1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableBarrierSet.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/os.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifdef PRODUCT
  41 #define BLOCK_COMMENT(str) /* nothing */
  42 #define STOP(error) stop(error)
  43 #else
  44 #define BLOCK_COMMENT(str) block_comment(str)
  45 #define STOP(error) block_comment(error); stop(error)
  46 #endif
  47 
  48 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  49 // Implementation of AddressLiteral
  50 
  51 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  52 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  53   // -----------------Table 4.5 -------------------- //
  54   16, 32, 64,  // EVEX_FV(0)
  55   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  56   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  57   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  58   8,  16, 32,  // EVEX_HV(0)
  59   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  60   // -----------------Table 4.6 -------------------- //
  61   16, 32, 64,  // EVEX_FVM(0)
  62   1,  1,  1,   // EVEX_T1S(0)
  63   2,  2,  2,   // EVEX_T1S(1)
  64   4,  4,  4,   // EVEX_T1S(2)
  65   8,  8,  8,   // EVEX_T1S(3)
  66   4,  4,  4,   // EVEX_T1F(0)
  67   8,  8,  8,   // EVEX_T1F(1)
  68   8,  8,  8,   // EVEX_T2(0)
  69   0,  16, 16,  // EVEX_T2(1)
  70   0,  16, 16,  // EVEX_T4(0)
  71   0,  0,  32,  // EVEX_T4(1)
  72   0,  0,  32,  // EVEX_T8(0)
  73   8,  16, 32,  // EVEX_HVM(0)
  74   4,  8,  16,  // EVEX_QVM(0)
  75   2,  4,  8,   // EVEX_OVM(0)
  76   16, 16, 16,  // EVEX_M128(0)
  77   8,  32, 64,  // EVEX_DUP(0)
  78   0,  0,  0    // EVEX_NTUP
  79 };
  80 
  81 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  82   _is_lval = false;
  83   _target = target;
  84   switch (rtype) {
  85   case relocInfo::oop_type:
  86   case relocInfo::metadata_type:
  87     // Oops are a special case. Normally they would be their own section
  88     // but in cases like icBuffer they are literals in the code stream that
  89     // we don't have a section for. We use none so that we get a literal address
  90     // which is always patchable.
  91     break;
  92   case relocInfo::external_word_type:
  93     _rspec = external_word_Relocation::spec(target);
  94     break;
  95   case relocInfo::internal_word_type:
  96     _rspec = internal_word_Relocation::spec(target);
  97     break;
  98   case relocInfo::opt_virtual_call_type:
  99     _rspec = opt_virtual_call_Relocation::spec();
 100     break;
 101   case relocInfo::static_call_type:
 102     _rspec = static_call_Relocation::spec();
 103     break;
 104   case relocInfo::runtime_call_type:
 105     _rspec = runtime_call_Relocation::spec();
 106     break;
 107   case relocInfo::poll_type:
 108   case relocInfo::poll_return_type:
 109     _rspec = Relocation::spec_simple(rtype);
 110     break;
 111   case relocInfo::none:
 112     break;
 113   default:
 114     ShouldNotReachHere();
 115     break;
 116   }
 117 }
 118 
 119 // Implementation of Address
 120 
 121 #ifdef _LP64
 122 
 123 Address Address::make_array(ArrayAddress adr) {
 124   // Not implementable on 64bit machines
 125   // Should have been handled higher up the call chain.
 126   ShouldNotReachHere();
 127   return Address();
 128 }
 129 
 130 // exceedingly dangerous constructor
 131 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 132   _base  = noreg;
 133   _index = noreg;
 134   _scale = no_scale;
 135   _disp  = disp;
 136   _xmmindex = xnoreg;
 137   _isxmmindex = false;
 138   switch (rtype) {
 139     case relocInfo::external_word_type:
 140       _rspec = external_word_Relocation::spec(loc);
 141       break;
 142     case relocInfo::internal_word_type:
 143       _rspec = internal_word_Relocation::spec(loc);
 144       break;
 145     case relocInfo::runtime_call_type:
 146       // HMM
 147       _rspec = runtime_call_Relocation::spec();
 148       break;
 149     case relocInfo::poll_type:
 150     case relocInfo::poll_return_type:
 151       _rspec = Relocation::spec_simple(rtype);
 152       break;
 153     case relocInfo::none:
 154       break;
 155     default:
 156       ShouldNotReachHere();
 157   }
 158 }
 159 #else // LP64
 160 
 161 Address Address::make_array(ArrayAddress adr) {
 162   AddressLiteral base = adr.base();
 163   Address index = adr.index();
 164   assert(index._disp == 0, "must not have disp"); // maybe it can?
 165   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 166   array._rspec = base._rspec;
 167   return array;
 168 }
 169 
 170 // exceedingly dangerous constructor
 171 Address::Address(address loc, RelocationHolder spec) {
 172   _base  = noreg;
 173   _index = noreg;
 174   _scale = no_scale;
 175   _disp  = (intptr_t) loc;
 176   _rspec = spec;
 177   _xmmindex = xnoreg;
 178   _isxmmindex = false;
 179 }
 180 
 181 #endif // _LP64
 182 
 183 
 184 
 185 // Convert the raw encoding form into the form expected by the constructor for
 186 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 187 // that to noreg for the Address constructor.
 188 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 189   RelocationHolder rspec;
 190   if (disp_reloc != relocInfo::none) {
 191     rspec = Relocation::spec_simple(disp_reloc);
 192   }
 193   bool valid_index = index != rsp->encoding();
 194   if (valid_index) {
 195     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 196     madr._rspec = rspec;
 197     return madr;
 198   } else {
 199     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 200     madr._rspec = rspec;
 201     return madr;
 202   }
 203 }
 204 
 205 // Implementation of Assembler
 206 
 207 int AbstractAssembler::code_fill_byte() {
 208   return (u_char)'\xF4'; // hlt
 209 }
 210 
 211 // make this go away someday
 212 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 213   if (rtype == relocInfo::none)
 214     emit_int32(data);
 215   else
 216     emit_data(data, Relocation::spec_simple(rtype), format);
 217 }
 218 
 219 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 220   assert(imm_operand == 0, "default format must be immediate in this file");
 221   assert(inst_mark() != NULL, "must be inside InstructionMark");
 222   if (rspec.type() !=  relocInfo::none) {
 223     #ifdef ASSERT
 224       check_relocation(rspec, format);
 225     #endif
 226     // Do not use AbstractAssembler::relocate, which is not intended for
 227     // embedded words.  Instead, relocate to the enclosing instruction.
 228 
 229     // hack. call32 is too wide for mask so use disp32
 230     if (format == call32_operand)
 231       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 232     else
 233       code_section()->relocate(inst_mark(), rspec, format);
 234   }
 235   emit_int32(data);
 236 }
 237 
 238 static int encode(Register r) {
 239   int enc = r->encoding();
 240   if (enc >= 8) {
 241     enc -= 8;
 242   }
 243   return enc;
 244 }
 245 
 246 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 247   assert(dst->has_byte_register(), "must have byte register");
 248   assert(isByte(op1) && isByte(op2), "wrong opcode");
 249   assert(isByte(imm8), "not a byte");
 250   assert((op1 & 0x01) == 0, "should be 8bit operation");
 251   emit_int24(op1, (op2 | encode(dst)), imm8);
 252 }
 253 
 254 
 255 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 256   assert(isByte(op1) && isByte(op2), "wrong opcode");
 257   assert((op1 & 0x01) == 1, "should be 32bit operation");
 258   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 259   if (is8bit(imm32)) {
 260     emit_int24(op1 | 0x02,        // set sign bit
 261                op2 | encode(dst),
 262                imm32 & 0xFF);
 263   } else {
 264     emit_int16(op1, (op2 | encode(dst)));
 265     emit_int32(imm32);
 266   }
 267 }
 268 
 269 // Force generation of a 4 byte immediate value even if it fits into 8bit
 270 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 271   assert(isByte(op1) && isByte(op2), "wrong opcode");
 272   assert((op1 & 0x01) == 1, "should be 32bit operation");
 273   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 274   emit_int16(op1, (op2 | encode(dst)));
 275   emit_int32(imm32);
 276 }
 277 
 278 // immediate-to-memory forms
 279 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 280   assert((op1 & 0x01) == 1, "should be 32bit operation");
 281   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 282   if (is8bit(imm32)) {
 283     emit_int8(op1 | 0x02); // set sign bit
 284     emit_operand(rm, adr, 1);
 285     emit_int8(imm32 & 0xFF);
 286   } else {
 287     emit_int8(op1);
 288     emit_operand(rm, adr, 4);
 289     emit_int32(imm32);
 290   }
 291 }
 292 
 293 
 294 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 295   assert(isByte(op1) && isByte(op2), "wrong opcode");
 296   emit_int16(op1, (op2 | encode(dst) << 3 | encode(src)));
 297 }
 298 
 299 
 300 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 301                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 302   int mod_idx = 0;
 303   // We will test if the displacement fits the compressed format and if so
 304   // apply the compression to the displacment iff the result is8bit.
 305   if (VM_Version::supports_evex() && is_evex_inst) {
 306     switch (cur_tuple_type) {
 307     case EVEX_FV:
 308       if ((cur_encoding & VEX_W) == VEX_W) {
 309         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 310       } else {
 311         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 312       }
 313       break;
 314 
 315     case EVEX_HV:
 316       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       break;
 318 
 319     case EVEX_FVM:
 320       break;
 321 
 322     case EVEX_T1S:
 323       switch (in_size_in_bits) {
 324       case EVEX_8bit:
 325         break;
 326 
 327       case EVEX_16bit:
 328         mod_idx = 1;
 329         break;
 330 
 331       case EVEX_32bit:
 332         mod_idx = 2;
 333         break;
 334 
 335       case EVEX_64bit:
 336         mod_idx = 3;
 337         break;
 338       }
 339       break;
 340 
 341     case EVEX_T1F:
 342     case EVEX_T2:
 343     case EVEX_T4:
 344       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 345       break;
 346 
 347     case EVEX_T8:
 348       break;
 349 
 350     case EVEX_HVM:
 351       break;
 352 
 353     case EVEX_QVM:
 354       break;
 355 
 356     case EVEX_OVM:
 357       break;
 358 
 359     case EVEX_M128:
 360       break;
 361 
 362     case EVEX_DUP:
 363       break;
 364 
 365     default:
 366       assert(0, "no valid evex tuple_table entry");
 367       break;
 368     }
 369 
 370     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 371       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 372       if ((disp % disp_factor) == 0) {
 373         int new_disp = disp / disp_factor;
 374         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 375           disp = new_disp;
 376         }
 377       } else {
 378         return false;
 379       }
 380     }
 381   }
 382   return (-0x80 <= disp && disp < 0x80);
 383 }
 384 
 385 
 386 bool Assembler::emit_compressed_disp_byte(int &disp) {
 387   int mod_idx = 0;
 388   // We will test if the displacement fits the compressed format and if so
 389   // apply the compression to the displacment iff the result is8bit.
 390   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 391     int evex_encoding = _attributes->get_evex_encoding();
 392     int tuple_type = _attributes->get_tuple_type();
 393     switch (tuple_type) {
 394     case EVEX_FV:
 395       if ((evex_encoding & VEX_W) == VEX_W) {
 396         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 397       } else {
 398         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 399       }
 400       break;
 401 
 402     case EVEX_HV:
 403       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       break;
 405 
 406     case EVEX_FVM:
 407       break;
 408 
 409     case EVEX_T1S:
 410       switch (_attributes->get_input_size()) {
 411       case EVEX_8bit:
 412         break;
 413 
 414       case EVEX_16bit:
 415         mod_idx = 1;
 416         break;
 417 
 418       case EVEX_32bit:
 419         mod_idx = 2;
 420         break;
 421 
 422       case EVEX_64bit:
 423         mod_idx = 3;
 424         break;
 425       }
 426       break;
 427 
 428     case EVEX_T1F:
 429     case EVEX_T2:
 430     case EVEX_T4:
 431       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 432       break;
 433 
 434     case EVEX_T8:
 435       break;
 436 
 437     case EVEX_HVM:
 438       break;
 439 
 440     case EVEX_QVM:
 441       break;
 442 
 443     case EVEX_OVM:
 444       break;
 445 
 446     case EVEX_M128:
 447       break;
 448 
 449     case EVEX_DUP:
 450       break;
 451 
 452     default:
 453       assert(0, "no valid evex tuple_table entry");
 454       break;
 455     }
 456 
 457     int vector_len = _attributes->get_vector_len();
 458     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 459       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 460       if ((disp % disp_factor) == 0) {
 461         int new_disp = disp / disp_factor;
 462         if (is8bit(new_disp)) {
 463           disp = new_disp;
 464         }
 465       } else {
 466         return false;
 467       }
 468     }
 469   }
 470   return is8bit(disp);
 471 }
 472 
 473 static bool is_valid_encoding(int reg_enc) {
 474   return reg_enc >= 0;
 475 }
 476 
 477 static int raw_encode(Register reg) {
 478   assert(reg == noreg || reg->is_valid(), "sanity");
 479   int reg_enc = (intptr_t)reg;
 480   assert(reg_enc == -1 || is_valid_encoding(reg_enc), "sanity");
 481   return reg_enc;
 482 }
 483 
 484 static int raw_encode(XMMRegister xmmreg) {
 485   assert(xmmreg == xnoreg || xmmreg->is_valid(), "sanity");
 486   int xmmreg_enc = (intptr_t)xmmreg;
 487   assert(xmmreg_enc == -1 || is_valid_encoding(xmmreg_enc), "sanity");
 488   return xmmreg_enc;
 489 }
 490 
 491 static int modrm_encoding(int mod, int dst_enc, int src_enc) {
 492   return (mod & 3) << 6 | (dst_enc & 7) << 3 | (src_enc & 7);
 493 }
 494 
 495 static int sib_encoding(Address::ScaleFactor scale, int index_enc, int base_enc) {
 496   return (scale & 3) << 6 | (index_enc & 7) << 3 | (base_enc & 7);
 497 }
 498 
 499 inline void Assembler::emit_modrm(int mod, int dst_enc, int src_enc) {
 500   assert((mod & 3) != 0b11, "forbidden");
 501   int modrm = modrm_encoding(mod, dst_enc, src_enc);
 502   emit_int8(modrm);
 503 }
 504 
 505 inline void Assembler::emit_modrm_disp8(int mod, int dst_enc, int src_enc,
 506                                         int disp) {
 507   int modrm = modrm_encoding(mod, dst_enc, src_enc);
 508   emit_int16(modrm, disp & 0xFF);
 509 }
 510 
 511 inline void Assembler::emit_modrm_sib(int mod, int dst_enc, int src_enc,
 512                                       Address::ScaleFactor scale, int index_enc, int base_enc) {
 513   int modrm = modrm_encoding(mod, dst_enc, src_enc);
 514   int sib = sib_encoding(scale, index_enc, base_enc);
 515   emit_int16(modrm, sib);
 516 }
 517 
 518 inline void Assembler::emit_modrm_sib_disp8(int mod, int dst_enc, int src_enc,
 519                                             Address::ScaleFactor scale, int index_enc, int base_enc,
 520                                             int disp) {
 521   int modrm = modrm_encoding(mod, dst_enc, src_enc);
 522   int sib = sib_encoding(scale, index_enc, base_enc);
 523   emit_int24(modrm, sib, disp & 0xFF);
 524 }
 525 
 526 void Assembler::emit_operand_helper(int reg_enc, int base_enc, int index_enc,
 527                                     Address::ScaleFactor scale, int disp,
 528                                     RelocationHolder const& rspec,
 529                                     int rip_relative_correction) {
 530   bool no_relocation = (rspec.type() == relocInfo::none);
 531 
 532   if (is_valid_encoding(base_enc)) {
 533     if (is_valid_encoding(index_enc)) {
 534       assert(scale != Address::no_scale, "inconsistent address");
 535       // [base + index*scale + disp]
 536       if (disp == 0 && no_relocation &&
 537           base_enc != rbp->encoding() LP64_ONLY(&& base_enc != r13->encoding())) {
 538         // [base + index*scale]
 539         // [00 reg 100][ss index base]
 540         emit_modrm_sib(0b00, reg_enc, 0b100,
 541                        scale, index_enc, base_enc);
 542       } else if (emit_compressed_disp_byte(disp) && no_relocation) {
 543         // [base + index*scale + imm8]
 544         // [01 reg 100][ss index base] imm8
 545         emit_modrm_sib_disp8(0b01, reg_enc, 0b100,
 546                              scale, index_enc, base_enc,
 547                              disp);
 548       } else {
 549         // [base + index*scale + disp32]
 550         // [10 reg 100][ss index base] disp32
 551         emit_modrm_sib(0b10, reg_enc, 0b100,
 552                        scale, index_enc, base_enc);
 553         emit_data(disp, rspec, disp32_operand);
 554       }
 555     } else if (base_enc == rsp->encoding() LP64_ONLY(|| base_enc == r12->encoding())) {
 556       // [rsp + disp]
 557       if (disp == 0 && no_relocation) {
 558         // [rsp]
 559         // [00 reg 100][00 100 100]
 560         emit_modrm_sib(0b00, reg_enc, 0b100,
 561                        Address::times_1, 0b100, 0b100);
 562       } else if (emit_compressed_disp_byte(disp) && no_relocation) {
 563         // [rsp + imm8]
 564         // [01 reg 100][00 100 100] disp8
 565         emit_modrm_sib_disp8(0b01, reg_enc, 0b100,
 566                              Address::times_1, 0b100, 0b100,
 567                              disp);
 568       } else {
 569         // [rsp + imm32]
 570         // [10 reg 100][00 100 100] disp32
 571         emit_modrm_sib(0b10, reg_enc, 0b100,
 572                        Address::times_1, 0b100, 0b100);
 573         emit_data(disp, rspec, disp32_operand);
 574       }
 575     } else {
 576       // [base + disp]
 577       assert(base_enc != rsp->encoding() LP64_ONLY(&& base_enc != r12->encoding()), "illegal addressing mode");
 578       if (disp == 0 && no_relocation &&
 579           base_enc != rbp->encoding() LP64_ONLY(&& base_enc != r13->encoding())) {
 580         // [base]
 581         // [00 reg base]
 582         emit_modrm(0, reg_enc, base_enc);
 583       } else if (emit_compressed_disp_byte(disp) && no_relocation) {
 584         // [base + disp8]
 585         // [01 reg base] disp8
 586         emit_modrm_disp8(0b01, reg_enc, base_enc,
 587                          disp);
 588       } else {
 589         // [base + disp32]
 590         // [10 reg base] disp32
 591         emit_modrm(0b10, reg_enc, base_enc);
 592         emit_data(disp, rspec, disp32_operand);
 593       }
 594     }
 595   } else {
 596     if (is_valid_encoding(index_enc)) {
 597       assert(scale != Address::no_scale, "inconsistent address");
 598       // base == noreg
 599       // [index*scale + disp]
 600       // [00 reg 100][ss index 101] disp32
 601       emit_modrm_sib(0b00, reg_enc, 0b100,
 602                      scale, index_enc, 0b101 /* no base */);
 603       emit_data(disp, rspec, disp32_operand);
 604     } else if (!no_relocation) {
 605       // base == noreg, index == noreg
 606       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 607       // [00 reg 101] disp32
 608 
 609       emit_modrm(0b00, reg_enc, 0b101 /* no base */);
 610       // Note that the RIP-rel. correction applies to the generated
 611       // disp field, but _not_ to the target address in the rspec.
 612 
 613       // disp was created by converting the target address minus the pc
 614       // at the start of the instruction. That needs more correction here.
 615       // intptr_t disp = target - next_ip;
 616       assert(inst_mark() != NULL, "must be inside InstructionMark");
 617       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 618       int64_t adjusted = disp;
 619       // Do rip-rel adjustment for 64bit
 620       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 621       assert(is_simm32(adjusted),
 622              "must be 32bit offset (RIP relative address)");
 623       emit_data((int32_t) adjusted, rspec, disp32_operand);
 624 
 625     } else {
 626       // base == noreg, index == noreg, no_relocation == true
 627       // 32bit never did this, did everything as the rip-rel/disp code above
 628       // [disp] ABSOLUTE
 629       // [00 reg 100][00 100 101] disp32
 630       emit_modrm_sib(0b00, reg_enc, 0b100 /* no base */,
 631                      Address::times_1, 0b100, 0b101);
 632       emit_data(disp, rspec, disp32_operand);
 633     }
 634   }
 635 }
 636 
 637 void Assembler::emit_operand(Register reg, Register base, Register index,
 638                              Address::ScaleFactor scale, int disp,
 639                              RelocationHolder const& rspec,
 640                              int rip_relative_correction) {
 641   assert(!index->is_valid() || index != rsp, "illegal addressing mode");
 642   emit_operand_helper(raw_encode(reg), raw_encode(base), raw_encode(index),
 643                       scale, disp, rspec, rip_relative_correction);
 644 
 645 }
 646 void Assembler::emit_operand(XMMRegister xmmreg, Register base, Register index,
 647                              Address::ScaleFactor scale, int disp,
 648                              RelocationHolder const& rspec) {
 649   assert(!index->is_valid() || index != rsp, "illegal addressing mode");
 650   assert(xmmreg->encoding() < 16 || UseAVX > 2, "not supported");
 651   emit_operand_helper(raw_encode(xmmreg), raw_encode(base), raw_encode(index),
 652                       scale, disp, rspec);
 653 }
 654 
 655 void Assembler::emit_operand(XMMRegister xmmreg, Register base, XMMRegister xmmindex,
 656                              Address::ScaleFactor scale, int disp,
 657                              RelocationHolder const& rspec) {
 658   assert(xmmreg->encoding() < 16 || UseAVX > 2, "not supported");
 659   assert(xmmindex->encoding() < 16 || UseAVX > 2, "not supported");
 660   emit_operand_helper(raw_encode(xmmreg), raw_encode(base), raw_encode(xmmindex),
 661                       scale, disp, rspec, /* rip_relative_correction */ 0);
 662 }
 663 
 664 // Secret local extension to Assembler::WhichOperand:
 665 #define end_pc_operand (_WhichOperand_limit)
 666 
 667 address Assembler::locate_operand(address inst, WhichOperand which) {
 668   // Decode the given instruction, and return the address of
 669   // an embedded 32-bit operand word.
 670 
 671   // If "which" is disp32_operand, selects the displacement portion
 672   // of an effective address specifier.
 673   // If "which" is imm64_operand, selects the trailing immediate constant.
 674   // If "which" is call32_operand, selects the displacement of a call or jump.
 675   // Caller is responsible for ensuring that there is such an operand,
 676   // and that it is 32/64 bits wide.
 677 
 678   // If "which" is end_pc_operand, find the end of the instruction.
 679 
 680   address ip = inst;
 681   bool is_64bit = false;
 682 
 683   debug_only(bool has_disp32 = false);
 684   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 685 
 686   again_after_prefix:
 687   switch (0xFF & *ip++) {
 688 
 689   // These convenience macros generate groups of "case" labels for the switch.
 690 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 691 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 692              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 693 #define REP16(x) REP8((x)+0): \
 694               case REP8((x)+8)
 695 
 696   case CS_segment:
 697   case SS_segment:
 698   case DS_segment:
 699   case ES_segment:
 700   case FS_segment:
 701   case GS_segment:
 702     // Seems dubious
 703     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 704     assert(ip == inst+1, "only one prefix allowed");
 705     goto again_after_prefix;
 706 
 707   case 0x67:
 708   case REX:
 709   case REX_B:
 710   case REX_X:
 711   case REX_XB:
 712   case REX_R:
 713   case REX_RB:
 714   case REX_RX:
 715   case REX_RXB:
 716     NOT_LP64(assert(false, "64bit prefixes"));
 717     goto again_after_prefix;
 718 
 719   case REX_W:
 720   case REX_WB:
 721   case REX_WX:
 722   case REX_WXB:
 723   case REX_WR:
 724   case REX_WRB:
 725   case REX_WRX:
 726   case REX_WRXB:
 727     NOT_LP64(assert(false, "64bit prefixes"));
 728     is_64bit = true;
 729     goto again_after_prefix;
 730 
 731   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 732   case 0x88: // movb a, r
 733   case 0x89: // movl a, r
 734   case 0x8A: // movb r, a
 735   case 0x8B: // movl r, a
 736   case 0x8F: // popl a
 737     debug_only(has_disp32 = true);
 738     break;
 739 
 740   case 0x68: // pushq #32
 741     if (which == end_pc_operand) {
 742       return ip + 4;
 743     }
 744     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 745     return ip;                  // not produced by emit_operand
 746 
 747   case 0x66: // movw ... (size prefix)
 748     again_after_size_prefix2:
 749     switch (0xFF & *ip++) {
 750     case REX:
 751     case REX_B:
 752     case REX_X:
 753     case REX_XB:
 754     case REX_R:
 755     case REX_RB:
 756     case REX_RX:
 757     case REX_RXB:
 758     case REX_W:
 759     case REX_WB:
 760     case REX_WX:
 761     case REX_WXB:
 762     case REX_WR:
 763     case REX_WRB:
 764     case REX_WRX:
 765     case REX_WRXB:
 766       NOT_LP64(assert(false, "64bit prefix found"));
 767       goto again_after_size_prefix2;
 768     case 0x8B: // movw r, a
 769     case 0x89: // movw a, r
 770       debug_only(has_disp32 = true);
 771       break;
 772     case 0xC7: // movw a, #16
 773       debug_only(has_disp32 = true);
 774       tail_size = 2;  // the imm16
 775       break;
 776     case 0x0F: // several SSE/SSE2 variants
 777       ip--;    // reparse the 0x0F
 778       goto again_after_prefix;
 779     default:
 780       ShouldNotReachHere();
 781     }
 782     break;
 783 
 784   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 785     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 786     // these asserts are somewhat nonsensical
 787 #ifndef _LP64
 788     assert(which == imm_operand || which == disp32_operand,
 789            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 790 #else
 791     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 792            which == narrow_oop_operand && !is_64bit,
 793            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 794 #endif // _LP64
 795     return ip;
 796 
 797   case 0x69: // imul r, a, #32
 798   case 0xC7: // movl a, #32(oop?)
 799     tail_size = 4;
 800     debug_only(has_disp32 = true); // has both kinds of operands!
 801     break;
 802 
 803   case 0x0F: // movx..., etc.
 804     switch (0xFF & *ip++) {
 805     case 0x3A: // pcmpestri
 806       tail_size = 1;
 807     case 0x38: // ptest, pmovzxbw
 808       ip++; // skip opcode
 809       debug_only(has_disp32 = true); // has both kinds of operands!
 810       break;
 811 
 812     case 0x70: // pshufd r, r/a, #8
 813       debug_only(has_disp32 = true); // has both kinds of operands!
 814     case 0x73: // psrldq r, #8
 815       tail_size = 1;
 816       break;
 817 
 818     case 0x12: // movlps
 819     case 0x28: // movaps
 820     case 0x2E: // ucomiss
 821     case 0x2F: // comiss
 822     case 0x54: // andps
 823     case 0x55: // andnps
 824     case 0x56: // orps
 825     case 0x57: // xorps
 826     case 0x58: // addpd
 827     case 0x59: // mulpd
 828     case 0x6E: // movd
 829     case 0x7E: // movd
 830     case 0x6F: // movdq
 831     case 0x7F: // movdq
 832     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 833     case 0xFE: // paddd
 834       debug_only(has_disp32 = true);
 835       break;
 836 
 837     case 0xAD: // shrd r, a, %cl
 838     case 0xAF: // imul r, a
 839     case 0xBE: // movsbl r, a (movsxb)
 840     case 0xBF: // movswl r, a (movsxw)
 841     case 0xB6: // movzbl r, a (movzxb)
 842     case 0xB7: // movzwl r, a (movzxw)
 843     case REP16(0x40): // cmovl cc, r, a
 844     case 0xB0: // cmpxchgb
 845     case 0xB1: // cmpxchg
 846     case 0xC1: // xaddl
 847     case 0xC7: // cmpxchg8
 848     case REP16(0x90): // setcc a
 849       debug_only(has_disp32 = true);
 850       // fall out of the switch to decode the address
 851       break;
 852 
 853     case 0xC4: // pinsrw r, a, #8
 854       debug_only(has_disp32 = true);
 855     case 0xC5: // pextrw r, r, #8
 856       tail_size = 1;  // the imm8
 857       break;
 858 
 859     case 0xAC: // shrd r, a, #8
 860       debug_only(has_disp32 = true);
 861       tail_size = 1;  // the imm8
 862       break;
 863 
 864     case REP16(0x80): // jcc rdisp32
 865       if (which == end_pc_operand)  return ip + 4;
 866       assert(which == call32_operand, "jcc has no disp32 or imm");
 867       return ip;
 868     default:
 869       ShouldNotReachHere();
 870     }
 871     break;
 872 
 873   case 0x81: // addl a, #32; addl r, #32
 874     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 875     // on 32bit in the case of cmpl, the imm might be an oop
 876     tail_size = 4;
 877     debug_only(has_disp32 = true); // has both kinds of operands!
 878     break;
 879 
 880   case 0x83: // addl a, #8; addl r, #8
 881     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 882     debug_only(has_disp32 = true); // has both kinds of operands!
 883     tail_size = 1;
 884     break;
 885 
 886   case 0x9B:
 887     switch (0xFF & *ip++) {
 888     case 0xD9: // fnstcw a
 889       debug_only(has_disp32 = true);
 890       break;
 891     default:
 892       ShouldNotReachHere();
 893     }
 894     break;
 895 
 896   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 897   case REP4(0x10): // adc...
 898   case REP4(0x20): // and...
 899   case REP4(0x30): // xor...
 900   case REP4(0x08): // or...
 901   case REP4(0x18): // sbb...
 902   case REP4(0x28): // sub...
 903   case 0xF7: // mull a
 904   case 0x8D: // lea r, a
 905   case 0x87: // xchg r, a
 906   case REP4(0x38): // cmp...
 907   case 0x85: // test r, a
 908     debug_only(has_disp32 = true); // has both kinds of operands!
 909     break;
 910 
 911   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 912   case 0xC6: // movb a, #8
 913   case 0x80: // cmpb a, #8
 914   case 0x6B: // imul r, a, #8
 915     debug_only(has_disp32 = true); // has both kinds of operands!
 916     tail_size = 1; // the imm8
 917     break;
 918 
 919   case 0xC4: // VEX_3bytes
 920   case 0xC5: // VEX_2bytes
 921     assert((UseAVX > 0), "shouldn't have VEX prefix");
 922     assert(ip == inst+1, "no prefixes allowed");
 923     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 924     // but they have prefix 0x0F and processed when 0x0F processed above.
 925     //
 926     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 927     // instructions (these instructions are not supported in 64-bit mode).
 928     // To distinguish them bits [7:6] are set in the VEX second byte since
 929     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 930     // those VEX bits REX and vvvv bits are inverted.
 931     //
 932     // Fortunately C2 doesn't generate these instructions so we don't need
 933     // to check for them in product version.
 934 
 935     // Check second byte
 936     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 937 
 938     int vex_opcode;
 939     // First byte
 940     if ((0xFF & *inst) == VEX_3bytes) {
 941       vex_opcode = VEX_OPCODE_MASK & *ip;
 942       ip++; // third byte
 943       is_64bit = ((VEX_W & *ip) == VEX_W);
 944     } else {
 945       vex_opcode = VEX_OPCODE_0F;
 946     }
 947     ip++; // opcode
 948     // To find the end of instruction (which == end_pc_operand).
 949     switch (vex_opcode) {
 950       case VEX_OPCODE_0F:
 951         switch (0xFF & *ip) {
 952         case 0x70: // pshufd r, r/a, #8
 953         case 0x71: // ps[rl|ra|ll]w r, #8
 954         case 0x72: // ps[rl|ra|ll]d r, #8
 955         case 0x73: // ps[rl|ra|ll]q r, #8
 956         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 957         case 0xC4: // pinsrw r, r, r/a, #8
 958         case 0xC5: // pextrw r/a, r, #8
 959         case 0xC6: // shufp[s|d] r, r, r/a, #8
 960           tail_size = 1;  // the imm8
 961           break;
 962         }
 963         break;
 964       case VEX_OPCODE_0F_3A:
 965         tail_size = 1;
 966         break;
 967     }
 968     ip++; // skip opcode
 969     debug_only(has_disp32 = true); // has both kinds of operands!
 970     break;
 971 
 972   case 0x62: // EVEX_4bytes
 973     assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix");
 974     assert(ip == inst+1, "no prefixes allowed");
 975     // no EVEX collisions, all instructions that have 0x62 opcodes
 976     // have EVEX versions and are subopcodes of 0x66
 977     ip++; // skip P0 and exmaine W in P1
 978     is_64bit = ((VEX_W & *ip) == VEX_W);
 979     ip++; // move to P2
 980     ip++; // skip P2, move to opcode
 981     // To find the end of instruction (which == end_pc_operand).
 982     switch (0xFF & *ip) {
 983     case 0x22: // pinsrd r, r/a, #8
 984     case 0x61: // pcmpestri r, r/a, #8
 985     case 0x70: // pshufd r, r/a, #8
 986     case 0x73: // psrldq r, #8
 987       tail_size = 1;  // the imm8
 988       break;
 989     default:
 990       break;
 991     }
 992     ip++; // skip opcode
 993     debug_only(has_disp32 = true); // has both kinds of operands!
 994     break;
 995 
 996   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 997   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 998   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 999   case 0xDD: // fld_d a; fst_d a; fstp_d a
1000   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
1001   case 0xDF: // fild_d a; fistp_d a
1002   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
1003   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
1004   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
1005     debug_only(has_disp32 = true);
1006     break;
1007 
1008   case 0xE8: // call rdisp32
1009   case 0xE9: // jmp  rdisp32
1010     if (which == end_pc_operand)  return ip + 4;
1011     assert(which == call32_operand, "call has no disp32 or imm");
1012     return ip;
1013 
1014   case 0xF0:                    // Lock
1015     goto again_after_prefix;
1016 
1017   case 0xF3:                    // For SSE
1018   case 0xF2:                    // For SSE2
1019     switch (0xFF & *ip++) {
1020     case REX:
1021     case REX_B:
1022     case REX_X:
1023     case REX_XB:
1024     case REX_R:
1025     case REX_RB:
1026     case REX_RX:
1027     case REX_RXB:
1028     case REX_W:
1029     case REX_WB:
1030     case REX_WX:
1031     case REX_WXB:
1032     case REX_WR:
1033     case REX_WRB:
1034     case REX_WRX:
1035     case REX_WRXB:
1036       NOT_LP64(assert(false, "found 64bit prefix"));
1037       ip++;
1038     default:
1039       ip++;
1040     }
1041     debug_only(has_disp32 = true); // has both kinds of operands!
1042     break;
1043 
1044   default:
1045     ShouldNotReachHere();
1046 
1047 #undef REP8
1048 #undef REP16
1049   }
1050 
1051   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1052 #ifdef _LP64
1053   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1054 #else
1055   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1056   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1057 #endif // LP64
1058   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1059 
1060   // parse the output of emit_operand
1061   int op2 = 0xFF & *ip++;
1062   int base = op2 & 0x07;
1063   int op3 = -1;
1064   const int b100 = 4;
1065   const int b101 = 5;
1066   if (base == b100 && (op2 >> 6) != 3) {
1067     op3 = 0xFF & *ip++;
1068     base = op3 & 0x07;   // refetch the base
1069   }
1070   // now ip points at the disp (if any)
1071 
1072   switch (op2 >> 6) {
1073   case 0:
1074     // [00 reg  100][ss index base]
1075     // [00 reg  100][00   100  esp]
1076     // [00 reg base]
1077     // [00 reg  100][ss index  101][disp32]
1078     // [00 reg  101]               [disp32]
1079 
1080     if (base == b101) {
1081       if (which == disp32_operand)
1082         return ip;              // caller wants the disp32
1083       ip += 4;                  // skip the disp32
1084     }
1085     break;
1086 
1087   case 1:
1088     // [01 reg  100][ss index base][disp8]
1089     // [01 reg  100][00   100  esp][disp8]
1090     // [01 reg base]               [disp8]
1091     ip += 1;                    // skip the disp8
1092     break;
1093 
1094   case 2:
1095     // [10 reg  100][ss index base][disp32]
1096     // [10 reg  100][00   100  esp][disp32]
1097     // [10 reg base]               [disp32]
1098     if (which == disp32_operand)
1099       return ip;                // caller wants the disp32
1100     ip += 4;                    // skip the disp32
1101     break;
1102 
1103   case 3:
1104     // [11 reg base]  (not a memory addressing mode)
1105     break;
1106   }
1107 
1108   if (which == end_pc_operand) {
1109     return ip + tail_size;
1110   }
1111 
1112 #ifdef _LP64
1113   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1114 #else
1115   assert(which == imm_operand, "instruction has only an imm field");
1116 #endif // LP64
1117   return ip;
1118 }
1119 
1120 address Assembler::locate_next_instruction(address inst) {
1121   // Secretly share code with locate_operand:
1122   return locate_operand(inst, end_pc_operand);
1123 }
1124 
1125 
1126 #ifdef ASSERT
1127 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1128   address inst = inst_mark();
1129   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1130   address opnd;
1131 
1132   Relocation* r = rspec.reloc();
1133   if (r->type() == relocInfo::none) {
1134     return;
1135   } else if (r->is_call() || format == call32_operand) {
1136     // assert(format == imm32_operand, "cannot specify a nonzero format");
1137     opnd = locate_operand(inst, call32_operand);
1138   } else if (r->is_data()) {
1139     assert(format == imm_operand || format == disp32_operand
1140            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1141     opnd = locate_operand(inst, (WhichOperand)format);
1142   } else {
1143     assert(format == imm_operand, "cannot specify a format");
1144     return;
1145   }
1146   assert(opnd == pc(), "must put operand where relocs can find it");
1147 }
1148 #endif // ASSERT
1149 
1150 void Assembler::emit_operand(Register reg, Address adr,
1151                              int rip_relative_correction) {
1152   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1153                adr._rspec,
1154                rip_relative_correction);
1155 }
1156 
1157 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1158     if (adr.isxmmindex()) {
1159        emit_operand(reg, adr._base, adr._xmmindex, adr._scale, adr._disp, adr._rspec);
1160     } else {
1161        emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1162        adr._rspec);
1163     }
1164 }
1165 
1166 // Now the Assembler instructions (identical for 32/64 bits)
1167 
1168 void Assembler::adcl(Address dst, int32_t imm32) {
1169   InstructionMark im(this);
1170   prefix(dst);
1171   emit_arith_operand(0x81, rdx, dst, imm32);
1172 }
1173 
1174 void Assembler::adcl(Address dst, Register src) {
1175   InstructionMark im(this);
1176   prefix(dst, src);
1177   emit_int8(0x11);
1178   emit_operand(src, dst);
1179 }
1180 
1181 void Assembler::adcl(Register dst, int32_t imm32) {
1182   prefix(dst);
1183   emit_arith(0x81, 0xD0, dst, imm32);
1184 }
1185 
1186 void Assembler::adcl(Register dst, Address src) {
1187   InstructionMark im(this);
1188   prefix(src, dst);
1189   emit_int8(0x13);
1190   emit_operand(dst, src);
1191 }
1192 
1193 void Assembler::adcl(Register dst, Register src) {
1194   (void) prefix_and_encode(dst->encoding(), src->encoding());
1195   emit_arith(0x13, 0xC0, dst, src);
1196 }
1197 
1198 void Assembler::addl(Address dst, int32_t imm32) {
1199   InstructionMark im(this);
1200   prefix(dst);
1201   emit_arith_operand(0x81, rax, dst, imm32);
1202 }
1203 
1204 void Assembler::addb(Address dst, int imm8) {
1205   InstructionMark im(this);
1206   prefix(dst);
1207   emit_int8((unsigned char)0x80);
1208   emit_operand(rax, dst, 1);
1209   emit_int8(imm8);
1210 }
1211 
1212 void Assembler::addw(Address dst, int imm16) {
1213   InstructionMark im(this);
1214   emit_int8(0x66);
1215   prefix(dst);
1216   emit_int8((unsigned char)0x81);
1217   emit_operand(rax, dst, 2);
1218   emit_int16(imm16);
1219 }
1220 
1221 void Assembler::addl(Address dst, Register src) {
1222   InstructionMark im(this);
1223   prefix(dst, src);
1224   emit_int8(0x01);
1225   emit_operand(src, dst);
1226 }
1227 
1228 void Assembler::addl(Register dst, int32_t imm32) {
1229   prefix(dst);
1230   emit_arith(0x81, 0xC0, dst, imm32);
1231 }
1232 
1233 void Assembler::addl(Register dst, Address src) {
1234   InstructionMark im(this);
1235   prefix(src, dst);
1236   emit_int8(0x03);
1237   emit_operand(dst, src);
1238 }
1239 
1240 void Assembler::addl(Register dst, Register src) {
1241   (void) prefix_and_encode(dst->encoding(), src->encoding());
1242   emit_arith(0x03, 0xC0, dst, src);
1243 }
1244 
1245 void Assembler::addr_nop_4() {
1246   assert(UseAddressNop, "no CPU support");
1247   // 4 bytes: NOP DWORD PTR [EAX+0]
1248   emit_int32(0x0F,
1249              0x1F,
1250              0x40, // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1251              0);   // 8-bits offset (1 byte)
1252 }
1253 
1254 void Assembler::addr_nop_5() {
1255   assert(UseAddressNop, "no CPU support");
1256   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1257   emit_int32(0x0F,
1258              0x1F,
1259              0x44,  // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1260              0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1261   emit_int8(0);     // 8-bits offset (1 byte)
1262 }
1263 
1264 void Assembler::addr_nop_7() {
1265   assert(UseAddressNop, "no CPU support");
1266   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1267   emit_int24(0x0F,
1268              0x1F,
1269              (unsigned char)0x80);
1270                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1271   emit_int32(0);   // 32-bits offset (4 bytes)
1272 }
1273 
1274 void Assembler::addr_nop_8() {
1275   assert(UseAddressNop, "no CPU support");
1276   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1277   emit_int32(0x0F,
1278              0x1F,
1279              (unsigned char)0x84,
1280                     // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1281              0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1282   emit_int32(0);    // 32-bits offset (4 bytes)
1283 }
1284 
1285 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1286   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1287   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1288   attributes.set_rex_vex_w_reverted();
1289   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1290   emit_int16(0x58, (0xC0 | encode));
1291 }
1292 
1293 void Assembler::addsd(XMMRegister dst, Address src) {
1294   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1295   InstructionMark im(this);
1296   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1297   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1298   attributes.set_rex_vex_w_reverted();
1299   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1300   emit_int8(0x58);
1301   emit_operand(dst, src);
1302 }
1303 
1304 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1305   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1306   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1307   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1308   emit_int16(0x58, (0xC0 | encode));
1309 }
1310 
1311 void Assembler::addss(XMMRegister dst, Address src) {
1312   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1313   InstructionMark im(this);
1314   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1315   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1316   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1317   emit_int8(0x58);
1318   emit_operand(dst, src);
1319 }
1320 
1321 void Assembler::aesdec(XMMRegister dst, Address src) {
1322   assert(VM_Version::supports_aes(), "");
1323   InstructionMark im(this);
1324   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1325   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1326   emit_int8((unsigned char)0xDE);
1327   emit_operand(dst, src);
1328 }
1329 
1330 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1331   assert(VM_Version::supports_aes(), "");
1332   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1333   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1334   emit_int16((unsigned char)0xDE, (0xC0 | encode));
1335 }
1336 
1337 void Assembler::vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1338   assert(VM_Version::supports_avx512_vaes(), "");
1339   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1340   attributes.set_is_evex_instruction();
1341   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1342   emit_int16((unsigned char)0xDE, (0xC0 | encode));
1343 }
1344 
1345 
1346 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1347   assert(VM_Version::supports_aes(), "");
1348   InstructionMark im(this);
1349   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1350   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1351   emit_int8((unsigned char)0xDF);
1352   emit_operand(dst, src);
1353 }
1354 
1355 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1356   assert(VM_Version::supports_aes(), "");
1357   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1358   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1359   emit_int16((unsigned char)0xDF, (0xC0 | encode));
1360 }
1361 
1362 void Assembler::vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1363   assert(VM_Version::supports_avx512_vaes(), "");
1364   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1365   attributes.set_is_evex_instruction();
1366   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1367   emit_int16((unsigned char)0xDF, (0xC0 | encode));
1368 }
1369 
1370 void Assembler::aesenc(XMMRegister dst, Address src) {
1371   assert(VM_Version::supports_aes(), "");
1372   InstructionMark im(this);
1373   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1374   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1375   emit_int8((unsigned char)0xDC);
1376   emit_operand(dst, src);
1377 }
1378 
1379 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1380   assert(VM_Version::supports_aes(), "");
1381   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1382   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1383   emit_int16((unsigned char)0xDC, 0xC0 | encode);
1384 }
1385 
1386 void Assembler::vaesenc(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1387   assert(VM_Version::supports_avx512_vaes(), "requires vaes support/enabling");
1388   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1389   attributes.set_is_evex_instruction();
1390   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1391   emit_int16((unsigned char)0xDC, (0xC0 | encode));
1392 }
1393 
1394 void Assembler::aesenclast(XMMRegister dst, Address src) {
1395   assert(VM_Version::supports_aes(), "");
1396   InstructionMark im(this);
1397   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1398   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1399   emit_int8((unsigned char)0xDD);
1400   emit_operand(dst, src);
1401 }
1402 
1403 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1404   assert(VM_Version::supports_aes(), "");
1405   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1406   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1407   emit_int16((unsigned char)0xDD, (0xC0 | encode));
1408 }
1409 
1410 void Assembler::vaesenclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1411   assert(VM_Version::supports_avx512_vaes(), "requires vaes support/enabling");
1412   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1413   attributes.set_is_evex_instruction();
1414   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1415   emit_int16((unsigned char)0xDD, (0xC0 | encode));
1416 }
1417 
1418 void Assembler::andl(Address dst, int32_t imm32) {
1419   InstructionMark im(this);
1420   prefix(dst);
1421   emit_int8((unsigned char)0x81);
1422   emit_operand(rsp, dst, 4);
1423   emit_int32(imm32);
1424 }
1425 
1426 void Assembler::andl(Register dst, int32_t imm32) {
1427   prefix(dst);
1428   emit_arith(0x81, 0xE0, dst, imm32);
1429 }
1430 
1431 void Assembler::andl(Register dst, Address src) {
1432   InstructionMark im(this);
1433   prefix(src, dst);
1434   emit_int8(0x23);
1435   emit_operand(dst, src);
1436 }
1437 
1438 void Assembler::andl(Register dst, Register src) {
1439   (void) prefix_and_encode(dst->encoding(), src->encoding());
1440   emit_arith(0x23, 0xC0, dst, src);
1441 }
1442 
1443 void Assembler::andnl(Register dst, Register src1, Register src2) {
1444   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1445   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1446   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1447   emit_int16((unsigned char)0xF2, (0xC0 | encode));
1448 }
1449 
1450 void Assembler::andnl(Register dst, Register src1, Address src2) {
1451   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1452   InstructionMark im(this);
1453   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1454   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1455   emit_int8((unsigned char)0xF2);
1456   emit_operand(dst, src2);
1457 }
1458 
1459 void Assembler::bsfl(Register dst, Register src) {
1460   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1461   emit_int24(0x0F,
1462              (unsigned char)0xBC,
1463              0xC0 | encode);
1464 }
1465 
1466 void Assembler::bsrl(Register dst, Register src) {
1467   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1468   emit_int24(0x0F,
1469              (unsigned char)0xBD,
1470              0xC0 | encode);
1471 }
1472 
1473 void Assembler::bswapl(Register reg) { // bswap
1474   int encode = prefix_and_encode(reg->encoding());
1475   emit_int16(0x0F, (0xC8 | encode));
1476 }
1477 
1478 void Assembler::blsil(Register dst, Register src) {
1479   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1480   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1481   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1482   emit_int16((unsigned char)0xF3, (0xC0 | encode));
1483 }
1484 
1485 void Assembler::blsil(Register dst, Address src) {
1486   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1487   InstructionMark im(this);
1488   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1489   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1490   emit_int8((unsigned char)0xF3);
1491   emit_operand(rbx, src);
1492 }
1493 
1494 void Assembler::blsmskl(Register dst, Register src) {
1495   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1496   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1497   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1498   emit_int16((unsigned char)0xF3,
1499              0xC0 | encode);
1500 }
1501 
1502 void Assembler::blsmskl(Register dst, Address src) {
1503   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1504   InstructionMark im(this);
1505   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1506   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1507   emit_int8((unsigned char)0xF3);
1508   emit_operand(rdx, src);
1509 }
1510 
1511 void Assembler::blsrl(Register dst, Register src) {
1512   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1513   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1514   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1515   emit_int16((unsigned char)0xF3, (0xC0 | encode));
1516 }
1517 
1518 void Assembler::blsrl(Register dst, Address src) {
1519   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1520   InstructionMark im(this);
1521   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1522   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1523   emit_int8((unsigned char)0xF3);
1524   emit_operand(rcx, src);
1525 }
1526 
1527 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1528   // suspect disp32 is always good
1529   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1530 
1531   if (L.is_bound()) {
1532     const int long_size = 5;
1533     int offs = (int)( target(L) - pc() );
1534     assert(offs <= 0, "assembler error");
1535     InstructionMark im(this);
1536     // 1110 1000 #32-bit disp
1537     emit_int8((unsigned char)0xE8);
1538     emit_data(offs - long_size, rtype, operand);
1539   } else {
1540     InstructionMark im(this);
1541     // 1110 1000 #32-bit disp
1542     L.add_patch_at(code(), locator());
1543 
1544     emit_int8((unsigned char)0xE8);
1545     emit_data(int(0), rtype, operand);
1546   }
1547 }
1548 
1549 void Assembler::call(Register dst) {
1550   int encode = prefix_and_encode(dst->encoding());
1551   emit_int16((unsigned char)0xFF, (0xD0 | encode));
1552 }
1553 
1554 
1555 void Assembler::call(Address adr) {
1556   InstructionMark im(this);
1557   prefix(adr);
1558   emit_int8((unsigned char)0xFF);
1559   emit_operand(rdx, adr);
1560 }
1561 
1562 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1563   InstructionMark im(this);
1564   emit_int8((unsigned char)0xE8);
1565   intptr_t disp = entry - (pc() + sizeof(int32_t));
1566   // Entry is NULL in case of a scratch emit.
1567   assert(entry == NULL || is_simm32(disp), "disp=" INTPTR_FORMAT " must be 32bit offset (call2)", disp);
1568   // Technically, should use call32_operand, but this format is
1569   // implied by the fact that we're emitting a call instruction.
1570 
1571   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1572   emit_data((int) disp, rspec, operand);
1573 }
1574 
1575 void Assembler::cdql() {
1576   emit_int8((unsigned char)0x99);
1577 }
1578 
1579 void Assembler::cld() {
1580   emit_int8((unsigned char)0xFC);
1581 }
1582 
1583 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1584   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1585   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1586   emit_int24(0x0F,
1587              0x40 | cc,
1588              0xC0 | encode);
1589 }
1590 
1591 
1592 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1593   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1594   prefix(src, dst);
1595   emit_int16(0x0F, (0x40 | cc));
1596   emit_operand(dst, src);
1597 }
1598 
1599 void Assembler::cmpb(Address dst, int imm8) {
1600   InstructionMark im(this);
1601   prefix(dst);
1602   emit_int8((unsigned char)0x80);
1603   emit_operand(rdi, dst, 1);
1604   emit_int8(imm8);
1605 }
1606 
1607 void Assembler::cmpl(Address dst, int32_t imm32) {
1608   InstructionMark im(this);
1609   prefix(dst);
1610   emit_int8((unsigned char)0x81);
1611   emit_operand(rdi, dst, 4);
1612   emit_int32(imm32);
1613 }
1614 
1615 void Assembler::cmpl(Register dst, int32_t imm32) {
1616   prefix(dst);
1617   emit_arith(0x81, 0xF8, dst, imm32);
1618 }
1619 
1620 void Assembler::cmpl(Register dst, Register src) {
1621   (void) prefix_and_encode(dst->encoding(), src->encoding());
1622   emit_arith(0x3B, 0xC0, dst, src);
1623 }
1624 
1625 void Assembler::cmpl(Register dst, Address  src) {
1626   InstructionMark im(this);
1627   prefix(src, dst);
1628   emit_int8(0x3B);
1629   emit_operand(dst, src);
1630 }
1631 
1632 void Assembler::cmpw(Address dst, int imm16) {
1633   InstructionMark im(this);
1634   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1635   emit_int16(0x66, (unsigned char)0x81);
1636   emit_operand(rdi, dst, 2);
1637   emit_int16(imm16);
1638 }
1639 
1640 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1641 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1642 // The ZF is set if the compared values were equal, and cleared otherwise.
1643 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1644   InstructionMark im(this);
1645   prefix(adr, reg);
1646   emit_int16(0x0F, (unsigned char)0xB1);
1647   emit_operand(reg, adr);
1648 }
1649 
1650 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1651 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1652 // The ZF is set if the compared values were equal, and cleared otherwise.
1653 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1654   InstructionMark im(this);
1655   prefix(adr, reg, true);
1656   emit_int16(0x0F, (unsigned char)0xB0);
1657   emit_operand(reg, adr);
1658 }
1659 
1660 void Assembler::comisd(XMMRegister dst, Address src) {
1661   // NOTE: dbx seems to decode this as comiss even though the
1662   // 0x66 is there. Strangly ucomisd comes out correct
1663   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1664   InstructionMark im(this);
1665   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1666   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1667   attributes.set_rex_vex_w_reverted();
1668   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1669   emit_int8(0x2F);
1670   emit_operand(dst, src);
1671 }
1672 
1673 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1674   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1675   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1676   attributes.set_rex_vex_w_reverted();
1677   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1678   emit_int16(0x2F, (0xC0 | encode));
1679 }
1680 
1681 void Assembler::comiss(XMMRegister dst, Address src) {
1682   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1683   InstructionMark im(this);
1684   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1685   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1686   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1687   emit_int8(0x2F);
1688   emit_operand(dst, src);
1689 }
1690 
1691 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1692   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1693   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1694   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1695   emit_int16(0x2F, (0xC0 | encode));
1696 }
1697 
1698 void Assembler::cpuid() {
1699   emit_int16(0x0F, (unsigned char)0xA2);
1700 }
1701 
1702 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1703 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1704 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1705 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1706 //
1707 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1708 //
1709 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1710 //
1711 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1712 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1713   assert(VM_Version::supports_sse4_2(), "");
1714   int8_t w = 0x01;
1715   Prefix p = Prefix_EMPTY;
1716 
1717   emit_int8((unsigned char)0xF2);
1718   switch (sizeInBytes) {
1719   case 1:
1720     w = 0;
1721     break;
1722   case 2:
1723   case 4:
1724     break;
1725   LP64_ONLY(case 8:)
1726     // This instruction is not valid in 32 bits
1727     // Note:
1728     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1729     //
1730     // Page B - 72   Vol. 2C says
1731     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1732     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1733     //                                                                            F0!!!
1734     // while 3 - 208 Vol. 2A
1735     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1736     //
1737     // the 0 on a last bit is reserved for a different flavor of this instruction :
1738     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1739     p = REX_W;
1740     break;
1741   default:
1742     assert(0, "Unsupported value for a sizeInBytes argument");
1743     break;
1744   }
1745   LP64_ONLY(prefix(crc, v, p);)
1746   emit_int32(0x0F,
1747              0x38,
1748              0xF0 | w,
1749              0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1750 }
1751 
1752 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1753   assert(VM_Version::supports_sse4_2(), "");
1754   InstructionMark im(this);
1755   int8_t w = 0x01;
1756   Prefix p = Prefix_EMPTY;
1757 
1758   emit_int8((int8_t)0xF2);
1759   switch (sizeInBytes) {
1760   case 1:
1761     w = 0;
1762     break;
1763   case 2:
1764   case 4:
1765     break;
1766   LP64_ONLY(case 8:)
1767     // This instruction is not valid in 32 bits
1768     p = REX_W;
1769     break;
1770   default:
1771     assert(0, "Unsupported value for a sizeInBytes argument");
1772     break;
1773   }
1774   LP64_ONLY(prefix(crc, adr, p);)
1775   emit_int24(0x0F, 0x38, (0xF0 | w));
1776   emit_operand(crc, adr);
1777 }
1778 
1779 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1780   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1781   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1782   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1783   emit_int16((unsigned char)0xE6, (0xC0 | encode));
1784 }
1785 
1786 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1787   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1788   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1789   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1790   emit_int16(0x5B, (0xC0 | encode));
1791 }
1792 
1793 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1794   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1795   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1796   attributes.set_rex_vex_w_reverted();
1797   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1798   emit_int16(0x5A, (0xC0 | encode));
1799 }
1800 
1801 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1803   InstructionMark im(this);
1804   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1805   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1806   attributes.set_rex_vex_w_reverted();
1807   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1808   emit_int8(0x5A);
1809   emit_operand(dst, src);
1810 }
1811 
1812 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1813   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1814   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1815   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1816   emit_int16(0x2A, (0xC0 | encode));
1817 }
1818 
1819 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1820   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1821   InstructionMark im(this);
1822   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1823   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1824   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1825   emit_int8(0x2A);
1826   emit_operand(dst, src);
1827 }
1828 
1829 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1830   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1831   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1832   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1833   emit_int16(0x2A, (0xC0 | encode));
1834 }
1835 
1836 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1837   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1838   InstructionMark im(this);
1839   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1840   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1841   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1842   emit_int8(0x2A);
1843   emit_operand(dst, src);
1844 }
1845 
1846 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1847   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1848   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1849   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1850   emit_int16(0x2A, (0xC0 | encode));
1851 }
1852 
1853 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1854   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1855   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1856   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1857   emit_int16(0x5A, (0xC0 | encode));
1858 }
1859 
1860 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1861   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1862   InstructionMark im(this);
1863   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1864   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1865   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1866   emit_int8(0x5A);
1867   emit_operand(dst, src);
1868 }
1869 
1870 
1871 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1872   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1873   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1874   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1875   emit_int16(0x2C, (0xC0 | encode));
1876 }
1877 
1878 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1879   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1880   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1881   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1882   emit_int16(0x2C, (0xC0 | encode));
1883 }
1884 
1885 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1886   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1887   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1888   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1889   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1890   emit_int16((unsigned char)0xE6, (0xC0 | encode));
1891 }
1892 
1893 void Assembler::pabsb(XMMRegister dst, XMMRegister src) {
1894   assert(VM_Version::supports_ssse3(), "");
1895   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
1896   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1897   emit_int16(0x1C, (0xC0 | encode));
1898 }
1899 
1900 void Assembler::pabsw(XMMRegister dst, XMMRegister src) {
1901   assert(VM_Version::supports_ssse3(), "");
1902   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
1903   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1904   emit_int16(0x1D, (0xC0 | encode));
1905 }
1906 
1907 void Assembler::pabsd(XMMRegister dst, XMMRegister src) {
1908   assert(VM_Version::supports_ssse3(), "");
1909   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1910   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1911   emit_int16(0x1E, (0xC0 | encode));
1912 }
1913 
1914 void Assembler::vpabsb(XMMRegister dst, XMMRegister src, int vector_len) {
1915   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
1916   vector_len == AVX_256bit? VM_Version::supports_avx2() :
1917   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
1918   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
1919   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1920   emit_int16(0x1C, (0xC0 | encode));
1921 }
1922 
1923 void Assembler::vpabsw(XMMRegister dst, XMMRegister src, int vector_len) {
1924   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
1925   vector_len == AVX_256bit? VM_Version::supports_avx2() :
1926   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
1927   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
1928   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1929   emit_int16(0x1D, (0xC0 | encode));
1930 }
1931 
1932 void Assembler::vpabsd(XMMRegister dst, XMMRegister src, int vector_len) {
1933   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
1934   vector_len == AVX_256bit? VM_Version::supports_avx2() :
1935   vector_len == AVX_512bit? VM_Version::supports_evex() : 0, "");
1936   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1937   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1938   emit_int16(0x1E, (0xC0 | encode));
1939 }
1940 
1941 void Assembler::evpabsq(XMMRegister dst, XMMRegister src, int vector_len) {
1942   assert(UseAVX > 2, "");
1943   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1944   attributes.set_is_evex_instruction();
1945   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1946   emit_int16(0x1F, (0xC0 | encode));
1947 }
1948 
1949 void Assembler::decl(Address dst) {
1950   // Don't use it directly. Use MacroAssembler::decrement() instead.
1951   InstructionMark im(this);
1952   prefix(dst);
1953   emit_int8((unsigned char)0xFF);
1954   emit_operand(rcx, dst);
1955 }
1956 
1957 void Assembler::divsd(XMMRegister dst, Address src) {
1958   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1959   InstructionMark im(this);
1960   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1961   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1962   attributes.set_rex_vex_w_reverted();
1963   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1964   emit_int8(0x5E);
1965   emit_operand(dst, src);
1966 }
1967 
1968 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1969   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1970   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1971   attributes.set_rex_vex_w_reverted();
1972   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1973   emit_int16(0x5E, (0xC0 | encode));
1974 }
1975 
1976 void Assembler::divss(XMMRegister dst, Address src) {
1977   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1978   InstructionMark im(this);
1979   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1980   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1981   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1982   emit_int8(0x5E);
1983   emit_operand(dst, src);
1984 }
1985 
1986 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1987   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1988   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1989   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1990   emit_int16(0x5E, (0xC0 | encode));
1991 }
1992 
1993 void Assembler::hlt() {
1994   emit_int8((unsigned char)0xF4);
1995 }
1996 
1997 void Assembler::idivl(Register src) {
1998   int encode = prefix_and_encode(src->encoding());
1999   emit_int16((unsigned char)0xF7, (0xF8 | encode));
2000 }
2001 
2002 void Assembler::divl(Register src) { // Unsigned
2003   int encode = prefix_and_encode(src->encoding());
2004   emit_int16((unsigned char)0xF7, (0xF0 | encode));
2005 }
2006 
2007 void Assembler::imull(Register src) {
2008   int encode = prefix_and_encode(src->encoding());
2009   emit_int16((unsigned char)0xF7, (0xE8 | encode));
2010 }
2011 
2012 void Assembler::imull(Register dst, Register src) {
2013   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2014   emit_int24(0x0F,
2015              (unsigned char)0xAF,
2016              (0xC0 | encode));
2017 }
2018 
2019 
2020 void Assembler::imull(Register dst, Register src, int value) {
2021   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2022   if (is8bit(value)) {
2023     emit_int24(0x6B, (0xC0 | encode), value & 0xFF);
2024   } else {
2025     emit_int16(0x69, (0xC0 | encode));
2026     emit_int32(value);
2027   }
2028 }
2029 
2030 void Assembler::imull(Register dst, Address src) {
2031   InstructionMark im(this);
2032   prefix(src, dst);
2033   emit_int16(0x0F, (unsigned char)0xAF);
2034   emit_operand(dst, src);
2035 }
2036 
2037 
2038 void Assembler::incl(Address dst) {
2039   // Don't use it directly. Use MacroAssembler::increment() instead.
2040   InstructionMark im(this);
2041   prefix(dst);
2042   emit_int8((unsigned char)0xFF);
2043   emit_operand(rax, dst);
2044 }
2045 
2046 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
2047   InstructionMark im(this);
2048   assert((0 <= cc) && (cc < 16), "illegal cc");
2049   if (L.is_bound()) {
2050     address dst = target(L);
2051     assert(dst != NULL, "jcc most probably wrong");
2052 
2053     const int short_size = 2;
2054     const int long_size = 6;
2055     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
2056     if (maybe_short && is8bit(offs - short_size)) {
2057       // 0111 tttn #8-bit disp
2058       emit_int16(0x70 | cc, (offs - short_size) & 0xFF);
2059     } else {
2060       // 0000 1111 1000 tttn #32-bit disp
2061       assert(is_simm32(offs - long_size),
2062              "must be 32bit offset (call4)");
2063       emit_int16(0x0F, (0x80 | cc));
2064       emit_int32(offs - long_size);
2065     }
2066   } else {
2067     // Note: could eliminate cond. jumps to this jump if condition
2068     //       is the same however, seems to be rather unlikely case.
2069     // Note: use jccb() if label to be bound is very close to get
2070     //       an 8-bit displacement
2071     L.add_patch_at(code(), locator());
2072     emit_int16(0x0F, (0x80 | cc));
2073     emit_int32(0);
2074   }
2075 }
2076 
2077 void Assembler::jccb_0(Condition cc, Label& L, const char* file, int line) {
2078   if (L.is_bound()) {
2079     const int short_size = 2;
2080     address entry = target(L);
2081 #ifdef ASSERT
2082     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2083     intptr_t delta = short_branch_delta();
2084     if (delta != 0) {
2085       dist += (dist < 0 ? (-delta) :delta);
2086     }
2087     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2088 #endif
2089     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2090     // 0111 tttn #8-bit disp
2091     emit_int16(0x70 | cc, (offs - short_size) & 0xFF);
2092   } else {
2093     InstructionMark im(this);
2094     L.add_patch_at(code(), locator(), file, line);
2095     emit_int16(0x70 | cc, 0);
2096   }
2097 }
2098 
2099 void Assembler::jmp(Address adr) {
2100   InstructionMark im(this);
2101   prefix(adr);
2102   emit_int8((unsigned char)0xFF);
2103   emit_operand(rsp, adr);
2104 }
2105 
2106 void Assembler::jmp(Label& L, bool maybe_short) {
2107   if (L.is_bound()) {
2108     address entry = target(L);
2109     assert(entry != NULL, "jmp most probably wrong");
2110     InstructionMark im(this);
2111     const int short_size = 2;
2112     const int long_size = 5;
2113     intptr_t offs = entry - pc();
2114     if (maybe_short && is8bit(offs - short_size)) {
2115       emit_int16((unsigned char)0xEB, ((offs - short_size) & 0xFF));
2116     } else {
2117       emit_int8((unsigned char)0xE9);
2118       emit_int32(offs - long_size);
2119     }
2120   } else {
2121     // By default, forward jumps are always 32-bit displacements, since
2122     // we can't yet know where the label will be bound.  If you're sure that
2123     // the forward jump will not run beyond 256 bytes, use jmpb to
2124     // force an 8-bit displacement.
2125     InstructionMark im(this);
2126     L.add_patch_at(code(), locator());
2127     emit_int8((unsigned char)0xE9);
2128     emit_int32(0);
2129   }
2130 }
2131 
2132 void Assembler::jmp(Register entry) {
2133   int encode = prefix_and_encode(entry->encoding());
2134   emit_int16((unsigned char)0xFF, (0xE0 | encode));
2135 }
2136 
2137 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2138   InstructionMark im(this);
2139   emit_int8((unsigned char)0xE9);
2140   assert(dest != NULL, "must have a target");
2141   intptr_t disp = dest - (pc() + sizeof(int32_t));
2142   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2143   emit_data(disp, rspec.reloc(), call32_operand);
2144 }
2145 
2146 void Assembler::jmpb_0(Label& L, const char* file, int line) {
2147   if (L.is_bound()) {
2148     const int short_size = 2;
2149     address entry = target(L);
2150     assert(entry != NULL, "jmp most probably wrong");
2151 #ifdef ASSERT
2152     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2153     intptr_t delta = short_branch_delta();
2154     if (delta != 0) {
2155       dist += (dist < 0 ? (-delta) :delta);
2156     }
2157     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2158 #endif
2159     intptr_t offs = entry - pc();
2160     emit_int16((unsigned char)0xEB, (offs - short_size) & 0xFF);
2161   } else {
2162     InstructionMark im(this);
2163     L.add_patch_at(code(), locator(), file, line);
2164     emit_int16((unsigned char)0xEB, 0);
2165   }
2166 }
2167 
2168 void Assembler::ldmxcsr( Address src) {
2169   if (UseAVX > 0 ) {
2170     InstructionMark im(this);
2171     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2172     vex_prefix(src, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2173     emit_int8((unsigned char)0xAE);
2174     emit_operand(as_Register(2), src);
2175   } else {
2176     NOT_LP64(assert(VM_Version::supports_sse(), ""));
2177     InstructionMark im(this);
2178     prefix(src);
2179     emit_int16(0x0F, (unsigned char)0xAE);
2180     emit_operand(as_Register(2), src);
2181   }
2182 }
2183 
2184 void Assembler::leal(Register dst, Address src) {
2185   InstructionMark im(this);
2186 #ifdef _LP64
2187   emit_int8(0x67); // addr32
2188   prefix(src, dst);
2189 #endif // LP64
2190   emit_int8((unsigned char)0x8D);
2191   emit_operand(dst, src);
2192 }
2193 
2194 void Assembler::lfence() {
2195   emit_int24(0x0F, (unsigned char)0xAE, (unsigned char)0xE8);
2196 }
2197 
2198 void Assembler::lock() {
2199   emit_int8((unsigned char)0xF0);
2200 }
2201 
2202 void Assembler::lzcntl(Register dst, Register src) {
2203   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2204   emit_int8((unsigned char)0xF3);
2205   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2206   emit_int24(0x0F, (unsigned char)0xBD, (0xC0 | encode));
2207 }
2208 
2209 // Emit mfence instruction
2210 void Assembler::mfence() {
2211   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2212   emit_int24(0x0F, (unsigned char)0xAE, (unsigned char)0xF0);
2213 }
2214 
2215 // Emit sfence instruction
2216 void Assembler::sfence() {
2217   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2218   emit_int24(0x0F, (unsigned char)0xAE, (unsigned char)0xF8);
2219 }
2220 
2221 void Assembler::mov(Register dst, Register src) {
2222   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2223 }
2224 
2225 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2226   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2227   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2228   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2229   attributes.set_rex_vex_w_reverted();
2230   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2231   emit_int16(0x28, (0xC0 | encode));
2232 }
2233 
2234 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2235   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2236   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2237   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2238   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2239   emit_int16(0x28, (0xC0 | encode));
2240 }
2241 
2242 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2243   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2244   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2245   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2246   emit_int16(0x16, (0xC0 | encode));
2247 }
2248 
2249 void Assembler::movb(Register dst, Address src) {
2250   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2251   InstructionMark im(this);
2252   prefix(src, dst, true);
2253   emit_int8((unsigned char)0x8A);
2254   emit_operand(dst, src);
2255 }
2256 
2257 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2258   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2259   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2260   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2261   attributes.set_rex_vex_w_reverted();
2262   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2263   emit_int16(0x12, 0xC0 | encode);
2264 }
2265 
2266 void Assembler::kmovbl(KRegister dst, Register src) {
2267   assert(VM_Version::supports_avx512dq(), "");
2268   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2269   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2270   emit_int16((unsigned char)0x92, (0xC0 | encode));
2271 }
2272 
2273 void Assembler::kmovbl(Register dst, KRegister src) {
2274   assert(VM_Version::supports_avx512dq(), "");
2275   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2276   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2277   emit_int16((unsigned char)0x93, (0xC0 | encode));
2278 }
2279 
2280 void Assembler::kmovwl(KRegister dst, Register src) {
2281   assert(VM_Version::supports_evex(), "");
2282   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2283   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2284   emit_int16((unsigned char)0x92, (0xC0 | encode));
2285 }
2286 
2287 void Assembler::kmovwl(Register dst, KRegister src) {
2288   assert(VM_Version::supports_evex(), "");
2289   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2290   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2291   emit_int16((unsigned char)0x93, (0xC0 | encode));
2292 }
2293 
2294 void Assembler::kmovwl(KRegister dst, Address src) {
2295   assert(VM_Version::supports_evex(), "");
2296   InstructionMark im(this);
2297   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2298   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2299   emit_int8((unsigned char)0x90);
2300   emit_operand((Register)dst, src);
2301 }
2302 
2303 void Assembler::kmovdl(KRegister dst, Register src) {
2304   assert(VM_Version::supports_avx512bw(), "");
2305   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2306   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2307   emit_int16((unsigned char)0x92, (0xC0 | encode));
2308 }
2309 
2310 void Assembler::kmovdl(Register dst, KRegister src) {
2311   assert(VM_Version::supports_avx512bw(), "");
2312   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2313   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2314   emit_int16((unsigned char)0x93, (0xC0 | encode));
2315 }
2316 
2317 void Assembler::kmovql(KRegister dst, KRegister src) {
2318   assert(VM_Version::supports_avx512bw(), "");
2319   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2320   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2321   emit_int16((unsigned char)0x90, (0xC0 | encode));
2322 }
2323 
2324 void Assembler::kmovql(KRegister dst, Address src) {
2325   assert(VM_Version::supports_avx512bw(), "");
2326   InstructionMark im(this);
2327   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2328   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2329   emit_int8((unsigned char)0x90);
2330   emit_operand((Register)dst, src);
2331 }
2332 
2333 void Assembler::kmovql(Address dst, KRegister src) {
2334   assert(VM_Version::supports_avx512bw(), "");
2335   InstructionMark im(this);
2336   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2337   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2338   emit_int8((unsigned char)0x90);
2339   emit_operand((Register)src, dst);
2340 }
2341 
2342 void Assembler::kmovql(KRegister dst, Register src) {
2343   assert(VM_Version::supports_avx512bw(), "");
2344   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2345   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2346   emit_int16((unsigned char)0x92, (0xC0 | encode));
2347 }
2348 
2349 void Assembler::kmovql(Register dst, KRegister src) {
2350   assert(VM_Version::supports_avx512bw(), "");
2351   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2352   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2353   emit_int16((unsigned char)0x93, (0xC0 | encode));
2354 }
2355 
2356 void Assembler::knotwl(KRegister dst, KRegister src) {
2357   assert(VM_Version::supports_evex(), "");
2358   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2359   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2360   emit_int16(0x44, (0xC0 | encode));
2361 }
2362 
2363 // This instruction produces ZF or CF flags
2364 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2365   assert(VM_Version::supports_avx512dq(), "");
2366   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2367   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2368   emit_int16((unsigned char)0x98, (0xC0 | encode));
2369 }
2370 
2371 // This instruction produces ZF or CF flags
2372 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2373   assert(VM_Version::supports_evex(), "");
2374   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2375   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2376   emit_int16((unsigned char)0x98, (0xC0 | encode));
2377 }
2378 
2379 // This instruction produces ZF or CF flags
2380 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2381   assert(VM_Version::supports_avx512bw(), "");
2382   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2383   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2384   emit_int16((unsigned char)0x98, (0xC0 | encode));
2385 }
2386 
2387 // This instruction produces ZF or CF flags
2388 void Assembler::kortestql(KRegister src1, KRegister src2) {
2389   assert(VM_Version::supports_avx512bw(), "");
2390   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2391   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2392   emit_int16((unsigned char)0x98, (0xC0 | encode));
2393 }
2394 
2395 // This instruction produces ZF or CF flags
2396 void Assembler::ktestql(KRegister src1, KRegister src2) {
2397   assert(VM_Version::supports_avx512bw(), "");
2398   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2399   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2400   emit_int16((unsigned char)0x99, (0xC0 | encode));
2401 }
2402 
2403 void Assembler::ktestq(KRegister src1, KRegister src2) {
2404   assert(VM_Version::supports_avx512bw(), "");
2405   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2406   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2407   emit_int16((unsigned char)0x99, (0xC0 | encode));
2408 }
2409 
2410 void Assembler::ktestd(KRegister src1, KRegister src2) {
2411   assert(VM_Version::supports_avx512bw(), "");
2412   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2413   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2414   emit_int16((unsigned char)0x99, (0xC0 | encode));
2415 }
2416 
2417 void Assembler::movb(Address dst, int imm8) {
2418   InstructionMark im(this);
2419    prefix(dst);
2420   emit_int8((unsigned char)0xC6);
2421   emit_operand(rax, dst, 1);
2422   emit_int8(imm8);
2423 }
2424 
2425 
2426 void Assembler::movb(Address dst, Register src) {
2427   assert(src->has_byte_register(), "must have byte register");
2428   InstructionMark im(this);
2429   prefix(dst, src, true);
2430   emit_int8((unsigned char)0x88);
2431   emit_operand(src, dst);
2432 }
2433 
2434 void Assembler::movdl(XMMRegister dst, Register src) {
2435   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2436   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2437   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2438   emit_int16(0x6E, (0xC0 | encode));
2439 }
2440 
2441 void Assembler::movdl(Register dst, XMMRegister src) {
2442   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2443   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2444   // swap src/dst to get correct prefix
2445   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2446   emit_int16(0x7E, (0xC0 | encode));
2447 }
2448 
2449 void Assembler::movdl(XMMRegister dst, Address src) {
2450   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2451   InstructionMark im(this);
2452   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2453   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2454   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2455   emit_int8(0x6E);
2456   emit_operand(dst, src);
2457 }
2458 
2459 void Assembler::movdl(Address dst, XMMRegister src) {
2460   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2461   InstructionMark im(this);
2462   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2463   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2464   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2465   emit_int8(0x7E);
2466   emit_operand(src, dst);
2467 }
2468 
2469 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2470   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2471   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2472   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2473   emit_int16(0x6F, (0xC0 | encode));
2474 }
2475 
2476 void Assembler::movdqa(XMMRegister dst, Address src) {
2477   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2478   InstructionMark im(this);
2479   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2480   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2481   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2482   emit_int8(0x6F);
2483   emit_operand(dst, src);
2484 }
2485 
2486 void Assembler::movdqu(XMMRegister dst, Address src) {
2487   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2488   InstructionMark im(this);
2489   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2490   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2491   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2492   emit_int8(0x6F);
2493   emit_operand(dst, src);
2494 }
2495 
2496 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2497   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2498   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2499   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2500   emit_int16(0x6F, (0xC0 | encode));
2501 }
2502 
2503 void Assembler::movdqu(Address dst, XMMRegister src) {
2504   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2505   InstructionMark im(this);
2506   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2507   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2508   attributes.reset_is_clear_context();
2509   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2510   emit_int8(0x7F);
2511   emit_operand(src, dst);
2512 }
2513 
2514 // Move Unaligned 256bit Vector
2515 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2516   assert(UseAVX > 0, "");
2517   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2518   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2519   emit_int16(0x6F, (0xC0 | encode));
2520 }
2521 
2522 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2523   assert(UseAVX > 0, "");
2524   InstructionMark im(this);
2525   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2526   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2527   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2528   emit_int8(0x6F);
2529   emit_operand(dst, src);
2530 }
2531 
2532 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2533   assert(UseAVX > 0, "");
2534   InstructionMark im(this);
2535   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2536   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2537   attributes.reset_is_clear_context();
2538   // swap src<->dst for encoding
2539   assert(src != xnoreg, "sanity");
2540   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2541   emit_int8(0x7F);
2542   emit_operand(src, dst);
2543 }
2544 
2545 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2546 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2547   assert(VM_Version::supports_evex(), "");
2548   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2549   attributes.set_is_evex_instruction();
2550   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2551   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2552   emit_int16(0x6F, (0xC0 | encode));
2553 }
2554 
2555 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2556   assert(VM_Version::supports_evex(), "");
2557   InstructionMark im(this);
2558   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2559   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2560   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2561   attributes.set_is_evex_instruction();
2562   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2563   emit_int8(0x6F);
2564   emit_operand(dst, src);
2565 }
2566 
2567 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2568   assert(VM_Version::supports_evex(), "");
2569   assert(src != xnoreg, "sanity");
2570   InstructionMark im(this);
2571   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2572   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2573   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2574   attributes.set_is_evex_instruction();
2575   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2576   emit_int8(0x7F);
2577   emit_operand(src, dst);
2578 }
2579 
2580 void Assembler::evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2581   assert(VM_Version::supports_avx512vlbw(), "");
2582   InstructionMark im(this);
2583   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2584   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2585   attributes.set_embedded_opmask_register_specifier(mask);
2586   attributes.set_is_evex_instruction();
2587   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2588   emit_int8(0x6F);
2589   emit_operand(dst, src);
2590 }
2591 
2592 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2593   assert(VM_Version::supports_evex(), "");
2594   InstructionMark im(this);
2595   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2596   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2597   attributes.set_is_evex_instruction();
2598   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2599   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2600   emit_int8(0x6F);
2601   emit_operand(dst, src);
2602 }
2603 
2604 void Assembler::evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2605   assert(VM_Version::supports_avx512vlbw(), "");
2606   InstructionMark im(this);
2607   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2608   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2609   attributes.set_embedded_opmask_register_specifier(mask);
2610   attributes.set_is_evex_instruction();
2611   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2612   emit_int8(0x6F);
2613   emit_operand(dst, src);
2614 }
2615 
2616 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2617   assert(VM_Version::supports_evex(), "");
2618   assert(src != xnoreg, "sanity");
2619   InstructionMark im(this);
2620   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2621   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2622   attributes.set_is_evex_instruction();
2623   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2624   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2625   emit_int8(0x7F);
2626   emit_operand(src, dst);
2627 }
2628 
2629 void Assembler::evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len) {
2630   assert(VM_Version::supports_avx512vlbw(), "");
2631   assert(src != xnoreg, "sanity");
2632   InstructionMark im(this);
2633   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2634   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2635   attributes.reset_is_clear_context();
2636   attributes.set_embedded_opmask_register_specifier(mask);
2637   attributes.set_is_evex_instruction();
2638   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2639   emit_int8(0x7F);
2640   emit_operand(src, dst);
2641 }
2642 
2643 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2644   assert(VM_Version::supports_evex(), "");
2645   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2646   attributes.set_is_evex_instruction();
2647   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2648   emit_int16(0x6F, (0xC0 | encode));
2649 }
2650 
2651 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2652   assert(VM_Version::supports_evex(), "");
2653   InstructionMark im(this);
2654   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ true);
2655   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2656   attributes.set_is_evex_instruction();
2657   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2658   emit_int8(0x6F);
2659   emit_operand(dst, src);
2660 }
2661 
2662 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2663   assert(VM_Version::supports_evex(), "");
2664   assert(src != xnoreg, "sanity");
2665   InstructionMark im(this);
2666   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2667   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2668   attributes.reset_is_clear_context();
2669   attributes.set_is_evex_instruction();
2670   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2671   emit_int8(0x7F);
2672   emit_operand(src, dst);
2673 }
2674 
2675 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2676   assert(VM_Version::supports_evex(), "");
2677   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2678   attributes.set_is_evex_instruction();
2679   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2680   emit_int16(0x6F, (0xC0 | encode));
2681 }
2682 
2683 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2684   assert(VM_Version::supports_evex(), "");
2685   InstructionMark im(this);
2686   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2687   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2688   attributes.set_is_evex_instruction();
2689   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2690   emit_int8(0x6F);
2691   emit_operand(dst, src);
2692 }
2693 
2694 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2695   assert(VM_Version::supports_evex(), "");
2696   assert(src != xnoreg, "sanity");
2697   InstructionMark im(this);
2698   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2699   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2700   attributes.reset_is_clear_context();
2701   attributes.set_is_evex_instruction();
2702   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2703   emit_int8(0x7F);
2704   emit_operand(src, dst);
2705 }
2706 
2707 // Uses zero extension on 64bit
2708 
2709 void Assembler::movl(Register dst, int32_t imm32) {
2710   int encode = prefix_and_encode(dst->encoding());
2711   emit_int8(0xB8 | encode);
2712   emit_int32(imm32);
2713 }
2714 
2715 void Assembler::movl(Register dst, Register src) {
2716   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2717   emit_int16((unsigned char)0x8B, (0xC0 | encode));
2718 }
2719 
2720 void Assembler::movl(Register dst, Address src) {
2721   InstructionMark im(this);
2722   prefix(src, dst);
2723   emit_int8((unsigned char)0x8B);
2724   emit_operand(dst, src);
2725 }
2726 
2727 void Assembler::movl(Address dst, int32_t imm32) {
2728   InstructionMark im(this);
2729   prefix(dst);
2730   emit_int8((unsigned char)0xC7);
2731   emit_operand(rax, dst, 4);
2732   emit_int32(imm32);
2733 }
2734 
2735 void Assembler::movl(Address dst, Register src) {
2736   InstructionMark im(this);
2737   prefix(dst, src);
2738   emit_int8((unsigned char)0x89);
2739   emit_operand(src, dst);
2740 }
2741 
2742 // New cpus require to use movsd and movss to avoid partial register stall
2743 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2744 // The selection is done in MacroAssembler::movdbl() and movflt().
2745 void Assembler::movlpd(XMMRegister dst, Address src) {
2746   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2747   InstructionMark im(this);
2748   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2749   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2750   attributes.set_rex_vex_w_reverted();
2751   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2752   emit_int8(0x12);
2753   emit_operand(dst, src);
2754 }
2755 
2756 void Assembler::movq(XMMRegister dst, Address src) {
2757   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2758   InstructionMark im(this);
2759   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2760   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2761   attributes.set_rex_vex_w_reverted();
2762   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2763   emit_int8(0x7E);
2764   emit_operand(dst, src);
2765 }
2766 
2767 void Assembler::movq(Address dst, XMMRegister src) {
2768   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2769   InstructionMark im(this);
2770   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2771   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2772   attributes.set_rex_vex_w_reverted();
2773   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2774   emit_int8((unsigned char)0xD6);
2775   emit_operand(src, dst);
2776 }
2777 
2778 void Assembler::movsbl(Register dst, Address src) { // movsxb
2779   InstructionMark im(this);
2780   prefix(src, dst);
2781   emit_int16(0x0F, (unsigned char)0xBE);
2782   emit_operand(dst, src);
2783 }
2784 
2785 void Assembler::movsbl(Register dst, Register src) { // movsxb
2786   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2787   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2788   emit_int24(0x0F, (unsigned char)0xBE, (0xC0 | encode));
2789 }
2790 
2791 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2792   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2793   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2794   attributes.set_rex_vex_w_reverted();
2795   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2796   emit_int16(0x10, (0xC0 | encode));
2797 }
2798 
2799 void Assembler::movsd(XMMRegister dst, Address src) {
2800   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2801   InstructionMark im(this);
2802   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2803   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2804   attributes.set_rex_vex_w_reverted();
2805   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2806   emit_int8(0x10);
2807   emit_operand(dst, src);
2808 }
2809 
2810 void Assembler::movsd(Address dst, XMMRegister src) {
2811   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2812   InstructionMark im(this);
2813   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2814   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2815   attributes.reset_is_clear_context();
2816   attributes.set_rex_vex_w_reverted();
2817   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2818   emit_int8(0x11);
2819   emit_operand(src, dst);
2820 }
2821 
2822 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2823   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2824   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2825   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2826   emit_int16(0x10, (0xC0 | encode));
2827 }
2828 
2829 void Assembler::movss(XMMRegister dst, Address src) {
2830   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2831   InstructionMark im(this);
2832   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2833   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2834   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2835   emit_int8(0x10);
2836   emit_operand(dst, src);
2837 }
2838 
2839 void Assembler::movss(Address dst, XMMRegister src) {
2840   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2841   InstructionMark im(this);
2842   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2843   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2844   attributes.reset_is_clear_context();
2845   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2846   emit_int8(0x11);
2847   emit_operand(src, dst);
2848 }
2849 
2850 void Assembler::movswl(Register dst, Address src) { // movsxw
2851   InstructionMark im(this);
2852   prefix(src, dst);
2853   emit_int16(0x0F, (unsigned char)0xBF);
2854   emit_operand(dst, src);
2855 }
2856 
2857 void Assembler::movswl(Register dst, Register src) { // movsxw
2858   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2859   emit_int24(0x0F, (unsigned char)0xBF, (0xC0 | encode));
2860 }
2861 
2862 void Assembler::movw(Address dst, int imm16) {
2863   InstructionMark im(this);
2864 
2865   emit_int8(0x66); // switch to 16-bit mode
2866   prefix(dst);
2867   emit_int8((unsigned char)0xC7);
2868   emit_operand(rax, dst, 2);
2869   emit_int16(imm16);
2870 }
2871 
2872 void Assembler::movw(Register dst, Address src) {
2873   InstructionMark im(this);
2874   emit_int8(0x66);
2875   prefix(src, dst);
2876   emit_int8((unsigned char)0x8B);
2877   emit_operand(dst, src);
2878 }
2879 
2880 void Assembler::movw(Address dst, Register src) {
2881   InstructionMark im(this);
2882   emit_int8(0x66);
2883   prefix(dst, src);
2884   emit_int8((unsigned char)0x89);
2885   emit_operand(src, dst);
2886 }
2887 
2888 void Assembler::movzbl(Register dst, Address src) { // movzxb
2889   InstructionMark im(this);
2890   prefix(src, dst);
2891   emit_int16(0x0F, (unsigned char)0xB6);
2892   emit_operand(dst, src);
2893 }
2894 
2895 void Assembler::movzbl(Register dst, Register src) { // movzxb
2896   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2897   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2898   emit_int24(0x0F, (unsigned char)0xB6, 0xC0 | encode);
2899 }
2900 
2901 void Assembler::movzwl(Register dst, Address src) { // movzxw
2902   InstructionMark im(this);
2903   prefix(src, dst);
2904   emit_int16(0x0F, (unsigned char)0xB7);
2905   emit_operand(dst, src);
2906 }
2907 
2908 void Assembler::movzwl(Register dst, Register src) { // movzxw
2909   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2910   emit_int24(0x0F, (unsigned char)0xB7, 0xC0 | encode);
2911 }
2912 
2913 void Assembler::mull(Address src) {
2914   InstructionMark im(this);
2915   prefix(src);
2916   emit_int8((unsigned char)0xF7);
2917   emit_operand(rsp, src);
2918 }
2919 
2920 void Assembler::mull(Register src) {
2921   int encode = prefix_and_encode(src->encoding());
2922   emit_int16((unsigned char)0xF7, (0xE0 | encode));
2923 }
2924 
2925 void Assembler::mulsd(XMMRegister dst, Address src) {
2926   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2927   InstructionMark im(this);
2928   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2929   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2930   attributes.set_rex_vex_w_reverted();
2931   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2932   emit_int8(0x59);
2933   emit_operand(dst, src);
2934 }
2935 
2936 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2937   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2938   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2939   attributes.set_rex_vex_w_reverted();
2940   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2941   emit_int16(0x59, (0xC0 | encode));
2942 }
2943 
2944 void Assembler::mulss(XMMRegister dst, Address src) {
2945   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2946   InstructionMark im(this);
2947   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2948   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2949   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2950   emit_int8(0x59);
2951   emit_operand(dst, src);
2952 }
2953 
2954 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2955   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2956   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2957   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2958   emit_int16(0x59, (0xC0 | encode));
2959 }
2960 
2961 void Assembler::negl(Register dst) {
2962   int encode = prefix_and_encode(dst->encoding());
2963   emit_int16((unsigned char)0xF7, (0xD8 | encode));
2964 }
2965 
2966 void Assembler::nop(int i) {
2967 #ifdef ASSERT
2968   assert(i > 0, " ");
2969   // The fancy nops aren't currently recognized by debuggers making it a
2970   // pain to disassemble code while debugging. If asserts are on clearly
2971   // speed is not an issue so simply use the single byte traditional nop
2972   // to do alignment.
2973 
2974   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2975   return;
2976 
2977 #endif // ASSERT
2978 
2979   if (UseAddressNop && VM_Version::is_intel()) {
2980     //
2981     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2982     //  1: 0x90
2983     //  2: 0x66 0x90
2984     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2985     //  4: 0x0F 0x1F 0x40 0x00
2986     //  5: 0x0F 0x1F 0x44 0x00 0x00
2987     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2988     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2989     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2990     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2991     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2992     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2993 
2994     // The rest coding is Intel specific - don't use consecutive address nops
2995 
2996     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2997     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2998     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2999     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3000 
3001     while(i >= 15) {
3002       // For Intel don't generate consecutive addess nops (mix with regular nops)
3003       i -= 15;
3004       emit_int24(0x66, 0x66, 0x66);
3005       addr_nop_8();
3006       emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3007     }
3008     switch (i) {
3009       case 14:
3010         emit_int8(0x66); // size prefix
3011       case 13:
3012         emit_int8(0x66); // size prefix
3013       case 12:
3014         addr_nop_8();
3015         emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3016         break;
3017       case 11:
3018         emit_int8(0x66); // size prefix
3019       case 10:
3020         emit_int8(0x66); // size prefix
3021       case 9:
3022         emit_int8(0x66); // size prefix
3023       case 8:
3024         addr_nop_8();
3025         break;
3026       case 7:
3027         addr_nop_7();
3028         break;
3029       case 6:
3030         emit_int8(0x66); // size prefix
3031       case 5:
3032         addr_nop_5();
3033         break;
3034       case 4:
3035         addr_nop_4();
3036         break;
3037       case 3:
3038         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3039         emit_int8(0x66); // size prefix
3040       case 2:
3041         emit_int8(0x66); // size prefix
3042       case 1:
3043         emit_int8((unsigned char)0x90);
3044                          // nop
3045         break;
3046       default:
3047         assert(i == 0, " ");
3048     }
3049     return;
3050   }
3051   if (UseAddressNop && VM_Version::is_amd_family()) {
3052     //
3053     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3054     //  1: 0x90
3055     //  2: 0x66 0x90
3056     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3057     //  4: 0x0F 0x1F 0x40 0x00
3058     //  5: 0x0F 0x1F 0x44 0x00 0x00
3059     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3060     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3061     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3062     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3063     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3064     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3065 
3066     // The rest coding is AMD specific - use consecutive address nops
3067 
3068     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3069     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3070     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3071     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3072     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3073     //     Size prefixes (0x66) are added for larger sizes
3074 
3075     while(i >= 22) {
3076       i -= 11;
3077       emit_int24(0x66, 0x66, 0x66);
3078       addr_nop_8();
3079     }
3080     // Generate first nop for size between 21-12
3081     switch (i) {
3082       case 21:
3083         i -= 1;
3084         emit_int8(0x66); // size prefix
3085       case 20:
3086       case 19:
3087         i -= 1;
3088         emit_int8(0x66); // size prefix
3089       case 18:
3090       case 17:
3091         i -= 1;
3092         emit_int8(0x66); // size prefix
3093       case 16:
3094       case 15:
3095         i -= 8;
3096         addr_nop_8();
3097         break;
3098       case 14:
3099       case 13:
3100         i -= 7;
3101         addr_nop_7();
3102         break;
3103       case 12:
3104         i -= 6;
3105         emit_int8(0x66); // size prefix
3106         addr_nop_5();
3107         break;
3108       default:
3109         assert(i < 12, " ");
3110     }
3111 
3112     // Generate second nop for size between 11-1
3113     switch (i) {
3114       case 11:
3115         emit_int8(0x66); // size prefix
3116       case 10:
3117         emit_int8(0x66); // size prefix
3118       case 9:
3119         emit_int8(0x66); // size prefix
3120       case 8:
3121         addr_nop_8();
3122         break;
3123       case 7:
3124         addr_nop_7();
3125         break;
3126       case 6:
3127         emit_int8(0x66); // size prefix
3128       case 5:
3129         addr_nop_5();
3130         break;
3131       case 4:
3132         addr_nop_4();
3133         break;
3134       case 3:
3135         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3136         emit_int8(0x66); // size prefix
3137       case 2:
3138         emit_int8(0x66); // size prefix
3139       case 1:
3140         emit_int8((unsigned char)0x90);
3141                          // nop
3142         break;
3143       default:
3144         assert(i == 0, " ");
3145     }
3146     return;
3147   }
3148 
3149   if (UseAddressNop && VM_Version::is_zx()) {
3150     //
3151     // Using multi-bytes nops "0x0F 0x1F [address]" for ZX
3152     //  1: 0x90
3153     //  2: 0x66 0x90
3154     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3155     //  4: 0x0F 0x1F 0x40 0x00
3156     //  5: 0x0F 0x1F 0x44 0x00 0x00
3157     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3158     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3159     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3160     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3161     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3162     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3163 
3164     // The rest coding is ZX specific - don't use consecutive address nops
3165 
3166     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3167     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3168     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3169     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3170 
3171     while (i >= 15) {
3172       // For ZX don't generate consecutive addess nops (mix with regular nops)
3173       i -= 15;
3174       emit_int24(0x66, 0x66, 0x66);
3175       addr_nop_8();
3176       emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3177     }
3178     switch (i) {
3179       case 14:
3180         emit_int8(0x66); // size prefix
3181       case 13:
3182         emit_int8(0x66); // size prefix
3183       case 12:
3184         addr_nop_8();
3185         emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3186         break;
3187       case 11:
3188         emit_int8(0x66); // size prefix
3189       case 10:
3190         emit_int8(0x66); // size prefix
3191       case 9:
3192         emit_int8(0x66); // size prefix
3193       case 8:
3194         addr_nop_8();
3195         break;
3196       case 7:
3197         addr_nop_7();
3198         break;
3199       case 6:
3200         emit_int8(0x66); // size prefix
3201       case 5:
3202         addr_nop_5();
3203         break;
3204       case 4:
3205         addr_nop_4();
3206         break;
3207       case 3:
3208         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3209         emit_int8(0x66); // size prefix
3210       case 2:
3211         emit_int8(0x66); // size prefix
3212       case 1:
3213         emit_int8((unsigned char)0x90);
3214                          // nop
3215         break;
3216       default:
3217         assert(i == 0, " ");
3218     }
3219     return;
3220   }
3221 
3222   // Using nops with size prefixes "0x66 0x90".
3223   // From AMD Optimization Guide:
3224   //  1: 0x90
3225   //  2: 0x66 0x90
3226   //  3: 0x66 0x66 0x90
3227   //  4: 0x66 0x66 0x66 0x90
3228   //  5: 0x66 0x66 0x90 0x66 0x90
3229   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3230   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3231   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3232   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3233   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3234   //
3235   while (i > 12) {
3236     i -= 4;
3237     emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3238   }
3239   // 1 - 12 nops
3240   if (i > 8) {
3241     if (i > 9) {
3242       i -= 1;
3243       emit_int8(0x66);
3244     }
3245     i -= 3;
3246     emit_int24(0x66, 0x66, (unsigned char)0x90);
3247   }
3248   // 1 - 8 nops
3249   if (i > 4) {
3250     if (i > 6) {
3251       i -= 1;
3252       emit_int8(0x66);
3253     }
3254     i -= 3;
3255     emit_int24(0x66, 0x66, (unsigned char)0x90);
3256   }
3257   switch (i) {
3258     case 4:
3259       emit_int8(0x66);
3260     case 3:
3261       emit_int8(0x66);
3262     case 2:
3263       emit_int8(0x66);
3264     case 1:
3265       emit_int8((unsigned char)0x90);
3266       break;
3267     default:
3268       assert(i == 0, " ");
3269   }
3270 }
3271 
3272 void Assembler::notl(Register dst) {
3273   int encode = prefix_and_encode(dst->encoding());
3274   emit_int16((unsigned char)0xF7, (0xD0 | encode));
3275 }
3276 
3277 void Assembler::orl(Address dst, int32_t imm32) {
3278   InstructionMark im(this);
3279   prefix(dst);
3280   emit_arith_operand(0x81, rcx, dst, imm32);
3281 }
3282 
3283 void Assembler::orl(Register dst, int32_t imm32) {
3284   prefix(dst);
3285   emit_arith(0x81, 0xC8, dst, imm32);
3286 }
3287 
3288 void Assembler::orl(Register dst, Address src) {
3289   InstructionMark im(this);
3290   prefix(src, dst);
3291   emit_int8(0x0B);
3292   emit_operand(dst, src);
3293 }
3294 
3295 void Assembler::orl(Register dst, Register src) {
3296   (void) prefix_and_encode(dst->encoding(), src->encoding());
3297   emit_arith(0x0B, 0xC0, dst, src);
3298 }
3299 
3300 void Assembler::orl(Address dst, Register src) {
3301   InstructionMark im(this);
3302   prefix(dst, src);
3303   emit_int8(0x09);
3304   emit_operand(src, dst);
3305 }
3306 
3307 void Assembler::orb(Address dst, int imm8) {
3308   InstructionMark im(this);
3309   prefix(dst);
3310   emit_int8((unsigned char)0x80);
3311   emit_operand(rcx, dst, 1);
3312   emit_int8(imm8);
3313 }
3314 
3315 void Assembler::packuswb(XMMRegister dst, Address src) {
3316   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3317   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3318   InstructionMark im(this);
3319   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3320   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3321   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3322   emit_int8(0x67);
3323   emit_operand(dst, src);
3324 }
3325 
3326 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3327   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3328   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3329   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3330   emit_int16(0x67, (0xC0 | encode));
3331 }
3332 
3333 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3334   assert(UseAVX > 0, "some form of AVX must be enabled");
3335   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3336   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3337   emit_int16(0x67, (0xC0 | encode));
3338 }
3339 
3340 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3341   assert(VM_Version::supports_avx2(), "");
3342   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3343   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3344   emit_int24(0x00, (0xC0 | encode), imm8);
3345 }
3346 
3347 void Assembler::vpermq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3348   assert(UseAVX > 2, "requires AVX512F");
3349   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3350   attributes.set_is_evex_instruction();
3351   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3352   emit_int16(0x36, (0xC0 | encode));
3353 }
3354 
3355 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3356   assert(VM_Version::supports_avx2(), "");
3357   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3358   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3359   emit_int24(0x46, (0xC0 | encode), imm8);
3360 }
3361 
3362 void Assembler::vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8) {
3363   assert(VM_Version::supports_avx(), "");
3364   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3365   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3366   emit_int24(0x06, (0xC0 | encode), imm8);
3367 }
3368 
3369 void Assembler::evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3370   assert(VM_Version::supports_evex(), "");
3371   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3372   attributes.set_is_evex_instruction();
3373   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3374   emit_int16(0x76, (0xC0 | encode));
3375 }
3376 
3377 
3378 void Assembler::pause() {
3379   emit_int16((unsigned char)0xF3, (unsigned char)0x90);
3380 }
3381 
3382 void Assembler::ud2() {
3383   emit_int16(0x0F, 0x0B);
3384 }
3385 
3386 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3387   assert(VM_Version::supports_sse4_2(), "");
3388   InstructionMark im(this);
3389   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3390   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3391   emit_int8(0x61);
3392   emit_operand(dst, src);
3393   emit_int8(imm8);
3394 }
3395 
3396 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3397   assert(VM_Version::supports_sse4_2(), "");
3398   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3399   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3400   emit_int24(0x61, (0xC0 | encode), imm8);
3401 }
3402 
3403 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3404 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3405   assert(VM_Version::supports_sse2(), "");
3406   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3407   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3408   emit_int16(0x74, (0xC0 | encode));
3409 }
3410 
3411 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3412 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3413   assert(VM_Version::supports_avx(), "");
3414   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3415   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3416   emit_int16(0x74, (0xC0 | encode));
3417 }
3418 
3419 // In this context, kdst is written the mask used to process the equal components
3420 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3421   assert(VM_Version::supports_avx512bw(), "");
3422   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3423   attributes.set_is_evex_instruction();
3424   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3425   emit_int16(0x74, (0xC0 | encode));
3426 }
3427 
3428 void Assembler::evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3429   assert(VM_Version::supports_avx512vlbw(), "");
3430   InstructionMark im(this);
3431   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3432   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3433   attributes.set_is_evex_instruction();
3434   int dst_enc = kdst->encoding();
3435   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3436   emit_int8(0x64);
3437   emit_operand(as_Register(dst_enc), src);
3438 }
3439 
3440 void Assembler::evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3441   assert(VM_Version::supports_avx512vlbw(), "");
3442   InstructionMark im(this);
3443   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3444   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3445   attributes.reset_is_clear_context();
3446   attributes.set_embedded_opmask_register_specifier(mask);
3447   attributes.set_is_evex_instruction();
3448   int dst_enc = kdst->encoding();
3449   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3450   emit_int8(0x64);
3451   emit_operand(as_Register(dst_enc), src);
3452 }
3453 
3454 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3455   assert(VM_Version::supports_avx512vlbw(), "");
3456   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3457   attributes.set_is_evex_instruction();
3458   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3459   emit_int24(0x3E, (0xC0 | encode), vcc);
3460 }
3461 
3462 void Assembler::evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3463   assert(VM_Version::supports_avx512vlbw(), "");
3464   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3465   attributes.reset_is_clear_context();
3466   attributes.set_embedded_opmask_register_specifier(mask);
3467   attributes.set_is_evex_instruction();
3468   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3469   emit_int24(0x3E, (0xC0 | encode), vcc);
3470 }
3471 
3472 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len) {
3473   assert(VM_Version::supports_avx512vlbw(), "");
3474   InstructionMark im(this);
3475   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3476   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3477   attributes.set_is_evex_instruction();
3478   int dst_enc = kdst->encoding();
3479   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3480   emit_int8(0x3E);
3481   emit_operand(as_Register(dst_enc), src);
3482   emit_int8(vcc);
3483 }
3484 
3485 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3486   assert(VM_Version::supports_avx512bw(), "");
3487   InstructionMark im(this);
3488   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3489   attributes.set_is_evex_instruction();
3490   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3491   int dst_enc = kdst->encoding();
3492   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3493   emit_int8(0x74);
3494   emit_operand(as_Register(dst_enc), src);
3495 }
3496 
3497 void Assembler::evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3498   assert(VM_Version::supports_avx512vlbw(), "");
3499   InstructionMark im(this);
3500   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_reg_mask */ false, /* uses_vl */ true);
3501   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3502   attributes.reset_is_clear_context();
3503   attributes.set_embedded_opmask_register_specifier(mask);
3504   attributes.set_is_evex_instruction();
3505   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3506   emit_int8(0x74);
3507   emit_operand(as_Register(kdst->encoding()), src);
3508 }
3509 
3510 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3511 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3512   assert(VM_Version::supports_sse2(), "");
3513   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3514   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3515   emit_int16(0x75, (0xC0 | encode));
3516 }
3517 
3518 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3519 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3520   assert(VM_Version::supports_avx(), "");
3521   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3522   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3523   emit_int16(0x75, (0xC0 | encode));
3524 }
3525 
3526 // In this context, kdst is written the mask used to process the equal components
3527 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3528   assert(VM_Version::supports_avx512bw(), "");
3529   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3530   attributes.set_is_evex_instruction();
3531   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3532   emit_int16(0x75, (0xC0 | encode));
3533 }
3534 
3535 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3536   assert(VM_Version::supports_avx512bw(), "");
3537   InstructionMark im(this);
3538   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3539   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3540   attributes.set_is_evex_instruction();
3541   int dst_enc = kdst->encoding();
3542   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3543   emit_int8(0x75);
3544   emit_operand(as_Register(dst_enc), src);
3545 }
3546 
3547 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3548 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3549   assert(VM_Version::supports_sse2(), "");
3550   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3551   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3552   emit_int16(0x76, (0xC0 | encode));
3553 }
3554 
3555 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3556 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3557   assert(VM_Version::supports_avx(), "");
3558   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3559   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3560   emit_int16(0x76, (0xC0 | encode));
3561 }
3562 
3563 // In this context, kdst is written the mask used to process the equal components
3564 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3565   assert(VM_Version::supports_evex(), "");
3566   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3567   attributes.set_is_evex_instruction();
3568   attributes.reset_is_clear_context();
3569   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3570   emit_int16(0x76, (0xC0 | encode));
3571 }
3572 
3573 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3574   assert(VM_Version::supports_evex(), "");
3575   InstructionMark im(this);
3576   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3577   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3578   attributes.reset_is_clear_context();
3579   attributes.set_is_evex_instruction();
3580   int dst_enc = kdst->encoding();
3581   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3582   emit_int8(0x76);
3583   emit_operand(as_Register(dst_enc), src);
3584 }
3585 
3586 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3587 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3588   assert(VM_Version::supports_sse4_1(), "");
3589   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3590   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3591   emit_int16(0x29, (0xC0 | encode));
3592 }
3593 
3594 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3595 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3596   assert(VM_Version::supports_avx(), "");
3597   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3598   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3599   emit_int16(0x29, (0xC0 | encode));
3600 }
3601 
3602 // In this context, kdst is written the mask used to process the equal components
3603 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3604   assert(VM_Version::supports_evex(), "");
3605   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3606   attributes.reset_is_clear_context();
3607   attributes.set_is_evex_instruction();
3608   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3609   emit_int16(0x29, (0xC0 | encode));
3610 }
3611 
3612 // In this context, kdst is written the mask used to process the equal components
3613 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3614   assert(VM_Version::supports_evex(), "");
3615   InstructionMark im(this);
3616   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3617   attributes.reset_is_clear_context();
3618   attributes.set_is_evex_instruction();
3619   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3620   int dst_enc = kdst->encoding();
3621   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3622   emit_int8(0x29);
3623   emit_operand(as_Register(dst_enc), src);
3624 }
3625 
3626 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3627   assert(VM_Version::supports_sse2(), "");
3628   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3629   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3630   emit_int16((unsigned char)0xD7, (0xC0 | encode));
3631 }
3632 
3633 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3634   assert(VM_Version::supports_avx2(), "");
3635   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3636   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3637   emit_int16((unsigned char)0xD7, (0xC0 | encode));
3638 }
3639 
3640 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3641   assert(VM_Version::supports_sse4_1(), "");
3642   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3643   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3644   emit_int24(0x16, (0xC0 | encode), imm8);
3645 }
3646 
3647 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3648   assert(VM_Version::supports_sse4_1(), "");
3649   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3650   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3651   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3652   emit_int8(0x16);
3653   emit_operand(src, dst);
3654   emit_int8(imm8);
3655 }
3656 
3657 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3658   assert(VM_Version::supports_sse4_1(), "");
3659   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3660   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3661   emit_int24(0x16, (0xC0 | encode), imm8);
3662 }
3663 
3664 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3665   assert(VM_Version::supports_sse4_1(), "");
3666   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3667   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3668   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3669   emit_int8(0x16);
3670   emit_operand(src, dst);
3671   emit_int8(imm8);
3672 }
3673 
3674 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3675   assert(VM_Version::supports_sse2(), "");
3676   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3677   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3678   emit_int24((unsigned char)0xC5, (0xC0 | encode), imm8);
3679 }
3680 
3681 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3682   assert(VM_Version::supports_sse4_1(), "");
3683   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3684   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3685   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3686   emit_int8(0x15);
3687   emit_operand(src, dst);
3688   emit_int8(imm8);
3689 }
3690 
3691 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3692   assert(VM_Version::supports_sse4_1(), "");
3693   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3694   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3695   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3696   emit_int8(0x14);
3697   emit_operand(src, dst);
3698   emit_int8(imm8);
3699 }
3700 
3701 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3702   assert(VM_Version::supports_sse4_1(), "");
3703   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3704   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3705   emit_int24(0x22, (0xC0 | encode), imm8);
3706 }
3707 
3708 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3709   assert(VM_Version::supports_sse4_1(), "");
3710   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3711   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3712   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3713   emit_int8(0x22);
3714   emit_operand(dst,src);
3715   emit_int8(imm8);
3716 }
3717 
3718 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3719   assert(VM_Version::supports_sse4_1(), "");
3720   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3721   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3722   emit_int24(0x22, (0xC0 | encode), imm8);
3723 }
3724 
3725 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3726   assert(VM_Version::supports_sse4_1(), "");
3727   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3728   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3729   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3730   emit_int8(0x22);
3731   emit_operand(dst, src);
3732   emit_int8(imm8);
3733 }
3734 
3735 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3736   assert(VM_Version::supports_sse2(), "");
3737   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3738   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3739   emit_int24((unsigned char)0xC4, (0xC0 | encode), imm8);
3740 }
3741 
3742 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3743   assert(VM_Version::supports_sse2(), "");
3744   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3745   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3746   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3747   emit_int8((unsigned char)0xC4);
3748   emit_operand(dst, src);
3749   emit_int8(imm8);
3750 }
3751 
3752 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3753   assert(VM_Version::supports_sse4_1(), "");
3754   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3755   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3756   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3757   emit_int8(0x20);
3758   emit_operand(dst, src);
3759   emit_int8(imm8);
3760 }
3761 
3762 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3763   assert(VM_Version::supports_sse4_1(), "");
3764   InstructionMark im(this);
3765   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3766   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3767   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3768   emit_int8(0x30);
3769   emit_operand(dst, src);
3770 }
3771 
3772 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3773   assert(VM_Version::supports_sse4_1(), "");
3774   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3775   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3776   emit_int16(0x30, (0xC0 | encode));
3777 }
3778 
3779 void Assembler::pmovsxbw(XMMRegister dst, XMMRegister src) {
3780   assert(VM_Version::supports_sse4_1(), "");
3781   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3782   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3783   emit_int16(0x20, (0xC0 | encode));
3784 }
3785 
3786 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3787   assert(VM_Version::supports_avx(), "");
3788   InstructionMark im(this);
3789   assert(dst != xnoreg, "sanity");
3790   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3791   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3792   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3793   emit_int8(0x30);
3794   emit_operand(dst, src);
3795 }
3796 
3797 void Assembler::vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) {
3798   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3799   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3800   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
3801   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3802   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3803   emit_int16(0x30, (unsigned char) (0xC0 | encode));
3804 }
3805 
3806 void Assembler::vpmovsxbw(XMMRegister dst, XMMRegister src, int vector_len) {
3807   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3808   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3809   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
3810   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3811   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3812   emit_int16(0x20, (0xC0 | encode));
3813 }
3814 
3815 void Assembler::evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
3816   assert(VM_Version::supports_avx512vlbw(), "");
3817   assert(dst != xnoreg, "sanity");
3818   InstructionMark im(this);
3819   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3820   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3821   attributes.set_embedded_opmask_register_specifier(mask);
3822   attributes.set_is_evex_instruction();
3823   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3824   emit_int8(0x30);
3825   emit_operand(dst, src);
3826 }
3827 void Assembler::evpmovwb(Address dst, XMMRegister src, int vector_len) {
3828   assert(VM_Version::supports_avx512vlbw(), "");
3829   assert(src != xnoreg, "sanity");
3830   InstructionMark im(this);
3831   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3832   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3833   attributes.set_is_evex_instruction();
3834   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3835   emit_int8(0x30);
3836   emit_operand(src, dst);
3837 }
3838 
3839 void Assembler::evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len) {
3840   assert(VM_Version::supports_avx512vlbw(), "");
3841   assert(src != xnoreg, "sanity");
3842   InstructionMark im(this);
3843   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3844   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3845   attributes.reset_is_clear_context();
3846   attributes.set_embedded_opmask_register_specifier(mask);
3847   attributes.set_is_evex_instruction();
3848   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3849   emit_int8(0x30);
3850   emit_operand(src, dst);
3851 }
3852 
3853 void Assembler::evpmovdb(Address dst, XMMRegister src, int vector_len) {
3854   assert(VM_Version::supports_evex(), "");
3855   assert(src != xnoreg, "sanity");
3856   InstructionMark im(this);
3857   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3858   attributes.set_address_attributes(/* tuple_type */ EVEX_QVM, /* input_size_in_bits */ EVEX_NObit);
3859   attributes.set_is_evex_instruction();
3860   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3861   emit_int8(0x31);
3862   emit_operand(src, dst);
3863 }
3864 
3865 void Assembler::vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len) {
3866   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3867   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3868   vector_len == AVX_512bit? VM_Version::supports_evex() : 0, " ");
3869   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3870   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3871   emit_int16(0x33, (0xC0 | encode));
3872 }
3873 
3874 void Assembler::pmaddwd(XMMRegister dst, XMMRegister src) {
3875   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3876   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3877   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3878   emit_int16((unsigned char)0xF5, (0xC0 | encode));
3879 }
3880 
3881 void Assembler::vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3882   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
3883     (vector_len == AVX_256bit ? VM_Version::supports_avx2() :
3884     (vector_len == AVX_512bit ? VM_Version::supports_evex() : 0)), "");
3885   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3886   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3887   emit_int16((unsigned char)0xF5, (0xC0 | encode));
3888 }
3889 
3890 void Assembler::evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3891   assert(VM_Version::supports_evex(), "");
3892   assert(VM_Version::supports_avx512_vnni(), "must support vnni");
3893   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3894   attributes.set_is_evex_instruction();
3895   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3896   emit_int16(0x52, (0xC0 | encode));
3897 }
3898 
3899 // generic
3900 void Assembler::pop(Register dst) {
3901   int encode = prefix_and_encode(dst->encoding());
3902   emit_int8(0x58 | encode);
3903 }
3904 
3905 void Assembler::popcntl(Register dst, Address src) {
3906   assert(VM_Version::supports_popcnt(), "must support");
3907   InstructionMark im(this);
3908   emit_int8((unsigned char)0xF3);
3909   prefix(src, dst);
3910   emit_int16(0x0F, (unsigned char)0xB8);
3911   emit_operand(dst, src);
3912 }
3913 
3914 void Assembler::popcntl(Register dst, Register src) {
3915   assert(VM_Version::supports_popcnt(), "must support");
3916   emit_int8((unsigned char)0xF3);
3917   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3918   emit_int24(0x0F, (unsigned char)0xB8, (0xC0 | encode));
3919 }
3920 
3921 void Assembler::vpopcntd(XMMRegister dst, XMMRegister src, int vector_len) {
3922   assert(VM_Version::supports_avx512_vpopcntdq(), "must support vpopcntdq feature");
3923   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3924   attributes.set_is_evex_instruction();
3925   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3926   emit_int16(0x55, (0xC0 | encode));
3927 }
3928 
3929 void Assembler::popf() {
3930   emit_int8((unsigned char)0x9D);
3931 }
3932 
3933 #ifndef _LP64 // no 32bit push/pop on amd64
3934 void Assembler::popl(Address dst) {
3935   // NOTE: this will adjust stack by 8byte on 64bits
3936   InstructionMark im(this);
3937   prefix(dst);
3938   emit_int8((unsigned char)0x8F);
3939   emit_operand(rax, dst);
3940 }
3941 #endif
3942 
3943 void Assembler::prefetchnta(Address src) {
3944   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3945   InstructionMark im(this);
3946   prefix(src);
3947   emit_int16(0x0F, 0x18);
3948   emit_operand(rax, src); // 0, src
3949 }
3950 
3951 void Assembler::prefetchr(Address src) {
3952   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3953   InstructionMark im(this);
3954   prefix(src);
3955   emit_int16(0x0F, 0x0D);
3956   emit_operand(rax, src); // 0, src
3957 }
3958 
3959 void Assembler::prefetcht0(Address src) {
3960   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3961   InstructionMark im(this);
3962   prefix(src);
3963   emit_int16(0x0F, 0x18);
3964   emit_operand(rcx, src); // 1, src
3965 }
3966 
3967 void Assembler::prefetcht1(Address src) {
3968   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3969   InstructionMark im(this);
3970   prefix(src);
3971   emit_int16(0x0F, 0x18);
3972   emit_operand(rdx, src); // 2, src
3973 }
3974 
3975 void Assembler::prefetcht2(Address src) {
3976   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3977   InstructionMark im(this);
3978   prefix(src);
3979   emit_int16(0x0F, 0x18);
3980   emit_operand(rbx, src); // 3, src
3981 }
3982 
3983 void Assembler::prefetchw(Address src) {
3984   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3985   InstructionMark im(this);
3986   prefix(src);
3987   emit_int16(0x0F, 0x0D);
3988   emit_operand(rcx, src); // 1, src
3989 }
3990 
3991 void Assembler::prefix(Prefix p) {
3992   emit_int8(p);
3993 }
3994 
3995 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3996   assert(VM_Version::supports_ssse3(), "");
3997   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3998   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3999   emit_int16(0x00, (0xC0 | encode));
4000 }
4001 
4002 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4003   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4004          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4005          vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
4006   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4007   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4008   emit_int16(0x00, (0xC0 | encode));
4009 }
4010 
4011 void Assembler::pshufb(XMMRegister dst, Address src) {
4012   assert(VM_Version::supports_ssse3(), "");
4013   InstructionMark im(this);
4014   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4015   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4016   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4017   emit_int8(0x00);
4018   emit_operand(dst, src);
4019 }
4020 
4021 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
4022   assert(isByte(mode), "invalid value");
4023   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4024   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
4025   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4026   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4027   emit_int24(0x70, (0xC0 | encode), mode & 0xFF);
4028 }
4029 
4030 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
4031   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4032          (vector_len == AVX_256bit? VM_Version::supports_avx2() :
4033          (vector_len == AVX_512bit? VM_Version::supports_evex() : 0)), "");
4034   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4035   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4036   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4037   emit_int24(0x70, (0xC0 | encode), mode & 0xFF);
4038 }
4039 
4040 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
4041   assert(isByte(mode), "invalid value");
4042   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4043   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4044   InstructionMark im(this);
4045   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4046   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4047   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4048   emit_int8(0x70);
4049   emit_operand(dst, src);
4050   emit_int8(mode & 0xFF);
4051 }
4052 
4053 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4054   assert(isByte(mode), "invalid value");
4055   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4056   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4057   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4058   emit_int24(0x70, (0xC0 | encode), mode & 0xFF);
4059 }
4060 
4061 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
4062   assert(isByte(mode), "invalid value");
4063   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4064   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4065   InstructionMark im(this);
4066   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4067   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4068   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4069   emit_int8(0x70);
4070   emit_operand(dst, src);
4071   emit_int8(mode & 0xFF);
4072 }
4073 
4074 void Assembler::evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4075   assert(VM_Version::supports_evex(), "requires EVEX support");
4076   assert(vector_len == Assembler::AVX_256bit || vector_len == Assembler::AVX_512bit, "");
4077   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4078   attributes.set_is_evex_instruction();
4079   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4080   emit_int24(0x43, (0xC0 | encode), imm8 & 0xFF);
4081 }
4082 
4083 void Assembler::psrldq(XMMRegister dst, int shift) {
4084   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4085   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4086   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4087   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4088   emit_int24(0x73, (0xC0 | encode), shift);
4089 }
4090 
4091 void Assembler::vpsrldq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4092   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4093          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4094          vector_len == AVX_512bit ? VM_Version::supports_avx512bw() : 0, "");
4095   InstructionAttr attributes(vector_len, /*vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4096   int encode = vex_prefix_and_encode(xmm3->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4097   emit_int24(0x73, (0xC0 | encode), shift & 0xFF);
4098 }
4099 
4100 void Assembler::pslldq(XMMRegister dst, int shift) {
4101   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4102   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4103   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4104   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
4105   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4106   emit_int24(0x73, (0xC0 | encode), shift);
4107 }
4108 
4109 void Assembler::vpslldq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4110   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4111          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4112          vector_len == AVX_512bit ? VM_Version::supports_avx512bw() : 0, "");
4113   InstructionAttr attributes(vector_len, /*vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4114   int encode = vex_prefix_and_encode(xmm7->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4115   emit_int24(0x73, (0xC0 | encode), shift & 0xFF);
4116 }
4117 
4118 void Assembler::ptest(XMMRegister dst, Address src) {
4119   assert(VM_Version::supports_sse4_1(), "");
4120   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4121   InstructionMark im(this);
4122   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4123   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4124   emit_int8(0x17);
4125   emit_operand(dst, src);
4126 }
4127 
4128 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
4129   assert(VM_Version::supports_sse4_1() || VM_Version::supports_avx(), "");
4130   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4131   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4132   emit_int8(0x17);
4133   emit_int8((0xC0 | encode));
4134 }
4135 
4136 void Assembler::vptest(XMMRegister dst, Address src) {
4137   assert(VM_Version::supports_avx(), "");
4138   InstructionMark im(this);
4139   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4140   assert(dst != xnoreg, "sanity");
4141   // swap src<->dst for encoding
4142   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4143   emit_int8(0x17);
4144   emit_operand(dst, src);
4145 }
4146 
4147 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
4148   assert(VM_Version::supports_avx(), "");
4149   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4150   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4151   emit_int16(0x17, (0xC0 | encode));
4152 }
4153 
4154 void Assembler::punpcklbw(XMMRegister dst, Address src) {
4155   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4156   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4157   InstructionMark im(this);
4158   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ true, /* uses_vl */ true);
4159   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4160   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4161   emit_int8(0x60);
4162   emit_operand(dst, src);
4163 }
4164 
4165 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4166   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4167   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ true, /* uses_vl */ true);
4168   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4169   emit_int16(0x60, (0xC0 | encode));
4170 }
4171 
4172 void Assembler::punpckldq(XMMRegister dst, Address src) {
4173   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4174   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4175   InstructionMark im(this);
4176   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4177   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4178   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4179   emit_int8(0x62);
4180   emit_operand(dst, src);
4181 }
4182 
4183 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
4184   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4185   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4186   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4187   emit_int16(0x62, (0xC0 | encode));
4188 }
4189 
4190 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
4191   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4192   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4193   attributes.set_rex_vex_w_reverted();
4194   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4195   emit_int16(0x6C, (0xC0 | encode));
4196 }
4197 
4198 void Assembler::push(int32_t imm32) {
4199   // in 64bits we push 64bits onto the stack but only
4200   // take a 32bit immediate
4201   emit_int8(0x68);
4202   emit_int32(imm32);
4203 }
4204 
4205 void Assembler::push(Register src) {
4206   int encode = prefix_and_encode(src->encoding());
4207   emit_int8(0x50 | encode);
4208 }
4209 
4210 void Assembler::pushf() {
4211   emit_int8((unsigned char)0x9C);
4212 }
4213 
4214 #ifndef _LP64 // no 32bit push/pop on amd64
4215 void Assembler::pushl(Address src) {
4216   // Note this will push 64bit on 64bit
4217   InstructionMark im(this);
4218   prefix(src);
4219   emit_int8((unsigned char)0xFF);
4220   emit_operand(rsi, src);
4221 }
4222 #endif
4223 
4224 void Assembler::rcll(Register dst, int imm8) {
4225   assert(isShiftCount(imm8), "illegal shift count");
4226   int encode = prefix_and_encode(dst->encoding());
4227   if (imm8 == 1) {
4228     emit_int16((unsigned char)0xD1, (0xD0 | encode));
4229   } else {
4230     emit_int24((unsigned char)0xC1, (0xD0 | encode), imm8);
4231   }
4232 }
4233 
4234 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
4235   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4236   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4237   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4238   emit_int16(0x53, (0xC0 | encode));
4239 }
4240 
4241 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
4242   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4243   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4244   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4245   emit_int16(0x53, (0xC0 | encode));
4246 }
4247 
4248 void Assembler::rdtsc() {
4249   emit_int16(0x0F, 0x31);
4250 }
4251 
4252 // copies data from [esi] to [edi] using rcx pointer sized words
4253 // generic
4254 void Assembler::rep_mov() {
4255   // REP
4256   // MOVSQ
4257   LP64_ONLY(emit_int24((unsigned char)0xF3, REX_W, (unsigned char)0xA5);)
4258   NOT_LP64( emit_int16((unsigned char)0xF3,        (unsigned char)0xA5);)
4259 }
4260 
4261 // sets rcx bytes with rax, value at [edi]
4262 void Assembler::rep_stosb() {
4263   // REP
4264   // STOSB
4265   LP64_ONLY(emit_int24((unsigned char)0xF3, REX_W, (unsigned char)0xAA);)
4266   NOT_LP64( emit_int16((unsigned char)0xF3,        (unsigned char)0xAA);)
4267 }
4268 
4269 // sets rcx pointer sized words with rax, value at [edi]
4270 // generic
4271 void Assembler::rep_stos() {
4272   // REP
4273   // LP64:STOSQ, LP32:STOSD
4274   LP64_ONLY(emit_int24((unsigned char)0xF3, REX_W, (unsigned char)0xAB);)
4275   NOT_LP64( emit_int16((unsigned char)0xF3,        (unsigned char)0xAB);)
4276 }
4277 
4278 // scans rcx pointer sized words at [edi] for occurance of rax,
4279 // generic
4280 void Assembler::repne_scan() { // repne_scan
4281   // SCASQ
4282   LP64_ONLY(emit_int24((unsigned char)0xF2, REX_W, (unsigned char)0xAF);)
4283   NOT_LP64( emit_int16((unsigned char)0xF2,        (unsigned char)0xAF);)
4284 }
4285 
4286 #ifdef _LP64
4287 // scans rcx 4 byte words at [edi] for occurance of rax,
4288 // generic
4289 void Assembler::repne_scanl() { // repne_scan
4290   // SCASL
4291   emit_int16((unsigned char)0xF2, (unsigned char)0xAF);
4292 }
4293 #endif
4294 
4295 void Assembler::ret(int imm16) {
4296   if (imm16 == 0) {
4297     emit_int8((unsigned char)0xC3);
4298   } else {
4299     emit_int8((unsigned char)0xC2);
4300     emit_int16(imm16);
4301   }
4302 }
4303 
4304 void Assembler::sahf() {
4305 #ifdef _LP64
4306   // Not supported in 64bit mode
4307   ShouldNotReachHere();
4308 #endif
4309   emit_int8((unsigned char)0x9E);
4310 }
4311 
4312 void Assembler::sarl(Register dst, int imm8) {
4313   int encode = prefix_and_encode(dst->encoding());
4314   assert(isShiftCount(imm8), "illegal shift count");
4315   if (imm8 == 1) {
4316     emit_int16((unsigned char)0xD1, (0xF8 | encode));
4317   } else {
4318     emit_int24((unsigned char)0xC1, (0xF8 | encode), imm8);
4319   }
4320 }
4321 
4322 void Assembler::sarl(Register dst) {
4323   int encode = prefix_and_encode(dst->encoding());
4324   emit_int16((unsigned char)0xD3, (0xF8 | encode));
4325 }
4326 
4327 void Assembler::sbbl(Address dst, int32_t imm32) {
4328   InstructionMark im(this);
4329   prefix(dst);
4330   emit_arith_operand(0x81, rbx, dst, imm32);
4331 }
4332 
4333 void Assembler::sbbl(Register dst, int32_t imm32) {
4334   prefix(dst);
4335   emit_arith(0x81, 0xD8, dst, imm32);
4336 }
4337 
4338 
4339 void Assembler::sbbl(Register dst, Address src) {
4340   InstructionMark im(this);
4341   prefix(src, dst);
4342   emit_int8(0x1B);
4343   emit_operand(dst, src);
4344 }
4345 
4346 void Assembler::sbbl(Register dst, Register src) {
4347   (void) prefix_and_encode(dst->encoding(), src->encoding());
4348   emit_arith(0x1B, 0xC0, dst, src);
4349 }
4350 
4351 void Assembler::setb(Condition cc, Register dst) {
4352   assert(0 <= cc && cc < 16, "illegal cc");
4353   int encode = prefix_and_encode(dst->encoding(), true);
4354   emit_int24(0x0F, (unsigned char)0x90 | cc, (0xC0 | encode));
4355 }
4356 
4357 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4358   assert(VM_Version::supports_ssse3(), "");
4359   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4360   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4361   emit_int24(0x0F, (0xC0 | encode), imm8);
4362 }
4363 
4364 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4365   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4366          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4367          0, "");
4368   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4369   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4370   emit_int24(0x0F, (0xC0 | encode), imm8);
4371 }
4372 
4373 void Assembler::evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
4374   assert(VM_Version::supports_evex(), "");
4375   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4376   attributes.set_is_evex_instruction();
4377   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4378   emit_int24(0x3, (0xC0 | encode), imm8);
4379 }
4380 
4381 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4382   assert(VM_Version::supports_sse4_1(), "");
4383   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4384   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4385   emit_int24(0x0E, (0xC0 | encode), imm8);
4386 }
4387 
4388 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4389   assert(VM_Version::supports_sha(), "");
4390   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_3A, /* rex_w */ false);
4391   emit_int24((unsigned char)0xCC, (0xC0 | encode), (unsigned char)imm8);
4392 }
4393 
4394 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4395   assert(VM_Version::supports_sha(), "");
4396   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4397   emit_int16((unsigned char)0xC8, (0xC0 | encode));
4398 }
4399 
4400 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4401   assert(VM_Version::supports_sha(), "");
4402   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4403   emit_int16((unsigned char)0xC9, (0xC0 | encode));
4404 }
4405 
4406 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4407   assert(VM_Version::supports_sha(), "");
4408   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4409   emit_int16((unsigned char)0xCA, (0xC0 | encode));
4410 }
4411 
4412 // xmm0 is implicit additional source to this instruction.
4413 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4414   assert(VM_Version::supports_sha(), "");
4415   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4416   emit_int16((unsigned char)0xCB, (0xC0 | encode));
4417 }
4418 
4419 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4420   assert(VM_Version::supports_sha(), "");
4421   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4422   emit_int16((unsigned char)0xCC, (0xC0 | encode));
4423 }
4424 
4425 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4426   assert(VM_Version::supports_sha(), "");
4427   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4428   emit_int16((unsigned char)0xCD, (0xC0 | encode));
4429 }
4430 
4431 
4432 void Assembler::shll(Register dst, int imm8) {
4433   assert(isShiftCount(imm8), "illegal shift count");
4434   int encode = prefix_and_encode(dst->encoding());
4435   if (imm8 == 1 ) {
4436     emit_int16((unsigned char)0xD1, (0xE0 | encode));
4437   } else {
4438     emit_int24((unsigned char)0xC1, (0xE0 | encode), imm8);
4439   }
4440 }
4441 
4442 void Assembler::shll(Register dst) {
4443   int encode = prefix_and_encode(dst->encoding());
4444   emit_int16((unsigned char)0xD3, (0xE0 | encode));
4445 }
4446 
4447 void Assembler::shrl(Register dst, int imm8) {
4448   assert(isShiftCount(imm8), "illegal shift count");
4449   int encode = prefix_and_encode(dst->encoding());
4450   emit_int24((unsigned char)0xC1, (0xE8 | encode), imm8);
4451 }
4452 
4453 void Assembler::shrl(Register dst) {
4454   int encode = prefix_and_encode(dst->encoding());
4455   emit_int16((unsigned char)0xD3, (0xE8 | encode));
4456 }
4457 
4458 void Assembler::shldl(Register dst, Register src) {
4459   int encode = prefix_and_encode(src->encoding(), dst->encoding());
4460   emit_int24(0x0F, (unsigned char)0xA5, (0xC0 | encode));
4461 }
4462 
4463 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
4464   int encode = prefix_and_encode(src->encoding(), dst->encoding());
4465   emit_int32(0x0F, (unsigned char)0xA4, (0xC0 | encode), imm8);
4466 }
4467 
4468 void Assembler::shrdl(Register dst, Register src) {
4469   int encode = prefix_and_encode(src->encoding(), dst->encoding());
4470   emit_int24(0x0F, (unsigned char)0xAD, (0xC0 | encode));
4471 }
4472 
4473 void Assembler::shrdl(Register dst, Register src, int8_t imm8) {
4474   int encode = prefix_and_encode(src->encoding(), dst->encoding());
4475   emit_int32(0x0F, (unsigned char)0xAC, (0xC0 | encode), imm8);
4476 }
4477 
4478 // copies a single word from [esi] to [edi]
4479 void Assembler::smovl() {
4480   emit_int8((unsigned char)0xA5);
4481 }
4482 
4483 void Assembler::roundsd(XMMRegister dst, XMMRegister src, int32_t rmode) {
4484   assert(VM_Version::supports_sse4_1(), "");
4485   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4486   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4487   emit_int24(0x0B, (0xC0 | encode), (unsigned char)rmode);
4488 }
4489 
4490 void Assembler::roundsd(XMMRegister dst, Address src, int32_t rmode) {
4491   assert(VM_Version::supports_sse4_1(), "");
4492   InstructionMark im(this);
4493   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4494   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4495   emit_int8(0x0B);
4496   emit_operand(dst, src);
4497   emit_int8((unsigned char)rmode);
4498 }
4499 
4500 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4501   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4502   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4503   attributes.set_rex_vex_w_reverted();
4504   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4505   emit_int16(0x51, (0xC0 | encode));
4506 }
4507 
4508 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4509   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4510   InstructionMark im(this);
4511   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4512   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4513   attributes.set_rex_vex_w_reverted();
4514   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4515   emit_int8(0x51);
4516   emit_operand(dst, src);
4517 }
4518 
4519 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4520   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4521   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4522   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4523   emit_int16(0x51, (0xC0 | encode));
4524 }
4525 
4526 void Assembler::std() {
4527   emit_int8((unsigned char)0xFD);
4528 }
4529 
4530 void Assembler::sqrtss(XMMRegister dst, Address src) {
4531   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4532   InstructionMark im(this);
4533   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4534   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4535   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4536   emit_int8(0x51);
4537   emit_operand(dst, src);
4538 }
4539 
4540 void Assembler::stmxcsr( Address dst) {
4541   if (UseAVX > 0 ) {
4542     assert(VM_Version::supports_avx(), "");
4543     InstructionMark im(this);
4544     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4545     vex_prefix(dst, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4546     emit_int8((unsigned char)0xAE);
4547     emit_operand(as_Register(3), dst);
4548   } else {
4549     NOT_LP64(assert(VM_Version::supports_sse(), ""));
4550     InstructionMark im(this);
4551     prefix(dst);
4552     emit_int16(0x0F, (unsigned char)0xAE);
4553     emit_operand(as_Register(3), dst);
4554   }
4555 }
4556 
4557 void Assembler::subl(Address dst, int32_t imm32) {
4558   InstructionMark im(this);
4559   prefix(dst);
4560   emit_arith_operand(0x81, rbp, dst, imm32);
4561 }
4562 
4563 void Assembler::subl(Address dst, Register src) {
4564   InstructionMark im(this);
4565   prefix(dst, src);
4566   emit_int8(0x29);
4567   emit_operand(src, dst);
4568 }
4569 
4570 void Assembler::subl(Register dst, int32_t imm32) {
4571   prefix(dst);
4572   emit_arith(0x81, 0xE8, dst, imm32);
4573 }
4574 
4575 // Force generation of a 4 byte immediate value even if it fits into 8bit
4576 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4577   prefix(dst);
4578   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4579 }
4580 
4581 void Assembler::subl(Register dst, Address src) {
4582   InstructionMark im(this);
4583   prefix(src, dst);
4584   emit_int8(0x2B);
4585   emit_operand(dst, src);
4586 }
4587 
4588 void Assembler::subl(Register dst, Register src) {
4589   (void) prefix_and_encode(dst->encoding(), src->encoding());
4590   emit_arith(0x2B, 0xC0, dst, src);
4591 }
4592 
4593 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4594   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4595   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4596   attributes.set_rex_vex_w_reverted();
4597   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4598   emit_int16(0x5C, (0xC0 | encode));
4599 }
4600 
4601 void Assembler::subsd(XMMRegister dst, Address src) {
4602   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4603   InstructionMark im(this);
4604   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4605   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4606   attributes.set_rex_vex_w_reverted();
4607   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4608   emit_int8(0x5C);
4609   emit_operand(dst, src);
4610 }
4611 
4612 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4613   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4614   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ false);
4615   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4616   emit_int16(0x5C, (0xC0 | encode));
4617 }
4618 
4619 void Assembler::subss(XMMRegister dst, Address src) {
4620   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4621   InstructionMark im(this);
4622   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4623   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4624   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4625   emit_int8(0x5C);
4626   emit_operand(dst, src);
4627 }
4628 
4629 void Assembler::testb(Register dst, int imm8) {
4630   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4631   (void) prefix_and_encode(dst->encoding(), true);
4632   emit_arith_b(0xF6, 0xC0, dst, imm8);
4633 }
4634 
4635 void Assembler::testb(Address dst, int imm8) {
4636   InstructionMark im(this);
4637   prefix(dst);
4638   emit_int8((unsigned char)0xF6);
4639   emit_operand(rax, dst, 1);
4640   emit_int8(imm8);
4641 }
4642 
4643 void Assembler::testl(Register dst, int32_t imm32) {
4644   // not using emit_arith because test
4645   // doesn't support sign-extension of
4646   // 8bit operands
4647   int encode = dst->encoding();
4648   if (encode == 0) {
4649     emit_int8((unsigned char)0xA9);
4650   } else {
4651     encode = prefix_and_encode(encode);
4652     emit_int16((unsigned char)0xF7, (0xC0 | encode));
4653   }
4654   emit_int32(imm32);
4655 }
4656 
4657 void Assembler::testl(Register dst, Register src) {
4658   (void) prefix_and_encode(dst->encoding(), src->encoding());
4659   emit_arith(0x85, 0xC0, dst, src);
4660 }
4661 
4662 void Assembler::testl(Register dst, Address src) {
4663   InstructionMark im(this);
4664   prefix(src, dst);
4665   emit_int8((unsigned char)0x85);
4666   emit_operand(dst, src);
4667 }
4668 
4669 void Assembler::tzcntl(Register dst, Register src) {
4670   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4671   emit_int8((unsigned char)0xF3);
4672   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4673   emit_int24(0x0F,
4674              (unsigned char)0xBC,
4675              0xC0 | encode);
4676 }
4677 
4678 void Assembler::tzcntq(Register dst, Register src) {
4679   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4680   emit_int8((unsigned char)0xF3);
4681   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4682   emit_int24(0x0F, (unsigned char)0xBC, (0xC0 | encode));
4683 }
4684 
4685 void Assembler::ucomisd(XMMRegister dst, Address src) {
4686   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4687   InstructionMark im(this);
4688   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4689   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4690   attributes.set_rex_vex_w_reverted();
4691   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4692   emit_int8(0x2E);
4693   emit_operand(dst, src);
4694 }
4695 
4696 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4697   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4698   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4699   attributes.set_rex_vex_w_reverted();
4700   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4701   emit_int16(0x2E, (0xC0 | encode));
4702 }
4703 
4704 void Assembler::ucomiss(XMMRegister dst, Address src) {
4705   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4706   InstructionMark im(this);
4707   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4708   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4709   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4710   emit_int8(0x2E);
4711   emit_operand(dst, src);
4712 }
4713 
4714 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4715   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4716   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4717   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4718   emit_int16(0x2E, (0xC0 | encode));
4719 }
4720 
4721 void Assembler::xabort(int8_t imm8) {
4722   emit_int24((unsigned char)0xC6, (unsigned char)0xF8, (imm8 & 0xFF));
4723 }
4724 
4725 void Assembler::xaddb(Address dst, Register src) {
4726   InstructionMark im(this);
4727   prefix(dst, src, true);
4728   emit_int16(0x0F, (unsigned char)0xC0);
4729   emit_operand(src, dst);
4730 }
4731 
4732 void Assembler::xaddw(Address dst, Register src) {
4733   InstructionMark im(this);
4734   emit_int8(0x66);
4735   prefix(dst, src);
4736   emit_int16(0x0F, (unsigned char)0xC1);
4737   emit_operand(src, dst);
4738 }
4739 
4740 void Assembler::xaddl(Address dst, Register src) {
4741   InstructionMark im(this);
4742   prefix(dst, src);
4743   emit_int16(0x0F, (unsigned char)0xC1);
4744   emit_operand(src, dst);
4745 }
4746 
4747 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4748   InstructionMark im(this);
4749   relocate(rtype);
4750   if (abort.is_bound()) {
4751     address entry = target(abort);
4752     assert(entry != NULL, "abort entry NULL");
4753     intptr_t offset = entry - pc();
4754     emit_int16((unsigned char)0xC7, (unsigned char)0xF8);
4755     emit_int32(offset - 6); // 2 opcode + 4 address
4756   } else {
4757     abort.add_patch_at(code(), locator());
4758     emit_int16((unsigned char)0xC7, (unsigned char)0xF8);
4759     emit_int32(0);
4760   }
4761 }
4762 
4763 void Assembler::xchgb(Register dst, Address src) { // xchg
4764   InstructionMark im(this);
4765   prefix(src, dst, true);
4766   emit_int8((unsigned char)0x86);
4767   emit_operand(dst, src);
4768 }
4769 
4770 void Assembler::xchgw(Register dst, Address src) { // xchg
4771   InstructionMark im(this);
4772   emit_int8(0x66);
4773   prefix(src, dst);
4774   emit_int8((unsigned char)0x87);
4775   emit_operand(dst, src);
4776 }
4777 
4778 void Assembler::xchgl(Register dst, Address src) { // xchg
4779   InstructionMark im(this);
4780   prefix(src, dst);
4781   emit_int8((unsigned char)0x87);
4782   emit_operand(dst, src);
4783 }
4784 
4785 void Assembler::xchgl(Register dst, Register src) {
4786   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4787   emit_int16((unsigned char)0x87, (0xC0 | encode));
4788 }
4789 
4790 void Assembler::xend() {
4791   emit_int24(0x0F, 0x01, (unsigned char)0xD5);
4792 }
4793 
4794 void Assembler::xgetbv() {
4795   emit_int24(0x0F, 0x01, (unsigned char)0xD0);
4796 }
4797 
4798 void Assembler::xorl(Register dst, int32_t imm32) {
4799   prefix(dst);
4800   emit_arith(0x81, 0xF0, dst, imm32);
4801 }
4802 
4803 void Assembler::xorl(Register dst, Address src) {
4804   InstructionMark im(this);
4805   prefix(src, dst);
4806   emit_int8(0x33);
4807   emit_operand(dst, src);
4808 }
4809 
4810 void Assembler::xorl(Register dst, Register src) {
4811   (void) prefix_and_encode(dst->encoding(), src->encoding());
4812   emit_arith(0x33, 0xC0, dst, src);
4813 }
4814 
4815 void Assembler::xorb(Register dst, Address src) {
4816   InstructionMark im(this);
4817   prefix(src, dst);
4818   emit_int8(0x32);
4819   emit_operand(dst, src);
4820 }
4821 
4822 // AVX 3-operands scalar float-point arithmetic instructions
4823 
4824 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4825   assert(VM_Version::supports_avx(), "");
4826   InstructionMark im(this);
4827   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4828   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4829   attributes.set_rex_vex_w_reverted();
4830   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4831   emit_int8(0x58);
4832   emit_operand(dst, src);
4833 }
4834 
4835 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4836   assert(VM_Version::supports_avx(), "");
4837   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4838   attributes.set_rex_vex_w_reverted();
4839   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4840   emit_int16(0x58, (0xC0 | encode));
4841 }
4842 
4843 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4844   assert(VM_Version::supports_avx(), "");
4845   InstructionMark im(this);
4846   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4847   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4848   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4849   emit_int8(0x58);
4850   emit_operand(dst, src);
4851 }
4852 
4853 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4854   assert(VM_Version::supports_avx(), "");
4855   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4856   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4857   emit_int16(0x58, (0xC0 | encode));
4858 }
4859 
4860 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4861   assert(VM_Version::supports_avx(), "");
4862   InstructionMark im(this);
4863   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4864   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4865   attributes.set_rex_vex_w_reverted();
4866   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4867   emit_int8(0x5E);
4868   emit_operand(dst, src);
4869 }
4870 
4871 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4872   assert(VM_Version::supports_avx(), "");
4873   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4874   attributes.set_rex_vex_w_reverted();
4875   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4876   emit_int16(0x5E, (0xC0 | encode));
4877 }
4878 
4879 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4880   assert(VM_Version::supports_avx(), "");
4881   InstructionMark im(this);
4882   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4883   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4884   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4885   emit_int8(0x5E);
4886   emit_operand(dst, src);
4887 }
4888 
4889 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4890   assert(VM_Version::supports_avx(), "");
4891   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4892   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4893   emit_int16(0x5E, (0xC0 | encode));
4894 }
4895 
4896 void Assembler::vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4897   assert(VM_Version::supports_fma(), "");
4898   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4899   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4900   emit_int16((unsigned char)0xB9, (0xC0 | encode));
4901 }
4902 
4903 void Assembler::vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4904   assert(VM_Version::supports_fma(), "");
4905   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4906   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4907   emit_int16((unsigned char)0xB9, (0xC0 | encode));
4908 }
4909 
4910 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4911   assert(VM_Version::supports_avx(), "");
4912   InstructionMark im(this);
4913   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4914   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4915   attributes.set_rex_vex_w_reverted();
4916   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4917   emit_int8(0x59);
4918   emit_operand(dst, src);
4919 }
4920 
4921 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4922   assert(VM_Version::supports_avx(), "");
4923   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4924   attributes.set_rex_vex_w_reverted();
4925   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4926   emit_int16(0x59, (0xC0 | encode));
4927 }
4928 
4929 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4930   assert(VM_Version::supports_avx(), "");
4931   InstructionMark im(this);
4932   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4933   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4934   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4935   emit_int8(0x59);
4936   emit_operand(dst, src);
4937 }
4938 
4939 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4940   assert(VM_Version::supports_avx(), "");
4941   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4942   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4943   emit_int16(0x59, (0xC0 | encode));
4944 }
4945 
4946 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4947   assert(VM_Version::supports_avx(), "");
4948   InstructionMark im(this);
4949   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4950   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4951   attributes.set_rex_vex_w_reverted();
4952   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4953   emit_int8(0x5C);
4954   emit_operand(dst, src);
4955 }
4956 
4957 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4958   assert(VM_Version::supports_avx(), "");
4959   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4960   attributes.set_rex_vex_w_reverted();
4961   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4962   emit_int16(0x5C, (0xC0 | encode));
4963 }
4964 
4965 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4966   assert(VM_Version::supports_avx(), "");
4967   InstructionMark im(this);
4968   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4969   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4970   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4971   emit_int8(0x5C);
4972   emit_operand(dst, src);
4973 }
4974 
4975 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4976   assert(VM_Version::supports_avx(), "");
4977   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4978   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4979   emit_int16(0x5C, (0xC0 | encode));
4980 }
4981 
4982 //====================VECTOR ARITHMETIC=====================================
4983 
4984 // Float-point vector arithmetic
4985 
4986 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4988   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4989   attributes.set_rex_vex_w_reverted();
4990   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4991   emit_int16(0x58, (0xC0 | encode));
4992 }
4993 
4994 void Assembler::addpd(XMMRegister dst, Address src) {
4995   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4996   InstructionMark im(this);
4997   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4998   attributes.set_rex_vex_w_reverted();
4999   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5000   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5001   emit_int8(0x58);
5002   emit_operand(dst, src);
5003 }
5004 
5005 
5006 void Assembler::addps(XMMRegister dst, XMMRegister src) {
5007   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5008   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5009   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5010   emit_int16(0x58, (0xC0 | encode));
5011 }
5012 
5013 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5014   assert(VM_Version::supports_avx(), "");
5015   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5016   attributes.set_rex_vex_w_reverted();
5017   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5018   emit_int16(0x58, (0xC0 | encode));
5019 }
5020 
5021 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5022   assert(VM_Version::supports_avx(), "");
5023   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5024   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5025   emit_int16(0x58, (0xC0 | encode));
5026 }
5027 
5028 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5029   assert(VM_Version::supports_avx(), "");
5030   InstructionMark im(this);
5031   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5032   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5033   attributes.set_rex_vex_w_reverted();
5034   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5035   emit_int8(0x58);
5036   emit_operand(dst, src);
5037 }
5038 
5039 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5040   assert(VM_Version::supports_avx(), "");
5041   InstructionMark im(this);
5042   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5043   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5044   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5045   emit_int8(0x58);
5046   emit_operand(dst, src);
5047 }
5048 
5049 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
5050   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5051   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5052   attributes.set_rex_vex_w_reverted();
5053   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5054   emit_int16(0x5C, (0xC0 | encode));
5055 }
5056 
5057 void Assembler::subps(XMMRegister dst, XMMRegister src) {
5058   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5059   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5060   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5061   emit_int16(0x5C, (0xC0 | encode));
5062 }
5063 
5064 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5065   assert(VM_Version::supports_avx(), "");
5066   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5067   attributes.set_rex_vex_w_reverted();
5068   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5069   emit_int16(0x5C, (0xC0 | encode));
5070 }
5071 
5072 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5073   assert(VM_Version::supports_avx(), "");
5074   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5075   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5076   emit_int16(0x5C, (0xC0 | encode));
5077 }
5078 
5079 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5080   assert(VM_Version::supports_avx(), "");
5081   InstructionMark im(this);
5082   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5083   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5084   attributes.set_rex_vex_w_reverted();
5085   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5086   emit_int8(0x5C);
5087   emit_operand(dst, src);
5088 }
5089 
5090 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5091   assert(VM_Version::supports_avx(), "");
5092   InstructionMark im(this);
5093   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5094   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5095   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5096   emit_int8(0x5C);
5097   emit_operand(dst, src);
5098 }
5099 
5100 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
5101   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5102   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5103   attributes.set_rex_vex_w_reverted();
5104   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5105   emit_int16(0x59, (0xC0 | encode));
5106 }
5107 
5108 void Assembler::mulpd(XMMRegister dst, Address src) {
5109   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5110   InstructionMark im(this);
5111   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5112   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5113   attributes.set_rex_vex_w_reverted();
5114   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5115   emit_int8(0x59);
5116   emit_operand(dst, src);
5117 }
5118 
5119 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
5120   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5121   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5122   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5123   emit_int16(0x59, (0xC0 | encode));
5124 }
5125 
5126 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5127   assert(VM_Version::supports_avx(), "");
5128   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5129   attributes.set_rex_vex_w_reverted();
5130   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5131   emit_int16(0x59, (0xC0 | encode));
5132 }
5133 
5134 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5135   assert(VM_Version::supports_avx(), "");
5136   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5137   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5138   emit_int16(0x59, (0xC0 | encode));
5139 }
5140 
5141 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5142   assert(VM_Version::supports_avx(), "");
5143   InstructionMark im(this);
5144   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5145   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5146   attributes.set_rex_vex_w_reverted();
5147   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5148   emit_int8(0x59);
5149   emit_operand(dst, src);
5150 }
5151 
5152 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5153   assert(VM_Version::supports_avx(), "");
5154   InstructionMark im(this);
5155   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5156   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5157   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5158   emit_int8(0x59);
5159   emit_operand(dst, src);
5160 }
5161 
5162 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5163   assert(VM_Version::supports_fma(), "");
5164   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5165   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5166   emit_int16((unsigned char)0xB8, (0xC0 | encode));
5167 }
5168 
5169 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5170   assert(VM_Version::supports_fma(), "");
5171   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5172   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5173   emit_int16((unsigned char)0xB8, (0xC0 | encode));
5174 }
5175 
5176 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5177   assert(VM_Version::supports_fma(), "");
5178   InstructionMark im(this);
5179   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5180   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5181   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5182   emit_int8((unsigned char)0xB8);
5183   emit_operand(dst, src2);
5184 }
5185 
5186 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5187   assert(VM_Version::supports_fma(), "");
5188   InstructionMark im(this);
5189   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5190   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5191   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5192   emit_int8((unsigned char)0xB8);
5193   emit_operand(dst, src2);
5194 }
5195 
5196 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
5197   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5198   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5199   attributes.set_rex_vex_w_reverted();
5200   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5201   emit_int16(0x5E, (0xC0 | encode));
5202 }
5203 
5204 void Assembler::divps(XMMRegister dst, XMMRegister src) {
5205   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5206   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5207   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5208   emit_int16(0x5E, (0xC0 | encode));
5209 }
5210 
5211 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5212   assert(VM_Version::supports_avx(), "");
5213   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5214   attributes.set_rex_vex_w_reverted();
5215   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5216   emit_int16(0x5E, (0xC0 | encode));
5217 }
5218 
5219 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5220   assert(VM_Version::supports_avx(), "");
5221   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5222   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5223   emit_int16(0x5E, (0xC0 | encode));
5224 }
5225 
5226 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5227   assert(VM_Version::supports_avx(), "");
5228   InstructionMark im(this);
5229   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5230   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5231   attributes.set_rex_vex_w_reverted();
5232   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5233   emit_int8(0x5E);
5234   emit_operand(dst, src);
5235 }
5236 
5237 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5238   assert(VM_Version::supports_avx(), "");
5239   InstructionMark im(this);
5240   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5241   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5242   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5243   emit_int8(0x5E);
5244   emit_operand(dst, src);
5245 }
5246 
5247 void Assembler::vroundpd(XMMRegister dst, XMMRegister src, int32_t rmode, int vector_len) {
5248   assert(VM_Version::supports_avx(), "");
5249   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
5250   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5251   emit_int24(0x09, (0xC0 | encode), (rmode));
5252 }
5253 
5254 void Assembler::vroundpd(XMMRegister dst, Address src, int32_t rmode,  int vector_len) {
5255   assert(VM_Version::supports_avx(), "");
5256   InstructionMark im(this);
5257   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
5258   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5259   emit_int8(0x09);
5260   emit_operand(dst, src);
5261   emit_int8((rmode));
5262 }
5263 
5264 void Assembler::vrndscalepd(XMMRegister dst,  XMMRegister src,  int32_t rmode, int vector_len) {
5265   assert(VM_Version::supports_evex(), "requires EVEX support");
5266   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5267   attributes.set_is_evex_instruction();
5268   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5269   emit_int24(0x09, (0xC0 | encode), (rmode));
5270 }
5271 
5272 void Assembler::vrndscalepd(XMMRegister dst, Address src, int32_t rmode, int vector_len) {
5273   assert(VM_Version::supports_evex(), "requires EVEX support");
5274   assert(dst != xnoreg, "sanity");
5275   InstructionMark im(this);
5276   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5277   attributes.set_is_evex_instruction();
5278   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5279   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5280   emit_int8(0x09);
5281   emit_operand(dst, src);
5282   emit_int8((rmode));
5283 }
5284 
5285 
5286 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
5287   assert(VM_Version::supports_avx(), "");
5288   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5289   attributes.set_rex_vex_w_reverted();
5290   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5291   emit_int16(0x51, (0xC0 | encode));
5292 }
5293 
5294 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
5295   assert(VM_Version::supports_avx(), "");
5296   InstructionMark im(this);
5297   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5298   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5299   attributes.set_rex_vex_w_reverted();
5300   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5301   emit_int8(0x51);
5302   emit_operand(dst, src);
5303 }
5304 
5305 void Assembler::vsqrtps(XMMRegister dst, XMMRegister src, int vector_len) {
5306   assert(VM_Version::supports_avx(), "");
5307   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5308   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5309   emit_int16(0x51, (0xC0 | encode));
5310 }
5311 
5312 void Assembler::vsqrtps(XMMRegister dst, Address src, int vector_len) {
5313   assert(VM_Version::supports_avx(), "");
5314   InstructionMark im(this);
5315   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5316   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5317   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5318   emit_int8(0x51);
5319   emit_operand(dst, src);
5320 }
5321 
5322 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
5323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5324   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5325   attributes.set_rex_vex_w_reverted();
5326   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5327   emit_int16(0x54, (0xC0 | encode));
5328 }
5329 
5330 void Assembler::andps(XMMRegister dst, XMMRegister src) {
5331   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5332   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5333   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5334   emit_int16(0x54, (0xC0 | encode));
5335 }
5336 
5337 void Assembler::andps(XMMRegister dst, Address src) {
5338   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5339   InstructionMark im(this);
5340   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5341   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5342   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5343   emit_int8(0x54);
5344   emit_operand(dst, src);
5345 }
5346 
5347 void Assembler::andpd(XMMRegister dst, Address src) {
5348   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5349   InstructionMark im(this);
5350   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5351   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5352   attributes.set_rex_vex_w_reverted();
5353   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5354   emit_int8(0x54);
5355   emit_operand(dst, src);
5356 }
5357 
5358 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5359   assert(VM_Version::supports_avx(), "");
5360   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5361   attributes.set_rex_vex_w_reverted();
5362   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5363   emit_int16(0x54, (0xC0 | encode));
5364 }
5365 
5366 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5367   assert(VM_Version::supports_avx(), "");
5368   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5369   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5370   emit_int16(0x54, (0xC0 | encode));
5371 }
5372 
5373 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5374   assert(VM_Version::supports_avx(), "");
5375   InstructionMark im(this);
5376   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5377   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5378   attributes.set_rex_vex_w_reverted();
5379   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5380   emit_int8(0x54);
5381   emit_operand(dst, src);
5382 }
5383 
5384 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5385   assert(VM_Version::supports_avx(), "");
5386   InstructionMark im(this);
5387   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5388   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5389   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5390   emit_int8(0x54);
5391   emit_operand(dst, src);
5392 }
5393 
5394 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
5395   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5396   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5397   attributes.set_rex_vex_w_reverted();
5398   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5399   emit_int8(0x15);
5400   emit_int8((0xC0 | encode));
5401 }
5402 
5403 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
5404   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5405   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5406   attributes.set_rex_vex_w_reverted();
5407   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5408   emit_int16(0x14, (0xC0 | encode));
5409 }
5410 
5411 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
5412   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5413   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5414   attributes.set_rex_vex_w_reverted();
5415   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5416   emit_int16(0x57, (0xC0 | encode));
5417 }
5418 
5419 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
5420   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5421   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5422   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5423   emit_int16(0x57, (0xC0 | encode));
5424 }
5425 
5426 void Assembler::xorpd(XMMRegister dst, Address src) {
5427   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5428   InstructionMark im(this);
5429   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5430   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5431   attributes.set_rex_vex_w_reverted();
5432   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5433   emit_int8(0x57);
5434   emit_operand(dst, src);
5435 }
5436 
5437 void Assembler::xorps(XMMRegister dst, Address src) {
5438   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5439   InstructionMark im(this);
5440   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5441   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5442   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5443   emit_int8(0x57);
5444   emit_operand(dst, src);
5445 }
5446 
5447 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5448   assert(VM_Version::supports_avx(), "");
5449   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5450   attributes.set_rex_vex_w_reverted();
5451   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5452   emit_int16(0x57, (0xC0 | encode));
5453 }
5454 
5455 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5456   assert(VM_Version::supports_avx(), "");
5457   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5458   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5459   emit_int16(0x57, (0xC0 | encode));
5460 }
5461 
5462 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5463   assert(VM_Version::supports_avx(), "");
5464   InstructionMark im(this);
5465   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5466   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5467   attributes.set_rex_vex_w_reverted();
5468   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5469   emit_int8(0x57);
5470   emit_operand(dst, src);
5471 }
5472 
5473 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5474   assert(VM_Version::supports_avx(), "");
5475   InstructionMark im(this);
5476   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5477   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5478   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5479   emit_int8(0x57);
5480   emit_operand(dst, src);
5481 }
5482 
5483 // Integer vector arithmetic
5484 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5485   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5486          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5487   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5488   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5489   emit_int16(0x01, (0xC0 | encode));
5490 }
5491 
5492 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5493   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5494          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5495   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5496   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5497   emit_int16(0x02, (0xC0 | encode));
5498 }
5499 
5500 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5501   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5502   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5503   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5504   emit_int16((unsigned char)0xFC, (0xC0 | encode));
5505 }
5506 
5507 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5508   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5509   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5510   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5511   emit_int16((unsigned char)0xFD, (0xC0 | encode));
5512 }
5513 
5514 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5515   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5516   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5517   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5518   emit_int16((unsigned char)0xFE, (0xC0 | encode));
5519 }
5520 
5521 void Assembler::paddd(XMMRegister dst, Address src) {
5522   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5523   InstructionMark im(this);
5524   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5525   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5526   emit_int8((unsigned char)0xFE);
5527   emit_operand(dst, src);
5528 }
5529 
5530 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5531   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5532   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5533   attributes.set_rex_vex_w_reverted();
5534   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5535   emit_int16((unsigned char)0xD4, (0xC0 | encode));
5536 }
5537 
5538 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5539   assert(VM_Version::supports_sse3(), "");
5540   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5541   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5542   emit_int16(0x01, (0xC0 | encode));
5543 }
5544 
5545 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5546   assert(VM_Version::supports_sse3(), "");
5547   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5548   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5549   emit_int16(0x02, (0xC0 | encode));
5550 }
5551 
5552 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5553   assert(UseAVX > 0, "requires some form of AVX");
5554   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5555   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5556   emit_int16((unsigned char)0xFC, (0xC0 | encode));
5557 }
5558 
5559 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5560   assert(UseAVX > 0, "requires some form of AVX");
5561   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5562   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5563   emit_int16((unsigned char)0xFD, (0xC0 | encode));
5564 }
5565 
5566 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5567   assert(UseAVX > 0, "requires some form of AVX");
5568   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5569   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5570   emit_int16((unsigned char)0xFE, (0xC0 | encode));
5571 }
5572 
5573 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5574   assert(UseAVX > 0, "requires some form of AVX");
5575   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5576   attributes.set_rex_vex_w_reverted();
5577   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5578   emit_int16((unsigned char)0xD4, (0xC0 | encode));
5579 }
5580 
5581 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5582   assert(UseAVX > 0, "requires some form of AVX");
5583   InstructionMark im(this);
5584   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5585   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5586   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5587   emit_int8((unsigned char)0xFC);
5588   emit_operand(dst, src);
5589 }
5590 
5591 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5592   assert(UseAVX > 0, "requires some form of AVX");
5593   InstructionMark im(this);
5594   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5595   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5596   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5597   emit_int8((unsigned char)0xFD);
5598   emit_operand(dst, src);
5599 }
5600 
5601 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5602   assert(UseAVX > 0, "requires some form of AVX");
5603   InstructionMark im(this);
5604   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5605   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5606   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5607   emit_int8((unsigned char)0xFE);
5608   emit_operand(dst, src);
5609 }
5610 
5611 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5612   assert(UseAVX > 0, "requires some form of AVX");
5613   InstructionMark im(this);
5614   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5615   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5616   attributes.set_rex_vex_w_reverted();
5617   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5618   emit_int8((unsigned char)0xD4);
5619   emit_operand(dst, src);
5620 }
5621 
5622 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5623   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5624   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5625   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5626   emit_int16((unsigned char)0xF8, (0xC0 | encode));
5627 }
5628 
5629 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5631   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5632   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5633   emit_int16((unsigned char)0xF9, (0xC0 | encode));
5634 }
5635 
5636 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5637   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5638   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5639   emit_int16((unsigned char)0xFA, (0xC0 | encode));
5640 }
5641 
5642 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5643   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5644   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5645   attributes.set_rex_vex_w_reverted();
5646   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5647   emit_int8((unsigned char)0xFB);
5648   emit_int8((0xC0 | encode));
5649 }
5650 
5651 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5652   assert(UseAVX > 0, "requires some form of AVX");
5653   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5654   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5655   emit_int16((unsigned char)0xF8, (0xC0 | encode));
5656 }
5657 
5658 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5659   assert(UseAVX > 0, "requires some form of AVX");
5660   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5661   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5662   emit_int16((unsigned char)0xF9, (0xC0 | encode));
5663 }
5664 
5665 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5666   assert(UseAVX > 0, "requires some form of AVX");
5667   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5668   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5669   emit_int16((unsigned char)0xFA, (0xC0 | encode));
5670 }
5671 
5672 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5673   assert(UseAVX > 0, "requires some form of AVX");
5674   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5675   attributes.set_rex_vex_w_reverted();
5676   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5677   emit_int16((unsigned char)0xFB, (0xC0 | encode));
5678 }
5679 
5680 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5681   assert(UseAVX > 0, "requires some form of AVX");
5682   InstructionMark im(this);
5683   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5684   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5685   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5686   emit_int8((unsigned char)0xF8);
5687   emit_operand(dst, src);
5688 }
5689 
5690 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5691   assert(UseAVX > 0, "requires some form of AVX");
5692   InstructionMark im(this);
5693   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5694   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5695   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5696   emit_int8((unsigned char)0xF9);
5697   emit_operand(dst, src);
5698 }
5699 
5700 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5701   assert(UseAVX > 0, "requires some form of AVX");
5702   InstructionMark im(this);
5703   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5704   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5705   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5706   emit_int8((unsigned char)0xFA);
5707   emit_operand(dst, src);
5708 }
5709 
5710 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5711   assert(UseAVX > 0, "requires some form of AVX");
5712   InstructionMark im(this);
5713   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5714   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5715   attributes.set_rex_vex_w_reverted();
5716   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5717   emit_int8((unsigned char)0xFB);
5718   emit_operand(dst, src);
5719 }
5720 
5721 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5722   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5723   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5724   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5725   emit_int16((unsigned char)0xD5, (0xC0 | encode));
5726 }
5727 
5728 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5729   assert(VM_Version::supports_sse4_1(), "");
5730   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5731   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5732   emit_int16(0x40, (0xC0 | encode));
5733 }
5734 
5735 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5736   assert(UseAVX > 0, "requires some form of AVX");
5737   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5738   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5739   emit_int16((unsigned char)0xD5, (0xC0 | encode));
5740 }
5741 
5742 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5743   assert(UseAVX > 0, "requires some form of AVX");
5744   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5745   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5746   emit_int16(0x40, (0xC0 | encode));
5747 }
5748 
5749 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5750   assert(UseAVX > 2, "requires some form of EVEX");
5751   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5752   attributes.set_is_evex_instruction();
5753   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5754   emit_int16(0x40, (0xC0 | encode));
5755 }
5756 
5757 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5758   assert(UseAVX > 0, "requires some form of AVX");
5759   InstructionMark im(this);
5760   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5761   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5762   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5763   emit_int8((unsigned char)0xD5);
5764   emit_operand(dst, src);
5765 }
5766 
5767 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5768   assert(UseAVX > 0, "requires some form of AVX");
5769   InstructionMark im(this);
5770   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5771   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5772   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5773   emit_int8(0x40);
5774   emit_operand(dst, src);
5775 }
5776 
5777 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5778   assert(UseAVX > 2, "requires some form of EVEX");
5779   InstructionMark im(this);
5780   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5781   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5782   attributes.set_is_evex_instruction();
5783   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5784   emit_int8(0x40);
5785   emit_operand(dst, src);
5786 }
5787 
5788 // Shift packed integers left by specified number of bits.
5789 void Assembler::psllw(XMMRegister dst, int shift) {
5790   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5791   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5792   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5793   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5794   emit_int24(0x71, (0xC0 | encode), shift & 0xFF);
5795 }
5796 
5797 void Assembler::pslld(XMMRegister dst, int shift) {
5798   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5799   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5800   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5801   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5802   emit_int24(0x72, (0xC0 | encode), shift & 0xFF);
5803 }
5804 
5805 void Assembler::psllq(XMMRegister dst, int shift) {
5806   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5807   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5808   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5809   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5810   emit_int24(0x73, (0xC0 | encode), shift & 0xFF);
5811 }
5812 
5813 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5814   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5815   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5816   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5817   emit_int16((unsigned char)0xF1, (0xC0 | encode));
5818 }
5819 
5820 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5821   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5822   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5823   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5824   emit_int16((unsigned char)0xF2, (0xC0 | encode));
5825 }
5826 
5827 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5828   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5829   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5830   attributes.set_rex_vex_w_reverted();
5831   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5832   emit_int16((unsigned char)0xF3, (0xC0 | encode));
5833 }
5834 
5835 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5836   assert(UseAVX > 0, "requires some form of AVX");
5837   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5838   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5839   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5840   emit_int24(0x71, (0xC0 | encode), shift & 0xFF);
5841 }
5842 
5843 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5844   assert(UseAVX > 0, "requires some form of AVX");
5845   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5846   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5847   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5848   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5849   emit_int24(0x72, (0xC0 | encode), shift & 0xFF);
5850 }
5851 
5852 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5853   assert(UseAVX > 0, "requires some form of AVX");
5854   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5855   attributes.set_rex_vex_w_reverted();
5856   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5857   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5858   emit_int24(0x73, (0xC0 | encode), shift & 0xFF);
5859 }
5860 
5861 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5862   assert(UseAVX > 0, "requires some form of AVX");
5863   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5864   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5865   emit_int16((unsigned char)0xF1, (0xC0 | encode));
5866 }
5867 
5868 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5869   assert(UseAVX > 0, "requires some form of AVX");
5870   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5871   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5872   emit_int16((unsigned char)0xF2, (0xC0 | encode));
5873 }
5874 
5875 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5876   assert(UseAVX > 0, "requires some form of AVX");
5877   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5878   attributes.set_rex_vex_w_reverted();
5879   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5880   emit_int16((unsigned char)0xF3, (0xC0 | encode));
5881 }
5882 
5883 // Shift packed integers logically right by specified number of bits.
5884 void Assembler::psrlw(XMMRegister dst, int shift) {
5885   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5886   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5887   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5888   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5889   emit_int24(0x71, (0xC0 | encode), shift & 0xFF);
5890 }
5891 
5892 void Assembler::psrld(XMMRegister dst, int shift) {
5893   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5894   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5895   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5896   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5897   emit_int24(0x72, (0xC0 | encode), shift & 0xFF);
5898 }
5899 
5900 void Assembler::psrlq(XMMRegister dst, int shift) {
5901   // Do not confuse it with psrldq SSE2 instruction which
5902   // shifts 128 bit value in xmm register by number of bytes.
5903   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5904   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5905   attributes.set_rex_vex_w_reverted();
5906   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5907   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5908   emit_int24(0x73, (0xC0 | encode), shift & 0xFF);
5909 }
5910 
5911 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5912   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5913   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5914   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5915   emit_int16((unsigned char)0xD1, (0xC0 | encode));
5916 }
5917 
5918 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5919   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5920   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5921   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5922   emit_int16((unsigned char)0xD2, (0xC0 | encode));
5923 }
5924 
5925 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5926   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5927   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5928   attributes.set_rex_vex_w_reverted();
5929   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5930   emit_int16((unsigned char)0xD3, (0xC0 | encode));
5931 }
5932 
5933 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5934   assert(UseAVX > 0, "requires some form of AVX");
5935   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5936   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5937   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5938   emit_int24(0x71, (0xC0 | encode), shift & 0xFF);
5939 }
5940 
5941 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5942   assert(UseAVX > 0, "requires some form of AVX");
5943   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5944   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5945   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5946   emit_int24(0x72, (0xC0 | encode), shift & 0xFF);
5947 }
5948 
5949 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5950   assert(UseAVX > 0, "requires some form of AVX");
5951   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5952   attributes.set_rex_vex_w_reverted();
5953   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5954   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5955   emit_int24(0x73, (0xC0 | encode), shift & 0xFF);
5956 }
5957 
5958 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5959   assert(UseAVX > 0, "requires some form of AVX");
5960   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5961   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5962   emit_int16((unsigned char)0xD1, (0xC0 | encode));
5963 }
5964 
5965 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5966   assert(UseAVX > 0, "requires some form of AVX");
5967   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5968   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5969   emit_int16((unsigned char)0xD2, (0xC0 | encode));
5970 }
5971 
5972 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5973   assert(UseAVX > 0, "requires some form of AVX");
5974   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5975   attributes.set_rex_vex_w_reverted();
5976   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5977   emit_int16((unsigned char)0xD3, (0xC0 | encode));
5978 }
5979 
5980 void Assembler::evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5981   assert(VM_Version::supports_avx512bw(), "");
5982   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5983   attributes.set_is_evex_instruction();
5984   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5985   emit_int16(0x10, (0xC0 | encode));
5986 }
5987 
5988 void Assembler::evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5989   assert(VM_Version::supports_avx512bw(), "");
5990   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5991   attributes.set_is_evex_instruction();
5992   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5993   emit_int16(0x12, (0xC0 | encode));
5994 }
5995 
5996 // Shift packed integers arithmetically right by specified number of bits.
5997 void Assembler::psraw(XMMRegister dst, int shift) {
5998   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5999   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6000   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6001   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6002   emit_int24(0x71, (0xC0 | encode), shift & 0xFF);
6003 }
6004 
6005 void Assembler::psrad(XMMRegister dst, int shift) {
6006   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6007   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6008   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
6009   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6010   emit_int8(0x72);
6011   emit_int8((0xC0 | encode));
6012   emit_int8(shift & 0xFF);
6013 }
6014 
6015 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
6016   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6017   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6018   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6019   emit_int16((unsigned char)0xE1, (0xC0 | encode));
6020 }
6021 
6022 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
6023   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6024   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6025   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6026   emit_int16((unsigned char)0xE2, (0xC0 | encode));
6027 }
6028 
6029 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6030   assert(UseAVX > 0, "requires some form of AVX");
6031   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6032   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6033   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6034   emit_int24(0x71, (0xC0 | encode), shift & 0xFF);
6035 }
6036 
6037 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6038   assert(UseAVX > 0, "requires some form of AVX");
6039   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6040   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6041   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6042   emit_int24(0x72, (0xC0 | encode), shift & 0xFF);
6043 }
6044 
6045 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6046   assert(UseAVX > 0, "requires some form of AVX");
6047   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6048   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6049   emit_int16((unsigned char)0xE1, (0xC0 | encode));
6050 }
6051 
6052 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6053   assert(UseAVX > 0, "requires some form of AVX");
6054   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6055   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6056   emit_int16((unsigned char)0xE2, (0xC0 | encode));
6057 }
6058 
6059 void Assembler::evpsraq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6060   assert(UseAVX > 2, "requires AVX512");
6061   assert ((VM_Version::supports_avx512vl() || vector_len == 2), "requires AVX512vl");
6062   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6063   attributes.set_is_evex_instruction();
6064   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6065   emit_int24((unsigned char)0x72, (0xC0 | encode), shift & 0xFF);
6066 }
6067 
6068 void Assembler::evpsraq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6069   assert(UseAVX > 2, "requires AVX512");
6070   assert ((VM_Version::supports_avx512vl() || vector_len == 2), "requires AVX512vl");
6071   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6072   attributes.set_is_evex_instruction();
6073   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6074   emit_int16((unsigned char)0xE2, (0xC0 | encode));
6075 }
6076 
6077 // logical operations packed integers
6078 void Assembler::pand(XMMRegister dst, XMMRegister src) {
6079   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6080   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6081   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6082   emit_int16((unsigned char)0xDB, (0xC0 | encode));
6083 }
6084 
6085 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6086   assert(UseAVX > 0, "requires some form of AVX");
6087   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6088   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6089   emit_int16((unsigned char)0xDB, (0xC0 | encode));
6090 }
6091 
6092 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6093   assert(UseAVX > 0, "requires some form of AVX");
6094   InstructionMark im(this);
6095   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6096   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6097   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6098   emit_int8((unsigned char)0xDB);
6099   emit_operand(dst, src);
6100 }
6101 
6102 void Assembler::vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6103   assert(VM_Version::supports_evex(), "");
6104   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6105   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6106   emit_int16((unsigned char)0xDB, (0xC0 | encode));
6107 }
6108 
6109 void Assembler::vpshldvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6110   assert(VM_Version::supports_avx512_vbmi2(), "requires vbmi2");
6111   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6112   attributes.set_is_evex_instruction();
6113   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6114   emit_int8(0x71);
6115   emit_int8((0xC0 | encode));
6116 }
6117 
6118 void Assembler::vpshrdvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6119   assert(VM_Version::supports_avx512_vbmi2(), "requires vbmi2");
6120   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6121   attributes.set_is_evex_instruction();
6122   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6123   emit_int16(0x73, (0xC0 | encode));
6124 }
6125 
6126 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
6127   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6128   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6129   attributes.set_rex_vex_w_reverted();
6130   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6131   emit_int16((unsigned char)0xDF, (0xC0 | encode));
6132 }
6133 
6134 void Assembler::vpandn(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6135   assert(UseAVX > 0, "requires some form of AVX");
6136   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6137   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6138   emit_int16((unsigned char)0xDF, (0xC0 | encode));
6139 }
6140 
6141 
6142 void Assembler::por(XMMRegister dst, XMMRegister src) {
6143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6144   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6145   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6146   emit_int16((unsigned char)0xEB, (0xC0 | encode));
6147 }
6148 
6149 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6150   assert(UseAVX > 0, "requires some form of AVX");
6151   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6152   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6153   emit_int16((unsigned char)0xEB, (0xC0 | encode));
6154 }
6155 
6156 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6157   assert(UseAVX > 0, "requires some form of AVX");
6158   InstructionMark im(this);
6159   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6160   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6161   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6162   emit_int8((unsigned char)0xEB);
6163   emit_operand(dst, src);
6164 }
6165 
6166 void Assembler::vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6167   assert(VM_Version::supports_evex(), "");
6168   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6169   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6170   emit_int16((unsigned char)0xEB, (0xC0 | encode));
6171 }
6172 
6173 
6174 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
6175   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6176   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6177   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6178   emit_int16((unsigned char)0xEF, (0xC0 | encode));
6179 }
6180 
6181 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6182   assert(UseAVX > 0, "requires some form of AVX");
6183   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6184   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6185   emit_int16((unsigned char)0xEF, (0xC0 | encode));
6186 }
6187 
6188 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6189   assert(UseAVX > 0, "requires some form of AVX");
6190   InstructionMark im(this);
6191   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6192   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6193   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6194   emit_int8((unsigned char)0xEF);
6195   emit_operand(dst, src);
6196 }
6197 
6198 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6199   assert(VM_Version::supports_evex(), "requires EVEX support");
6200   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6201   attributes.set_is_evex_instruction();
6202   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6203   emit_int8((unsigned char)0xEF);
6204   emit_int8((0xC0 | encode));
6205 }
6206 
6207 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6208   assert(VM_Version::supports_evex(), "requires EVEX support");
6209   assert(dst != xnoreg, "sanity");
6210   InstructionMark im(this);
6211   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6212   attributes.set_is_evex_instruction();
6213   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6214   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6215   emit_int8((unsigned char)0xEF);
6216   emit_operand(dst, src);
6217 }
6218 
6219 
6220 // vinserti forms
6221 
6222 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6223   assert(VM_Version::supports_avx2(), "");
6224   assert(imm8 <= 0x01, "imm8: %u", imm8);
6225   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6226   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6227   // last byte:
6228   // 0x00 - insert into lower 128 bits
6229   // 0x01 - insert into upper 128 bits
6230   emit_int24(0x38, (0xC0 | encode), imm8 & 0x01);
6231 }
6232 
6233 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6234   assert(VM_Version::supports_avx2(), "");
6235   assert(dst != xnoreg, "sanity");
6236   assert(imm8 <= 0x01, "imm8: %u", imm8);
6237   InstructionMark im(this);
6238   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6239   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6240   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6241   emit_int8(0x38);
6242   emit_operand(dst, src);
6243   // 0x00 - insert into lower 128 bits
6244   // 0x01 - insert into upper 128 bits
6245   emit_int8(imm8 & 0x01);
6246 }
6247 
6248 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6249   assert(VM_Version::supports_evex(), "");
6250   assert(imm8 <= 0x03, "imm8: %u", imm8);
6251   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6252   attributes.set_is_evex_instruction();
6253   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6254   // imm8:
6255   // 0x00 - insert into q0 128 bits (0..127)
6256   // 0x01 - insert into q1 128 bits (128..255)
6257   // 0x02 - insert into q2 128 bits (256..383)
6258   // 0x03 - insert into q3 128 bits (384..511)
6259   emit_int24(0x38, (0xC0 | encode), imm8 & 0x03);
6260 }
6261 
6262 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6263   assert(VM_Version::supports_avx(), "");
6264   assert(dst != xnoreg, "sanity");
6265   assert(imm8 <= 0x03, "imm8: %u", imm8);
6266   InstructionMark im(this);
6267   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6268   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6269   attributes.set_is_evex_instruction();
6270   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6271   emit_int8(0x18);
6272   emit_operand(dst, src);
6273   // 0x00 - insert into q0 128 bits (0..127)
6274   // 0x01 - insert into q1 128 bits (128..255)
6275   // 0x02 - insert into q2 128 bits (256..383)
6276   // 0x03 - insert into q3 128 bits (384..511)
6277   emit_int8(imm8 & 0x03);
6278 }
6279 
6280 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6281   assert(VM_Version::supports_evex(), "");
6282   assert(imm8 <= 0x01, "imm8: %u", imm8);
6283   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6284   attributes.set_is_evex_instruction();
6285   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6286   //imm8:
6287   // 0x00 - insert into lower 256 bits
6288   // 0x01 - insert into upper 256 bits
6289   emit_int24(0x3A, (0xC0 | encode), imm8 & 0x01);
6290 }
6291 
6292 
6293 // vinsertf forms
6294 
6295 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6296   assert(VM_Version::supports_avx(), "");
6297   assert(imm8 <= 0x01, "imm8: %u", imm8);
6298   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6299   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6300   // imm8:
6301   // 0x00 - insert into lower 128 bits
6302   // 0x01 - insert into upper 128 bits
6303   emit_int24(0x18, (0xC0 | encode), imm8 & 0x01);
6304 }
6305 
6306 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6307   assert(VM_Version::supports_avx(), "");
6308   assert(dst != xnoreg, "sanity");
6309   assert(imm8 <= 0x01, "imm8: %u", imm8);
6310   InstructionMark im(this);
6311   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6312   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6313   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6314   emit_int8(0x18);
6315   emit_operand(dst, src);
6316   // 0x00 - insert into lower 128 bits
6317   // 0x01 - insert into upper 128 bits
6318   emit_int8(imm8 & 0x01);
6319 }
6320 
6321 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6322   assert(VM_Version::supports_avx2(), "");
6323   assert(imm8 <= 0x03, "imm8: %u", imm8);
6324   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6325   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6326   // imm8:
6327   // 0x00 - insert into q0 128 bits (0..127)
6328   // 0x01 - insert into q1 128 bits (128..255)
6329   // 0x02 - insert into q0 128 bits (256..383)
6330   // 0x03 - insert into q1 128 bits (384..512)
6331   emit_int24(0x18, (0xC0 | encode), imm8 & 0x03);
6332 }
6333 
6334 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6335   assert(VM_Version::supports_avx(), "");
6336   assert(dst != xnoreg, "sanity");
6337   assert(imm8 <= 0x03, "imm8: %u", imm8);
6338   InstructionMark im(this);
6339   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6340   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6341   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6342   emit_int8(0x18);
6343   emit_operand(dst, src);
6344   // 0x00 - insert into q0 128 bits (0..127)
6345   // 0x01 - insert into q1 128 bits (128..255)
6346   // 0x02 - insert into q0 128 bits (256..383)
6347   // 0x03 - insert into q1 128 bits (384..512)
6348   emit_int8(imm8 & 0x03);
6349 }
6350 
6351 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6352   assert(VM_Version::supports_evex(), "");
6353   assert(imm8 <= 0x01, "imm8: %u", imm8);
6354   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6355   attributes.set_is_evex_instruction();
6356   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6357   // imm8:
6358   // 0x00 - insert into lower 256 bits
6359   // 0x01 - insert into upper 256 bits
6360   emit_int24(0x1A, (0xC0 | encode), imm8 & 0x01);
6361 }
6362 
6363 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6364   assert(VM_Version::supports_evex(), "");
6365   assert(dst != xnoreg, "sanity");
6366   assert(imm8 <= 0x01, "imm8: %u", imm8);
6367   InstructionMark im(this);
6368   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6369   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6370   attributes.set_is_evex_instruction();
6371   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6372   emit_int8(0x1A);
6373   emit_operand(dst, src);
6374   // 0x00 - insert into lower 256 bits
6375   // 0x01 - insert into upper 256 bits
6376   emit_int8(imm8 & 0x01);
6377 }
6378 
6379 
6380 // vextracti forms
6381 
6382 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6383   assert(VM_Version::supports_avx2(), "");
6384   assert(imm8 <= 0x01, "imm8: %u", imm8);
6385   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6386   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6387   // imm8:
6388   // 0x00 - extract from lower 128 bits
6389   // 0x01 - extract from upper 128 bits
6390   emit_int24(0x39, (0xC0 | encode), imm8 & 0x01);
6391 }
6392 
6393 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
6394   assert(VM_Version::supports_avx2(), "");
6395   assert(src != xnoreg, "sanity");
6396   assert(imm8 <= 0x01, "imm8: %u", imm8);
6397   InstructionMark im(this);
6398   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6399   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6400   attributes.reset_is_clear_context();
6401   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6402   emit_int8(0x39);
6403   emit_operand(src, dst);
6404   // 0x00 - extract from lower 128 bits
6405   // 0x01 - extract from upper 128 bits
6406   emit_int8(imm8 & 0x01);
6407 }
6408 
6409 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6410   assert(VM_Version::supports_evex(), "");
6411   assert(imm8 <= 0x03, "imm8: %u", imm8);
6412   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6413   attributes.set_is_evex_instruction();
6414   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6415   // imm8:
6416   // 0x00 - extract from bits 127:0
6417   // 0x01 - extract from bits 255:128
6418   // 0x02 - extract from bits 383:256
6419   // 0x03 - extract from bits 511:384
6420   emit_int24(0x39, (0xC0 | encode), imm8 & 0x03);
6421 }
6422 
6423 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
6424   assert(VM_Version::supports_evex(), "");
6425   assert(src != xnoreg, "sanity");
6426   assert(imm8 <= 0x03, "imm8: %u", imm8);
6427   InstructionMark im(this);
6428   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6429   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6430   attributes.reset_is_clear_context();
6431   attributes.set_is_evex_instruction();
6432   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6433   emit_int8(0x39);
6434   emit_operand(src, dst);
6435   // 0x00 - extract from bits 127:0
6436   // 0x01 - extract from bits 255:128
6437   // 0x02 - extract from bits 383:256
6438   // 0x03 - extract from bits 511:384
6439   emit_int8(imm8 & 0x03);
6440 }
6441 
6442 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6443   assert(VM_Version::supports_avx512dq(), "");
6444   assert(imm8 <= 0x03, "imm8: %u", imm8);
6445   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6446   attributes.set_is_evex_instruction();
6447   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6448   // imm8:
6449   // 0x00 - extract from bits 127:0
6450   // 0x01 - extract from bits 255:128
6451   // 0x02 - extract from bits 383:256
6452   // 0x03 - extract from bits 511:384
6453   emit_int24(0x39, (0xC0 | encode), imm8 & 0x03);
6454 }
6455 
6456 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6457   assert(VM_Version::supports_evex(), "");
6458   assert(imm8 <= 0x01, "imm8: %u", imm8);
6459   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6460   attributes.set_is_evex_instruction();
6461   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6462   // imm8:
6463   // 0x00 - extract from lower 256 bits
6464   // 0x01 - extract from upper 256 bits
6465   emit_int24(0x3B, (0xC0 | encode), imm8 & 0x01);
6466 }
6467 
6468 void Assembler::vextracti64x4(Address dst, XMMRegister src, uint8_t imm8) {
6469   assert(VM_Version::supports_evex(), "");
6470   assert(src != xnoreg, "sanity");
6471   assert(imm8 <= 0x01, "imm8: %u", imm8);
6472   InstructionMark im(this);
6473   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6474   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6475   attributes.reset_is_clear_context();
6476   attributes.set_is_evex_instruction();
6477   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6478   emit_int8(0x38);
6479   emit_operand(src, dst);
6480   // 0x00 - extract from lower 256 bits
6481   // 0x01 - extract from upper 256 bits
6482   emit_int8(imm8 & 0x01);
6483 }
6484 // vextractf forms
6485 
6486 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6487   assert(VM_Version::supports_avx(), "");
6488   assert(imm8 <= 0x01, "imm8: %u", imm8);
6489   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6490   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6491   // imm8:
6492   // 0x00 - extract from lower 128 bits
6493   // 0x01 - extract from upper 128 bits
6494   emit_int24(0x19, (0xC0 | encode), imm8 & 0x01);
6495 }
6496 
6497 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6498   assert(VM_Version::supports_avx(), "");
6499   assert(src != xnoreg, "sanity");
6500   assert(imm8 <= 0x01, "imm8: %u", imm8);
6501   InstructionMark im(this);
6502   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6503   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6504   attributes.reset_is_clear_context();
6505   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6506   emit_int8(0x19);
6507   emit_operand(src, dst);
6508   // 0x00 - extract from lower 128 bits
6509   // 0x01 - extract from upper 128 bits
6510   emit_int8(imm8 & 0x01);
6511 }
6512 
6513 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6514   assert(VM_Version::supports_evex(), "");
6515   assert(imm8 <= 0x03, "imm8: %u", imm8);
6516   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6517   attributes.set_is_evex_instruction();
6518   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6519   // imm8:
6520   // 0x00 - extract from bits 127:0
6521   // 0x01 - extract from bits 255:128
6522   // 0x02 - extract from bits 383:256
6523   // 0x03 - extract from bits 511:384
6524   emit_int24(0x19, (0xC0 | encode), imm8 & 0x03);
6525 }
6526 
6527 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6528   assert(VM_Version::supports_evex(), "");
6529   assert(src != xnoreg, "sanity");
6530   assert(imm8 <= 0x03, "imm8: %u", imm8);
6531   InstructionMark im(this);
6532   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6533   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6534   attributes.reset_is_clear_context();
6535   attributes.set_is_evex_instruction();
6536   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6537   emit_int8(0x19);
6538   emit_operand(src, dst);
6539   // 0x00 - extract from bits 127:0
6540   // 0x01 - extract from bits 255:128
6541   // 0x02 - extract from bits 383:256
6542   // 0x03 - extract from bits 511:384
6543   emit_int8(imm8 & 0x03);
6544 }
6545 
6546 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6547   assert(VM_Version::supports_avx512dq(), "");
6548   assert(imm8 <= 0x03, "imm8: %u", imm8);
6549   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6550   attributes.set_is_evex_instruction();
6551   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6552   // imm8:
6553   // 0x00 - extract from bits 127:0
6554   // 0x01 - extract from bits 255:128
6555   // 0x02 - extract from bits 383:256
6556   // 0x03 - extract from bits 511:384
6557   emit_int24(0x19, (0xC0 | encode), imm8 & 0x03);
6558 }
6559 
6560 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6561   assert(VM_Version::supports_evex(), "");
6562   assert(imm8 <= 0x01, "imm8: %u", imm8);
6563   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6564   attributes.set_is_evex_instruction();
6565   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6566   // imm8:
6567   // 0x00 - extract from lower 256 bits
6568   // 0x01 - extract from upper 256 bits
6569   emit_int24(0x1B, (0xC0 | encode), imm8 & 0x01);
6570 }
6571 
6572 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6573   assert(VM_Version::supports_evex(), "");
6574   assert(src != xnoreg, "sanity");
6575   assert(imm8 <= 0x01, "imm8: %u", imm8);
6576   InstructionMark im(this);
6577   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6578   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6579   attributes.reset_is_clear_context();
6580   attributes.set_is_evex_instruction();
6581   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6582   emit_int8(0x1B);
6583   emit_operand(src, dst);
6584   // 0x00 - extract from lower 256 bits
6585   // 0x01 - extract from upper 256 bits
6586   emit_int8(imm8 & 0x01);
6587 }
6588 
6589 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6590 void Assembler::vpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6591   assert(VM_Version::supports_avx2(), "");
6592   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6593   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6594   emit_int16(0x78, (0xC0 | encode));
6595 }
6596 
6597 void Assembler::vpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6598   assert(VM_Version::supports_avx2(), "");
6599   assert(dst != xnoreg, "sanity");
6600   InstructionMark im(this);
6601   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6602   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6603   // swap src<->dst for encoding
6604   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6605   emit_int8(0x78);
6606   emit_operand(dst, src);
6607 }
6608 
6609 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6610 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6611   assert(VM_Version::supports_avx2(), "");
6612   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6613   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6614   emit_int16(0x79, (0xC0 | encode));
6615 }
6616 
6617 void Assembler::vpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6618   assert(VM_Version::supports_avx2(), "");
6619   assert(dst != xnoreg, "sanity");
6620   InstructionMark im(this);
6621   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6622   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6623   // swap src<->dst for encoding
6624   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6625   emit_int8(0x79);
6626   emit_operand(dst, src);
6627 }
6628 
6629 // xmm/mem sourced byte/word/dword/qword replicate
6630 
6631 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6632 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6633   assert(UseAVX >= 2, "");
6634   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6635   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6636   emit_int16(0x58, (0xC0 | encode));
6637 }
6638 
6639 void Assembler::vpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6640   assert(VM_Version::supports_avx2(), "");
6641   assert(dst != xnoreg, "sanity");
6642   InstructionMark im(this);
6643   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6644   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6645   // swap src<->dst for encoding
6646   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6647   emit_int8(0x58);
6648   emit_operand(dst, src);
6649 }
6650 
6651 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6652 void Assembler::vpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6653   assert(VM_Version::supports_avx2(), "");
6654   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6655   attributes.set_rex_vex_w_reverted();
6656   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6657   emit_int16(0x59, (0xC0 | encode));
6658 }
6659 
6660 void Assembler::vpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6661   assert(VM_Version::supports_avx2(), "");
6662   assert(dst != xnoreg, "sanity");
6663   InstructionMark im(this);
6664   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6665   attributes.set_rex_vex_w_reverted();
6666   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6667   // swap src<->dst for encoding
6668   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6669   emit_int8(0x59);
6670   emit_operand(dst, src);
6671 }
6672 void Assembler::evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len) {
6673   assert(vector_len != Assembler::AVX_128bit, "");
6674   assert(VM_Version::supports_avx512dq(), "");
6675   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6676   attributes.set_rex_vex_w_reverted();
6677   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6678   emit_int16(0x5A, (0xC0 | encode));
6679 }
6680 
6681 void Assembler::evbroadcasti64x2(XMMRegister dst, Address src, int vector_len) {
6682   assert(vector_len != Assembler::AVX_128bit, "");
6683   assert(VM_Version::supports_avx512dq(), "");
6684   assert(dst != xnoreg, "sanity");
6685   InstructionMark im(this);
6686   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6687   attributes.set_rex_vex_w_reverted();
6688   attributes.set_address_attributes(/* tuple_type */ EVEX_T2, /* input_size_in_bits */ EVEX_64bit);
6689   // swap src<->dst for encoding
6690   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6691   emit_int8(0x5A);
6692   emit_operand(dst, src);
6693 }
6694 
6695 // scalar single/double precision replicate
6696 
6697 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6698 void Assembler::vbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6699   assert(VM_Version::supports_avx2(), "");
6700   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6701   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6702   emit_int16(0x18, (0xC0 | encode));
6703 }
6704 
6705 void Assembler::vbroadcastss(XMMRegister dst, Address src, int vector_len) {
6706   assert(VM_Version::supports_avx(), "");
6707   assert(dst != xnoreg, "sanity");
6708   InstructionMark im(this);
6709   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6710   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6711   // swap src<->dst for encoding
6712   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6713   emit_int8(0x18);
6714   emit_operand(dst, src);
6715 }
6716 
6717 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6718 void Assembler::vbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6719   assert(VM_Version::supports_avx2(), "");
6720   assert(vector_len == AVX_256bit || vector_len == AVX_512bit, "");
6721   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6722   attributes.set_rex_vex_w_reverted();
6723   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6724   emit_int16(0x19, (0xC0 | encode));
6725 }
6726 
6727 void Assembler::vbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6728   assert(VM_Version::supports_avx(), "");
6729   assert(vector_len == AVX_256bit || vector_len == AVX_512bit, "");
6730   assert(dst != xnoreg, "sanity");
6731   InstructionMark im(this);
6732   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6733   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6734   attributes.set_rex_vex_w_reverted();
6735   // swap src<->dst for encoding
6736   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6737   emit_int8(0x19);
6738   emit_operand(dst, src);
6739 }
6740 
6741 
6742 // gpr source broadcast forms
6743 
6744 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6745 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6746   assert(VM_Version::supports_avx512bw(), "");
6747   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6748   attributes.set_is_evex_instruction();
6749   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6750   emit_int16(0x7A, (0xC0 | encode));
6751 }
6752 
6753 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6754 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6755   assert(VM_Version::supports_avx512bw(), "");
6756   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6757   attributes.set_is_evex_instruction();
6758   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6759   emit_int16(0x7B, (0xC0 | encode));
6760 }
6761 
6762 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6763 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6764   assert(VM_Version::supports_evex(), "");
6765   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6766   attributes.set_is_evex_instruction();
6767   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6768   emit_int16(0x7C, (0xC0 | encode));
6769 }
6770 
6771 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6772 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6773   assert(VM_Version::supports_evex(), "");
6774   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6775   attributes.set_is_evex_instruction();
6776   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6777   emit_int16(0x7C, (0xC0 | encode));
6778 }
6779 void Assembler::evpgatherdd(XMMRegister dst, KRegister mask, Address src, int vector_len) {
6780   assert(VM_Version::supports_evex(), "");
6781   assert(dst != xnoreg, "sanity");
6782   InstructionMark im(this);
6783   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6784   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6785   attributes.reset_is_clear_context();
6786   attributes.set_embedded_opmask_register_specifier(mask);
6787   attributes.set_is_evex_instruction();
6788   // swap src<->dst for encoding
6789   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6790   emit_int8((unsigned char)0x90);
6791   emit_operand(dst, src);
6792 }
6793 // Carry-Less Multiplication Quadword
6794 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6795   assert(VM_Version::supports_clmul(), "");
6796   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
6797   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6798   emit_int24(0x44, (0xC0 | encode), (unsigned char)mask);
6799 }
6800 
6801 // Carry-Less Multiplication Quadword
6802 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6803   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6804   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
6805   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6806   emit_int24(0x44, (0xC0 | encode), (unsigned char)mask);
6807 }
6808 
6809 void Assembler::evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len) {
6810   assert(VM_Version::supports_avx512_vpclmulqdq(), "Requires vector carryless multiplication support");
6811   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6812   attributes.set_is_evex_instruction();
6813   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6814   emit_int24(0x44, (0xC0 | encode), (unsigned char)mask);
6815 }
6816 
6817 void Assembler::vzeroupper_uncached() {
6818   if (VM_Version::supports_vzeroupper()) {
6819     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
6820     (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6821     emit_int8(0x77);
6822   }
6823 }
6824 
6825 #ifndef _LP64
6826 // 32bit only pieces of the assembler
6827 
6828 void Assembler::emms() {
6829   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
6830   emit_int16(0x0F, 0x77);
6831 }
6832 
6833 void Assembler::vzeroupper() {
6834   vzeroupper_uncached();
6835 }
6836 
6837 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6838   // NO PREFIX AS NEVER 64BIT
6839   InstructionMark im(this);
6840   emit_int16((unsigned char)0x81, (0xF8 | src1->encoding()));
6841   emit_data(imm32, rspec, 0);
6842 }
6843 
6844 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6845   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6846   InstructionMark im(this);
6847   emit_int8((unsigned char)0x81);
6848   emit_operand(rdi, src1);
6849   emit_data(imm32, rspec, 0);
6850 }
6851 
6852 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6853 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6854 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6855 void Assembler::cmpxchg8(Address adr) {
6856   InstructionMark im(this);
6857   emit_int16(0x0F, (unsigned char)0xC7);
6858   emit_operand(rcx, adr);
6859 }
6860 
6861 void Assembler::decl(Register dst) {
6862   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6863  emit_int8(0x48 | dst->encoding());
6864 }
6865 
6866 // 64bit doesn't use the x87
6867 
6868 void Assembler::emit_operand32(Register reg, Address adr) {
6869   assert(reg->encoding() < 8, "no extended registers");
6870   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
6871   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
6872                adr._rspec);
6873 }
6874 
6875 void Assembler::emit_farith(int b1, int b2, int i) {
6876   assert(isByte(b1) && isByte(b2), "wrong opcode");
6877   assert(0 <= i &&  i < 8, "illegal stack offset");
6878   emit_int16(b1, b2 + i);
6879 }
6880 
6881 void Assembler::fabs() {
6882   emit_int16((unsigned char)0xD9, (unsigned char)0xE1);
6883 }
6884 
6885 void Assembler::fadd(int i) {
6886   emit_farith(0xD8, 0xC0, i);
6887 }
6888 
6889 void Assembler::fadd_d(Address src) {
6890   InstructionMark im(this);
6891   emit_int8((unsigned char)0xDC);
6892   emit_operand32(rax, src);
6893 }
6894 
6895 void Assembler::fadd_s(Address src) {
6896   InstructionMark im(this);
6897   emit_int8((unsigned char)0xD8);
6898   emit_operand32(rax, src);
6899 }
6900 
6901 void Assembler::fadda(int i) {
6902   emit_farith(0xDC, 0xC0, i);
6903 }
6904 
6905 void Assembler::faddp(int i) {
6906   emit_farith(0xDE, 0xC0, i);
6907 }
6908 
6909 void Assembler::fchs() {
6910   emit_int16((unsigned char)0xD9, (unsigned char)0xE0);
6911 }
6912 
6913 void Assembler::fcom(int i) {
6914   emit_farith(0xD8, 0xD0, i);
6915 }
6916 
6917 void Assembler::fcomp(int i) {
6918   emit_farith(0xD8, 0xD8, i);
6919 }
6920 
6921 void Assembler::fcomp_d(Address src) {
6922   InstructionMark im(this);
6923   emit_int8((unsigned char)0xDC);
6924   emit_operand32(rbx, src);
6925 }
6926 
6927 void Assembler::fcomp_s(Address src) {
6928   InstructionMark im(this);
6929   emit_int8((unsigned char)0xD8);
6930   emit_operand32(rbx, src);
6931 }
6932 
6933 void Assembler::fcompp() {
6934   emit_int16((unsigned char)0xDE, (unsigned char)0xD9);
6935 }
6936 
6937 void Assembler::fcos() {
6938   emit_int16((unsigned char)0xD9, (unsigned char)0xFF);
6939 }
6940 
6941 void Assembler::fdecstp() {
6942   emit_int16((unsigned char)0xD9, (unsigned char)0xF6);
6943 }
6944 
6945 void Assembler::fdiv(int i) {
6946   emit_farith(0xD8, 0xF0, i);
6947 }
6948 
6949 void Assembler::fdiv_d(Address src) {
6950   InstructionMark im(this);
6951   emit_int8((unsigned char)0xDC);
6952   emit_operand32(rsi, src);
6953 }
6954 
6955 void Assembler::fdiv_s(Address src) {
6956   InstructionMark im(this);
6957   emit_int8((unsigned char)0xD8);
6958   emit_operand32(rsi, src);
6959 }
6960 
6961 void Assembler::fdiva(int i) {
6962   emit_farith(0xDC, 0xF8, i);
6963 }
6964 
6965 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6966 //       is erroneous for some of the floating-point instructions below.
6967 
6968 void Assembler::fdivp(int i) {
6969   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6970 }
6971 
6972 void Assembler::fdivr(int i) {
6973   emit_farith(0xD8, 0xF8, i);
6974 }
6975 
6976 void Assembler::fdivr_d(Address src) {
6977   InstructionMark im(this);
6978   emit_int8((unsigned char)0xDC);
6979   emit_operand32(rdi, src);
6980 }
6981 
6982 void Assembler::fdivr_s(Address src) {
6983   InstructionMark im(this);
6984   emit_int8((unsigned char)0xD8);
6985   emit_operand32(rdi, src);
6986 }
6987 
6988 void Assembler::fdivra(int i) {
6989   emit_farith(0xDC, 0xF0, i);
6990 }
6991 
6992 void Assembler::fdivrp(int i) {
6993   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
6994 }
6995 
6996 void Assembler::ffree(int i) {
6997   emit_farith(0xDD, 0xC0, i);
6998 }
6999 
7000 void Assembler::fild_d(Address adr) {
7001   InstructionMark im(this);
7002   emit_int8((unsigned char)0xDF);
7003   emit_operand32(rbp, adr);
7004 }
7005 
7006 void Assembler::fild_s(Address adr) {
7007   InstructionMark im(this);
7008   emit_int8((unsigned char)0xDB);
7009   emit_operand32(rax, adr);
7010 }
7011 
7012 void Assembler::fincstp() {
7013   emit_int16((unsigned char)0xD9, (unsigned char)0xF7);
7014 }
7015 
7016 void Assembler::finit() {
7017   emit_int24((unsigned char)0x9B, (unsigned char)0xDB, (unsigned char)0xE3);
7018 }
7019 
7020 void Assembler::fist_s(Address adr) {
7021   InstructionMark im(this);
7022   emit_int8((unsigned char)0xDB);
7023   emit_operand32(rdx, adr);
7024 }
7025 
7026 void Assembler::fistp_d(Address adr) {
7027   InstructionMark im(this);
7028   emit_int8((unsigned char)0xDF);
7029   emit_operand32(rdi, adr);
7030 }
7031 
7032 void Assembler::fistp_s(Address adr) {
7033   InstructionMark im(this);
7034   emit_int8((unsigned char)0xDB);
7035   emit_operand32(rbx, adr);
7036 }
7037 
7038 void Assembler::fld1() {
7039   emit_int16((unsigned char)0xD9, (unsigned char)0xE8);
7040 }
7041 
7042 void Assembler::fld_d(Address adr) {
7043   InstructionMark im(this);
7044   emit_int8((unsigned char)0xDD);
7045   emit_operand32(rax, adr);
7046 }
7047 
7048 void Assembler::fld_s(Address adr) {
7049   InstructionMark im(this);
7050   emit_int8((unsigned char)0xD9);
7051   emit_operand32(rax, adr);
7052 }
7053 
7054 
7055 void Assembler::fld_s(int index) {
7056   emit_farith(0xD9, 0xC0, index);
7057 }
7058 
7059 void Assembler::fld_x(Address adr) {
7060   InstructionMark im(this);
7061   emit_int8((unsigned char)0xDB);
7062   emit_operand32(rbp, adr);
7063 }
7064 
7065 void Assembler::fldcw(Address src) {
7066   InstructionMark im(this);
7067   emit_int8((unsigned char)0xD9);
7068   emit_operand32(rbp, src);
7069 }
7070 
7071 void Assembler::fldenv(Address src) {
7072   InstructionMark im(this);
7073   emit_int8((unsigned char)0xD9);
7074   emit_operand32(rsp, src);
7075 }
7076 
7077 void Assembler::fldlg2() {
7078   emit_int16((unsigned char)0xD9, (unsigned char)0xEC);
7079 }
7080 
7081 void Assembler::fldln2() {
7082   emit_int16((unsigned char)0xD9, (unsigned char)0xED);
7083 }
7084 
7085 void Assembler::fldz() {
7086   emit_int16((unsigned char)0xD9, (unsigned char)0xEE);
7087 }
7088 
7089 void Assembler::flog() {
7090   fldln2();
7091   fxch();
7092   fyl2x();
7093 }
7094 
7095 void Assembler::flog10() {
7096   fldlg2();
7097   fxch();
7098   fyl2x();
7099 }
7100 
7101 void Assembler::fmul(int i) {
7102   emit_farith(0xD8, 0xC8, i);
7103 }
7104 
7105 void Assembler::fmul_d(Address src) {
7106   InstructionMark im(this);
7107   emit_int8((unsigned char)0xDC);
7108   emit_operand32(rcx, src);
7109 }
7110 
7111 void Assembler::fmul_s(Address src) {
7112   InstructionMark im(this);
7113   emit_int8((unsigned char)0xD8);
7114   emit_operand32(rcx, src);
7115 }
7116 
7117 void Assembler::fmula(int i) {
7118   emit_farith(0xDC, 0xC8, i);
7119 }
7120 
7121 void Assembler::fmulp(int i) {
7122   emit_farith(0xDE, 0xC8, i);
7123 }
7124 
7125 void Assembler::fnsave(Address dst) {
7126   InstructionMark im(this);
7127   emit_int8((unsigned char)0xDD);
7128   emit_operand32(rsi, dst);
7129 }
7130 
7131 void Assembler::fnstcw(Address src) {
7132   InstructionMark im(this);
7133   emit_int16((unsigned char)0x9B, (unsigned char)0xD9);
7134   emit_operand32(rdi, src);
7135 }
7136 
7137 void Assembler::fnstsw_ax() {
7138   emit_int16((unsigned char)0xDF, (unsigned char)0xE0);
7139 }
7140 
7141 void Assembler::fprem() {
7142   emit_int16((unsigned char)0xD9, (unsigned char)0xF8);
7143 }
7144 
7145 void Assembler::fprem1() {
7146   emit_int16((unsigned char)0xD9, (unsigned char)0xF5);
7147 }
7148 
7149 void Assembler::frstor(Address src) {
7150   InstructionMark im(this);
7151   emit_int8((unsigned char)0xDD);
7152   emit_operand32(rsp, src);
7153 }
7154 
7155 void Assembler::fsin() {
7156   emit_int16((unsigned char)0xD9, (unsigned char)0xFE);
7157 }
7158 
7159 void Assembler::fsqrt() {
7160   emit_int16((unsigned char)0xD9, (unsigned char)0xFA);
7161 }
7162 
7163 void Assembler::fst_d(Address adr) {
7164   InstructionMark im(this);
7165   emit_int8((unsigned char)0xDD);
7166   emit_operand32(rdx, adr);
7167 }
7168 
7169 void Assembler::fst_s(Address adr) {
7170   InstructionMark im(this);
7171   emit_int8((unsigned char)0xD9);
7172   emit_operand32(rdx, adr);
7173 }
7174 
7175 void Assembler::fstp_d(Address adr) {
7176   InstructionMark im(this);
7177   emit_int8((unsigned char)0xDD);
7178   emit_operand32(rbx, adr);
7179 }
7180 
7181 void Assembler::fstp_d(int index) {
7182   emit_farith(0xDD, 0xD8, index);
7183 }
7184 
7185 void Assembler::fstp_s(Address adr) {
7186   InstructionMark im(this);
7187   emit_int8((unsigned char)0xD9);
7188   emit_operand32(rbx, adr);
7189 }
7190 
7191 void Assembler::fstp_x(Address adr) {
7192   InstructionMark im(this);
7193   emit_int8((unsigned char)0xDB);
7194   emit_operand32(rdi, adr);
7195 }
7196 
7197 void Assembler::fsub(int i) {
7198   emit_farith(0xD8, 0xE0, i);
7199 }
7200 
7201 void Assembler::fsub_d(Address src) {
7202   InstructionMark im(this);
7203   emit_int8((unsigned char)0xDC);
7204   emit_operand32(rsp, src);
7205 }
7206 
7207 void Assembler::fsub_s(Address src) {
7208   InstructionMark im(this);
7209   emit_int8((unsigned char)0xD8);
7210   emit_operand32(rsp, src);
7211 }
7212 
7213 void Assembler::fsuba(int i) {
7214   emit_farith(0xDC, 0xE8, i);
7215 }
7216 
7217 void Assembler::fsubp(int i) {
7218   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
7219 }
7220 
7221 void Assembler::fsubr(int i) {
7222   emit_farith(0xD8, 0xE8, i);
7223 }
7224 
7225 void Assembler::fsubr_d(Address src) {
7226   InstructionMark im(this);
7227   emit_int8((unsigned char)0xDC);
7228   emit_operand32(rbp, src);
7229 }
7230 
7231 void Assembler::fsubr_s(Address src) {
7232   InstructionMark im(this);
7233   emit_int8((unsigned char)0xD8);
7234   emit_operand32(rbp, src);
7235 }
7236 
7237 void Assembler::fsubra(int i) {
7238   emit_farith(0xDC, 0xE0, i);
7239 }
7240 
7241 void Assembler::fsubrp(int i) {
7242   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
7243 }
7244 
7245 void Assembler::ftan() {
7246   emit_int32((unsigned char)0xD9, (unsigned char)0xF2, (unsigned char)0xDD, (unsigned char)0xD8);
7247 }
7248 
7249 void Assembler::ftst() {
7250   emit_int16((unsigned char)0xD9, (unsigned char)0xE4);
7251 }
7252 
7253 void Assembler::fucomi(int i) {
7254   // make sure the instruction is supported (introduced for P6, together with cmov)
7255   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7256   emit_farith(0xDB, 0xE8, i);
7257 }
7258 
7259 void Assembler::fucomip(int i) {
7260   // make sure the instruction is supported (introduced for P6, together with cmov)
7261   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7262   emit_farith(0xDF, 0xE8, i);
7263 }
7264 
7265 void Assembler::fwait() {
7266   emit_int8((unsigned char)0x9B);
7267 }
7268 
7269 void Assembler::fxch(int i) {
7270   emit_farith(0xD9, 0xC8, i);
7271 }
7272 
7273 void Assembler::fyl2x() {
7274   emit_int16((unsigned char)0xD9, (unsigned char)0xF1);
7275 }
7276 
7277 void Assembler::frndint() {
7278   emit_int16((unsigned char)0xD9, (unsigned char)0xFC);
7279 }
7280 
7281 void Assembler::f2xm1() {
7282   emit_int16((unsigned char)0xD9, (unsigned char)0xF0);
7283 }
7284 
7285 void Assembler::fldl2e() {
7286   emit_int16((unsigned char)0xD9, (unsigned char)0xEA);
7287 }
7288 #endif // !_LP64
7289 
7290 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
7291 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
7292 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
7293 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
7294 
7295 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
7296 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7297   if (pre > 0) {
7298     emit_int8(simd_pre[pre]);
7299   }
7300   if (rex_w) {
7301     prefixq(adr, xreg);
7302   } else {
7303     prefix(adr, xreg);
7304   }
7305   if (opc > 0) {
7306     emit_int8(0x0F);
7307     int opc2 = simd_opc[opc];
7308     if (opc2 > 0) {
7309       emit_int8(opc2);
7310     }
7311   }
7312 }
7313 
7314 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7315   if (pre > 0) {
7316     emit_int8(simd_pre[pre]);
7317   }
7318   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
7319   if (opc > 0) {
7320     emit_int8(0x0F);
7321     int opc2 = simd_opc[opc];
7322     if (opc2 > 0) {
7323       emit_int8(opc2);
7324     }
7325   }
7326   return encode;
7327 }
7328 
7329 
7330 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
7331   int vector_len = _attributes->get_vector_len();
7332   bool vex_w = _attributes->is_rex_vex_w();
7333   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
7334     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
7335     byte1 = (~byte1) & 0xE0;
7336     byte1 |= opc;
7337 
7338     int byte2 = ((~nds_enc) & 0xf) << 3;
7339     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
7340 
7341     emit_int24((unsigned char)VEX_3bytes, byte1, byte2);
7342   } else {
7343     int byte1 = vex_r ? VEX_R : 0;
7344     byte1 = (~byte1) & 0x80;
7345     byte1 |= ((~nds_enc) & 0xf) << 3;
7346     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
7347     emit_int16((unsigned char)VEX_2bytes, byte1);
7348   }
7349 }
7350 
7351 // This is a 4 byte encoding
7352 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
7353   // EVEX 0x62 prefix
7354   // byte1 = EVEX_4bytes;
7355 
7356   bool vex_w = _attributes->is_rex_vex_w();
7357   int evex_encoding = (vex_w ? VEX_W : 0);
7358   // EVEX.b is not currently used for broadcast of single element or data rounding modes
7359   _attributes->set_evex_encoding(evex_encoding);
7360 
7361   // P0: byte 2, initialized to RXBR`00mm
7362   // instead of not'd
7363   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
7364   byte2 = (~byte2) & 0xF0;
7365   // confine opc opcode extensions in mm bits to lower two bits
7366   // of form {0F, 0F_38, 0F_3A}
7367   byte2 |= opc;
7368 
7369   // P1: byte 3 as Wvvvv1pp
7370   int byte3 = ((~nds_enc) & 0xf) << 3;
7371   // p[10] is always 1
7372   byte3 |= EVEX_F;
7373   byte3 |= (vex_w & 1) << 7;
7374   // confine pre opcode extensions in pp bits to lower two bits
7375   // of form {66, F3, F2}
7376   byte3 |= pre;
7377 
7378   // P2: byte 4 as zL'Lbv'aaa
7379   // kregs are implemented in the low 3 bits as aaa
7380   int byte4 = (_attributes->is_no_reg_mask()) ?
7381               0 :
7382               _attributes->get_embedded_opmask_register_specifier();
7383   // EVEX.v` for extending EVEX.vvvv or VIDX
7384   byte4 |= (evex_v ? 0: EVEX_V);
7385   // third EXEC.b for broadcast actions
7386   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
7387   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
7388   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
7389   // last is EVEX.z for zero/merge actions
7390   if (_attributes->is_no_reg_mask() == false) {
7391     byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
7392   }
7393 
7394   emit_int32(EVEX_4bytes, byte2, byte3, byte4);
7395 }
7396 
7397 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7398   bool vex_r = (xreg_enc & 8) == 8;
7399   bool vex_b = adr.base_needs_rex();
7400   bool vex_x;
7401   if (adr.isxmmindex()) {
7402     vex_x = adr.xmmindex_needs_rex();
7403   } else {
7404     vex_x = adr.index_needs_rex();
7405   }
7406   set_attributes(attributes);
7407   attributes->set_current_assembler(this);
7408 
7409   // For EVEX instruction (which is not marked as pure EVEX instruction) check and see if this instruction
7410   // is allowed in legacy mode and has resources which will fit in it.
7411   // Pure EVEX instructions will have is_evex_instruction set in their definition.
7412   if (!attributes->is_legacy_mode()) {
7413     if (UseAVX > 2 && !attributes->is_evex_instruction() && !is_managed()) {
7414       if ((attributes->get_vector_len() != AVX_512bit) && (nds_enc < 16) && (xreg_enc < 16)) {
7415           attributes->set_is_legacy_mode();
7416       }
7417     }
7418   }
7419 
7420   if (UseAVX > 2) {
7421     assert(((!attributes->uses_vl()) ||
7422             (attributes->get_vector_len() == AVX_512bit) ||
7423             (!_legacy_mode_vl) ||
7424             (attributes->is_legacy_mode())),"XMM register should be 0-15");
7425     assert(((nds_enc < 16 && xreg_enc < 16) || (!attributes->is_legacy_mode())),"XMM register should be 0-15");
7426   }
7427 
7428   clear_managed();
7429   if (UseAVX > 2 && !attributes->is_legacy_mode())
7430   {
7431     bool evex_r = (xreg_enc >= 16);
7432     bool evex_v;
7433     // EVEX.V' is set to true when VSIB is used as we may need to use higher order XMM registers (16-31)
7434     if (adr.isxmmindex())  {
7435       evex_v = ((adr._xmmindex->encoding() > 15) ? true : false);
7436     } else {
7437       evex_v = (nds_enc >= 16);
7438     }
7439     attributes->set_is_evex_instruction();
7440     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7441   } else {
7442     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7443       attributes->set_rex_vex_w(false);
7444     }
7445     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7446   }
7447 }
7448 
7449 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7450   bool vex_r = (dst_enc & 8) == 8;
7451   bool vex_b = (src_enc & 8) == 8;
7452   bool vex_x = false;
7453   set_attributes(attributes);
7454   attributes->set_current_assembler(this);
7455 
7456   // For EVEX instruction (which is not marked as pure EVEX instruction) check and see if this instruction
7457   // is allowed in legacy mode and has resources which will fit in it.
7458   // Pure EVEX instructions will have is_evex_instruction set in their definition.
7459   if (!attributes->is_legacy_mode()) {
7460     if (UseAVX > 2 && !attributes->is_evex_instruction() && !is_managed()) {
7461       if ((!attributes->uses_vl() || (attributes->get_vector_len() != AVX_512bit)) &&
7462           (dst_enc < 16) && (nds_enc < 16) && (src_enc < 16)) {
7463           attributes->set_is_legacy_mode();
7464       }
7465     }
7466   }
7467 
7468   if (UseAVX > 2) {
7469     // All the scalar fp instructions (with uses_vl as false) can have legacy_mode as false
7470     // Instruction with uses_vl true are vector instructions
7471     // All the vector instructions with AVX_512bit length can have legacy_mode as false
7472     // All the vector instructions with < AVX_512bit length can have legacy_mode as false if AVX512vl() is supported
7473     // Rest all should have legacy_mode set as true
7474     assert(((!attributes->uses_vl()) ||
7475             (attributes->get_vector_len() == AVX_512bit) ||
7476             (!_legacy_mode_vl) ||
7477             (attributes->is_legacy_mode())),"XMM register should be 0-15");
7478     // Instruction with legacy_mode true should have dst, nds and src < 15
7479     assert(((dst_enc < 16 && nds_enc < 16 && src_enc < 16) || (!attributes->is_legacy_mode())),"XMM register should be 0-15");
7480   }
7481 
7482   clear_managed();
7483   if (UseAVX > 2 && !attributes->is_legacy_mode())
7484   {
7485     bool evex_r = (dst_enc >= 16);
7486     bool evex_v = (nds_enc >= 16);
7487     // can use vex_x as bank extender on rm encoding
7488     vex_x = (src_enc >= 16);
7489     attributes->set_is_evex_instruction();
7490     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7491   } else {
7492     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7493       attributes->set_rex_vex_w(false);
7494     }
7495     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7496   }
7497 
7498   // return modrm byte components for operands
7499   return (((dst_enc & 7) << 3) | (src_enc & 7));
7500 }
7501 
7502 
7503 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7504                             VexOpcode opc, InstructionAttr *attributes) {
7505   if (UseAVX > 0) {
7506     int xreg_enc = xreg->encoding();
7507     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7508     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7509   } else {
7510     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7511     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7512   }
7513 }
7514 
7515 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7516                                       VexOpcode opc, InstructionAttr *attributes) {
7517   int dst_enc = dst->encoding();
7518   int src_enc = src->encoding();
7519   if (UseAVX > 0) {
7520     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7521     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7522   } else {
7523     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7524     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7525   }
7526 }
7527 
7528 void Assembler::vmaxss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7529   assert(VM_Version::supports_avx(), "");
7530   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7531   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7532   emit_int16(0x5F, (0xC0 | encode));
7533 }
7534 
7535 void Assembler::vmaxsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7536   assert(VM_Version::supports_avx(), "");
7537   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7538   attributes.set_rex_vex_w_reverted();
7539   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7540   emit_int16(0x5F, (0xC0 | encode));
7541 }
7542 
7543 void Assembler::vminss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7544   assert(VM_Version::supports_avx(), "");
7545   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7546   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7547   emit_int16(0x5D, (0xC0 | encode));
7548 }
7549 
7550 void Assembler::vminsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7551   assert(VM_Version::supports_avx(), "");
7552   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7553   attributes.set_rex_vex_w_reverted();
7554   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7555   emit_int16(0x5D, (0xC0 | encode));
7556 }
7557 
7558 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7559   assert(VM_Version::supports_avx(), "");
7560   assert(vector_len <= AVX_256bit, "");
7561   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7562   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7563   emit_int24((unsigned char)0xC2, (0xC0 | encode), (0xF & cop));
7564 }
7565 
7566 void Assembler::blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7567   assert(VM_Version::supports_avx(), "");
7568   assert(vector_len <= AVX_256bit, "");
7569   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7570   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7571   int src2_enc = src2->encoding();
7572   emit_int24(0x4B, (0xC0 | encode), (0xF0 & src2_enc << 4));
7573 }
7574 
7575 void Assembler::cmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7576   assert(VM_Version::supports_avx(), "");
7577   assert(vector_len <= AVX_256bit, "");
7578   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7579   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
7580   emit_int24((unsigned char)0xC2, (0xC0 | encode), (0xF & cop));
7581 }
7582 
7583 void Assembler::blendvps(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7584   assert(VM_Version::supports_avx(), "");
7585   assert(vector_len <= AVX_256bit, "");
7586   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7587   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7588   int src2_enc = src2->encoding();
7589   emit_int24(0x4A, (0xC0 | encode), (0xF0 & src2_enc << 4));
7590 }
7591 
7592 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
7593   assert(VM_Version::supports_avx2(), "");
7594   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7595   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7596   emit_int24(0x02, (0xC0 | encode), (unsigned char)imm8);
7597 }
7598 
7599 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7600   assert(VM_Version::supports_bmi2(), "");
7601   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7602   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7603   emit_int16((unsigned char)0xF7, (0xC0 | encode));
7604 }
7605 
7606 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7607   assert(VM_Version::supports_bmi2(), "");
7608   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7609   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7610   emit_int16((unsigned char)0xF7, (0xC0 | encode));
7611 }
7612 
7613 #ifndef _LP64
7614 
7615 void Assembler::incl(Register dst) {
7616   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7617   emit_int8(0x40 | dst->encoding());
7618 }
7619 
7620 void Assembler::lea(Register dst, Address src) {
7621   leal(dst, src);
7622 }
7623 
7624 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7625   InstructionMark im(this);
7626   emit_int8((unsigned char)0xC7);
7627   emit_operand(rax, dst);
7628   emit_data((int)imm32, rspec, 0);
7629 }
7630 
7631 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7632   InstructionMark im(this);
7633   int encode = prefix_and_encode(dst->encoding());
7634   emit_int8((0xB8 | encode));
7635   emit_data((int)imm32, rspec, 0);
7636 }
7637 
7638 void Assembler::popa() { // 32bit
7639   emit_int8(0x61);
7640 }
7641 
7642 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7643   InstructionMark im(this);
7644   emit_int8(0x68);
7645   emit_data(imm32, rspec, 0);
7646 }
7647 
7648 void Assembler::pusha() { // 32bit
7649   emit_int8(0x60);
7650 }
7651 
7652 void Assembler::set_byte_if_not_zero(Register dst) {
7653   emit_int24(0x0F, (unsigned char)0x95, (0xE0 | dst->encoding()));
7654 }
7655 
7656 #else // LP64
7657 
7658 void Assembler::set_byte_if_not_zero(Register dst) {
7659   int enc = prefix_and_encode(dst->encoding(), true);
7660   emit_int24(0x0F, (unsigned char)0x95, (0xE0 | enc));
7661 }
7662 
7663 // 64bit only pieces of the assembler
7664 // This should only be used by 64bit instructions that can use rip-relative
7665 // it cannot be used by instructions that want an immediate value.
7666 
7667 bool Assembler::reachable(AddressLiteral adr) {
7668   int64_t disp;
7669   relocInfo::relocType relocType = adr.reloc();
7670 
7671   // None will force a 64bit literal to the code stream. Likely a placeholder
7672   // for something that will be patched later and we need to certain it will
7673   // always be reachable.
7674   if (relocType == relocInfo::none) {
7675     return false;
7676   }
7677   if (relocType == relocInfo::internal_word_type) {
7678     // This should be rip relative and easily reachable.
7679     return true;
7680   }
7681   if (relocType == relocInfo::virtual_call_type ||
7682       relocType == relocInfo::opt_virtual_call_type ||
7683       relocType == relocInfo::static_call_type ||
7684       relocType == relocInfo::static_stub_type ) {
7685     // This should be rip relative within the code cache and easily
7686     // reachable until we get huge code caches. (At which point
7687     // ic code is going to have issues).
7688     return true;
7689   }
7690   if (relocType != relocInfo::external_word_type &&
7691       relocType != relocInfo::poll_return_type &&  // these are really external_word but need special
7692       relocType != relocInfo::poll_type &&         // relocs to identify them
7693       relocType != relocInfo::runtime_call_type ) {
7694     return false;
7695   }
7696 
7697   // Stress the correction code
7698   if (ForceUnreachable) {
7699     // Must be runtimecall reloc, see if it is in the codecache
7700     // Flipping stuff in the codecache to be unreachable causes issues
7701     // with things like inline caches where the additional instructions
7702     // are not handled.
7703     if (CodeCache::find_blob(adr._target) == NULL) {
7704       return false;
7705     }
7706   }
7707   // For external_word_type/runtime_call_type if it is reachable from where we
7708   // are now (possibly a temp buffer) and where we might end up
7709   // anywhere in the codeCache then we are always reachable.
7710   // This would have to change if we ever save/restore shared code
7711   // to be more pessimistic.
7712   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7713   if (!is_simm32(disp)) return false;
7714   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7715   if (!is_simm32(disp)) return false;
7716 
7717   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7718 
7719   // Because rip relative is a disp + address_of_next_instruction and we
7720   // don't know the value of address_of_next_instruction we apply a fudge factor
7721   // to make sure we will be ok no matter the size of the instruction we get placed into.
7722   // We don't have to fudge the checks above here because they are already worst case.
7723 
7724   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7725   // + 4 because better safe than sorry.
7726   const int fudge = 12 + 4;
7727   if (disp < 0) {
7728     disp -= fudge;
7729   } else {
7730     disp += fudge;
7731   }
7732   return is_simm32(disp);
7733 }
7734 
7735 void Assembler::emit_data64(jlong data,
7736                             relocInfo::relocType rtype,
7737                             int format) {
7738   if (rtype == relocInfo::none) {
7739     emit_int64(data);
7740   } else {
7741     emit_data64(data, Relocation::spec_simple(rtype), format);
7742   }
7743 }
7744 
7745 void Assembler::emit_data64(jlong data,
7746                             RelocationHolder const& rspec,
7747                             int format) {
7748   assert(imm_operand == 0, "default format must be immediate in this file");
7749   assert(imm_operand == format, "must be immediate");
7750   assert(inst_mark() != NULL, "must be inside InstructionMark");
7751   // Do not use AbstractAssembler::relocate, which is not intended for
7752   // embedded words.  Instead, relocate to the enclosing instruction.
7753   code_section()->relocate(inst_mark(), rspec, format);
7754 #ifdef ASSERT
7755   check_relocation(rspec, format);
7756 #endif
7757   emit_int64(data);
7758 }
7759 
7760 void Assembler::prefix(Register reg) {
7761   if (reg->encoding() >= 8) {
7762     prefix(REX_B);
7763   }
7764 }
7765 
7766 void Assembler::prefix(Register dst, Register src, Prefix p) {
7767   if (src->encoding() >= 8) {
7768     p = (Prefix)(p | REX_B);
7769   }
7770   if (dst->encoding() >= 8) {
7771     p = (Prefix)(p | REX_R);
7772   }
7773   if (p != Prefix_EMPTY) {
7774     // do not generate an empty prefix
7775     prefix(p);
7776   }
7777 }
7778 
7779 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7780   if (adr.base_needs_rex()) {
7781     if (adr.index_needs_rex()) {
7782       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7783     } else {
7784       prefix(REX_B);
7785     }
7786   } else {
7787     if (adr.index_needs_rex()) {
7788       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7789     }
7790   }
7791   if (dst->encoding() >= 8) {
7792     p = (Prefix)(p | REX_R);
7793   }
7794   if (p != Prefix_EMPTY) {
7795     // do not generate an empty prefix
7796     prefix(p);
7797   }
7798 }
7799 
7800 void Assembler::prefix(Address adr) {
7801   if (adr.base_needs_rex()) {
7802     if (adr.index_needs_rex()) {
7803       prefix(REX_XB);
7804     } else {
7805       prefix(REX_B);
7806     }
7807   } else {
7808     if (adr.index_needs_rex()) {
7809       prefix(REX_X);
7810     }
7811   }
7812 }
7813 
7814 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7815   if (reg->encoding() < 8) {
7816     if (adr.base_needs_rex()) {
7817       if (adr.index_needs_rex()) {
7818         prefix(REX_XB);
7819       } else {
7820         prefix(REX_B);
7821       }
7822     } else {
7823       if (adr.index_needs_rex()) {
7824         prefix(REX_X);
7825       } else if (byteinst && reg->encoding() >= 4) {
7826         prefix(REX);
7827       }
7828     }
7829   } else {
7830     if (adr.base_needs_rex()) {
7831       if (adr.index_needs_rex()) {
7832         prefix(REX_RXB);
7833       } else {
7834         prefix(REX_RB);
7835       }
7836     } else {
7837       if (adr.index_needs_rex()) {
7838         prefix(REX_RX);
7839       } else {
7840         prefix(REX_R);
7841       }
7842     }
7843   }
7844 }
7845 
7846 void Assembler::prefix(Address adr, XMMRegister reg) {
7847   if (reg->encoding() < 8) {
7848     if (adr.base_needs_rex()) {
7849       if (adr.index_needs_rex()) {
7850         prefix(REX_XB);
7851       } else {
7852         prefix(REX_B);
7853       }
7854     } else {
7855       if (adr.index_needs_rex()) {
7856         prefix(REX_X);
7857       }
7858     }
7859   } else {
7860     if (adr.base_needs_rex()) {
7861       if (adr.index_needs_rex()) {
7862         prefix(REX_RXB);
7863       } else {
7864         prefix(REX_RB);
7865       }
7866     } else {
7867       if (adr.index_needs_rex()) {
7868         prefix(REX_RX);
7869       } else {
7870         prefix(REX_R);
7871       }
7872     }
7873   }
7874 }
7875 
7876 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7877   if (reg_enc >= 8) {
7878     prefix(REX_B);
7879     reg_enc -= 8;
7880   } else if (byteinst && reg_enc >= 4) {
7881     prefix(REX);
7882   }
7883   return reg_enc;
7884 }
7885 
7886 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7887   if (dst_enc < 8) {
7888     if (src_enc >= 8) {
7889       prefix(REX_B);
7890       src_enc -= 8;
7891     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7892       prefix(REX);
7893     }
7894   } else {
7895     if (src_enc < 8) {
7896       prefix(REX_R);
7897     } else {
7898       prefix(REX_RB);
7899       src_enc -= 8;
7900     }
7901     dst_enc -= 8;
7902   }
7903   return dst_enc << 3 | src_enc;
7904 }
7905 
7906 int8_t Assembler::get_prefixq(Address adr) {
7907   int8_t prfx = get_prefixq(adr, rax);
7908   assert(REX_W <= prfx && prfx <= REX_WXB, "must be");
7909   return prfx;
7910 }
7911 
7912 int8_t Assembler::get_prefixq(Address adr, Register src) {
7913   int8_t prfx = (int8_t)(REX_W +
7914                          ((int)adr.base_needs_rex()) +
7915                          ((int)adr.index_needs_rex() << 1) +
7916                          ((int)(src->encoding() >= 8) << 2));
7917 #ifdef ASSERT
7918   if (src->encoding() < 8) {
7919     if (adr.base_needs_rex()) {
7920       if (adr.index_needs_rex()) {
7921         assert(prfx == REX_WXB, "must be");
7922       } else {
7923         assert(prfx == REX_WB, "must be");
7924       }
7925     } else {
7926       if (adr.index_needs_rex()) {
7927         assert(prfx == REX_WX, "must be");
7928       } else {
7929         assert(prfx == REX_W, "must be");
7930       }
7931     }
7932   } else {
7933     if (adr.base_needs_rex()) {
7934       if (adr.index_needs_rex()) {
7935         assert(prfx == REX_WRXB, "must be");
7936       } else {
7937         assert(prfx == REX_WRB, "must be");
7938       }
7939     } else {
7940       if (adr.index_needs_rex()) {
7941         assert(prfx == REX_WRX, "must be");
7942       } else {
7943         assert(prfx == REX_WR, "must be");
7944       }
7945     }
7946   }
7947 #endif
7948   return prfx;
7949 }
7950 
7951 void Assembler::prefixq(Address adr) {
7952   emit_int8(get_prefixq(adr));
7953 }
7954 
7955 void Assembler::prefixq(Address adr, Register src) {
7956   emit_int8(get_prefixq(adr, src));
7957 }
7958 
7959 void Assembler::prefixq(Address adr, XMMRegister src) {
7960   if (src->encoding() < 8) {
7961     if (adr.base_needs_rex()) {
7962       if (adr.index_needs_rex()) {
7963         prefix(REX_WXB);
7964       } else {
7965         prefix(REX_WB);
7966       }
7967     } else {
7968       if (adr.index_needs_rex()) {
7969         prefix(REX_WX);
7970       } else {
7971         prefix(REX_W);
7972       }
7973     }
7974   } else {
7975     if (adr.base_needs_rex()) {
7976       if (adr.index_needs_rex()) {
7977         prefix(REX_WRXB);
7978       } else {
7979         prefix(REX_WRB);
7980       }
7981     } else {
7982       if (adr.index_needs_rex()) {
7983         prefix(REX_WRX);
7984       } else {
7985         prefix(REX_WR);
7986       }
7987     }
7988   }
7989 }
7990 
7991 int Assembler::prefixq_and_encode(int reg_enc) {
7992   if (reg_enc < 8) {
7993     prefix(REX_W);
7994   } else {
7995     prefix(REX_WB);
7996     reg_enc -= 8;
7997   }
7998   return reg_enc;
7999 }
8000 
8001 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
8002   if (dst_enc < 8) {
8003     if (src_enc < 8) {
8004       prefix(REX_W);
8005     } else {
8006       prefix(REX_WB);
8007       src_enc -= 8;
8008     }
8009   } else {
8010     if (src_enc < 8) {
8011       prefix(REX_WR);
8012     } else {
8013       prefix(REX_WRB);
8014       src_enc -= 8;
8015     }
8016     dst_enc -= 8;
8017   }
8018   return dst_enc << 3 | src_enc;
8019 }
8020 
8021 void Assembler::adcq(Register dst, int32_t imm32) {
8022   (void) prefixq_and_encode(dst->encoding());
8023   emit_arith(0x81, 0xD0, dst, imm32);
8024 }
8025 
8026 void Assembler::adcq(Register dst, Address src) {
8027   InstructionMark im(this);
8028   emit_int16(get_prefixq(src, dst), 0x13);
8029   emit_operand(dst, src);
8030 }
8031 
8032 void Assembler::adcq(Register dst, Register src) {
8033   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8034   emit_arith(0x13, 0xC0, dst, src);
8035 }
8036 
8037 void Assembler::addq(Address dst, int32_t imm32) {
8038   InstructionMark im(this);
8039   prefixq(dst);
8040   emit_arith_operand(0x81, rax, dst, imm32);
8041 }
8042 
8043 void Assembler::addq(Address dst, Register src) {
8044   InstructionMark im(this);
8045   emit_int16(get_prefixq(dst, src), 0x01);
8046   emit_operand(src, dst);
8047 }
8048 
8049 void Assembler::addq(Register dst, int32_t imm32) {
8050   (void) prefixq_and_encode(dst->encoding());
8051   emit_arith(0x81, 0xC0, dst, imm32);
8052 }
8053 
8054 void Assembler::addq(Register dst, Address src) {
8055   InstructionMark im(this);
8056   emit_int16(get_prefixq(src, dst), 0x03);
8057   emit_operand(dst, src);
8058 }
8059 
8060 void Assembler::addq(Register dst, Register src) {
8061   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8062   emit_arith(0x03, 0xC0, dst, src);
8063 }
8064 
8065 void Assembler::adcxq(Register dst, Register src) {
8066   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8067   emit_int8(0x66);
8068   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8069   emit_int32(0x0F,
8070              0x38,
8071              (unsigned char)0xF6,
8072              (0xC0 | encode));
8073 }
8074 
8075 void Assembler::adoxq(Register dst, Register src) {
8076   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8077   emit_int8((unsigned char)0xF3);
8078   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8079   emit_int32(0x0F,
8080              0x38,
8081              (unsigned char)0xF6,
8082              (0xC0 | encode));
8083 }
8084 
8085 void Assembler::andq(Address dst, int32_t imm32) {
8086   InstructionMark im(this);
8087   emit_int16(get_prefixq(dst), (unsigned char)0x81);
8088   emit_operand(rsp, dst, 4);
8089   emit_int32(imm32);
8090 }
8091 
8092 void Assembler::andq(Register dst, int32_t imm32) {
8093   (void) prefixq_and_encode(dst->encoding());
8094   emit_arith(0x81, 0xE0, dst, imm32);
8095 }
8096 
8097 void Assembler::andq(Register dst, Address src) {
8098   InstructionMark im(this);
8099   emit_int16(get_prefixq(src, dst), 0x23);
8100   emit_operand(dst, src);
8101 }
8102 
8103 void Assembler::andq(Register dst, Register src) {
8104   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8105   emit_arith(0x23, 0xC0, dst, src);
8106 }
8107 
8108 void Assembler::andnq(Register dst, Register src1, Register src2) {
8109   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8110   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8111   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8112   emit_int16((unsigned char)0xF2, (0xC0 | encode));
8113 }
8114 
8115 void Assembler::andnq(Register dst, Register src1, Address src2) {
8116   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8117   InstructionMark im(this);
8118   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8119   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8120   emit_int8((unsigned char)0xF2);
8121   emit_operand(dst, src2);
8122 }
8123 
8124 void Assembler::bsfq(Register dst, Register src) {
8125   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8126   emit_int24(0x0F, (unsigned char)0xBC, (0xC0 | encode));
8127 }
8128 
8129 void Assembler::bsrq(Register dst, Register src) {
8130   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8131   emit_int24(0x0F, (unsigned char)0xBD, (0xC0 | encode));
8132 }
8133 
8134 void Assembler::bswapq(Register reg) {
8135   int encode = prefixq_and_encode(reg->encoding());
8136   emit_int16(0x0F, (0xC8 | encode));
8137 }
8138 
8139 void Assembler::blsiq(Register dst, Register src) {
8140   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8141   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8142   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8143   emit_int16((unsigned char)0xF3, (0xC0 | encode));
8144 }
8145 
8146 void Assembler::blsiq(Register dst, Address src) {
8147   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8148   InstructionMark im(this);
8149   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8150   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8151   emit_int8((unsigned char)0xF3);
8152   emit_operand(rbx, src);
8153 }
8154 
8155 void Assembler::blsmskq(Register dst, Register src) {
8156   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8157   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8158   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8159   emit_int16((unsigned char)0xF3, (0xC0 | encode));
8160 }
8161 
8162 void Assembler::blsmskq(Register dst, Address src) {
8163   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8164   InstructionMark im(this);
8165   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8166   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8167   emit_int8((unsigned char)0xF3);
8168   emit_operand(rdx, src);
8169 }
8170 
8171 void Assembler::blsrq(Register dst, Register src) {
8172   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8173   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8174   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8175   emit_int16((unsigned char)0xF3, (0xC0 | encode));
8176 }
8177 
8178 void Assembler::blsrq(Register dst, Address src) {
8179   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8180   InstructionMark im(this);
8181   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8182   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8183   emit_int8((unsigned char)0xF3);
8184   emit_operand(rcx, src);
8185 }
8186 
8187 void Assembler::cdqq() {
8188   emit_int16(REX_W, (unsigned char)0x99);
8189 }
8190 
8191 void Assembler::clflush(Address adr) {
8192   assert(VM_Version::supports_clflush(), "should do");
8193   prefix(adr);
8194   emit_int16(0x0F, (unsigned char)0xAE);
8195   emit_operand(rdi, adr);
8196 }
8197 
8198 void Assembler::clflushopt(Address adr) {
8199   assert(VM_Version::supports_clflushopt(), "should do!");
8200   // adr should be base reg only with no index or offset
8201   assert(adr.index() == noreg, "index should be noreg");
8202   assert(adr.scale() == Address::no_scale, "scale should be no_scale");
8203   assert(adr.disp() == 0, "displacement should be 0");
8204   // instruction prefix is 0x66
8205   emit_int8(0x66);
8206   prefix(adr);
8207   // opcode family is 0x0F 0xAE
8208   emit_int16(0x0F, (unsigned char)0xAE);
8209   // extended opcode byte is 7 == rdi
8210   emit_operand(rdi, adr);
8211 }
8212 
8213 void Assembler::clwb(Address adr) {
8214   assert(VM_Version::supports_clwb(), "should do!");
8215   // adr should be base reg only with no index or offset
8216   assert(adr.index() == noreg, "index should be noreg");
8217   assert(adr.scale() == Address::no_scale, "scale should be no_scale");
8218   assert(adr.disp() == 0, "displacement should be 0");
8219   // instruction prefix is 0x66
8220   emit_int8(0x66);
8221   prefix(adr);
8222   // opcode family is 0x0f 0xAE
8223   emit_int16(0x0F, (unsigned char)0xAE);
8224   // extended opcode byte is 6 == rsi
8225   emit_operand(rsi, adr);
8226 }
8227 
8228 void Assembler::cmovq(Condition cc, Register dst, Register src) {
8229   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8230   emit_int24(0x0F, (0x40 | cc), (0xC0 | encode));
8231 }
8232 
8233 void Assembler::cmovq(Condition cc, Register dst, Address src) {
8234   InstructionMark im(this);
8235   emit_int24(get_prefixq(src, dst), 0x0F, (0x40 | cc));
8236   emit_operand(dst, src);
8237 }
8238 
8239 void Assembler::cmpq(Address dst, int32_t imm32) {
8240   InstructionMark im(this);
8241   emit_int16(get_prefixq(dst), (unsigned char)0x81);
8242   emit_operand(rdi, dst, 4);
8243   emit_int32(imm32);
8244 }
8245 
8246 void Assembler::cmpq(Register dst, int32_t imm32) {
8247   (void) prefixq_and_encode(dst->encoding());
8248   emit_arith(0x81, 0xF8, dst, imm32);
8249 }
8250 
8251 void Assembler::cmpq(Address dst, Register src) {
8252   InstructionMark im(this);
8253   emit_int16(get_prefixq(dst, src), 0x3B);
8254   emit_operand(src, dst);
8255 }
8256 
8257 void Assembler::cmpq(Register dst, Register src) {
8258   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8259   emit_arith(0x3B, 0xC0, dst, src);
8260 }
8261 
8262 void Assembler::cmpq(Register dst, Address src) {
8263   InstructionMark im(this);
8264   emit_int16(get_prefixq(src, dst), 0x3B);
8265   emit_operand(dst, src);
8266 }
8267 
8268 void Assembler::cmpxchgq(Register reg, Address adr) {
8269   InstructionMark im(this);
8270   emit_int24(get_prefixq(adr, reg), 0x0F, (unsigned char)0xB1);
8271   emit_operand(reg, adr);
8272 }
8273 
8274 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
8275   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8276   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8277   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8278   emit_int16(0x2A, (0xC0 | encode));
8279 }
8280 
8281 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
8282   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8283   InstructionMark im(this);
8284   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8285   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8286   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8287   emit_int8(0x2A);
8288   emit_operand(dst, src);
8289 }
8290 
8291 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
8292   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8293   InstructionMark im(this);
8294   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8295   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8296   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8297   emit_int8(0x2A);
8298   emit_operand(dst, src);
8299 }
8300 
8301 void Assembler::cvttsd2siq(Register dst, Address src) {
8302   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8303   // F2 REX.W 0F 2C /r
8304   // CVTTSD2SI r64, xmm1/m64
8305   InstructionMark im(this);
8306   emit_int32((unsigned char)0xF2, REX_W, 0x0F, 0x2C);
8307   emit_operand(dst, src);
8308 }
8309 
8310 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
8311   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8312   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8313   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8314   emit_int16(0x2C, (0xC0 | encode));
8315 }
8316 
8317 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
8318   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8319   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8320   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8321   emit_int16(0x2C, (0xC0 | encode));
8322 }
8323 
8324 void Assembler::decl(Register dst) {
8325   // Don't use it directly. Use MacroAssembler::decrementl() instead.
8326   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
8327   int encode = prefix_and_encode(dst->encoding());
8328   emit_int16((unsigned char)0xFF, (0xC8 | encode));
8329 }
8330 
8331 void Assembler::decq(Register dst) {
8332   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8333   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8334   int encode = prefixq_and_encode(dst->encoding());
8335   emit_int16((unsigned char)0xFF, 0xC8 | encode);
8336 }
8337 
8338 void Assembler::decq(Address dst) {
8339   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8340   InstructionMark im(this);
8341   emit_int16(get_prefixq(dst), (unsigned char)0xFF);
8342   emit_operand(rcx, dst);
8343 }
8344 
8345 void Assembler::fxrstor(Address src) {
8346   emit_int24(get_prefixq(src), 0x0F, (unsigned char)0xAE);
8347   emit_operand(as_Register(1), src);
8348 }
8349 
8350 void Assembler::xrstor(Address src) {
8351   emit_int24(get_prefixq(src), 0x0F, (unsigned char)0xAE);
8352   emit_operand(as_Register(5), src);
8353 }
8354 
8355 void Assembler::fxsave(Address dst) {
8356   emit_int24(get_prefixq(dst), 0x0F, (unsigned char)0xAE);
8357   emit_operand(as_Register(0), dst);
8358 }
8359 
8360 void Assembler::xsave(Address dst) {
8361   emit_int24(get_prefixq(dst), 0x0F, (unsigned char)0xAE);
8362   emit_operand(as_Register(4), dst);
8363 }
8364 
8365 void Assembler::idivq(Register src) {
8366   int encode = prefixq_and_encode(src->encoding());
8367   emit_int16((unsigned char)0xF7, (0xF8 | encode));
8368 }
8369 
8370 void Assembler::imulq(Register dst, Register src) {
8371   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8372   emit_int24(0x0F, (unsigned char)0xAF, (0xC0 | encode));
8373 }
8374 
8375 void Assembler::imulq(Register dst, Register src, int value) {
8376   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8377   if (is8bit(value)) {
8378     emit_int24(0x6B, (0xC0 | encode), (value & 0xFF));
8379   } else {
8380     emit_int16(0x69, (0xC0 | encode));
8381     emit_int32(value);
8382   }
8383 }
8384 
8385 void Assembler::imulq(Register dst, Address src) {
8386   InstructionMark im(this);
8387   emit_int24(get_prefixq(src, dst), 0x0F, (unsigned char)0xAF);
8388   emit_operand(dst, src);
8389 }
8390 
8391 void Assembler::incl(Register dst) {
8392   // Don't use it directly. Use MacroAssembler::incrementl() instead.
8393   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8394   int encode = prefix_and_encode(dst->encoding());
8395   emit_int16((unsigned char)0xFF, (0xC0 | encode));
8396 }
8397 
8398 void Assembler::incq(Register dst) {
8399   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8400   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8401   int encode = prefixq_and_encode(dst->encoding());
8402   emit_int16((unsigned char)0xFF, (0xC0 | encode));
8403 }
8404 
8405 void Assembler::incq(Address dst) {
8406   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8407   InstructionMark im(this);
8408   emit_int16(get_prefixq(dst), (unsigned char)0xFF);
8409   emit_operand(rax, dst);
8410 }
8411 
8412 void Assembler::lea(Register dst, Address src) {
8413   leaq(dst, src);
8414 }
8415 
8416 void Assembler::leaq(Register dst, Address src) {
8417   InstructionMark im(this);
8418   emit_int16(get_prefixq(src, dst), (unsigned char)0x8D);
8419   emit_operand(dst, src);
8420 }
8421 
8422 void Assembler::mov64(Register dst, int64_t imm64) {
8423   InstructionMark im(this);
8424   int encode = prefixq_and_encode(dst->encoding());
8425   emit_int8(0xB8 | encode);
8426   emit_int64(imm64);
8427 }
8428 
8429 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
8430   InstructionMark im(this);
8431   int encode = prefixq_and_encode(dst->encoding());
8432   emit_int8(0xB8 | encode);
8433   emit_data64(imm64, rspec);
8434 }
8435 
8436 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
8437   InstructionMark im(this);
8438   int encode = prefix_and_encode(dst->encoding());
8439   emit_int8(0xB8 | encode);
8440   emit_data((int)imm32, rspec, narrow_oop_operand);
8441 }
8442 
8443 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
8444   InstructionMark im(this);
8445   prefix(dst);
8446   emit_int8((unsigned char)0xC7);
8447   emit_operand(rax, dst, 4);
8448   emit_data((int)imm32, rspec, narrow_oop_operand);
8449 }
8450 
8451 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8452   InstructionMark im(this);
8453   int encode = prefix_and_encode(src1->encoding());
8454   emit_int16((unsigned char)0x81, (0xF8 | encode));
8455   emit_data((int)imm32, rspec, narrow_oop_operand);
8456 }
8457 
8458 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8459   InstructionMark im(this);
8460   prefix(src1);
8461   emit_int8((unsigned char)0x81);
8462   emit_operand(rax, src1, 4);
8463   emit_data((int)imm32, rspec, narrow_oop_operand);
8464 }
8465 
8466 void Assembler::lzcntq(Register dst, Register src) {
8467   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8468   emit_int8((unsigned char)0xF3);
8469   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8470   emit_int24(0x0F, (unsigned char)0xBD, (0xC0 | encode));
8471 }
8472 
8473 void Assembler::movdq(XMMRegister dst, Register src) {
8474   // table D-1 says MMX/SSE2
8475   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8476   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8477   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8478   emit_int16(0x6E, (0xC0 | encode));
8479 }
8480 
8481 void Assembler::movdq(Register dst, XMMRegister src) {
8482   // table D-1 says MMX/SSE2
8483   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8484   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8485   // swap src/dst to get correct prefix
8486   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8487   emit_int16(0x7E,
8488              (0xC0 | encode));
8489 }
8490 
8491 void Assembler::movq(Register dst, Register src) {
8492   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8493   emit_int16((unsigned char)0x8B,
8494              (0xC0 | encode));
8495 }
8496 
8497 void Assembler::movq(Register dst, Address src) {
8498   InstructionMark im(this);
8499   emit_int16(get_prefixq(src, dst), (unsigned char)0x8B);
8500   emit_operand(dst, src);
8501 }
8502 
8503 void Assembler::movq(Address dst, Register src) {
8504   InstructionMark im(this);
8505   emit_int16(get_prefixq(dst, src), (unsigned char)0x89);
8506   emit_operand(src, dst);
8507 }
8508 
8509 void Assembler::movsbq(Register dst, Address src) {
8510   InstructionMark im(this);
8511   emit_int24(get_prefixq(src, dst),
8512              0x0F,
8513              (unsigned char)0xBE);
8514   emit_operand(dst, src);
8515 }
8516 
8517 void Assembler::movsbq(Register dst, Register src) {
8518   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8519   emit_int24(0x0F, (unsigned char)0xBE, (0xC0 | encode));
8520 }
8521 
8522 void Assembler::movslq(Register dst, int32_t imm32) {
8523   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8524   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8525   // as a result we shouldn't use until tested at runtime...
8526   ShouldNotReachHere();
8527   InstructionMark im(this);
8528   int encode = prefixq_and_encode(dst->encoding());
8529   emit_int8(0xC7 | encode);
8530   emit_int32(imm32);
8531 }
8532 
8533 void Assembler::movslq(Address dst, int32_t imm32) {
8534   assert(is_simm32(imm32), "lost bits");
8535   InstructionMark im(this);
8536   emit_int16(get_prefixq(dst), (unsigned char)0xC7);
8537   emit_operand(rax, dst, 4);
8538   emit_int32(imm32);
8539 }
8540 
8541 void Assembler::movslq(Register dst, Address src) {
8542   InstructionMark im(this);
8543   emit_int16(get_prefixq(src, dst), 0x63);
8544   emit_operand(dst, src);
8545 }
8546 
8547 void Assembler::movslq(Register dst, Register src) {
8548   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8549   emit_int16(0x63, (0xC0 | encode));
8550 }
8551 
8552 void Assembler::movswq(Register dst, Address src) {
8553   InstructionMark im(this);
8554   emit_int24(get_prefixq(src, dst),
8555              0x0F,
8556              (unsigned char)0xBF);
8557   emit_operand(dst, src);
8558 }
8559 
8560 void Assembler::movswq(Register dst, Register src) {
8561   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8562   emit_int24(0x0F, (unsigned char)0xBF, (0xC0 | encode));
8563 }
8564 
8565 void Assembler::movzbq(Register dst, Address src) {
8566   InstructionMark im(this);
8567   emit_int24(get_prefixq(src, dst),
8568              0x0F,
8569              (unsigned char)0xB6);
8570   emit_operand(dst, src);
8571 }
8572 
8573 void Assembler::movzbq(Register dst, Register src) {
8574   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8575   emit_int24(0x0F, (unsigned char)0xB6, (0xC0 | encode));
8576 }
8577 
8578 void Assembler::movzwq(Register dst, Address src) {
8579   InstructionMark im(this);
8580   emit_int24(get_prefixq(src, dst),
8581              0x0F,
8582              (unsigned char)0xB7);
8583   emit_operand(dst, src);
8584 }
8585 
8586 void Assembler::movzwq(Register dst, Register src) {
8587   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8588   emit_int24(0x0F, (unsigned char)0xB7, (0xC0 | encode));
8589 }
8590 
8591 void Assembler::mulq(Address src) {
8592   InstructionMark im(this);
8593   emit_int16(get_prefixq(src), (unsigned char)0xF7);
8594   emit_operand(rsp, src);
8595 }
8596 
8597 void Assembler::mulq(Register src) {
8598   int encode = prefixq_and_encode(src->encoding());
8599   emit_int16((unsigned char)0xF7, (0xE0 | encode));
8600 }
8601 
8602 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8603   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8604   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8605   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8606   emit_int16((unsigned char)0xF6, (0xC0 | encode));
8607 }
8608 
8609 void Assembler::negq(Register dst) {
8610   int encode = prefixq_and_encode(dst->encoding());
8611   emit_int16((unsigned char)0xF7, (0xD8 | encode));
8612 }
8613 
8614 void Assembler::notq(Register dst) {
8615   int encode = prefixq_and_encode(dst->encoding());
8616   emit_int16((unsigned char)0xF7, (0xD0 | encode));
8617 }
8618 
8619 void Assembler::btsq(Address dst, int imm8) {
8620   assert(isByte(imm8), "not a byte");
8621   InstructionMark im(this);
8622   emit_int24(get_prefixq(dst),
8623              0x0F,
8624              (unsigned char)0xBA);
8625   emit_operand(rbp /* 5 */, dst, 1);
8626   emit_int8(imm8);
8627 }
8628 
8629 void Assembler::btrq(Address dst, int imm8) {
8630   assert(isByte(imm8), "not a byte");
8631   InstructionMark im(this);
8632   emit_int24(get_prefixq(dst),
8633              0x0F,
8634              (unsigned char)0xBA);
8635   emit_operand(rsi /* 6 */, dst, 1);
8636   emit_int8(imm8);
8637 }
8638 
8639 void Assembler::orq(Address dst, int32_t imm32) {
8640   InstructionMark im(this);
8641   emit_int16(get_prefixq(dst), (unsigned char)0x81);
8642   emit_operand(rcx, dst, 4);
8643   emit_int32(imm32);
8644 }
8645 
8646 void Assembler::orq(Register dst, int32_t imm32) {
8647   (void) prefixq_and_encode(dst->encoding());
8648   emit_arith(0x81, 0xC8, dst, imm32);
8649 }
8650 
8651 void Assembler::orq(Register dst, Address src) {
8652   InstructionMark im(this);
8653   emit_int16(get_prefixq(src, dst), 0x0B);
8654   emit_operand(dst, src);
8655 }
8656 
8657 void Assembler::orq(Register dst, Register src) {
8658   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8659   emit_arith(0x0B, 0xC0, dst, src);
8660 }
8661 
8662 void Assembler::popcntq(Register dst, Address src) {
8663   assert(VM_Version::supports_popcnt(), "must support");
8664   InstructionMark im(this);
8665   emit_int32((unsigned char)0xF3,
8666              get_prefixq(src, dst),
8667              0x0F,
8668              (unsigned char)0xB8);
8669   emit_operand(dst, src);
8670 }
8671 
8672 void Assembler::popcntq(Register dst, Register src) {
8673   assert(VM_Version::supports_popcnt(), "must support");
8674   emit_int8((unsigned char)0xF3);
8675   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8676   emit_int24(0x0F, (unsigned char)0xB8, (0xC0 | encode));
8677 }
8678 
8679 void Assembler::popq(Address dst) {
8680   InstructionMark im(this);
8681   emit_int16(get_prefixq(dst), (unsigned char)0x8F);
8682   emit_operand(rax, dst);
8683 }
8684 
8685 // Precomputable: popa, pusha, vzeroupper
8686 
8687 // The result of these routines are invariant from one invocation to another
8688 // invocation for the duration of a run. Caching the result on bootstrap
8689 // and copying it out on subsequent invocations can thus be beneficial
8690 static bool     precomputed = false;
8691 
8692 static u_char* popa_code  = NULL;
8693 static int     popa_len   = 0;
8694 
8695 static u_char* pusha_code = NULL;
8696 static int     pusha_len  = 0;
8697 
8698 static u_char* vzup_code  = NULL;
8699 static int     vzup_len   = 0;
8700 
8701 void Assembler::precompute_instructions() {
8702   assert(!Universe::is_fully_initialized(), "must still be single threaded");
8703   guarantee(!precomputed, "only once");
8704   precomputed = true;
8705   ResourceMark rm;
8706 
8707   // Make a temporary buffer big enough for the routines we're capturing
8708   int size = 256;
8709   char* tmp_code = NEW_RESOURCE_ARRAY(char, size);
8710   CodeBuffer buffer((address)tmp_code, size);
8711   MacroAssembler masm(&buffer);
8712 
8713   address begin_popa  = masm.code_section()->end();
8714   masm.popa_uncached();
8715   address end_popa    = masm.code_section()->end();
8716   masm.pusha_uncached();
8717   address end_pusha   = masm.code_section()->end();
8718   masm.vzeroupper_uncached();
8719   address end_vzup    = masm.code_section()->end();
8720 
8721   // Save the instructions to permanent buffers.
8722   popa_len = (int)(end_popa - begin_popa);
8723   popa_code = NEW_C_HEAP_ARRAY(u_char, popa_len, mtInternal);
8724   memcpy(popa_code, begin_popa, popa_len);
8725 
8726   pusha_len = (int)(end_pusha - end_popa);
8727   pusha_code = NEW_C_HEAP_ARRAY(u_char, pusha_len, mtInternal);
8728   memcpy(pusha_code, end_popa, pusha_len);
8729 
8730   vzup_len = (int)(end_vzup - end_pusha);
8731   if (vzup_len > 0) {
8732     vzup_code = NEW_C_HEAP_ARRAY(u_char, vzup_len, mtInternal);
8733     memcpy(vzup_code, end_pusha, vzup_len);
8734   } else {
8735     vzup_code = pusha_code; // dummy
8736   }
8737 
8738   assert(masm.code()->total_oop_size() == 0 &&
8739          masm.code()->total_metadata_size() == 0 &&
8740          masm.code()->total_relocation_size() == 0,
8741          "pre-computed code can't reference oops, metadata or contain relocations");
8742 }
8743 
8744 static void emit_copy(CodeSection* code_section, u_char* src, int src_len) {
8745   assert(src != NULL, "code to copy must have been pre-computed");
8746   assert(code_section->limit() - code_section->end() > src_len, "code buffer not large enough");
8747   address end = code_section->end();
8748   memcpy(end, src, src_len);
8749   code_section->set_end(end + src_len);
8750 }
8751 
8752 void Assembler::popa() { // 64bit
8753   emit_copy(code_section(), popa_code, popa_len);
8754 }
8755 
8756 void Assembler::popa_uncached() { // 64bit
8757   movq(r15, Address(rsp, 0));
8758   movq(r14, Address(rsp, wordSize));
8759   movq(r13, Address(rsp, 2 * wordSize));
8760   movq(r12, Address(rsp, 3 * wordSize));
8761   movq(r11, Address(rsp, 4 * wordSize));
8762   movq(r10, Address(rsp, 5 * wordSize));
8763   movq(r9,  Address(rsp, 6 * wordSize));
8764   movq(r8,  Address(rsp, 7 * wordSize));
8765   movq(rdi, Address(rsp, 8 * wordSize));
8766   movq(rsi, Address(rsp, 9 * wordSize));
8767   movq(rbp, Address(rsp, 10 * wordSize));
8768   // skip rsp
8769   movq(rbx, Address(rsp, 12 * wordSize));
8770   movq(rdx, Address(rsp, 13 * wordSize));
8771   movq(rcx, Address(rsp, 14 * wordSize));
8772   movq(rax, Address(rsp, 15 * wordSize));
8773 
8774   addq(rsp, 16 * wordSize);
8775 }
8776 
8777 void Assembler::pusha() { // 64bit
8778   emit_copy(code_section(), pusha_code, pusha_len);
8779 }
8780 
8781 void Assembler::pusha_uncached() { // 64bit
8782   // we have to store original rsp.  ABI says that 128 bytes
8783   // below rsp are local scratch.
8784   movq(Address(rsp, -5 * wordSize), rsp);
8785 
8786   subq(rsp, 16 * wordSize);
8787 
8788   movq(Address(rsp, 15 * wordSize), rax);
8789   movq(Address(rsp, 14 * wordSize), rcx);
8790   movq(Address(rsp, 13 * wordSize), rdx);
8791   movq(Address(rsp, 12 * wordSize), rbx);
8792   // skip rsp
8793   movq(Address(rsp, 10 * wordSize), rbp);
8794   movq(Address(rsp, 9 * wordSize), rsi);
8795   movq(Address(rsp, 8 * wordSize), rdi);
8796   movq(Address(rsp, 7 * wordSize), r8);
8797   movq(Address(rsp, 6 * wordSize), r9);
8798   movq(Address(rsp, 5 * wordSize), r10);
8799   movq(Address(rsp, 4 * wordSize), r11);
8800   movq(Address(rsp, 3 * wordSize), r12);
8801   movq(Address(rsp, 2 * wordSize), r13);
8802   movq(Address(rsp, wordSize), r14);
8803   movq(Address(rsp, 0), r15);
8804 }
8805 
8806 void Assembler::vzeroupper() {
8807   emit_copy(code_section(), vzup_code, vzup_len);
8808 }
8809 
8810 void Assembler::pushq(Address src) {
8811   InstructionMark im(this);
8812   emit_int16(get_prefixq(src), (unsigned char)0xFF);
8813   emit_operand(rsi, src);
8814 }
8815 
8816 void Assembler::rclq(Register dst, int imm8) {
8817   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8818   int encode = prefixq_and_encode(dst->encoding());
8819   if (imm8 == 1) {
8820     emit_int16((unsigned char)0xD1, (0xD0 | encode));
8821   } else {
8822     emit_int24((unsigned char)0xC1, (0xD0 | encode), imm8);
8823   }
8824 }
8825 
8826 void Assembler::rcrq(Register dst, int imm8) {
8827   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8828   int encode = prefixq_and_encode(dst->encoding());
8829   if (imm8 == 1) {
8830     emit_int16((unsigned char)0xD1, (0xD8 | encode));
8831   } else {
8832     emit_int24((unsigned char)0xC1, (0xD8 | encode), imm8);
8833   }
8834 }
8835 
8836 void Assembler::rorq(Register dst, int imm8) {
8837   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8838   int encode = prefixq_and_encode(dst->encoding());
8839   if (imm8 == 1) {
8840     emit_int16((unsigned char)0xD1, (0xC8 | encode));
8841   } else {
8842     emit_int24((unsigned char)0xC1, (0xc8 | encode), imm8);
8843   }
8844 }
8845 
8846 void Assembler::rorxq(Register dst, Register src, int imm8) {
8847   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8848   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8849   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8850   emit_int24((unsigned char)0xF0, (0xC0 | encode), imm8);
8851 }
8852 
8853 void Assembler::rorxd(Register dst, Register src, int imm8) {
8854   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8855   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8856   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8857   emit_int24((unsigned char)0xF0, (0xC0 | encode), imm8);
8858 }
8859 
8860 void Assembler::sarq(Register dst, int imm8) {
8861   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8862   int encode = prefixq_and_encode(dst->encoding());
8863   if (imm8 == 1) {
8864     emit_int16((unsigned char)0xD1, (0xF8 | encode));
8865   } else {
8866     emit_int24((unsigned char)0xC1, (0xF8 | encode), imm8);
8867   }
8868 }
8869 
8870 void Assembler::sarq(Register dst) {
8871   int encode = prefixq_and_encode(dst->encoding());
8872   emit_int16((unsigned char)0xD3, (0xF8 | encode));
8873 }
8874 
8875 void Assembler::sbbq(Address dst, int32_t imm32) {
8876   InstructionMark im(this);
8877   prefixq(dst);
8878   emit_arith_operand(0x81, rbx, dst, imm32);
8879 }
8880 
8881 void Assembler::sbbq(Register dst, int32_t imm32) {
8882   (void) prefixq_and_encode(dst->encoding());
8883   emit_arith(0x81, 0xD8, dst, imm32);
8884 }
8885 
8886 void Assembler::sbbq(Register dst, Address src) {
8887   InstructionMark im(this);
8888   emit_int16(get_prefixq(src, dst), 0x1B);
8889   emit_operand(dst, src);
8890 }
8891 
8892 void Assembler::sbbq(Register dst, Register src) {
8893   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8894   emit_arith(0x1B, 0xC0, dst, src);
8895 }
8896 
8897 void Assembler::shlq(Register dst, int imm8) {
8898   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8899   int encode = prefixq_and_encode(dst->encoding());
8900   if (imm8 == 1) {
8901     emit_int16((unsigned char)0xD1, (0xE0 | encode));
8902   } else {
8903     emit_int24((unsigned char)0xC1, (0xE0 | encode), imm8);
8904   }
8905 }
8906 
8907 void Assembler::shlq(Register dst) {
8908   int encode = prefixq_and_encode(dst->encoding());
8909   emit_int16((unsigned char)0xD3, (0xE0 | encode));
8910 }
8911 
8912 void Assembler::shrq(Register dst, int imm8) {
8913   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8914   int encode = prefixq_and_encode(dst->encoding());
8915   emit_int24((unsigned char)0xC1, (0xE8 | encode), imm8);
8916 }
8917 
8918 void Assembler::shrq(Register dst) {
8919   int encode = prefixq_and_encode(dst->encoding());
8920   emit_int16((unsigned char)0xD3, 0xE8 | encode);
8921 }
8922 
8923 void Assembler::subq(Address dst, int32_t imm32) {
8924   InstructionMark im(this);
8925   prefixq(dst);
8926   emit_arith_operand(0x81, rbp, dst, imm32);
8927 }
8928 
8929 void Assembler::subq(Address dst, Register src) {
8930   InstructionMark im(this);
8931   emit_int16(get_prefixq(dst, src), 0x29);
8932   emit_operand(src, dst);
8933 }
8934 
8935 void Assembler::subq(Register dst, int32_t imm32) {
8936   (void) prefixq_and_encode(dst->encoding());
8937   emit_arith(0x81, 0xE8, dst, imm32);
8938 }
8939 
8940 // Force generation of a 4 byte immediate value even if it fits into 8bit
8941 void Assembler::subq_imm32(Register dst, int32_t imm32) {
8942   (void) prefixq_and_encode(dst->encoding());
8943   emit_arith_imm32(0x81, 0xE8, dst, imm32);
8944 }
8945 
8946 void Assembler::subq(Register dst, Address src) {
8947   InstructionMark im(this);
8948   emit_int16(get_prefixq(src, dst), 0x2B);
8949   emit_operand(dst, src);
8950 }
8951 
8952 void Assembler::subq(Register dst, Register src) {
8953   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8954   emit_arith(0x2B, 0xC0, dst, src);
8955 }
8956 
8957 void Assembler::testq(Register dst, int32_t imm32) {
8958   // not using emit_arith because test
8959   // doesn't support sign-extension of
8960   // 8bit operands
8961   int encode = dst->encoding();
8962   if (encode == 0) {
8963     emit_int16(REX_W, (unsigned char)0xA9);
8964   } else {
8965     encode = prefixq_and_encode(encode);
8966     emit_int16((unsigned char)0xF7, (0xC0 | encode));
8967   }
8968   emit_int32(imm32);
8969 }
8970 
8971 void Assembler::testq(Register dst, Register src) {
8972   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8973   emit_arith(0x85, 0xC0, dst, src);
8974 }
8975 
8976 void Assembler::testq(Register dst, Address src) {
8977   InstructionMark im(this);
8978   emit_int16(get_prefixq(src, dst), (unsigned char)0x85);
8979   emit_operand(dst, src);
8980 }
8981 
8982 void Assembler::xaddq(Address dst, Register src) {
8983   InstructionMark im(this);
8984   emit_int24(get_prefixq(dst, src), 0x0F, (unsigned char)0xC1);
8985   emit_operand(src, dst);
8986 }
8987 
8988 void Assembler::xchgq(Register dst, Address src) {
8989   InstructionMark im(this);
8990   emit_int16(get_prefixq(src, dst), (unsigned char)0x87);
8991   emit_operand(dst, src);
8992 }
8993 
8994 void Assembler::xchgq(Register dst, Register src) {
8995   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8996   emit_int16((unsigned char)0x87, (0xc0 | encode));
8997 }
8998 
8999 void Assembler::xorq(Register dst, Register src) {
9000   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9001   emit_arith(0x33, 0xC0, dst, src);
9002 }
9003 
9004 void Assembler::xorq(Register dst, Address src) {
9005   InstructionMark im(this);
9006   emit_int16(get_prefixq(src, dst), 0x33);
9007   emit_operand(dst, src);
9008 }
9009 
9010 #endif // !LP64