1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  public:
  42   // Support for VM calls
  43   //
  44   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  45   // may customize this version by overriding it for its purposes (e.g., to save/restore
  46   // additional registers when doing a VM call).
  47 
  48   virtual void call_VM_leaf_base(
  49     address entry_point,               // the entry point
  50     int     number_of_arguments        // the number of arguments to pop after the call
  51   );
  52 
  53  protected:
  54   // This is the base routine called by the different versions of call_VM. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   //
  58   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  59   // returns the register which contains the thread upon return. If a thread register has been
  60   // specified, the return value will correspond to that register. If no last_java_sp is specified
  61   // (noreg) than rsp will be used instead.
  62   virtual void call_VM_base(           // returns the register containing the thread upon return
  63     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  64     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  65     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  66     address  entry_point,              // the entry point
  67     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  68     bool     check_exceptions          // whether to check for pending exceptions after return
  69   );
  70 
  71   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  72 
  73   // helpers for FPU flag access
  74   // tmp is a temporary register, if none is available use noreg
  75   void save_rax   (Register tmp);
  76   void restore_rax(Register tmp);
  77 
  78  public:
  79   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  80 
  81  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82  // The implementation is only non-empty for the InterpreterMacroAssembler,
  83  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84  virtual void check_and_handle_popframe(Register java_thread);
  85  virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   Address as_Address(AddressLiteral adr);
  88   Address as_Address(ArrayAddress adr);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99   static bool uses_implicit_null_check(void* address);
 100 
 101   // Required platform-specific helpers for Label::patch_instructions.
 102   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 103   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 104     unsigned char op = branch[0];
 105     assert(op == 0xE8 /* call */ ||
 106         op == 0xE9 /* jmp */ ||
 107         op == 0xEB /* short jmp */ ||
 108         (op & 0xF0) == 0x70 /* short jcc */ ||
 109         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 110         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 111         "Invalid opcode at patch point");
 112 
 113     if (op == 0xEB || (op & 0xF0) == 0x70) {
 114       // short offset operators (jmp and jcc)
 115       char* disp = (char*) &branch[1];
 116       int imm8 = target - (address) &disp[1];
 117       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 118                 file == NULL ? "<NULL>" : file, line);
 119       *disp = imm8;
 120     } else {
 121       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 122       int imm32 = target - (address) &disp[1];
 123       *disp = imm32;
 124     }
 125   }
 126 
 127   // The following 4 methods return the offset of the appropriate move instruction
 128 
 129   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 130   int load_unsigned_byte(Register dst, Address src);
 131   int load_unsigned_short(Register dst, Address src);
 132 
 133   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 134   int load_signed_byte(Register dst, Address src);
 135   int load_signed_short(Register dst, Address src);
 136 
 137   // Support for sign-extension (hi:lo = extend_sign(lo))
 138   void extend_sign(Register hi, Register lo);
 139 
 140   // Load and store values by size and signed-ness
 141   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 142   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 143 
 144   // Support for inc/dec with optimal instruction selection depending on value
 145 
 146   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 147   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 148 
 149   void decrementl(Address dst, int value = 1);
 150   void decrementl(Register reg, int value = 1);
 151 
 152   void decrementq(Register reg, int value = 1);
 153   void decrementq(Address dst, int value = 1);
 154 
 155   void incrementl(Address dst, int value = 1);
 156   void incrementl(Register reg, int value = 1);
 157 
 158   void incrementq(Register reg, int value = 1);
 159   void incrementq(Address dst, int value = 1);
 160 
 161   // Support optimal SSE move instructions.
 162   void movflt(XMMRegister dst, XMMRegister src) {
 163     if (dst-> encoding() == src->encoding()) return;
 164     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 165     else                       { movss (dst, src); return; }
 166   }
 167   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 168   void movflt(XMMRegister dst, AddressLiteral src);
 169   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 170 
 171   void movdbl(XMMRegister dst, XMMRegister src) {
 172     if (dst-> encoding() == src->encoding()) return;
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // jobjects
 297   void clear_jweak_tag(Register possibly_jweak);
 298   void resolve_jobject(Register value, Register thread, Register tmp);
 299 
 300   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 301   void c2bool(Register x);
 302 
 303   // C++ bool manipulation
 304 
 305   void movbool(Register dst, Address src);
 306   void movbool(Address dst, bool boolconst);
 307   void movbool(Address dst, Register src);
 308   void testbool(Register dst);
 309 
 310   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 311   void resolve_weak_handle(Register result, Register tmp);
 312   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 313   void load_method_holder_cld(Register rresult, Register rmethod);
 314 
 315   void load_method_holder(Register holder, Register method);
 316 
 317   // oop manipulations
 318   void load_klass(Register dst, Register src);
 319   void store_klass(Register dst, Register src);
 320 
 321   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 322                       Register tmp1, Register thread_tmp);
 323   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 324                        Register tmp1, Register tmp2);
 325 
 326   // Resolves obj access. Result is placed in the same register.
 327   // All other registers are preserved.
 328   void resolve(DecoratorSet decorators, Register obj);
 329 
 330   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 331                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 332   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 333                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 334   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 335                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 336 
 337   // Used for storing NULL. All other oop constants should be
 338   // stored using routines that take a jobject.
 339   void store_heap_oop_null(Address dst);
 340 
 341   void load_prototype_header(Register dst, Register src);
 342 
 343 #ifdef _LP64
 344   void store_klass_gap(Register dst, Register src);
 345 
 346   // This dummy is to prevent a call to store_heap_oop from
 347   // converting a zero (like NULL) into a Register by giving
 348   // the compiler two choices it can't resolve
 349 
 350   void store_heap_oop(Address dst, void* dummy);
 351 
 352   void encode_heap_oop(Register r);
 353   void decode_heap_oop(Register r);
 354   void encode_heap_oop_not_null(Register r);
 355   void decode_heap_oop_not_null(Register r);
 356   void encode_heap_oop_not_null(Register dst, Register src);
 357   void decode_heap_oop_not_null(Register dst, Register src);
 358 
 359   void set_narrow_oop(Register dst, jobject obj);
 360   void set_narrow_oop(Address dst, jobject obj);
 361   void cmp_narrow_oop(Register dst, jobject obj);
 362   void cmp_narrow_oop(Address dst, jobject obj);
 363 
 364   void encode_klass_not_null(Register r);
 365   void decode_klass_not_null(Register r);
 366   void encode_klass_not_null(Register dst, Register src);
 367   void decode_klass_not_null(Register dst, Register src);
 368   void set_narrow_klass(Register dst, Klass* k);
 369   void set_narrow_klass(Address dst, Klass* k);
 370   void cmp_narrow_klass(Register dst, Klass* k);
 371   void cmp_narrow_klass(Address dst, Klass* k);
 372 
 373   // Returns the byte size of the instructions generated by decode_klass_not_null()
 374   // when compressed klass pointers are being used.
 375   static int instr_size_for_decode_klass_not_null();
 376 
 377   // if heap base register is used - reinit it with the correct value
 378   void reinit_heapbase();
 379 
 380   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 381 
 382 #endif // _LP64
 383 
 384   // Int division/remainder for Java
 385   // (as idivl, but checks for special case as described in JVM spec.)
 386   // returns idivl instruction offset for implicit exception handling
 387   int corrected_idivl(Register reg);
 388 
 389   // Long division/remainder for Java
 390   // (as idivq, but checks for special case as described in JVM spec.)
 391   // returns idivq instruction offset for implicit exception handling
 392   int corrected_idivq(Register reg);
 393 
 394   void int3();
 395 
 396   // Long operation macros for a 32bit cpu
 397   // Long negation for Java
 398   void lneg(Register hi, Register lo);
 399 
 400   // Long multiplication for Java
 401   // (destroys contents of eax, ebx, ecx and edx)
 402   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 403 
 404   // Long shifts for Java
 405   // (semantics as described in JVM spec.)
 406   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 407   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 408 
 409   // Long compare for Java
 410   // (semantics as described in JVM spec.)
 411   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 412 
 413 
 414   // misc
 415 
 416   // Sign extension
 417   void sign_extend_short(Register reg);
 418   void sign_extend_byte(Register reg);
 419 
 420   // Division by power of 2, rounding towards 0
 421   void division_with_shift(Register reg, int shift_value);
 422 
 423 #ifndef _LP64
 424   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 425   //
 426   // CF (corresponds to C0) if x < y
 427   // PF (corresponds to C2) if unordered
 428   // ZF (corresponds to C3) if x = y
 429   //
 430   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 431   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 432   void fcmp(Register tmp);
 433   // Variant of the above which allows y to be further down the stack
 434   // and which only pops x and y if specified. If pop_right is
 435   // specified then pop_left must also be specified.
 436   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 437 
 438   // Floating-point comparison for Java
 439   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 440   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 441   // (semantics as described in JVM spec.)
 442   void fcmp2int(Register dst, bool unordered_is_less);
 443   // Variant of the above which allows y to be further down the stack
 444   // and which only pops x and y if specified. If pop_right is
 445   // specified then pop_left must also be specified.
 446   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 447 
 448   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 449   // tmp is a temporary register, if none is available use noreg
 450   void fremr(Register tmp);
 451 
 452   // only if +VerifyFPU
 453   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 454 #endif // !LP64
 455 
 456   // dst = c = a * b + c
 457   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 458   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 459 
 460   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 461   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 462   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 463   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 464 
 465 
 466   // same as fcmp2int, but using SSE2
 467   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 468   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 469 
 470   // branch to L if FPU flag C2 is set/not set
 471   // tmp is a temporary register, if none is available use noreg
 472   void jC2 (Register tmp, Label& L);
 473   void jnC2(Register tmp, Label& L);
 474 
 475   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 476   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 477   void load_float(Address src);
 478 
 479   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 480   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 481   void store_float(Address dst);
 482 
 483   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 484   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 485   void load_double(Address src);
 486 
 487   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 488   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 489   void store_double(Address dst);
 490 
 491 #ifndef _LP64
 492   // Pop ST (ffree & fincstp combined)
 493   void fpop();
 494 
 495   void empty_FPU_stack();
 496 #endif // !_LP64
 497 
 498   void push_IU_state();
 499   void pop_IU_state();
 500 
 501   void push_FPU_state();
 502   void pop_FPU_state();
 503 
 504   void push_CPU_state();
 505   void pop_CPU_state();
 506 
 507   // Round up to a power of two
 508   void round_to(Register reg, int modulus);
 509 
 510   // Callee saved registers handling
 511   void push_callee_saved_registers();
 512   void pop_callee_saved_registers();
 513 
 514   // allocation
 515   void eden_allocate(
 516     Register thread,                   // Current thread
 517     Register obj,                      // result: pointer to object after successful allocation
 518     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 519     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 520     Register t1,                       // temp register
 521     Label&   slow_case                 // continuation point if fast allocation fails
 522   );
 523   void tlab_allocate(
 524     Register thread,                   // Current thread
 525     Register obj,                      // result: pointer to object after successful allocation
 526     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 527     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 528     Register t1,                       // temp register
 529     Register t2,                       // temp register
 530     Label&   slow_case                 // continuation point if fast allocation fails
 531   );
 532   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 533 
 534   // interface method calling
 535   void lookup_interface_method(Register recv_klass,
 536                                Register intf_klass,
 537                                RegisterOrConstant itable_index,
 538                                Register method_result,
 539                                Register scan_temp,
 540                                Label& no_such_interface,
 541                                bool return_method = true);
 542 
 543   // virtual method calling
 544   void lookup_virtual_method(Register recv_klass,
 545                              RegisterOrConstant vtable_index,
 546                              Register method_result);
 547 
 548   // Test sub_klass against super_klass, with fast and slow paths.
 549 
 550   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 551   // One of the three labels can be NULL, meaning take the fall-through.
 552   // If super_check_offset is -1, the value is loaded up from super_klass.
 553   // No registers are killed, except temp_reg.
 554   void check_klass_subtype_fast_path(Register sub_klass,
 555                                      Register super_klass,
 556                                      Register temp_reg,
 557                                      Label* L_success,
 558                                      Label* L_failure,
 559                                      Label* L_slow_path,
 560                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 561 
 562   // The rest of the type check; must be wired to a corresponding fast path.
 563   // It does not repeat the fast path logic, so don't use it standalone.
 564   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 565   // Updates the sub's secondary super cache as necessary.
 566   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 567   void check_klass_subtype_slow_path(Register sub_klass,
 568                                      Register super_klass,
 569                                      Register temp_reg,
 570                                      Register temp2_reg,
 571                                      Label* L_success,
 572                                      Label* L_failure,
 573                                      bool set_cond_codes = false);
 574 
 575   // Simplified, combined version, good for typical uses.
 576   // Falls through on failure.
 577   void check_klass_subtype(Register sub_klass,
 578                            Register super_klass,
 579                            Register temp_reg,
 580                            Label& L_success);
 581 
 582   void clinit_barrier(Register klass,
 583                       Register thread,
 584                       Label* L_fast_path = NULL,
 585                       Label* L_slow_path = NULL);
 586 
 587   // method handles (JSR 292)
 588   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 589 
 590   //----
 591   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 592 
 593   // Debugging
 594 
 595   // only if +VerifyOops
 596   void _verify_oop(Register reg, const char* s, const char* file, int line);
 597   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 598 
 599   // TODO: verify method and klass metadata (compare against vptr?)
 600   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 601   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 602 
 603 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
 604 #define verify_oop_msg(reg, msg) _verify_oop(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 605 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 606 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 607 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 608 
 609   // Verify or restore cpu control state after JNI call
 610   void restore_cpu_control_state_after_jni();
 611 
 612   // prints msg, dumps registers and stops execution
 613   void stop(const char* msg);
 614 
 615   // prints msg and continues
 616   void warn(const char* msg);
 617 
 618   // dumps registers and other state
 619   void print_state();
 620 
 621   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 622   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 623   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 624   static void print_state64(int64_t pc, int64_t regs[]);
 625 
 626   void os_breakpoint();
 627 
 628   void untested()                                { stop("untested"); }
 629 
 630   void unimplemented(const char* what = "");
 631 
 632   void should_not_reach_here()                   { stop("should not reach here"); }
 633 
 634   void print_CPU_state();
 635 
 636   // Stack overflow checking
 637   void bang_stack_with_offset(int offset) {
 638     // stack grows down, caller passes positive offset
 639     assert(offset > 0, "must bang with negative offset");
 640     movl(Address(rsp, (-offset)), rax);
 641   }
 642 
 643   // Writes to stack successive pages until offset reached to check for
 644   // stack overflow + shadow pages.  Also, clobbers tmp
 645   void bang_stack_size(Register size, Register tmp);
 646 
 647   // Check for reserved stack access in method being exited (for JIT)
 648   void reserved_stack_check();
 649 
 650   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 651                                                 Register tmp,
 652                                                 int offset);
 653 
 654   // If thread_reg is != noreg the code assumes the register passed contains
 655   // the thread (required on 64 bit).
 656   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 657 
 658   void verify_tlab();
 659 
 660   // Biased locking support
 661   // lock_reg and obj_reg must be loaded up with the appropriate values.
 662   // swap_reg must be rax, and is killed.
 663   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 664   // be killed; if not supplied, push/pop will be used internally to
 665   // allocate a temporary (inefficient, avoid if possible).
 666   // Optional slow case is for implementations (interpreter and C1) which branch to
 667   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 668   // Returns offset of first potentially-faulting instruction for null
 669   // check info (currently consumed only by C1). If
 670   // swap_reg_contains_mark is true then returns -1 as it is assumed
 671   // the calling code has already passed any potential faults.
 672   int biased_locking_enter(Register lock_reg, Register obj_reg,
 673                            Register swap_reg, Register tmp_reg,
 674                            bool swap_reg_contains_mark,
 675                            Label& done, Label* slow_case = NULL,
 676                            BiasedLockingCounters* counters = NULL);
 677   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 678 
 679   Condition negate_condition(Condition cond);
 680 
 681   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 682   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 683   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 684   // here in MacroAssembler. The major exception to this rule is call
 685 
 686   // Arithmetics
 687 
 688 
 689   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 690   void addptr(Address dst, Register src);
 691 
 692   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 693   void addptr(Register dst, int32_t src);
 694   void addptr(Register dst, Register src);
 695   void addptr(Register dst, RegisterOrConstant src) {
 696     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 697     else                   addptr(dst,       src.as_register());
 698   }
 699 
 700   void andptr(Register dst, int32_t src);
 701   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 702 
 703   void cmp8(AddressLiteral src1, int imm);
 704 
 705   // renamed to drag out the casting of address to int32_t/intptr_t
 706   void cmp32(Register src1, int32_t imm);
 707 
 708   void cmp32(AddressLiteral src1, int32_t imm);
 709   // compare reg - mem, or reg - &mem
 710   void cmp32(Register src1, AddressLiteral src2);
 711 
 712   void cmp32(Register src1, Address src2);
 713 
 714 #ifndef _LP64
 715   void cmpklass(Address dst, Metadata* obj);
 716   void cmpklass(Register dst, Metadata* obj);
 717   void cmpoop(Address dst, jobject obj);
 718   void cmpoop_raw(Address dst, jobject obj);
 719 #endif // _LP64
 720 
 721   void cmpoop(Register src1, Register src2);
 722   void cmpoop(Register src1, Address src2);
 723   void cmpoop(Register dst, jobject obj);
 724   void cmpoop_raw(Register dst, jobject obj);
 725 
 726   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 727   void cmpptr(Address src1, AddressLiteral src2);
 728 
 729   void cmpptr(Register src1, AddressLiteral src2);
 730 
 731   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 732   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 733   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 734 
 735   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 736   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 737 
 738   // cmp64 to avoild hiding cmpq
 739   void cmp64(Register src1, AddressLiteral src);
 740 
 741   void cmpxchgptr(Register reg, Address adr);
 742 
 743   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 744 
 745 
 746   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 747   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 748 
 749 
 750   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 751 
 752   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 753 
 754   void shlptr(Register dst, int32_t shift);
 755   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 756 
 757   void shrptr(Register dst, int32_t shift);
 758   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 759 
 760   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 761   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 762 
 763   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 764 
 765   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 766   void subptr(Register dst, int32_t src);
 767   // Force generation of a 4 byte immediate value even if it fits into 8bit
 768   void subptr_imm32(Register dst, int32_t src);
 769   void subptr(Register dst, Register src);
 770   void subptr(Register dst, RegisterOrConstant src) {
 771     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 772     else                   subptr(dst,       src.as_register());
 773   }
 774 
 775   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 776   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 777 
 778   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 779   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 780 
 781   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 782 
 783 
 784 
 785   // Helper functions for statistics gathering.
 786   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 787   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 788   // Unconditional atomic increment.
 789   void atomic_incl(Address counter_addr);
 790   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 791 #ifdef _LP64
 792   void atomic_incq(Address counter_addr);
 793   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 794 #endif
 795   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 796   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 797 
 798   void lea(Register dst, AddressLiteral adr);
 799   void lea(Address dst, AddressLiteral adr);
 800   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 801 
 802   void leal32(Register dst, Address src) { leal(dst, src); }
 803 
 804   // Import other testl() methods from the parent class or else
 805   // they will be hidden by the following overriding declaration.
 806   using Assembler::testl;
 807   void testl(Register dst, AddressLiteral src);
 808 
 809   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 810   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 811   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 812   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 813 
 814   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 815   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 816   void testptr(Register src1, Register src2);
 817 
 818   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 819   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 820 
 821   // Calls
 822 
 823   void call(Label& L, relocInfo::relocType rtype);
 824   void call(Register entry);
 825 
 826   // NOTE: this call transfers to the effective address of entry NOT
 827   // the address contained by entry. This is because this is more natural
 828   // for jumps/calls.
 829   void call(AddressLiteral entry);
 830 
 831   // Emit the CompiledIC call idiom
 832   void ic_call(address entry, jint method_index = 0);
 833 
 834   // Jumps
 835 
 836   // NOTE: these jumps tranfer to the effective address of dst NOT
 837   // the address contained by dst. This is because this is more natural
 838   // for jumps/calls.
 839   void jump(AddressLiteral dst);
 840   void jump_cc(Condition cc, AddressLiteral dst);
 841 
 842   // 32bit can do a case table jump in one instruction but we no longer allow the base
 843   // to be installed in the Address class. This jump will tranfers to the address
 844   // contained in the location described by entry (not the address of entry)
 845   void jump(ArrayAddress entry);
 846 
 847   // Floating
 848 
 849   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 850   void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 851   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 852 
 853   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 854   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 855   void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 856 
 857   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 858   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 859   void comiss(XMMRegister dst, AddressLiteral src);
 860 
 861   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 862   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 863   void comisd(XMMRegister dst, AddressLiteral src);
 864 
 865 #ifndef _LP64
 866   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 867   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 868 
 869   void fldcw(Address src) { Assembler::fldcw(src); }
 870   void fldcw(AddressLiteral src);
 871 
 872   void fld_s(int index)   { Assembler::fld_s(index); }
 873   void fld_s(Address src) { Assembler::fld_s(src); }
 874   void fld_s(AddressLiteral src);
 875 
 876   void fld_d(Address src) { Assembler::fld_d(src); }
 877   void fld_d(AddressLiteral src);
 878 
 879   void fld_x(Address src) { Assembler::fld_x(src); }
 880   void fld_x(AddressLiteral src);
 881 
 882   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 883   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 884 #endif // _LP64
 885 
 886   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 887   void ldmxcsr(AddressLiteral src);
 888 
 889 #ifdef _LP64
 890  private:
 891   void sha256_AVX2_one_round_compute(
 892     Register  reg_old_h,
 893     Register  reg_a,
 894     Register  reg_b,
 895     Register  reg_c,
 896     Register  reg_d,
 897     Register  reg_e,
 898     Register  reg_f,
 899     Register  reg_g,
 900     Register  reg_h,
 901     int iter);
 902   void sha256_AVX2_four_rounds_compute_first(int start);
 903   void sha256_AVX2_four_rounds_compute_last(int start);
 904   void sha256_AVX2_one_round_and_sched(
 905         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 906         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 907         XMMRegister xmm_2,     /* ymm6 */
 908         XMMRegister xmm_3,     /* ymm7 */
 909         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 910         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 911         Register    reg_c,      /* edi */
 912         Register    reg_d,      /* esi */
 913         Register    reg_e,      /* r8d */
 914         Register    reg_f,      /* r9d */
 915         Register    reg_g,      /* r10d */
 916         Register    reg_h,      /* r11d */
 917         int iter);
 918 
 919   void addm(int disp, Register r1, Register r2);
 920   void gfmul(XMMRegister tmp0, XMMRegister t);
 921   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
 922                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
 923   void generateHtbl_one_block(Register htbl);
 924   void generateHtbl_eight_blocks(Register htbl);
 925  public:
 926   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 927                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 928                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 929                    bool multi_block, XMMRegister shuf_mask);
 930   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
 931 #endif
 932 
 933 #ifdef _LP64
 934  private:
 935   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 936                                      Register e, Register f, Register g, Register h, int iteration);
 937 
 938   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 939                                           Register a, Register b, Register c, Register d, Register e, Register f,
 940                                           Register g, Register h, int iteration);
 941 
 942   void addmq(int disp, Register r1, Register r2);
 943  public:
 944   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 945                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 946                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 947                    XMMRegister shuf_mask);
 948 private:
 949   void roundEnc(XMMRegister key, int rnum);
 950   void lastroundEnc(XMMRegister key, int rnum);
 951   void roundDec(XMMRegister key, int rnum);
 952   void lastroundDec(XMMRegister key, int rnum);
 953   void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);
 954 
 955 public:
 956   void aesecb_encrypt(Register source_addr, Register dest_addr, Register key, Register len);
 957   void aesecb_decrypt(Register source_addr, Register dest_addr, Register key, Register len);
 958   void aesctr_encrypt(Register src_addr, Register dest_addr, Register key, Register counter,
 959                       Register len_reg, Register used, Register used_addr, Register saved_encCounter_start);
 960 
 961 #endif
 962 
 963   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 964                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 965                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 966                  bool multi_block);
 967 
 968 #ifdef _LP64
 969   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 970                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 971                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 972                    bool multi_block, XMMRegister shuf_mask);
 973 #else
 974   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 975                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 976                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 977                    bool multi_block);
 978 #endif
 979 
 980   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 981                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 982                 Register rax, Register rcx, Register rdx, Register tmp);
 983 
 984 #ifdef _LP64
 985   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 986                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 987                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 988 
 989   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 990                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 991                   Register rax, Register rcx, Register rdx, Register r11);
 992 
 993   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 994                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 995                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 996 
 997   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 998                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 999                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1000                 Register tmp3, Register tmp4);
1001 
1002   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1003                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1004                 Register rax, Register rcx, Register rdx, Register tmp1,
1005                 Register tmp2, Register tmp3, Register tmp4);
1006   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1007                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1008                 Register rax, Register rcx, Register rdx, Register tmp1,
1009                 Register tmp2, Register tmp3, Register tmp4);
1010 #else
1011   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1012                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1013                 Register rax, Register rcx, Register rdx, Register tmp1);
1014 
1015   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1016                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1017                 Register rax, Register rcx, Register rdx, Register tmp);
1018 
1019   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1020                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1021                 Register rdx, Register tmp);
1022 
1023   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1024                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1025                 Register rax, Register rbx, Register rdx);
1026 
1027   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1028                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1029                 Register rax, Register rcx, Register rdx, Register tmp);
1030 
1031   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1032                         Register edx, Register ebx, Register esi, Register edi,
1033                         Register ebp, Register esp);
1034 
1035   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1036                          Register esi, Register edi, Register ebp, Register esp);
1037 
1038   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1039                         Register edx, Register ebx, Register esi, Register edi,
1040                         Register ebp, Register esp);
1041 
1042   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1043                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1044                 Register rax, Register rcx, Register rdx, Register tmp);
1045 #endif
1046 
1047 private:
1048 
1049   // these are private because users should be doing movflt/movdbl
1050 
1051   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1052   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1053   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1054   void movss(XMMRegister dst, AddressLiteral src);
1055 
1056   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1057   void movlpd(XMMRegister dst, AddressLiteral src);
1058 
1059 public:
1060 
1061   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1062   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1063   void addsd(XMMRegister dst, AddressLiteral src);
1064 
1065   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1066   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1067   void addss(XMMRegister dst, AddressLiteral src);
1068 
1069   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1070   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1071   void addpd(XMMRegister dst, AddressLiteral src);
1072 
1073   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1074   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1075   void divsd(XMMRegister dst, AddressLiteral src);
1076 
1077   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1078   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1079   void divss(XMMRegister dst, AddressLiteral src);
1080 
1081   // Move Unaligned Double Quadword
1082   void movdqu(Address     dst, XMMRegister src);
1083   void movdqu(XMMRegister dst, Address src);
1084   void movdqu(XMMRegister dst, XMMRegister src);
1085   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1086 
1087   void kmovwl(KRegister dst, Register src) { Assembler::kmovwl(dst, src); }
1088   void kmovwl(Register dst, KRegister src) { Assembler::kmovwl(dst, src); }
1089   void kmovwl(KRegister dst, Address src) { Assembler::kmovwl(dst, src); }
1090   void kmovwl(KRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1091 
1092   // AVX Unaligned forms
1093   void vmovdqu(Address     dst, XMMRegister src);
1094   void vmovdqu(XMMRegister dst, Address src);
1095   void vmovdqu(XMMRegister dst, XMMRegister src);
1096   void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1097 
1098   // AVX512 Unaligned
1099   void evmovdqub(Address dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
1100   void evmovdqub(XMMRegister dst, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
1101   void evmovdqub(XMMRegister dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
1102   void evmovdqub(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1103   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1104 
1105   void evmovdquw(Address dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, src, merge, vector_len); }
1106   void evmovdquw(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1107   void evmovdquw(XMMRegister dst, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, src, merge, vector_len); }
1108   void evmovdquw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1109   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1110 
1111   void evmovdqul(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1112   void evmovdqul(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1113   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1114      if (dst->encoding() == src->encoding()) return;
1115      Assembler::evmovdqul(dst, src, vector_len);
1116   }
1117   void evmovdqul(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1118   void evmovdqul(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1119   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1120     if (dst->encoding() == src->encoding() && mask == k0) return;
1121     Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1122    }
1123   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1124 
1125   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1126   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1127   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1128   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1129     if (dst->encoding() == src->encoding()) return;
1130     Assembler::evmovdquq(dst, src, vector_len);
1131   }
1132   void evmovdquq(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1133   void evmovdquq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1134   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1135     if (dst->encoding() == src->encoding() && mask == k0) return;
1136     Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1137   }
1138   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1139 
1140   // Move Aligned Double Quadword
1141   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1142   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1143   void movdqa(XMMRegister dst, AddressLiteral src);
1144 
1145   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1146   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1147   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1148   void movsd(XMMRegister dst, AddressLiteral src);
1149 
1150   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1151   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1152   void mulpd(XMMRegister dst, AddressLiteral src);
1153 
1154   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1155   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1156   void mulsd(XMMRegister dst, AddressLiteral src);
1157 
1158   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1159   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1160   void mulss(XMMRegister dst, AddressLiteral src);
1161 
1162   // Carry-Less Multiplication Quadword
1163   void pclmulldq(XMMRegister dst, XMMRegister src) {
1164     // 0x00 - multiply lower 64 bits [0:63]
1165     Assembler::pclmulqdq(dst, src, 0x00);
1166   }
1167   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1168     // 0x11 - multiply upper 64 bits [64:127]
1169     Assembler::pclmulqdq(dst, src, 0x11);
1170   }
1171 
1172   void pcmpeqb(XMMRegister dst, XMMRegister src);
1173   void pcmpeqw(XMMRegister dst, XMMRegister src);
1174 
1175   void pcmpestri(XMMRegister dst, Address src, int imm8);
1176   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1177 
1178   void pmovzxbw(XMMRegister dst, XMMRegister src);
1179   void pmovzxbw(XMMRegister dst, Address src);
1180 
1181   void pmovmskb(Register dst, XMMRegister src);
1182 
1183   void ptest(XMMRegister dst, XMMRegister src);
1184 
1185   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1186   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1187   void sqrtsd(XMMRegister dst, AddressLiteral src);
1188 
1189   void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode)    { Assembler::roundsd(dst, src, rmode); }
1190   void roundsd(XMMRegister dst, Address src, int32_t rmode)        { Assembler::roundsd(dst, src, rmode); }
1191   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg);
1192 
1193   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1194   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1195   void sqrtss(XMMRegister dst, AddressLiteral src);
1196 
1197   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1198   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1199   void subsd(XMMRegister dst, AddressLiteral src);
1200 
1201   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1202   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1203   void subss(XMMRegister dst, AddressLiteral src);
1204 
1205   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1206   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1207   void ucomiss(XMMRegister dst, AddressLiteral src);
1208 
1209   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1210   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1211   void ucomisd(XMMRegister dst, AddressLiteral src);
1212 
1213   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1214   void xorpd(XMMRegister dst, XMMRegister src);
1215   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1216   void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1217 
1218   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1219   void xorps(XMMRegister dst, XMMRegister src);
1220   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1221   void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1222 
1223   // Shuffle Bytes
1224   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1225   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1226   void pshufb(XMMRegister dst, AddressLiteral src);
1227   // AVX 3-operands instructions
1228 
1229   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1230   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1231   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1232 
1233   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1234   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1235   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1236 
1237   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1238   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1239 
1240   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1241   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1242 
1243   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1244   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1245 
1246   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1247   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1248   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch);
1249 
1250   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1251   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1252   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1253 
1254   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1255   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1256 
1257   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1258 
1259   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1260   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg);
1261 
1262   // Vector compares
1263   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1264                int comparison, int vector_len) { Assembler::evpcmpd(kdst, mask, nds, src, comparison, vector_len); }
1265   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1266                int comparison, int vector_len, Register scratch_reg);
1267   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1268                int comparison, int vector_len) { Assembler::evpcmpq(kdst, mask, nds, src, comparison, vector_len); }
1269   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1270                int comparison, int vector_len, Register scratch_reg);
1271   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1272                int comparison, int vector_len) { Assembler::evpcmpb(kdst, mask, nds, src, comparison, vector_len); }
1273   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1274                int comparison, int vector_len, Register scratch_reg);
1275   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1276                int comparison, int vector_len) { Assembler::evpcmpw(kdst, mask, nds, src, comparison, vector_len); }
1277   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1278                int comparison, int vector_len, Register scratch_reg);
1279 
1280 
1281   // Emit comparison instruction for the specified comparison predicate.
1282   void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, ComparisonPredicate cond, Width width, int vector_len, Register scratch_reg);
1283   void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1284 
1285   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1286   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1287 
1288   void vpmovmskb(Register dst, XMMRegister src);
1289 
1290   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1291   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1292 
1293   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1294   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1295 
1296   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1297   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1298 
1299   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1300   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1301 
1302   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1303   void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1304 
1305   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1306   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1307 
1308   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1309   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1310 
1311   void vptest(XMMRegister dst, XMMRegister src);
1312   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1313 
1314   void punpcklbw(XMMRegister dst, XMMRegister src);
1315   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1316 
1317   void pshufd(XMMRegister dst, Address src, int mode);
1318   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1319 
1320   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1321   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1322 
1323   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1324   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1325   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1326 
1327   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1328   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1329   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1330 
1331   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1332 
1333   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1334   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1335   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1336 
1337   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1338   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1339   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1340 
1341   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1342   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1343   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1344 
1345   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1346   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1347   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1348 
1349   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1350   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1351   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1352 
1353   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1354   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1355   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1356 
1357   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1358   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1359 
1360   // AVX Vector instructions
1361 
1362   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1363   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1364   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1365 
1366   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1367   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1368   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1369 
1370   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1371     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1372       Assembler::vpxor(dst, nds, src, vector_len);
1373     else
1374       Assembler::vxorpd(dst, nds, src, vector_len);
1375   }
1376   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1377     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1378       Assembler::vpxor(dst, nds, src, vector_len);
1379     else
1380       Assembler::vxorpd(dst, nds, src, vector_len);
1381   }
1382   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1383 
1384   // Simple version for AVX2 256bit vectors
1385   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1386   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1387 
1388   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1389   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg);
1390 
1391   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1392     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1393       Assembler::vinserti32x4(dst, dst, src, imm8);
1394     } else if (UseAVX > 1) {
1395       // vinserti128 is available only in AVX2
1396       Assembler::vinserti128(dst, nds, src, imm8);
1397     } else {
1398       Assembler::vinsertf128(dst, nds, src, imm8);
1399     }
1400   }
1401 
1402   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1403     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1404       Assembler::vinserti32x4(dst, dst, src, imm8);
1405     } else if (UseAVX > 1) {
1406       // vinserti128 is available only in AVX2
1407       Assembler::vinserti128(dst, nds, src, imm8);
1408     } else {
1409       Assembler::vinsertf128(dst, nds, src, imm8);
1410     }
1411   }
1412 
1413   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1414     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1415       Assembler::vextracti32x4(dst, src, imm8);
1416     } else if (UseAVX > 1) {
1417       // vextracti128 is available only in AVX2
1418       Assembler::vextracti128(dst, src, imm8);
1419     } else {
1420       Assembler::vextractf128(dst, src, imm8);
1421     }
1422   }
1423 
1424   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1425     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1426       Assembler::vextracti32x4(dst, src, imm8);
1427     } else if (UseAVX > 1) {
1428       // vextracti128 is available only in AVX2
1429       Assembler::vextracti128(dst, src, imm8);
1430     } else {
1431       Assembler::vextractf128(dst, src, imm8);
1432     }
1433   }
1434 
1435   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1436   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1437     vinserti128(dst, dst, src, 1);
1438   }
1439   void vinserti128_high(XMMRegister dst, Address src) {
1440     vinserti128(dst, dst, src, 1);
1441   }
1442   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1443     vextracti128(dst, src, 1);
1444   }
1445   void vextracti128_high(Address dst, XMMRegister src) {
1446     vextracti128(dst, src, 1);
1447   }
1448 
1449   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1450     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1451       Assembler::vinsertf32x4(dst, dst, src, 1);
1452     } else {
1453       Assembler::vinsertf128(dst, dst, src, 1);
1454     }
1455   }
1456 
1457   void vinsertf128_high(XMMRegister dst, Address src) {
1458     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1459       Assembler::vinsertf32x4(dst, dst, src, 1);
1460     } else {
1461       Assembler::vinsertf128(dst, dst, src, 1);
1462     }
1463   }
1464 
1465   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1466     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1467       Assembler::vextractf32x4(dst, src, 1);
1468     } else {
1469       Assembler::vextractf128(dst, src, 1);
1470     }
1471   }
1472 
1473   void vextractf128_high(Address dst, XMMRegister src) {
1474     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1475       Assembler::vextractf32x4(dst, src, 1);
1476     } else {
1477       Assembler::vextractf128(dst, src, 1);
1478     }
1479   }
1480 
1481   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1482   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1483     Assembler::vinserti64x4(dst, dst, src, 1);
1484   }
1485   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1486     Assembler::vinsertf64x4(dst, dst, src, 1);
1487   }
1488   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1489     Assembler::vextracti64x4(dst, src, 1);
1490   }
1491   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1492     Assembler::vextractf64x4(dst, src, 1);
1493   }
1494   void vextractf64x4_high(Address dst, XMMRegister src) {
1495     Assembler::vextractf64x4(dst, src, 1);
1496   }
1497   void vinsertf64x4_high(XMMRegister dst, Address src) {
1498     Assembler::vinsertf64x4(dst, dst, src, 1);
1499   }
1500 
1501   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1502   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1503     vinserti128(dst, dst, src, 0);
1504   }
1505   void vinserti128_low(XMMRegister dst, Address src) {
1506     vinserti128(dst, dst, src, 0);
1507   }
1508   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1509     vextracti128(dst, src, 0);
1510   }
1511   void vextracti128_low(Address dst, XMMRegister src) {
1512     vextracti128(dst, src, 0);
1513   }
1514 
1515   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1516     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1517       Assembler::vinsertf32x4(dst, dst, src, 0);
1518     } else {
1519       Assembler::vinsertf128(dst, dst, src, 0);
1520     }
1521   }
1522 
1523   void vinsertf128_low(XMMRegister dst, Address src) {
1524     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1525       Assembler::vinsertf32x4(dst, dst, src, 0);
1526     } else {
1527       Assembler::vinsertf128(dst, dst, src, 0);
1528     }
1529   }
1530 
1531   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1532     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1533       Assembler::vextractf32x4(dst, src, 0);
1534     } else {
1535       Assembler::vextractf128(dst, src, 0);
1536     }
1537   }
1538 
1539   void vextractf128_low(Address dst, XMMRegister src) {
1540     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1541       Assembler::vextractf32x4(dst, src, 0);
1542     } else {
1543       Assembler::vextractf128(dst, src, 0);
1544     }
1545   }
1546 
1547   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1548   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1549     Assembler::vinserti64x4(dst, dst, src, 0);
1550   }
1551   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1552     Assembler::vinsertf64x4(dst, dst, src, 0);
1553   }
1554   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1555     Assembler::vextracti64x4(dst, src, 0);
1556   }
1557   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1558     Assembler::vextractf64x4(dst, src, 0);
1559   }
1560   void vextractf64x4_low(Address dst, XMMRegister src) {
1561     Assembler::vextractf64x4(dst, src, 0);
1562   }
1563   void vinsertf64x4_low(XMMRegister dst, Address src) {
1564     Assembler::vinsertf64x4(dst, dst, src, 0);
1565   }
1566 
1567   // Carry-Less Multiplication Quadword
1568   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1569     // 0x00 - multiply lower 64 bits [0:63]
1570     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1571   }
1572   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1573     // 0x11 - multiply upper 64 bits [64:127]
1574     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1575   }
1576   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1577     // 0x10 - multiply nds[0:63] and src[64:127]
1578     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1579   }
1580   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1581     //0x01 - multiply nds[64:127] and src[0:63]
1582     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1583   }
1584 
1585   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1586     // 0x00 - multiply lower 64 bits [0:63]
1587     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1588   }
1589   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1590     // 0x11 - multiply upper 64 bits [64:127]
1591     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1592   }
1593 
1594   // Data
1595 
1596   void cmov32( Condition cc, Register dst, Address  src);
1597   void cmov32( Condition cc, Register dst, Register src);
1598 
1599   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1600 
1601   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1602   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1603 
1604   void movoop(Register dst, jobject obj);
1605   void movoop(Address dst, jobject obj);
1606 
1607   void mov_metadata(Register dst, Metadata* obj);
1608   void mov_metadata(Address dst, Metadata* obj);
1609 
1610   void movptr(ArrayAddress dst, Register src);
1611   // can this do an lea?
1612   void movptr(Register dst, ArrayAddress src);
1613 
1614   void movptr(Register dst, Address src);
1615 
1616 #ifdef _LP64
1617   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1618 #else
1619   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1620 #endif
1621 
1622   void movptr(Register dst, intptr_t src);
1623   void movptr(Register dst, Register src);
1624   void movptr(Address dst, intptr_t src);
1625 
1626   void movptr(Address dst, Register src);
1627 
1628   void movptr(Register dst, RegisterOrConstant src) {
1629     if (src.is_constant()) movptr(dst, src.as_constant());
1630     else                   movptr(dst, src.as_register());
1631   }
1632 
1633 #ifdef _LP64
1634   // Generally the next two are only used for moving NULL
1635   // Although there are situations in initializing the mark word where
1636   // they could be used. They are dangerous.
1637 
1638   // They only exist on LP64 so that int32_t and intptr_t are not the same
1639   // and we have ambiguous declarations.
1640 
1641   void movptr(Address dst, int32_t imm32);
1642   void movptr(Register dst, int32_t imm32);
1643 #endif // _LP64
1644 
1645   // to avoid hiding movl
1646   void mov32(AddressLiteral dst, Register src);
1647   void mov32(Register dst, AddressLiteral src);
1648 
1649   // to avoid hiding movb
1650   void movbyte(ArrayAddress dst, int src);
1651 
1652   // Import other mov() methods from the parent class or else
1653   // they will be hidden by the following overriding declaration.
1654   using Assembler::movdl;
1655   using Assembler::movq;
1656   void movdl(XMMRegister dst, AddressLiteral src);
1657   void movq(XMMRegister dst, AddressLiteral src);
1658 
1659   // Can push value or effective address
1660   void pushptr(AddressLiteral src);
1661 
1662   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1663   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1664 
1665   void pushoop(jobject obj);
1666   void pushklass(Metadata* obj);
1667 
1668   // sign extend as need a l to ptr sized element
1669   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1670   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1671 
1672 
1673  public:
1674   // C2 compiled method's prolog code.
1675   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub);
1676 
1677   // clear memory of size 'cnt' qwords, starting at 'base';
1678   // if 'is_large' is set, do not try to produce short loop
1679   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large);
1680 
1681   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1682   void xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp);
1683 
1684   // Fill primitive arrays
1685   void generate_fill(BasicType t, bool aligned,
1686                      Register to, Register value, Register count,
1687                      Register rtmp, XMMRegister xtmp);
1688 
1689   void encode_iso_array(Register src, Register dst, Register len,
1690                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1691                         XMMRegister tmp4, Register tmp5, Register result);
1692 
1693 #ifdef _LP64
1694   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1695   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1696                              Register y, Register y_idx, Register z,
1697                              Register carry, Register product,
1698                              Register idx, Register kdx);
1699   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1700                               Register yz_idx, Register idx,
1701                               Register carry, Register product, int offset);
1702   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1703                                     Register carry, Register carry2,
1704                                     Register idx, Register jdx,
1705                                     Register yz_idx1, Register yz_idx2,
1706                                     Register tmp, Register tmp3, Register tmp4);
1707   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1708                                Register yz_idx, Register idx, Register jdx,
1709                                Register carry, Register product,
1710                                Register carry2);
1711   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1712                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1713   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1714                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1715   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1716                             Register tmp2);
1717   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1718                        Register rdxReg, Register raxReg);
1719   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1720   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1721                        Register tmp3, Register tmp4);
1722   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1723                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1724 
1725   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1726                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1727                Register raxReg);
1728   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1729                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1730                Register raxReg);
1731   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1732                            Register result, Register tmp1, Register tmp2,
1733                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1734 #endif
1735 
1736   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1737   void update_byte_crc32(Register crc, Register val, Register table);
1738   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1739   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1740   // Note on a naming convention:
1741   // Prefix w = register only used on a Westmere+ architecture
1742   // Prefix n = register only used on a Nehalem architecture
1743 #ifdef _LP64
1744   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1745                        Register tmp1, Register tmp2, Register tmp3);
1746 #else
1747   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1748                        Register tmp1, Register tmp2, Register tmp3,
1749                        XMMRegister xtmp1, XMMRegister xtmp2);
1750 #endif
1751   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1752                         Register in_out,
1753                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1754                         XMMRegister w_xtmp2,
1755                         Register tmp1,
1756                         Register n_tmp2, Register n_tmp3);
1757   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1758                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1759                        Register tmp1, Register tmp2,
1760                        Register n_tmp3);
1761   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1762                          Register in_out1, Register in_out2, Register in_out3,
1763                          Register tmp1, Register tmp2, Register tmp3,
1764                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1765                          Register tmp4, Register tmp5,
1766                          Register n_tmp6);
1767   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1768                             Register tmp1, Register tmp2, Register tmp3,
1769                             Register tmp4, Register tmp5, Register tmp6,
1770                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1771                             bool is_pclmulqdq_supported);
1772   // Fold 128-bit data chunk
1773   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1774   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1775   // Fold 8-bit data
1776   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1777   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1778   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1779 
1780   // Compress char[] array to byte[].
1781   void char_array_compress(Register src, Register dst, Register len,
1782                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1783                            XMMRegister tmp4, Register tmp5, Register result);
1784 
1785   // Inflate byte[] array to char[].
1786   void byte_array_inflate(Register src, Register dst, Register len,
1787                           XMMRegister tmp1, Register tmp2);
1788 
1789 #ifdef _LP64
1790   void convert_f2i(Register dst, XMMRegister src);
1791   void convert_d2i(Register dst, XMMRegister src);
1792   void convert_f2l(Register dst, XMMRegister src);
1793   void convert_d2l(Register dst, XMMRegister src);
1794 
1795   void cache_wb(Address line);
1796   void cache_wbsync(bool is_pre);
1797 #endif // _LP64
1798 };
1799 
1800 /**
1801  * class SkipIfEqual:
1802  *
1803  * Instantiating this class will result in assembly code being output that will
1804  * jump around any code emitted between the creation of the instance and it's
1805  * automatic destruction at the end of a scope block, depending on the value of
1806  * the flag passed to the constructor, which will be checked at run-time.
1807  */
1808 class SkipIfEqual {
1809  private:
1810   MacroAssembler* _masm;
1811   Label _label;
1812 
1813  public:
1814    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1815    ~SkipIfEqual();
1816 };
1817 
1818 #endif // CPU_X86_MACROASSEMBLER_X86_HPP