case 8:
3075         addr_nop_8();
3076         break;
3077       case 7:
3078         addr_nop_7();
3079         break;
3080       case 6:
3081         emit_int8(0x66); // size prefix
3082       case 5:
3083         addr_nop_5();
3084         break;
3085       case 4:
3086         addr_nop_4();
3087         break;
3088       case 3:
3089         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3090         emit_int8(0x66); // size prefix
3091       case 2:
3092         emit_int8(0x66); // size prefix
3093       case 1:
3094         emit_int8((unsigned char)0x90);
3095                          // nop
3096         break;
3097       default:
3098         assert(i == 0, " ");
3099     }
3100     return;
3101   }
3102   if (UseAddressNop && VM_Version::is_amd()) {
3103     //
3104     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3105     //  1: 0x90
3106     //  2: 0x66 0x90
3107     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3108     //  4: 0x0F 0x1F 0x40 0x00
3109     //  5: 0x0F 0x1F 0x44 0x00 0x00
3110     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3111     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3112     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3113     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3114     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3115     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3116 
3117     // The rest coding is AMD specific - use consecutive address nops
3118 
3119     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3120     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3121     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3122     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3123     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3124     //     Size prefixes (0x66) are added for larger sizes
3125 
3126     while(i >= 22) {
3127       i -= 11;
3128       emit_int8(0x66); // size prefix
3129       emit_int8(0x66); // size prefix
3130       emit_int8(0x66); // size prefix
3131       addr_nop_8();
3132     }
3133     // Generate first nop for size between 21-12
3134     switch (i) {
3135       case 21:
3136         i -= 1;
3137         emit_int8(0x66); // size prefix
3138       case 20:
3139       case 19:
3140         i -= 1;
3141         emit_int8(0x66); // size prefix
3142       case 18:
3143       case 17:
3144         i -= 1;
3145         emit_int8(0x66); // size prefix
3146       case 16:
3147       case 15:
3148         i -= 8;
3149         addr_nop_8();
3150         break;
3151       case 14:
3152       case 13:
3153         i -= 7;
3154         addr_nop_7();
3155         break;
3156       case 12:
3157         i -= 6;
3158         emit_int8(0x66); // size prefix
3159         addr_nop_5();
3160         break;
3161       default:
3162         assert(i < 12, " ");
3163     }
3164 
3165     // Generate second nop for size between 11-1
3166     switch (i) {
3167       case 11:
3168         emit_int8(0x66); // size prefix
3169       case 10:
3170         emit_int8(0x66); // size prefix
3171       case 9:
3172         emit_int8(0x66); // size prefix
3173       case 8:
3174         addr_nop_8();
3175         break;
3176       case 7:
3177         addr_nop_7();
3178         break;
3179       case 6:
3180         emit_int8(0x66); // size prefix
3181       case 5:
3182         addr_nop_5();
3183         break;
3184       case 4:
3185         addr_nop_4();
3186         break;
3187       case 3:
3188         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3189         emit_int8(0x66); // size prefix
3190       case 2:
3191         emit_int8(0x66); // size prefix
3192       case 1:
3193         emit_int8((unsigned char)0x90);
3194                          // nop
3195         break;
3196       default:
3197         assert(i == 0, " ");
3198     }
3199     return;
3200   }
3201 
3202   if (UseAddressNop && VM_Version::is_zx()) {
3203     //
3204     // Using multi-bytes nops "0x0F 0x1F [address]" for ZX
3205     //  1: 0x90
3206     //  2: 0x66 0x90
3207     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3208     //  4: 0x0F 0x1F 0x40 0x00
3209     //  5: 0x0F 0x1F 0x44 0x00 0x00
3210     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3211     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3212     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3213     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3214     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3215     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3216 
3217     // The rest coding is ZX specific - don't use consecutive address nops
3218 
3219     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3220     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3221     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3222     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3223 
3224     while (i >= 15) {
3225       // For ZX don't generate consecutive addess nops (mix with regular nops)
3226       i -= 15;
3227       emit_int8(0x66);   // size prefix
3228       emit_int8(0x66);   // size prefix
3229       emit_int8(0x66);   // size prefix
3230       addr_nop_8();
3231       emit_int8(0x66);   // size prefix
3232       emit_int8(0x66);   // size prefix
3233       emit_int8(0x66);   // size prefix
3234       emit_int8((unsigned char)0x90);
3235                          // nop
3236     }
3237     switch (i) {
3238       case 14:
3239         emit_int8(0x66); // size prefix
3240       case 13:
3241         emit_int8(0x66); // size prefix
3242       case 12:
3243         addr_nop_8();
3244         emit_int8(0x66); // size prefix
3245         emit_int8(0x66); // size prefix
3246         emit_int8(0x66); // size prefix
3247         emit_int8((unsigned char)0x90);
3248                          // nop
3249         break;
3250       case 11:
3251         emit_int8(0x66); // size prefix
3252       case 10:
3253         emit_int8(0x66); // size prefix
3254       case 9:
3255         emit_int8(0x66); // size prefix
3256       case 8:
3257         addr_nop_8();
3258         break;
3259       case 7:
3260         addr_nop_7();
3261         break;
3262       case 6:
3263         emit_int8(0x66); // size prefix
3264       case 5:
3265         addr_nop_5();
3266         break;
3267       case 4:
3268         addr_nop_4();
3269         break;
3270       case 3:
3271         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3272         emit_int8(0x66); // size prefix
3273       case 2:
3274         emit_int8(0x66); // size prefix
3275       case 1:
3276         emit_int8((unsigned char)0x90);
3277                          // nop
3278         break;
3279       default:
3280         assert(i == 0, " ");
3281     }
3282     return;
3283   }
3284 
3285   // Using nops with size prefixes "0x66 0x90".
3286   // From AMD Optimization Guide:
3287   //  1: 0x90
3288   //  2: 0x66 0x90
3289   //  3: 0x66 0x66 0x90
3290   //  4: 0x66 0x66 0x66 0x90
3291   //  5: 0x66 0x66 0x90 0x66 0x90
3292   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3293   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3294   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3295   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3296   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3297   //
3298   while(i > 12) {
3299     i -= 4;
3300     emit_int8(0x66); // size prefix
3301     emit_int8(0x66);
3302     emit_int8(0x66);
3303     emit_int8((unsigned char)0x90);
3304                      // nop
3305   }
3306   // 1 - 12 nops
3307   if(i > 8) {
3308     if(i > 9) {
3309       i -= 1;
3310       emit_int8(0x66);
3311     }
3312     i -= 3;
3313     emit_int8(0x66);
3314     emit_int8(0x66);
3315     emit_int8((unsigned char)0x90);
3316   }
3317   // 1 - 8 nops
3318   if(i > 4) {
3319     if(i > 6) {
3320       i -= 1;
3321       emit_int8(0x66);
3322     }
3323     i -= 3;
3324     emit_int8(0x66);
3325     emit_int8(0x66);
3326     emit_int8((unsigned char)0x90);
3327   }
3328   switch (i) {
3329     case 4:
3330       emit_int8(0x66);
3331     case 3:
3332       emit_int8(0x66);
3333     case 2:
3334       emit_int8(0x66);
3335     case 1:
3336       emit_int8((unsigned char)0x90);
3337       break;
3338     default:
3339       assert(i == 0, " ");
3340   }
3341 }
3342 
3343 void Assembler::notl(Register dst) {
3344   int encode = prefix_and_encode(dst->encoding());
3345   emit_int8((unsigned char)0xF7);
3346   emit_int8((unsigned char)(0xD0 | encode));
3347 }
3348 
3349 void Assembler::orl(Address dst, int32_t imm32) {
3350   InstructionMark im(this);
3351   prefix(dst);
3352   emit_arith_operand(0x81, rcx, dst, imm32);
3353 }
3354 
3355 void Assembler::orl(Register dst, int32_t imm32) {
3356   prefix(dst);
3357   emit_arith(0x81, 0xC8, dst, imm32);
3358 }
3359 
3360 void Assembler::orl(Register dst, Address src) {
3361   InstructionMark im(this);
3362   prefix(src, dst);
3363   emit_int8(0x0B);
3364   emit_operand(dst, src);
3365 }
3366 
3367 void Assembler::orl(Register dst, Register src) {
3368   (void) prefix_and_encode(dst->encoding(), src->encoding());
3369   emit_arith(0x0B, 0xC0, dst, src);
3370 }
3371 
3372 void Assembler::orl(Address dst, Register src) {
3373   InstructionMark im(this);
3374   prefix(dst, src);
3375   emit_int8(0x09);
3376   emit_operand(src, dst);
3377 }
3378 
3379 void Assembler::orb(Address dst, int imm8) {
3380   InstructionMark im(this);
3381   prefix(dst);
3382   emit_int8((unsigned char)0x80);
3383   emit_operand(rcx, dst, 1);
3384   emit_int8(imm8);
3385 }
3386 
3387 void Assembler::packuswb(XMMRegister dst, Address src) {
3388   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3389   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3390   InstructionMark im(this);
3391   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3392   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3393   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3394   emit_int8(0x67);
3395   emit_operand(dst, src);
3396 }
3397 
3398 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3399   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3400   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3401   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3402   emit_int8(0x67);
3403   emit_int8((unsigned char)(0xC0 | encode));
3404 }
3405 
3406 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3407   assert(UseAVX > 0, "some form of AVX must be enabled");
3408   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3409   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3410   emit_int8(0x67);
3411   emit_int8((unsigned char)(0xC0 | encode));
3412 }
3413 
3414 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3415   assert(VM_Version::supports_avx2(), "");
3416   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3417   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3418   emit_int8(0x00);
3419   emit_int8(0xC0 | encode);
3420   emit_int8(imm8);
3421 }
3422 
3423 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3424   assert(VM_Version::supports_avx2(), "");
3425   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3426   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3427   emit_int8(0x46);
3428   emit_int8(0xC0 | encode);
3429   emit_int8(imm8);
3430 }
3431 
3432 void Assembler::vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8) {
3433   assert(VM_Version::supports_avx(), "");
3434   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3435   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3436   emit_int8(0x06);
3437   emit_int8(0xC0 | encode);
3438   emit_int8(imm8);
3439 }
3440 
3441 void Assembler::evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3442   assert(VM_Version::supports_evex(), "");
3443   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3444   attributes.set_is_evex_instruction();
3445   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3446   emit_int8(0x76);
3447   emit_int8((unsigned char)(0xC0 | encode));
3448 }
3449 
3450 
3451 void Assembler::pause() {
3452   emit_int8((unsigned char)0xF3);
3453   emit_int8((unsigned char)0x90);
3454 }
3455 
3456 void Assembler::ud2() {
3457   emit_int8(0x0F);
3458   emit_int8(0x0B);
3459 }
3460 
3461 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3462   assert(VM_Version::supports_sse4_2(), "");
3463   InstructionMark im(this);
3464   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3465   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3466   emit_int8(0x61);
3467   emit_operand(dst, src);
3468   emit_int8(imm8);
3469 }
3470 
3471 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3472   assert(VM_Version::supports_sse4_2(), "");
3473   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3474   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3475   emit_int8(0x61);
3476   emit_int8((unsigned char)(0xC0 | encode));
3477   emit_int8(imm8);
3478 }
3479 
3480 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3481 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3482   assert(VM_Version::supports_sse2(), "");
3483   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3484   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3485   emit_int8(0x74);
3486   emit_int8((unsigned char)(0xC0 | encode));
3487 }
3488 
3489 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3490 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3491   assert(VM_Version::supports_avx(), "");
3492   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3493   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3494   emit_int8(0x74);
3495   emit_int8((unsigned char)(0xC0 | encode));
3496 }
3497 
3498 // In this context, kdst is written the mask used to process the equal components
3499 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3500   assert(VM_Version::supports_avx512bw(), "");
3501   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3502   attributes.set_is_evex_instruction();
3503   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3504   emit_int8(0x74);
3505   emit_int8((unsigned char)(0xC0 | encode));
3506 }
3507 
3508 void Assembler::evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3509   assert(VM_Version::supports_avx512vlbw(), "");
3510   InstructionMark im(this);
3511   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3512   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3513   attributes.set_is_evex_instruction();
3514   int dst_enc = kdst->encoding();
3515   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3516   emit_int8(0x64);
3517   emit_operand(as_Register(dst_enc), src);
3518 }
3519 
3520 void Assembler::evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3521   assert(VM_Version::supports_avx512vlbw(), "");
3522   InstructionMark im(this);
3523   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3524   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3525   attributes.reset_is_clear_context();
3526   attributes.set_embedded_opmask_register_specifier(mask);
3527   attributes.set_is_evex_instruction();
3528   int dst_enc = kdst->encoding();
3529   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3530   emit_int8(0x64);
3531   emit_operand(as_Register(dst_enc), src);
3532 }
3533 
3534 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3535   assert(VM_Version::supports_avx512vlbw(), "");
3536   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3537   attributes.set_is_evex_instruction();
3538   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3539   emit_int8(0x3E);
3540   emit_int8((unsigned char)(0xC0 | encode));
3541   emit_int8(vcc);
3542 }
3543 
3544 void Assembler::evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3545   assert(VM_Version::supports_avx512vlbw(), "");
3546   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3547   attributes.reset_is_clear_context();
3548   attributes.set_embedded_opmask_register_specifier(mask);
3549   attributes.set_is_evex_instruction();
3550   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3551   emit_int8(0x3E);
3552   emit_int8((unsigned char)(0xC0 | encode));
3553   emit_int8(vcc);
3554 }
3555 
3556 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len) {
3557   assert(VM_Version::supports_avx512vlbw(), "");
3558   InstructionMark im(this);
3559   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3560   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3561   attributes.set_is_evex_instruction();
3562   int dst_enc = kdst->encoding();
3563   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3564   emit_int8(0x3E);
3565   emit_operand(as_Register(dst_enc), src);
3566   emit_int8(vcc);
3567 }
3568 
3569 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3570   assert(VM_Version::supports_avx512bw(), "");
3571   InstructionMark im(this);
3572   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3573   attributes.set_is_evex_instruction();
3574   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3575   int dst_enc = kdst->encoding();
3576   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3577   emit_int8(0x74);
3578   emit_operand(as_Register(dst_enc), src);
3579 }
3580 
3581 void Assembler::evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3582   assert(VM_Version::supports_avx512vlbw(), "");
3583   InstructionMark im(this);
3584   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_reg_mask */ false, /* uses_vl */ true);
3585   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3586   attributes.reset_is_clear_context();
3587   attributes.set_embedded_opmask_register_specifier(mask);
3588   attributes.set_is_evex_instruction();
3589   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3590   emit_int8(0x74);
3591   emit_operand(as_Register(kdst->encoding()), src);
3592 }
3593 
3594 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3595 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3596   assert(VM_Version::supports_sse2(), "");
3597   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3598   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3599   emit_int8(0x75);
3600   emit_int8((unsigned char)(0xC0 | encode));
3601 }
3602 
3603 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3604 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3605   assert(VM_Version::supports_avx(), "");
3606   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3607   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3608   emit_int8(0x75);
3609   emit_int8((unsigned char)(0xC0 | encode));
3610 }
3611 
3612 // In this context, kdst is written the mask used to process the equal components
3613 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3614   assert(VM_Version::supports_avx512bw(), "");
3615   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3616   attributes.set_is_evex_instruction();
3617   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3618   emit_int8(0x75);
3619   emit_int8((unsigned char)(0xC0 | encode));
3620 }
3621 
3622 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3623   assert(VM_Version::supports_avx512bw(), "");
3624   InstructionMark im(this);
3625   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3626   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3627   attributes.set_is_evex_instruction();
3628   int dst_enc = kdst->encoding();
3629   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3630   emit_int8(0x75);
3631   emit_operand(as_Register(dst_enc), src);
3632 }
3633 
3634 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3635 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3636   assert(VM_Version::supports_sse2(), "");
3637   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3638   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3639   emit_int8(0x76);
3640   emit_int8((unsigned char)(0xC0 | encode));
3641 }
3642 
3643 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3644 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3645   assert(VM_Version::supports_avx(), "");
3646   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3647   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3648   emit_int8(0x76);
3649   emit_int8((unsigned char)(0xC0 | encode));
3650 }
3651 
3652 // In this context, kdst is written the mask used to process the equal components
3653 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3654   assert(VM_Version::supports_evex(), "");
3655   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3656   attributes.set_is_evex_instruction();
3657   attributes.reset_is_clear_context();
3658   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3659   emit_int8(0x76);
3660   emit_int8((unsigned char)(0xC0 | encode));
3661 }
3662 
3663 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3664   assert(VM_Version::supports_evex(), "");
3665   InstructionMark im(this);
3666   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3667   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3668   attributes.reset_is_clear_context();
3669   attributes.set_is_evex_instruction();
3670   int dst_enc = kdst->encoding();
3671   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3672   emit_int8(0x76);
3673   emit_operand(as_Register(dst_enc), src);
3674 }
3675 
3676 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3677 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3678   assert(VM_Version::supports_sse4_1(), "");
3679   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3680   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3681   emit_int8(0x29);
3682   emit_int8((unsigned char)(0xC0 | encode));
3683 }
3684 
3685 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3686 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3687   assert(VM_Version::supports_avx(), "");
3688   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3689   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3690   emit_int8(0x29);
3691   emit_int8((unsigned char)(0xC0 | encode));
3692 }
3693 
3694 // In this context, kdst is written the mask used to process the equal components
3695 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3696   assert(VM_Version::supports_evex(), "");
3697   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3698   attributes.reset_is_clear_context();
3699   attributes.set_is_evex_instruction();
3700   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3701   emit_int8(0x29);
3702   emit_int8((unsigned char)(0xC0 | encode));
3703 }
3704 
3705 // In this context, kdst is written the mask used to process the equal components
3706 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3707   assert(VM_Version::supports_evex(), "");
3708   InstructionMark im(this);
3709   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3710   attributes.reset_is_clear_context();
3711   attributes.set_is_evex_instruction();
3712   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3713   int dst_enc = kdst->encoding();
3714   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3715   emit_int8(0x29);
3716   emit_operand(as_Register(dst_enc), src);
3717 }
3718 
3719 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3720   assert(VM_Version::supports_sse2(), "");
3721   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3722   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3723   emit_int8((unsigned char)0xD7);
3724   emit_int8((unsigned char)(0xC0 | encode));
3725 }
3726 
3727 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3728   assert(VM_Version::supports_avx2(), "");
3729   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3730   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3731   emit_int8((unsigned char)0xD7);
3732   emit_int8((unsigned char)(0xC0 | encode));
3733 }
3734 
3735 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3736   assert(VM_Version::supports_sse4_1(), "");
3737   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3738   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3739   emit_int8(0x16);
3740   emit_int8((unsigned char)(0xC0 | encode));
3741   emit_int8(imm8);
3742 }
3743 
3744 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3745   assert(VM_Version::supports_sse4_1(), "");
3746   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3747   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3748   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3749   emit_int8(0x16);
3750   emit_operand(src, dst);
3751   emit_int8(imm8);
3752 }
3753 
3754 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3755   assert(VM_Version::supports_sse4_1(), "");
3756   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3757   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3758   emit_int8(0x16);
3759   emit_int8((unsigned char)(0xC0 | encode));
3760   emit_int8(imm8);
3761 }
3762 
3763 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3764   assert(VM_Version::supports_sse4_1(), "");
3765   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3766   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3767   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3768   emit_int8(0x16);
3769   emit_operand(src, dst);
3770   emit_int8(imm8);
3771 }
3772 
3773 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3774   assert(VM_Version::supports_sse2(), "");
3775   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3776   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3777   emit_int8((unsigned char)0xC5);
3778   emit_int8((unsigned char)(0xC0 | encode));
3779   emit_int8(imm8);
3780 }
3781 
3782 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3783   assert(VM_Version::supports_sse4_1(), "");
3784   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3785   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3786   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3787   emit_int8((unsigned char)0x15);
3788   emit_operand(src, dst);
3789   emit_int8(imm8);
3790 }
3791 
3792 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3793   assert(VM_Version::supports_sse4_1(), "");
3794   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3795   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3796   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3797   emit_int8(0x14);
3798   emit_operand(src, dst);
3799   emit_int8(imm8);
3800 }
3801 
3802 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3803   assert(VM_Version::supports_sse4_1(), "");
3804   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3805   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3806   emit_int8(0x22);
3807   emit_int8((unsigned char)(0xC0 | encode));
3808   emit_int8(imm8);
3809 }
3810 
3811 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3812   assert(VM_Version::supports_sse4_1(), "");
3813   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3814   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3815   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3816   emit_int8(0x22);
3817   emit_operand(dst,src);
3818   emit_int8(imm8);
3819 }
3820 
3821 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3822   assert(VM_Version::supports_sse4_1(), "");
3823   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3824   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3825   emit_int8(0x22);
3826   emit_int8((unsigned char)(0xC0 | encode));
3827   emit_int8(imm8);
3828 }
3829 
3830 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3831   assert(VM_Version::supports_sse4_1(), "");
3832   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3833   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3834   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3835   emit_int8(0x22);
3836   emit_operand(dst, src);
3837   emit_int8(imm8);
3838 }
3839 
3840 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3841   assert(VM_Version::supports_sse2(), "");
3842   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3843   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3844   emit_int8((unsigned char)0xC4);
3845   emit_int8((unsigned char)(0xC0 | encode));
3846   emit_int8(imm8);
3847 }
3848 
3849 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3850   assert(VM_Version::supports_sse2(), "");
3851   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3852   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3853   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3854   emit_int8((unsigned char)0xC4);
3855   emit_operand(dst, src);
3856   emit_int8(imm8);
3857 }
3858 
3859 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3860   assert(VM_Version::supports_sse4_1(), "");
3861   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3862   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3863   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3864   emit_int8(0x20);
3865   emit_operand(dst, src);
3866   emit_int8(imm8);
3867 }
3868 
3869 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3870   assert(VM_Version::supports_sse4_1(), "");
3871   InstructionMark im(this);
3872   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3873   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3874   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3875   emit_int8(0x30);
3876   emit_operand(dst, src);
3877 }
3878 
3879 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3880   assert(VM_Version::supports_sse4_1(), "");
3881   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3882   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3883   emit_int8(0x30);
3884   emit_int8((unsigned char)(0xC0 | encode));
3885 }
3886 
3887 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3888   assert(VM_Version::supports_avx(), "");
3889   InstructionMark im(this);
3890   assert(dst != xnoreg, "sanity");
3891   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3892   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3893   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3894   emit_int8(0x30);
3895   emit_operand(dst, src);
3896 }
3897 
3898 void Assembler::vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) {
3899   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3900   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3901   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
3902   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3903   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3904   emit_int8(0x30);
3905   emit_int8((unsigned char) (0xC0 | encode));
3906 }
3907 
3908 
3909 void Assembler::evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
3910   assert(VM_Version::supports_avx512vlbw(), "");
3911   assert(dst != xnoreg, "sanity");
3912   InstructionMark im(this);
3913   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3914   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3915   attributes.set_embedded_opmask_register_specifier(mask);
3916   attributes.set_is_evex_instruction();
3917   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3918   emit_int8(0x30);
3919   emit_operand(dst, src);
3920 }
3921 void Assembler::evpmovwb(Address dst, XMMRegister src, int vector_len) {
3922   assert(VM_Version::supports_avx512vlbw(), "");
3923   assert(src != xnoreg, "sanity");
3924   InstructionMark im(this);
3925   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3926   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3927   attributes.set_is_evex_instruction();
3928   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3929   emit_int8(0x30);
3930   emit_operand(src, dst);
3931 }
3932 
3933 void Assembler::evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len) {
3934   assert(VM_Version::supports_avx512vlbw(), "");
3935   assert(src != xnoreg, "sanity");
3936   InstructionMark im(this);
3937   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3938   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3939   attributes.reset_is_clear_context();
3940   attributes.set_embedded_opmask_register_specifier(mask);
3941   attributes.set_is_evex_instruction();
3942   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3943   emit_int8(0x30);
3944   emit_operand(src, dst);
3945 }
3946 
3947 void Assembler::evpmovdb(Address dst, XMMRegister src, int vector_len) {
3948   assert(VM_Version::supports_evex(), "");
3949   assert(src != xnoreg, "sanity");
3950   InstructionMark im(this);
3951   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3952   attributes.set_address_attributes(/* tuple_type */ EVEX_QVM, /* input_size_in_bits */ EVEX_NObit);
3953   attributes.set_is_evex_instruction();
3954   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3955   emit_int8(0x31);
3956   emit_operand(src, dst);
3957 }
3958 
3959 void Assembler::vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len) {
3960   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3961   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3962   vector_len == AVX_512bit? VM_Version::supports_evex() : 0, " ");
3963   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3964   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3965   emit_int8(0x33);
3966   emit_int8((unsigned char)(0xC0 | encode));
3967 }
3968 
3969 void Assembler::pmaddwd(XMMRegister dst, XMMRegister src) {
3970   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3971   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3972   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3973   emit_int8((unsigned char)0xF5);
3974   emit_int8((unsigned char)(0xC0 | encode));
3975 }
3976 
3977 void Assembler::vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3978   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
3979     (vector_len == AVX_256bit ? VM_Version::supports_avx2() :
3980     (vector_len == AVX_512bit ? VM_Version::supports_evex() : 0)), "");
3981   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3982   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3983   emit_int8((unsigned char)0xF5);
3984   emit_int8((unsigned char)(0xC0 | encode));
3985 }
3986 
3987 void Assembler::evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3988   assert(VM_Version::supports_evex(), "");
3989   assert(VM_Version::supports_vnni(), "must support vnni");
3990   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3991   attributes.set_is_evex_instruction();
3992   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3993   emit_int8(0x52);
3994   emit_int8((unsigned char)(0xC0 | encode));
3995 }
3996 
3997 // generic
3998 void Assembler::pop(Register dst) {
3999   int encode = prefix_and_encode(dst->encoding());
4000   emit_int8(0x58 | encode);
4001 }
4002 
4003 void Assembler::popcntl(Register dst, Address src) {
4004   assert(VM_Version::supports_popcnt(), "must support");
4005   InstructionMark im(this);
4006   emit_int8((unsigned char)0xF3);
4007   prefix(src, dst);
4008   emit_int8(0x0F);
4009   emit_int8((unsigned char)0xB8);
4010   emit_operand(dst, src);
4011 }
4012 
4013 void Assembler::popcntl(Register dst, Register src) {
4014   assert(VM_Version::supports_popcnt(), "must support");
4015   emit_int8((unsigned char)0xF3);
4016   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4017   emit_int8(0x0F);
4018   emit_int8((unsigned char)0xB8);
4019   emit_int8((unsigned char)(0xC0 | encode));
4020 }
4021 
4022 void Assembler::vpopcntd(XMMRegister dst, XMMRegister src, int vector_len) {
4023   assert(VM_Version::supports_vpopcntdq(), "must support vpopcntdq feature");
4024   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4025   attributes.set_is_evex_instruction();
4026   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4027   emit_int8(0x55);
4028   emit_int8((unsigned char)(0xC0 | encode));
4029 }
4030 
4031 void Assembler::popf() {
4032   emit_int8((unsigned char)0x9D);
4033 }
4034 
4035 #ifndef _LP64 // no 32bit push/pop on amd64
4036 void Assembler::popl(Address dst) {
4037   // NOTE: this will adjust stack by 8byte on 64bits
4038   InstructionMark im(this);
4039   prefix(dst);
4040   emit_int8((unsigned char)0x8F);
4041   emit_operand(rax, dst);
4042 }
4043 #endif
4044 
4045 void Assembler::prefetch_prefix(Address src) {
4046   prefix(src);
4047   emit_int8(0x0F);
4048 }
4049 
4050 void Assembler::prefetchnta(Address src) {
4051   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4052   InstructionMark im(this);
4053   prefetch_prefix(src);
4054   emit_int8(0x18);
4055   emit_operand(rax, src); // 0, src
4056 }
4057 
4058 void Assembler::prefetchr(Address src) {
4059   assert(VM_Version::supports_3dnow_prefetch(), "must support");
4060   InstructionMark im(this);
4061   prefetch_prefix(src);
4062   emit_int8(0x0D);
4063   emit_operand(rax, src); // 0, src
4064 }
4065 
4066 void Assembler::prefetcht0(Address src) {
4067   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4068   InstructionMark im(this);
4069   prefetch_prefix(src);
4070   emit_int8(0x18);
4071   emit_operand(rcx, src); // 1, src
4072 }
4073 
4074 void Assembler::prefetcht1(Address src) {
4075   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4076   InstructionMark im(this);
4077   prefetch_prefix(src);
4078   emit_int8(0x18);
4079   emit_operand(rdx, src); // 2, src
4080 }
4081 
4082 void Assembler::prefetcht2(Address src) {
4083   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4084   InstructionMark im(this);
4085   prefetch_prefix(src);
4086   emit_int8(0x18);
4087   emit_operand(rbx, src); // 3, src
4088 }
4089 
4090 void Assembler::prefetchw(Address src) {
4091   assert(VM_Version::supports_3dnow_prefetch(), "must support");
4092   InstructionMark im(this);
4093   prefetch_prefix(src);
4094   emit_int8(0x0D);
4095   emit_operand(rcx, src); // 1, src
4096 }
4097 
4098 void Assembler::prefix(Prefix p) {
4099   emit_int8(p);
4100 }
4101 
4102 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
4103   assert(VM_Version::supports_ssse3(), "");
4104   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4105   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4106   emit_int8(0x00);
4107   emit_int8((unsigned char)(0xC0 | encode));
4108 }
4109 
4110 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4111   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4112          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4113          0, "");
4114   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4115   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4116   emit_int8(0x00);
4117   emit_int8((unsigned char)(0xC0 | encode));
4118 }
4119 
4120 void Assembler::pshufb(XMMRegister dst, Address src) {
4121   assert(VM_Version::supports_ssse3(), "");
4122   InstructionMark im(this);
4123   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4124   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4125   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4126   emit_int8(0x00);
4127   emit_operand(dst, src);
4128 }
4129 
4130 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
4131   assert(isByte(mode), "invalid value");
4132   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4133   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
4134   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4135   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4136   emit_int8(0x70);
4137   emit_int8((unsigned char)(0xC0 | encode));
4138   emit_int8(mode & 0xFF);
4139 }
4140 
4141 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
4142   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4143          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4144          0, "");
4145   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4146   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4147   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4148   emit_int8(0x70);
4149   emit_int8((unsigned char)(0xC0 | encode));
4150   emit_int8(mode & 0xFF);
4151 }
4152 
4153 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
4154   assert(isByte(mode), "invalid value");
4155   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4156   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4157   InstructionMark im(this);
4158   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4159   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4160   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4161   emit_int8(0x70);
4162   emit_operand(dst, src);
4163   emit_int8(mode & 0xFF);
4164 }
4165 
4166 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4167   assert(isByte(mode), "invalid value");
4168   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4169   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4170   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4171   emit_int8(0x70);
4172   emit_int8((unsigned char)(0xC0 | encode));
4173   emit_int8(mode & 0xFF);
4174 }
4175 
4176 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
4177   assert(isByte(mode), "invalid value");
4178   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4179   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4180   InstructionMark im(this);
4181   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4182   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4183   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4184   emit_int8(0x70);
4185   emit_operand(dst, src);
4186   emit_int8(mode & 0xFF);
4187 }
4188 void Assembler::evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4189   assert(VM_Version::supports_evex(), "requires EVEX support");
4190   assert(vector_len == Assembler::AVX_256bit || vector_len == Assembler::AVX_512bit, "");
4191   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4192   attributes.set_is_evex_instruction();
4193   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4194   emit_int8(0x43);
4195   emit_int8((unsigned char)(0xC0 | encode));
4196   emit_int8(imm8 & 0xFF);
4197 }
4198 
4199 void Assembler::psrldq(XMMRegister dst, int shift) {
4200   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4201   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4202   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4203   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4204   emit_int8(0x73);
4205   emit_int8((unsigned char)(0xC0 | encode));
4206   emit_int8(shift);
4207 }
4208 
4209 void Assembler::vpsrldq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4210   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4211          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4212          vector_len == AVX_512bit ? VM_Version::supports_avx512bw() : 0, "");
4213   InstructionAttr attributes(vector_len, /*vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4214   int encode = vex_prefix_and_encode(xmm3->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4215   emit_int8(0x73);
4216   emit_int8((unsigned char)(0xC0 | encode));
4217   emit_int8(shift & 0xFF);
4218 }
4219 
4220 void Assembler::pslldq(XMMRegister dst, int shift) {
4221   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4222   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4223   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4224   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
4225   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4226   emit_int8(0x73);
4227   emit_int8((unsigned char)(0xC0 | encode));
4228   emit_int8(shift);
4229 }
4230 
4231 void Assembler::vpslldq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4232   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4233          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4234          vector_len == AVX_512bit ? VM_Version::supports_avx512bw() : 0, "");
4235   InstructionAttr attributes(vector_len, /*vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4236   int encode = vex_prefix_and_encode(xmm7->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4237   emit_int8(0x73);
4238   emit_int8((unsigned char)(0xC0 | encode));
4239   emit_int8(shift & 0xFF);
4240 }
4241 
4242 void Assembler::ptest(XMMRegister dst, Address src) {
4243   assert(VM_Version::supports_sse4_1(), "");
4244   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4245   InstructionMark im(this);
4246   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4247   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4248   emit_int8(0x17);
4249   emit_operand(dst, src);
4250 }
4251 
4252 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
4253   assert(VM_Version::supports_sse4_1() || VM_Version::supports_avx(), "");
4254   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4255   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4256   emit_int8(0x17);
4257   emit_int8((unsigned char)(0xC0 | encode));
4258 }
4259 
4260 void Assembler::vptest(XMMRegister dst, Address src) {
4261   assert(VM_Version::supports_avx(), "");
4262   InstructionMark im(this);
4263   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4264   assert(dst != xnoreg, "sanity");
4265   // swap src<->dst for encoding
4266   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4267   emit_int8(0x17);
4268   emit_operand(dst, src);
4269 }
4270 
4271 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
4272   assert(VM_Version::supports_avx(), "");
4273   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4274   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4275   emit_int8(0x17);
4276   emit_int8((unsigned char)(0xC0 | encode));
4277 }
4278 
4279 void Assembler::punpcklbw(XMMRegister dst, Address src) {
4280   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4281   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4282   InstructionMark im(this);
4283   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ true, /* uses_vl */ true);
4284   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4285   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4286   emit_int8(0x60);
4287   emit_operand(dst, src);
4288 }
4289 
4290 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4291   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4292   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ true, /* uses_vl */ true);
4293   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4294   emit_int8(0x60);
4295   emit_int8((unsigned char)(0xC0 | encode));
4296 }
4297 
4298 void Assembler::punpckldq(XMMRegister dst, Address src) {
4299   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4300   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4301   InstructionMark im(this);
4302   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4303   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4304   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4305   emit_int8(0x62);
4306   emit_operand(dst, src);
4307 }
4308 
4309 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
4310   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4311   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4312   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4313   emit_int8(0x62);
4314   emit_int8((unsigned char)(0xC0 | encode));
4315 }
4316 
4317 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
4318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4319   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4320   attributes.set_rex_vex_w_reverted();
4321   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4322   emit_int8(0x6C);
4323   emit_int8((unsigned char)(0xC0 | encode));
4324 }
4325 
4326 void Assembler::push(int32_t imm32) {
4327   // in 64bits we push 64bits onto the stack but only
4328   // take a 32bit immediate
4329   emit_int8(0x68);
4330   emit_int32(imm32);
4331 }
4332 
4333 void Assembler::push(Register src) {
4334   int encode = prefix_and_encode(src->encoding());
4335 
4336   emit_int8(0x50 | encode);
4337 }
4338 
4339 void Assembler::pushf() {
4340   emit_int8((unsigned char)0x9C);
4341 }
4342 
4343 #ifndef _LP64 // no 32bit push/pop on amd64
4344 void Assembler::pushl(Address src) {
4345   // Note this will push 64bit on 64bit
4346   InstructionMark im(this);
4347   prefix(src);
4348   emit_int8((unsigned char)0xFF);
4349   emit_operand(rsi, src);
4350 }
4351 #endif
4352 
4353 void Assembler::rcll(Register dst, int imm8) {
4354   assert(isShiftCount(imm8), "illegal shift count");
4355   int encode = prefix_and_encode(dst->encoding());
4356   if (imm8 == 1) {
4357     emit_int8((unsigned char)0xD1);
4358     emit_int8((unsigned char)(0xD0 | encode));
4359   } else {
4360     emit_int8((unsigned char)0xC1);
4361     emit_int8((unsigned char)0xD0 | encode);
4362     emit_int8(imm8);
4363   }
4364 }
4365 
4366 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
4367   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4368   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4369   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4370   emit_int8(0x53);
4371   emit_int8((unsigned char)(0xC0 | encode));
4372 }
4373 
4374 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
4375   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4376   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4377   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4378   emit_int8(0x53);
4379   emit_int8((unsigned char)(0xC0 | encode));
4380 }
4381 
4382 void Assembler::rdtsc() {
4383   emit_int8((unsigned char)0x0F);
4384   emit_int8((unsigned char)0x31);
4385 }
4386 
4387 // copies data from [esi] to [edi] using rcx pointer sized words
4388 // generic
4389 void Assembler::rep_mov() {
4390   emit_int8((unsigned char)0xF3);
4391   // MOVSQ
4392   LP64_ONLY(prefix(REX_W));
4393   emit_int8((unsigned char)0xA5);
4394 }
4395 
4396 // sets rcx bytes with rax, value at [edi]
4397 void Assembler::rep_stosb() {
4398   emit_int8((unsigned char)0xF3); // REP
4399   LP64_ONLY(prefix(REX_W));
4400   emit_int8((unsigned char)0xAA); // STOSB
4401 }
4402 
4403 // sets rcx pointer sized words with rax, value at [edi]
4404 // generic
4405 void Assembler::rep_stos() {
4406   emit_int8((unsigned char)0xF3); // REP
4407   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
4408   emit_int8((unsigned char)0xAB);
4409 }
4410 
4411 // scans rcx pointer sized words at [edi] for occurance of rax,
4412 // generic
4413 void Assembler::repne_scan() { // repne_scan
4414   emit_int8((unsigned char)0xF2);
4415   // SCASQ
4416   LP64_ONLY(prefix(REX_W));
4417   emit_int8((unsigned char)0xAF);
4418 }
4419 
4420 #ifdef _LP64
4421 // scans rcx 4 byte words at [edi] for occurance of rax,
4422 // generic
4423 void Assembler::repne_scanl() { // repne_scan
4424   emit_int8((unsigned char)0xF2);
4425   // SCASL
4426   emit_int8((unsigned char)0xAF);
4427 }
4428 #endif
4429 
4430 void Assembler::ret(int imm16) {
4431   if (imm16 == 0) {
4432     emit_int8((unsigned char)0xC3);
4433   } else {
4434     emit_int8((unsigned char)0xC2);
4435     emit_int16(imm16);
4436   }
4437 }
4438 
4439 void Assembler::sahf() {
4440 #ifdef _LP64
4441   // Not supported in 64bit mode
4442   ShouldNotReachHere();
4443 #endif
4444   emit_int8((unsigned char)0x9E);
4445 }
4446 
4447 void Assembler::sarl(Register dst, int imm8) {
4448   int encode = prefix_and_encode(dst->encoding());
4449   assert(isShiftCount(imm8), "illegal shift count");
4450   if (imm8 == 1) {
4451     emit_int8((unsigned char)0xD1);
4452     emit_int8((unsigned char)(0xF8 | encode));
4453   } else {
4454     emit_int8((unsigned char)0xC1);
4455     emit_int8((unsigned char)(0xF8 | encode));
4456     emit_int8(imm8);
4457   }
4458 }
4459 
4460 void Assembler::sarl(Register dst) {
4461   int encode = prefix_and_encode(dst->encoding());
4462   emit_int8((unsigned char)0xD3);
4463   emit_int8((unsigned char)(0xF8 | encode));
4464 }
4465 
4466 void Assembler::sbbl(Address dst, int32_t imm32) {
4467   InstructionMark im(this);
4468   prefix(dst);
4469   emit_arith_operand(0x81, rbx, dst, imm32);
4470 }
4471 
4472 void Assembler::sbbl(Register dst, int32_t imm32) {
4473   prefix(dst);
4474   emit_arith(0x81, 0xD8, dst, imm32);
4475 }
4476 
4477 
4478 void Assembler::sbbl(Register dst, Address src) {
4479   InstructionMark im(this);
4480   prefix(src, dst);
4481   emit_int8(0x1B);
4482   emit_operand(dst, src);
4483 }
4484 
4485 void Assembler::sbbl(Register dst, Register src) {
4486   (void) prefix_and_encode(dst->encoding(), src->encoding());
4487   emit_arith(0x1B, 0xC0, dst, src);
4488 }
4489 
4490 void Assembler::setb(Condition cc, Register dst) {
4491   assert(0 <= cc && cc < 16, "illegal cc");
4492   int encode = prefix_and_encode(dst->encoding(), true);
4493   emit_int8(0x0F);
4494   emit_int8((unsigned char)0x90 | cc);
4495   emit_int8((unsigned char)(0xC0 | encode));
4496 }
4497 
4498 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4499   assert(VM_Version::supports_ssse3(), "");
4500   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4501   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4502   emit_int8((unsigned char)0x0F);
4503   emit_int8((unsigned char)(0xC0 | encode));
4504   emit_int8(imm8);
4505 }
4506 
4507 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4508   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4509          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4510          0, "");
4511   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4512   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4513   emit_int8((unsigned char)0x0F);
4514   emit_int8((unsigned char)(0xC0 | encode));
4515   emit_int8(imm8);
4516 }
4517 
4518 void Assembler::evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
4519   assert(VM_Version::supports_evex(), "");
4520   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4521   attributes.set_is_evex_instruction();
4522   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4523   emit_int8(0x3);
4524   emit_int8((unsigned char)(0xC0 | encode));
4525   emit_int8(imm8);
4526 }
4527 
4528 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4529   assert(VM_Version::supports_sse4_1(), "");
4530   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4531   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4532   emit_int8((unsigned char)0x0E);
4533   emit_int8((unsigned char)(0xC0 | encode));
4534   emit_int8(imm8);
4535 }
4536 
4537 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4538   assert(VM_Version::supports_sha(), "");
4539   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_3A, /* rex_w */ false);
4540   emit_int8((unsigned char)0xCC);
4541   emit_int8((unsigned char)(0xC0 | encode));
4542   emit_int8((unsigned char)imm8);
4543 }
4544 
4545 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4546   assert(VM_Version::supports_sha(), "");
4547   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4548   emit_int8((unsigned char)0xC8);
4549   emit_int8((unsigned char)(0xC0 | encode));
4550 }
4551 
4552 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4553   assert(VM_Version::supports_sha(), "");
4554   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4555   emit_int8((unsigned char)0xC9);
4556   emit_int8((unsigned char)(0xC0 | encode));
4557 }
4558 
4559 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4560   assert(VM_Version::supports_sha(), "");
4561   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4562   emit_int8((unsigned char)0xCA);
4563   emit_int8((unsigned char)(0xC0 | encode));
4564 }
4565 
4566 // xmm0 is implicit additional source to this instruction.
4567 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4568   assert(VM_Version::supports_sha(), "");
4569   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4570   emit_int8((unsigned char)0xCB);
4571   emit_int8((unsigned char)(0xC0 | encode));
4572 }
4573 
4574 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4575   assert(VM_Version::supports_sha(), "");
4576   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4577   emit_int8((unsigned char)0xCC);
4578   emit_int8((unsigned char)(0xC0 | encode));
4579 }
4580 
4581 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4582   assert(VM_Version::supports_sha(), "");
4583   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4584   emit_int8((unsigned char)0xCD);
4585   emit_int8((unsigned char)(0xC0 | encode));
4586 }
4587 
4588 
4589 void Assembler::shll(Register dst, int imm8) {
4590   assert(isShiftCount(imm8), "illegal shift count");
4591   int encode = prefix_and_encode(dst->encoding());
4592   if (imm8 == 1 ) {
4593     emit_int8((unsigned char)0xD1);
4594     emit_int8((unsigned char)(0xE0 | encode));
4595   } else {
4596     emit_int8((unsigned char)0xC1);
4597     emit_int8((unsigned char)(0xE0 | encode));
4598     emit_int8(imm8);
4599   }
4600 }
4601 
4602 void Assembler::shll(Register dst) {
4603   int encode = prefix_and_encode(dst->encoding());
4604   emit_int8((unsigned char)0xD3);
4605   emit_int8((unsigned char)(0xE0 | encode));
4606 }
4607 
4608 void Assembler::shrl(Register dst, int imm8) {
4609   assert(isShiftCount(imm8), "illegal shift count");
4610   int encode = prefix_and_encode(dst->encoding());
4611   emit_int8((unsigned char)0xC1);
4612   emit_int8((unsigned char)(0xE8 | encode));
4613   emit_int8(imm8);
4614 }
4615 
4616 void Assembler::shrl(Register dst) {
4617   int encode = prefix_and_encode(dst->encoding());
4618   emit_int8((unsigned char)0xD3);
4619   emit_int8((unsigned char)(0xE8 | encode));
4620 }
4621 
4622 // copies a single word from [esi] to [edi]
4623 void Assembler::smovl() {
4624   emit_int8((unsigned char)0xA5);
4625 }
4626 
4627 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4628   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4629   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4630   attributes.set_rex_vex_w_reverted();
4631   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4632   emit_int8(0x51);
4633   emit_int8((unsigned char)(0xC0 | encode));
4634 }
4635 
4636 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4637   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4638   InstructionMark im(this);
4639   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4640   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4641   attributes.set_rex_vex_w_reverted();
4642   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4643   emit_int8(0x51);
4644   emit_operand(dst, src);
4645 }
4646 
4647 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4648   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4649   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4650   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4651   emit_int8(0x51);
4652   emit_int8((unsigned char)(0xC0 | encode));
4653 }
4654 
4655 void Assembler::std() {
4656   emit_int8((unsigned char)0xFD);
4657 }
4658 
4659 void Assembler::sqrtss(XMMRegister dst, Address src) {
4660   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4661   InstructionMark im(this);
4662   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4663   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4664   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4665   emit_int8(0x51);
4666   emit_operand(dst, src);
4667 }
4668 
4669 void Assembler::stmxcsr( Address dst) {
4670   if (UseAVX > 0 ) {
4671     assert(VM_Version::supports_avx(), "");
4672     InstructionMark im(this);
4673     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4674     vex_prefix(dst, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4675     emit_int8((unsigned char)0xAE);
4676     emit_operand(as_Register(3), dst);
4677   } else {
4678     NOT_LP64(assert(VM_Version::supports_sse(), ""));
4679     InstructionMark im(this);
4680     prefix(dst);
4681     emit_int8(0x0F);
4682     emit_int8((unsigned char)0xAE);
4683     emit_operand(as_Register(3), dst);
4684   }
4685 }
4686 
4687 void Assembler::subl(Address dst, int32_t imm32) {
4688   InstructionMark im(this);
4689   prefix(dst);
4690   emit_arith_operand(0x81, rbp, dst, imm32);
4691 }
4692 
4693 void Assembler::subl(Address dst, Register src) {
4694   InstructionMark im(this);
4695   prefix(dst, src);
4696   emit_int8(0x29);
4697   emit_operand(src, dst);
4698 }
4699 
4700 void Assembler::subl(Register dst, int32_t imm32) {
4701   prefix(dst);
4702   emit_arith(0x81, 0xE8, dst, imm32);
4703 }
4704 
4705 // Force generation of a 4 byte immediate value even if it fits into 8bit
4706 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4707   prefix(dst);
4708   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4709 }
4710 
4711 void Assembler::subl(Register dst, Address src) {
4712   InstructionMark im(this);
4713   prefix(src, dst);
4714   emit_int8(0x2B);
4715   emit_operand(dst, src);
4716 }
4717 
4718 void Assembler::subl(Register dst, Register src) {
4719   (void) prefix_and_encode(dst->encoding(), src->encoding());
4720   emit_arith(0x2B, 0xC0, dst, src);
4721 }
4722 
4723 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4724   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4725   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4726   attributes.set_rex_vex_w_reverted();
4727   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4728   emit_int8(0x5C);
4729   emit_int8((unsigned char)(0xC0 | encode));
4730 }
4731 
4732 void Assembler::subsd(XMMRegister dst, Address src) {
4733   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4734   InstructionMark im(this);
4735   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4736   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4737   attributes.set_rex_vex_w_reverted();
4738   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4739   emit_int8(0x5C);
4740   emit_operand(dst, src);
4741 }
4742 
4743 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4744   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4745   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ false);
4746   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4747   emit_int8(0x5C);
4748   emit_int8((unsigned char)(0xC0 | encode));
4749 }
4750 
4751 void Assembler::subss(XMMRegister dst, Address src) {
4752   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4753   InstructionMark im(this);
4754   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4755   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4756   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4757   emit_int8(0x5C);
4758   emit_operand(dst, src);
4759 }
4760 
4761 void Assembler::testb(Register dst, int imm8) {
4762   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4763   (void) prefix_and_encode(dst->encoding(), true);
4764   emit_arith_b(0xF6, 0xC0, dst, imm8);
4765 }
4766 
4767 void Assembler::testb(Address dst, int imm8) {
4768   InstructionMark im(this);
4769   prefix(dst);
4770   emit_int8((unsigned char)0xF6);
4771   emit_operand(rax, dst, 1);
4772   emit_int8(imm8);
4773 }
4774 
4775 void Assembler::testl(Register dst, int32_t imm32) {
4776   // not using emit_arith because test
4777   // doesn't support sign-extension of
4778   // 8bit operands
4779   int encode = dst->encoding();
4780   if (encode == 0) {
4781     emit_int8((unsigned char)0xA9);
4782   } else {
4783     encode = prefix_and_encode(encode);
4784     emit_int8((unsigned char)0xF7);
4785     emit_int8((unsigned char)(0xC0 | encode));
4786   }
4787   emit_int32(imm32);
4788 }
4789 
4790 void Assembler::testl(Register dst, Register src) {
4791   (void) prefix_and_encode(dst->encoding(), src->encoding());
4792   emit_arith(0x85, 0xC0, dst, src);
4793 }
4794 
4795 void Assembler::testl(Register dst, Address src) {
4796   InstructionMark im(this);
4797   prefix(src, dst);
4798   emit_int8((unsigned char)0x85);
4799   emit_operand(dst, src);
4800 }
4801 
4802 void Assembler::tzcntl(Register dst, Register src) {
4803   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4804   emit_int8((unsigned char)0xF3);
4805   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4806   emit_int8(0x0F);
4807   emit_int8((unsigned char)0xBC);
4808   emit_int8((unsigned char)0xC0 | encode);
4809 }
4810 
4811 void Assembler::tzcntq(Register dst, Register src) {
4812   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4813   emit_int8((unsigned char)0xF3);
4814   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4815   emit_int8(0x0F);
4816   emit_int8((unsigned char)0xBC);
4817   emit_int8((unsigned char)(0xC0 | encode));
4818 }
4819 
4820 void Assembler::ucomisd(XMMRegister dst, Address src) {
4821   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4822   InstructionMark im(this);
4823   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4824   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4825   attributes.set_rex_vex_w_reverted();
4826   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4827   emit_int8(0x2E);
4828   emit_operand(dst, src);
4829 }
4830 
4831 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4832   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4833   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4834   attributes.set_rex_vex_w_reverted();
4835   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4836   emit_int8(0x2E);
4837   emit_int8((unsigned char)(0xC0 | encode));
4838 }
4839 
4840 void Assembler::ucomiss(XMMRegister dst, Address src) {
4841   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4842   InstructionMark im(this);
4843   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4844   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4845   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4846   emit_int8(0x2E);
4847   emit_operand(dst, src);
4848 }
4849 
4850 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4851   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4852   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4853   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4854   emit_int8(0x2E);
4855   emit_int8((unsigned char)(0xC0 | encode));
4856 }
4857 
4858 void Assembler::xabort(int8_t imm8) {
4859   emit_int8((unsigned char)0xC6);
4860   emit_int8((unsigned char)0xF8);
4861   emit_int8((unsigned char)(imm8 & 0xFF));
4862 }
4863 
4864 void Assembler::xaddb(Address dst, Register src) {
4865   InstructionMark im(this);
4866   prefix(dst, src, true);
4867   emit_int8(0x0F);
4868   emit_int8((unsigned char)0xC0);
4869   emit_operand(src, dst);
4870 }
4871 
4872 void Assembler::xaddw(Address dst, Register src) {
4873   InstructionMark im(this);
4874   emit_int8(0x66);
4875   prefix(dst, src);
4876   emit_int8(0x0F);
4877   emit_int8((unsigned char)0xC1);
4878   emit_operand(src, dst);
4879 }
4880 
4881 void Assembler::xaddl(Address dst, Register src) {
4882   InstructionMark im(this);
4883   prefix(dst, src);
4884   emit_int8(0x0F);
4885   emit_int8((unsigned char)0xC1);
4886   emit_operand(src, dst);
4887 }
4888 
4889 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4890   InstructionMark im(this);
4891   relocate(rtype);
4892   if (abort.is_bound()) {
4893     address entry = target(abort);
4894     assert(entry != NULL, "abort entry NULL");
4895     intptr_t offset = entry - pc();
4896     emit_int8((unsigned char)0xC7);
4897     emit_int8((unsigned char)0xF8);
4898     emit_int32(offset - 6); // 2 opcode + 4 address
4899   } else {
4900     abort.add_patch_at(code(), locator());
4901     emit_int8((unsigned char)0xC7);
4902     emit_int8((unsigned char)0xF8);
4903     emit_int32(0);
4904   }
4905 }
4906 
4907 void Assembler::xchgb(Register dst, Address src) { // xchg
4908   InstructionMark im(this);
4909   prefix(src, dst, true);
4910   emit_int8((unsigned char)0x86);
4911   emit_operand(dst, src);
4912 }
4913 
4914 void Assembler::xchgw(Register dst, Address src) { // xchg
4915   InstructionMark im(this);
4916   emit_int8(0x66);
4917   prefix(src, dst);
4918   emit_int8((unsigned char)0x87);
4919   emit_operand(dst, src);
4920 }
4921 
4922 void Assembler::xchgl(Register dst, Address src) { // xchg
4923   InstructionMark im(this);
4924   prefix(src, dst);
4925   emit_int8((unsigned char)0x87);
4926   emit_operand(dst, src);
4927 }
4928 
4929 void Assembler::xchgl(Register dst, Register src) {
4930   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4931   emit_int8((unsigned char)0x87);
4932   emit_int8((unsigned char)(0xC0 | encode));
4933 }
4934 
4935 void Assembler::xend() {
4936   emit_int8((unsigned char)0x0F);
4937   emit_int8((unsigned char)0x01);
4938   emit_int8((unsigned char)0xD5);
4939 }
4940 
4941 void Assembler::xgetbv() {
4942   emit_int8(0x0F);
4943   emit_int8(0x01);
4944   emit_int8((unsigned char)0xD0);
4945 }
4946 
4947 void Assembler::xorl(Register dst, int32_t imm32) {
4948   prefix(dst);
4949   emit_arith(0x81, 0xF0, dst, imm32);
4950 }
4951 
4952 void Assembler::xorl(Register dst, Address src) {
4953   InstructionMark im(this);
4954   prefix(src, dst);
4955   emit_int8(0x33);
4956   emit_operand(dst, src);
4957 }
4958 
4959 void Assembler::xorl(Register dst, Register src) {
4960   (void) prefix_and_encode(dst->encoding(), src->encoding());
4961   emit_arith(0x33, 0xC0, dst, src);
4962 }
4963 
4964 void Assembler::xorb(Register dst, Address src) {
4965   InstructionMark im(this);
4966   prefix(src, dst);
4967   emit_int8(0x32);
4968   emit_operand(dst, src);
4969 }
4970 
4971 // AVX 3-operands scalar float-point arithmetic instructions
4972 
4973 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4974   assert(VM_Version::supports_avx(), "");
4975   InstructionMark im(this);
4976   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4977   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4978   attributes.set_rex_vex_w_reverted();
4979   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4980   emit_int8(0x58);
4981   emit_operand(dst, src);
4982 }
4983 
4984 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4985   assert(VM_Version::supports_avx(), "");
4986   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4987   attributes.set_rex_vex_w_reverted();
4988   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4989   emit_int8(0x58);
4990   emit_int8((unsigned char)(0xC0 | encode));
4991 }
4992 
4993 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4994   assert(VM_Version::supports_avx(), "");
4995   InstructionMark im(this);
4996   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4997   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4998   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4999   emit_int8(0x58);
5000   emit_operand(dst, src);
5001 }
5002 
5003 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5004   assert(VM_Version::supports_avx(), "");
5005   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5006   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5007   emit_int8(0x58);
5008   emit_int8((unsigned char)(0xC0 | encode));
5009 }
5010 
5011 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
5012   assert(VM_Version::supports_avx(), "");
5013   InstructionMark im(this);
5014   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5015   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5016   attributes.set_rex_vex_w_reverted();
5017   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5018   emit_int8(0x5E);
5019   emit_operand(dst, src);
5020 }
5021 
5022 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5023   assert(VM_Version::supports_avx(), "");
5024   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5025   attributes.set_rex_vex_w_reverted();
5026   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5027   emit_int8(0x5E);
5028   emit_int8((unsigned char)(0xC0 | encode));
5029 }
5030 
5031 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
5032   assert(VM_Version::supports_avx(), "");
5033   InstructionMark im(this);
5034   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5035   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5036   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5037   emit_int8(0x5E);
5038   emit_operand(dst, src);
5039 }
5040 
5041 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5042   assert(VM_Version::supports_avx(), "");
5043   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5044   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5045   emit_int8(0x5E);
5046   emit_int8((unsigned char)(0xC0 | encode));
5047 }
5048 
5049 void Assembler::vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
5050   assert(VM_Version::supports_fma(), "");
5051   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5052   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5053   emit_int8((unsigned char)0xB9);
5054   emit_int8((unsigned char)(0xC0 | encode));
5055 }
5056 
5057 void Assembler::vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
5058   assert(VM_Version::supports_fma(), "");
5059   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5060   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5061   emit_int8((unsigned char)0xB9);
5062   emit_int8((unsigned char)(0xC0 | encode));
5063 }
5064 
5065 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
5066   assert(VM_Version::supports_avx(), "");
5067   InstructionMark im(this);
5068   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5069   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5070   attributes.set_rex_vex_w_reverted();
5071   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5072   emit_int8(0x59);
5073   emit_operand(dst, src);
5074 }
5075 
5076 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5077   assert(VM_Version::supports_avx(), "");
5078   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5079   attributes.set_rex_vex_w_reverted();
5080   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5081   emit_int8(0x59);
5082   emit_int8((unsigned char)(0xC0 | encode));
5083 }
5084 
5085 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
5086   assert(VM_Version::supports_avx(), "");
5087   InstructionMark im(this);
5088   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5089   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5090   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5091   emit_int8(0x59);
5092   emit_operand(dst, src);
5093 }
5094 
5095 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5096   assert(VM_Version::supports_avx(), "");
5097   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5098   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5099   emit_int8(0x59);
5100   emit_int8((unsigned char)(0xC0 | encode));
5101 }
5102 
5103 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
5104   assert(VM_Version::supports_avx(), "");
5105   InstructionMark im(this);
5106   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5107   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5108   attributes.set_rex_vex_w_reverted();
5109   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5110   emit_int8(0x5C);
5111   emit_operand(dst, src);
5112 }
5113 
5114 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5115   assert(VM_Version::supports_avx(), "");
5116   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5117   attributes.set_rex_vex_w_reverted();
5118   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5119   emit_int8(0x5C);
5120   emit_int8((unsigned char)(0xC0 | encode));
5121 }
5122 
5123 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
5124   assert(VM_Version::supports_avx(), "");
5125   InstructionMark im(this);
5126   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5127   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5128   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5129   emit_int8(0x5C);
5130   emit_operand(dst, src);
5131 }
5132 
5133 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5134   assert(VM_Version::supports_avx(), "");
5135   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5136   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5137   emit_int8(0x5C);
5138   emit_int8((unsigned char)(0xC0 | encode));
5139 }
5140 
5141 //====================VECTOR ARITHMETIC=====================================
5142 
5143 // Float-point vector arithmetic
5144 
5145 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
5146   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5147   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5148   attributes.set_rex_vex_w_reverted();
5149   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5150   emit_int8(0x58);
5151   emit_int8((unsigned char)(0xC0 | encode));
5152 }
5153 
5154 void Assembler::addpd(XMMRegister dst, Address src) {
5155   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5156   InstructionMark im(this);
5157   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5158   attributes.set_rex_vex_w_reverted();
5159   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5160   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5161   emit_int8(0x58);
5162   emit_operand(dst, src);
5163 }
5164 
5165 
5166 void Assembler::addps(XMMRegister dst, XMMRegister src) {
5167   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5168   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5169   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5170   emit_int8(0x58);
5171   emit_int8((unsigned char)(0xC0 | encode));
5172 }
5173 
5174 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5175   assert(VM_Version::supports_avx(), "");
5176   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5177   attributes.set_rex_vex_w_reverted();
5178   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5179   emit_int8(0x58);
5180   emit_int8((unsigned char)(0xC0 | encode));
5181 }
5182 
5183 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5184   assert(VM_Version::supports_avx(), "");
5185   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5186   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5187   emit_int8(0x58);
5188   emit_int8((unsigned char)(0xC0 | encode));
5189 }
5190 
5191 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5192   assert(VM_Version::supports_avx(), "");
5193   InstructionMark im(this);
5194   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5195   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5196   attributes.set_rex_vex_w_reverted();
5197   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5198   emit_int8(0x58);
5199   emit_operand(dst, src);
5200 }
5201 
5202 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5203   assert(VM_Version::supports_avx(), "");
5204   InstructionMark im(this);
5205   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5206   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5207   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5208   emit_int8(0x58);
5209   emit_operand(dst, src);
5210 }
5211 
5212 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
5213   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5214   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5215   attributes.set_rex_vex_w_reverted();
5216   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5217   emit_int8(0x5C);
5218   emit_int8((unsigned char)(0xC0 | encode));
5219 }
5220 
5221 void Assembler::subps(XMMRegister dst, XMMRegister src) {
5222   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5223   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5224   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5225   emit_int8(0x5C);
5226   emit_int8((unsigned char)(0xC0 | encode));
5227 }
5228 
5229 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5230   assert(VM_Version::supports_avx(), "");
5231   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5232   attributes.set_rex_vex_w_reverted();
5233   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5234   emit_int8(0x5C);
5235   emit_int8((unsigned char)(0xC0 | encode));
5236 }
5237 
5238 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5239   assert(VM_Version::supports_avx(), "");
5240   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5241   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5242   emit_int8(0x5C);
5243   emit_int8((unsigned char)(0xC0 | encode));
5244 }
5245 
5246 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5247   assert(VM_Version::supports_avx(), "");
5248   InstructionMark im(this);
5249   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5250   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5251   attributes.set_rex_vex_w_reverted();
5252   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5253   emit_int8(0x5C);
5254   emit_operand(dst, src);
5255 }
5256 
5257 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5258   assert(VM_Version::supports_avx(), "");
5259   InstructionMark im(this);
5260   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5261   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5262   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5263   emit_int8(0x5C);
5264   emit_operand(dst, src);
5265 }
5266 
5267 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
5268   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5269   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5270   attributes.set_rex_vex_w_reverted();
5271   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5272   emit_int8(0x59);
5273   emit_int8((unsigned char)(0xC0 | encode));
5274 }
5275 
5276 void Assembler::mulpd(XMMRegister dst, Address src) {
5277   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5278   InstructionMark im(this);
5279   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5280   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5281   attributes.set_rex_vex_w_reverted();
5282   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5283   emit_int8(0x59);
5284   emit_operand(dst, src);
5285 }
5286 
5287 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
5288   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5289   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5290   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5291   emit_int8(0x59);
5292   emit_int8((unsigned char)(0xC0 | encode));
5293 }
5294 
5295 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5296   assert(VM_Version::supports_avx(), "");
5297   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5298   attributes.set_rex_vex_w_reverted();
5299   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5300   emit_int8(0x59);
5301   emit_int8((unsigned char)(0xC0 | encode));
5302 }
5303 
5304 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5305   assert(VM_Version::supports_avx(), "");
5306   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5307   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5308   emit_int8(0x59);
5309   emit_int8((unsigned char)(0xC0 | encode));
5310 }
5311 
5312 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5313   assert(VM_Version::supports_avx(), "");
5314   InstructionMark im(this);
5315   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5316   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5317   attributes.set_rex_vex_w_reverted();
5318   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5319   emit_int8(0x59);
5320   emit_operand(dst, src);
5321 }
5322 
5323 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5324   assert(VM_Version::supports_avx(), "");
5325   InstructionMark im(this);
5326   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5327   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5328   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5329   emit_int8(0x59);
5330   emit_operand(dst, src);
5331 }
5332 
5333 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5334   assert(VM_Version::supports_fma(), "");
5335   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5336   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5337   emit_int8((unsigned char)0xB8);
5338   emit_int8((unsigned char)(0xC0 | encode));
5339 }
5340 
5341 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5342   assert(VM_Version::supports_fma(), "");
5343   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5344   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5345   emit_int8((unsigned char)0xB8);
5346   emit_int8((unsigned char)(0xC0 | encode));
5347 }
5348 
5349 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5350   assert(VM_Version::supports_fma(), "");
5351   InstructionMark im(this);
5352   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5353   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5354   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5355   emit_int8((unsigned char)0xB8);
5356   emit_operand(dst, src2);
5357 }
5358 
5359 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5360   assert(VM_Version::supports_fma(), "");
5361   InstructionMark im(this);
5362   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5363   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5364   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5365   emit_int8((unsigned char)0xB8);
5366   emit_operand(dst, src2);
5367 }
5368 
5369 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
5370   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5371   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5372   attributes.set_rex_vex_w_reverted();
5373   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5374   emit_int8(0x5E);
5375   emit_int8((unsigned char)(0xC0 | encode));
5376 }
5377 
5378 void Assembler::divps(XMMRegister dst, XMMRegister src) {
5379   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5380   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5381   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5382   emit_int8(0x5E);
5383   emit_int8((unsigned char)(0xC0 | encode));
5384 }
5385 
5386 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5387   assert(VM_Version::supports_avx(), "");
5388   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5389   attributes.set_rex_vex_w_reverted();
5390   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5391   emit_int8(0x5E);
5392   emit_int8((unsigned char)(0xC0 | encode));
5393 }
5394 
5395 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5396   assert(VM_Version::supports_avx(), "");
5397   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5398   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5399   emit_int8(0x5E);
5400   emit_int8((unsigned char)(0xC0 | encode));
5401 }
5402 
5403 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5404   assert(VM_Version::supports_avx(), "");
5405   InstructionMark im(this);
5406   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5407   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5408   attributes.set_rex_vex_w_reverted();
5409   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5410   emit_int8(0x5E);
5411   emit_operand(dst, src);
5412 }
5413 
5414 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5415   assert(VM_Version::supports_avx(), "");
5416   InstructionMark im(this);
5417   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5418   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5419   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5420   emit_int8(0x5E);
5421   emit_operand(dst, src);
5422 }
5423 
5424 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
5425   assert(VM_Version::supports_avx(), "");
5426   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5427   attributes.set_rex_vex_w_reverted();
5428   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5429   emit_int8(0x51);
5430   emit_int8((unsigned char)(0xC0 | encode));
5431 }
5432 
5433 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
5434   assert(VM_Version::supports_avx(), "");
5435   InstructionMark im(this);
5436   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5437   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5438   attributes.set_rex_vex_w_reverted();
5439   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5440   emit_int8(0x51);
5441   emit_operand(dst, src);
5442 }
5443 
5444 void Assembler::vsqrtps(XMMRegister dst, XMMRegister src, int vector_len) {
5445   assert(VM_Version::supports_avx(), "");
5446   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5447   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5448   emit_int8(0x51);
5449   emit_int8((unsigned char)(0xC0 | encode));
5450 }
5451 
5452 void Assembler::vsqrtps(XMMRegister dst, Address src, int vector_len) {
5453   assert(VM_Version::supports_avx(), "");
5454   InstructionMark im(this);
5455   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5456   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5457   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5458   emit_int8(0x51);
5459   emit_operand(dst, src);
5460 }
5461 
5462 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
5463   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5464   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5465   attributes.set_rex_vex_w_reverted();
5466   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5467   emit_int8(0x54);
5468   emit_int8((unsigned char)(0xC0 | encode));
5469 }
5470 
5471 void Assembler::andps(XMMRegister dst, XMMRegister src) {
5472   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5473   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5474   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5475   emit_int8(0x54);
5476   emit_int8((unsigned char)(0xC0 | encode));
5477 }
5478 
5479 void Assembler::andps(XMMRegister dst, Address src) {
5480   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5481   InstructionMark im(this);
5482   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5483   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5484   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5485   emit_int8(0x54);
5486   emit_operand(dst, src);
5487 }
5488 
5489 void Assembler::andpd(XMMRegister dst, Address src) {
5490   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5491   InstructionMark im(this);
5492   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5493   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5494   attributes.set_rex_vex_w_reverted();
5495   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5496   emit_int8(0x54);
5497   emit_operand(dst, src);
5498 }
5499 
5500 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5501   assert(VM_Version::supports_avx(), "");
5502   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5503   attributes.set_rex_vex_w_reverted();
5504   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5505   emit_int8(0x54);
5506   emit_int8((unsigned char)(0xC0 | encode));
5507 }
5508 
5509 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5510   assert(VM_Version::supports_avx(), "");
5511   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5512   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5513   emit_int8(0x54);
5514   emit_int8((unsigned char)(0xC0 | encode));
5515 }
5516 
5517 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5518   assert(VM_Version::supports_avx(), "");
5519   InstructionMark im(this);
5520   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5521   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5522   attributes.set_rex_vex_w_reverted();
5523   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5524   emit_int8(0x54);
5525   emit_operand(dst, src);
5526 }
5527 
5528 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5529   assert(VM_Version::supports_avx(), "");
5530   InstructionMark im(this);
5531   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5532   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5533   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5534   emit_int8(0x54);
5535   emit_operand(dst, src);
5536 }
5537 
5538 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
5539   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5540   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5541   attributes.set_rex_vex_w_reverted();
5542   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5543   emit_int8(0x15);
5544   emit_int8((unsigned char)(0xC0 | encode));
5545 }
5546 
5547 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
5548   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5549   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5550   attributes.set_rex_vex_w_reverted();
5551   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5552   emit_int8(0x14);
5553   emit_int8((unsigned char)(0xC0 | encode));
5554 }
5555 
5556 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
5557   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5558   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5559   attributes.set_rex_vex_w_reverted();
5560   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5561   emit_int8(0x57);
5562   emit_int8((unsigned char)(0xC0 | encode));
5563 }
5564 
5565 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
5566   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5567   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5568   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5569   emit_int8(0x57);
5570   emit_int8((unsigned char)(0xC0 | encode));
5571 }
5572 
5573 void Assembler::xorpd(XMMRegister dst, Address src) {
5574   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5575   InstructionMark im(this);
5576   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5577   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5578   attributes.set_rex_vex_w_reverted();
5579   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5580   emit_int8(0x57);
5581   emit_operand(dst, src);
5582 }
5583 
5584 void Assembler::xorps(XMMRegister dst, Address src) {
5585   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5586   InstructionMark im(this);
5587   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5588   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5589   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5590   emit_int8(0x57);
5591   emit_operand(dst, src);
5592 }
5593 
5594 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5595   assert(VM_Version::supports_avx(), "");
5596   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5597   attributes.set_rex_vex_w_reverted();
5598   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5599   emit_int8(0x57);
5600   emit_int8((unsigned char)(0xC0 | encode));
5601 }
5602 
5603 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5604   assert(VM_Version::supports_avx(), "");
5605   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5606   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5607   emit_int8(0x57);
5608   emit_int8((unsigned char)(0xC0 | encode));
5609 }
5610 
5611 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5612   assert(VM_Version::supports_avx(), "");
5613   InstructionMark im(this);
5614   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5615   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5616   attributes.set_rex_vex_w_reverted();
5617   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5618   emit_int8(0x57);
5619   emit_operand(dst, src);
5620 }
5621 
5622 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5623   assert(VM_Version::supports_avx(), "");
5624   InstructionMark im(this);
5625   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5626   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5627   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5628   emit_int8(0x57);
5629   emit_operand(dst, src);
5630 }
5631 
5632 // Integer vector arithmetic
5633 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5634   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5635          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5636   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5637   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5638   emit_int8(0x01);
5639   emit_int8((unsigned char)(0xC0 | encode));
5640 }
5641 
5642 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5643   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5644          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5645   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5646   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5647   emit_int8(0x02);
5648   emit_int8((unsigned char)(0xC0 | encode));
5649 }
5650 
5651 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5652   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5653   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5654   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5655   emit_int8((unsigned char)0xFC);
5656   emit_int8((unsigned char)(0xC0 | encode));
5657 }
5658 
5659 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5660   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5661   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5662   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5663   emit_int8((unsigned char)0xFD);
5664   emit_int8((unsigned char)(0xC0 | encode));
5665 }
5666 
5667 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5668   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5669   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5670   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5671   emit_int8((unsigned char)0xFE);
5672   emit_int8((unsigned char)(0xC0 | encode));
5673 }
5674 
5675 void Assembler::paddd(XMMRegister dst, Address src) {
5676   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5677   InstructionMark im(this);
5678   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5679   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5680   emit_int8((unsigned char)0xFE);
5681   emit_operand(dst, src);
5682 }
5683 
5684 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5685   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5686   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5687   attributes.set_rex_vex_w_reverted();
5688   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5689   emit_int8((unsigned char)0xD4);
5690   emit_int8((unsigned char)(0xC0 | encode));
5691 }
5692 
5693 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5694   assert(VM_Version::supports_sse3(), "");
5695   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5696   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5697   emit_int8(0x01);
5698   emit_int8((unsigned char)(0xC0 | encode));
5699 }
5700 
5701 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5702   assert(VM_Version::supports_sse3(), "");
5703   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5704   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5705   emit_int8(0x02);
5706   emit_int8((unsigned char)(0xC0 | encode));
5707 }
5708 
5709 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5710   assert(UseAVX > 0, "requires some form of AVX");
5711   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5712   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5713   emit_int8((unsigned char)0xFC);
5714   emit_int8((unsigned char)(0xC0 | encode));
5715 }
5716 
5717 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5718   assert(UseAVX > 0, "requires some form of AVX");
5719   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5720   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5721   emit_int8((unsigned char)0xFD);
5722   emit_int8((unsigned char)(0xC0 | encode));
5723 }
5724 
5725 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5726   assert(UseAVX > 0, "requires some form of AVX");
5727   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5728   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5729   emit_int8((unsigned char)0xFE);
5730   emit_int8((unsigned char)(0xC0 | encode));
5731 }
5732 
5733 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5734   assert(UseAVX > 0, "requires some form of AVX");
5735   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5736   attributes.set_rex_vex_w_reverted();
5737   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5738   emit_int8((unsigned char)0xD4);
5739   emit_int8((unsigned char)(0xC0 | encode));
5740 }
5741 
5742 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5743   assert(UseAVX > 0, "requires some form of AVX");
5744   InstructionMark im(this);
5745   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5746   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5747   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5748   emit_int8((unsigned char)0xFC);
5749   emit_operand(dst, src);
5750 }
5751 
5752 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5753   assert(UseAVX > 0, "requires some form of AVX");
5754   InstructionMark im(this);
5755   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5756   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5757   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5758   emit_int8((unsigned char)0xFD);
5759   emit_operand(dst, src);
5760 }
5761 
5762 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5763   assert(UseAVX > 0, "requires some form of AVX");
5764   InstructionMark im(this);
5765   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5766   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5767   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5768   emit_int8((unsigned char)0xFE);
5769   emit_operand(dst, src);
5770 }
5771 
5772 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5773   assert(UseAVX > 0, "requires some form of AVX");
5774   InstructionMark im(this);
5775   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5776   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5777   attributes.set_rex_vex_w_reverted();
5778   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5779   emit_int8((unsigned char)0xD4);
5780   emit_operand(dst, src);
5781 }
5782 
5783 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5784   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5785   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5786   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5787   emit_int8((unsigned char)0xF8);
5788   emit_int8((unsigned char)(0xC0 | encode));
5789 }
5790 
5791 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5792   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5793   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5794   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5795   emit_int8((unsigned char)0xF9);
5796   emit_int8((unsigned char)(0xC0 | encode));
5797 }
5798 
5799 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5800   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5801   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5802   emit_int8((unsigned char)0xFA);
5803   emit_int8((unsigned char)(0xC0 | encode));
5804 }
5805 
5806 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5807   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5808   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5809   attributes.set_rex_vex_w_reverted();
5810   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5811   emit_int8((unsigned char)0xFB);
5812   emit_int8((unsigned char)(0xC0 | encode));
5813 }
5814 
5815 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5816   assert(UseAVX > 0, "requires some form of AVX");
5817   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5818   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5819   emit_int8((unsigned char)0xF8);
5820   emit_int8((unsigned char)(0xC0 | encode));
5821 }
5822 
5823 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5824   assert(UseAVX > 0, "requires some form of AVX");
5825   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5826   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5827   emit_int8((unsigned char)0xF9);
5828   emit_int8((unsigned char)(0xC0 | encode));
5829 }
5830 
5831 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5832   assert(UseAVX > 0, "requires some form of AVX");
5833   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5834   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5835   emit_int8((unsigned char)0xFA);
5836   emit_int8((unsigned char)(0xC0 | encode));
5837 }
5838 
5839 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5840   assert(UseAVX > 0, "requires some form of AVX");
5841   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5842   attributes.set_rex_vex_w_reverted();
5843   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5844   emit_int8((unsigned char)0xFB);
5845   emit_int8((unsigned char)(0xC0 | encode));
5846 }
5847 
5848 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5849   assert(UseAVX > 0, "requires some form of AVX");
5850   InstructionMark im(this);
5851   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5852   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5853   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5854   emit_int8((unsigned char)0xF8);
5855   emit_operand(dst, src);
5856 }
5857 
5858 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5859   assert(UseAVX > 0, "requires some form of AVX");
5860   InstructionMark im(this);
5861   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5862   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5863   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5864   emit_int8((unsigned char)0xF9);
5865   emit_operand(dst, src);
5866 }
5867 
5868 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5869   assert(UseAVX > 0, "requires some form of AVX");
5870   InstructionMark im(this);
5871   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5872   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5873   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5874   emit_int8((unsigned char)0xFA);
5875   emit_operand(dst, src);
5876 }
5877 
5878 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5879   assert(UseAVX > 0, "requires some form of AVX");
5880   InstructionMark im(this);
5881   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5882   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5883   attributes.set_rex_vex_w_reverted();
5884   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5885   emit_int8((unsigned char)0xFB);
5886   emit_operand(dst, src);
5887 }
5888 
5889 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5890   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5891   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5892   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5893   emit_int8((unsigned char)0xD5);
5894   emit_int8((unsigned char)(0xC0 | encode));
5895 }
5896 
5897 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5898   assert(VM_Version::supports_sse4_1(), "");
5899   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5900   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5901   emit_int8(0x40);
5902   emit_int8((unsigned char)(0xC0 | encode));
5903 }
5904 
5905 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5906   assert(UseAVX > 0, "requires some form of AVX");
5907   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5908   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5909   emit_int8((unsigned char)0xD5);
5910   emit_int8((unsigned char)(0xC0 | encode));
5911 }
5912 
5913 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5914   assert(UseAVX > 0, "requires some form of AVX");
5915   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5916   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5917   emit_int8(0x40);
5918   emit_int8((unsigned char)(0xC0 | encode));
5919 }
5920 
5921 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5922   assert(UseAVX > 2, "requires some form of EVEX");
5923   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5924   attributes.set_is_evex_instruction();
5925   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5926   emit_int8(0x40);
5927   emit_int8((unsigned char)(0xC0 | encode));
5928 }
5929 
5930 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5931   assert(UseAVX > 0, "requires some form of AVX");
5932   InstructionMark im(this);
5933   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5934   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5935   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5936   emit_int8((unsigned char)0xD5);
5937   emit_operand(dst, src);
5938 }
5939 
5940 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5941   assert(UseAVX > 0, "requires some form of AVX");
5942   InstructionMark im(this);
5943   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5944   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5945   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5946   emit_int8(0x40);
5947   emit_operand(dst, src);
5948 }
5949 
5950 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5951   assert(UseAVX > 2, "requires some form of EVEX");
5952   InstructionMark im(this);
5953   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5954   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5955   attributes.set_is_evex_instruction();
5956   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5957   emit_int8(0x40);
5958   emit_operand(dst, src);
5959 }
5960 
5961 // Shift packed integers left by specified number of bits.
5962 void Assembler::psllw(XMMRegister dst, int shift) {
5963   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5964   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5965   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5966   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5967   emit_int8(0x71);
5968   emit_int8((unsigned char)(0xC0 | encode));
5969   emit_int8(shift & 0xFF);
5970 }
5971 
5972 void Assembler::pslld(XMMRegister dst, int shift) {
5973   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5974   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5975   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5976   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5977   emit_int8(0x72);
5978   emit_int8((unsigned char)(0xC0 | encode));
5979   emit_int8(shift & 0xFF);
5980 }
5981 
5982 void Assembler::psllq(XMMRegister dst, int shift) {
5983   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5984   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5985   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5986   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5987   emit_int8(0x73);
5988   emit_int8((unsigned char)(0xC0 | encode));
5989   emit_int8(shift & 0xFF);
5990 }
5991 
5992 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5993   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5994   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5995   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5996   emit_int8((unsigned char)0xF1);
5997   emit_int8((unsigned char)(0xC0 | encode));
5998 }
5999 
6000 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
6001   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6002   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6003   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6004   emit_int8((unsigned char)0xF2);
6005   emit_int8((unsigned char)(0xC0 | encode));
6006 }
6007 
6008 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
6009   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6010   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6011   attributes.set_rex_vex_w_reverted();
6012   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6013   emit_int8((unsigned char)0xF3);
6014   emit_int8((unsigned char)(0xC0 | encode));
6015 }
6016 
6017 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6018   assert(UseAVX > 0, "requires some form of AVX");
6019   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6020   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
6021   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6022   emit_int8(0x71);
6023   emit_int8((unsigned char)(0xC0 | encode));
6024   emit_int8(shift & 0xFF);
6025 }
6026 
6027 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6028   assert(UseAVX > 0, "requires some form of AVX");
6029   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6030   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6031   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
6032   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6033   emit_int8(0x72);
6034   emit_int8((unsigned char)(0xC0 | encode));
6035   emit_int8(shift & 0xFF);
6036 }
6037 
6038 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6039   assert(UseAVX > 0, "requires some form of AVX");
6040   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6041   attributes.set_rex_vex_w_reverted();
6042   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
6043   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6044   emit_int8(0x73);
6045   emit_int8((unsigned char)(0xC0 | encode));
6046   emit_int8(shift & 0xFF);
6047 }
6048 
6049 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6050   assert(UseAVX > 0, "requires some form of AVX");
6051   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6052   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6053   emit_int8((unsigned char)0xF1);
6054   emit_int8((unsigned char)(0xC0 | encode));
6055 }
6056 
6057 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6058   assert(UseAVX > 0, "requires some form of AVX");
6059   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6060   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6061   emit_int8((unsigned char)0xF2);
6062   emit_int8((unsigned char)(0xC0 | encode));
6063 }
6064 
6065 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6066   assert(UseAVX > 0, "requires some form of AVX");
6067   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6068   attributes.set_rex_vex_w_reverted();
6069   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6070   emit_int8((unsigned char)0xF3);
6071   emit_int8((unsigned char)(0xC0 | encode));
6072 }
6073 
6074 // Shift packed integers logically right by specified number of bits.
6075 void Assembler::psrlw(XMMRegister dst, int shift) {
6076   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6077   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6078   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
6079   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6080   emit_int8(0x71);
6081   emit_int8((unsigned char)(0xC0 | encode));
6082   emit_int8(shift & 0xFF);
6083 }
6084 
6085 void Assembler::psrld(XMMRegister dst, int shift) {
6086   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6087   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6088   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
6089   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6090   emit_int8(0x72);
6091   emit_int8((unsigned char)(0xC0 | encode));
6092   emit_int8(shift & 0xFF);
6093 }
6094 
6095 void Assembler::psrlq(XMMRegister dst, int shift) {
6096   // Do not confuse it with psrldq SSE2 instruction which
6097   // shifts 128 bit value in xmm register by number of bytes.
6098   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6099   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6100   attributes.set_rex_vex_w_reverted();
6101   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
6102   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6103   emit_int8(0x73);
6104   emit_int8((unsigned char)(0xC0 | encode));
6105   emit_int8(shift & 0xFF);
6106 }
6107 
6108 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
6109   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6110   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6111   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6112   emit_int8((unsigned char)0xD1);
6113   emit_int8((unsigned char)(0xC0 | encode));
6114 }
6115 
6116 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
6117   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6118   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6119   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6120   emit_int8((unsigned char)0xD2);
6121   emit_int8((unsigned char)(0xC0 | encode));
6122 }
6123 
6124 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
6125   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6126   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6127   attributes.set_rex_vex_w_reverted();
6128   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6129   emit_int8((unsigned char)0xD3);
6130   emit_int8((unsigned char)(0xC0 | encode));
6131 }
6132 
6133 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6134   assert(UseAVX > 0, "requires some form of AVX");
6135   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6136   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
6137   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6138   emit_int8(0x71);
6139   emit_int8((unsigned char)(0xC0 | encode));
6140   emit_int8(shift & 0xFF);
6141 }
6142 
6143 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6144   assert(UseAVX > 0, "requires some form of AVX");
6145   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6146   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
6147   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6148   emit_int8(0x72);
6149   emit_int8((unsigned char)(0xC0 | encode));
6150   emit_int8(shift & 0xFF);
6151 }
6152 
6153 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6154   assert(UseAVX > 0, "requires some form of AVX");
6155   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6156   attributes.set_rex_vex_w_reverted();
6157   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
6158   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6159   emit_int8(0x73);
6160   emit_int8((unsigned char)(0xC0 | encode));
6161   emit_int8(shift & 0xFF);
6162 }
6163 
6164 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6165   assert(UseAVX > 0, "requires some form of AVX");
6166   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6167   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6168   emit_int8((unsigned char)0xD1);
6169   emit_int8((unsigned char)(0xC0 | encode));
6170 }
6171 
6172 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6173   assert(UseAVX > 0, "requires some form of AVX");
6174   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6175   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6176   emit_int8((unsigned char)0xD2);
6177   emit_int8((unsigned char)(0xC0 | encode));
6178 }
6179 
6180 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6181   assert(UseAVX > 0, "requires some form of AVX");
6182   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6183   attributes.set_rex_vex_w_reverted();
6184   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6185   emit_int8((unsigned char)0xD3);
6186   emit_int8((unsigned char)(0xC0 | encode));
6187 }
6188 
6189 void Assembler::evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6190   assert(VM_Version::supports_avx512bw(), "");
6191   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6192   attributes.set_is_evex_instruction();
6193   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6194   emit_int8(0x10);
6195   emit_int8((unsigned char)(0xC0 | encode));
6196 }
6197 
6198 void Assembler::evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6199   assert(VM_Version::supports_avx512bw(), "");
6200   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6201   attributes.set_is_evex_instruction();
6202   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6203   emit_int8(0x12);
6204   emit_int8((unsigned char)(0xC0 | encode));
6205 }
6206 
6207 // Shift packed integers arithmetically right by specified number of bits.
6208 void Assembler::psraw(XMMRegister dst, int shift) {
6209   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6210   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6211   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6212   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6213   emit_int8(0x71);
6214   emit_int8((unsigned char)(0xC0 | encode));
6215   emit_int8(shift & 0xFF);
6216 }
6217 
6218 void Assembler::psrad(XMMRegister dst, int shift) {
6219   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6220   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6221   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
6222   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6223   emit_int8(0x72);
6224   emit_int8((unsigned char)(0xC0 | encode));
6225   emit_int8(shift & 0xFF);
6226 }
6227 
6228 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
6229   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6230   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6231   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6232   emit_int8((unsigned char)0xE1);
6233   emit_int8((unsigned char)(0xC0 | encode));
6234 }
6235 
6236 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
6237   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6238   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6239   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6240   emit_int8((unsigned char)0xE2);
6241   emit_int8((unsigned char)(0xC0 | encode));
6242 }
6243 
6244 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6245   assert(UseAVX > 0, "requires some form of AVX");
6246   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6247   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6248   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6249   emit_int8(0x71);
6250   emit_int8((unsigned char)(0xC0 | encode));
6251   emit_int8(shift & 0xFF);
6252 }
6253 
6254 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6255   assert(UseAVX > 0, "requires some form of AVX");
6256   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6257   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6258   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6259   emit_int8(0x72);
6260   emit_int8((unsigned char)(0xC0 | encode));
6261   emit_int8(shift & 0xFF);
6262 }
6263 
6264 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6265   assert(UseAVX > 0, "requires some form of AVX");
6266   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6267   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6268   emit_int8((unsigned char)0xE1);
6269   emit_int8((unsigned char)(0xC0 | encode));
6270 }
6271 
6272 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6273   assert(UseAVX > 0, "requires some form of AVX");
6274   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6275   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6276   emit_int8((unsigned char)0xE2);
6277   emit_int8((unsigned char)(0xC0 | encode));
6278 }
6279 
6280 
6281 // logical operations packed integers
6282 void Assembler::pand(XMMRegister dst, XMMRegister src) {
6283   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6284   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6285   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6286   emit_int8((unsigned char)0xDB);
6287   emit_int8((unsigned char)(0xC0 | encode));
6288 }
6289 
6290 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6291   assert(UseAVX > 0, "requires some form of AVX");
6292   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6293   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6294   emit_int8((unsigned char)0xDB);
6295   emit_int8((unsigned char)(0xC0 | encode));
6296 }
6297 
6298 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6299   assert(UseAVX > 0, "requires some form of AVX");
6300   InstructionMark im(this);
6301   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6302   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6303   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6304   emit_int8((unsigned char)0xDB);
6305   emit_operand(dst, src);
6306 }
6307 
6308 void Assembler::vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6309   assert(VM_Version::supports_evex(), "");
6310   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6311   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6312   emit_int8((unsigned char)0xDB);
6313   emit_int8((unsigned char)(0xC0 | encode));
6314 }
6315 
6316 
6317 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
6318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6319   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6320   attributes.set_rex_vex_w_reverted();
6321   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6322   emit_int8((unsigned char)0xDF);
6323   emit_int8((unsigned char)(0xC0 | encode));
6324 }
6325 
6326 void Assembler::vpandn(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6327   assert(UseAVX > 0, "requires some form of AVX");
6328   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6329   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6330   emit_int8((unsigned char)0xDF);
6331   emit_int8((unsigned char)(0xC0 | encode));
6332 }
6333 
6334 
6335 void Assembler::por(XMMRegister dst, XMMRegister src) {
6336   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6337   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6338   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6339   emit_int8((unsigned char)0xEB);
6340   emit_int8((unsigned char)(0xC0 | encode));
6341 }
6342 
6343 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6344   assert(UseAVX > 0, "requires some form of AVX");
6345   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6346   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6347   emit_int8((unsigned char)0xEB);
6348   emit_int8((unsigned char)(0xC0 | encode));
6349 }
6350 
6351 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6352   assert(UseAVX > 0, "requires some form of AVX");
6353   InstructionMark im(this);
6354   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6355   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6356   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6357   emit_int8((unsigned char)0xEB);
6358   emit_operand(dst, src);
6359 }
6360 
6361 void Assembler::vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6362   assert(VM_Version::supports_evex(), "");
6363   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6364   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6365   emit_int8((unsigned char)0xEB);
6366   emit_int8((unsigned char)(0xC0 | encode));
6367 }
6368 
6369 
6370 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
6371   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6372   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6373   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6374   emit_int8((unsigned char)0xEF);
6375   emit_int8((unsigned char)(0xC0 | encode));
6376 }
6377 
6378 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6379   assert(UseAVX > 0, "requires some form of AVX");
6380   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6381   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6382   emit_int8((unsigned char)0xEF);
6383   emit_int8((unsigned char)(0xC0 | encode));
6384 }
6385 
6386 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6387   assert(UseAVX > 0, "requires some form of AVX");
6388   InstructionMark im(this);
6389   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6390   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6391   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6392   emit_int8((unsigned char)0xEF);
6393   emit_operand(dst, src);
6394 }
6395 
6396 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6397   assert(VM_Version::supports_evex(), "requires EVEX support");
6398   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6399   attributes.set_is_evex_instruction();
6400   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6401   emit_int8((unsigned char)0xEF);
6402   emit_int8((unsigned char)(0xC0 | encode));
6403 }
6404 
6405 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6406   assert(VM_Version::supports_evex(), "requires EVEX support");
6407   assert(dst != xnoreg, "sanity");
6408   InstructionMark im(this);
6409   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6410   attributes.set_is_evex_instruction();
6411   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6412   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6413   emit_int8((unsigned char)0xEF);
6414   emit_operand(dst, src);
6415 }
6416 
6417 
6418 // vinserti forms
6419 
6420 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6421   assert(VM_Version::supports_avx2(), "");
6422   assert(imm8 <= 0x01, "imm8: %u", imm8);
6423   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6424   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6425   emit_int8(0x38);
6426   emit_int8((unsigned char)(0xC0 | encode));
6427   // 0x00 - insert into lower 128 bits
6428   // 0x01 - insert into upper 128 bits
6429   emit_int8(imm8 & 0x01);
6430 }
6431 
6432 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6433   assert(VM_Version::supports_avx2(), "");
6434   assert(dst != xnoreg, "sanity");
6435   assert(imm8 <= 0x01, "imm8: %u", imm8);
6436   InstructionMark im(this);
6437   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6438   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6439   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6440   emit_int8(0x38);
6441   emit_operand(dst, src);
6442   // 0x00 - insert into lower 128 bits
6443   // 0x01 - insert into upper 128 bits
6444   emit_int8(imm8 & 0x01);
6445 }
6446 
6447 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6448   assert(VM_Version::supports_evex(), "");
6449   assert(imm8 <= 0x03, "imm8: %u", imm8);
6450   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6451   attributes.set_is_evex_instruction();
6452   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6453   emit_int8(0x38);
6454   emit_int8((unsigned char)(0xC0 | encode));
6455   // 0x00 - insert into q0 128 bits (0..127)
6456   // 0x01 - insert into q1 128 bits (128..255)
6457   // 0x02 - insert into q2 128 bits (256..383)
6458   // 0x03 - insert into q3 128 bits (384..511)
6459   emit_int8(imm8 & 0x03);
6460 }
6461 
6462 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6463   assert(VM_Version::supports_avx(), "");
6464   assert(dst != xnoreg, "sanity");
6465   assert(imm8 <= 0x03, "imm8: %u", imm8);
6466   InstructionMark im(this);
6467   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6468   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6469   attributes.set_is_evex_instruction();
6470   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6471   emit_int8(0x18);
6472   emit_operand(dst, src);
6473   // 0x00 - insert into q0 128 bits (0..127)
6474   // 0x01 - insert into q1 128 bits (128..255)
6475   // 0x02 - insert into q2 128 bits (256..383)
6476   // 0x03 - insert into q3 128 bits (384..511)
6477   emit_int8(imm8 & 0x03);
6478 }
6479 
6480 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6481   assert(VM_Version::supports_evex(), "");
6482   assert(imm8 <= 0x01, "imm8: %u", imm8);
6483   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6484   attributes.set_is_evex_instruction();
6485   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6486   emit_int8(0x3A);
6487   emit_int8((unsigned char)(0xC0 | encode));
6488   // 0x00 - insert into lower 256 bits
6489   // 0x01 - insert into upper 256 bits
6490   emit_int8(imm8 & 0x01);
6491 }
6492 
6493 
6494 // vinsertf forms
6495 
6496 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6497   assert(VM_Version::supports_avx(), "");
6498   assert(imm8 <= 0x01, "imm8: %u", imm8);
6499   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6500   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6501   emit_int8(0x18);
6502   emit_int8((unsigned char)(0xC0 | encode));
6503   // 0x00 - insert into lower 128 bits
6504   // 0x01 - insert into upper 128 bits
6505   emit_int8(imm8 & 0x01);
6506 }
6507 
6508 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6509   assert(VM_Version::supports_avx(), "");
6510   assert(dst != xnoreg, "sanity");
6511   assert(imm8 <= 0x01, "imm8: %u", imm8);
6512   InstructionMark im(this);
6513   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6514   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6515   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6516   emit_int8(0x18);
6517   emit_operand(dst, src);
6518   // 0x00 - insert into lower 128 bits
6519   // 0x01 - insert into upper 128 bits
6520   emit_int8(imm8 & 0x01);
6521 }
6522 
6523 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6524   assert(VM_Version::supports_avx2(), "");
6525   assert(imm8 <= 0x03, "imm8: %u", imm8);
6526   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6527   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6528   emit_int8(0x18);
6529   emit_int8((unsigned char)(0xC0 | encode));
6530   // 0x00 - insert into q0 128 bits (0..127)
6531   // 0x01 - insert into q1 128 bits (128..255)
6532   // 0x02 - insert into q0 128 bits (256..383)
6533   // 0x03 - insert into q1 128 bits (384..512)
6534   emit_int8(imm8 & 0x03);
6535 }
6536 
6537 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6538   assert(VM_Version::supports_avx(), "");
6539   assert(dst != xnoreg, "sanity");
6540   assert(imm8 <= 0x03, "imm8: %u", imm8);
6541   InstructionMark im(this);
6542   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6543   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6544   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6545   emit_int8(0x18);
6546   emit_operand(dst, src);
6547   // 0x00 - insert into q0 128 bits (0..127)
6548   // 0x01 - insert into q1 128 bits (128..255)
6549   // 0x02 - insert into q0 128 bits (256..383)
6550   // 0x03 - insert into q1 128 bits (384..512)
6551   emit_int8(imm8 & 0x03);
6552 }
6553 
6554 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6555   assert(VM_Version::supports_evex(), "");
6556   assert(imm8 <= 0x01, "imm8: %u", imm8);
6557   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6558   attributes.set_is_evex_instruction();
6559   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6560   emit_int8(0x1A);
6561   emit_int8((unsigned char)(0xC0 | encode));
6562   // 0x00 - insert into lower 256 bits
6563   // 0x01 - insert into upper 256 bits
6564   emit_int8(imm8 & 0x01);
6565 }
6566 
6567 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6568   assert(VM_Version::supports_evex(), "");
6569   assert(dst != xnoreg, "sanity");
6570   assert(imm8 <= 0x01, "imm8: %u", imm8);
6571   InstructionMark im(this);
6572   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6573   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6574   attributes.set_is_evex_instruction();
6575   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6576   emit_int8(0x1A);
6577   emit_operand(dst, src);
6578   // 0x00 - insert into lower 256 bits
6579   // 0x01 - insert into upper 256 bits
6580   emit_int8(imm8 & 0x01);
6581 }
6582 
6583 
6584 // vextracti forms
6585 
6586 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6587   assert(VM_Version::supports_avx2(), "");
6588   assert(imm8 <= 0x01, "imm8: %u", imm8);
6589   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6590   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6591   emit_int8(0x39);
6592   emit_int8((unsigned char)(0xC0 | encode));
6593   // 0x00 - extract from lower 128 bits
6594   // 0x01 - extract from upper 128 bits
6595   emit_int8(imm8 & 0x01);
6596 }
6597 
6598 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
6599   assert(VM_Version::supports_avx2(), "");
6600   assert(src != xnoreg, "sanity");
6601   assert(imm8 <= 0x01, "imm8: %u", imm8);
6602   InstructionMark im(this);
6603   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6604   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6605   attributes.reset_is_clear_context();
6606   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6607   emit_int8(0x39);
6608   emit_operand(src, dst);
6609   // 0x00 - extract from lower 128 bits
6610   // 0x01 - extract from upper 128 bits
6611   emit_int8(imm8 & 0x01);
6612 }
6613 
6614 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6615   assert(VM_Version::supports_evex(), "");
6616   assert(imm8 <= 0x03, "imm8: %u", imm8);
6617   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6618   attributes.set_is_evex_instruction();
6619   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6620   emit_int8(0x39);
6621   emit_int8((unsigned char)(0xC0 | encode));
6622   // 0x00 - extract from bits 127:0
6623   // 0x01 - extract from bits 255:128
6624   // 0x02 - extract from bits 383:256
6625   // 0x03 - extract from bits 511:384
6626   emit_int8(imm8 & 0x03);
6627 }
6628 
6629 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
6630   assert(VM_Version::supports_evex(), "");
6631   assert(src != xnoreg, "sanity");
6632   assert(imm8 <= 0x03, "imm8: %u", imm8);
6633   InstructionMark im(this);
6634   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6635   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6636   attributes.reset_is_clear_context();
6637   attributes.set_is_evex_instruction();
6638   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6639   emit_int8(0x39);
6640   emit_operand(src, dst);
6641   // 0x00 - extract from bits 127:0
6642   // 0x01 - extract from bits 255:128
6643   // 0x02 - extract from bits 383:256
6644   // 0x03 - extract from bits 511:384
6645   emit_int8(imm8 & 0x03);
6646 }
6647 
6648 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6649   assert(VM_Version::supports_avx512dq(), "");
6650   assert(imm8 <= 0x03, "imm8: %u", imm8);
6651   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6652   attributes.set_is_evex_instruction();
6653   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6654   emit_int8(0x39);
6655   emit_int8((unsigned char)(0xC0 | encode));
6656   // 0x00 - extract from bits 127:0
6657   // 0x01 - extract from bits 255:128
6658   // 0x02 - extract from bits 383:256
6659   // 0x03 - extract from bits 511:384
6660   emit_int8(imm8 & 0x03);
6661 }
6662 
6663 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6664   assert(VM_Version::supports_evex(), "");
6665   assert(imm8 <= 0x01, "imm8: %u", imm8);
6666   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6667   attributes.set_is_evex_instruction();
6668   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6669   emit_int8(0x3B);
6670   emit_int8((unsigned char)(0xC0 | encode));
6671   // 0x00 - extract from lower 256 bits
6672   // 0x01 - extract from upper 256 bits
6673   emit_int8(imm8 & 0x01);
6674 }
6675 
6676 void Assembler::vextracti64x4(Address dst, XMMRegister src, uint8_t imm8) {
6677   assert(VM_Version::supports_evex(), "");
6678   assert(src != xnoreg, "sanity");
6679   assert(imm8 <= 0x01, "imm8: %u", imm8);
6680   InstructionMark im(this);
6681   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6682   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6683   attributes.reset_is_clear_context();
6684   attributes.set_is_evex_instruction();
6685   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6686   emit_int8(0x38);
6687   emit_operand(src, dst);
6688   // 0x00 - extract from lower 256 bits
6689   // 0x01 - extract from upper 256 bits
6690   emit_int8(imm8 & 0x01);
6691 }
6692 // vextractf forms
6693 
6694 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6695   assert(VM_Version::supports_avx(), "");
6696   assert(imm8 <= 0x01, "imm8: %u", imm8);
6697   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6698   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6699   emit_int8(0x19);
6700   emit_int8((unsigned char)(0xC0 | encode));
6701   // 0x00 - extract from lower 128 bits
6702   // 0x01 - extract from upper 128 bits
6703   emit_int8(imm8 & 0x01);
6704 }
6705 
6706 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6707   assert(VM_Version::supports_avx(), "");
6708   assert(src != xnoreg, "sanity");
6709   assert(imm8 <= 0x01, "imm8: %u", imm8);
6710   InstructionMark im(this);
6711   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6712   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6713   attributes.reset_is_clear_context();
6714   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6715   emit_int8(0x19);
6716   emit_operand(src, dst);
6717   // 0x00 - extract from lower 128 bits
6718   // 0x01 - extract from upper 128 bits
6719   emit_int8(imm8 & 0x01);
6720 }
6721 
6722 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6723   assert(VM_Version::supports_evex(), "");
6724   assert(imm8 <= 0x03, "imm8: %u", imm8);
6725   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6726   attributes.set_is_evex_instruction();
6727   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6728   emit_int8(0x19);
6729   emit_int8((unsigned char)(0xC0 | encode));
6730   // 0x00 - extract from bits 127:0
6731   // 0x01 - extract from bits 255:128
6732   // 0x02 - extract from bits 383:256
6733   // 0x03 - extract from bits 511:384
6734   emit_int8(imm8 & 0x03);
6735 }
6736 
6737 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6738   assert(VM_Version::supports_evex(), "");
6739   assert(src != xnoreg, "sanity");
6740   assert(imm8 <= 0x03, "imm8: %u", imm8);
6741   InstructionMark im(this);
6742   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6743   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6744   attributes.reset_is_clear_context();
6745   attributes.set_is_evex_instruction();
6746   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6747   emit_int8(0x19);
6748   emit_operand(src, dst);
6749   // 0x00 - extract from bits 127:0
6750   // 0x01 - extract from bits 255:128
6751   // 0x02 - extract from bits 383:256
6752   // 0x03 - extract from bits 511:384
6753   emit_int8(imm8 & 0x03);
6754 }
6755 
6756 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6757   assert(VM_Version::supports_avx512dq(), "");
6758   assert(imm8 <= 0x03, "imm8: %u", imm8);
6759   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6760   attributes.set_is_evex_instruction();
6761   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6762   emit_int8(0x19);
6763   emit_int8((unsigned char)(0xC0 | encode));
6764   // 0x00 - extract from bits 127:0
6765   // 0x01 - extract from bits 255:128
6766   // 0x02 - extract from bits 383:256
6767   // 0x03 - extract from bits 511:384
6768   emit_int8(imm8 & 0x03);
6769 }
6770 
6771 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6772   assert(VM_Version::supports_evex(), "");
6773   assert(imm8 <= 0x01, "imm8: %u", imm8);
6774   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6775   attributes.set_is_evex_instruction();
6776   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6777   emit_int8(0x1B);
6778   emit_int8((unsigned char)(0xC0 | encode));
6779   // 0x00 - extract from lower 256 bits
6780   // 0x01 - extract from upper 256 bits
6781   emit_int8(imm8 & 0x01);
6782 }
6783 
6784 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6785   assert(VM_Version::supports_evex(), "");
6786   assert(src != xnoreg, "sanity");
6787   assert(imm8 <= 0x01, "imm8: %u", imm8);
6788   InstructionMark im(this);
6789   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6790   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6791   attributes.reset_is_clear_context();
6792   attributes.set_is_evex_instruction();
6793   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6794   emit_int8(0x1B);
6795   emit_operand(src, dst);
6796   // 0x00 - extract from lower 256 bits
6797   // 0x01 - extract from upper 256 bits
6798   emit_int8(imm8 & 0x01);
6799 }
6800 
6801 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6802 void Assembler::vpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6803   assert(VM_Version::supports_avx2(), "");
6804   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6805   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6806   emit_int8(0x78);
6807   emit_int8((unsigned char)(0xC0 | encode));
6808 }
6809 
6810 void Assembler::vpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6811   assert(VM_Version::supports_avx2(), "");
6812   assert(dst != xnoreg, "sanity");
6813   InstructionMark im(this);
6814   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6815   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6816   // swap src<->dst for encoding
6817   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6818   emit_int8(0x78);
6819   emit_operand(dst, src);
6820 }
6821 
6822 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6823 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6824   assert(VM_Version::supports_avx2(), "");
6825   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6826   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6827   emit_int8(0x79);
6828   emit_int8((unsigned char)(0xC0 | encode));
6829 }
6830 
6831 void Assembler::vpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6832   assert(VM_Version::supports_avx2(), "");
6833   assert(dst != xnoreg, "sanity");
6834   InstructionMark im(this);
6835   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6836   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6837   // swap src<->dst for encoding
6838   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6839   emit_int8(0x79);
6840   emit_operand(dst, src);
6841 }
6842 
6843 // xmm/mem sourced byte/word/dword/qword replicate
6844 
6845 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6846 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6847   assert(UseAVX >= 2, "");
6848   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6849   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6850   emit_int8(0x58);
6851   emit_int8((unsigned char)(0xC0 | encode));
6852 }
6853 
6854 void Assembler::vpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6855   assert(VM_Version::supports_avx2(), "");
6856   assert(dst != xnoreg, "sanity");
6857   InstructionMark im(this);
6858   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6859   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6860   // swap src<->dst for encoding
6861   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6862   emit_int8(0x58);
6863   emit_operand(dst, src);
6864 }
6865 
6866 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6867 void Assembler::vpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6868   assert(VM_Version::supports_avx2(), "");
6869   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6870   attributes.set_rex_vex_w_reverted();
6871   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6872   emit_int8(0x59);
6873   emit_int8((unsigned char)(0xC0 | encode));
6874 }
6875 
6876 void Assembler::vpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6877   assert(VM_Version::supports_avx2(), "");
6878   assert(dst != xnoreg, "sanity");
6879   InstructionMark im(this);
6880   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6881   attributes.set_rex_vex_w_reverted();
6882   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6883   // swap src<->dst for encoding
6884   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6885   emit_int8(0x59);
6886   emit_operand(dst, src);
6887 }
6888 void Assembler::evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len) {
6889   assert(vector_len != Assembler::AVX_128bit, "");
6890   assert(VM_Version::supports_avx512dq(), "");
6891   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6892   attributes.set_rex_vex_w_reverted();
6893   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6894   emit_int8(0x5A);
6895   emit_int8((unsigned char)(0xC0 | encode));
6896 }
6897 
6898 void Assembler::evbroadcasti64x2(XMMRegister dst, Address src, int vector_len) {
6899   assert(vector_len != Assembler::AVX_128bit, "");
6900   assert(VM_Version::supports_avx512dq(), "");
6901   assert(dst != xnoreg, "sanity");
6902   InstructionMark im(this);
6903   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6904   attributes.set_rex_vex_w_reverted();
6905   attributes.set_address_attributes(/* tuple_type */ EVEX_T2, /* input_size_in_bits */ EVEX_64bit);
6906   // swap src<->dst for encoding
6907   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6908   emit_int8(0x5A);
6909   emit_operand(dst, src);
6910 }
6911 
6912 // scalar single/double precision replicate
6913 
6914 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6915 void Assembler::vpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6916   assert(VM_Version::supports_avx(), "");
6917   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6918   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6919   emit_int8(0x18);
6920   emit_int8((unsigned char)(0xC0 | encode));
6921 }
6922 
6923 void Assembler::vpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6924   assert(VM_Version::supports_avx(), "");
6925   assert(dst != xnoreg, "sanity");
6926   InstructionMark im(this);
6927   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6928   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6929   // swap src<->dst for encoding
6930   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6931   emit_int8(0x18);
6932   emit_operand(dst, src);
6933 }
6934 
6935 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6936 void Assembler::vpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6937   assert(VM_Version::supports_avx(), "");
6938   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6939   attributes.set_rex_vex_w_reverted();
6940   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6941   emit_int8(0x19);
6942   emit_int8((unsigned char)(0xC0 | encode));
6943 }
6944 
6945 void Assembler::vpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6946   assert(VM_Version::supports_avx(), "");
6947   assert(dst != xnoreg, "sanity");
6948   InstructionMark im(this);
6949   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6950   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6951   attributes.set_rex_vex_w_reverted();
6952   // swap src<->dst for encoding
6953   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6954   emit_int8(0x19);
6955   emit_operand(dst, src);
6956 }
6957 
6958 
6959 // gpr source broadcast forms
6960 
6961 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6962 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6963   assert(VM_Version::supports_avx512bw(), "");
6964   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6965   attributes.set_is_evex_instruction();
6966   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6967   emit_int8(0x7A);
6968   emit_int8((unsigned char)(0xC0 | encode));
6969 }
6970 
6971 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6972 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6973   assert(VM_Version::supports_avx512bw(), "");
6974   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6975   attributes.set_is_evex_instruction();
6976   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6977   emit_int8(0x7B);
6978   emit_int8((unsigned char)(0xC0 | encode));
6979 }
6980 
6981 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6982 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6983   assert(VM_Version::supports_evex(), "");
6984   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6985   attributes.set_is_evex_instruction();
6986   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6987   emit_int8(0x7C);
6988   emit_int8((unsigned char)(0xC0 | encode));
6989 }
6990 
6991 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6992 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6993   assert(VM_Version::supports_evex(), "");
6994   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6995   attributes.set_is_evex_instruction();
6996   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6997   emit_int8(0x7C);
6998   emit_int8((unsigned char)(0xC0 | encode));
6999 }
7000 
7001 void Assembler::evpgatherdd(XMMRegister dst, KRegister mask, Address src, int vector_len) {
7002   assert(VM_Version::supports_evex(), "");
7003   assert(dst != xnoreg, "sanity");
7004   InstructionMark im(this);
7005   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7006   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7007   attributes.reset_is_clear_context();
7008   attributes.set_embedded_opmask_register_specifier(mask);
7009   attributes.set_is_evex_instruction();
7010   // swap src<->dst for encoding
7011   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7012   emit_int8((unsigned char)0x90);
7013   emit_operand(dst, src);
7014 }
7015 
7016 // Carry-Less Multiplication Quadword
7017 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
7018   assert(VM_Version::supports_clmul(), "");
7019   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7020   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7021   emit_int8(0x44);
7022   emit_int8((unsigned char)(0xC0 | encode));
7023   emit_int8((unsigned char)mask);
7024 }
7025 
7026 // Carry-Less Multiplication Quadword
7027 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
7028   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
7029   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7030   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7031   emit_int8(0x44);
7032   emit_int8((unsigned char)(0xC0 | encode));
7033   emit_int8((unsigned char)mask);
7034 }
7035 
7036 void Assembler::evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len) {
7037   assert(VM_Version::supports_vpclmulqdq(), "Requires vector carryless multiplication support");
7038   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
7039   attributes.set_is_evex_instruction();
7040   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7041   emit_int8(0x44);
7042   emit_int8((unsigned char)(0xC0 | encode));
7043   emit_int8((unsigned char)mask);
7044 }
7045 
7046 void Assembler::vzeroupper() {
7047   if (VM_Version::supports_vzeroupper()) {
7048     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
7049     (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
7050     emit_int8(0x77);
7051   }
7052 }
7053 
7054 #ifndef _LP64
7055 // 32bit only pieces of the assembler
7056 
7057 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
7058   // NO PREFIX AS NEVER 64BIT
7059   InstructionMark im(this);
7060   emit_int8((unsigned char)0x81);
7061   emit_int8((unsigned char)(0xF8 | src1->encoding()));
7062   emit_data(imm32, rspec, 0);
7063 }
7064 
7065 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
7066   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
7067   InstructionMark im(this);
7068   emit_int8((unsigned char)0x81);
7069   emit_operand(rdi, src1);
7070   emit_data(imm32, rspec, 0);
7071 }
7072 
7073 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
7074 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
7075 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
7076 void Assembler::cmpxchg8(Address adr) {
7077   InstructionMark im(this);
7078   emit_int8(0x0F);
7079   emit_int8((unsigned char)0xC7);
7080   emit_operand(rcx, adr);
7081 }
7082 
7083 void Assembler::decl(Register dst) {
7084   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7085  emit_int8(0x48 | dst->encoding());
7086 }
7087 
7088 #endif // _LP64
7089 
7090 // 64bit typically doesn't use the x87 but needs to for the trig funcs
7091 
7092 void Assembler::fabs() {
7093   emit_int8((unsigned char)0xD9);
7094   emit_int8((unsigned char)0xE1);
7095 }
7096 
7097 void Assembler::fadd(int i) {
7098   emit_farith(0xD8, 0xC0, i);
7099 }
7100 
7101 void Assembler::fadd_d(Address src) {
7102   InstructionMark im(this);
7103   emit_int8((unsigned char)0xDC);
7104   emit_operand32(rax, src);
7105 }
7106 
7107 void Assembler::fadd_s(Address src) {
7108   InstructionMark im(this);
7109   emit_int8((unsigned char)0xD8);
7110   emit_operand32(rax, src);
7111 }
7112 
7113 void Assembler::fadda(int i) {
7114   emit_farith(0xDC, 0xC0, i);
7115 }
7116 
7117 void Assembler::faddp(int i) {
7118   emit_farith(0xDE, 0xC0, i);
7119 }
7120 
7121 void Assembler::fchs() {
7122   emit_int8((unsigned char)0xD9);
7123   emit_int8((unsigned char)0xE0);
7124 }
7125 
7126 void Assembler::fcom(int i) {
7127   emit_farith(0xD8, 0xD0, i);
7128 }
7129 
7130 void Assembler::fcomp(int i) {
7131   emit_farith(0xD8, 0xD8, i);
7132 }
7133 
7134 void Assembler::fcomp_d(Address src) {
7135   InstructionMark im(this);
7136   emit_int8((unsigned char)0xDC);
7137   emit_operand32(rbx, src);
7138 }
7139 
7140 void Assembler::fcomp_s(Address src) {
7141   InstructionMark im(this);
7142   emit_int8((unsigned char)0xD8);
7143   emit_operand32(rbx, src);
7144 }
7145 
7146 void Assembler::fcompp() {
7147   emit_int8((unsigned char)0xDE);
7148   emit_int8((unsigned char)0xD9);
7149 }
7150 
7151 void Assembler::fcos() {
7152   emit_int8((unsigned char)0xD9);
7153   emit_int8((unsigned char)0xFF);
7154 }
7155 
7156 void Assembler::fdecstp() {
7157   emit_int8((unsigned char)0xD9);
7158   emit_int8((unsigned char)0xF6);
7159 }
7160 
7161 void Assembler::fdiv(int i) {
7162   emit_farith(0xD8, 0xF0, i);
7163 }
7164 
7165 void Assembler::fdiv_d(Address src) {
7166   InstructionMark im(this);
7167   emit_int8((unsigned char)0xDC);
7168   emit_operand32(rsi, src);
7169 }
7170 
7171 void Assembler::fdiv_s(Address src) {
7172   InstructionMark im(this);
7173   emit_int8((unsigned char)0xD8);
7174   emit_operand32(rsi, src);
7175 }
7176 
7177 void Assembler::fdiva(int i) {
7178   emit_farith(0xDC, 0xF8, i);
7179 }
7180 
7181 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
7182 //       is erroneous for some of the floating-point instructions below.
7183 
7184 void Assembler::fdivp(int i) {
7185   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
7186 }
7187 
7188 void Assembler::fdivr(int i) {
7189   emit_farith(0xD8, 0xF8, i);
7190 }
7191 
7192 void Assembler::fdivr_d(Address src) {
7193   InstructionMark im(this);
7194   emit_int8((unsigned char)0xDC);
7195   emit_operand32(rdi, src);
7196 }
7197 
7198 void Assembler::fdivr_s(Address src) {
7199   InstructionMark im(this);
7200   emit_int8((unsigned char)0xD8);
7201   emit_operand32(rdi, src);
7202 }
7203 
7204 void Assembler::fdivra(int i) {
7205   emit_farith(0xDC, 0xF0, i);
7206 }
7207 
7208 void Assembler::fdivrp(int i) {
7209   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
7210 }
7211 
7212 void Assembler::ffree(int i) {
7213   emit_farith(0xDD, 0xC0, i);
7214 }
7215 
7216 void Assembler::fild_d(Address adr) {
7217   InstructionMark im(this);
7218   emit_int8((unsigned char)0xDF);
7219   emit_operand32(rbp, adr);
7220 }
7221 
7222 void Assembler::fild_s(Address adr) {
7223   InstructionMark im(this);
7224   emit_int8((unsigned char)0xDB);
7225   emit_operand32(rax, adr);
7226 }
7227 
7228 void Assembler::fincstp() {
7229   emit_int8((unsigned char)0xD9);
7230   emit_int8((unsigned char)0xF7);
7231 }
7232 
7233 void Assembler::finit() {
7234   emit_int8((unsigned char)0x9B);
7235   emit_int8((unsigned char)0xDB);
7236   emit_int8((unsigned char)0xE3);
7237 }
7238 
7239 void Assembler::fist_s(Address adr) {
7240   InstructionMark im(this);
7241   emit_int8((unsigned char)0xDB);
7242   emit_operand32(rdx, adr);
7243 }
7244 
7245 void Assembler::fistp_d(Address adr) {
7246   InstructionMark im(this);
7247   emit_int8((unsigned char)0xDF);
7248   emit_operand32(rdi, adr);
7249 }
7250 
7251 void Assembler::fistp_s(Address adr) {
7252   InstructionMark im(this);
7253   emit_int8((unsigned char)0xDB);
7254   emit_operand32(rbx, adr);
7255 }
7256 
7257 void Assembler::fld1() {
7258   emit_int8((unsigned char)0xD9);
7259   emit_int8((unsigned char)0xE8);
7260 }
7261 
7262 void Assembler::fld_d(Address adr) {
7263   InstructionMark im(this);
7264   emit_int8((unsigned char)0xDD);
7265   emit_operand32(rax, adr);
7266 }
7267 
7268 void Assembler::fld_s(Address adr) {
7269   InstructionMark im(this);
7270   emit_int8((unsigned char)0xD9);
7271   emit_operand32(rax, adr);
7272 }
7273 
7274 
7275 void Assembler::fld_s(int index) {
7276   emit_farith(0xD9, 0xC0, index);
7277 }
7278 
7279 void Assembler::fld_x(Address adr) {
7280   InstructionMark im(this);
7281   emit_int8((unsigned char)0xDB);
7282   emit_operand32(rbp, adr);
7283 }
7284 
7285 void Assembler::fldcw(Address src) {
7286   InstructionMark im(this);
7287   emit_int8((unsigned char)0xD9);
7288   emit_operand32(rbp, src);
7289 }
7290 
7291 void Assembler::fldenv(Address src) {
7292   InstructionMark im(this);
7293   emit_int8((unsigned char)0xD9);
7294   emit_operand32(rsp, src);
7295 }
7296 
7297 void Assembler::fldlg2() {
7298   emit_int8((unsigned char)0xD9);
7299   emit_int8((unsigned char)0xEC);
7300 }
7301 
7302 void Assembler::fldln2() {
7303   emit_int8((unsigned char)0xD9);
7304   emit_int8((unsigned char)0xED);
7305 }
7306 
7307 void Assembler::fldz() {
7308   emit_int8((unsigned char)0xD9);
7309   emit_int8((unsigned char)0xEE);
7310 }
7311 
7312 void Assembler::flog() {
7313   fldln2();
7314   fxch();
7315   fyl2x();
7316 }
7317 
7318 void Assembler::flog10() {
7319   fldlg2();
7320   fxch();
7321   fyl2x();
7322 }
7323 
7324 void Assembler::fmul(int i) {
7325   emit_farith(0xD8, 0xC8, i);
7326 }
7327 
7328 void Assembler::fmul_d(Address src) {
7329   InstructionMark im(this);
7330   emit_int8((unsigned char)0xDC);
7331   emit_operand32(rcx, src);
7332 }
7333 
7334 void Assembler::fmul_s(Address src) {
7335   InstructionMark im(this);
7336   emit_int8((unsigned char)0xD8);
7337   emit_operand32(rcx, src);
7338 }
7339 
7340 void Assembler::fmula(int i) {
7341   emit_farith(0xDC, 0xC8, i);
7342 }
7343 
7344 void Assembler::fmulp(int i) {
7345   emit_farith(0xDE, 0xC8, i);
7346 }
7347 
7348 void Assembler::fnsave(Address dst) {
7349   InstructionMark im(this);
7350   emit_int8((unsigned char)0xDD);
7351   emit_operand32(rsi, dst);
7352 }
7353 
7354 void Assembler::fnstcw(Address src) {
7355   InstructionMark im(this);
7356   emit_int8((unsigned char)0x9B);
7357   emit_int8((unsigned char)0xD9);
7358   emit_operand32(rdi, src);
7359 }
7360 
7361 void Assembler::fnstsw_ax() {
7362   emit_int8((unsigned char)0xDF);
7363   emit_int8((unsigned char)0xE0);
7364 }
7365 
7366 void Assembler::fprem() {
7367   emit_int8((unsigned char)0xD9);
7368   emit_int8((unsigned char)0xF8);
7369 }
7370 
7371 void Assembler::fprem1() {
7372   emit_int8((unsigned char)0xD9);
7373   emit_int8((unsigned char)0xF5);
7374 }
7375 
7376 void Assembler::frstor(Address src) {
7377   InstructionMark im(this);
7378   emit_int8((unsigned char)0xDD);
7379   emit_operand32(rsp, src);
7380 }
7381 
7382 void Assembler::fsin() {
7383   emit_int8((unsigned char)0xD9);
7384   emit_int8((unsigned char)0xFE);
7385 }
7386 
7387 void Assembler::fsqrt() {
7388   emit_int8((unsigned char)0xD9);
7389   emit_int8((unsigned char)0xFA);
7390 }
7391 
7392 void Assembler::fst_d(Address adr) {
7393   InstructionMark im(this);
7394   emit_int8((unsigned char)0xDD);
7395   emit_operand32(rdx, adr);
7396 }
7397 
7398 void Assembler::fst_s(Address adr) {
7399   InstructionMark im(this);
7400   emit_int8((unsigned char)0xD9);
7401   emit_operand32(rdx, adr);
7402 }
7403 
7404 void Assembler::fstp_d(Address adr) {
7405   InstructionMark im(this);
7406   emit_int8((unsigned char)0xDD);
7407   emit_operand32(rbx, adr);
7408 }
7409 
7410 void Assembler::fstp_d(int index) {
7411   emit_farith(0xDD, 0xD8, index);
7412 }
7413 
7414 void Assembler::fstp_s(Address adr) {
7415   InstructionMark im(this);
7416   emit_int8((unsigned char)0xD9);
7417   emit_operand32(rbx, adr);
7418 }
7419 
7420 void Assembler::fstp_x(Address adr) {
7421   InstructionMark im(this);
7422   emit_int8((unsigned char)0xDB);
7423   emit_operand32(rdi, adr);
7424 }
7425 
7426 void Assembler::fsub(int i) {
7427   emit_farith(0xD8, 0xE0, i);
7428 }
7429 
7430 void Assembler::fsub_d(Address src) {
7431   InstructionMark im(this);
7432   emit_int8((unsigned char)0xDC);
7433   emit_operand32(rsp, src);
7434 }
7435 
7436 void Assembler::fsub_s(Address src) {
7437   InstructionMark im(this);
7438   emit_int8((unsigned char)0xD8);
7439   emit_operand32(rsp, src);
7440 }
7441 
7442 void Assembler::fsuba(int i) {
7443   emit_farith(0xDC, 0xE8, i);
7444 }
7445 
7446 void Assembler::fsubp(int i) {
7447   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
7448 }
7449 
7450 void Assembler::fsubr(int i) {
7451   emit_farith(0xD8, 0xE8, i);
7452 }
7453 
7454 void Assembler::fsubr_d(Address src) {
7455   InstructionMark im(this);
7456   emit_int8((unsigned char)0xDC);
7457   emit_operand32(rbp, src);
7458 }
7459 
7460 void Assembler::fsubr_s(Address src) {
7461   InstructionMark im(this);
7462   emit_int8((unsigned char)0xD8);
7463   emit_operand32(rbp, src);
7464 }
7465 
7466 void Assembler::fsubra(int i) {
7467   emit_farith(0xDC, 0xE0, i);
7468 }
7469 
7470 void Assembler::fsubrp(int i) {
7471   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
7472 }
7473 
7474 void Assembler::ftan() {
7475   emit_int8((unsigned char)0xD9);
7476   emit_int8((unsigned char)0xF2);
7477   emit_int8((unsigned char)0xDD);
7478   emit_int8((unsigned char)0xD8);
7479 }
7480 
7481 void Assembler::ftst() {
7482   emit_int8((unsigned char)0xD9);
7483   emit_int8((unsigned char)0xE4);
7484 }
7485 
7486 void Assembler::fucomi(int i) {
7487   // make sure the instruction is supported (introduced for P6, together with cmov)
7488   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7489   emit_farith(0xDB, 0xE8, i);
7490 }
7491 
7492 void Assembler::fucomip(int i) {
7493   // make sure the instruction is supported (introduced for P6, together with cmov)
7494   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7495   emit_farith(0xDF, 0xE8, i);
7496 }
7497 
7498 void Assembler::fwait() {
7499   emit_int8((unsigned char)0x9B);
7500 }
7501 
7502 void Assembler::fxch(int i) {
7503   emit_farith(0xD9, 0xC8, i);
7504 }
7505 
7506 void Assembler::fyl2x() {
7507   emit_int8((unsigned char)0xD9);
7508   emit_int8((unsigned char)0xF1);
7509 }
7510 
7511 void Assembler::frndint() {
7512   emit_int8((unsigned char)0xD9);
7513   emit_int8((unsigned char)0xFC);
7514 }
7515 
7516 void Assembler::f2xm1() {
7517   emit_int8((unsigned char)0xD9);
7518   emit_int8((unsigned char)0xF0);
7519 }
7520 
7521 void Assembler::fldl2e() {
7522   emit_int8((unsigned char)0xD9);
7523   emit_int8((unsigned char)0xEA);
7524 }
7525 
7526 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
7527 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
7528 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
7529 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
7530 
7531 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
7532 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7533   if (pre > 0) {
7534     emit_int8(simd_pre[pre]);
7535   }
7536   if (rex_w) {
7537     prefixq(adr, xreg);
7538   } else {
7539     prefix(adr, xreg);
7540   }
7541   if (opc > 0) {
7542     emit_int8(0x0F);
7543     int opc2 = simd_opc[opc];
7544     if (opc2 > 0) {
7545       emit_int8(opc2);
7546     }
7547   }
7548 }
7549 
7550 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7551   if (pre > 0) {
7552     emit_int8(simd_pre[pre]);
7553   }
7554   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
7555   if (opc > 0) {
7556     emit_int8(0x0F);
7557     int opc2 = simd_opc[opc];
7558     if (opc2 > 0) {
7559       emit_int8(opc2);
7560     }
7561   }
7562   return encode;
7563 }
7564 
7565 
7566 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
7567   int vector_len = _attributes->get_vector_len();
7568   bool vex_w = _attributes->is_rex_vex_w();
7569   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
7570     prefix(VEX_3bytes);
7571 
7572     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
7573     byte1 = (~byte1) & 0xE0;
7574     byte1 |= opc;
7575     emit_int8(byte1);
7576 
7577     int byte2 = ((~nds_enc) & 0xf) << 3;
7578     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
7579     emit_int8(byte2);
7580   } else {
7581     prefix(VEX_2bytes);
7582 
7583     int byte1 = vex_r ? VEX_R : 0;
7584     byte1 = (~byte1) & 0x80;
7585     byte1 |= ((~nds_enc) & 0xf) << 3;
7586     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
7587     emit_int8(byte1);
7588   }
7589 }
7590 
7591 // This is a 4 byte encoding
7592 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
7593   // EVEX 0x62 prefix
7594   prefix(EVEX_4bytes);
7595   bool vex_w = _attributes->is_rex_vex_w();
7596   int evex_encoding = (vex_w ? VEX_W : 0);
7597   // EVEX.b is not currently used for broadcast of single element or data rounding modes
7598   _attributes->set_evex_encoding(evex_encoding);
7599 
7600   // P0: byte 2, initialized to RXBR`00mm
7601   // instead of not'd
7602   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
7603   byte2 = (~byte2) & 0xF0;
7604   // confine opc opcode extensions in mm bits to lower two bits
7605   // of form {0F, 0F_38, 0F_3A}
7606   byte2 |= opc;
7607   emit_int8(byte2);
7608 
7609   // P1: byte 3 as Wvvvv1pp
7610   int byte3 = ((~nds_enc) & 0xf) << 3;
7611   // p[10] is always 1
7612   byte3 |= EVEX_F;
7613   byte3 |= (vex_w & 1) << 7;
7614   // confine pre opcode extensions in pp bits to lower two bits
7615   // of form {66, F3, F2}
7616   byte3 |= pre;
7617   emit_int8(byte3);
7618 
7619   // P2: byte 4 as zL'Lbv'aaa
7620   // kregs are implemented in the low 3 bits as aaa
7621   int byte4 = (_attributes->is_no_reg_mask()) ?
7622               0 :
7623               _attributes->get_embedded_opmask_register_specifier();
7624   // EVEX.v` for extending EVEX.vvvv or VIDX
7625   byte4 |= (evex_v ? 0: EVEX_V);
7626   // third EXEC.b for broadcast actions
7627   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
7628   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
7629   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
7630   // last is EVEX.z for zero/merge actions
7631   if (_attributes->is_no_reg_mask() == false) {
7632     byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
7633   }
7634   emit_int8(byte4);
7635 }
7636 
7637 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7638   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
7639   bool vex_b = adr.base_needs_rex();
7640   bool vex_x;
7641   if (adr.isxmmindex()) {
7642     vex_x = adr.xmmindex_needs_rex();
7643   } else {
7644     vex_x = adr.index_needs_rex();
7645   }
7646   set_attributes(attributes);
7647   attributes->set_current_assembler(this);
7648 
7649   // For EVEX instruction (which is not marked as pure EVEX instruction) check and see if this instruction
7650   // is allowed in legacy mode and has resources which will fit in it.
7651   // Pure EVEX instructions will have is_evex_instruction set in their definition.
7652   if (!attributes->is_legacy_mode()) {
7653     if (UseAVX > 2 && !attributes->is_evex_instruction() && !_is_managed) {
7654       if ((attributes->get_vector_len() != AVX_512bit) && (nds_enc < 16) && (xreg_enc < 16)) {
7655           attributes->set_is_legacy_mode();
7656       }
7657     }
7658   }
7659 
7660   if (UseAVX > 2) {
7661     assert(((!attributes->uses_vl()) ||
7662             (attributes->get_vector_len() == AVX_512bit) ||
7663             (!_legacy_mode_vl) ||
7664             (attributes->is_legacy_mode())),"XMM register should be 0-15");
7665     assert(((nds_enc < 16 && xreg_enc < 16) || (!attributes->is_legacy_mode())),"XMM register should be 0-15");
7666   }
7667 
7668   _is_managed = false;
7669   if (UseAVX > 2 && !attributes->is_legacy_mode())
7670   {
7671     bool evex_r = (xreg_enc >= 16);
7672     bool evex_v;
7673     // EVEX.V' is set to true when VSIB is used as we may need to use higher order XMM registers (16-31)
7674     if (adr.isxmmindex())  {
7675       evex_v = ((adr._xmmindex->encoding() > 15) ? true : false);
7676     } else {
7677       evex_v = (nds_enc >= 16);
7678     }
7679     attributes->set_is_evex_instruction();
7680     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7681   } else {
7682     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7683       attributes->set_rex_vex_w(false);
7684     }
7685     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7686   }
7687 }
7688 
7689 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7690   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
7691   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
7692   bool vex_x = false;
7693   set_attributes(attributes);
7694   attributes->set_current_assembler(this);
7695 
7696   // For EVEX instruction (which is not marked as pure EVEX instruction) check and see if this instruction
7697   // is allowed in legacy mode and has resources which will fit in it.
7698   // Pure EVEX instructions will have is_evex_instruction set in their definition.
7699   if (!attributes->is_legacy_mode()) {
7700     if (UseAVX > 2 && !attributes->is_evex_instruction() && !_is_managed) {
7701       if ((!attributes->uses_vl() || (attributes->get_vector_len() != AVX_512bit)) &&
7702           (dst_enc < 16) && (nds_enc < 16) && (src_enc < 16)) {
7703           attributes->set_is_legacy_mode();
7704       }
7705     }
7706   }
7707 
7708   if (UseAVX > 2) {
7709     // All the scalar fp instructions (with uses_vl as false) can have legacy_mode as false
7710     // Instruction with uses_vl true are vector instructions
7711     // All the vector instructions with AVX_512bit length can have legacy_mode as false
7712     // All the vector instructions with < AVX_512bit length can have legacy_mode as false if AVX512vl() is supported
7713     // Rest all should have legacy_mode set as true
7714     assert(((!attributes->uses_vl()) ||
7715             (attributes->get_vector_len() == AVX_512bit) ||
7716             (!_legacy_mode_vl) ||
7717             (attributes->is_legacy_mode())),"XMM register should be 0-15");
7718     // Instruction with legacy_mode true should have dst, nds and src < 15
7719     assert(((dst_enc < 16 && nds_enc < 16 && src_enc < 16) || (!attributes->is_legacy_mode())),"XMM register should be 0-15");
7720   }
7721 
7722   _is_managed = false;
7723   if (UseAVX > 2 && !attributes->is_legacy_mode())
7724   {
7725     bool evex_r = (dst_enc >= 16);
7726     bool evex_v = (nds_enc >= 16);
7727     // can use vex_x as bank extender on rm encoding
7728     vex_x = (src_enc >= 16);
7729     attributes->set_is_evex_instruction();
7730     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7731   } else {
7732     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7733       attributes->set_rex_vex_w(false);
7734     }
7735     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7736   }
7737 
7738   // return modrm byte components for operands
7739   return (((dst_enc & 7) << 3) | (src_enc & 7));
7740 }
7741 
7742 
7743 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7744                             VexOpcode opc, InstructionAttr *attributes) {
7745   if (UseAVX > 0) {
7746     int xreg_enc = xreg->encoding();
7747     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7748     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7749   } else {
7750     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7751     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7752   }
7753 }
7754 
7755 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7756                                       VexOpcode opc, InstructionAttr *attributes) {
7757   int dst_enc = dst->encoding();
7758   int src_enc = src->encoding();
7759   if (UseAVX > 0) {
7760     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7761     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7762   } else {
7763     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7764     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7765   }
7766 }
7767 
7768 void Assembler::vmaxss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7769   assert(VM_Version::supports_avx(), "");
7770   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7771   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7772   emit_int8(0x5F);
7773   emit_int8((unsigned char)(0xC0 | encode));
7774 }
7775 
7776 void Assembler::vmaxsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7777   assert(VM_Version::supports_avx(), "");
7778   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7779   attributes.set_rex_vex_w_reverted();
7780   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7781   emit_int8(0x5F);
7782   emit_int8((unsigned char)(0xC0 | encode));
7783 }
7784 
7785 void Assembler::vminss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7786   assert(VM_Version::supports_avx(), "");
7787   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7788   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7789   emit_int8(0x5D);
7790   emit_int8((unsigned char)(0xC0 | encode));
7791 }
7792 
7793 void Assembler::vminsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7794   assert(VM_Version::supports_avx(), "");
7795   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7796   attributes.set_rex_vex_w_reverted();
7797   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7798   emit_int8(0x5D);
7799   emit_int8((unsigned char)(0xC0 | encode));
7800 }
7801 
7802 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7803   assert(VM_Version::supports_avx(), "");
7804   assert(vector_len <= AVX_256bit, "");
7805   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7806   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7807   emit_int8((unsigned char)0xC2);
7808   emit_int8((unsigned char)(0xC0 | encode));
7809   emit_int8((unsigned char)(0xF & cop));
7810 }
7811 
7812 void Assembler::blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7813   assert(VM_Version::supports_avx(), "");
7814   assert(vector_len <= AVX_256bit, "");
7815   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7816   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7817   emit_int8((unsigned char)0x4B);
7818   emit_int8((unsigned char)(0xC0 | encode));
7819   int src2_enc = src2->encoding();
7820   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7821 }
7822 
7823 void Assembler::cmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7824   assert(VM_Version::supports_avx(), "");
7825   assert(vector_len <= AVX_256bit, "");
7826   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7827   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
7828   emit_int8((unsigned char)0xC2);
7829   emit_int8((unsigned char)(0xC0 | encode));
7830   emit_int8((unsigned char)(0xF & cop));
7831 }
7832 
7833 void Assembler::blendvps(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7834   assert(VM_Version::supports_avx(), "");
7835   assert(vector_len <= AVX_256bit, "");
7836   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7837   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7838   emit_int8((unsigned char)0x4A);
7839   emit_int8((unsigned char)(0xC0 | encode));
7840   int src2_enc = src2->encoding();
7841   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7842 }
7843 
7844 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
7845   assert(VM_Version::supports_avx2(), "");
7846   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7847   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7848   emit_int8((unsigned char)0x02);
7849   emit_int8((unsigned char)(0xC0 | encode));
7850   emit_int8((unsigned char)imm8);
7851 }
7852 
7853 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7854   assert(VM_Version::supports_bmi2(), "");
7855   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7856   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7857   emit_int8((unsigned char)0xF7);
7858   emit_int8((unsigned char)(0xC0 | encode));
7859 }
7860 
7861 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7862   assert(VM_Version::supports_bmi2(), "");
7863   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7864   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7865   emit_int8((unsigned char)0xF7);
7866   emit_int8((unsigned char)(0xC0 | encode));
7867 }
7868 
7869 #ifndef _LP64
7870 
7871 void Assembler::incl(Register dst) {
7872   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7873   emit_int8(0x40 | dst->encoding());
7874 }
7875 
7876 void Assembler::lea(Register dst, Address src) {
7877   leal(dst, src);
7878 }
7879 
7880 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7881   InstructionMark im(this);
7882   emit_int8((unsigned char)0xC7);
7883   emit_operand(rax, dst);
7884   emit_data((int)imm32, rspec, 0);
7885 }
7886 
7887 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7888   InstructionMark im(this);
7889   int encode = prefix_and_encode(dst->encoding());
7890   emit_int8((unsigned char)(0xB8 | encode));
7891   emit_data((int)imm32, rspec, 0);
7892 }
7893 
7894 void Assembler::popa() { // 32bit
7895   emit_int8(0x61);
7896 }
7897 
7898 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7899   InstructionMark im(this);
7900   emit_int8(0x68);
7901   emit_data(imm32, rspec, 0);
7902 }
7903 
7904 void Assembler::pusha() { // 32bit
7905   emit_int8(0x60);
7906 }
7907 
7908 void Assembler::set_byte_if_not_zero(Register dst) {
7909   emit_int8(0x0F);
7910   emit_int8((unsigned char)0x95);
7911   emit_int8((unsigned char)(0xE0 | dst->encoding()));
7912 }
7913 
7914 void Assembler::shldl(Register dst, Register src) {
7915   emit_int8(0x0F);
7916   emit_int8((unsigned char)0xA5);
7917   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7918 }
7919 
7920 // 0F A4 / r ib
7921 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
7922   emit_int8(0x0F);
7923   emit_int8((unsigned char)0xA4);
7924   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7925   emit_int8(imm8);
7926 }
7927 
7928 void Assembler::shrdl(Register dst, Register src) {
7929   emit_int8(0x0F);
7930   emit_int8((unsigned char)0xAD);
7931   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7932 }
7933 
7934 #else // LP64
7935 
7936 void Assembler::set_byte_if_not_zero(Register dst) {
7937   int enc = prefix_and_encode(dst->encoding(), true);
7938   emit_int8(0x0F);
7939   emit_int8((unsigned char)0x95);
7940   emit_int8((unsigned char)(0xE0 | enc));
7941 }
7942 
7943 // 64bit only pieces of the assembler
7944 // This should only be used by 64bit instructions that can use rip-relative
7945 // it cannot be used by instructions that want an immediate value.
7946 
7947 bool Assembler::reachable(AddressLiteral adr) {
7948   int64_t disp;
7949   // None will force a 64bit literal to the code stream. Likely a placeholder
7950   // for something that will be patched later and we need to certain it will
7951   // always be reachable.
7952   if (adr.reloc() == relocInfo::none) {
7953     return false;
7954   }
7955   if (adr.reloc() == relocInfo::internal_word_type) {
7956     // This should be rip relative and easily reachable.
7957     return true;
7958   }
7959   if (adr.reloc() == relocInfo::virtual_call_type ||
7960       adr.reloc() == relocInfo::opt_virtual_call_type ||
7961       adr.reloc() == relocInfo::static_call_type ||
7962       adr.reloc() == relocInfo::static_stub_type ) {
7963     // This should be rip relative within the code cache and easily
7964     // reachable until we get huge code caches. (At which point
7965     // ic code is going to have issues).
7966     return true;
7967   }
7968   if (adr.reloc() != relocInfo::external_word_type &&
7969       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7970       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7971       adr.reloc() != relocInfo::runtime_call_type ) {
7972     return false;
7973   }
7974 
7975   // Stress the correction code
7976   if (ForceUnreachable) {
7977     // Must be runtimecall reloc, see if it is in the codecache
7978     // Flipping stuff in the codecache to be unreachable causes issues
7979     // with things like inline caches where the additional instructions
7980     // are not handled.
7981     if (CodeCache::find_blob(adr._target) == NULL) {
7982       return false;
7983     }
7984   }
7985   // For external_word_type/runtime_call_type if it is reachable from where we
7986   // are now (possibly a temp buffer) and where we might end up
7987   // anywhere in the codeCache then we are always reachable.
7988   // This would have to change if we ever save/restore shared code
7989   // to be more pessimistic.
7990   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7991   if (!is_simm32(disp)) return false;
7992   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7993   if (!is_simm32(disp)) return false;
7994 
7995   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7996 
7997   // Because rip relative is a disp + address_of_next_instruction and we
7998   // don't know the value of address_of_next_instruction we apply a fudge factor
7999   // to make sure we will be ok no matter the size of the instruction we get placed into.
8000   // We don't have to fudge the checks above here because they are already worst case.
8001 
8002   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
8003   // + 4 because better safe than sorry.
8004   const int fudge = 12 + 4;
8005   if (disp < 0) {
8006     disp -= fudge;
8007   } else {
8008     disp += fudge;
8009   }
8010   return is_simm32(disp);
8011 }
8012 
8013 // Check if the polling page is not reachable from the code cache using rip-relative
8014 // addressing.
8015 bool Assembler::is_polling_page_far() {
8016   intptr_t addr = (intptr_t)os::get_polling_page();
8017   return ForceUnreachable ||
8018          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
8019          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
8020 }
8021 
8022 void Assembler::emit_data64(jlong data,
8023                             relocInfo::relocType rtype,
8024                             int format) {
8025   if (rtype == relocInfo::none) {
8026     emit_int64(data);
8027   } else {
8028     emit_data64(data, Relocation::spec_simple(rtype), format);
8029   }
8030 }
8031 
8032 void Assembler::emit_data64(jlong data,
8033                             RelocationHolder const& rspec,
8034                             int format) {
8035   assert(imm_operand == 0, "default format must be immediate in this file");
8036   assert(imm_operand == format, "must be immediate");
8037   assert(inst_mark() != NULL, "must be inside InstructionMark");
8038   // Do not use AbstractAssembler::relocate, which is not intended for
8039   // embedded words.  Instead, relocate to the enclosing instruction.
8040   code_section()->relocate(inst_mark(), rspec, format);
8041 #ifdef ASSERT
8042   check_relocation(rspec, format);
8043 #endif
8044   emit_int64(data);
8045 }
8046 
8047 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
8048   if (reg_enc >= 8) {
8049     prefix(REX_B);
8050     reg_enc -= 8;
8051   } else if (byteinst && reg_enc >= 4) {
8052     prefix(REX);
8053   }
8054   return reg_enc;
8055 }
8056 
8057 int Assembler::prefixq_and_encode(int reg_enc) {
8058   if (reg_enc < 8) {
8059     prefix(REX_W);
8060   } else {
8061     prefix(REX_WB);
8062     reg_enc -= 8;
8063   }
8064   return reg_enc;
8065 }
8066 
8067 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
8068   if (dst_enc < 8) {
8069     if (src_enc >= 8) {
8070       prefix(REX_B);
8071       src_enc -= 8;
8072     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
8073       prefix(REX);
8074     }
8075   } else {
8076     if (src_enc < 8) {
8077       prefix(REX_R);
8078     } else {
8079       prefix(REX_RB);
8080       src_enc -= 8;
8081     }
8082     dst_enc -= 8;
8083   }
8084   return dst_enc << 3 | src_enc;
8085 }
8086 
8087 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
8088   if (dst_enc < 8) {
8089     if (src_enc < 8) {
8090       prefix(REX_W);
8091     } else {
8092       prefix(REX_WB);
8093       src_enc -= 8;
8094     }
8095   } else {
8096     if (src_enc < 8) {
8097       prefix(REX_WR);
8098     } else {
8099       prefix(REX_WRB);
8100       src_enc -= 8;
8101     }
8102     dst_enc -= 8;
8103   }
8104   return dst_enc << 3 | src_enc;
8105 }
8106 
8107 void Assembler::prefix(Register reg) {
8108   if (reg->encoding() >= 8) {
8109     prefix(REX_B);
8110   }
8111 }
8112 
8113 void Assembler::prefix(Register dst, Register src, Prefix p) {
8114   if (src->encoding() >= 8) {
8115     p = (Prefix)(p | REX_B);
8116   }
8117   if (dst->encoding() >= 8) {
8118     p = (Prefix)( p | REX_R);
8119   }
8120   if (p != Prefix_EMPTY) {
8121     // do not generate an empty prefix
8122     prefix(p);
8123   }
8124 }
8125 
8126 void Assembler::prefix(Register dst, Address adr, Prefix p) {
8127   if (adr.base_needs_rex()) {
8128     if (adr.index_needs_rex()) {
8129       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
8130     } else {
8131       prefix(REX_B);
8132     }
8133   } else {
8134     if (adr.index_needs_rex()) {
8135       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
8136     }
8137   }
8138   if (dst->encoding() >= 8) {
8139     p = (Prefix)(p | REX_R);
8140   }
8141   if (p != Prefix_EMPTY) {
8142     // do not generate an empty prefix
8143     prefix(p);
8144   }
8145 }
8146 
8147 void Assembler::prefix(Address adr) {
8148   if (adr.base_needs_rex()) {
8149     if (adr.index_needs_rex()) {
8150       prefix(REX_XB);
8151     } else {
8152       prefix(REX_B);
8153     }
8154   } else {
8155     if (adr.index_needs_rex()) {
8156       prefix(REX_X);
8157     }
8158   }
8159 }
8160 
8161 void Assembler::prefixq(Address adr) {
8162   if (adr.base_needs_rex()) {
8163     if (adr.index_needs_rex()) {
8164       prefix(REX_WXB);
8165     } else {
8166       prefix(REX_WB);
8167     }
8168   } else {
8169     if (adr.index_needs_rex()) {
8170       prefix(REX_WX);
8171     } else {
8172       prefix(REX_W);
8173     }
8174   }
8175 }
8176 
8177 
8178 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
8179   if (reg->encoding() < 8) {
8180     if (adr.base_needs_rex()) {
8181       if (adr.index_needs_rex()) {
8182         prefix(REX_XB);
8183       } else {
8184         prefix(REX_B);
8185       }
8186     } else {
8187       if (adr.index_needs_rex()) {
8188         prefix(REX_X);
8189       } else if (byteinst && reg->encoding() >= 4 ) {
8190         prefix(REX);
8191       }
8192     }
8193   } else {
8194     if (adr.base_needs_rex()) {
8195       if (adr.index_needs_rex()) {
8196         prefix(REX_RXB);
8197       } else {
8198         prefix(REX_RB);
8199       }
8200     } else {
8201       if (adr.index_needs_rex()) {
8202         prefix(REX_RX);
8203       } else {
8204         prefix(REX_R);
8205       }
8206     }
8207   }
8208 }
8209 
8210 void Assembler::prefixq(Address adr, Register src) {
8211   if (src->encoding() < 8) {
8212     if (adr.base_needs_rex()) {
8213       if (adr.index_needs_rex()) {
8214         prefix(REX_WXB);
8215       } else {
8216         prefix(REX_WB);
8217       }
8218     } else {
8219       if (adr.index_needs_rex()) {
8220         prefix(REX_WX);
8221       } else {
8222         prefix(REX_W);
8223       }
8224     }
8225   } else {
8226     if (adr.base_needs_rex()) {
8227       if (adr.index_needs_rex()) {
8228         prefix(REX_WRXB);
8229       } else {
8230         prefix(REX_WRB);
8231       }
8232     } else {
8233       if (adr.index_needs_rex()) {
8234         prefix(REX_WRX);
8235       } else {
8236         prefix(REX_WR);
8237       }
8238     }
8239   }
8240 }
8241 
8242 void Assembler::prefix(Address adr, XMMRegister reg) {
8243   if (reg->encoding() < 8) {
8244     if (adr.base_needs_rex()) {
8245       if (adr.index_needs_rex()) {
8246         prefix(REX_XB);
8247       } else {
8248         prefix(REX_B);
8249       }
8250     } else {
8251       if (adr.index_needs_rex()) {
8252         prefix(REX_X);
8253       }
8254     }
8255   } else {
8256     if (adr.base_needs_rex()) {
8257       if (adr.index_needs_rex()) {
8258         prefix(REX_RXB);
8259       } else {
8260         prefix(REX_RB);
8261       }
8262     } else {
8263       if (adr.index_needs_rex()) {
8264         prefix(REX_RX);
8265       } else {
8266         prefix(REX_R);
8267       }
8268     }
8269   }
8270 }
8271 
8272 void Assembler::prefixq(Address adr, XMMRegister src) {
8273   if (src->encoding() < 8) {
8274     if (adr.base_needs_rex()) {
8275       if (adr.index_needs_rex()) {
8276         prefix(REX_WXB);
8277       } else {
8278         prefix(REX_WB);
8279       }
8280     } else {
8281       if (adr.index_needs_rex()) {
8282         prefix(REX_WX);
8283       } else {
8284         prefix(REX_W);
8285       }
8286     }
8287   } else {
8288     if (adr.base_needs_rex()) {
8289       if (adr.index_needs_rex()) {
8290         prefix(REX_WRXB);
8291       } else {
8292         prefix(REX_WRB);
8293       }
8294     } else {
8295       if (adr.index_needs_rex()) {
8296         prefix(REX_WRX);
8297       } else {
8298         prefix(REX_WR);
8299       }
8300     }
8301   }
8302 }
8303 
8304 void Assembler::adcq(Register dst, int32_t imm32) {
8305   (void) prefixq_and_encode(dst->encoding());
8306   emit_arith(0x81, 0xD0, dst, imm32);
8307 }
8308 
8309 void Assembler::adcq(Register dst, Address src) {
8310   InstructionMark im(this);
8311   prefixq(src, dst);
8312   emit_int8(0x13);
8313   emit_operand(dst, src);
8314 }
8315 
8316 void Assembler::adcq(Register dst, Register src) {
8317   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8318   emit_arith(0x13, 0xC0, dst, src);
8319 }
8320 
8321 void Assembler::addq(Address dst, int32_t imm32) {
8322   InstructionMark im(this);
8323   prefixq(dst);
8324   emit_arith_operand(0x81, rax, dst,imm32);
8325 }
8326 
8327 void Assembler::addq(Address dst, Register src) {
8328   InstructionMark im(this);
8329   prefixq(dst, src);
8330   emit_int8(0x01);
8331   emit_operand(src, dst);
8332 }
8333 
8334 void Assembler::addq(Register dst, int32_t imm32) {
8335   (void) prefixq_and_encode(dst->encoding());
8336   emit_arith(0x81, 0xC0, dst, imm32);
8337 }
8338 
8339 void Assembler::addq(Register dst, Address src) {
8340   InstructionMark im(this);
8341   prefixq(src, dst);
8342   emit_int8(0x03);
8343   emit_operand(dst, src);
8344 }
8345 
8346 void Assembler::addq(Register dst, Register src) {
8347   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8348   emit_arith(0x03, 0xC0, dst, src);
8349 }
8350 
8351 void Assembler::adcxq(Register dst, Register src) {
8352   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8353   emit_int8((unsigned char)0x66);
8354   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8355   emit_int8(0x0F);
8356   emit_int8(0x38);
8357   emit_int8((unsigned char)0xF6);
8358   emit_int8((unsigned char)(0xC0 | encode));
8359 }
8360 
8361 void Assembler::adoxq(Register dst, Register src) {
8362   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8363   emit_int8((unsigned char)0xF3);
8364   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8365   emit_int8(0x0F);
8366   emit_int8(0x38);
8367   emit_int8((unsigned char)0xF6);
8368   emit_int8((unsigned char)(0xC0 | encode));
8369 }
8370 
8371 void Assembler::andq(Address dst, int32_t imm32) {
8372   InstructionMark im(this);
8373   prefixq(dst);
8374   emit_int8((unsigned char)0x81);
8375   emit_operand(rsp, dst, 4);
8376   emit_int32(imm32);
8377 }
8378 
8379 void Assembler::andq(Register dst, int32_t imm32) {
8380   (void) prefixq_and_encode(dst->encoding());
8381   emit_arith(0x81, 0xE0, dst, imm32);
8382 }
8383 
8384 void Assembler::andq(Register dst, Address src) {
8385   InstructionMark im(this);
8386   prefixq(src, dst);
8387   emit_int8(0x23);
8388   emit_operand(dst, src);
8389 }
8390 
8391 void Assembler::andq(Register dst, Register src) {
8392   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8393   emit_arith(0x23, 0xC0, dst, src);
8394 }
8395 
8396 void Assembler::andnq(Register dst, Register src1, Register src2) {
8397   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8398   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8399   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8400   emit_int8((unsigned char)0xF2);
8401   emit_int8((unsigned char)(0xC0 | encode));
8402 }
8403 
8404 void Assembler::andnq(Register dst, Register src1, Address src2) {
8405   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8406   InstructionMark im(this);
8407   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8408   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8409   emit_int8((unsigned char)0xF2);
8410   emit_operand(dst, src2);
8411 }
8412 
8413 void Assembler::bsfq(Register dst, Register src) {
8414   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8415   emit_int8(0x0F);
8416   emit_int8((unsigned char)0xBC);
8417   emit_int8((unsigned char)(0xC0 | encode));
8418 }
8419 
8420 void Assembler::bsrq(Register dst, Register src) {
8421   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8422   emit_int8(0x0F);
8423   emit_int8((unsigned char)0xBD);
8424   emit_int8((unsigned char)(0xC0 | encode));
8425 }
8426 
8427 void Assembler::bswapq(Register reg) {
8428   int encode = prefixq_and_encode(reg->encoding());
8429   emit_int8(0x0F);
8430   emit_int8((unsigned char)(0xC8 | encode));
8431 }
8432 
8433 void Assembler::blsiq(Register dst, Register src) {
8434   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8435   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8436   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8437   emit_int8((unsigned char)0xF3);
8438   emit_int8((unsigned char)(0xC0 | encode));
8439 }
8440 
8441 void Assembler::blsiq(Register dst, Address src) {
8442   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8443   InstructionMark im(this);
8444   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8445   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8446   emit_int8((unsigned char)0xF3);
8447   emit_operand(rbx, src);
8448 }
8449 
8450 void Assembler::blsmskq(Register dst, Register src) {
8451   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8452   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8453   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8454   emit_int8((unsigned char)0xF3);
8455   emit_int8((unsigned char)(0xC0 | encode));
8456 }
8457 
8458 void Assembler::blsmskq(Register dst, Address src) {
8459   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8460   InstructionMark im(this);
8461   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8462   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8463   emit_int8((unsigned char)0xF3);
8464   emit_operand(rdx, src);
8465 }
8466 
8467 void Assembler::blsrq(Register dst, Register src) {
8468   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8469   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8470   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8471   emit_int8((unsigned char)0xF3);
8472   emit_int8((unsigned char)(0xC0 | encode));
8473 }
8474 
8475 void Assembler::blsrq(Register dst, Address src) {
8476   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8477   InstructionMark im(this);
8478   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8479   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8480   emit_int8((unsigned char)0xF3);
8481   emit_operand(rcx, src);
8482 }
8483 
8484 void Assembler::cdqq() {
8485   prefix(REX_W);
8486   emit_int8((unsigned char)0x99);
8487 }
8488 
8489 void Assembler::clflush(Address adr) {
8490   prefix(adr);
8491   emit_int8(0x0F);
8492   emit_int8((unsigned char)0xAE);
8493   emit_operand(rdi, adr);
8494 }
8495 
8496 void Assembler::cmovq(Condition cc, Register dst, Register src) {
8497   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8498   emit_int8(0x0F);
8499   emit_int8(0x40 | cc);
8500   emit_int8((unsigned char)(0xC0 | encode));
8501 }
8502 
8503 void Assembler::cmovq(Condition cc, Register dst, Address src) {
8504   InstructionMark im(this);
8505   prefixq(src, dst);
8506   emit_int8(0x0F);
8507   emit_int8(0x40 | cc);
8508   emit_operand(dst, src);
8509 }
8510 
8511 void Assembler::cmpq(Address dst, int32_t imm32) {
8512   InstructionMark im(this);
8513   prefixq(dst);
8514   emit_int8((unsigned char)0x81);
8515   emit_operand(rdi, dst, 4);
8516   emit_int32(imm32);
8517 }
8518 
8519 void Assembler::cmpq(Register dst, int32_t imm32) {
8520   (void) prefixq_and_encode(dst->encoding());
8521   emit_arith(0x81, 0xF8, dst, imm32);
8522 }
8523 
8524 void Assembler::cmpq(Address dst, Register src) {
8525   InstructionMark im(this);
8526   prefixq(dst, src);
8527   emit_int8(0x3B);
8528   emit_operand(src, dst);
8529 }
8530 
8531 void Assembler::cmpq(Register dst, Register src) {
8532   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8533   emit_arith(0x3B, 0xC0, dst, src);
8534 }
8535 
8536 void Assembler::cmpq(Register dst, Address  src) {
8537   InstructionMark im(this);
8538   prefixq(src, dst);
8539   emit_int8(0x3B);
8540   emit_operand(dst, src);
8541 }
8542 
8543 void Assembler::cmpxchgq(Register reg, Address adr) {
8544   InstructionMark im(this);
8545   prefixq(adr, reg);
8546   emit_int8(0x0F);
8547   emit_int8((unsigned char)0xB1);
8548   emit_operand(reg, adr);
8549 }
8550 
8551 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
8552   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8553   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8554   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8555   emit_int8(0x2A);
8556   emit_int8((unsigned char)(0xC0 | encode));
8557 }
8558 
8559 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
8560   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8561   InstructionMark im(this);
8562   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8563   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8564   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8565   emit_int8(0x2A);
8566   emit_operand(dst, src);
8567 }
8568 
8569 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
8570   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8571   InstructionMark im(this);
8572   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8573   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8574   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8575   emit_int8(0x2A);
8576   emit_operand(dst, src);
8577 }
8578 
8579 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
8580   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8581   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8582   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8583   emit_int8(0x2C);
8584   emit_int8((unsigned char)(0xC0 | encode));
8585 }
8586 
8587 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
8588   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8589   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8590   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8591   emit_int8(0x2C);
8592   emit_int8((unsigned char)(0xC0 | encode));
8593 }
8594 
8595 void Assembler::decl(Register dst) {
8596   // Don't use it directly. Use MacroAssembler::decrementl() instead.
8597   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
8598   int encode = prefix_and_encode(dst->encoding());
8599   emit_int8((unsigned char)0xFF);
8600   emit_int8((unsigned char)(0xC8 | encode));
8601 }
8602 
8603 void Assembler::decq(Register dst) {
8604   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8605   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8606   int encode = prefixq_and_encode(dst->encoding());
8607   emit_int8((unsigned char)0xFF);
8608   emit_int8(0xC8 | encode);
8609 }
8610 
8611 void Assembler::decq(Address dst) {
8612   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8613   InstructionMark im(this);
8614   prefixq(dst);
8615   emit_int8((unsigned char)0xFF);
8616   emit_operand(rcx, dst);
8617 }
8618 
8619 void Assembler::fxrstor(Address src) {
8620   prefixq(src);
8621   emit_int8(0x0F);
8622   emit_int8((unsigned char)0xAE);
8623   emit_operand(as_Register(1), src);
8624 }
8625 
8626 void Assembler::xrstor(Address src) {
8627   prefixq(src);
8628   emit_int8(0x0F);
8629   emit_int8((unsigned char)0xAE);
8630   emit_operand(as_Register(5), src);
8631 }
8632 
8633 void Assembler::fxsave(Address dst) {
8634   prefixq(dst);
8635   emit_int8(0x0F);
8636   emit_int8((unsigned char)0xAE);
8637   emit_operand(as_Register(0), dst);
8638 }
8639 
8640 void Assembler::xsave(Address dst) {
8641   prefixq(dst);
8642   emit_int8(0x0F);
8643   emit_int8((unsigned char)0xAE);
8644   emit_operand(as_Register(4), dst);
8645 }
8646 
8647 void Assembler::idivq(Register src) {
8648   int encode = prefixq_and_encode(src->encoding());
8649   emit_int8((unsigned char)0xF7);
8650   emit_int8((unsigned char)(0xF8 | encode));
8651 }
8652 
8653 void Assembler::imulq(Register dst, Register src) {
8654   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8655   emit_int8(0x0F);
8656   emit_int8((unsigned char)0xAF);
8657   emit_int8((unsigned char)(0xC0 | encode));
8658 }
8659 
8660 void Assembler::imulq(Register dst, Register src, int value) {
8661   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8662   if (is8bit(value)) {
8663     emit_int8(0x6B);
8664     emit_int8((unsigned char)(0xC0 | encode));
8665     emit_int8(value & 0xFF);
8666   } else {
8667     emit_int8(0x69);
8668     emit_int8((unsigned char)(0xC0 | encode));
8669     emit_int32(value);
8670   }
8671 }
8672 
8673 void Assembler::imulq(Register dst, Address src) {
8674   InstructionMark im(this);
8675   prefixq(src, dst);
8676   emit_int8(0x0F);
8677   emit_int8((unsigned char) 0xAF);
8678   emit_operand(dst, src);
8679 }
8680 
8681 void Assembler::incl(Register dst) {
8682   // Don't use it directly. Use MacroAssembler::incrementl() instead.
8683   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8684   int encode = prefix_and_encode(dst->encoding());
8685   emit_int8((unsigned char)0xFF);
8686   emit_int8((unsigned char)(0xC0 | encode));
8687 }
8688 
8689 void Assembler::incq(Register dst) {
8690   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8691   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8692   int encode = prefixq_and_encode(dst->encoding());
8693   emit_int8((unsigned char)0xFF);
8694   emit_int8((unsigned char)(0xC0 | encode));
8695 }
8696 
8697 void Assembler::incq(Address dst) {
8698   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8699   InstructionMark im(this);
8700   prefixq(dst);
8701   emit_int8((unsigned char)0xFF);
8702   emit_operand(rax, dst);
8703 }
8704 
8705 void Assembler::lea(Register dst, Address src) {
8706   leaq(dst, src);
8707 }
8708 
8709 void Assembler::leaq(Register dst, Address src) {
8710   InstructionMark im(this);
8711   prefixq(src, dst);
8712   emit_int8((unsigned char)0x8D);
8713   emit_operand(dst, src);
8714 }
8715 
8716 void Assembler::mov64(Register dst, int64_t imm64) {
8717   InstructionMark im(this);
8718   int encode = prefixq_and_encode(dst->encoding());
8719   emit_int8((unsigned char)(0xB8 | encode));
8720   emit_int64(imm64);
8721 }
8722 
8723 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
8724   InstructionMark im(this);
8725   int encode = prefixq_and_encode(dst->encoding());
8726   emit_int8(0xB8 | encode);
8727   emit_data64(imm64, rspec);
8728 }
8729 
8730 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
8731   InstructionMark im(this);
8732   int encode = prefix_and_encode(dst->encoding());
8733   emit_int8((unsigned char)(0xB8 | encode));
8734   emit_data((int)imm32, rspec, narrow_oop_operand);
8735 }
8736 
8737 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
8738   InstructionMark im(this);
8739   prefix(dst);
8740   emit_int8((unsigned char)0xC7);
8741   emit_operand(rax, dst, 4);
8742   emit_data((int)imm32, rspec, narrow_oop_operand);
8743 }
8744 
8745 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8746   InstructionMark im(this);
8747   int encode = prefix_and_encode(src1->encoding());
8748   emit_int8((unsigned char)0x81);
8749   emit_int8((unsigned char)(0xF8 | encode));
8750   emit_data((int)imm32, rspec, narrow_oop_operand);
8751 }
8752 
8753 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8754   InstructionMark im(this);
8755   prefix(src1);
8756   emit_int8((unsigned char)0x81);
8757   emit_operand(rax, src1, 4);
8758   emit_data((int)imm32, rspec, narrow_oop_operand);
8759 }
8760 
8761 void Assembler::lzcntq(Register dst, Register src) {
8762   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8763   emit_int8((unsigned char)0xF3);
8764   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8765   emit_int8(0x0F);
8766   emit_int8((unsigned char)0xBD);
8767   emit_int8((unsigned char)(0xC0 | encode));
8768 }
8769 
8770 void Assembler::movdq(XMMRegister dst, Register src) {
8771   // table D-1 says MMX/SSE2
8772   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8773   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8774   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8775   emit_int8(0x6E);
8776   emit_int8((unsigned char)(0xC0 | encode));
8777 }
8778 
8779 void Assembler::movdq(Register dst, XMMRegister src) {
8780   // table D-1 says MMX/SSE2
8781   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8782   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8783   // swap src/dst to get correct prefix
8784   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8785   emit_int8(0x7E);
8786   emit_int8((unsigned char)(0xC0 | encode));
8787 }
8788 
8789 void Assembler::movq(Register dst, Register src) {
8790   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8791   emit_int8((unsigned char)0x8B);
8792   emit_int8((unsigned char)(0xC0 | encode));
8793 }
8794 
8795 void Assembler::movq(Register dst, Address src) {
8796   InstructionMark im(this);
8797   prefixq(src, dst);
8798   emit_int8((unsigned char)0x8B);
8799   emit_operand(dst, src);
8800 }
8801 
8802 void Assembler::movq(Address dst, Register src) {
8803   InstructionMark im(this);
8804   prefixq(dst, src);
8805   emit_int8((unsigned char)0x89);
8806   emit_operand(src, dst);
8807 }
8808 
8809 void Assembler::movsbq(Register dst, Address src) {
8810   InstructionMark im(this);
8811   prefixq(src, dst);
8812   emit_int8(0x0F);
8813   emit_int8((unsigned char)0xBE);
8814   emit_operand(dst, src);
8815 }
8816 
8817 void Assembler::movsbq(Register dst, Register src) {
8818   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8819   emit_int8(0x0F);
8820   emit_int8((unsigned char)0xBE);
8821   emit_int8((unsigned char)(0xC0 | encode));
8822 }
8823 
8824 void Assembler::movslq(Register dst, int32_t imm32) {
8825   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8826   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8827   // as a result we shouldn't use until tested at runtime...
8828   ShouldNotReachHere();
8829   InstructionMark im(this);
8830   int encode = prefixq_and_encode(dst->encoding());
8831   emit_int8((unsigned char)(0xC7 | encode));
8832   emit_int32(imm32);
8833 }
8834 
8835 void Assembler::movslq(Address dst, int32_t imm32) {
8836   assert(is_simm32(imm32), "lost bits");
8837   InstructionMark im(this);
8838   prefixq(dst);
8839   emit_int8((unsigned char)0xC7);
8840   emit_operand(rax, dst, 4);
8841   emit_int32(imm32);
8842 }
8843 
8844 void Assembler::movslq(Register dst, Address src) {
8845   InstructionMark im(this);
8846   prefixq(src, dst);
8847   emit_int8(0x63);
8848   emit_operand(dst, src);
8849 }
8850 
8851 void Assembler::movslq(Register dst, Register src) {
8852   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8853   emit_int8(0x63);
8854   emit_int8((unsigned char)(0xC0 | encode));
8855 }
8856 
8857 void Assembler::movswq(Register dst, Address src) {
8858   InstructionMark im(this);
8859   prefixq(src, dst);
8860   emit_int8(0x0F);
8861   emit_int8((unsigned char)0xBF);
8862   emit_operand(dst, src);
8863 }
8864 
8865 void Assembler::movswq(Register dst, Register src) {
8866   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8867   emit_int8((unsigned char)0x0F);
8868   emit_int8((unsigned char)0xBF);
8869   emit_int8((unsigned char)(0xC0 | encode));
8870 }
8871 
8872 void Assembler::movzbq(Register dst, Address src) {
8873   InstructionMark im(this);
8874   prefixq(src, dst);
8875   emit_int8((unsigned char)0x0F);
8876   emit_int8((unsigned char)0xB6);
8877   emit_operand(dst, src);
8878 }
8879 
8880 void Assembler::movzbq(Register dst, Register src) {
8881   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8882   emit_int8(0x0F);
8883   emit_int8((unsigned char)0xB6);
8884   emit_int8(0xC0 | encode);
8885 }
8886 
8887 void Assembler::movzwq(Register dst, Address src) {
8888   InstructionMark im(this);
8889   prefixq(src, dst);
8890   emit_int8((unsigned char)0x0F);
8891   emit_int8((unsigned char)0xB7);
8892   emit_operand(dst, src);
8893 }
8894 
8895 void Assembler::movzwq(Register dst, Register src) {
8896   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8897   emit_int8((unsigned char)0x0F);
8898   emit_int8((unsigned char)0xB7);
8899   emit_int8((unsigned char)(0xC0 | encode));
8900 }
8901 
8902 void Assembler::mulq(Address src) {
8903   InstructionMark im(this);
8904   prefixq(src);
8905   emit_int8((unsigned char)0xF7);
8906   emit_operand(rsp, src);
8907 }
8908 
8909 void Assembler::mulq(Register src) {
8910   int encode = prefixq_and_encode(src->encoding());
8911   emit_int8((unsigned char)0xF7);
8912   emit_int8((unsigned char)(0xE0 | encode));
8913 }
8914 
8915 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8916   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8917   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8918   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8919   emit_int8((unsigned char)0xF6);
8920   emit_int8((unsigned char)(0xC0 | encode));
8921 }
8922 
8923 void Assembler::negq(Register dst) {
8924   int encode = prefixq_and_encode(dst->encoding());
8925   emit_int8((unsigned char)0xF7);
8926   emit_int8((unsigned char)(0xD8 | encode));
8927 }
8928 
8929 void Assembler::notq(Register dst) {
8930   int encode = prefixq_and_encode(dst->encoding());
8931   emit_int8((unsigned char)0xF7);
8932   emit_int8((unsigned char)(0xD0 | encode));
8933 }
8934 
8935 void Assembler::orq(Address dst, int32_t imm32) {
8936   InstructionMark im(this);
8937   prefixq(dst);
8938   emit_int8((unsigned char)0x81);
8939   emit_operand(rcx, dst, 4);
8940   emit_int32(imm32);
8941 }
8942 
8943 void Assembler::orq(Register dst, int32_t imm32) {
8944   (void) prefixq_and_encode(dst->encoding());
8945   emit_arith(0x81, 0xC8, dst, imm32);
8946 }
8947 
8948 void Assembler::orq(Register dst, Address src) {
8949   InstructionMark im(this);
8950   prefixq(src, dst);
8951   emit_int8(0x0B);
8952   emit_operand(dst, src);
8953 }
8954 
8955 void Assembler::orq(Register dst, Register src) {
8956   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8957   emit_arith(0x0B, 0xC0, dst, src);
8958 }
8959 
8960 void Assembler::popa() { // 64bit
8961   movq(r15, Address(rsp, 0));
8962   movq(r14, Address(rsp, wordSize));
8963   movq(r13, Address(rsp, 2 * wordSize));
8964   movq(r12, Address(rsp, 3 * wordSize));
8965   movq(r11, Address(rsp, 4 * wordSize));
8966   movq(r10, Address(rsp, 5 * wordSize));
8967   movq(r9,  Address(rsp, 6 * wordSize));
8968   movq(r8,  Address(rsp, 7 * wordSize));
8969   movq(rdi, Address(rsp, 8 * wordSize));
8970   movq(rsi, Address(rsp, 9 * wordSize));
8971   movq(rbp, Address(rsp, 10 * wordSize));
8972   // skip rsp
8973   movq(rbx, Address(rsp, 12 * wordSize));
8974   movq(rdx, Address(rsp, 13 * wordSize));
8975   movq(rcx, Address(rsp, 14 * wordSize));
8976   movq(rax, Address(rsp, 15 * wordSize));
8977 
8978   addq(rsp, 16 * wordSize);
8979 }
8980 
8981 void Assembler::popcntq(Register dst, Address src) {
8982   assert(VM_Version::supports_popcnt(), "must support");
8983   InstructionMark im(this);
8984   emit_int8((unsigned char)0xF3);
8985   prefixq(src, dst);
8986   emit_int8((unsigned char)0x0F);
8987   emit_int8((unsigned char)0xB8);
8988   emit_operand(dst, src);
8989 }
8990 
8991 void Assembler::popcntq(Register dst, Register src) {
8992   assert(VM_Version::supports_popcnt(), "must support");
8993   emit_int8((unsigned char)0xF3);
8994   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8995   emit_int8((unsigned char)0x0F);
8996   emit_int8((unsigned char)0xB8);
8997   emit_int8((unsigned char)(0xC0 | encode));
8998 }
8999 
9000 void Assembler::popq(Address dst) {
9001   InstructionMark im(this);
9002   prefixq(dst);
9003   emit_int8((unsigned char)0x8F);
9004   emit_operand(rax, dst);
9005 }
9006 
9007 void Assembler::pusha() { // 64bit
9008   // we have to store original rsp.  ABI says that 128 bytes
9009   // below rsp are local scratch.
9010   movq(Address(rsp, -5 * wordSize), rsp);
9011 
9012   subq(rsp, 16 * wordSize);
9013 
9014   movq(Address(rsp, 15 * wordSize), rax);
9015   movq(Address(rsp, 14 * wordSize), rcx);
9016   movq(Address(rsp, 13 * wordSize), rdx);
9017   movq(Address(rsp, 12 * wordSize), rbx);
9018   // skip rsp
9019   movq(Address(rsp, 10 * wordSize), rbp);
9020   movq(Address(rsp, 9 * wordSize), rsi);
9021   movq(Address(rsp, 8 * wordSize), rdi);
9022   movq(Address(rsp, 7 * wordSize), r8);
9023   movq(Address(rsp, 6 * wordSize), r9);
9024   movq(Address(rsp, 5 * wordSize), r10);
9025   movq(Address(rsp, 4 * wordSize), r11);
9026   movq(Address(rsp, 3 * wordSize), r12);
9027   movq(Address(rsp, 2 * wordSize), r13);
9028   movq(Address(rsp, wordSize), r14);
9029   movq(Address(rsp, 0), r15);
9030 }
9031 
9032 void Assembler::pushq(Address src) {
9033   InstructionMark im(this);
9034   prefixq(src);
9035   emit_int8((unsigned char)0xFF);
9036   emit_operand(rsi, src);
9037 }
9038 
9039 void Assembler::rclq(Register dst, int imm8) {
9040   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9041   int encode = prefixq_and_encode(dst->encoding());
9042   if (imm8 == 1) {
9043     emit_int8((unsigned char)0xD1);
9044     emit_int8((unsigned char)(0xD0 | encode));
9045   } else {
9046     emit_int8((unsigned char)0xC1);
9047     emit_int8((unsigned char)(0xD0 | encode));
9048     emit_int8(imm8);
9049   }
9050 }
9051 
9052 void Assembler::rcrq(Register dst, int imm8) {
9053   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9054   int encode = prefixq_and_encode(dst->encoding());
9055   if (imm8 == 1) {
9056     emit_int8((unsigned char)0xD1);
9057     emit_int8((unsigned char)(0xD8 | encode));
9058   } else {
9059     emit_int8((unsigned char)0xC1);
9060     emit_int8((unsigned char)(0xD8 | encode));
9061     emit_int8(imm8);
9062   }
9063 }
9064 
9065 void Assembler::rorq(Register dst, int imm8) {
9066   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9067   int encode = prefixq_and_encode(dst->encoding());
9068   if (imm8 == 1) {
9069     emit_int8((unsigned char)0xD1);
9070     emit_int8((unsigned char)(0xC8 | encode));
9071   } else {
9072     emit_int8((unsigned char)0xC1);
9073     emit_int8((unsigned char)(0xc8 | encode));
9074     emit_int8(imm8);
9075   }
9076 }
9077 
9078 void Assembler::rorxq(Register dst, Register src, int imm8) {
9079   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
9080   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9081   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
9082   emit_int8((unsigned char)0xF0);
9083   emit_int8((unsigned char)(0xC0 | encode));
9084   emit_int8(imm8);
9085 }
9086 
9087 void Assembler::rorxd(Register dst, Register src, int imm8) {
9088   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
9089   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9090   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
9091   emit_int8((unsigned char)0xF0);
9092   emit_int8((unsigned char)(0xC0 | encode));
9093   emit_int8(imm8);
9094 }
9095 
9096 void Assembler::sarq(Register dst, int imm8) {
9097   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9098   int encode = prefixq_and_encode(dst->encoding());
9099   if (imm8 == 1) {
9100     emit_int8((unsigned char)0xD1);
9101     emit_int8((unsigned char)(0xF8 | encode));
9102   } else {
9103     emit_int8((unsigned char)0xC1);
9104     emit_int8((unsigned char)(0xF8 | encode));
9105     emit_int8(imm8);
9106   }
9107 }
9108 
9109 void Assembler::sarq(Register dst) {
9110   int encode = prefixq_and_encode(dst->encoding());
9111   emit_int8((unsigned char)0xD3);
9112   emit_int8((unsigned char)(0xF8 | encode));
9113 }
9114 
9115 void Assembler::sbbq(Address dst, int32_t imm32) {
9116   InstructionMark im(this);
9117   prefixq(dst);
9118   emit_arith_operand(0x81, rbx, dst, imm32);
9119 }
9120 
9121 void Assembler::sbbq(Register dst, int32_t imm32) {
9122   (void) prefixq_and_encode(dst->encoding());
9123   emit_arith(0x81, 0xD8, dst, imm32);
9124 }
9125 
9126 void Assembler::sbbq(Register dst, Address src) {
9127   InstructionMark im(this);
9128   prefixq(src, dst);
9129   emit_int8(0x1B);
9130   emit_operand(dst, src);
9131 }
9132 
9133 void Assembler::sbbq(Register dst, Register src) {
9134   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9135   emit_arith(0x1B, 0xC0, dst, src);
9136 }
9137 
9138 void Assembler::shlq(Register dst, int imm8) {
9139   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9140   int encode = prefixq_and_encode(dst->encoding());
9141   if (imm8 == 1) {
9142     emit_int8((unsigned char)0xD1);
9143     emit_int8((unsigned char)(0xE0 | encode));
9144   } else {
9145     emit_int8((unsigned char)0xC1);
9146     emit_int8((unsigned char)(0xE0 | encode));
9147     emit_int8(imm8);
9148   }
9149 }
9150 
9151 void Assembler::shlq(Register dst) {
9152   int encode = prefixq_and_encode(dst->encoding());
9153   emit_int8((unsigned char)0xD3);
9154   emit_int8((unsigned char)(0xE0 | encode));
9155 }
9156 
9157 void Assembler::shrq(Register dst, int imm8) {
9158   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9159   int encode = prefixq_and_encode(dst->encoding());
9160   emit_int8((unsigned char)0xC1);
9161   emit_int8((unsigned char)(0xE8 | encode));
9162   emit_int8(imm8);
9163 }
9164 
9165 void Assembler::shrq(Register dst) {
9166   int encode = prefixq_and_encode(dst->encoding());
9167   emit_int8((unsigned char)0xD3);
9168   emit_int8(0xE8 | encode);
9169 }
9170 
9171 void Assembler::subq(Address dst, int32_t imm32) {
9172   InstructionMark im(this);
9173   prefixq(dst);
9174   emit_arith_operand(0x81, rbp, dst, imm32);
9175 }
9176 
9177 void Assembler::subq(Address dst, Register src) {
9178   InstructionMark im(this);
9179   prefixq(dst, src);
9180   emit_int8(0x29);
9181   emit_operand(src, dst);
9182 }
9183 
9184 void Assembler::subq(Register dst, int32_t imm32) {
9185   (void) prefixq_and_encode(dst->encoding());
9186   emit_arith(0x81, 0xE8, dst, imm32);
9187 }
9188 
9189 // Force generation of a 4 byte immediate value even if it fits into 8bit
9190 void Assembler::subq_imm32(Register dst, int32_t imm32) {
9191   (void) prefixq_and_encode(dst->encoding());
9192   emit_arith_imm32(0x81, 0xE8, dst, imm32);
9193 }
9194 
9195 void Assembler::subq(Register dst, Address src) {
9196   InstructionMark im(this);
9197   prefixq(src, dst);
9198   emit_int8(0x2B);
9199   emit_operand(dst, src);
9200 }
9201 
9202 void Assembler::subq(Register dst, Register src) {
9203   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9204   emit_arith(0x2B, 0xC0, dst, src);
9205 }
9206 
9207 void Assembler::testq(Register dst, int32_t imm32) {
9208   // not using emit_arith because test
9209   // doesn't support sign-extension of
9210   // 8bit operands
9211   int encode = dst->encoding();
9212   if (encode == 0) {
9213     prefix(REX_W);
9214     emit_int8((unsigned char)0xA9);
9215   } else {
9216     encode = prefixq_and_encode(encode);
9217     emit_int8((unsigned char)0xF7);
9218     emit_int8((unsigned char)(0xC0 | encode));
9219   }
9220   emit_int32(imm32);
9221 }
9222 
9223 void Assembler::testq(Register dst, Register src) {
9224   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9225   emit_arith(0x85, 0xC0, dst, src);
9226 }
9227 
9228 void Assembler::testq(Register dst, Address src) {
9229   InstructionMark im(this);
9230   prefixq(src, dst);
9231   emit_int8((unsigned char)0x85);
9232   emit_operand(dst, src);
9233 }
9234 
9235 void Assembler::xaddq(Address dst, Register src) {
9236   InstructionMark im(this);
9237   prefixq(dst, src);
9238   emit_int8(0x0F);
9239   emit_int8((unsigned char)0xC1);
9240   emit_operand(src, dst);
9241 }
9242 
9243 void Assembler::xchgq(Register dst, Address src) {
9244   InstructionMark im(this);
9245   prefixq(src, dst);
9246   emit_int8((unsigned char)0x87);
9247   emit_operand(dst, src);
9248 }
9249 
9250 void Assembler::xchgq(Register dst, Register src) {
9251   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9252   emit_int8((unsigned char)0x87);
9253   emit_int8((unsigned char)(0xc0 | encode));
9254 }
9255 
9256 void Assembler::xorq(Register dst, Register src) {
9257   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9258   emit_arith(0x33, 0xC0, dst, src);
9259 }
9260 
9261 void Assembler::xorq(Register dst, Address src) {
9262   InstructionMark im(this);
9263   prefixq(src, dst);
9264   emit_int8(0x33);
9265   emit_operand(dst, src);
9266 }
9267 
9268 #endif // !LP64