1 //
   2 // Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // AMD64 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
  64 // used as byte registers)
  65 
  66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
  67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
  69 
  70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
  71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
  72 
  73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
  74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
  75 
  76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
  77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
  78 
  79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
  80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
  81 
  82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
  83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
  84 
  85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
  86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
  87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
  88 
  89 #ifdef _WIN64
  90 
  91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
  92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
  93 
  94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
  95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
  96 
  97 #else
  98 
  99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
 100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
 101 
 102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
 103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
 104 
 105 #endif
 106 
 107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
 108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
 109 
 110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
 111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
 112 
 113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
 114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
 115 
 116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
 117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
 118 
 119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
 120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
 121 
 122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
 123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
 124 
 125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
 126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
 127 
 128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
 129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
 130 
 131 
 132 // Floating Point Registers
 133 
 134 // Specify priority of register selection within phases of register
 135 // allocation.  Highest priority is first.  A useful heuristic is to
 136 // give registers a low priority when they are required by machine
 137 // instructions, like EAX and EDX on I486, and choose no-save registers
 138 // before save-on-call, & save-on-call before save-on-entry.  Registers
 139 // which participate in fixed calling sequences should come last.
 140 // Registers which are used as pairs must fall on an even boundary.
 141 
 142 alloc_class chunk0(R10,         R10_H,
 143                    R11,         R11_H,
 144                    R8,          R8_H,
 145                    R9,          R9_H,
 146                    R12,         R12_H,
 147                    RCX,         RCX_H,
 148                    RBX,         RBX_H,
 149                    RDI,         RDI_H,
 150                    RDX,         RDX_H,
 151                    RSI,         RSI_H,
 152                    RAX,         RAX_H,
 153                    RBP,         RBP_H,
 154                    R13,         R13_H,
 155                    R14,         R14_H,
 156                    R15,         R15_H,
 157                    RSP,         RSP_H);
 158 
 159 
 160 //----------Architecture Description Register Classes--------------------------
 161 // Several register classes are automatically defined based upon information in
 162 // this architecture description.
 163 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 164 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 165 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 166 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 167 //
 168 
 169 // Empty register class.
 170 reg_class no_reg();
 171 
 172 // Class for all pointer/long registers
 173 reg_class all_reg(RAX, RAX_H,
 174                   RDX, RDX_H,
 175                   RBP, RBP_H,
 176                   RDI, RDI_H,
 177                   RSI, RSI_H,
 178                   RCX, RCX_H,
 179                   RBX, RBX_H,
 180                   RSP, RSP_H,
 181                   R8,  R8_H,
 182                   R9,  R9_H,
 183                   R10, R10_H,
 184                   R11, R11_H,
 185                   R12, R12_H,
 186                   R13, R13_H,
 187                   R14, R14_H,
 188                   R15, R15_H);
 189 
 190 // Class for all int registers
 191 reg_class all_int_reg(RAX
 192                       RDX,
 193                       RBP,
 194                       RDI,
 195                       RSI,
 196                       RCX,
 197                       RBX,
 198                       R8,
 199                       R9,
 200                       R10,
 201                       R11,
 202                       R12,
 203                       R13,
 204                       R14);
 205 
 206 // Class for all pointer registers
 207 reg_class any_reg %{
 208   return _ANY_REG_mask;
 209 %}
 210 
 211 // Class for all pointer registers (excluding RSP)
 212 reg_class ptr_reg %{
 213   return _PTR_REG_mask;
 214 %}
 215 
 216 // Class for all pointer registers (excluding RSP and RBP)
 217 reg_class ptr_reg_no_rbp %{
 218   return _PTR_REG_NO_RBP_mask;
 219 %}
 220 
 221 // Class for all pointer registers (excluding RAX and RSP)
 222 reg_class ptr_no_rax_reg %{
 223   return _PTR_NO_RAX_REG_mask;
 224 %}
 225 
 226 // Class for all pointer registers (excluding RAX, RBX, and RSP)
 227 reg_class ptr_no_rax_rbx_reg %{
 228   return _PTR_NO_RAX_RBX_REG_mask;
 229 %}
 230 
 231 // Class for all long registers (excluding RSP)
 232 reg_class long_reg %{
 233   return _LONG_REG_mask;
 234 %}
 235 
 236 // Class for all long registers (excluding RAX, RDX and RSP)
 237 reg_class long_no_rax_rdx_reg %{
 238   return _LONG_NO_RAX_RDX_REG_mask;
 239 %}
 240 
 241 // Class for all long registers (excluding RCX and RSP)
 242 reg_class long_no_rcx_reg %{
 243   return _LONG_NO_RCX_REG_mask;
 244 %}
 245 
 246 // Class for all int registers (excluding RSP)
 247 reg_class int_reg %{
 248   return _INT_REG_mask;
 249 %}
 250 
 251 // Class for all int registers (excluding RAX, RDX, and RSP)
 252 reg_class int_no_rax_rdx_reg %{
 253   return _INT_NO_RAX_RDX_REG_mask;
 254 %}
 255 
 256 // Class for all int registers (excluding RCX and RSP)
 257 reg_class int_no_rcx_reg %{
 258   return _INT_NO_RCX_REG_mask;
 259 %}
 260 
 261 // Singleton class for RAX pointer register
 262 reg_class ptr_rax_reg(RAX, RAX_H);
 263 
 264 // Singleton class for RBX pointer register
 265 reg_class ptr_rbx_reg(RBX, RBX_H);
 266 
 267 // Singleton class for RSI pointer register
 268 reg_class ptr_rsi_reg(RSI, RSI_H);
 269 
 270 // Singleton class for RBP pointer register
 271 reg_class ptr_rbp_reg(RBP, RBP_H);
 272 
 273 // Singleton class for RDI pointer register
 274 reg_class ptr_rdi_reg(RDI, RDI_H);
 275 
 276 // Singleton class for stack pointer
 277 reg_class ptr_rsp_reg(RSP, RSP_H);
 278 
 279 // Singleton class for TLS pointer
 280 reg_class ptr_r15_reg(R15, R15_H);
 281 
 282 // Singleton class for RAX long register
 283 reg_class long_rax_reg(RAX, RAX_H);
 284 
 285 // Singleton class for RCX long register
 286 reg_class long_rcx_reg(RCX, RCX_H);
 287 
 288 // Singleton class for RDX long register
 289 reg_class long_rdx_reg(RDX, RDX_H);
 290 
 291 // Singleton class for RAX int register
 292 reg_class int_rax_reg(RAX);
 293 
 294 // Singleton class for RBX int register
 295 reg_class int_rbx_reg(RBX);
 296 
 297 // Singleton class for RCX int register
 298 reg_class int_rcx_reg(RCX);
 299 
 300 // Singleton class for RCX int register
 301 reg_class int_rdx_reg(RDX);
 302 
 303 // Singleton class for RCX int register
 304 reg_class int_rdi_reg(RDI);
 305 
 306 // Singleton class for instruction pointer
 307 // reg_class ip_reg(RIP);
 308 
 309 %}
 310 
 311 //----------SOURCE BLOCK-------------------------------------------------------
 312 // This is a block of C++ code which provides values, functions, and
 313 // definitions necessary in the rest of the architecture description
 314 source_hpp %{
 315 
 316 extern RegMask _ANY_REG_mask;
 317 extern RegMask _PTR_REG_mask;
 318 extern RegMask _PTR_REG_NO_RBP_mask;
 319 extern RegMask _PTR_NO_RAX_REG_mask;
 320 extern RegMask _PTR_NO_RAX_RBX_REG_mask;
 321 extern RegMask _LONG_REG_mask;
 322 extern RegMask _LONG_NO_RAX_RDX_REG_mask;
 323 extern RegMask _LONG_NO_RCX_REG_mask;
 324 extern RegMask _INT_REG_mask;
 325 extern RegMask _INT_NO_RAX_RDX_REG_mask;
 326 extern RegMask _INT_NO_RCX_REG_mask;
 327 
 328 extern RegMask _STACK_OR_PTR_REG_mask;
 329 extern RegMask _STACK_OR_LONG_REG_mask;
 330 extern RegMask _STACK_OR_INT_REG_mask;
 331 
 332 inline const RegMask& STACK_OR_PTR_REG_mask()  { return _STACK_OR_PTR_REG_mask;  }
 333 inline const RegMask& STACK_OR_LONG_REG_mask() { return _STACK_OR_LONG_REG_mask; }
 334 inline const RegMask& STACK_OR_INT_REG_mask()  { return _STACK_OR_INT_REG_mask;  }
 335 
 336 %}
 337 
 338 source %{
 339 #define   RELOC_IMM64    Assembler::imm_operand
 340 #define   RELOC_DISP32   Assembler::disp32_operand
 341 
 342 #define __ _masm.
 343 
 344 RegMask _ANY_REG_mask;
 345 RegMask _PTR_REG_mask;
 346 RegMask _PTR_REG_NO_RBP_mask;
 347 RegMask _PTR_NO_RAX_REG_mask;
 348 RegMask _PTR_NO_RAX_RBX_REG_mask;
 349 RegMask _LONG_REG_mask;
 350 RegMask _LONG_NO_RAX_RDX_REG_mask;
 351 RegMask _LONG_NO_RCX_REG_mask;
 352 RegMask _INT_REG_mask;
 353 RegMask _INT_NO_RAX_RDX_REG_mask;
 354 RegMask _INT_NO_RCX_REG_mask;
 355 RegMask _STACK_OR_PTR_REG_mask;
 356 RegMask _STACK_OR_LONG_REG_mask;
 357 RegMask _STACK_OR_INT_REG_mask;
 358 
 359 static bool need_r12_heapbase() {
 360   return UseCompressedOops || UseCompressedClassPointers;
 361 }
 362 
 363 void reg_mask_init() {
 364   // _ALL_REG_mask is generated by adlc from the all_reg register class below.
 365   // We derive a number of subsets from it.
 366   _ANY_REG_mask = _ALL_REG_mask;
 367 
 368   if (PreserveFramePointer) {
 369     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
 370     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()->next()));
 371   }
 372   if (need_r12_heapbase()) {
 373     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()));
 374     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()->next()));
 375   }
 376 
 377   _PTR_REG_mask = _ANY_REG_mask;
 378   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(rsp->as_VMReg()));
 379   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(rsp->as_VMReg()->next()));
 380   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(r15->as_VMReg()));
 381   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(r15->as_VMReg()->next()));
 382 
 383   _STACK_OR_PTR_REG_mask = _PTR_REG_mask;
 384   _STACK_OR_PTR_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
 385 
 386   _PTR_REG_NO_RBP_mask = _PTR_REG_mask;
 387   _PTR_REG_NO_RBP_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
 388   _PTR_REG_NO_RBP_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()->next()));
 389 
 390   _PTR_NO_RAX_REG_mask = _PTR_REG_mask;
 391   _PTR_NO_RAX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
 392   _PTR_NO_RAX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()->next()));
 393 
 394   _PTR_NO_RAX_RBX_REG_mask = _PTR_NO_RAX_REG_mask;
 395   _PTR_NO_RAX_RBX_REG_mask.Remove(OptoReg::as_OptoReg(rbx->as_VMReg()));
 396   _PTR_NO_RAX_RBX_REG_mask.Remove(OptoReg::as_OptoReg(rbx->as_VMReg()->next()));
 397 
 398   _LONG_REG_mask = _PTR_REG_mask;
 399   _STACK_OR_LONG_REG_mask = _LONG_REG_mask;
 400   _STACK_OR_LONG_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
 401 
 402   _LONG_NO_RAX_RDX_REG_mask = _LONG_REG_mask;
 403   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
 404   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()->next()));
 405   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()));
 406   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()->next()));
 407 
 408   _LONG_NO_RCX_REG_mask = _LONG_REG_mask;
 409   _LONG_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()));
 410   _LONG_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()->next()));
 411 
 412   _INT_REG_mask = _ALL_INT_REG_mask;
 413   if (PreserveFramePointer) {
 414     _INT_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
 415   }
 416   if (need_r12_heapbase()) {
 417     _INT_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()));
 418   }
 419 
 420   _STACK_OR_INT_REG_mask = _INT_REG_mask;
 421   _STACK_OR_INT_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
 422 
 423   _INT_NO_RAX_RDX_REG_mask = _INT_REG_mask;
 424   _INT_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
 425   _INT_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()));
 426 
 427   _INT_NO_RCX_REG_mask = _INT_REG_mask;
 428   _INT_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()));
 429 }
 430 
 431 static bool generate_vzeroupper(Compile* C) {
 432   return (VM_Version::supports_vzeroupper() && (C->max_vector_size() > 16 || C->clear_upper_avx() == true)) ? true: false;  // Generate vzeroupper
 433 }
 434 
 435 static int clear_avx_size() {
 436   return generate_vzeroupper(Compile::current()) ? 3: 0;  // vzeroupper
 437 }
 438 
 439 // !!!!! Special hack to get all types of calls to specify the byte offset
 440 //       from the start of the call to the point where the return address
 441 //       will point.
 442 int MachCallStaticJavaNode::ret_addr_offset()
 443 {
 444   int offset = 5; // 5 bytes from start of call to where return address points
 445   offset += clear_avx_size();
 446   return offset;
 447 }
 448 
 449 int MachCallDynamicJavaNode::ret_addr_offset()
 450 {
 451   int offset = 15; // 15 bytes from start of call to where return address points
 452   offset += clear_avx_size();
 453   return offset;
 454 }
 455 
 456 int MachCallRuntimeNode::ret_addr_offset() {
 457   int offset = 13; // movq r10,#addr; callq (r10)
 458   offset += clear_avx_size();
 459   return offset;
 460 }
 461 
 462 //
 463 // Compute padding required for nodes which need alignment
 464 //
 465 
 466 // The address of the call instruction needs to be 4-byte aligned to
 467 // ensure that it does not span a cache line so that it can be patched.
 468 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
 469 {
 470   current_offset += clear_avx_size(); // skip vzeroupper
 471   current_offset += 1; // skip call opcode byte
 472   return align_up(current_offset, alignment_required()) - current_offset;
 473 }
 474 
 475 // The address of the call instruction needs to be 4-byte aligned to
 476 // ensure that it does not span a cache line so that it can be patched.
 477 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
 478 {
 479   current_offset += clear_avx_size(); // skip vzeroupper
 480   current_offset += 11; // skip movq instruction + call opcode byte
 481   return align_up(current_offset, alignment_required()) - current_offset;
 482 }
 483 
 484 // EMIT_RM()
 485 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 486   unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
 487   cbuf.insts()->emit_int8(c);
 488 }
 489 
 490 // EMIT_CC()
 491 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 492   unsigned char c = (unsigned char) (f1 | f2);
 493   cbuf.insts()->emit_int8(c);
 494 }
 495 
 496 // EMIT_OPCODE()
 497 void emit_opcode(CodeBuffer &cbuf, int code) {
 498   cbuf.insts()->emit_int8((unsigned char) code);
 499 }
 500 
 501 // EMIT_OPCODE() w/ relocation information
 502 void emit_opcode(CodeBuffer &cbuf,
 503                  int code, relocInfo::relocType reloc, int offset, int format)
 504 {
 505   cbuf.relocate(cbuf.insts_mark() + offset, reloc, format);
 506   emit_opcode(cbuf, code);
 507 }
 508 
 509 // EMIT_D8()
 510 void emit_d8(CodeBuffer &cbuf, int d8) {
 511   cbuf.insts()->emit_int8((unsigned char) d8);
 512 }
 513 
 514 // EMIT_D16()
 515 void emit_d16(CodeBuffer &cbuf, int d16) {
 516   cbuf.insts()->emit_int16(d16);
 517 }
 518 
 519 // EMIT_D32()
 520 void emit_d32(CodeBuffer &cbuf, int d32) {
 521   cbuf.insts()->emit_int32(d32);
 522 }
 523 
 524 // EMIT_D64()
 525 void emit_d64(CodeBuffer &cbuf, int64_t d64) {
 526   cbuf.insts()->emit_int64(d64);
 527 }
 528 
 529 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 530 void emit_d32_reloc(CodeBuffer& cbuf,
 531                     int d32,
 532                     relocInfo::relocType reloc,
 533                     int format)
 534 {
 535   assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
 536   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 537   cbuf.insts()->emit_int32(d32);
 538 }
 539 
 540 // emit 32 bit value and construct relocation entry from RelocationHolder
 541 void emit_d32_reloc(CodeBuffer& cbuf, int d32, RelocationHolder const& rspec, int format) {
 542 #ifdef ASSERT
 543   if (rspec.reloc()->type() == relocInfo::oop_type &&
 544       d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
 545     assert(Universe::heap()->is_in((address)(intptr_t)d32), "should be real oop");
 546     assert(oopDesc::is_oop(cast_to_oop((intptr_t)d32)), "cannot embed broken oops in code");
 547   }
 548 #endif
 549   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 550   cbuf.insts()->emit_int32(d32);
 551 }
 552 
 553 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
 554   address next_ip = cbuf.insts_end() + 4;
 555   emit_d32_reloc(cbuf, (int) (addr - next_ip),
 556                  external_word_Relocation::spec(addr),
 557                  RELOC_DISP32);
 558 }
 559 
 560 
 561 // emit 64 bit value and construct relocation entry from relocInfo::relocType
 562 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, relocInfo::relocType reloc, int format) {
 563   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 564   cbuf.insts()->emit_int64(d64);
 565 }
 566 
 567 // emit 64 bit value and construct relocation entry from RelocationHolder
 568 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, RelocationHolder const& rspec, int format) {
 569 #ifdef ASSERT
 570   if (rspec.reloc()->type() == relocInfo::oop_type &&
 571       d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
 572     assert(Universe::heap()->is_in((address)d64), "should be real oop");
 573     assert(oopDesc::is_oop(cast_to_oop(d64)), "cannot embed broken oops in code");
 574   }
 575 #endif
 576   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 577   cbuf.insts()->emit_int64(d64);
 578 }
 579 
 580 // Access stack slot for load or store
 581 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
 582 {
 583   emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
 584   if (-0x80 <= disp && disp < 0x80) {
 585     emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
 586     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 587     emit_d8(cbuf, disp);     // Displacement  // R/M byte
 588   } else {
 589     emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
 590     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 591     emit_d32(cbuf, disp);     // Displacement // R/M byte
 592   }
 593 }
 594 
 595    // rRegI ereg, memory mem) %{    // emit_reg_mem
 596 void encode_RegMem(CodeBuffer &cbuf,
 597                    int reg,
 598                    int base, int index, int scale, int disp, relocInfo::relocType disp_reloc)
 599 {
 600   assert(disp_reloc == relocInfo::none, "cannot have disp");
 601   int regenc = reg & 7;
 602   int baseenc = base & 7;
 603   int indexenc = index & 7;
 604 
 605   // There is no index & no scale, use form without SIB byte
 606   if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
 607     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 608     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 609       emit_rm(cbuf, 0x0, regenc, baseenc); // *
 610     } else if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
 611       // If 8-bit displacement, mode 0x1
 612       emit_rm(cbuf, 0x1, regenc, baseenc); // *
 613       emit_d8(cbuf, disp);
 614     } else {
 615       // If 32-bit displacement
 616       if (base == -1) { // Special flag for absolute address
 617         emit_rm(cbuf, 0x0, regenc, 0x5); // *
 618         if (disp_reloc != relocInfo::none) {
 619           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 620         } else {
 621           emit_d32(cbuf, disp);
 622         }
 623       } else {
 624         // Normal base + offset
 625         emit_rm(cbuf, 0x2, regenc, baseenc); // *
 626         if (disp_reloc != relocInfo::none) {
 627           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 628         } else {
 629           emit_d32(cbuf, disp);
 630         }
 631       }
 632     }
 633   } else {
 634     // Else, encode with the SIB byte
 635     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 636     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 637       // If no displacement
 638       emit_rm(cbuf, 0x0, regenc, 0x4); // *
 639       emit_rm(cbuf, scale, indexenc, baseenc);
 640     } else {
 641       if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
 642         // If 8-bit displacement, mode 0x1
 643         emit_rm(cbuf, 0x1, regenc, 0x4); // *
 644         emit_rm(cbuf, scale, indexenc, baseenc);
 645         emit_d8(cbuf, disp);
 646       } else {
 647         // If 32-bit displacement
 648         if (base == 0x04 ) {
 649           emit_rm(cbuf, 0x2, regenc, 0x4);
 650           emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
 651         } else {
 652           emit_rm(cbuf, 0x2, regenc, 0x4);
 653           emit_rm(cbuf, scale, indexenc, baseenc); // *
 654         }
 655         if (disp_reloc != relocInfo::none) {
 656           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 657         } else {
 658           emit_d32(cbuf, disp);
 659         }
 660       }
 661     }
 662   }
 663 }
 664 
 665 // This could be in MacroAssembler but it's fairly C2 specific
 666 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 667   Label exit;
 668   __ jccb(Assembler::noParity, exit);
 669   __ pushf();
 670   //
 671   // comiss/ucomiss instructions set ZF,PF,CF flags and
 672   // zero OF,AF,SF for NaN values.
 673   // Fixup flags by zeroing ZF,PF so that compare of NaN
 674   // values returns 'less than' result (CF is set).
 675   // Leave the rest of flags unchanged.
 676   //
 677   //    7 6 5 4 3 2 1 0
 678   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 679   //    0 0 1 0 1 0 1 1   (0x2B)
 680   //
 681   __ andq(Address(rsp, 0), 0xffffff2b);
 682   __ popf();
 683   __ bind(exit);
 684 }
 685 
 686 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 687   Label done;
 688   __ movl(dst, -1);
 689   __ jcc(Assembler::parity, done);
 690   __ jcc(Assembler::below, done);
 691   __ setb(Assembler::notEqual, dst);
 692   __ movzbl(dst, dst);
 693   __ bind(done);
 694 }
 695 
 696 // Math.min()    # Math.max()
 697 // --------------------------
 698 // ucomis[s/d]   #
 699 // ja   -> b     # a
 700 // jp   -> NaN   # NaN
 701 // jb   -> a     # b
 702 // je            #
 703 // |-jz -> a | b # a & b
 704 // |    -> a     #
 705 void emit_fp_min_max(MacroAssembler& _masm, XMMRegister dst,
 706                      XMMRegister a, XMMRegister b,
 707                      XMMRegister xmmt, Register rt,
 708                      bool min, bool single) {
 709 
 710   Label nan, zero, below, above, done;
 711 
 712   if (single)
 713     __ ucomiss(a, b);
 714   else
 715     __ ucomisd(a, b);
 716 
 717   if (dst->encoding() != (min ? b : a)->encoding())
 718     __ jccb(Assembler::above, above); // CF=0 & ZF=0
 719   else
 720     __ jccb(Assembler::above, done);
 721 
 722   __ jccb(Assembler::parity, nan);  // PF=1
 723   __ jccb(Assembler::below, below); // CF=1
 724 
 725   // equal
 726   __ vpxor(xmmt, xmmt, xmmt, Assembler::AVX_128bit);
 727   if (single) {
 728     __ ucomiss(a, xmmt);
 729     __ jccb(Assembler::equal, zero);
 730 
 731     __ movflt(dst, a);
 732     __ jmp(done);
 733   }
 734   else {
 735     __ ucomisd(a, xmmt);
 736     __ jccb(Assembler::equal, zero);
 737 
 738     __ movdbl(dst, a);
 739     __ jmp(done);
 740   }
 741 
 742   __ bind(zero);
 743   if (min)
 744     __ vpor(dst, a, b, Assembler::AVX_128bit);
 745   else
 746     __ vpand(dst, a, b, Assembler::AVX_128bit);
 747 
 748   __ jmp(done);
 749 
 750   __ bind(above);
 751   if (single)
 752     __ movflt(dst, min ? b : a);
 753   else
 754     __ movdbl(dst, min ? b : a);
 755 
 756   __ jmp(done);
 757 
 758   __ bind(nan);
 759   if (single) {
 760     __ movl(rt, 0x7fc00000); // Float.NaN
 761     __ movdl(dst, rt);
 762   }
 763   else {
 764     __ mov64(rt, 0x7ff8000000000000L); // Double.NaN
 765     __ movdq(dst, rt);
 766   }
 767   __ jmp(done);
 768 
 769   __ bind(below);
 770   if (single)
 771     __ movflt(dst, min ? a : b);
 772   else
 773     __ movdbl(dst, min ? a : b);
 774 
 775   __ bind(done);
 776 }
 777 
 778 //=============================================================================
 779 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 780 
 781 int ConstantTable::calculate_table_base_offset() const {
 782   return 0;  // absolute addressing, no offset
 783 }
 784 
 785 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 786 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 787   ShouldNotReachHere();
 788 }
 789 
 790 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 791   // Empty encoding
 792 }
 793 
 794 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 795   return 0;
 796 }
 797 
 798 #ifndef PRODUCT
 799 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 800   st->print("# MachConstantBaseNode (empty encoding)");
 801 }
 802 #endif
 803 
 804 
 805 //=============================================================================
 806 #ifndef PRODUCT
 807 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 808   Compile* C = ra_->C;
 809 
 810   int framesize = C->output()->frame_size_in_bytes();
 811   int bangsize = C->output()->bang_size_in_bytes();
 812   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 813   // Remove wordSize for return addr which is already pushed.
 814   framesize -= wordSize;
 815 
 816   if (C->output()->need_stack_bang(bangsize)) {
 817     framesize -= wordSize;
 818     st->print("# stack bang (%d bytes)", bangsize);
 819     st->print("\n\t");
 820     st->print("pushq   rbp\t# Save rbp");
 821     if (PreserveFramePointer) {
 822         st->print("\n\t");
 823         st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
 824     }
 825     if (framesize) {
 826       st->print("\n\t");
 827       st->print("subq    rsp, #%d\t# Create frame",framesize);
 828     }
 829   } else {
 830     st->print("subq    rsp, #%d\t# Create frame",framesize);
 831     st->print("\n\t");
 832     framesize -= wordSize;
 833     st->print("movq    [rsp + #%d], rbp\t# Save rbp",framesize);
 834     if (PreserveFramePointer) {
 835       st->print("\n\t");
 836       st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
 837       if (framesize > 0) {
 838         st->print("\n\t");
 839         st->print("addq    rbp, #%d", framesize);
 840       }
 841     }
 842   }
 843 
 844   if (VerifyStackAtCalls) {
 845     st->print("\n\t");
 846     framesize -= wordSize;
 847     st->print("movq    [rsp + #%d], 0xbadb100d\t# Majik cookie for stack depth check",framesize);
 848 #ifdef ASSERT
 849     st->print("\n\t");
 850     st->print("# stack alignment check");
 851 #endif
 852   }
 853   if (C->stub_function() != NULL && BarrierSet::barrier_set()->barrier_set_nmethod() != NULL) {
 854     st->print("\n\t");
 855     st->print("cmpl    [r15_thread + #disarmed_offset], #disarmed_value\t");
 856     st->print("\n\t");
 857     st->print("je      fast_entry\t");
 858     st->print("\n\t");
 859     st->print("call    #nmethod_entry_barrier_stub\t");
 860     st->print("\n\tfast_entry:");
 861   }
 862   st->cr();
 863 }
 864 #endif
 865 
 866 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 867   Compile* C = ra_->C;
 868   MacroAssembler _masm(&cbuf);
 869 
 870   int framesize = C->output()->frame_size_in_bytes();
 871   int bangsize = C->output()->bang_size_in_bytes();
 872 
 873   if (C->clinit_barrier_on_entry()) {
 874     assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 875     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
 876 
 877     Label L_skip_barrier;
 878     Register klass = rscratch1;
 879 
 880     __ mov_metadata(klass, C->method()->holder()->constant_encoding());
 881     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
 882 
 883     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
 884 
 885     __ bind(L_skip_barrier);
 886   }
 887 
 888   __ verified_entry(framesize, C->output()->need_stack_bang(bangsize)?bangsize:0, false, C->stub_function() != NULL);
 889 
 890   C->output()->set_frame_complete(cbuf.insts_size());
 891 
 892   if (C->has_mach_constant_base_node()) {
 893     // NOTE: We set the table base offset here because users might be
 894     // emitted before MachConstantBaseNode.
 895     ConstantTable& constant_table = C->output()->constant_table();
 896     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 897   }
 898 }
 899 
 900 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 901 {
 902   return MachNode::size(ra_); // too many variables; just compute it
 903                               // the hard way
 904 }
 905 
 906 int MachPrologNode::reloc() const
 907 {
 908   return 0; // a large enough number
 909 }
 910 
 911 //=============================================================================
 912 #ifndef PRODUCT
 913 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 914 {
 915   Compile* C = ra_->C;
 916   if (generate_vzeroupper(C)) {
 917     st->print("vzeroupper");
 918     st->cr(); st->print("\t");
 919   }
 920 
 921   int framesize = C->output()->frame_size_in_bytes();
 922   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 923   // Remove word for return adr already pushed
 924   // and RBP
 925   framesize -= 2*wordSize;
 926 
 927   if (framesize) {
 928     st->print_cr("addq    rsp, %d\t# Destroy frame", framesize);
 929     st->print("\t");
 930   }
 931 
 932   st->print_cr("popq    rbp");
 933   if (do_polling() && C->is_method_compilation()) {
 934     st->print("\t");
 935     st->print_cr("movq    rscratch1, poll_offset[r15_thread] #polling_page_address\n\t"
 936                  "testl   rax, [rscratch1]\t"
 937                  "# Safepoint: poll for GC");
 938   }
 939 }
 940 #endif
 941 
 942 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
 943 {
 944   Compile* C = ra_->C;
 945   MacroAssembler _masm(&cbuf);
 946 
 947   if (generate_vzeroupper(C)) {
 948     // Clear upper bits of YMM registers when current compiled code uses
 949     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 950     __ vzeroupper();
 951   }
 952 
 953   int framesize = C->output()->frame_size_in_bytes();
 954   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 955   // Remove word for return adr already pushed
 956   // and RBP
 957   framesize -= 2*wordSize;
 958 
 959   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 960 
 961   if (framesize) {
 962     emit_opcode(cbuf, Assembler::REX_W);
 963     if (framesize < 0x80) {
 964       emit_opcode(cbuf, 0x83); // addq rsp, #framesize
 965       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 966       emit_d8(cbuf, framesize);
 967     } else {
 968       emit_opcode(cbuf, 0x81); // addq rsp, #framesize
 969       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 970       emit_d32(cbuf, framesize);
 971     }
 972   }
 973 
 974   // popq rbp
 975   emit_opcode(cbuf, 0x58 | RBP_enc);
 976 
 977   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 978     __ reserved_stack_check();
 979   }
 980 
 981   if (do_polling() && C->is_method_compilation()) {
 982     MacroAssembler _masm(&cbuf);
 983     __ movq(rscratch1, Address(r15_thread, Thread::polling_page_offset()));
 984     __ relocate(relocInfo::poll_return_type);
 985     __ testl(rax, Address(rscratch1, 0));
 986   }
 987 }
 988 
 989 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
 990 {
 991   return MachNode::size(ra_); // too many variables; just compute it
 992                               // the hard way
 993 }
 994 
 995 int MachEpilogNode::reloc() const
 996 {
 997   return 2; // a large enough number
 998 }
 999 
1000 const Pipeline* MachEpilogNode::pipeline() const
1001 {
1002   return MachNode::pipeline_class();
1003 }
1004 
1005 //=============================================================================
1006 
1007 enum RC {
1008   rc_bad,
1009   rc_int,
1010   rc_float,
1011   rc_stack
1012 };
1013 
1014 static enum RC rc_class(OptoReg::Name reg)
1015 {
1016   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1017 
1018   if (OptoReg::is_stack(reg)) return rc_stack;
1019 
1020   VMReg r = OptoReg::as_VMReg(reg);
1021 
1022   if (r->is_Register()) return rc_int;
1023 
1024   assert(r->is_XMMRegister(), "must be");
1025   return rc_float;
1026 }
1027 
1028 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
1029 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
1030                           int src_hi, int dst_hi, uint ireg, outputStream* st);
1031 
1032 int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
1033                      int stack_offset, int reg, uint ireg, outputStream* st);
1034 
1035 static void vec_stack_to_stack_helper(CodeBuffer *cbuf, int src_offset,
1036                                       int dst_offset, uint ireg, outputStream* st) {
1037   if (cbuf) {
1038     MacroAssembler _masm(cbuf);
1039     switch (ireg) {
1040     case Op_VecS:
1041       __ movq(Address(rsp, -8), rax);
1042       __ movl(rax, Address(rsp, src_offset));
1043       __ movl(Address(rsp, dst_offset), rax);
1044       __ movq(rax, Address(rsp, -8));
1045       break;
1046     case Op_VecD:
1047       __ pushq(Address(rsp, src_offset));
1048       __ popq (Address(rsp, dst_offset));
1049       break;
1050     case Op_VecX:
1051       __ pushq(Address(rsp, src_offset));
1052       __ popq (Address(rsp, dst_offset));
1053       __ pushq(Address(rsp, src_offset+8));
1054       __ popq (Address(rsp, dst_offset+8));
1055       break;
1056     case Op_VecY:
1057       __ vmovdqu(Address(rsp, -32), xmm0);
1058       __ vmovdqu(xmm0, Address(rsp, src_offset));
1059       __ vmovdqu(Address(rsp, dst_offset), xmm0);
1060       __ vmovdqu(xmm0, Address(rsp, -32));
1061       break;
1062     case Op_VecZ:
1063       __ evmovdquq(Address(rsp, -64), xmm0, 2);
1064       __ evmovdquq(xmm0, Address(rsp, src_offset), 2);
1065       __ evmovdquq(Address(rsp, dst_offset), xmm0, 2);
1066       __ evmovdquq(xmm0, Address(rsp, -64), 2);
1067       break;
1068     default:
1069       ShouldNotReachHere();
1070     }
1071 #ifndef PRODUCT
1072   } else {
1073     switch (ireg) {
1074     case Op_VecS:
1075       st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1076                 "movl    rax, [rsp + #%d]\n\t"
1077                 "movl    [rsp + #%d], rax\n\t"
1078                 "movq    rax, [rsp - #8]",
1079                 src_offset, dst_offset);
1080       break;
1081     case Op_VecD:
1082       st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1083                 "popq    [rsp + #%d]",
1084                 src_offset, dst_offset);
1085       break;
1086      case Op_VecX:
1087       st->print("pushq   [rsp + #%d]\t# 128-bit mem-mem spill\n\t"
1088                 "popq    [rsp + #%d]\n\t"
1089                 "pushq   [rsp + #%d]\n\t"
1090                 "popq    [rsp + #%d]",
1091                 src_offset, dst_offset, src_offset+8, dst_offset+8);
1092       break;
1093     case Op_VecY:
1094       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
1095                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1096                 "vmovdqu [rsp + #%d], xmm0\n\t"
1097                 "vmovdqu xmm0, [rsp - #32]",
1098                 src_offset, dst_offset);
1099       break;
1100     case Op_VecZ:
1101       st->print("vmovdqu [rsp - #64], xmm0\t# 512-bit mem-mem spill\n\t"
1102                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1103                 "vmovdqu [rsp + #%d], xmm0\n\t"
1104                 "vmovdqu xmm0, [rsp - #64]",
1105                 src_offset, dst_offset);
1106       break;
1107     default:
1108       ShouldNotReachHere();
1109     }
1110 #endif
1111   }
1112 }
1113 
1114 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
1115                                        PhaseRegAlloc* ra_,
1116                                        bool do_size,
1117                                        outputStream* st) const {
1118   assert(cbuf != NULL || st  != NULL, "sanity");
1119   // Get registers to move
1120   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1121   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1122   OptoReg::Name dst_second = ra_->get_reg_second(this);
1123   OptoReg::Name dst_first = ra_->get_reg_first(this);
1124 
1125   enum RC src_second_rc = rc_class(src_second);
1126   enum RC src_first_rc = rc_class(src_first);
1127   enum RC dst_second_rc = rc_class(dst_second);
1128   enum RC dst_first_rc = rc_class(dst_first);
1129 
1130   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
1131          "must move at least 1 register" );
1132 
1133   if (src_first == dst_first && src_second == dst_second) {
1134     // Self copy, no move
1135     return 0;
1136   }
1137   if (bottom_type()->isa_vect() != NULL) {
1138     uint ireg = ideal_reg();
1139     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1140     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY || ireg == Op_VecZ ), "sanity");
1141     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1142       // mem -> mem
1143       int src_offset = ra_->reg2offset(src_first);
1144       int dst_offset = ra_->reg2offset(dst_first);
1145       vec_stack_to_stack_helper(cbuf, src_offset, dst_offset, ireg, st);
1146     } else if (src_first_rc == rc_float && dst_first_rc == rc_float ) {
1147       vec_mov_helper(cbuf, false, src_first, dst_first, src_second, dst_second, ireg, st);
1148     } else if (src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1149       int stack_offset = ra_->reg2offset(dst_first);
1150       vec_spill_helper(cbuf, false, false, stack_offset, src_first, ireg, st);
1151     } else if (src_first_rc == rc_stack && dst_first_rc == rc_float ) {
1152       int stack_offset = ra_->reg2offset(src_first);
1153       vec_spill_helper(cbuf, false, true,  stack_offset, dst_first, ireg, st);
1154     } else {
1155       ShouldNotReachHere();
1156     }
1157     return 0;
1158   }
1159   if (src_first_rc == rc_stack) {
1160     // mem ->
1161     if (dst_first_rc == rc_stack) {
1162       // mem -> mem
1163       assert(src_second != dst_first, "overlap");
1164       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1165           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1166         // 64-bit
1167         int src_offset = ra_->reg2offset(src_first);
1168         int dst_offset = ra_->reg2offset(dst_first);
1169         if (cbuf) {
1170           MacroAssembler _masm(cbuf);
1171           __ pushq(Address(rsp, src_offset));
1172           __ popq (Address(rsp, dst_offset));
1173 #ifndef PRODUCT
1174         } else {
1175           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1176                     "popq    [rsp + #%d]",
1177                      src_offset, dst_offset);
1178 #endif
1179         }
1180       } else {
1181         // 32-bit
1182         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1183         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1184         // No pushl/popl, so:
1185         int src_offset = ra_->reg2offset(src_first);
1186         int dst_offset = ra_->reg2offset(dst_first);
1187         if (cbuf) {
1188           MacroAssembler _masm(cbuf);
1189           __ movq(Address(rsp, -8), rax);
1190           __ movl(rax, Address(rsp, src_offset));
1191           __ movl(Address(rsp, dst_offset), rax);
1192           __ movq(rax, Address(rsp, -8));
1193 #ifndef PRODUCT
1194         } else {
1195           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1196                     "movl    rax, [rsp + #%d]\n\t"
1197                     "movl    [rsp + #%d], rax\n\t"
1198                     "movq    rax, [rsp - #8]",
1199                      src_offset, dst_offset);
1200 #endif
1201         }
1202       }
1203       return 0;
1204     } else if (dst_first_rc == rc_int) {
1205       // mem -> gpr
1206       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1207           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1208         // 64-bit
1209         int offset = ra_->reg2offset(src_first);
1210         if (cbuf) {
1211           MacroAssembler _masm(cbuf);
1212           __ movq(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1213 #ifndef PRODUCT
1214         } else {
1215           st->print("movq    %s, [rsp + #%d]\t# spill",
1216                      Matcher::regName[dst_first],
1217                      offset);
1218 #endif
1219         }
1220       } else {
1221         // 32-bit
1222         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1223         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1224         int offset = ra_->reg2offset(src_first);
1225         if (cbuf) {
1226           MacroAssembler _masm(cbuf);
1227           __ movl(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1228 #ifndef PRODUCT
1229         } else {
1230           st->print("movl    %s, [rsp + #%d]\t# spill",
1231                      Matcher::regName[dst_first],
1232                      offset);
1233 #endif
1234         }
1235       }
1236       return 0;
1237     } else if (dst_first_rc == rc_float) {
1238       // mem-> xmm
1239       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1240           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1241         // 64-bit
1242         int offset = ra_->reg2offset(src_first);
1243         if (cbuf) {
1244           MacroAssembler _masm(cbuf);
1245           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1246 #ifndef PRODUCT
1247         } else {
1248           st->print("%s  %s, [rsp + #%d]\t# spill",
1249                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
1250                      Matcher::regName[dst_first],
1251                      offset);
1252 #endif
1253         }
1254       } else {
1255         // 32-bit
1256         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1257         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1258         int offset = ra_->reg2offset(src_first);
1259         if (cbuf) {
1260           MacroAssembler _masm(cbuf);
1261           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1262 #ifndef PRODUCT
1263         } else {
1264           st->print("movss   %s, [rsp + #%d]\t# spill",
1265                      Matcher::regName[dst_first],
1266                      offset);
1267 #endif
1268         }
1269       }
1270       return 0;
1271     }
1272   } else if (src_first_rc == rc_int) {
1273     // gpr ->
1274     if (dst_first_rc == rc_stack) {
1275       // gpr -> mem
1276       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1277           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1278         // 64-bit
1279         int offset = ra_->reg2offset(dst_first);
1280         if (cbuf) {
1281           MacroAssembler _masm(cbuf);
1282           __ movq(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1283 #ifndef PRODUCT
1284         } else {
1285           st->print("movq    [rsp + #%d], %s\t# spill",
1286                      offset,
1287                      Matcher::regName[src_first]);
1288 #endif
1289         }
1290       } else {
1291         // 32-bit
1292         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1293         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1294         int offset = ra_->reg2offset(dst_first);
1295         if (cbuf) {
1296           MacroAssembler _masm(cbuf);
1297           __ movl(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1298 #ifndef PRODUCT
1299         } else {
1300           st->print("movl    [rsp + #%d], %s\t# spill",
1301                      offset,
1302                      Matcher::regName[src_first]);
1303 #endif
1304         }
1305       }
1306       return 0;
1307     } else if (dst_first_rc == rc_int) {
1308       // gpr -> gpr
1309       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1310           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1311         // 64-bit
1312         if (cbuf) {
1313           MacroAssembler _masm(cbuf);
1314           __ movq(as_Register(Matcher::_regEncode[dst_first]),
1315                   as_Register(Matcher::_regEncode[src_first]));
1316 #ifndef PRODUCT
1317         } else {
1318           st->print("movq    %s, %s\t# spill",
1319                      Matcher::regName[dst_first],
1320                      Matcher::regName[src_first]);
1321 #endif
1322         }
1323         return 0;
1324       } else {
1325         // 32-bit
1326         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1327         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1328         if (cbuf) {
1329           MacroAssembler _masm(cbuf);
1330           __ movl(as_Register(Matcher::_regEncode[dst_first]),
1331                   as_Register(Matcher::_regEncode[src_first]));
1332 #ifndef PRODUCT
1333         } else {
1334           st->print("movl    %s, %s\t# spill",
1335                      Matcher::regName[dst_first],
1336                      Matcher::regName[src_first]);
1337 #endif
1338         }
1339         return 0;
1340       }
1341     } else if (dst_first_rc == rc_float) {
1342       // gpr -> xmm
1343       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1344           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1345         // 64-bit
1346         if (cbuf) {
1347           MacroAssembler _masm(cbuf);
1348           __ movdq( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1349 #ifndef PRODUCT
1350         } else {
1351           st->print("movdq   %s, %s\t# spill",
1352                      Matcher::regName[dst_first],
1353                      Matcher::regName[src_first]);
1354 #endif
1355         }
1356       } else {
1357         // 32-bit
1358         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1359         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1360         if (cbuf) {
1361           MacroAssembler _masm(cbuf);
1362           __ movdl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1363 #ifndef PRODUCT
1364         } else {
1365           st->print("movdl   %s, %s\t# spill",
1366                      Matcher::regName[dst_first],
1367                      Matcher::regName[src_first]);
1368 #endif
1369         }
1370       }
1371       return 0;
1372     }
1373   } else if (src_first_rc == rc_float) {
1374     // xmm ->
1375     if (dst_first_rc == rc_stack) {
1376       // xmm -> mem
1377       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1378           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1379         // 64-bit
1380         int offset = ra_->reg2offset(dst_first);
1381         if (cbuf) {
1382           MacroAssembler _masm(cbuf);
1383           __ movdbl( Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1384 #ifndef PRODUCT
1385         } else {
1386           st->print("movsd   [rsp + #%d], %s\t# spill",
1387                      offset,
1388                      Matcher::regName[src_first]);
1389 #endif
1390         }
1391       } else {
1392         // 32-bit
1393         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1394         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1395         int offset = ra_->reg2offset(dst_first);
1396         if (cbuf) {
1397           MacroAssembler _masm(cbuf);
1398           __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1399 #ifndef PRODUCT
1400         } else {
1401           st->print("movss   [rsp + #%d], %s\t# spill",
1402                      offset,
1403                      Matcher::regName[src_first]);
1404 #endif
1405         }
1406       }
1407       return 0;
1408     } else if (dst_first_rc == rc_int) {
1409       // xmm -> gpr
1410       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1411           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1412         // 64-bit
1413         if (cbuf) {
1414           MacroAssembler _masm(cbuf);
1415           __ movdq( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1416 #ifndef PRODUCT
1417         } else {
1418           st->print("movdq   %s, %s\t# spill",
1419                      Matcher::regName[dst_first],
1420                      Matcher::regName[src_first]);
1421 #endif
1422         }
1423       } else {
1424         // 32-bit
1425         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1426         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1427         if (cbuf) {
1428           MacroAssembler _masm(cbuf);
1429           __ movdl( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1430 #ifndef PRODUCT
1431         } else {
1432           st->print("movdl   %s, %s\t# spill",
1433                      Matcher::regName[dst_first],
1434                      Matcher::regName[src_first]);
1435 #endif
1436         }
1437       }
1438       return 0;
1439     } else if (dst_first_rc == rc_float) {
1440       // xmm -> xmm
1441       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1442           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1443         // 64-bit
1444         if (cbuf) {
1445           MacroAssembler _masm(cbuf);
1446           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1447 #ifndef PRODUCT
1448         } else {
1449           st->print("%s  %s, %s\t# spill",
1450                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
1451                      Matcher::regName[dst_first],
1452                      Matcher::regName[src_first]);
1453 #endif
1454         }
1455       } else {
1456         // 32-bit
1457         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1458         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1459         if (cbuf) {
1460           MacroAssembler _masm(cbuf);
1461           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1462 #ifndef PRODUCT
1463         } else {
1464           st->print("%s  %s, %s\t# spill",
1465                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
1466                      Matcher::regName[dst_first],
1467                      Matcher::regName[src_first]);
1468 #endif
1469         }
1470       }
1471       return 0;
1472     }
1473   }
1474 
1475   assert(0," foo ");
1476   Unimplemented();
1477   return 0;
1478 }
1479 
1480 #ifndef PRODUCT
1481 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1482   implementation(NULL, ra_, false, st);
1483 }
1484 #endif
1485 
1486 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1487   implementation(&cbuf, ra_, false, NULL);
1488 }
1489 
1490 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1491   return MachNode::size(ra_);
1492 }
1493 
1494 //=============================================================================
1495 #ifndef PRODUCT
1496 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1497 {
1498   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1499   int reg = ra_->get_reg_first(this);
1500   st->print("leaq    %s, [rsp + #%d]\t# box lock",
1501             Matcher::regName[reg], offset);
1502 }
1503 #endif
1504 
1505 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1506 {
1507   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1508   int reg = ra_->get_encode(this);
1509   if (offset >= 0x80) {
1510     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1511     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1512     emit_rm(cbuf, 0x2, reg & 7, 0x04);
1513     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1514     emit_d32(cbuf, offset);
1515   } else {
1516     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1517     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1518     emit_rm(cbuf, 0x1, reg & 7, 0x04);
1519     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1520     emit_d8(cbuf, offset);
1521   }
1522 }
1523 
1524 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
1525 {
1526   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1527   return (offset < 0x80) ? 5 : 8; // REX
1528 }
1529 
1530 //=============================================================================
1531 #ifndef PRODUCT
1532 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1533 {
1534   if (UseCompressedClassPointers) {
1535     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
1536     st->print_cr("\tdecode_klass_not_null rscratch1, rscratch1");
1537     st->print_cr("\tcmpq    rax, rscratch1\t # Inline cache check");
1538   } else {
1539     st->print_cr("\tcmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t"
1540                  "# Inline cache check");
1541   }
1542   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
1543   st->print_cr("\tnop\t# nops to align entry point");
1544 }
1545 #endif
1546 
1547 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1548 {
1549   MacroAssembler masm(&cbuf);
1550   uint insts_size = cbuf.insts_size();
1551   if (UseCompressedClassPointers) {
1552     masm.load_klass(rscratch1, j_rarg0);
1553     masm.cmpptr(rax, rscratch1);
1554   } else {
1555     masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
1556   }
1557 
1558   masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1559 
1560   /* WARNING these NOPs are critical so that verified entry point is properly
1561      4 bytes aligned for patching by NativeJump::patch_verified_entry() */
1562   int nops_cnt = 4 - ((cbuf.insts_size() - insts_size) & 0x3);
1563   if (OptoBreakpoint) {
1564     // Leave space for int3
1565     nops_cnt -= 1;
1566   }
1567   nops_cnt &= 0x3; // Do not add nops if code is aligned.
1568   if (nops_cnt > 0)
1569     masm.nop(nops_cnt);
1570 }
1571 
1572 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
1573 {
1574   return MachNode::size(ra_); // too many variables; just compute it
1575                               // the hard way
1576 }
1577 
1578 
1579 //=============================================================================
1580 
1581 int Matcher::regnum_to_fpu_offset(int regnum)
1582 {
1583   return regnum - 32; // The FP registers are in the second chunk
1584 }
1585 
1586 // This is UltraSparc specific, true just means we have fast l2f conversion
1587 const bool Matcher::convL2FSupported(void) {
1588   return true;
1589 }
1590 
1591 // Is this branch offset short enough that a short branch can be used?
1592 //
1593 // NOTE: If the platform does not provide any short branch variants, then
1594 //       this method should return false for offset 0.
1595 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1596   // The passed offset is relative to address of the branch.
1597   // On 86 a branch displacement is calculated relative to address
1598   // of a next instruction.
1599   offset -= br_size;
1600 
1601   // the short version of jmpConUCF2 contains multiple branches,
1602   // making the reach slightly less
1603   if (rule == jmpConUCF2_rule)
1604     return (-126 <= offset && offset <= 125);
1605   return (-128 <= offset && offset <= 127);
1606 }
1607 
1608 const bool Matcher::isSimpleConstant64(jlong value) {
1609   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1610   //return value == (int) value;  // Cf. storeImmL and immL32.
1611 
1612   // Probably always true, even if a temp register is required.
1613   return true;
1614 }
1615 
1616 // The ecx parameter to rep stosq for the ClearArray node is in words.
1617 const bool Matcher::init_array_count_is_in_bytes = false;
1618 
1619 // No additional cost for CMOVL.
1620 const int Matcher::long_cmove_cost() { return 0; }
1621 
1622 // No CMOVF/CMOVD with SSE2
1623 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
1624 
1625 // Does the CPU require late expand (see block.cpp for description of late expand)?
1626 const bool Matcher::require_postalloc_expand = false;
1627 
1628 // Do we need to mask the count passed to shift instructions or does
1629 // the cpu only look at the lower 5/6 bits anyway?
1630 const bool Matcher::need_masked_shift_count = false;
1631 
1632 bool Matcher::narrow_oop_use_complex_address() {
1633   assert(UseCompressedOops, "only for compressed oops code");
1634   return (LogMinObjAlignmentInBytes <= 3);
1635 }
1636 
1637 bool Matcher::narrow_klass_use_complex_address() {
1638   assert(UseCompressedClassPointers, "only for compressed klass code");
1639   return (LogKlassAlignmentInBytes <= 3);
1640 }
1641 
1642 bool Matcher::const_oop_prefer_decode() {
1643   // Prefer ConN+DecodeN over ConP.
1644   return true;
1645 }
1646 
1647 bool Matcher::const_klass_prefer_decode() {
1648   // TODO: Either support matching DecodeNKlass (heap-based) in operand
1649   //       or condisider the following:
1650   // Prefer ConNKlass+DecodeNKlass over ConP in simple compressed klass mode.
1651   //return CompressedKlassPointers::base() == NULL;
1652   return true;
1653 }
1654 
1655 // Is it better to copy float constants, or load them directly from
1656 // memory?  Intel can load a float constant from a direct address,
1657 // requiring no extra registers.  Most RISCs will have to materialize
1658 // an address into a register first, so they would do better to copy
1659 // the constant from stack.
1660 const bool Matcher::rematerialize_float_constants = true; // XXX
1661 
1662 // If CPU can load and store mis-aligned doubles directly then no
1663 // fixup is needed.  Else we split the double into 2 integer pieces
1664 // and move it piece-by-piece.  Only happens when passing doubles into
1665 // C code as the Java calling convention forces doubles to be aligned.
1666 const bool Matcher::misaligned_doubles_ok = true;
1667 
1668 // No-op on amd64
1669 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
1670 
1671 // Advertise here if the CPU requires explicit rounding operations to implement strictfp mode.
1672 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1673 
1674 // Are floats conerted to double when stored to stack during deoptimization?
1675 // On x64 it is stored without convertion so we can use normal access.
1676 bool Matcher::float_in_double() { return false; }
1677 
1678 // Do ints take an entire long register or just half?
1679 const bool Matcher::int_in_long = true;
1680 
1681 // Return whether or not this register is ever used as an argument.
1682 // This function is used on startup to build the trampoline stubs in
1683 // generateOptoStub.  Registers not mentioned will be killed by the VM
1684 // call in the trampoline, and arguments in those registers not be
1685 // available to the callee.
1686 bool Matcher::can_be_java_arg(int reg)
1687 {
1688   return
1689     reg ==  RDI_num || reg == RDI_H_num ||
1690     reg ==  RSI_num || reg == RSI_H_num ||
1691     reg ==  RDX_num || reg == RDX_H_num ||
1692     reg ==  RCX_num || reg == RCX_H_num ||
1693     reg ==   R8_num || reg ==  R8_H_num ||
1694     reg ==   R9_num || reg ==  R9_H_num ||
1695     reg ==  R12_num || reg == R12_H_num ||
1696     reg == XMM0_num || reg == XMM0b_num ||
1697     reg == XMM1_num || reg == XMM1b_num ||
1698     reg == XMM2_num || reg == XMM2b_num ||
1699     reg == XMM3_num || reg == XMM3b_num ||
1700     reg == XMM4_num || reg == XMM4b_num ||
1701     reg == XMM5_num || reg == XMM5b_num ||
1702     reg == XMM6_num || reg == XMM6b_num ||
1703     reg == XMM7_num || reg == XMM7b_num;
1704 }
1705 
1706 bool Matcher::is_spillable_arg(int reg)
1707 {
1708   return can_be_java_arg(reg);
1709 }
1710 
1711 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1712   // In 64 bit mode a code which use multiply when
1713   // devisor is constant is faster than hardware
1714   // DIV instruction (it uses MulHiL).
1715   return false;
1716 }
1717 
1718 // Register for DIVI projection of divmodI
1719 RegMask Matcher::divI_proj_mask() {
1720   return INT_RAX_REG_mask();
1721 }
1722 
1723 // Register for MODI projection of divmodI
1724 RegMask Matcher::modI_proj_mask() {
1725   return INT_RDX_REG_mask();
1726 }
1727 
1728 // Register for DIVL projection of divmodL
1729 RegMask Matcher::divL_proj_mask() {
1730   return LONG_RAX_REG_mask();
1731 }
1732 
1733 // Register for MODL projection of divmodL
1734 RegMask Matcher::modL_proj_mask() {
1735   return LONG_RDX_REG_mask();
1736 }
1737 
1738 // Register for saving SP into on method handle invokes. Not used on x86_64.
1739 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1740     return NO_REG_mask();
1741 }
1742 
1743 %}
1744 
1745 //----------ENCODING BLOCK-----------------------------------------------------
1746 // This block specifies the encoding classes used by the compiler to
1747 // output byte streams.  Encoding classes are parameterized macros
1748 // used by Machine Instruction Nodes in order to generate the bit
1749 // encoding of the instruction.  Operands specify their base encoding
1750 // interface with the interface keyword.  There are currently
1751 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
1752 // COND_INTER.  REG_INTER causes an operand to generate a function
1753 // which returns its register number when queried.  CONST_INTER causes
1754 // an operand to generate a function which returns the value of the
1755 // constant when queried.  MEMORY_INTER causes an operand to generate
1756 // four functions which return the Base Register, the Index Register,
1757 // the Scale Value, and the Offset Value of the operand when queried.
1758 // COND_INTER causes an operand to generate six functions which return
1759 // the encoding code (ie - encoding bits for the instruction)
1760 // associated with each basic boolean condition for a conditional
1761 // instruction.
1762 //
1763 // Instructions specify two basic values for encoding.  Again, a
1764 // function is available to check if the constant displacement is an
1765 // oop. They use the ins_encode keyword to specify their encoding
1766 // classes (which must be a sequence of enc_class names, and their
1767 // parameters, specified in the encoding block), and they use the
1768 // opcode keyword to specify, in order, their primary, secondary, and
1769 // tertiary opcode.  Only the opcode sections which a particular
1770 // instruction needs for encoding need to be specified.
1771 encode %{
1772   // Build emit functions for each basic byte or larger field in the
1773   // intel encoding scheme (opcode, rm, sib, immediate), and call them
1774   // from C++ code in the enc_class source block.  Emit functions will
1775   // live in the main source block for now.  In future, we can
1776   // generalize this by adding a syntax that specifies the sizes of
1777   // fields in an order, so that the adlc can build the emit functions
1778   // automagically
1779 
1780   // Emit primary opcode
1781   enc_class OpcP
1782   %{
1783     emit_opcode(cbuf, $primary);
1784   %}
1785 
1786   // Emit secondary opcode
1787   enc_class OpcS
1788   %{
1789     emit_opcode(cbuf, $secondary);
1790   %}
1791 
1792   // Emit tertiary opcode
1793   enc_class OpcT
1794   %{
1795     emit_opcode(cbuf, $tertiary);
1796   %}
1797 
1798   // Emit opcode directly
1799   enc_class Opcode(immI d8)
1800   %{
1801     emit_opcode(cbuf, $d8$$constant);
1802   %}
1803 
1804   // Emit size prefix
1805   enc_class SizePrefix
1806   %{
1807     emit_opcode(cbuf, 0x66);
1808   %}
1809 
1810   enc_class reg(rRegI reg)
1811   %{
1812     emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
1813   %}
1814 
1815   enc_class reg_reg(rRegI dst, rRegI src)
1816   %{
1817     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1818   %}
1819 
1820   enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
1821   %{
1822     emit_opcode(cbuf, $opcode$$constant);
1823     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1824   %}
1825 
1826   enc_class cdql_enc(no_rax_rdx_RegI div)
1827   %{
1828     // Full implementation of Java idiv and irem; checks for
1829     // special case as described in JVM spec., p.243 & p.271.
1830     //
1831     //         normal case                           special case
1832     //
1833     // input : rax: dividend                         min_int
1834     //         reg: divisor                          -1
1835     //
1836     // output: rax: quotient  (= rax idiv reg)       min_int
1837     //         rdx: remainder (= rax irem reg)       0
1838     //
1839     //  Code sequnce:
1840     //
1841     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
1842     //    5:   75 07/08                jne    e <normal>
1843     //    7:   33 d2                   xor    %edx,%edx
1844     //  [div >= 8 -> offset + 1]
1845     //  [REX_B]
1846     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
1847     //    c:   74 03/04                je     11 <done>
1848     // 000000000000000e <normal>:
1849     //    e:   99                      cltd
1850     //  [div >= 8 -> offset + 1]
1851     //  [REX_B]
1852     //    f:   f7 f9                   idiv   $div
1853     // 0000000000000011 <done>:
1854 
1855     // cmp    $0x80000000,%eax
1856     emit_opcode(cbuf, 0x3d);
1857     emit_d8(cbuf, 0x00);
1858     emit_d8(cbuf, 0x00);
1859     emit_d8(cbuf, 0x00);
1860     emit_d8(cbuf, 0x80);
1861 
1862     // jne    e <normal>
1863     emit_opcode(cbuf, 0x75);
1864     emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
1865 
1866     // xor    %edx,%edx
1867     emit_opcode(cbuf, 0x33);
1868     emit_d8(cbuf, 0xD2);
1869 
1870     // cmp    $0xffffffffffffffff,%ecx
1871     if ($div$$reg >= 8) {
1872       emit_opcode(cbuf, Assembler::REX_B);
1873     }
1874     emit_opcode(cbuf, 0x83);
1875     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1876     emit_d8(cbuf, 0xFF);
1877 
1878     // je     11 <done>
1879     emit_opcode(cbuf, 0x74);
1880     emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
1881 
1882     // <normal>
1883     // cltd
1884     emit_opcode(cbuf, 0x99);
1885 
1886     // idivl (note: must be emitted by the user of this rule)
1887     // <done>
1888   %}
1889 
1890   enc_class cdqq_enc(no_rax_rdx_RegL div)
1891   %{
1892     // Full implementation of Java ldiv and lrem; checks for
1893     // special case as described in JVM spec., p.243 & p.271.
1894     //
1895     //         normal case                           special case
1896     //
1897     // input : rax: dividend                         min_long
1898     //         reg: divisor                          -1
1899     //
1900     // output: rax: quotient  (= rax idiv reg)       min_long
1901     //         rdx: remainder (= rax irem reg)       0
1902     //
1903     //  Code sequnce:
1904     //
1905     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
1906     //    7:   00 00 80
1907     //    a:   48 39 d0                cmp    %rdx,%rax
1908     //    d:   75 08                   jne    17 <normal>
1909     //    f:   33 d2                   xor    %edx,%edx
1910     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
1911     //   15:   74 05                   je     1c <done>
1912     // 0000000000000017 <normal>:
1913     //   17:   48 99                   cqto
1914     //   19:   48 f7 f9                idiv   $div
1915     // 000000000000001c <done>:
1916 
1917     // mov    $0x8000000000000000,%rdx
1918     emit_opcode(cbuf, Assembler::REX_W);
1919     emit_opcode(cbuf, 0xBA);
1920     emit_d8(cbuf, 0x00);
1921     emit_d8(cbuf, 0x00);
1922     emit_d8(cbuf, 0x00);
1923     emit_d8(cbuf, 0x00);
1924     emit_d8(cbuf, 0x00);
1925     emit_d8(cbuf, 0x00);
1926     emit_d8(cbuf, 0x00);
1927     emit_d8(cbuf, 0x80);
1928 
1929     // cmp    %rdx,%rax
1930     emit_opcode(cbuf, Assembler::REX_W);
1931     emit_opcode(cbuf, 0x39);
1932     emit_d8(cbuf, 0xD0);
1933 
1934     // jne    17 <normal>
1935     emit_opcode(cbuf, 0x75);
1936     emit_d8(cbuf, 0x08);
1937 
1938     // xor    %edx,%edx
1939     emit_opcode(cbuf, 0x33);
1940     emit_d8(cbuf, 0xD2);
1941 
1942     // cmp    $0xffffffffffffffff,$div
1943     emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
1944     emit_opcode(cbuf, 0x83);
1945     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1946     emit_d8(cbuf, 0xFF);
1947 
1948     // je     1e <done>
1949     emit_opcode(cbuf, 0x74);
1950     emit_d8(cbuf, 0x05);
1951 
1952     // <normal>
1953     // cqto
1954     emit_opcode(cbuf, Assembler::REX_W);
1955     emit_opcode(cbuf, 0x99);
1956 
1957     // idivq (note: must be emitted by the user of this rule)
1958     // <done>
1959   %}
1960 
1961   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1962   enc_class OpcSE(immI imm)
1963   %{
1964     // Emit primary opcode and set sign-extend bit
1965     // Check for 8-bit immediate, and set sign extend bit in opcode
1966     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
1967       emit_opcode(cbuf, $primary | 0x02);
1968     } else {
1969       // 32-bit immediate
1970       emit_opcode(cbuf, $primary);
1971     }
1972   %}
1973 
1974   enc_class OpcSErm(rRegI dst, immI imm)
1975   %{
1976     // OpcSEr/m
1977     int dstenc = $dst$$reg;
1978     if (dstenc >= 8) {
1979       emit_opcode(cbuf, Assembler::REX_B);
1980       dstenc -= 8;
1981     }
1982     // Emit primary opcode and set sign-extend bit
1983     // Check for 8-bit immediate, and set sign extend bit in opcode
1984     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
1985       emit_opcode(cbuf, $primary | 0x02);
1986     } else {
1987       // 32-bit immediate
1988       emit_opcode(cbuf, $primary);
1989     }
1990     // Emit r/m byte with secondary opcode, after primary opcode.
1991     emit_rm(cbuf, 0x3, $secondary, dstenc);
1992   %}
1993 
1994   enc_class OpcSErm_wide(rRegL dst, immI imm)
1995   %{
1996     // OpcSEr/m
1997     int dstenc = $dst$$reg;
1998     if (dstenc < 8) {
1999       emit_opcode(cbuf, Assembler::REX_W);
2000     } else {
2001       emit_opcode(cbuf, Assembler::REX_WB);
2002       dstenc -= 8;
2003     }
2004     // Emit primary opcode and set sign-extend bit
2005     // Check for 8-bit immediate, and set sign extend bit in opcode
2006     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2007       emit_opcode(cbuf, $primary | 0x02);
2008     } else {
2009       // 32-bit immediate
2010       emit_opcode(cbuf, $primary);
2011     }
2012     // Emit r/m byte with secondary opcode, after primary opcode.
2013     emit_rm(cbuf, 0x3, $secondary, dstenc);
2014   %}
2015 
2016   enc_class Con8or32(immI imm)
2017   %{
2018     // Check for 8-bit immediate, and set sign extend bit in opcode
2019     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2020       $$$emit8$imm$$constant;
2021     } else {
2022       // 32-bit immediate
2023       $$$emit32$imm$$constant;
2024     }
2025   %}
2026 
2027   enc_class opc2_reg(rRegI dst)
2028   %{
2029     // BSWAP
2030     emit_cc(cbuf, $secondary, $dst$$reg);
2031   %}
2032 
2033   enc_class opc3_reg(rRegI dst)
2034   %{
2035     // BSWAP
2036     emit_cc(cbuf, $tertiary, $dst$$reg);
2037   %}
2038 
2039   enc_class reg_opc(rRegI div)
2040   %{
2041     // INC, DEC, IDIV, IMOD, JMP indirect, ...
2042     emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
2043   %}
2044 
2045   enc_class enc_cmov(cmpOp cop)
2046   %{
2047     // CMOV
2048     $$$emit8$primary;
2049     emit_cc(cbuf, $secondary, $cop$$cmpcode);
2050   %}
2051 
2052   enc_class enc_PartialSubtypeCheck()
2053   %{
2054     Register Rrdi = as_Register(RDI_enc); // result register
2055     Register Rrax = as_Register(RAX_enc); // super class
2056     Register Rrcx = as_Register(RCX_enc); // killed
2057     Register Rrsi = as_Register(RSI_enc); // sub class
2058     Label miss;
2059     const bool set_cond_codes = true;
2060 
2061     MacroAssembler _masm(&cbuf);
2062     __ check_klass_subtype_slow_path(Rrsi, Rrax, Rrcx, Rrdi,
2063                                      NULL, &miss,
2064                                      /*set_cond_codes:*/ true);
2065     if ($primary) {
2066       __ xorptr(Rrdi, Rrdi);
2067     }
2068     __ bind(miss);
2069   %}
2070 
2071   enc_class clear_avx %{
2072     debug_only(int off0 = cbuf.insts_size());
2073     if (generate_vzeroupper(Compile::current())) {
2074       // Clear upper bits of YMM registers to avoid AVX <-> SSE transition penalty
2075       // Clear upper bits of YMM registers when current compiled code uses
2076       // wide vectors to avoid AVX <-> SSE transition penalty during call.
2077       MacroAssembler _masm(&cbuf);
2078       __ vzeroupper();
2079     }
2080     debug_only(int off1 = cbuf.insts_size());
2081     assert(off1 - off0 == clear_avx_size(), "correct size prediction");
2082   %}
2083 
2084   enc_class Java_To_Runtime(method meth) %{
2085     // No relocation needed
2086     MacroAssembler _masm(&cbuf);
2087     __ mov64(r10, (int64_t) $meth$$method);
2088     __ call(r10);
2089   %}
2090 
2091   enc_class Java_To_Interpreter(method meth)
2092   %{
2093     // CALL Java_To_Interpreter
2094     // This is the instruction starting address for relocation info.
2095     cbuf.set_insts_mark();
2096     $$$emit8$primary;
2097     // CALL directly to the runtime
2098     emit_d32_reloc(cbuf,
2099                    (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2100                    runtime_call_Relocation::spec(),
2101                    RELOC_DISP32);
2102   %}
2103 
2104   enc_class Java_Static_Call(method meth)
2105   %{
2106     // JAVA STATIC CALL
2107     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
2108     // determine who we intended to call.
2109     cbuf.set_insts_mark();
2110     $$$emit8$primary;
2111 
2112     if (!_method) {
2113       emit_d32_reloc(cbuf, (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2114                      runtime_call_Relocation::spec(),
2115                      RELOC_DISP32);
2116     } else {
2117       int method_index = resolved_method_index(cbuf);
2118       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
2119                                                   : static_call_Relocation::spec(method_index);
2120       emit_d32_reloc(cbuf, (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2121                      rspec, RELOC_DISP32);
2122       // Emit stubs for static call.
2123       address mark = cbuf.insts_mark();
2124       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf, mark);
2125       if (stub == NULL) {
2126         ciEnv::current()->record_failure("CodeCache is full");
2127         return;
2128       }
2129 #if INCLUDE_AOT
2130       CompiledStaticCall::emit_to_aot_stub(cbuf, mark);
2131 #endif
2132     }
2133   %}
2134 
2135   enc_class Java_Dynamic_Call(method meth) %{
2136     MacroAssembler _masm(&cbuf);
2137     __ ic_call((address)$meth$$method, resolved_method_index(cbuf));
2138   %}
2139 
2140   enc_class Java_Compiled_Call(method meth)
2141   %{
2142     // JAVA COMPILED CALL
2143     int disp = in_bytes(Method:: from_compiled_offset());
2144 
2145     // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
2146     // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
2147 
2148     // callq *disp(%rax)
2149     cbuf.set_insts_mark();
2150     $$$emit8$primary;
2151     if (disp < 0x80) {
2152       emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
2153       emit_d8(cbuf, disp); // Displacement
2154     } else {
2155       emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
2156       emit_d32(cbuf, disp); // Displacement
2157     }
2158   %}
2159 
2160   enc_class reg_opc_imm(rRegI dst, immI8 shift)
2161   %{
2162     // SAL, SAR, SHR
2163     int dstenc = $dst$$reg;
2164     if (dstenc >= 8) {
2165       emit_opcode(cbuf, Assembler::REX_B);
2166       dstenc -= 8;
2167     }
2168     $$$emit8$primary;
2169     emit_rm(cbuf, 0x3, $secondary, dstenc);
2170     $$$emit8$shift$$constant;
2171   %}
2172 
2173   enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
2174   %{
2175     // SAL, SAR, SHR
2176     int dstenc = $dst$$reg;
2177     if (dstenc < 8) {
2178       emit_opcode(cbuf, Assembler::REX_W);
2179     } else {
2180       emit_opcode(cbuf, Assembler::REX_WB);
2181       dstenc -= 8;
2182     }
2183     $$$emit8$primary;
2184     emit_rm(cbuf, 0x3, $secondary, dstenc);
2185     $$$emit8$shift$$constant;
2186   %}
2187 
2188   enc_class load_immI(rRegI dst, immI src)
2189   %{
2190     int dstenc = $dst$$reg;
2191     if (dstenc >= 8) {
2192       emit_opcode(cbuf, Assembler::REX_B);
2193       dstenc -= 8;
2194     }
2195     emit_opcode(cbuf, 0xB8 | dstenc);
2196     $$$emit32$src$$constant;
2197   %}
2198 
2199   enc_class load_immL(rRegL dst, immL src)
2200   %{
2201     int dstenc = $dst$$reg;
2202     if (dstenc < 8) {
2203       emit_opcode(cbuf, Assembler::REX_W);
2204     } else {
2205       emit_opcode(cbuf, Assembler::REX_WB);
2206       dstenc -= 8;
2207     }
2208     emit_opcode(cbuf, 0xB8 | dstenc);
2209     emit_d64(cbuf, $src$$constant);
2210   %}
2211 
2212   enc_class load_immUL32(rRegL dst, immUL32 src)
2213   %{
2214     // same as load_immI, but this time we care about zeroes in the high word
2215     int dstenc = $dst$$reg;
2216     if (dstenc >= 8) {
2217       emit_opcode(cbuf, Assembler::REX_B);
2218       dstenc -= 8;
2219     }
2220     emit_opcode(cbuf, 0xB8 | dstenc);
2221     $$$emit32$src$$constant;
2222   %}
2223 
2224   enc_class load_immL32(rRegL dst, immL32 src)
2225   %{
2226     int dstenc = $dst$$reg;
2227     if (dstenc < 8) {
2228       emit_opcode(cbuf, Assembler::REX_W);
2229     } else {
2230       emit_opcode(cbuf, Assembler::REX_WB);
2231       dstenc -= 8;
2232     }
2233     emit_opcode(cbuf, 0xC7);
2234     emit_rm(cbuf, 0x03, 0x00, dstenc);
2235     $$$emit32$src$$constant;
2236   %}
2237 
2238   enc_class load_immP31(rRegP dst, immP32 src)
2239   %{
2240     // same as load_immI, but this time we care about zeroes in the high word
2241     int dstenc = $dst$$reg;
2242     if (dstenc >= 8) {
2243       emit_opcode(cbuf, Assembler::REX_B);
2244       dstenc -= 8;
2245     }
2246     emit_opcode(cbuf, 0xB8 | dstenc);
2247     $$$emit32$src$$constant;
2248   %}
2249 
2250   enc_class load_immP(rRegP dst, immP src)
2251   %{
2252     int dstenc = $dst$$reg;
2253     if (dstenc < 8) {
2254       emit_opcode(cbuf, Assembler::REX_W);
2255     } else {
2256       emit_opcode(cbuf, Assembler::REX_WB);
2257       dstenc -= 8;
2258     }
2259     emit_opcode(cbuf, 0xB8 | dstenc);
2260     // This next line should be generated from ADLC
2261     if ($src->constant_reloc() != relocInfo::none) {
2262       emit_d64_reloc(cbuf, $src$$constant, $src->constant_reloc(), RELOC_IMM64);
2263     } else {
2264       emit_d64(cbuf, $src$$constant);
2265     }
2266   %}
2267 
2268   enc_class Con32(immI src)
2269   %{
2270     // Output immediate
2271     $$$emit32$src$$constant;
2272   %}
2273 
2274   enc_class Con32F_as_bits(immF src)
2275   %{
2276     // Output Float immediate bits
2277     jfloat jf = $src$$constant;
2278     jint jf_as_bits = jint_cast(jf);
2279     emit_d32(cbuf, jf_as_bits);
2280   %}
2281 
2282   enc_class Con16(immI src)
2283   %{
2284     // Output immediate
2285     $$$emit16$src$$constant;
2286   %}
2287 
2288   // How is this different from Con32??? XXX
2289   enc_class Con_d32(immI src)
2290   %{
2291     emit_d32(cbuf,$src$$constant);
2292   %}
2293 
2294   enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
2295     // Output immediate memory reference
2296     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2297     emit_d32(cbuf, 0x00);
2298   %}
2299 
2300   enc_class lock_prefix()
2301   %{
2302     emit_opcode(cbuf, 0xF0); // lock
2303   %}
2304 
2305   enc_class REX_mem(memory mem)
2306   %{
2307     if ($mem$$base >= 8) {
2308       if ($mem$$index < 8) {
2309         emit_opcode(cbuf, Assembler::REX_B);
2310       } else {
2311         emit_opcode(cbuf, Assembler::REX_XB);
2312       }
2313     } else {
2314       if ($mem$$index >= 8) {
2315         emit_opcode(cbuf, Assembler::REX_X);
2316       }
2317     }
2318   %}
2319 
2320   enc_class REX_mem_wide(memory mem)
2321   %{
2322     if ($mem$$base >= 8) {
2323       if ($mem$$index < 8) {
2324         emit_opcode(cbuf, Assembler::REX_WB);
2325       } else {
2326         emit_opcode(cbuf, Assembler::REX_WXB);
2327       }
2328     } else {
2329       if ($mem$$index < 8) {
2330         emit_opcode(cbuf, Assembler::REX_W);
2331       } else {
2332         emit_opcode(cbuf, Assembler::REX_WX);
2333       }
2334     }
2335   %}
2336 
2337   // for byte regs
2338   enc_class REX_breg(rRegI reg)
2339   %{
2340     if ($reg$$reg >= 4) {
2341       emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2342     }
2343   %}
2344 
2345   // for byte regs
2346   enc_class REX_reg_breg(rRegI dst, rRegI src)
2347   %{
2348     if ($dst$$reg < 8) {
2349       if ($src$$reg >= 4) {
2350         emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2351       }
2352     } else {
2353       if ($src$$reg < 8) {
2354         emit_opcode(cbuf, Assembler::REX_R);
2355       } else {
2356         emit_opcode(cbuf, Assembler::REX_RB);
2357       }
2358     }
2359   %}
2360 
2361   // for byte regs
2362   enc_class REX_breg_mem(rRegI reg, memory mem)
2363   %{
2364     if ($reg$$reg < 8) {
2365       if ($mem$$base < 8) {
2366         if ($mem$$index >= 8) {
2367           emit_opcode(cbuf, Assembler::REX_X);
2368         } else if ($reg$$reg >= 4) {
2369           emit_opcode(cbuf, Assembler::REX);
2370         }
2371       } else {
2372         if ($mem$$index < 8) {
2373           emit_opcode(cbuf, Assembler::REX_B);
2374         } else {
2375           emit_opcode(cbuf, Assembler::REX_XB);
2376         }
2377       }
2378     } else {
2379       if ($mem$$base < 8) {
2380         if ($mem$$index < 8) {
2381           emit_opcode(cbuf, Assembler::REX_R);
2382         } else {
2383           emit_opcode(cbuf, Assembler::REX_RX);
2384         }
2385       } else {
2386         if ($mem$$index < 8) {
2387           emit_opcode(cbuf, Assembler::REX_RB);
2388         } else {
2389           emit_opcode(cbuf, Assembler::REX_RXB);
2390         }
2391       }
2392     }
2393   %}
2394 
2395   enc_class REX_reg(rRegI reg)
2396   %{
2397     if ($reg$$reg >= 8) {
2398       emit_opcode(cbuf, Assembler::REX_B);
2399     }
2400   %}
2401 
2402   enc_class REX_reg_wide(rRegI reg)
2403   %{
2404     if ($reg$$reg < 8) {
2405       emit_opcode(cbuf, Assembler::REX_W);
2406     } else {
2407       emit_opcode(cbuf, Assembler::REX_WB);
2408     }
2409   %}
2410 
2411   enc_class REX_reg_reg(rRegI dst, rRegI src)
2412   %{
2413     if ($dst$$reg < 8) {
2414       if ($src$$reg >= 8) {
2415         emit_opcode(cbuf, Assembler::REX_B);
2416       }
2417     } else {
2418       if ($src$$reg < 8) {
2419         emit_opcode(cbuf, Assembler::REX_R);
2420       } else {
2421         emit_opcode(cbuf, Assembler::REX_RB);
2422       }
2423     }
2424   %}
2425 
2426   enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
2427   %{
2428     if ($dst$$reg < 8) {
2429       if ($src$$reg < 8) {
2430         emit_opcode(cbuf, Assembler::REX_W);
2431       } else {
2432         emit_opcode(cbuf, Assembler::REX_WB);
2433       }
2434     } else {
2435       if ($src$$reg < 8) {
2436         emit_opcode(cbuf, Assembler::REX_WR);
2437       } else {
2438         emit_opcode(cbuf, Assembler::REX_WRB);
2439       }
2440     }
2441   %}
2442 
2443   enc_class REX_reg_mem(rRegI reg, memory mem)
2444   %{
2445     if ($reg$$reg < 8) {
2446       if ($mem$$base < 8) {
2447         if ($mem$$index >= 8) {
2448           emit_opcode(cbuf, Assembler::REX_X);
2449         }
2450       } else {
2451         if ($mem$$index < 8) {
2452           emit_opcode(cbuf, Assembler::REX_B);
2453         } else {
2454           emit_opcode(cbuf, Assembler::REX_XB);
2455         }
2456       }
2457     } else {
2458       if ($mem$$base < 8) {
2459         if ($mem$$index < 8) {
2460           emit_opcode(cbuf, Assembler::REX_R);
2461         } else {
2462           emit_opcode(cbuf, Assembler::REX_RX);
2463         }
2464       } else {
2465         if ($mem$$index < 8) {
2466           emit_opcode(cbuf, Assembler::REX_RB);
2467         } else {
2468           emit_opcode(cbuf, Assembler::REX_RXB);
2469         }
2470       }
2471     }
2472   %}
2473 
2474   enc_class REX_reg_mem_wide(rRegL reg, memory mem)
2475   %{
2476     if ($reg$$reg < 8) {
2477       if ($mem$$base < 8) {
2478         if ($mem$$index < 8) {
2479           emit_opcode(cbuf, Assembler::REX_W);
2480         } else {
2481           emit_opcode(cbuf, Assembler::REX_WX);
2482         }
2483       } else {
2484         if ($mem$$index < 8) {
2485           emit_opcode(cbuf, Assembler::REX_WB);
2486         } else {
2487           emit_opcode(cbuf, Assembler::REX_WXB);
2488         }
2489       }
2490     } else {
2491       if ($mem$$base < 8) {
2492         if ($mem$$index < 8) {
2493           emit_opcode(cbuf, Assembler::REX_WR);
2494         } else {
2495           emit_opcode(cbuf, Assembler::REX_WRX);
2496         }
2497       } else {
2498         if ($mem$$index < 8) {
2499           emit_opcode(cbuf, Assembler::REX_WRB);
2500         } else {
2501           emit_opcode(cbuf, Assembler::REX_WRXB);
2502         }
2503       }
2504     }
2505   %}
2506 
2507   enc_class reg_mem(rRegI ereg, memory mem)
2508   %{
2509     // High registers handle in encode_RegMem
2510     int reg = $ereg$$reg;
2511     int base = $mem$$base;
2512     int index = $mem$$index;
2513     int scale = $mem$$scale;
2514     int disp = $mem$$disp;
2515     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2516 
2517     encode_RegMem(cbuf, reg, base, index, scale, disp, disp_reloc);
2518   %}
2519 
2520   enc_class RM_opc_mem(immI rm_opcode, memory mem)
2521   %{
2522     int rm_byte_opcode = $rm_opcode$$constant;
2523 
2524     // High registers handle in encode_RegMem
2525     int base = $mem$$base;
2526     int index = $mem$$index;
2527     int scale = $mem$$scale;
2528     int displace = $mem$$disp;
2529 
2530     relocInfo::relocType disp_reloc = $mem->disp_reloc();       // disp-as-oop when
2531                                             // working with static
2532                                             // globals
2533     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
2534                   disp_reloc);
2535   %}
2536 
2537   enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
2538   %{
2539     int reg_encoding = $dst$$reg;
2540     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2541     int index        = 0x04;            // 0x04 indicates no index
2542     int scale        = 0x00;            // 0x00 indicates no scale
2543     int displace     = $src1$$constant; // 0x00 indicates no displacement
2544     relocInfo::relocType disp_reloc = relocInfo::none;
2545     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
2546                   disp_reloc);
2547   %}
2548 
2549   enc_class neg_reg(rRegI dst)
2550   %{
2551     int dstenc = $dst$$reg;
2552     if (dstenc >= 8) {
2553       emit_opcode(cbuf, Assembler::REX_B);
2554       dstenc -= 8;
2555     }
2556     // NEG $dst
2557     emit_opcode(cbuf, 0xF7);
2558     emit_rm(cbuf, 0x3, 0x03, dstenc);
2559   %}
2560 
2561   enc_class neg_reg_wide(rRegI dst)
2562   %{
2563     int dstenc = $dst$$reg;
2564     if (dstenc < 8) {
2565       emit_opcode(cbuf, Assembler::REX_W);
2566     } else {
2567       emit_opcode(cbuf, Assembler::REX_WB);
2568       dstenc -= 8;
2569     }
2570     // NEG $dst
2571     emit_opcode(cbuf, 0xF7);
2572     emit_rm(cbuf, 0x3, 0x03, dstenc);
2573   %}
2574 
2575   enc_class setLT_reg(rRegI dst)
2576   %{
2577     int dstenc = $dst$$reg;
2578     if (dstenc >= 8) {
2579       emit_opcode(cbuf, Assembler::REX_B);
2580       dstenc -= 8;
2581     } else if (dstenc >= 4) {
2582       emit_opcode(cbuf, Assembler::REX);
2583     }
2584     // SETLT $dst
2585     emit_opcode(cbuf, 0x0F);
2586     emit_opcode(cbuf, 0x9C);
2587     emit_rm(cbuf, 0x3, 0x0, dstenc);
2588   %}
2589 
2590   enc_class setNZ_reg(rRegI dst)
2591   %{
2592     int dstenc = $dst$$reg;
2593     if (dstenc >= 8) {
2594       emit_opcode(cbuf, Assembler::REX_B);
2595       dstenc -= 8;
2596     } else if (dstenc >= 4) {
2597       emit_opcode(cbuf, Assembler::REX);
2598     }
2599     // SETNZ $dst
2600     emit_opcode(cbuf, 0x0F);
2601     emit_opcode(cbuf, 0x95);
2602     emit_rm(cbuf, 0x3, 0x0, dstenc);
2603   %}
2604 
2605 
2606   // Compare the lonogs and set -1, 0, or 1 into dst
2607   enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
2608   %{
2609     int src1enc = $src1$$reg;
2610     int src2enc = $src2$$reg;
2611     int dstenc = $dst$$reg;
2612 
2613     // cmpq $src1, $src2
2614     if (src1enc < 8) {
2615       if (src2enc < 8) {
2616         emit_opcode(cbuf, Assembler::REX_W);
2617       } else {
2618         emit_opcode(cbuf, Assembler::REX_WB);
2619       }
2620     } else {
2621       if (src2enc < 8) {
2622         emit_opcode(cbuf, Assembler::REX_WR);
2623       } else {
2624         emit_opcode(cbuf, Assembler::REX_WRB);
2625       }
2626     }
2627     emit_opcode(cbuf, 0x3B);
2628     emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
2629 
2630     // movl $dst, -1
2631     if (dstenc >= 8) {
2632       emit_opcode(cbuf, Assembler::REX_B);
2633     }
2634     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
2635     emit_d32(cbuf, -1);
2636 
2637     // jl,s done
2638     emit_opcode(cbuf, 0x7C);
2639     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
2640 
2641     // setne $dst
2642     if (dstenc >= 4) {
2643       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
2644     }
2645     emit_opcode(cbuf, 0x0F);
2646     emit_opcode(cbuf, 0x95);
2647     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
2648 
2649     // movzbl $dst, $dst
2650     if (dstenc >= 4) {
2651       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
2652     }
2653     emit_opcode(cbuf, 0x0F);
2654     emit_opcode(cbuf, 0xB6);
2655     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
2656   %}
2657 
2658   enc_class Push_ResultXD(regD dst) %{
2659     MacroAssembler _masm(&cbuf);
2660     __ fstp_d(Address(rsp, 0));
2661     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2662     __ addptr(rsp, 8);
2663   %}
2664 
2665   enc_class Push_SrcXD(regD src) %{
2666     MacroAssembler _masm(&cbuf);
2667     __ subptr(rsp, 8);
2668     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2669     __ fld_d(Address(rsp, 0));
2670   %}
2671 
2672 
2673   enc_class enc_rethrow()
2674   %{
2675     cbuf.set_insts_mark();
2676     emit_opcode(cbuf, 0xE9); // jmp entry
2677     emit_d32_reloc(cbuf,
2678                    (int) (OptoRuntime::rethrow_stub() - cbuf.insts_end() - 4),
2679                    runtime_call_Relocation::spec(),
2680                    RELOC_DISP32);
2681   %}
2682 
2683 %}
2684 
2685 
2686 
2687 //----------FRAME--------------------------------------------------------------
2688 // Definition of frame structure and management information.
2689 //
2690 //  S T A C K   L A Y O U T    Allocators stack-slot number
2691 //                             |   (to get allocators register number
2692 //  G  Owned by    |        |  v    add OptoReg::stack0())
2693 //  r   CALLER     |        |
2694 //  o     |        +--------+      pad to even-align allocators stack-slot
2695 //  w     V        |  pad0  |        numbers; owned by CALLER
2696 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2697 //  h     ^        |   in   |  5
2698 //        |        |  args  |  4   Holes in incoming args owned by SELF
2699 //  |     |        |        |  3
2700 //  |     |        +--------+
2701 //  V     |        | old out|      Empty on Intel, window on Sparc
2702 //        |    old |preserve|      Must be even aligned.
2703 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
2704 //        |        |   in   |  3   area for Intel ret address
2705 //     Owned by    |preserve|      Empty on Sparc.
2706 //       SELF      +--------+
2707 //        |        |  pad2  |  2   pad to align old SP
2708 //        |        +--------+  1
2709 //        |        | locks  |  0
2710 //        |        +--------+----> OptoReg::stack0(), even aligned
2711 //        |        |  pad1  | 11   pad to align new SP
2712 //        |        +--------+
2713 //        |        |        | 10
2714 //        |        | spills |  9   spills
2715 //        V        |        |  8   (pad0 slot for callee)
2716 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
2717 //        ^        |  out   |  7
2718 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
2719 //     Owned by    +--------+
2720 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
2721 //        |    new |preserve|      Must be even-aligned.
2722 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
2723 //        |        |        |
2724 //
2725 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
2726 //         known from SELF's arguments and the Java calling convention.
2727 //         Region 6-7 is determined per call site.
2728 // Note 2: If the calling convention leaves holes in the incoming argument
2729 //         area, those holes are owned by SELF.  Holes in the outgoing area
2730 //         are owned by the CALLEE.  Holes should not be nessecary in the
2731 //         incoming area, as the Java calling convention is completely under
2732 //         the control of the AD file.  Doubles can be sorted and packed to
2733 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
2734 //         varargs C calling conventions.
2735 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
2736 //         even aligned with pad0 as needed.
2737 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
2738 //         region 6-11 is even aligned; it may be padded out more so that
2739 //         the region from SP to FP meets the minimum stack alignment.
2740 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
2741 //         alignment.  Region 11, pad1, may be dynamically extended so that
2742 //         SP meets the minimum alignment.
2743 
2744 frame
2745 %{
2746   // What direction does stack grow in (assumed to be same for C & Java)
2747   stack_direction(TOWARDS_LOW);
2748 
2749   // These three registers define part of the calling convention
2750   // between compiled code and the interpreter.
2751   inline_cache_reg(RAX);                // Inline Cache Register
2752   interpreter_method_oop_reg(RBX);      // Method Oop Register when
2753                                         // calling interpreter
2754 
2755   // Optional: name the operand used by cisc-spilling to access
2756   // [stack_pointer + offset]
2757   cisc_spilling_operand_name(indOffset32);
2758 
2759   // Number of stack slots consumed by locking an object
2760   sync_stack_slots(2);
2761 
2762   // Compiled code's Frame Pointer
2763   frame_pointer(RSP);
2764 
2765   // Interpreter stores its frame pointer in a register which is
2766   // stored to the stack by I2CAdaptors.
2767   // I2CAdaptors convert from interpreted java to compiled java.
2768   interpreter_frame_pointer(RBP);
2769 
2770   // Stack alignment requirement
2771   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
2772 
2773   // Number of stack slots between incoming argument block and the start of
2774   // a new frame.  The PROLOG must add this many slots to the stack.  The
2775   // EPILOG must remove this many slots.  amd64 needs two slots for
2776   // return address.
2777   in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
2778 
2779   // Number of outgoing stack slots killed above the out_preserve_stack_slots
2780   // for calls to C.  Supports the var-args backing area for register parms.
2781   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
2782 
2783   // The after-PROLOG location of the return address.  Location of
2784   // return address specifies a type (REG or STACK) and a number
2785   // representing the register number (i.e. - use a register name) or
2786   // stack slot.
2787   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
2788   // Otherwise, it is above the locks and verification slot and alignment word
2789   return_addr(STACK - 2 +
2790               align_up((Compile::current()->in_preserve_stack_slots() +
2791                         Compile::current()->fixed_slots()),
2792                        stack_alignment_in_slots()));
2793 
2794   // Body of function which returns an integer array locating
2795   // arguments either in registers or in stack slots.  Passed an array
2796   // of ideal registers called "sig" and a "length" count.  Stack-slot
2797   // offsets are based on outgoing arguments, i.e. a CALLER setting up
2798   // arguments for a CALLEE.  Incoming stack arguments are
2799   // automatically biased by the preserve_stack_slots field above.
2800 
2801   calling_convention
2802   %{
2803     // No difference between ingoing/outgoing just pass false
2804     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
2805   %}
2806 
2807   c_calling_convention
2808   %{
2809     // This is obviously always outgoing
2810     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
2811   %}
2812 
2813   // Location of compiled Java return values.  Same as C for now.
2814   return_value
2815   %{
2816     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
2817            "only return normal values");
2818 
2819     static const int lo[Op_RegL + 1] = {
2820       0,
2821       0,
2822       RAX_num,  // Op_RegN
2823       RAX_num,  // Op_RegI
2824       RAX_num,  // Op_RegP
2825       XMM0_num, // Op_RegF
2826       XMM0_num, // Op_RegD
2827       RAX_num   // Op_RegL
2828     };
2829     static const int hi[Op_RegL + 1] = {
2830       0,
2831       0,
2832       OptoReg::Bad, // Op_RegN
2833       OptoReg::Bad, // Op_RegI
2834       RAX_H_num,    // Op_RegP
2835       OptoReg::Bad, // Op_RegF
2836       XMM0b_num,    // Op_RegD
2837       RAX_H_num     // Op_RegL
2838     };
2839     // Excluded flags and vector registers.
2840     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 6, "missing type");
2841     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
2842   %}
2843 %}
2844 
2845 //----------ATTRIBUTES---------------------------------------------------------
2846 //----------Operand Attributes-------------------------------------------------
2847 op_attrib op_cost(0);        // Required cost attribute
2848 
2849 //----------Instruction Attributes---------------------------------------------
2850 ins_attrib ins_cost(100);       // Required cost attribute
2851 ins_attrib ins_size(8);         // Required size attribute (in bits)
2852 ins_attrib ins_short_branch(0); // Required flag: is this instruction
2853                                 // a non-matching short branch variant
2854                                 // of some long branch?
2855 ins_attrib ins_alignment(1);    // Required alignment attribute (must
2856                                 // be a power of 2) specifies the
2857                                 // alignment that some part of the
2858                                 // instruction (not necessarily the
2859                                 // start) requires.  If > 1, a
2860                                 // compute_padding() function must be
2861                                 // provided for the instruction
2862 
2863 //----------OPERANDS-----------------------------------------------------------
2864 // Operand definitions must precede instruction definitions for correct parsing
2865 // in the ADLC because operands constitute user defined types which are used in
2866 // instruction definitions.
2867 
2868 //----------Simple Operands----------------------------------------------------
2869 // Immediate Operands
2870 // Integer Immediate
2871 operand immI()
2872 %{
2873   match(ConI);
2874 
2875   op_cost(10);
2876   format %{ %}
2877   interface(CONST_INTER);
2878 %}
2879 
2880 // Constant for test vs zero
2881 operand immI0()
2882 %{
2883   predicate(n->get_int() == 0);
2884   match(ConI);
2885 
2886   op_cost(0);
2887   format %{ %}
2888   interface(CONST_INTER);
2889 %}
2890 
2891 // Constant for increment
2892 operand immI1()
2893 %{
2894   predicate(n->get_int() == 1);
2895   match(ConI);
2896 
2897   op_cost(0);
2898   format %{ %}
2899   interface(CONST_INTER);
2900 %}
2901 
2902 // Constant for decrement
2903 operand immI_M1()
2904 %{
2905   predicate(n->get_int() == -1);
2906   match(ConI);
2907 
2908   op_cost(0);
2909   format %{ %}
2910   interface(CONST_INTER);
2911 %}
2912 
2913 // Valid scale values for addressing modes
2914 operand immI2()
2915 %{
2916   predicate(0 <= n->get_int() && (n->get_int() <= 3));
2917   match(ConI);
2918 
2919   format %{ %}
2920   interface(CONST_INTER);
2921 %}
2922 
2923 operand immI8()
2924 %{
2925   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
2926   match(ConI);
2927 
2928   op_cost(5);
2929   format %{ %}
2930   interface(CONST_INTER);
2931 %}
2932 
2933 operand immU8()
2934 %{
2935   predicate((0 <= n->get_int()) && (n->get_int() <= 255));
2936   match(ConI);
2937 
2938   op_cost(5);
2939   format %{ %}
2940   interface(CONST_INTER);
2941 %}
2942 
2943 operand immI16()
2944 %{
2945   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
2946   match(ConI);
2947 
2948   op_cost(10);
2949   format %{ %}
2950   interface(CONST_INTER);
2951 %}
2952 
2953 // Int Immediate non-negative
2954 operand immU31()
2955 %{
2956   predicate(n->get_int() >= 0);
2957   match(ConI);
2958 
2959   op_cost(0);
2960   format %{ %}
2961   interface(CONST_INTER);
2962 %}
2963 
2964 // Constant for long shifts
2965 operand immI_32()
2966 %{
2967   predicate( n->get_int() == 32 );
2968   match(ConI);
2969 
2970   op_cost(0);
2971   format %{ %}
2972   interface(CONST_INTER);
2973 %}
2974 
2975 // Constant for long shifts
2976 operand immI_64()
2977 %{
2978   predicate( n->get_int() == 64 );
2979   match(ConI);
2980 
2981   op_cost(0);
2982   format %{ %}
2983   interface(CONST_INTER);
2984 %}
2985 
2986 // Pointer Immediate
2987 operand immP()
2988 %{
2989   match(ConP);
2990 
2991   op_cost(10);
2992   format %{ %}
2993   interface(CONST_INTER);
2994 %}
2995 
2996 // NULL Pointer Immediate
2997 operand immP0()
2998 %{
2999   predicate(n->get_ptr() == 0);
3000   match(ConP);
3001 
3002   op_cost(5);
3003   format %{ %}
3004   interface(CONST_INTER);
3005 %}
3006 
3007 // Pointer Immediate
3008 operand immN() %{
3009   match(ConN);
3010 
3011   op_cost(10);
3012   format %{ %}
3013   interface(CONST_INTER);
3014 %}
3015 
3016 operand immNKlass() %{
3017   match(ConNKlass);
3018 
3019   op_cost(10);
3020   format %{ %}
3021   interface(CONST_INTER);
3022 %}
3023 
3024 // NULL Pointer Immediate
3025 operand immN0() %{
3026   predicate(n->get_narrowcon() == 0);
3027   match(ConN);
3028 
3029   op_cost(5);
3030   format %{ %}
3031   interface(CONST_INTER);
3032 %}
3033 
3034 operand immP31()
3035 %{
3036   predicate(n->as_Type()->type()->reloc() == relocInfo::none
3037             && (n->get_ptr() >> 31) == 0);
3038   match(ConP);
3039 
3040   op_cost(5);
3041   format %{ %}
3042   interface(CONST_INTER);
3043 %}
3044 
3045 
3046 // Long Immediate
3047 operand immL()
3048 %{
3049   match(ConL);
3050 
3051   op_cost(20);
3052   format %{ %}
3053   interface(CONST_INTER);
3054 %}
3055 
3056 // Long Immediate 8-bit
3057 operand immL8()
3058 %{
3059   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
3060   match(ConL);
3061 
3062   op_cost(5);
3063   format %{ %}
3064   interface(CONST_INTER);
3065 %}
3066 
3067 // Long Immediate 32-bit unsigned
3068 operand immUL32()
3069 %{
3070   predicate(n->get_long() == (unsigned int) (n->get_long()));
3071   match(ConL);
3072 
3073   op_cost(10);
3074   format %{ %}
3075   interface(CONST_INTER);
3076 %}
3077 
3078 // Long Immediate 32-bit signed
3079 operand immL32()
3080 %{
3081   predicate(n->get_long() == (int) (n->get_long()));
3082   match(ConL);
3083 
3084   op_cost(15);
3085   format %{ %}
3086   interface(CONST_INTER);
3087 %}
3088 
3089 operand immL_Pow2()
3090 %{
3091   predicate(is_power_of_2((julong)n->get_long()));
3092   match(ConL);
3093 
3094   op_cost(15);
3095   format %{ %}
3096   interface(CONST_INTER);
3097 %}
3098 
3099 operand immL_NotPow2()
3100 %{
3101   predicate(is_power_of_2((julong)~n->get_long()));
3102   match(ConL);
3103 
3104   op_cost(15);
3105   format %{ %}
3106   interface(CONST_INTER);
3107 %}
3108 
3109 // Long Immediate zero
3110 operand immL0()
3111 %{
3112   predicate(n->get_long() == 0L);
3113   match(ConL);
3114 
3115   op_cost(10);
3116   format %{ %}
3117   interface(CONST_INTER);
3118 %}
3119 
3120 // Constant for increment
3121 operand immL1()
3122 %{
3123   predicate(n->get_long() == 1);
3124   match(ConL);
3125 
3126   format %{ %}
3127   interface(CONST_INTER);
3128 %}
3129 
3130 // Constant for decrement
3131 operand immL_M1()
3132 %{
3133   predicate(n->get_long() == -1);
3134   match(ConL);
3135 
3136   format %{ %}
3137   interface(CONST_INTER);
3138 %}
3139 
3140 // Long Immediate: the value 10
3141 operand immL10()
3142 %{
3143   predicate(n->get_long() == 10);
3144   match(ConL);
3145 
3146   format %{ %}
3147   interface(CONST_INTER);
3148 %}
3149 
3150 // Long immediate from 0 to 127.
3151 // Used for a shorter form of long mul by 10.
3152 operand immL_127()
3153 %{
3154   predicate(0 <= n->get_long() && n->get_long() < 0x80);
3155   match(ConL);
3156 
3157   op_cost(10);
3158   format %{ %}
3159   interface(CONST_INTER);
3160 %}
3161 
3162 // Long Immediate: low 32-bit mask
3163 operand immL_32bits()
3164 %{
3165   predicate(n->get_long() == 0xFFFFFFFFL);
3166   match(ConL);
3167   op_cost(20);
3168 
3169   format %{ %}
3170   interface(CONST_INTER);
3171 %}
3172 
3173 // Float Immediate zero
3174 operand immF0()
3175 %{
3176   predicate(jint_cast(n->getf()) == 0);
3177   match(ConF);
3178 
3179   op_cost(5);
3180   format %{ %}
3181   interface(CONST_INTER);
3182 %}
3183 
3184 // Float Immediate
3185 operand immF()
3186 %{
3187   match(ConF);
3188 
3189   op_cost(15);
3190   format %{ %}
3191   interface(CONST_INTER);
3192 %}
3193 
3194 // Double Immediate zero
3195 operand immD0()
3196 %{
3197   predicate(jlong_cast(n->getd()) == 0);
3198   match(ConD);
3199 
3200   op_cost(5);
3201   format %{ %}
3202   interface(CONST_INTER);
3203 %}
3204 
3205 // Double Immediate
3206 operand immD()
3207 %{
3208   match(ConD);
3209 
3210   op_cost(15);
3211   format %{ %}
3212   interface(CONST_INTER);
3213 %}
3214 
3215 // Immediates for special shifts (sign extend)
3216 
3217 // Constants for increment
3218 operand immI_16()
3219 %{
3220   predicate(n->get_int() == 16);
3221   match(ConI);
3222 
3223   format %{ %}
3224   interface(CONST_INTER);
3225 %}
3226 
3227 operand immI_24()
3228 %{
3229   predicate(n->get_int() == 24);
3230   match(ConI);
3231 
3232   format %{ %}
3233   interface(CONST_INTER);
3234 %}
3235 
3236 // Constant for byte-wide masking
3237 operand immI_255()
3238 %{
3239   predicate(n->get_int() == 255);
3240   match(ConI);
3241 
3242   format %{ %}
3243   interface(CONST_INTER);
3244 %}
3245 
3246 // Constant for short-wide masking
3247 operand immI_65535()
3248 %{
3249   predicate(n->get_int() == 65535);
3250   match(ConI);
3251 
3252   format %{ %}
3253   interface(CONST_INTER);
3254 %}
3255 
3256 // Constant for byte-wide masking
3257 operand immL_255()
3258 %{
3259   predicate(n->get_long() == 255);
3260   match(ConL);
3261 
3262   format %{ %}
3263   interface(CONST_INTER);
3264 %}
3265 
3266 // Constant for short-wide masking
3267 operand immL_65535()
3268 %{
3269   predicate(n->get_long() == 65535);
3270   match(ConL);
3271 
3272   format %{ %}
3273   interface(CONST_INTER);
3274 %}
3275 
3276 // Register Operands
3277 // Integer Register
3278 operand rRegI()
3279 %{
3280   constraint(ALLOC_IN_RC(int_reg));
3281   match(RegI);
3282 
3283   match(rax_RegI);
3284   match(rbx_RegI);
3285   match(rcx_RegI);
3286   match(rdx_RegI);
3287   match(rdi_RegI);
3288 
3289   format %{ %}
3290   interface(REG_INTER);
3291 %}
3292 
3293 // Special Registers
3294 operand rax_RegI()
3295 %{
3296   constraint(ALLOC_IN_RC(int_rax_reg));
3297   match(RegI);
3298   match(rRegI);
3299 
3300   format %{ "RAX" %}
3301   interface(REG_INTER);
3302 %}
3303 
3304 // Special Registers
3305 operand rbx_RegI()
3306 %{
3307   constraint(ALLOC_IN_RC(int_rbx_reg));
3308   match(RegI);
3309   match(rRegI);
3310 
3311   format %{ "RBX" %}
3312   interface(REG_INTER);
3313 %}
3314 
3315 operand rcx_RegI()
3316 %{
3317   constraint(ALLOC_IN_RC(int_rcx_reg));
3318   match(RegI);
3319   match(rRegI);
3320 
3321   format %{ "RCX" %}
3322   interface(REG_INTER);
3323 %}
3324 
3325 operand rdx_RegI()
3326 %{
3327   constraint(ALLOC_IN_RC(int_rdx_reg));
3328   match(RegI);
3329   match(rRegI);
3330 
3331   format %{ "RDX" %}
3332   interface(REG_INTER);
3333 %}
3334 
3335 operand rdi_RegI()
3336 %{
3337   constraint(ALLOC_IN_RC(int_rdi_reg));
3338   match(RegI);
3339   match(rRegI);
3340 
3341   format %{ "RDI" %}
3342   interface(REG_INTER);
3343 %}
3344 
3345 operand no_rcx_RegI()
3346 %{
3347   constraint(ALLOC_IN_RC(int_no_rcx_reg));
3348   match(RegI);
3349   match(rax_RegI);
3350   match(rbx_RegI);
3351   match(rdx_RegI);
3352   match(rdi_RegI);
3353 
3354   format %{ %}
3355   interface(REG_INTER);
3356 %}
3357 
3358 operand no_rax_rdx_RegI()
3359 %{
3360   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
3361   match(RegI);
3362   match(rbx_RegI);
3363   match(rcx_RegI);
3364   match(rdi_RegI);
3365 
3366   format %{ %}
3367   interface(REG_INTER);
3368 %}
3369 
3370 // Pointer Register
3371 operand any_RegP()
3372 %{
3373   constraint(ALLOC_IN_RC(any_reg));
3374   match(RegP);
3375   match(rax_RegP);
3376   match(rbx_RegP);
3377   match(rdi_RegP);
3378   match(rsi_RegP);
3379   match(rbp_RegP);
3380   match(r15_RegP);
3381   match(rRegP);
3382 
3383   format %{ %}
3384   interface(REG_INTER);
3385 %}
3386 
3387 operand rRegP()
3388 %{
3389   constraint(ALLOC_IN_RC(ptr_reg));
3390   match(RegP);
3391   match(rax_RegP);
3392   match(rbx_RegP);
3393   match(rdi_RegP);
3394   match(rsi_RegP);
3395   match(rbp_RegP);  // See Q&A below about
3396   match(r15_RegP);  // r15_RegP and rbp_RegP.
3397 
3398   format %{ %}
3399   interface(REG_INTER);
3400 %}
3401 
3402 operand rRegN() %{
3403   constraint(ALLOC_IN_RC(int_reg));
3404   match(RegN);
3405 
3406   format %{ %}
3407   interface(REG_INTER);
3408 %}
3409 
3410 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
3411 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
3412 // It's fine for an instruction input that expects rRegP to match a r15_RegP.
3413 // The output of an instruction is controlled by the allocator, which respects
3414 // register class masks, not match rules.  Unless an instruction mentions
3415 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
3416 // by the allocator as an input.
3417 // The same logic applies to rbp_RegP being a match for rRegP: If PreserveFramePointer==true,
3418 // the RBP is used as a proper frame pointer and is not included in ptr_reg. As a
3419 // result, RBP is not included in the output of the instruction either.
3420 
3421 operand no_rax_RegP()
3422 %{
3423   constraint(ALLOC_IN_RC(ptr_no_rax_reg));
3424   match(RegP);
3425   match(rbx_RegP);
3426   match(rsi_RegP);
3427   match(rdi_RegP);
3428 
3429   format %{ %}
3430   interface(REG_INTER);
3431 %}
3432 
3433 // This operand is not allowed to use RBP even if
3434 // RBP is not used to hold the frame pointer.
3435 operand no_rbp_RegP()
3436 %{
3437   constraint(ALLOC_IN_RC(ptr_reg_no_rbp));
3438   match(RegP);
3439   match(rbx_RegP);
3440   match(rsi_RegP);
3441   match(rdi_RegP);
3442 
3443   format %{ %}
3444   interface(REG_INTER);
3445 %}
3446 
3447 operand no_rax_rbx_RegP()
3448 %{
3449   constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
3450   match(RegP);
3451   match(rsi_RegP);
3452   match(rdi_RegP);
3453 
3454   format %{ %}
3455   interface(REG_INTER);
3456 %}
3457 
3458 // Special Registers
3459 // Return a pointer value
3460 operand rax_RegP()
3461 %{
3462   constraint(ALLOC_IN_RC(ptr_rax_reg));
3463   match(RegP);
3464   match(rRegP);
3465 
3466   format %{ %}
3467   interface(REG_INTER);
3468 %}
3469 
3470 // Special Registers
3471 // Return a compressed pointer value
3472 operand rax_RegN()
3473 %{
3474   constraint(ALLOC_IN_RC(int_rax_reg));
3475   match(RegN);
3476   match(rRegN);
3477 
3478   format %{ %}
3479   interface(REG_INTER);
3480 %}
3481 
3482 // Used in AtomicAdd
3483 operand rbx_RegP()
3484 %{
3485   constraint(ALLOC_IN_RC(ptr_rbx_reg));
3486   match(RegP);
3487   match(rRegP);
3488 
3489   format %{ %}
3490   interface(REG_INTER);
3491 %}
3492 
3493 operand rsi_RegP()
3494 %{
3495   constraint(ALLOC_IN_RC(ptr_rsi_reg));
3496   match(RegP);
3497   match(rRegP);
3498 
3499   format %{ %}
3500   interface(REG_INTER);
3501 %}
3502 
3503 operand rbp_RegP()
3504 %{
3505   constraint(ALLOC_IN_RC(ptr_rbp_reg));
3506   match(RegP);
3507   match(rRegP);
3508 
3509   format %{ %}
3510   interface(REG_INTER);
3511 %}
3512 
3513 // Used in rep stosq
3514 operand rdi_RegP()
3515 %{
3516   constraint(ALLOC_IN_RC(ptr_rdi_reg));
3517   match(RegP);
3518   match(rRegP);
3519 
3520   format %{ %}
3521   interface(REG_INTER);
3522 %}
3523 
3524 operand r15_RegP()
3525 %{
3526   constraint(ALLOC_IN_RC(ptr_r15_reg));
3527   match(RegP);
3528   match(rRegP);
3529 
3530   format %{ %}
3531   interface(REG_INTER);
3532 %}
3533 
3534 operand rRegL()
3535 %{
3536   constraint(ALLOC_IN_RC(long_reg));
3537   match(RegL);
3538   match(rax_RegL);
3539   match(rdx_RegL);
3540 
3541   format %{ %}
3542   interface(REG_INTER);
3543 %}
3544 
3545 // Special Registers
3546 operand no_rax_rdx_RegL()
3547 %{
3548   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3549   match(RegL);
3550   match(rRegL);
3551 
3552   format %{ %}
3553   interface(REG_INTER);
3554 %}
3555 
3556 operand no_rax_RegL()
3557 %{
3558   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3559   match(RegL);
3560   match(rRegL);
3561   match(rdx_RegL);
3562 
3563   format %{ %}
3564   interface(REG_INTER);
3565 %}
3566 
3567 operand no_rcx_RegL()
3568 %{
3569   constraint(ALLOC_IN_RC(long_no_rcx_reg));
3570   match(RegL);
3571   match(rRegL);
3572 
3573   format %{ %}
3574   interface(REG_INTER);
3575 %}
3576 
3577 operand rax_RegL()
3578 %{
3579   constraint(ALLOC_IN_RC(long_rax_reg));
3580   match(RegL);
3581   match(rRegL);
3582 
3583   format %{ "RAX" %}
3584   interface(REG_INTER);
3585 %}
3586 
3587 operand rcx_RegL()
3588 %{
3589   constraint(ALLOC_IN_RC(long_rcx_reg));
3590   match(RegL);
3591   match(rRegL);
3592 
3593   format %{ %}
3594   interface(REG_INTER);
3595 %}
3596 
3597 operand rdx_RegL()
3598 %{
3599   constraint(ALLOC_IN_RC(long_rdx_reg));
3600   match(RegL);
3601   match(rRegL);
3602 
3603   format %{ %}
3604   interface(REG_INTER);
3605 %}
3606 
3607 // Flags register, used as output of compare instructions
3608 operand rFlagsReg()
3609 %{
3610   constraint(ALLOC_IN_RC(int_flags));
3611   match(RegFlags);
3612 
3613   format %{ "RFLAGS" %}
3614   interface(REG_INTER);
3615 %}
3616 
3617 // Flags register, used as output of FLOATING POINT compare instructions
3618 operand rFlagsRegU()
3619 %{
3620   constraint(ALLOC_IN_RC(int_flags));
3621   match(RegFlags);
3622 
3623   format %{ "RFLAGS_U" %}
3624   interface(REG_INTER);
3625 %}
3626 
3627 operand rFlagsRegUCF() %{
3628   constraint(ALLOC_IN_RC(int_flags));
3629   match(RegFlags);
3630   predicate(false);
3631 
3632   format %{ "RFLAGS_U_CF" %}
3633   interface(REG_INTER);
3634 %}
3635 
3636 // Float register operands
3637 operand regF() %{
3638    constraint(ALLOC_IN_RC(float_reg));
3639    match(RegF);
3640 
3641    format %{ %}
3642    interface(REG_INTER);
3643 %}
3644 
3645 // Float register operands
3646 operand legRegF() %{
3647    constraint(ALLOC_IN_RC(float_reg_legacy));
3648    match(RegF);
3649 
3650    format %{ %}
3651    interface(REG_INTER);
3652 %}
3653 
3654 // Float register operands
3655 operand vlRegF() %{
3656    constraint(ALLOC_IN_RC(float_reg_vl));
3657    match(RegF);
3658 
3659    format %{ %}
3660    interface(REG_INTER);
3661 %}
3662 
3663 // Double register operands
3664 operand regD() %{
3665    constraint(ALLOC_IN_RC(double_reg));
3666    match(RegD);
3667 
3668    format %{ %}
3669    interface(REG_INTER);
3670 %}
3671 
3672 // Double register operands
3673 operand legRegD() %{
3674    constraint(ALLOC_IN_RC(double_reg_legacy));
3675    match(RegD);
3676 
3677    format %{ %}
3678    interface(REG_INTER);
3679 %}
3680 
3681 // Double register operands
3682 operand vlRegD() %{
3683    constraint(ALLOC_IN_RC(double_reg_vl));
3684    match(RegD);
3685 
3686    format %{ %}
3687    interface(REG_INTER);
3688 %}
3689 
3690 //----------Memory Operands----------------------------------------------------
3691 // Direct Memory Operand
3692 // operand direct(immP addr)
3693 // %{
3694 //   match(addr);
3695 
3696 //   format %{ "[$addr]" %}
3697 //   interface(MEMORY_INTER) %{
3698 //     base(0xFFFFFFFF);
3699 //     index(0x4);
3700 //     scale(0x0);
3701 //     disp($addr);
3702 //   %}
3703 // %}
3704 
3705 // Indirect Memory Operand
3706 operand indirect(any_RegP reg)
3707 %{
3708   constraint(ALLOC_IN_RC(ptr_reg));
3709   match(reg);
3710 
3711   format %{ "[$reg]" %}
3712   interface(MEMORY_INTER) %{
3713     base($reg);
3714     index(0x4);
3715     scale(0x0);
3716     disp(0x0);
3717   %}
3718 %}
3719 
3720 // Indirect Memory Plus Short Offset Operand
3721 operand indOffset8(any_RegP reg, immL8 off)
3722 %{
3723   constraint(ALLOC_IN_RC(ptr_reg));
3724   match(AddP reg off);
3725 
3726   format %{ "[$reg + $off (8-bit)]" %}
3727   interface(MEMORY_INTER) %{
3728     base($reg);
3729     index(0x4);
3730     scale(0x0);
3731     disp($off);
3732   %}
3733 %}
3734 
3735 // Indirect Memory Plus Long Offset Operand
3736 operand indOffset32(any_RegP reg, immL32 off)
3737 %{
3738   constraint(ALLOC_IN_RC(ptr_reg));
3739   match(AddP reg off);
3740 
3741   format %{ "[$reg + $off (32-bit)]" %}
3742   interface(MEMORY_INTER) %{
3743     base($reg);
3744     index(0x4);
3745     scale(0x0);
3746     disp($off);
3747   %}
3748 %}
3749 
3750 // Indirect Memory Plus Index Register Plus Offset Operand
3751 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
3752 %{
3753   constraint(ALLOC_IN_RC(ptr_reg));
3754   match(AddP (AddP reg lreg) off);
3755 
3756   op_cost(10);
3757   format %{"[$reg + $off + $lreg]" %}
3758   interface(MEMORY_INTER) %{
3759     base($reg);
3760     index($lreg);
3761     scale(0x0);
3762     disp($off);
3763   %}
3764 %}
3765 
3766 // Indirect Memory Plus Index Register Plus Offset Operand
3767 operand indIndex(any_RegP reg, rRegL lreg)
3768 %{
3769   constraint(ALLOC_IN_RC(ptr_reg));
3770   match(AddP reg lreg);
3771 
3772   op_cost(10);
3773   format %{"[$reg + $lreg]" %}
3774   interface(MEMORY_INTER) %{
3775     base($reg);
3776     index($lreg);
3777     scale(0x0);
3778     disp(0x0);
3779   %}
3780 %}
3781 
3782 // Indirect Memory Times Scale Plus Index Register
3783 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
3784 %{
3785   constraint(ALLOC_IN_RC(ptr_reg));
3786   match(AddP reg (LShiftL lreg scale));
3787 
3788   op_cost(10);
3789   format %{"[$reg + $lreg << $scale]" %}
3790   interface(MEMORY_INTER) %{
3791     base($reg);
3792     index($lreg);
3793     scale($scale);
3794     disp(0x0);
3795   %}
3796 %}
3797 
3798 operand indPosIndexScale(any_RegP reg, rRegI idx, immI2 scale)
3799 %{
3800   constraint(ALLOC_IN_RC(ptr_reg));
3801   predicate(n->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3802   match(AddP reg (LShiftL (ConvI2L idx) scale));
3803 
3804   op_cost(10);
3805   format %{"[$reg + pos $idx << $scale]" %}
3806   interface(MEMORY_INTER) %{
3807     base($reg);
3808     index($idx);
3809     scale($scale);
3810     disp(0x0);
3811   %}
3812 %}
3813 
3814 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3815 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
3816 %{
3817   constraint(ALLOC_IN_RC(ptr_reg));
3818   match(AddP (AddP reg (LShiftL lreg scale)) off);
3819 
3820   op_cost(10);
3821   format %{"[$reg + $off + $lreg << $scale]" %}
3822   interface(MEMORY_INTER) %{
3823     base($reg);
3824     index($lreg);
3825     scale($scale);
3826     disp($off);
3827   %}
3828 %}
3829 
3830 // Indirect Memory Plus Positive Index Register Plus Offset Operand
3831 operand indPosIndexOffset(any_RegP reg, immL32 off, rRegI idx)
3832 %{
3833   constraint(ALLOC_IN_RC(ptr_reg));
3834   predicate(n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
3835   match(AddP (AddP reg (ConvI2L idx)) off);
3836 
3837   op_cost(10);
3838   format %{"[$reg + $off + $idx]" %}
3839   interface(MEMORY_INTER) %{
3840     base($reg);
3841     index($idx);
3842     scale(0x0);
3843     disp($off);
3844   %}
3845 %}
3846 
3847 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
3848 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
3849 %{
3850   constraint(ALLOC_IN_RC(ptr_reg));
3851   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3852   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
3853 
3854   op_cost(10);
3855   format %{"[$reg + $off + $idx << $scale]" %}
3856   interface(MEMORY_INTER) %{
3857     base($reg);
3858     index($idx);
3859     scale($scale);
3860     disp($off);
3861   %}
3862 %}
3863 
3864 // Indirect Narrow Oop Plus Offset Operand
3865 // Note: x86 architecture doesn't support "scale * index + offset" without a base
3866 // we can't free r12 even with CompressedOops::base() == NULL.
3867 operand indCompressedOopOffset(rRegN reg, immL32 off) %{
3868   predicate(UseCompressedOops && (CompressedOops::shift() == Address::times_8));
3869   constraint(ALLOC_IN_RC(ptr_reg));
3870   match(AddP (DecodeN reg) off);
3871 
3872   op_cost(10);
3873   format %{"[R12 + $reg << 3 + $off] (compressed oop addressing)" %}
3874   interface(MEMORY_INTER) %{
3875     base(0xc); // R12
3876     index($reg);
3877     scale(0x3);
3878     disp($off);
3879   %}
3880 %}
3881 
3882 // Indirect Memory Operand
3883 operand indirectNarrow(rRegN reg)
3884 %{
3885   predicate(CompressedOops::shift() == 0);
3886   constraint(ALLOC_IN_RC(ptr_reg));
3887   match(DecodeN reg);
3888 
3889   format %{ "[$reg]" %}
3890   interface(MEMORY_INTER) %{
3891     base($reg);
3892     index(0x4);
3893     scale(0x0);
3894     disp(0x0);
3895   %}
3896 %}
3897 
3898 // Indirect Memory Plus Short Offset Operand
3899 operand indOffset8Narrow(rRegN reg, immL8 off)
3900 %{
3901   predicate(CompressedOops::shift() == 0);
3902   constraint(ALLOC_IN_RC(ptr_reg));
3903   match(AddP (DecodeN reg) off);
3904 
3905   format %{ "[$reg + $off (8-bit)]" %}
3906   interface(MEMORY_INTER) %{
3907     base($reg);
3908     index(0x4);
3909     scale(0x0);
3910     disp($off);
3911   %}
3912 %}
3913 
3914 // Indirect Memory Plus Long Offset Operand
3915 operand indOffset32Narrow(rRegN reg, immL32 off)
3916 %{
3917   predicate(CompressedOops::shift() == 0);
3918   constraint(ALLOC_IN_RC(ptr_reg));
3919   match(AddP (DecodeN reg) off);
3920 
3921   format %{ "[$reg + $off (32-bit)]" %}
3922   interface(MEMORY_INTER) %{
3923     base($reg);
3924     index(0x4);
3925     scale(0x0);
3926     disp($off);
3927   %}
3928 %}
3929 
3930 // Indirect Memory Plus Index Register Plus Offset Operand
3931 operand indIndexOffsetNarrow(rRegN reg, rRegL lreg, immL32 off)
3932 %{
3933   predicate(CompressedOops::shift() == 0);
3934   constraint(ALLOC_IN_RC(ptr_reg));
3935   match(AddP (AddP (DecodeN reg) lreg) off);
3936 
3937   op_cost(10);
3938   format %{"[$reg + $off + $lreg]" %}
3939   interface(MEMORY_INTER) %{
3940     base($reg);
3941     index($lreg);
3942     scale(0x0);
3943     disp($off);
3944   %}
3945 %}
3946 
3947 // Indirect Memory Plus Index Register Plus Offset Operand
3948 operand indIndexNarrow(rRegN reg, rRegL lreg)
3949 %{
3950   predicate(CompressedOops::shift() == 0);
3951   constraint(ALLOC_IN_RC(ptr_reg));
3952   match(AddP (DecodeN reg) lreg);
3953 
3954   op_cost(10);
3955   format %{"[$reg + $lreg]" %}
3956   interface(MEMORY_INTER) %{
3957     base($reg);
3958     index($lreg);
3959     scale(0x0);
3960     disp(0x0);
3961   %}
3962 %}
3963 
3964 // Indirect Memory Times Scale Plus Index Register
3965 operand indIndexScaleNarrow(rRegN reg, rRegL lreg, immI2 scale)
3966 %{
3967   predicate(CompressedOops::shift() == 0);
3968   constraint(ALLOC_IN_RC(ptr_reg));
3969   match(AddP (DecodeN reg) (LShiftL lreg scale));
3970 
3971   op_cost(10);
3972   format %{"[$reg + $lreg << $scale]" %}
3973   interface(MEMORY_INTER) %{
3974     base($reg);
3975     index($lreg);
3976     scale($scale);
3977     disp(0x0);
3978   %}
3979 %}
3980 
3981 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3982 operand indIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegL lreg, immI2 scale)
3983 %{
3984   predicate(CompressedOops::shift() == 0);
3985   constraint(ALLOC_IN_RC(ptr_reg));
3986   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
3987 
3988   op_cost(10);
3989   format %{"[$reg + $off + $lreg << $scale]" %}
3990   interface(MEMORY_INTER) %{
3991     base($reg);
3992     index($lreg);
3993     scale($scale);
3994     disp($off);
3995   %}
3996 %}
3997 
3998 // Indirect Memory Times Plus Positive Index Register Plus Offset Operand
3999 operand indPosIndexOffsetNarrow(rRegN reg, immL32 off, rRegI idx)
4000 %{
4001   constraint(ALLOC_IN_RC(ptr_reg));
4002   predicate(CompressedOops::shift() == 0 && n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
4003   match(AddP (AddP (DecodeN reg) (ConvI2L idx)) off);
4004 
4005   op_cost(10);
4006   format %{"[$reg + $off + $idx]" %}
4007   interface(MEMORY_INTER) %{
4008     base($reg);
4009     index($idx);
4010     scale(0x0);
4011     disp($off);
4012   %}
4013 %}
4014 
4015 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
4016 operand indPosIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegI idx, immI2 scale)
4017 %{
4018   constraint(ALLOC_IN_RC(ptr_reg));
4019   predicate(CompressedOops::shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
4020   match(AddP (AddP (DecodeN reg) (LShiftL (ConvI2L idx) scale)) off);
4021 
4022   op_cost(10);
4023   format %{"[$reg + $off + $idx << $scale]" %}
4024   interface(MEMORY_INTER) %{
4025     base($reg);
4026     index($idx);
4027     scale($scale);
4028     disp($off);
4029   %}
4030 %}
4031 
4032 //----------Special Memory Operands--------------------------------------------
4033 // Stack Slot Operand - This operand is used for loading and storing temporary
4034 //                      values on the stack where a match requires a value to
4035 //                      flow through memory.
4036 operand stackSlotP(sRegP reg)
4037 %{
4038   constraint(ALLOC_IN_RC(stack_slots));
4039   // No match rule because this operand is only generated in matching
4040 
4041   format %{ "[$reg]" %}
4042   interface(MEMORY_INTER) %{
4043     base(0x4);   // RSP
4044     index(0x4);  // No Index
4045     scale(0x0);  // No Scale
4046     disp($reg);  // Stack Offset
4047   %}
4048 %}
4049 
4050 operand stackSlotI(sRegI reg)
4051 %{
4052   constraint(ALLOC_IN_RC(stack_slots));
4053   // No match rule because this operand is only generated in matching
4054 
4055   format %{ "[$reg]" %}
4056   interface(MEMORY_INTER) %{
4057     base(0x4);   // RSP
4058     index(0x4);  // No Index
4059     scale(0x0);  // No Scale
4060     disp($reg);  // Stack Offset
4061   %}
4062 %}
4063 
4064 operand stackSlotF(sRegF reg)
4065 %{
4066   constraint(ALLOC_IN_RC(stack_slots));
4067   // No match rule because this operand is only generated in matching
4068 
4069   format %{ "[$reg]" %}
4070   interface(MEMORY_INTER) %{
4071     base(0x4);   // RSP
4072     index(0x4);  // No Index
4073     scale(0x0);  // No Scale
4074     disp($reg);  // Stack Offset
4075   %}
4076 %}
4077 
4078 operand stackSlotD(sRegD reg)
4079 %{
4080   constraint(ALLOC_IN_RC(stack_slots));
4081   // No match rule because this operand is only generated in matching
4082 
4083   format %{ "[$reg]" %}
4084   interface(MEMORY_INTER) %{
4085     base(0x4);   // RSP
4086     index(0x4);  // No Index
4087     scale(0x0);  // No Scale
4088     disp($reg);  // Stack Offset
4089   %}
4090 %}
4091 operand stackSlotL(sRegL reg)
4092 %{
4093   constraint(ALLOC_IN_RC(stack_slots));
4094   // No match rule because this operand is only generated in matching
4095 
4096   format %{ "[$reg]" %}
4097   interface(MEMORY_INTER) %{
4098     base(0x4);   // RSP
4099     index(0x4);  // No Index
4100     scale(0x0);  // No Scale
4101     disp($reg);  // Stack Offset
4102   %}
4103 %}
4104 
4105 //----------Conditional Branch Operands----------------------------------------
4106 // Comparison Op  - This is the operation of the comparison, and is limited to
4107 //                  the following set of codes:
4108 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4109 //
4110 // Other attributes of the comparison, such as unsignedness, are specified
4111 // by the comparison instruction that sets a condition code flags register.
4112 // That result is represented by a flags operand whose subtype is appropriate
4113 // to the unsignedness (etc.) of the comparison.
4114 //
4115 // Later, the instruction which matches both the Comparison Op (a Bool) and
4116 // the flags (produced by the Cmp) specifies the coding of the comparison op
4117 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4118 
4119 // Comparision Code
4120 operand cmpOp()
4121 %{
4122   match(Bool);
4123 
4124   format %{ "" %}
4125   interface(COND_INTER) %{
4126     equal(0x4, "e");
4127     not_equal(0x5, "ne");
4128     less(0xC, "l");
4129     greater_equal(0xD, "ge");
4130     less_equal(0xE, "le");
4131     greater(0xF, "g");
4132     overflow(0x0, "o");
4133     no_overflow(0x1, "no");
4134   %}
4135 %}
4136 
4137 // Comparison Code, unsigned compare.  Used by FP also, with
4138 // C2 (unordered) turned into GT or LT already.  The other bits
4139 // C0 and C3 are turned into Carry & Zero flags.
4140 operand cmpOpU()
4141 %{
4142   match(Bool);
4143 
4144   format %{ "" %}
4145   interface(COND_INTER) %{
4146     equal(0x4, "e");
4147     not_equal(0x5, "ne");
4148     less(0x2, "b");
4149     greater_equal(0x3, "nb");
4150     less_equal(0x6, "be");
4151     greater(0x7, "nbe");
4152     overflow(0x0, "o");
4153     no_overflow(0x1, "no");
4154   %}
4155 %}
4156 
4157 
4158 // Floating comparisons that don't require any fixup for the unordered case
4159 operand cmpOpUCF() %{
4160   match(Bool);
4161   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4162             n->as_Bool()->_test._test == BoolTest::ge ||
4163             n->as_Bool()->_test._test == BoolTest::le ||
4164             n->as_Bool()->_test._test == BoolTest::gt);
4165   format %{ "" %}
4166   interface(COND_INTER) %{
4167     equal(0x4, "e");
4168     not_equal(0x5, "ne");
4169     less(0x2, "b");
4170     greater_equal(0x3, "nb");
4171     less_equal(0x6, "be");
4172     greater(0x7, "nbe");
4173     overflow(0x0, "o");
4174     no_overflow(0x1, "no");
4175   %}
4176 %}
4177 
4178 
4179 // Floating comparisons that can be fixed up with extra conditional jumps
4180 operand cmpOpUCF2() %{
4181   match(Bool);
4182   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4183             n->as_Bool()->_test._test == BoolTest::eq);
4184   format %{ "" %}
4185   interface(COND_INTER) %{
4186     equal(0x4, "e");
4187     not_equal(0x5, "ne");
4188     less(0x2, "b");
4189     greater_equal(0x3, "nb");
4190     less_equal(0x6, "be");
4191     greater(0x7, "nbe");
4192     overflow(0x0, "o");
4193     no_overflow(0x1, "no");
4194   %}
4195 %}
4196 
4197 //----------OPERAND CLASSES----------------------------------------------------
4198 // Operand Classes are groups of operands that are used as to simplify
4199 // instruction definitions by not requiring the AD writer to specify separate
4200 // instructions for every form of operand when the instruction accepts
4201 // multiple operand types with the same basic encoding and format.  The classic
4202 // case of this is memory operands.
4203 
4204 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
4205                indIndexScale, indPosIndexScale, indIndexScaleOffset, indPosIndexOffset, indPosIndexScaleOffset,
4206                indCompressedOopOffset,
4207                indirectNarrow, indOffset8Narrow, indOffset32Narrow,
4208                indIndexOffsetNarrow, indIndexNarrow, indIndexScaleNarrow,
4209                indIndexScaleOffsetNarrow, indPosIndexOffsetNarrow, indPosIndexScaleOffsetNarrow);
4210 
4211 //----------PIPELINE-----------------------------------------------------------
4212 // Rules which define the behavior of the target architectures pipeline.
4213 pipeline %{
4214 
4215 //----------ATTRIBUTES---------------------------------------------------------
4216 attributes %{
4217   variable_size_instructions;        // Fixed size instructions
4218   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
4219   instruction_unit_size = 1;         // An instruction is 1 bytes long
4220   instruction_fetch_unit_size = 16;  // The processor fetches one line
4221   instruction_fetch_units = 1;       // of 16 bytes
4222 
4223   // List of nop instructions
4224   nops( MachNop );
4225 %}
4226 
4227 //----------RESOURCES----------------------------------------------------------
4228 // Resources are the functional units available to the machine
4229 
4230 // Generic P2/P3 pipeline
4231 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
4232 // 3 instructions decoded per cycle.
4233 // 2 load/store ops per cycle, 1 branch, 1 FPU,
4234 // 3 ALU op, only ALU0 handles mul instructions.
4235 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
4236            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
4237            BR, FPU,
4238            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
4239 
4240 //----------PIPELINE DESCRIPTION-----------------------------------------------
4241 // Pipeline Description specifies the stages in the machine's pipeline
4242 
4243 // Generic P2/P3 pipeline
4244 pipe_desc(S0, S1, S2, S3, S4, S5);
4245 
4246 //----------PIPELINE CLASSES---------------------------------------------------
4247 // Pipeline Classes describe the stages in which input and output are
4248 // referenced by the hardware pipeline.
4249 
4250 // Naming convention: ialu or fpu
4251 // Then: _reg
4252 // Then: _reg if there is a 2nd register
4253 // Then: _long if it's a pair of instructions implementing a long
4254 // Then: _fat if it requires the big decoder
4255 //   Or: _mem if it requires the big decoder and a memory unit.
4256 
4257 // Integer ALU reg operation
4258 pipe_class ialu_reg(rRegI dst)
4259 %{
4260     single_instruction;
4261     dst    : S4(write);
4262     dst    : S3(read);
4263     DECODE : S0;        // any decoder
4264     ALU    : S3;        // any alu
4265 %}
4266 
4267 // Long ALU reg operation
4268 pipe_class ialu_reg_long(rRegL dst)
4269 %{
4270     instruction_count(2);
4271     dst    : S4(write);
4272     dst    : S3(read);
4273     DECODE : S0(2);     // any 2 decoders
4274     ALU    : S3(2);     // both alus
4275 %}
4276 
4277 // Integer ALU reg operation using big decoder
4278 pipe_class ialu_reg_fat(rRegI dst)
4279 %{
4280     single_instruction;
4281     dst    : S4(write);
4282     dst    : S3(read);
4283     D0     : S0;        // big decoder only
4284     ALU    : S3;        // any alu
4285 %}
4286 
4287 // Long ALU reg operation using big decoder
4288 pipe_class ialu_reg_long_fat(rRegL dst)
4289 %{
4290     instruction_count(2);
4291     dst    : S4(write);
4292     dst    : S3(read);
4293     D0     : S0(2);     // big decoder only; twice
4294     ALU    : S3(2);     // any 2 alus
4295 %}
4296 
4297 // Integer ALU reg-reg operation
4298 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
4299 %{
4300     single_instruction;
4301     dst    : S4(write);
4302     src    : S3(read);
4303     DECODE : S0;        // any decoder
4304     ALU    : S3;        // any alu
4305 %}
4306 
4307 // Long ALU reg-reg operation
4308 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
4309 %{
4310     instruction_count(2);
4311     dst    : S4(write);
4312     src    : S3(read);
4313     DECODE : S0(2);     // any 2 decoders
4314     ALU    : S3(2);     // both alus
4315 %}
4316 
4317 // Integer ALU reg-reg operation
4318 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
4319 %{
4320     single_instruction;
4321     dst    : S4(write);
4322     src    : S3(read);
4323     D0     : S0;        // big decoder only
4324     ALU    : S3;        // any alu
4325 %}
4326 
4327 // Long ALU reg-reg operation
4328 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
4329 %{
4330     instruction_count(2);
4331     dst    : S4(write);
4332     src    : S3(read);
4333     D0     : S0(2);     // big decoder only; twice
4334     ALU    : S3(2);     // both alus
4335 %}
4336 
4337 // Integer ALU reg-mem operation
4338 pipe_class ialu_reg_mem(rRegI dst, memory mem)
4339 %{
4340     single_instruction;
4341     dst    : S5(write);
4342     mem    : S3(read);
4343     D0     : S0;        // big decoder only
4344     ALU    : S4;        // any alu
4345     MEM    : S3;        // any mem
4346 %}
4347 
4348 // Integer mem operation (prefetch)
4349 pipe_class ialu_mem(memory mem)
4350 %{
4351     single_instruction;
4352     mem    : S3(read);
4353     D0     : S0;        // big decoder only
4354     MEM    : S3;        // any mem
4355 %}
4356 
4357 // Integer Store to Memory
4358 pipe_class ialu_mem_reg(memory mem, rRegI src)
4359 %{
4360     single_instruction;
4361     mem    : S3(read);
4362     src    : S5(read);
4363     D0     : S0;        // big decoder only
4364     ALU    : S4;        // any alu
4365     MEM    : S3;
4366 %}
4367 
4368 // // Long Store to Memory
4369 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
4370 // %{
4371 //     instruction_count(2);
4372 //     mem    : S3(read);
4373 //     src    : S5(read);
4374 //     D0     : S0(2);          // big decoder only; twice
4375 //     ALU    : S4(2);     // any 2 alus
4376 //     MEM    : S3(2);  // Both mems
4377 // %}
4378 
4379 // Integer Store to Memory
4380 pipe_class ialu_mem_imm(memory mem)
4381 %{
4382     single_instruction;
4383     mem    : S3(read);
4384     D0     : S0;        // big decoder only
4385     ALU    : S4;        // any alu
4386     MEM    : S3;
4387 %}
4388 
4389 // Integer ALU0 reg-reg operation
4390 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
4391 %{
4392     single_instruction;
4393     dst    : S4(write);
4394     src    : S3(read);
4395     D0     : S0;        // Big decoder only
4396     ALU0   : S3;        // only alu0
4397 %}
4398 
4399 // Integer ALU0 reg-mem operation
4400 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
4401 %{
4402     single_instruction;
4403     dst    : S5(write);
4404     mem    : S3(read);
4405     D0     : S0;        // big decoder only
4406     ALU0   : S4;        // ALU0 only
4407     MEM    : S3;        // any mem
4408 %}
4409 
4410 // Integer ALU reg-reg operation
4411 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
4412 %{
4413     single_instruction;
4414     cr     : S4(write);
4415     src1   : S3(read);
4416     src2   : S3(read);
4417     DECODE : S0;        // any decoder
4418     ALU    : S3;        // any alu
4419 %}
4420 
4421 // Integer ALU reg-imm operation
4422 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
4423 %{
4424     single_instruction;
4425     cr     : S4(write);
4426     src1   : S3(read);
4427     DECODE : S0;        // any decoder
4428     ALU    : S3;        // any alu
4429 %}
4430 
4431 // Integer ALU reg-mem operation
4432 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
4433 %{
4434     single_instruction;
4435     cr     : S4(write);
4436     src1   : S3(read);
4437     src2   : S3(read);
4438     D0     : S0;        // big decoder only
4439     ALU    : S4;        // any alu
4440     MEM    : S3;
4441 %}
4442 
4443 // Conditional move reg-reg
4444 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
4445 %{
4446     instruction_count(4);
4447     y      : S4(read);
4448     q      : S3(read);
4449     p      : S3(read);
4450     DECODE : S0(4);     // any decoder
4451 %}
4452 
4453 // Conditional move reg-reg
4454 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
4455 %{
4456     single_instruction;
4457     dst    : S4(write);
4458     src    : S3(read);
4459     cr     : S3(read);
4460     DECODE : S0;        // any decoder
4461 %}
4462 
4463 // Conditional move reg-mem
4464 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
4465 %{
4466     single_instruction;
4467     dst    : S4(write);
4468     src    : S3(read);
4469     cr     : S3(read);
4470     DECODE : S0;        // any decoder
4471     MEM    : S3;
4472 %}
4473 
4474 // Conditional move reg-reg long
4475 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
4476 %{
4477     single_instruction;
4478     dst    : S4(write);
4479     src    : S3(read);
4480     cr     : S3(read);
4481     DECODE : S0(2);     // any 2 decoders
4482 %}
4483 
4484 // XXX
4485 // // Conditional move double reg-reg
4486 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
4487 // %{
4488 //     single_instruction;
4489 //     dst    : S4(write);
4490 //     src    : S3(read);
4491 //     cr     : S3(read);
4492 //     DECODE : S0;     // any decoder
4493 // %}
4494 
4495 // Float reg-reg operation
4496 pipe_class fpu_reg(regD dst)
4497 %{
4498     instruction_count(2);
4499     dst    : S3(read);
4500     DECODE : S0(2);     // any 2 decoders
4501     FPU    : S3;
4502 %}
4503 
4504 // Float reg-reg operation
4505 pipe_class fpu_reg_reg(regD dst, regD src)
4506 %{
4507     instruction_count(2);
4508     dst    : S4(write);
4509     src    : S3(read);
4510     DECODE : S0(2);     // any 2 decoders
4511     FPU    : S3;
4512 %}
4513 
4514 // Float reg-reg operation
4515 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
4516 %{
4517     instruction_count(3);
4518     dst    : S4(write);
4519     src1   : S3(read);
4520     src2   : S3(read);
4521     DECODE : S0(3);     // any 3 decoders
4522     FPU    : S3(2);
4523 %}
4524 
4525 // Float reg-reg operation
4526 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
4527 %{
4528     instruction_count(4);
4529     dst    : S4(write);
4530     src1   : S3(read);
4531     src2   : S3(read);
4532     src3   : S3(read);
4533     DECODE : S0(4);     // any 3 decoders
4534     FPU    : S3(2);
4535 %}
4536 
4537 // Float reg-reg operation
4538 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
4539 %{
4540     instruction_count(4);
4541     dst    : S4(write);
4542     src1   : S3(read);
4543     src2   : S3(read);
4544     src3   : S3(read);
4545     DECODE : S1(3);     // any 3 decoders
4546     D0     : S0;        // Big decoder only
4547     FPU    : S3(2);
4548     MEM    : S3;
4549 %}
4550 
4551 // Float reg-mem operation
4552 pipe_class fpu_reg_mem(regD dst, memory mem)
4553 %{
4554     instruction_count(2);
4555     dst    : S5(write);
4556     mem    : S3(read);
4557     D0     : S0;        // big decoder only
4558     DECODE : S1;        // any decoder for FPU POP
4559     FPU    : S4;
4560     MEM    : S3;        // any mem
4561 %}
4562 
4563 // Float reg-mem operation
4564 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
4565 %{
4566     instruction_count(3);
4567     dst    : S5(write);
4568     src1   : S3(read);
4569     mem    : S3(read);
4570     D0     : S0;        // big decoder only
4571     DECODE : S1(2);     // any decoder for FPU POP
4572     FPU    : S4;
4573     MEM    : S3;        // any mem
4574 %}
4575 
4576 // Float mem-reg operation
4577 pipe_class fpu_mem_reg(memory mem, regD src)
4578 %{
4579     instruction_count(2);
4580     src    : S5(read);
4581     mem    : S3(read);
4582     DECODE : S0;        // any decoder for FPU PUSH
4583     D0     : S1;        // big decoder only
4584     FPU    : S4;
4585     MEM    : S3;        // any mem
4586 %}
4587 
4588 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
4589 %{
4590     instruction_count(3);
4591     src1   : S3(read);
4592     src2   : S3(read);
4593     mem    : S3(read);
4594     DECODE : S0(2);     // any decoder for FPU PUSH
4595     D0     : S1;        // big decoder only
4596     FPU    : S4;
4597     MEM    : S3;        // any mem
4598 %}
4599 
4600 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
4601 %{
4602     instruction_count(3);
4603     src1   : S3(read);
4604     src2   : S3(read);
4605     mem    : S4(read);
4606     DECODE : S0;        // any decoder for FPU PUSH
4607     D0     : S0(2);     // big decoder only
4608     FPU    : S4;
4609     MEM    : S3(2);     // any mem
4610 %}
4611 
4612 pipe_class fpu_mem_mem(memory dst, memory src1)
4613 %{
4614     instruction_count(2);
4615     src1   : S3(read);
4616     dst    : S4(read);
4617     D0     : S0(2);     // big decoder only
4618     MEM    : S3(2);     // any mem
4619 %}
4620 
4621 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
4622 %{
4623     instruction_count(3);
4624     src1   : S3(read);
4625     src2   : S3(read);
4626     dst    : S4(read);
4627     D0     : S0(3);     // big decoder only
4628     FPU    : S4;
4629     MEM    : S3(3);     // any mem
4630 %}
4631 
4632 pipe_class fpu_mem_reg_con(memory mem, regD src1)
4633 %{
4634     instruction_count(3);
4635     src1   : S4(read);
4636     mem    : S4(read);
4637     DECODE : S0;        // any decoder for FPU PUSH
4638     D0     : S0(2);     // big decoder only
4639     FPU    : S4;
4640     MEM    : S3(2);     // any mem
4641 %}
4642 
4643 // Float load constant
4644 pipe_class fpu_reg_con(regD dst)
4645 %{
4646     instruction_count(2);
4647     dst    : S5(write);
4648     D0     : S0;        // big decoder only for the load
4649     DECODE : S1;        // any decoder for FPU POP
4650     FPU    : S4;
4651     MEM    : S3;        // any mem
4652 %}
4653 
4654 // Float load constant
4655 pipe_class fpu_reg_reg_con(regD dst, regD src)
4656 %{
4657     instruction_count(3);
4658     dst    : S5(write);
4659     src    : S3(read);
4660     D0     : S0;        // big decoder only for the load
4661     DECODE : S1(2);     // any decoder for FPU POP
4662     FPU    : S4;
4663     MEM    : S3;        // any mem
4664 %}
4665 
4666 // UnConditional branch
4667 pipe_class pipe_jmp(label labl)
4668 %{
4669     single_instruction;
4670     BR   : S3;
4671 %}
4672 
4673 // Conditional branch
4674 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
4675 %{
4676     single_instruction;
4677     cr    : S1(read);
4678     BR    : S3;
4679 %}
4680 
4681 // Allocation idiom
4682 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
4683 %{
4684     instruction_count(1); force_serialization;
4685     fixed_latency(6);
4686     heap_ptr : S3(read);
4687     DECODE   : S0(3);
4688     D0       : S2;
4689     MEM      : S3;
4690     ALU      : S3(2);
4691     dst      : S5(write);
4692     BR       : S5;
4693 %}
4694 
4695 // Generic big/slow expanded idiom
4696 pipe_class pipe_slow()
4697 %{
4698     instruction_count(10); multiple_bundles; force_serialization;
4699     fixed_latency(100);
4700     D0  : S0(2);
4701     MEM : S3(2);
4702 %}
4703 
4704 // The real do-nothing guy
4705 pipe_class empty()
4706 %{
4707     instruction_count(0);
4708 %}
4709 
4710 // Define the class for the Nop node
4711 define
4712 %{
4713    MachNop = empty;
4714 %}
4715 
4716 %}
4717 
4718 //----------INSTRUCTIONS-------------------------------------------------------
4719 //
4720 // match      -- States which machine-independent subtree may be replaced
4721 //               by this instruction.
4722 // ins_cost   -- The estimated cost of this instruction is used by instruction
4723 //               selection to identify a minimum cost tree of machine
4724 //               instructions that matches a tree of machine-independent
4725 //               instructions.
4726 // format     -- A string providing the disassembly for this instruction.
4727 //               The value of an instruction's operand may be inserted
4728 //               by referring to it with a '$' prefix.
4729 // opcode     -- Three instruction opcodes may be provided.  These are referred
4730 //               to within an encode class as $primary, $secondary, and $tertiary
4731 //               rrspectively.  The primary opcode is commonly used to
4732 //               indicate the type of machine instruction, while secondary
4733 //               and tertiary are often used for prefix options or addressing
4734 //               modes.
4735 // ins_encode -- A list of encode classes with parameters. The encode class
4736 //               name must have been defined in an 'enc_class' specification
4737 //               in the encode section of the architecture description.
4738 
4739 
4740 //----------Load/Store/Move Instructions---------------------------------------
4741 //----------Load Instructions--------------------------------------------------
4742 
4743 // Load Byte (8 bit signed)
4744 instruct loadB(rRegI dst, memory mem)
4745 %{
4746   match(Set dst (LoadB mem));
4747 
4748   ins_cost(125);
4749   format %{ "movsbl  $dst, $mem\t# byte" %}
4750 
4751   ins_encode %{
4752     __ movsbl($dst$$Register, $mem$$Address);
4753   %}
4754 
4755   ins_pipe(ialu_reg_mem);
4756 %}
4757 
4758 // Load Byte (8 bit signed) into Long Register
4759 instruct loadB2L(rRegL dst, memory mem)
4760 %{
4761   match(Set dst (ConvI2L (LoadB mem)));
4762 
4763   ins_cost(125);
4764   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
4765 
4766   ins_encode %{
4767     __ movsbq($dst$$Register, $mem$$Address);
4768   %}
4769 
4770   ins_pipe(ialu_reg_mem);
4771 %}
4772 
4773 // Load Unsigned Byte (8 bit UNsigned)
4774 instruct loadUB(rRegI dst, memory mem)
4775 %{
4776   match(Set dst (LoadUB mem));
4777 
4778   ins_cost(125);
4779   format %{ "movzbl  $dst, $mem\t# ubyte" %}
4780 
4781   ins_encode %{
4782     __ movzbl($dst$$Register, $mem$$Address);
4783   %}
4784 
4785   ins_pipe(ialu_reg_mem);
4786 %}
4787 
4788 // Load Unsigned Byte (8 bit UNsigned) into Long Register
4789 instruct loadUB2L(rRegL dst, memory mem)
4790 %{
4791   match(Set dst (ConvI2L (LoadUB mem)));
4792 
4793   ins_cost(125);
4794   format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
4795 
4796   ins_encode %{
4797     __ movzbq($dst$$Register, $mem$$Address);
4798   %}
4799 
4800   ins_pipe(ialu_reg_mem);
4801 %}
4802 
4803 // Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
4804 instruct loadUB2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
4805   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
4806   effect(KILL cr);
4807 
4808   format %{ "movzbq  $dst, $mem\t# ubyte & 32-bit mask -> long\n\t"
4809             "andl    $dst, right_n_bits($mask, 8)" %}
4810   ins_encode %{
4811     Register Rdst = $dst$$Register;
4812     __ movzbq(Rdst, $mem$$Address);
4813     __ andl(Rdst, $mask$$constant & right_n_bits(8));
4814   %}
4815   ins_pipe(ialu_reg_mem);
4816 %}
4817 
4818 // Load Short (16 bit signed)
4819 instruct loadS(rRegI dst, memory mem)
4820 %{
4821   match(Set dst (LoadS mem));
4822 
4823   ins_cost(125);
4824   format %{ "movswl $dst, $mem\t# short" %}
4825 
4826   ins_encode %{
4827     __ movswl($dst$$Register, $mem$$Address);
4828   %}
4829 
4830   ins_pipe(ialu_reg_mem);
4831 %}
4832 
4833 // Load Short (16 bit signed) to Byte (8 bit signed)
4834 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4835   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
4836 
4837   ins_cost(125);
4838   format %{ "movsbl $dst, $mem\t# short -> byte" %}
4839   ins_encode %{
4840     __ movsbl($dst$$Register, $mem$$Address);
4841   %}
4842   ins_pipe(ialu_reg_mem);
4843 %}
4844 
4845 // Load Short (16 bit signed) into Long Register
4846 instruct loadS2L(rRegL dst, memory mem)
4847 %{
4848   match(Set dst (ConvI2L (LoadS mem)));
4849 
4850   ins_cost(125);
4851   format %{ "movswq $dst, $mem\t# short -> long" %}
4852 
4853   ins_encode %{
4854     __ movswq($dst$$Register, $mem$$Address);
4855   %}
4856 
4857   ins_pipe(ialu_reg_mem);
4858 %}
4859 
4860 // Load Unsigned Short/Char (16 bit UNsigned)
4861 instruct loadUS(rRegI dst, memory mem)
4862 %{
4863   match(Set dst (LoadUS mem));
4864 
4865   ins_cost(125);
4866   format %{ "movzwl  $dst, $mem\t# ushort/char" %}
4867 
4868   ins_encode %{
4869     __ movzwl($dst$$Register, $mem$$Address);
4870   %}
4871 
4872   ins_pipe(ialu_reg_mem);
4873 %}
4874 
4875 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
4876 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4877   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
4878 
4879   ins_cost(125);
4880   format %{ "movsbl $dst, $mem\t# ushort -> byte" %}
4881   ins_encode %{
4882     __ movsbl($dst$$Register, $mem$$Address);
4883   %}
4884   ins_pipe(ialu_reg_mem);
4885 %}
4886 
4887 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
4888 instruct loadUS2L(rRegL dst, memory mem)
4889 %{
4890   match(Set dst (ConvI2L (LoadUS mem)));
4891 
4892   ins_cost(125);
4893   format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
4894 
4895   ins_encode %{
4896     __ movzwq($dst$$Register, $mem$$Address);
4897   %}
4898 
4899   ins_pipe(ialu_reg_mem);
4900 %}
4901 
4902 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
4903 instruct loadUS2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
4904   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
4905 
4906   format %{ "movzbq  $dst, $mem\t# ushort/char & 0xFF -> long" %}
4907   ins_encode %{
4908     __ movzbq($dst$$Register, $mem$$Address);
4909   %}
4910   ins_pipe(ialu_reg_mem);
4911 %}
4912 
4913 // Load Unsigned Short/Char (16 bit UNsigned) with 32-bit mask into Long Register
4914 instruct loadUS2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
4915   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
4916   effect(KILL cr);
4917 
4918   format %{ "movzwq  $dst, $mem\t# ushort/char & 32-bit mask -> long\n\t"
4919             "andl    $dst, right_n_bits($mask, 16)" %}
4920   ins_encode %{
4921     Register Rdst = $dst$$Register;
4922     __ movzwq(Rdst, $mem$$Address);
4923     __ andl(Rdst, $mask$$constant & right_n_bits(16));
4924   %}
4925   ins_pipe(ialu_reg_mem);
4926 %}
4927 
4928 // Load Integer
4929 instruct loadI(rRegI dst, memory mem)
4930 %{
4931   match(Set dst (LoadI mem));
4932 
4933   ins_cost(125);
4934   format %{ "movl    $dst, $mem\t# int" %}
4935 
4936   ins_encode %{
4937     __ movl($dst$$Register, $mem$$Address);
4938   %}
4939 
4940   ins_pipe(ialu_reg_mem);
4941 %}
4942 
4943 // Load Integer (32 bit signed) to Byte (8 bit signed)
4944 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4945   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
4946 
4947   ins_cost(125);
4948   format %{ "movsbl  $dst, $mem\t# int -> byte" %}
4949   ins_encode %{
4950     __ movsbl($dst$$Register, $mem$$Address);
4951   %}
4952   ins_pipe(ialu_reg_mem);
4953 %}
4954 
4955 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
4956 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
4957   match(Set dst (AndI (LoadI mem) mask));
4958 
4959   ins_cost(125);
4960   format %{ "movzbl  $dst, $mem\t# int -> ubyte" %}
4961   ins_encode %{
4962     __ movzbl($dst$$Register, $mem$$Address);
4963   %}
4964   ins_pipe(ialu_reg_mem);
4965 %}
4966 
4967 // Load Integer (32 bit signed) to Short (16 bit signed)
4968 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
4969   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
4970 
4971   ins_cost(125);
4972   format %{ "movswl  $dst, $mem\t# int -> short" %}
4973   ins_encode %{
4974     __ movswl($dst$$Register, $mem$$Address);
4975   %}
4976   ins_pipe(ialu_reg_mem);
4977 %}
4978 
4979 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
4980 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
4981   match(Set dst (AndI (LoadI mem) mask));
4982 
4983   ins_cost(125);
4984   format %{ "movzwl  $dst, $mem\t# int -> ushort/char" %}
4985   ins_encode %{
4986     __ movzwl($dst$$Register, $mem$$Address);
4987   %}
4988   ins_pipe(ialu_reg_mem);
4989 %}
4990 
4991 // Load Integer into Long Register
4992 instruct loadI2L(rRegL dst, memory mem)
4993 %{
4994   match(Set dst (ConvI2L (LoadI mem)));
4995 
4996   ins_cost(125);
4997   format %{ "movslq  $dst, $mem\t# int -> long" %}
4998 
4999   ins_encode %{
5000     __ movslq($dst$$Register, $mem$$Address);
5001   %}
5002 
5003   ins_pipe(ialu_reg_mem);
5004 %}
5005 
5006 // Load Integer with mask 0xFF into Long Register
5007 instruct loadI2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
5008   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5009 
5010   format %{ "movzbq  $dst, $mem\t# int & 0xFF -> long" %}
5011   ins_encode %{
5012     __ movzbq($dst$$Register, $mem$$Address);
5013   %}
5014   ins_pipe(ialu_reg_mem);
5015 %}
5016 
5017 // Load Integer with mask 0xFFFF into Long Register
5018 instruct loadI2L_immI_65535(rRegL dst, memory mem, immI_65535 mask) %{
5019   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5020 
5021   format %{ "movzwq  $dst, $mem\t# int & 0xFFFF -> long" %}
5022   ins_encode %{
5023     __ movzwq($dst$$Register, $mem$$Address);
5024   %}
5025   ins_pipe(ialu_reg_mem);
5026 %}
5027 
5028 // Load Integer with a 31-bit mask into Long Register
5029 instruct loadI2L_immU31(rRegL dst, memory mem, immU31 mask, rFlagsReg cr) %{
5030   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5031   effect(KILL cr);
5032 
5033   format %{ "movl    $dst, $mem\t# int & 31-bit mask -> long\n\t"
5034             "andl    $dst, $mask" %}
5035   ins_encode %{
5036     Register Rdst = $dst$$Register;
5037     __ movl(Rdst, $mem$$Address);
5038     __ andl(Rdst, $mask$$constant);
5039   %}
5040   ins_pipe(ialu_reg_mem);
5041 %}
5042 
5043 // Load Unsigned Integer into Long Register
5044 instruct loadUI2L(rRegL dst, memory mem, immL_32bits mask)
5045 %{
5046   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5047 
5048   ins_cost(125);
5049   format %{ "movl    $dst, $mem\t# uint -> long" %}
5050 
5051   ins_encode %{
5052     __ movl($dst$$Register, $mem$$Address);
5053   %}
5054 
5055   ins_pipe(ialu_reg_mem);
5056 %}
5057 
5058 // Load Long
5059 instruct loadL(rRegL dst, memory mem)
5060 %{
5061   match(Set dst (LoadL mem));
5062 
5063   ins_cost(125);
5064   format %{ "movq    $dst, $mem\t# long" %}
5065 
5066   ins_encode %{
5067     __ movq($dst$$Register, $mem$$Address);
5068   %}
5069 
5070   ins_pipe(ialu_reg_mem); // XXX
5071 %}
5072 
5073 // Load Range
5074 instruct loadRange(rRegI dst, memory mem)
5075 %{
5076   match(Set dst (LoadRange mem));
5077 
5078   ins_cost(125); // XXX
5079   format %{ "movl    $dst, $mem\t# range" %}
5080   opcode(0x8B);
5081   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
5082   ins_pipe(ialu_reg_mem);
5083 %}
5084 
5085 // Load Pointer
5086 instruct loadP(rRegP dst, memory mem)
5087 %{
5088   match(Set dst (LoadP mem));
5089   predicate(n->as_Load()->barrier_data() == 0);
5090 
5091   ins_cost(125); // XXX
5092   format %{ "movq    $dst, $mem\t# ptr" %}
5093   opcode(0x8B);
5094   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5095   ins_pipe(ialu_reg_mem); // XXX
5096 %}
5097 
5098 // Load Compressed Pointer
5099 instruct loadN(rRegN dst, memory mem)
5100 %{
5101    match(Set dst (LoadN mem));
5102 
5103    ins_cost(125); // XXX
5104    format %{ "movl    $dst, $mem\t# compressed ptr" %}
5105    ins_encode %{
5106      __ movl($dst$$Register, $mem$$Address);
5107    %}
5108    ins_pipe(ialu_reg_mem); // XXX
5109 %}
5110 
5111 
5112 // Load Klass Pointer
5113 instruct loadKlass(rRegP dst, memory mem)
5114 %{
5115   match(Set dst (LoadKlass mem));
5116 
5117   ins_cost(125); // XXX
5118   format %{ "movq    $dst, $mem\t# class" %}
5119   opcode(0x8B);
5120   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5121   ins_pipe(ialu_reg_mem); // XXX
5122 %}
5123 
5124 // Load narrow Klass Pointer
5125 instruct loadNKlass(rRegN dst, memory mem)
5126 %{
5127   match(Set dst (LoadNKlass mem));
5128 
5129   ins_cost(125); // XXX
5130   format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
5131   ins_encode %{
5132     __ movl($dst$$Register, $mem$$Address);
5133   %}
5134   ins_pipe(ialu_reg_mem); // XXX
5135 %}
5136 
5137 // Load Float
5138 instruct loadF(regF dst, memory mem)
5139 %{
5140   match(Set dst (LoadF mem));
5141 
5142   ins_cost(145); // XXX
5143   format %{ "movss   $dst, $mem\t# float" %}
5144   ins_encode %{
5145     __ movflt($dst$$XMMRegister, $mem$$Address);
5146   %}
5147   ins_pipe(pipe_slow); // XXX
5148 %}
5149 
5150 // Load Float
5151 instruct MoveF2VL(vlRegF dst, regF src) %{
5152   match(Set dst src);
5153   format %{ "movss $dst,$src\t! load float (4 bytes)" %}
5154   ins_encode %{
5155     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5156   %}
5157   ins_pipe( fpu_reg_reg );
5158 %}
5159 
5160 // Load Float
5161 instruct MoveF2LEG(legRegF dst, regF src) %{
5162   match(Set dst src);
5163   format %{ "movss $dst,$src\t# if src != dst load float (4 bytes)" %}
5164   ins_encode %{
5165     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5166   %}
5167   ins_pipe( fpu_reg_reg );
5168 %}
5169 
5170 // Load Float
5171 instruct MoveVL2F(regF dst, vlRegF src) %{
5172   match(Set dst src);
5173   format %{ "movss $dst,$src\t! load float (4 bytes)" %}
5174   ins_encode %{
5175     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5176   %}
5177   ins_pipe( fpu_reg_reg );
5178 %}
5179 
5180 // Load Float
5181 instruct MoveLEG2F(regF dst, legRegF src) %{
5182   match(Set dst src);
5183   format %{ "movss $dst,$src\t# if src != dst load float (4 bytes)" %}
5184   ins_encode %{
5185     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5186   %}
5187   ins_pipe( fpu_reg_reg );
5188 %}
5189 
5190 // Load Double
5191 instruct loadD_partial(regD dst, memory mem)
5192 %{
5193   predicate(!UseXmmLoadAndClearUpper);
5194   match(Set dst (LoadD mem));
5195 
5196   ins_cost(145); // XXX
5197   format %{ "movlpd  $dst, $mem\t# double" %}
5198   ins_encode %{
5199     __ movdbl($dst$$XMMRegister, $mem$$Address);
5200   %}
5201   ins_pipe(pipe_slow); // XXX
5202 %}
5203 
5204 instruct loadD(regD dst, memory mem)
5205 %{
5206   predicate(UseXmmLoadAndClearUpper);
5207   match(Set dst (LoadD mem));
5208 
5209   ins_cost(145); // XXX
5210   format %{ "movsd   $dst, $mem\t# double" %}
5211   ins_encode %{
5212     __ movdbl($dst$$XMMRegister, $mem$$Address);
5213   %}
5214   ins_pipe(pipe_slow); // XXX
5215 %}
5216 
5217 // Load Double
5218 instruct MoveD2VL(vlRegD dst, regD src) %{
5219   match(Set dst src);
5220   format %{ "movsd $dst,$src\t! load double (8 bytes)" %}
5221   ins_encode %{
5222     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5223   %}
5224   ins_pipe( fpu_reg_reg );
5225 %}
5226 
5227 // Load Double
5228 instruct MoveD2LEG(legRegD dst, regD src) %{
5229   match(Set dst src);
5230   format %{ "movsd $dst,$src\t# if src != dst load double (8 bytes)" %}
5231   ins_encode %{
5232     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5233   %}
5234   ins_pipe( fpu_reg_reg );
5235 %}
5236 
5237 // Load Double
5238 instruct MoveVL2D(regD dst, vlRegD src) %{
5239   match(Set dst src);
5240   format %{ "movsd $dst,$src\t! load double (8 bytes)" %}
5241   ins_encode %{
5242     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5243   %}
5244   ins_pipe( fpu_reg_reg );
5245 %}
5246 
5247 // Load Double
5248 instruct MoveLEG2D(regD dst, legRegD src) %{
5249   match(Set dst src);
5250   format %{ "movsd $dst,$src\t# if src != dst load double (8 bytes)" %}
5251   ins_encode %{
5252     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5253   %}
5254   ins_pipe( fpu_reg_reg );
5255 %}
5256 
5257 // Following pseudo code describes the algorithm for max[FD]:
5258 // Min algorithm is on similar lines
5259 //  btmp = (b < +0.0) ? a : b
5260 //  atmp = (b < +0.0) ? b : a
5261 //  Tmp  = Max_Float(atmp , btmp)
5262 //  Res  = (atmp == NaN) ? atmp : Tmp
5263 
5264 // max = java.lang.Math.max(float a, float b)
5265 instruct maxF_reg(legRegF dst, legRegF a, legRegF b, legRegF tmp, legRegF atmp, legRegF btmp) %{
5266   predicate(UseAVX > 0 && !n->is_reduction());
5267   match(Set dst (MaxF a b));
5268   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
5269   format %{
5270      "blendvps         $btmp,$b,$a,$b           \n\t"
5271      "blendvps         $atmp,$a,$b,$b           \n\t"
5272      "vmaxss           $tmp,$atmp,$btmp         \n\t"
5273      "cmpps.unordered  $btmp,$atmp,$atmp        \n\t"
5274      "blendvps         $dst,$tmp,$atmp,$btmp    \n\t"
5275   %}
5276   ins_encode %{
5277     int vector_len = Assembler::AVX_128bit;
5278     __ blendvps($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, vector_len);
5279     __ blendvps($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $b$$XMMRegister, vector_len);
5280     __ vmaxss($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5281     __ cmpps($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5282     __ blendvps($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5283  %}
5284   ins_pipe( pipe_slow );
5285 %}
5286 
5287 instruct maxF_reduction_reg(legRegF dst, legRegF a, legRegF b, legRegF xmmt, rRegI tmp, rFlagsReg cr) %{
5288   predicate(UseAVX > 0 && n->is_reduction());
5289   match(Set dst (MaxF a b));
5290   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5291 
5292   format %{ "$dst = max($a, $b)\t# intrinsic (float)" %}
5293   ins_encode %{
5294     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5295                     false /*min*/, true /*single*/);
5296   %}
5297   ins_pipe( pipe_slow );
5298 %}
5299 
5300 // max = java.lang.Math.max(double a, double b)
5301 instruct maxD_reg(legRegD dst, legRegD a, legRegD b, legRegD tmp, legRegD atmp, legRegD btmp) %{
5302   predicate(UseAVX > 0 && !n->is_reduction());
5303   match(Set dst (MaxD a b));
5304   effect(USE a, USE b, TEMP atmp, TEMP btmp, TEMP tmp);
5305   format %{
5306      "blendvpd         $btmp,$b,$a,$b            \n\t"
5307      "blendvpd         $atmp,$a,$b,$b            \n\t"
5308      "vmaxsd           $tmp,$atmp,$btmp          \n\t"
5309      "cmppd.unordered  $btmp,$atmp,$atmp         \n\t"
5310      "blendvpd         $dst,$tmp,$atmp,$btmp     \n\t"
5311   %}
5312   ins_encode %{
5313     int vector_len = Assembler::AVX_128bit;
5314     __ blendvpd($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, vector_len);
5315     __ blendvpd($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $b$$XMMRegister, vector_len);
5316     __ vmaxsd($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5317     __ cmppd($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5318     __ blendvpd($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5319   %}
5320   ins_pipe( pipe_slow );
5321 %}
5322 
5323 instruct maxD_reduction_reg(legRegD dst, legRegD a, legRegD b, legRegD xmmt, rRegL tmp, rFlagsReg cr) %{
5324   predicate(UseAVX > 0 && n->is_reduction());
5325   match(Set dst (MaxD a b));
5326   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5327 
5328   format %{ "$dst = max($a, $b)\t# intrinsic (double)" %}
5329   ins_encode %{
5330     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5331                     false /*min*/, false /*single*/);
5332   %}
5333   ins_pipe( pipe_slow );
5334 %}
5335 
5336 // min = java.lang.Math.min(float a, float b)
5337 instruct minF_reg(legRegF dst, legRegF a, legRegF b, legRegF tmp, legRegF atmp, legRegF btmp) %{
5338   predicate(UseAVX > 0 && !n->is_reduction());
5339   match(Set dst (MinF a b));
5340   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
5341   format %{
5342      "blendvps         $atmp,$a,$b,$a             \n\t"
5343      "blendvps         $btmp,$b,$a,$a             \n\t"
5344      "vminss           $tmp,$atmp,$btmp           \n\t"
5345      "cmpps.unordered  $btmp,$atmp,$atmp          \n\t"
5346      "blendvps         $dst,$tmp,$atmp,$btmp      \n\t"
5347   %}
5348   ins_encode %{
5349     int vector_len = Assembler::AVX_128bit;
5350     __ blendvps($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, vector_len);
5351     __ blendvps($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $a$$XMMRegister, vector_len);
5352     __ vminss($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5353     __ cmpps($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5354     __ blendvps($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5355   %}
5356   ins_pipe( pipe_slow );
5357 %}
5358 
5359 instruct minF_reduction_reg(legRegF dst, legRegF a, legRegF b, legRegF xmmt, rRegI tmp, rFlagsReg cr) %{
5360   predicate(UseAVX > 0 && n->is_reduction());
5361   match(Set dst (MinF a b));
5362   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5363 
5364   format %{ "$dst = min($a, $b)\t# intrinsic (float)" %}
5365   ins_encode %{
5366     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5367                     true /*min*/, true /*single*/);
5368   %}
5369   ins_pipe( pipe_slow );
5370 %}
5371 
5372 // min = java.lang.Math.min(double a, double b)
5373 instruct minD_reg(legRegD dst, legRegD a, legRegD b, legRegD tmp, legRegD atmp, legRegD btmp) %{
5374   predicate(UseAVX > 0 && !n->is_reduction());
5375   match(Set dst (MinD a b));
5376   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
5377   format %{
5378      "blendvpd         $atmp,$a,$b,$a           \n\t"
5379      "blendvpd         $btmp,$b,$a,$a           \n\t"
5380      "vminsd           $tmp,$atmp,$btmp         \n\t"
5381      "cmppd.unordered  $btmp,$atmp,$atmp        \n\t"
5382      "blendvpd         $dst,$tmp,$atmp,$btmp    \n\t"
5383   %}
5384   ins_encode %{
5385     int vector_len = Assembler::AVX_128bit;
5386     __ blendvpd($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, vector_len);
5387     __ blendvpd($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $a$$XMMRegister, vector_len);
5388     __ vminsd($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5389     __ cmppd($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5390     __ blendvpd($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5391   %}
5392   ins_pipe( pipe_slow );
5393 %}
5394 
5395 instruct minD_reduction_reg(legRegD dst, legRegD a, legRegD b, legRegD xmmt, rRegL tmp, rFlagsReg cr) %{
5396   predicate(UseAVX > 0 && n->is_reduction());
5397   match(Set dst (MinD a b));
5398   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5399 
5400   format %{ "$dst = min($a, $b)\t# intrinsic (double)" %}
5401   ins_encode %{
5402     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5403                     true /*min*/, false /*single*/);
5404   %}
5405   ins_pipe( pipe_slow );
5406 %}
5407 
5408 // Load Effective Address
5409 instruct leaP8(rRegP dst, indOffset8 mem)
5410 %{
5411   match(Set dst mem);
5412 
5413   ins_cost(110); // XXX
5414   format %{ "leaq    $dst, $mem\t# ptr 8" %}
5415   opcode(0x8D);
5416   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5417   ins_pipe(ialu_reg_reg_fat);
5418 %}
5419 
5420 instruct leaP32(rRegP dst, indOffset32 mem)
5421 %{
5422   match(Set dst mem);
5423 
5424   ins_cost(110);
5425   format %{ "leaq    $dst, $mem\t# ptr 32" %}
5426   opcode(0x8D);
5427   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5428   ins_pipe(ialu_reg_reg_fat);
5429 %}
5430 
5431 // instruct leaPIdx(rRegP dst, indIndex mem)
5432 // %{
5433 //   match(Set dst mem);
5434 
5435 //   ins_cost(110);
5436 //   format %{ "leaq    $dst, $mem\t# ptr idx" %}
5437 //   opcode(0x8D);
5438 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5439 //   ins_pipe(ialu_reg_reg_fat);
5440 // %}
5441 
5442 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
5443 %{
5444   match(Set dst mem);
5445 
5446   ins_cost(110);
5447   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
5448   opcode(0x8D);
5449   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5450   ins_pipe(ialu_reg_reg_fat);
5451 %}
5452 
5453 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
5454 %{
5455   match(Set dst mem);
5456 
5457   ins_cost(110);
5458   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5459   opcode(0x8D);
5460   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5461   ins_pipe(ialu_reg_reg_fat);
5462 %}
5463 
5464 instruct leaPPosIdxScale(rRegP dst, indPosIndexScale mem)
5465 %{
5466   match(Set dst mem);
5467 
5468   ins_cost(110);
5469   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5470   opcode(0x8D);
5471   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5472   ins_pipe(ialu_reg_reg_fat);
5473 %}
5474 
5475 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
5476 %{
5477   match(Set dst mem);
5478 
5479   ins_cost(110);
5480   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
5481   opcode(0x8D);
5482   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5483   ins_pipe(ialu_reg_reg_fat);
5484 %}
5485 
5486 instruct leaPPosIdxOff(rRegP dst, indPosIndexOffset mem)
5487 %{
5488   match(Set dst mem);
5489 
5490   ins_cost(110);
5491   format %{ "leaq    $dst, $mem\t# ptr posidxoff" %}
5492   opcode(0x8D);
5493   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5494   ins_pipe(ialu_reg_reg_fat);
5495 %}
5496 
5497 instruct leaPPosIdxScaleOff(rRegP dst, indPosIndexScaleOffset mem)
5498 %{
5499   match(Set dst mem);
5500 
5501   ins_cost(110);
5502   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoff" %}
5503   opcode(0x8D);
5504   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5505   ins_pipe(ialu_reg_reg_fat);
5506 %}
5507 
5508 // Load Effective Address which uses Narrow (32-bits) oop
5509 instruct leaPCompressedOopOffset(rRegP dst, indCompressedOopOffset mem)
5510 %{
5511   predicate(UseCompressedOops && (CompressedOops::shift() != 0));
5512   match(Set dst mem);
5513 
5514   ins_cost(110);
5515   format %{ "leaq    $dst, $mem\t# ptr compressedoopoff32" %}
5516   opcode(0x8D);
5517   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5518   ins_pipe(ialu_reg_reg_fat);
5519 %}
5520 
5521 instruct leaP8Narrow(rRegP dst, indOffset8Narrow mem)
5522 %{
5523   predicate(CompressedOops::shift() == 0);
5524   match(Set dst mem);
5525 
5526   ins_cost(110); // XXX
5527   format %{ "leaq    $dst, $mem\t# ptr off8narrow" %}
5528   opcode(0x8D);
5529   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5530   ins_pipe(ialu_reg_reg_fat);
5531 %}
5532 
5533 instruct leaP32Narrow(rRegP dst, indOffset32Narrow mem)
5534 %{
5535   predicate(CompressedOops::shift() == 0);
5536   match(Set dst mem);
5537 
5538   ins_cost(110);
5539   format %{ "leaq    $dst, $mem\t# ptr off32narrow" %}
5540   opcode(0x8D);
5541   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5542   ins_pipe(ialu_reg_reg_fat);
5543 %}
5544 
5545 instruct leaPIdxOffNarrow(rRegP dst, indIndexOffsetNarrow mem)
5546 %{
5547   predicate(CompressedOops::shift() == 0);
5548   match(Set dst mem);
5549 
5550   ins_cost(110);
5551   format %{ "leaq    $dst, $mem\t# ptr idxoffnarrow" %}
5552   opcode(0x8D);
5553   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5554   ins_pipe(ialu_reg_reg_fat);
5555 %}
5556 
5557 instruct leaPIdxScaleNarrow(rRegP dst, indIndexScaleNarrow mem)
5558 %{
5559   predicate(CompressedOops::shift() == 0);
5560   match(Set dst mem);
5561 
5562   ins_cost(110);
5563   format %{ "leaq    $dst, $mem\t# ptr idxscalenarrow" %}
5564   opcode(0x8D);
5565   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5566   ins_pipe(ialu_reg_reg_fat);
5567 %}
5568 
5569 instruct leaPIdxScaleOffNarrow(rRegP dst, indIndexScaleOffsetNarrow mem)
5570 %{
5571   predicate(CompressedOops::shift() == 0);
5572   match(Set dst mem);
5573 
5574   ins_cost(110);
5575   format %{ "leaq    $dst, $mem\t# ptr idxscaleoffnarrow" %}
5576   opcode(0x8D);
5577   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5578   ins_pipe(ialu_reg_reg_fat);
5579 %}
5580 
5581 instruct leaPPosIdxOffNarrow(rRegP dst, indPosIndexOffsetNarrow mem)
5582 %{
5583   predicate(CompressedOops::shift() == 0);
5584   match(Set dst mem);
5585 
5586   ins_cost(110);
5587   format %{ "leaq    $dst, $mem\t# ptr posidxoffnarrow" %}
5588   opcode(0x8D);
5589   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5590   ins_pipe(ialu_reg_reg_fat);
5591 %}
5592 
5593 instruct leaPPosIdxScaleOffNarrow(rRegP dst, indPosIndexScaleOffsetNarrow mem)
5594 %{
5595   predicate(CompressedOops::shift() == 0);
5596   match(Set dst mem);
5597 
5598   ins_cost(110);
5599   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoffnarrow" %}
5600   opcode(0x8D);
5601   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5602   ins_pipe(ialu_reg_reg_fat);
5603 %}
5604 
5605 instruct loadConI(rRegI dst, immI src)
5606 %{
5607   match(Set dst src);
5608 
5609   format %{ "movl    $dst, $src\t# int" %}
5610   ins_encode(load_immI(dst, src));
5611   ins_pipe(ialu_reg_fat); // XXX
5612 %}
5613 
5614 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
5615 %{
5616   match(Set dst src);
5617   effect(KILL cr);
5618 
5619   ins_cost(50);
5620   format %{ "xorl    $dst, $dst\t# int" %}
5621   opcode(0x33); /* + rd */
5622   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5623   ins_pipe(ialu_reg);
5624 %}
5625 
5626 instruct loadConL(rRegL dst, immL src)
5627 %{
5628   match(Set dst src);
5629 
5630   ins_cost(150);
5631   format %{ "movq    $dst, $src\t# long" %}
5632   ins_encode(load_immL(dst, src));
5633   ins_pipe(ialu_reg);
5634 %}
5635 
5636 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
5637 %{
5638   match(Set dst src);
5639   effect(KILL cr);
5640 
5641   ins_cost(50);
5642   format %{ "xorl    $dst, $dst\t# long" %}
5643   opcode(0x33); /* + rd */
5644   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5645   ins_pipe(ialu_reg); // XXX
5646 %}
5647 
5648 instruct loadConUL32(rRegL dst, immUL32 src)
5649 %{
5650   match(Set dst src);
5651 
5652   ins_cost(60);
5653   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
5654   ins_encode(load_immUL32(dst, src));
5655   ins_pipe(ialu_reg);
5656 %}
5657 
5658 instruct loadConL32(rRegL dst, immL32 src)
5659 %{
5660   match(Set dst src);
5661 
5662   ins_cost(70);
5663   format %{ "movq    $dst, $src\t# long (32-bit)" %}
5664   ins_encode(load_immL32(dst, src));
5665   ins_pipe(ialu_reg);
5666 %}
5667 
5668 instruct loadConP(rRegP dst, immP con) %{
5669   match(Set dst con);
5670 
5671   format %{ "movq    $dst, $con\t# ptr" %}
5672   ins_encode(load_immP(dst, con));
5673   ins_pipe(ialu_reg_fat); // XXX
5674 %}
5675 
5676 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
5677 %{
5678   match(Set dst src);
5679   effect(KILL cr);
5680 
5681   ins_cost(50);
5682   format %{ "xorl    $dst, $dst\t# ptr" %}
5683   opcode(0x33); /* + rd */
5684   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5685   ins_pipe(ialu_reg);
5686 %}
5687 
5688 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
5689 %{
5690   match(Set dst src);
5691   effect(KILL cr);
5692 
5693   ins_cost(60);
5694   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
5695   ins_encode(load_immP31(dst, src));
5696   ins_pipe(ialu_reg);
5697 %}
5698 
5699 instruct loadConF(regF dst, immF con) %{
5700   match(Set dst con);
5701   ins_cost(125);
5702   format %{ "movss   $dst, [$constantaddress]\t# load from constant table: float=$con" %}
5703   ins_encode %{
5704     __ movflt($dst$$XMMRegister, $constantaddress($con));
5705   %}
5706   ins_pipe(pipe_slow);
5707 %}
5708 
5709 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
5710   match(Set dst src);
5711   effect(KILL cr);
5712   format %{ "xorq    $dst, $src\t# compressed NULL ptr" %}
5713   ins_encode %{
5714     __ xorq($dst$$Register, $dst$$Register);
5715   %}
5716   ins_pipe(ialu_reg);
5717 %}
5718 
5719 instruct loadConN(rRegN dst, immN src) %{
5720   match(Set dst src);
5721 
5722   ins_cost(125);
5723   format %{ "movl    $dst, $src\t# compressed ptr" %}
5724   ins_encode %{
5725     address con = (address)$src$$constant;
5726     if (con == NULL) {
5727       ShouldNotReachHere();
5728     } else {
5729       __ set_narrow_oop($dst$$Register, (jobject)$src$$constant);
5730     }
5731   %}
5732   ins_pipe(ialu_reg_fat); // XXX
5733 %}
5734 
5735 instruct loadConNKlass(rRegN dst, immNKlass src) %{
5736   match(Set dst src);
5737 
5738   ins_cost(125);
5739   format %{ "movl    $dst, $src\t# compressed klass ptr" %}
5740   ins_encode %{
5741     address con = (address)$src$$constant;
5742     if (con == NULL) {
5743       ShouldNotReachHere();
5744     } else {
5745       __ set_narrow_klass($dst$$Register, (Klass*)$src$$constant);
5746     }
5747   %}
5748   ins_pipe(ialu_reg_fat); // XXX
5749 %}
5750 
5751 instruct loadConF0(regF dst, immF0 src)
5752 %{
5753   match(Set dst src);
5754   ins_cost(100);
5755 
5756   format %{ "xorps   $dst, $dst\t# float 0.0" %}
5757   ins_encode %{
5758     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
5759   %}
5760   ins_pipe(pipe_slow);
5761 %}
5762 
5763 // Use the same format since predicate() can not be used here.
5764 instruct loadConD(regD dst, immD con) %{
5765   match(Set dst con);
5766   ins_cost(125);
5767   format %{ "movsd   $dst, [$constantaddress]\t# load from constant table: double=$con" %}
5768   ins_encode %{
5769     __ movdbl($dst$$XMMRegister, $constantaddress($con));
5770   %}
5771   ins_pipe(pipe_slow);
5772 %}
5773 
5774 instruct loadConD0(regD dst, immD0 src)
5775 %{
5776   match(Set dst src);
5777   ins_cost(100);
5778 
5779   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
5780   ins_encode %{
5781     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
5782   %}
5783   ins_pipe(pipe_slow);
5784 %}
5785 
5786 instruct loadSSI(rRegI dst, stackSlotI src)
5787 %{
5788   match(Set dst src);
5789 
5790   ins_cost(125);
5791   format %{ "movl    $dst, $src\t# int stk" %}
5792   opcode(0x8B);
5793   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
5794   ins_pipe(ialu_reg_mem);
5795 %}
5796 
5797 instruct loadSSL(rRegL dst, stackSlotL src)
5798 %{
5799   match(Set dst src);
5800 
5801   ins_cost(125);
5802   format %{ "movq    $dst, $src\t# long stk" %}
5803   opcode(0x8B);
5804   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5805   ins_pipe(ialu_reg_mem);
5806 %}
5807 
5808 instruct loadSSP(rRegP dst, stackSlotP src)
5809 %{
5810   match(Set dst src);
5811 
5812   ins_cost(125);
5813   format %{ "movq    $dst, $src\t# ptr stk" %}
5814   opcode(0x8B);
5815   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5816   ins_pipe(ialu_reg_mem);
5817 %}
5818 
5819 instruct loadSSF(regF dst, stackSlotF src)
5820 %{
5821   match(Set dst src);
5822 
5823   ins_cost(125);
5824   format %{ "movss   $dst, $src\t# float stk" %}
5825   ins_encode %{
5826     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
5827   %}
5828   ins_pipe(pipe_slow); // XXX
5829 %}
5830 
5831 // Use the same format since predicate() can not be used here.
5832 instruct loadSSD(regD dst, stackSlotD src)
5833 %{
5834   match(Set dst src);
5835 
5836   ins_cost(125);
5837   format %{ "movsd   $dst, $src\t# double stk" %}
5838   ins_encode  %{
5839     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
5840   %}
5841   ins_pipe(pipe_slow); // XXX
5842 %}
5843 
5844 // Prefetch instructions for allocation.
5845 // Must be safe to execute with invalid address (cannot fault).
5846 
5847 instruct prefetchAlloc( memory mem ) %{
5848   predicate(AllocatePrefetchInstr==3);
5849   match(PrefetchAllocation mem);
5850   ins_cost(125);
5851 
5852   format %{ "PREFETCHW $mem\t# Prefetch allocation into level 1 cache and mark modified" %}
5853   ins_encode %{
5854     __ prefetchw($mem$$Address);
5855   %}
5856   ins_pipe(ialu_mem);
5857 %}
5858 
5859 instruct prefetchAllocNTA( memory mem ) %{
5860   predicate(AllocatePrefetchInstr==0);
5861   match(PrefetchAllocation mem);
5862   ins_cost(125);
5863 
5864   format %{ "PREFETCHNTA $mem\t# Prefetch allocation to non-temporal cache for write" %}
5865   ins_encode %{
5866     __ prefetchnta($mem$$Address);
5867   %}
5868   ins_pipe(ialu_mem);
5869 %}
5870 
5871 instruct prefetchAllocT0( memory mem ) %{
5872   predicate(AllocatePrefetchInstr==1);
5873   match(PrefetchAllocation mem);
5874   ins_cost(125);
5875 
5876   format %{ "PREFETCHT0 $mem\t# Prefetch allocation to level 1 and 2 caches for write" %}
5877   ins_encode %{
5878     __ prefetcht0($mem$$Address);
5879   %}
5880   ins_pipe(ialu_mem);
5881 %}
5882 
5883 instruct prefetchAllocT2( memory mem ) %{
5884   predicate(AllocatePrefetchInstr==2);
5885   match(PrefetchAllocation mem);
5886   ins_cost(125);
5887 
5888   format %{ "PREFETCHT2 $mem\t# Prefetch allocation to level 2 cache for write" %}
5889   ins_encode %{
5890     __ prefetcht2($mem$$Address);
5891   %}
5892   ins_pipe(ialu_mem);
5893 %}
5894 
5895 //----------Store Instructions-------------------------------------------------
5896 
5897 // Store Byte
5898 instruct storeB(memory mem, rRegI src)
5899 %{
5900   match(Set mem (StoreB mem src));
5901 
5902   ins_cost(125); // XXX
5903   format %{ "movb    $mem, $src\t# byte" %}
5904   opcode(0x88);
5905   ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
5906   ins_pipe(ialu_mem_reg);
5907 %}
5908 
5909 // Store Char/Short
5910 instruct storeC(memory mem, rRegI src)
5911 %{
5912   match(Set mem (StoreC mem src));
5913 
5914   ins_cost(125); // XXX
5915   format %{ "movw    $mem, $src\t# char/short" %}
5916   opcode(0x89);
5917   ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5918   ins_pipe(ialu_mem_reg);
5919 %}
5920 
5921 // Store Integer
5922 instruct storeI(memory mem, rRegI src)
5923 %{
5924   match(Set mem (StoreI mem src));
5925 
5926   ins_cost(125); // XXX
5927   format %{ "movl    $mem, $src\t# int" %}
5928   opcode(0x89);
5929   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5930   ins_pipe(ialu_mem_reg);
5931 %}
5932 
5933 // Store Long
5934 instruct storeL(memory mem, rRegL src)
5935 %{
5936   match(Set mem (StoreL mem src));
5937 
5938   ins_cost(125); // XXX
5939   format %{ "movq    $mem, $src\t# long" %}
5940   opcode(0x89);
5941   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5942   ins_pipe(ialu_mem_reg); // XXX
5943 %}
5944 
5945 // Store Pointer
5946 instruct storeP(memory mem, any_RegP src)
5947 %{
5948   match(Set mem (StoreP mem src));
5949 
5950   ins_cost(125); // XXX
5951   format %{ "movq    $mem, $src\t# ptr" %}
5952   opcode(0x89);
5953   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5954   ins_pipe(ialu_mem_reg);
5955 %}
5956 
5957 instruct storeImmP0(memory mem, immP0 zero)
5958 %{
5959   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
5960   match(Set mem (StoreP mem zero));
5961 
5962   ins_cost(125); // XXX
5963   format %{ "movq    $mem, R12\t# ptr (R12_heapbase==0)" %}
5964   ins_encode %{
5965     __ movq($mem$$Address, r12);
5966   %}
5967   ins_pipe(ialu_mem_reg);
5968 %}
5969 
5970 // Store NULL Pointer, mark word, or other simple pointer constant.
5971 instruct storeImmP(memory mem, immP31 src)
5972 %{
5973   match(Set mem (StoreP mem src));
5974 
5975   ins_cost(150); // XXX
5976   format %{ "movq    $mem, $src\t# ptr" %}
5977   opcode(0xC7); /* C7 /0 */
5978   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
5979   ins_pipe(ialu_mem_imm);
5980 %}
5981 
5982 // Store Compressed Pointer
5983 instruct storeN(memory mem, rRegN src)
5984 %{
5985   match(Set mem (StoreN mem src));
5986 
5987   ins_cost(125); // XXX
5988   format %{ "movl    $mem, $src\t# compressed ptr" %}
5989   ins_encode %{
5990     __ movl($mem$$Address, $src$$Register);
5991   %}
5992   ins_pipe(ialu_mem_reg);
5993 %}
5994 
5995 instruct storeNKlass(memory mem, rRegN src)
5996 %{
5997   match(Set mem (StoreNKlass mem src));
5998 
5999   ins_cost(125); // XXX
6000   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
6001   ins_encode %{
6002     __ movl($mem$$Address, $src$$Register);
6003   %}
6004   ins_pipe(ialu_mem_reg);
6005 %}
6006 
6007 instruct storeImmN0(memory mem, immN0 zero)
6008 %{
6009   predicate(CompressedOops::base() == NULL && CompressedKlassPointers::base() == NULL);
6010   match(Set mem (StoreN mem zero));
6011 
6012   ins_cost(125); // XXX
6013   format %{ "movl    $mem, R12\t# compressed ptr (R12_heapbase==0)" %}
6014   ins_encode %{
6015     __ movl($mem$$Address, r12);
6016   %}
6017   ins_pipe(ialu_mem_reg);
6018 %}
6019 
6020 instruct storeImmN(memory mem, immN src)
6021 %{
6022   match(Set mem (StoreN mem src));
6023 
6024   ins_cost(150); // XXX
6025   format %{ "movl    $mem, $src\t# compressed ptr" %}
6026   ins_encode %{
6027     address con = (address)$src$$constant;
6028     if (con == NULL) {
6029       __ movl($mem$$Address, (int32_t)0);
6030     } else {
6031       __ set_narrow_oop($mem$$Address, (jobject)$src$$constant);
6032     }
6033   %}
6034   ins_pipe(ialu_mem_imm);
6035 %}
6036 
6037 instruct storeImmNKlass(memory mem, immNKlass src)
6038 %{
6039   match(Set mem (StoreNKlass mem src));
6040 
6041   ins_cost(150); // XXX
6042   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
6043   ins_encode %{
6044     __ set_narrow_klass($mem$$Address, (Klass*)$src$$constant);
6045   %}
6046   ins_pipe(ialu_mem_imm);
6047 %}
6048 
6049 // Store Integer Immediate
6050 instruct storeImmI0(memory mem, immI0 zero)
6051 %{
6052   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6053   match(Set mem (StoreI mem zero));
6054 
6055   ins_cost(125); // XXX
6056   format %{ "movl    $mem, R12\t# int (R12_heapbase==0)" %}
6057   ins_encode %{
6058     __ movl($mem$$Address, r12);
6059   %}
6060   ins_pipe(ialu_mem_reg);
6061 %}
6062 
6063 instruct storeImmI(memory mem, immI src)
6064 %{
6065   match(Set mem (StoreI mem src));
6066 
6067   ins_cost(150);
6068   format %{ "movl    $mem, $src\t# int" %}
6069   opcode(0xC7); /* C7 /0 */
6070   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6071   ins_pipe(ialu_mem_imm);
6072 %}
6073 
6074 // Store Long Immediate
6075 instruct storeImmL0(memory mem, immL0 zero)
6076 %{
6077   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6078   match(Set mem (StoreL mem zero));
6079 
6080   ins_cost(125); // XXX
6081   format %{ "movq    $mem, R12\t# long (R12_heapbase==0)" %}
6082   ins_encode %{
6083     __ movq($mem$$Address, r12);
6084   %}
6085   ins_pipe(ialu_mem_reg);
6086 %}
6087 
6088 instruct storeImmL(memory mem, immL32 src)
6089 %{
6090   match(Set mem (StoreL mem src));
6091 
6092   ins_cost(150);
6093   format %{ "movq    $mem, $src\t# long" %}
6094   opcode(0xC7); /* C7 /0 */
6095   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6096   ins_pipe(ialu_mem_imm);
6097 %}
6098 
6099 // Store Short/Char Immediate
6100 instruct storeImmC0(memory mem, immI0 zero)
6101 %{
6102   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6103   match(Set mem (StoreC mem zero));
6104 
6105   ins_cost(125); // XXX
6106   format %{ "movw    $mem, R12\t# short/char (R12_heapbase==0)" %}
6107   ins_encode %{
6108     __ movw($mem$$Address, r12);
6109   %}
6110   ins_pipe(ialu_mem_reg);
6111 %}
6112 
6113 instruct storeImmI16(memory mem, immI16 src)
6114 %{
6115   predicate(UseStoreImmI16);
6116   match(Set mem (StoreC mem src));
6117 
6118   ins_cost(150);
6119   format %{ "movw    $mem, $src\t# short/char" %}
6120   opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
6121   ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
6122   ins_pipe(ialu_mem_imm);
6123 %}
6124 
6125 // Store Byte Immediate
6126 instruct storeImmB0(memory mem, immI0 zero)
6127 %{
6128   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6129   match(Set mem (StoreB mem zero));
6130 
6131   ins_cost(125); // XXX
6132   format %{ "movb    $mem, R12\t# short/char (R12_heapbase==0)" %}
6133   ins_encode %{
6134     __ movb($mem$$Address, r12);
6135   %}
6136   ins_pipe(ialu_mem_reg);
6137 %}
6138 
6139 instruct storeImmB(memory mem, immI8 src)
6140 %{
6141   match(Set mem (StoreB mem src));
6142 
6143   ins_cost(150); // XXX
6144   format %{ "movb    $mem, $src\t# byte" %}
6145   opcode(0xC6); /* C6 /0 */
6146   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6147   ins_pipe(ialu_mem_imm);
6148 %}
6149 
6150 // Store CMS card-mark Immediate
6151 instruct storeImmCM0_reg(memory mem, immI0 zero)
6152 %{
6153   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6154   match(Set mem (StoreCM mem zero));
6155 
6156   ins_cost(125); // XXX
6157   format %{ "movb    $mem, R12\t# CMS card-mark byte 0 (R12_heapbase==0)" %}
6158   ins_encode %{
6159     __ movb($mem$$Address, r12);
6160   %}
6161   ins_pipe(ialu_mem_reg);
6162 %}
6163 
6164 instruct storeImmCM0(memory mem, immI0 src)
6165 %{
6166   match(Set mem (StoreCM mem src));
6167 
6168   ins_cost(150); // XXX
6169   format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
6170   opcode(0xC6); /* C6 /0 */
6171   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6172   ins_pipe(ialu_mem_imm);
6173 %}
6174 
6175 // Store Float
6176 instruct storeF(memory mem, regF src)
6177 %{
6178   match(Set mem (StoreF mem src));
6179 
6180   ins_cost(95); // XXX
6181   format %{ "movss   $mem, $src\t# float" %}
6182   ins_encode %{
6183     __ movflt($mem$$Address, $src$$XMMRegister);
6184   %}
6185   ins_pipe(pipe_slow); // XXX
6186 %}
6187 
6188 // Store immediate Float value (it is faster than store from XMM register)
6189 instruct storeF0(memory mem, immF0 zero)
6190 %{
6191   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6192   match(Set mem (StoreF mem zero));
6193 
6194   ins_cost(25); // XXX
6195   format %{ "movl    $mem, R12\t# float 0. (R12_heapbase==0)" %}
6196   ins_encode %{
6197     __ movl($mem$$Address, r12);
6198   %}
6199   ins_pipe(ialu_mem_reg);
6200 %}
6201 
6202 instruct storeF_imm(memory mem, immF src)
6203 %{
6204   match(Set mem (StoreF mem src));
6205 
6206   ins_cost(50);
6207   format %{ "movl    $mem, $src\t# float" %}
6208   opcode(0xC7); /* C7 /0 */
6209   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6210   ins_pipe(ialu_mem_imm);
6211 %}
6212 
6213 // Store Double
6214 instruct storeD(memory mem, regD src)
6215 %{
6216   match(Set mem (StoreD mem src));
6217 
6218   ins_cost(95); // XXX
6219   format %{ "movsd   $mem, $src\t# double" %}
6220   ins_encode %{
6221     __ movdbl($mem$$Address, $src$$XMMRegister);
6222   %}
6223   ins_pipe(pipe_slow); // XXX
6224 %}
6225 
6226 // Store immediate double 0.0 (it is faster than store from XMM register)
6227 instruct storeD0_imm(memory mem, immD0 src)
6228 %{
6229   predicate(!UseCompressedOops || (CompressedOops::base() != NULL));
6230   match(Set mem (StoreD mem src));
6231 
6232   ins_cost(50);
6233   format %{ "movq    $mem, $src\t# double 0." %}
6234   opcode(0xC7); /* C7 /0 */
6235   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6236   ins_pipe(ialu_mem_imm);
6237 %}
6238 
6239 instruct storeD0(memory mem, immD0 zero)
6240 %{
6241   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6242   match(Set mem (StoreD mem zero));
6243 
6244   ins_cost(25); // XXX
6245   format %{ "movq    $mem, R12\t# double 0. (R12_heapbase==0)" %}
6246   ins_encode %{
6247     __ movq($mem$$Address, r12);
6248   %}
6249   ins_pipe(ialu_mem_reg);
6250 %}
6251 
6252 instruct storeSSI(stackSlotI dst, rRegI src)
6253 %{
6254   match(Set dst src);
6255 
6256   ins_cost(100);
6257   format %{ "movl    $dst, $src\t# int stk" %}
6258   opcode(0x89);
6259   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
6260   ins_pipe( ialu_mem_reg );
6261 %}
6262 
6263 instruct storeSSL(stackSlotL dst, rRegL src)
6264 %{
6265   match(Set dst src);
6266 
6267   ins_cost(100);
6268   format %{ "movq    $dst, $src\t# long stk" %}
6269   opcode(0x89);
6270   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6271   ins_pipe(ialu_mem_reg);
6272 %}
6273 
6274 instruct storeSSP(stackSlotP dst, rRegP src)
6275 %{
6276   match(Set dst src);
6277 
6278   ins_cost(100);
6279   format %{ "movq    $dst, $src\t# ptr stk" %}
6280   opcode(0x89);
6281   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6282   ins_pipe(ialu_mem_reg);
6283 %}
6284 
6285 instruct storeSSF(stackSlotF dst, regF src)
6286 %{
6287   match(Set dst src);
6288 
6289   ins_cost(95); // XXX
6290   format %{ "movss   $dst, $src\t# float stk" %}
6291   ins_encode %{
6292     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
6293   %}
6294   ins_pipe(pipe_slow); // XXX
6295 %}
6296 
6297 instruct storeSSD(stackSlotD dst, regD src)
6298 %{
6299   match(Set dst src);
6300 
6301   ins_cost(95); // XXX
6302   format %{ "movsd   $dst, $src\t# double stk" %}
6303   ins_encode %{
6304     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
6305   %}
6306   ins_pipe(pipe_slow); // XXX
6307 %}
6308 
6309 instruct cacheWB(indirect addr)
6310 %{
6311   predicate(VM_Version::supports_data_cache_line_flush());
6312   match(CacheWB addr);
6313 
6314   ins_cost(100);
6315   format %{"cache wb $addr" %}
6316   ins_encode %{
6317     assert($addr->index_position() < 0, "should be");
6318     assert($addr$$disp == 0, "should be");
6319     __ cache_wb(Address($addr$$base$$Register, 0));
6320   %}
6321   ins_pipe(pipe_slow); // XXX
6322 %}
6323 
6324 instruct cacheWBPreSync()
6325 %{
6326   predicate(VM_Version::supports_data_cache_line_flush());
6327   match(CacheWBPreSync);
6328 
6329   ins_cost(100);
6330   format %{"cache wb presync" %}
6331   ins_encode %{
6332     __ cache_wbsync(true);
6333   %}
6334   ins_pipe(pipe_slow); // XXX
6335 %}
6336 
6337 instruct cacheWBPostSync()
6338 %{
6339   predicate(VM_Version::supports_data_cache_line_flush());
6340   match(CacheWBPostSync);
6341 
6342   ins_cost(100);
6343   format %{"cache wb postsync" %}
6344   ins_encode %{
6345     __ cache_wbsync(false);
6346   %}
6347   ins_pipe(pipe_slow); // XXX
6348 %}
6349 
6350 //----------BSWAP Instructions-------------------------------------------------
6351 instruct bytes_reverse_int(rRegI dst) %{
6352   match(Set dst (ReverseBytesI dst));
6353 
6354   format %{ "bswapl  $dst" %}
6355   opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
6356   ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
6357   ins_pipe( ialu_reg );
6358 %}
6359 
6360 instruct bytes_reverse_long(rRegL dst) %{
6361   match(Set dst (ReverseBytesL dst));
6362 
6363   format %{ "bswapq  $dst" %}
6364   opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
6365   ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
6366   ins_pipe( ialu_reg);
6367 %}
6368 
6369 instruct bytes_reverse_unsigned_short(rRegI dst, rFlagsReg cr) %{
6370   match(Set dst (ReverseBytesUS dst));
6371   effect(KILL cr);
6372 
6373   format %{ "bswapl  $dst\n\t"
6374             "shrl    $dst,16\n\t" %}
6375   ins_encode %{
6376     __ bswapl($dst$$Register);
6377     __ shrl($dst$$Register, 16);
6378   %}
6379   ins_pipe( ialu_reg );
6380 %}
6381 
6382 instruct bytes_reverse_short(rRegI dst, rFlagsReg cr) %{
6383   match(Set dst (ReverseBytesS dst));
6384   effect(KILL cr);
6385 
6386   format %{ "bswapl  $dst\n\t"
6387             "sar     $dst,16\n\t" %}
6388   ins_encode %{
6389     __ bswapl($dst$$Register);
6390     __ sarl($dst$$Register, 16);
6391   %}
6392   ins_pipe( ialu_reg );
6393 %}
6394 
6395 //---------- Zeros Count Instructions ------------------------------------------
6396 
6397 instruct countLeadingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6398   predicate(UseCountLeadingZerosInstruction);
6399   match(Set dst (CountLeadingZerosI src));
6400   effect(KILL cr);
6401 
6402   format %{ "lzcntl  $dst, $src\t# count leading zeros (int)" %}
6403   ins_encode %{
6404     __ lzcntl($dst$$Register, $src$$Register);
6405   %}
6406   ins_pipe(ialu_reg);
6407 %}
6408 
6409 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, rFlagsReg cr) %{
6410   predicate(!UseCountLeadingZerosInstruction);
6411   match(Set dst (CountLeadingZerosI src));
6412   effect(KILL cr);
6413 
6414   format %{ "bsrl    $dst, $src\t# count leading zeros (int)\n\t"
6415             "jnz     skip\n\t"
6416             "movl    $dst, -1\n"
6417       "skip:\n\t"
6418             "negl    $dst\n\t"
6419             "addl    $dst, 31" %}
6420   ins_encode %{
6421     Register Rdst = $dst$$Register;
6422     Register Rsrc = $src$$Register;
6423     Label skip;
6424     __ bsrl(Rdst, Rsrc);
6425     __ jccb(Assembler::notZero, skip);
6426     __ movl(Rdst, -1);
6427     __ bind(skip);
6428     __ negl(Rdst);
6429     __ addl(Rdst, BitsPerInt - 1);
6430   %}
6431   ins_pipe(ialu_reg);
6432 %}
6433 
6434 instruct countLeadingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6435   predicate(UseCountLeadingZerosInstruction);
6436   match(Set dst (CountLeadingZerosL src));
6437   effect(KILL cr);
6438 
6439   format %{ "lzcntq  $dst, $src\t# count leading zeros (long)" %}
6440   ins_encode %{
6441     __ lzcntq($dst$$Register, $src$$Register);
6442   %}
6443   ins_pipe(ialu_reg);
6444 %}
6445 
6446 instruct countLeadingZerosL_bsr(rRegI dst, rRegL src, rFlagsReg cr) %{
6447   predicate(!UseCountLeadingZerosInstruction);
6448   match(Set dst (CountLeadingZerosL src));
6449   effect(KILL cr);
6450 
6451   format %{ "bsrq    $dst, $src\t# count leading zeros (long)\n\t"
6452             "jnz     skip\n\t"
6453             "movl    $dst, -1\n"
6454       "skip:\n\t"
6455             "negl    $dst\n\t"
6456             "addl    $dst, 63" %}
6457   ins_encode %{
6458     Register Rdst = $dst$$Register;
6459     Register Rsrc = $src$$Register;
6460     Label skip;
6461     __ bsrq(Rdst, Rsrc);
6462     __ jccb(Assembler::notZero, skip);
6463     __ movl(Rdst, -1);
6464     __ bind(skip);
6465     __ negl(Rdst);
6466     __ addl(Rdst, BitsPerLong - 1);
6467   %}
6468   ins_pipe(ialu_reg);
6469 %}
6470 
6471 instruct countTrailingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6472   predicate(UseCountTrailingZerosInstruction);
6473   match(Set dst (CountTrailingZerosI src));
6474   effect(KILL cr);
6475 
6476   format %{ "tzcntl    $dst, $src\t# count trailing zeros (int)" %}
6477   ins_encode %{
6478     __ tzcntl($dst$$Register, $src$$Register);
6479   %}
6480   ins_pipe(ialu_reg);
6481 %}
6482 
6483 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, rFlagsReg cr) %{
6484   predicate(!UseCountTrailingZerosInstruction);
6485   match(Set dst (CountTrailingZerosI src));
6486   effect(KILL cr);
6487 
6488   format %{ "bsfl    $dst, $src\t# count trailing zeros (int)\n\t"
6489             "jnz     done\n\t"
6490             "movl    $dst, 32\n"
6491       "done:" %}
6492   ins_encode %{
6493     Register Rdst = $dst$$Register;
6494     Label done;
6495     __ bsfl(Rdst, $src$$Register);
6496     __ jccb(Assembler::notZero, done);
6497     __ movl(Rdst, BitsPerInt);
6498     __ bind(done);
6499   %}
6500   ins_pipe(ialu_reg);
6501 %}
6502 
6503 instruct countTrailingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6504   predicate(UseCountTrailingZerosInstruction);
6505   match(Set dst (CountTrailingZerosL src));
6506   effect(KILL cr);
6507 
6508   format %{ "tzcntq    $dst, $src\t# count trailing zeros (long)" %}
6509   ins_encode %{
6510     __ tzcntq($dst$$Register, $src$$Register);
6511   %}
6512   ins_pipe(ialu_reg);
6513 %}
6514 
6515 instruct countTrailingZerosL_bsf(rRegI dst, rRegL src, rFlagsReg cr) %{
6516   predicate(!UseCountTrailingZerosInstruction);
6517   match(Set dst (CountTrailingZerosL src));
6518   effect(KILL cr);
6519 
6520   format %{ "bsfq    $dst, $src\t# count trailing zeros (long)\n\t"
6521             "jnz     done\n\t"
6522             "movl    $dst, 64\n"
6523       "done:" %}
6524   ins_encode %{
6525     Register Rdst = $dst$$Register;
6526     Label done;
6527     __ bsfq(Rdst, $src$$Register);
6528     __ jccb(Assembler::notZero, done);
6529     __ movl(Rdst, BitsPerLong);
6530     __ bind(done);
6531   %}
6532   ins_pipe(ialu_reg);
6533 %}
6534 
6535 
6536 //---------- Population Count Instructions -------------------------------------
6537 
6538 instruct popCountI(rRegI dst, rRegI src, rFlagsReg cr) %{
6539   predicate(UsePopCountInstruction);
6540   match(Set dst (PopCountI src));
6541   effect(KILL cr);
6542 
6543   format %{ "popcnt  $dst, $src" %}
6544   ins_encode %{
6545     __ popcntl($dst$$Register, $src$$Register);
6546   %}
6547   ins_pipe(ialu_reg);
6548 %}
6549 
6550 instruct popCountI_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6551   predicate(UsePopCountInstruction);
6552   match(Set dst (PopCountI (LoadI mem)));
6553   effect(KILL cr);
6554 
6555   format %{ "popcnt  $dst, $mem" %}
6556   ins_encode %{
6557     __ popcntl($dst$$Register, $mem$$Address);
6558   %}
6559   ins_pipe(ialu_reg);
6560 %}
6561 
6562 // Note: Long.bitCount(long) returns an int.
6563 instruct popCountL(rRegI dst, rRegL src, rFlagsReg cr) %{
6564   predicate(UsePopCountInstruction);
6565   match(Set dst (PopCountL src));
6566   effect(KILL cr);
6567 
6568   format %{ "popcnt  $dst, $src" %}
6569   ins_encode %{
6570     __ popcntq($dst$$Register, $src$$Register);
6571   %}
6572   ins_pipe(ialu_reg);
6573 %}
6574 
6575 // Note: Long.bitCount(long) returns an int.
6576 instruct popCountL_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6577   predicate(UsePopCountInstruction);
6578   match(Set dst (PopCountL (LoadL mem)));
6579   effect(KILL cr);
6580 
6581   format %{ "popcnt  $dst, $mem" %}
6582   ins_encode %{
6583     __ popcntq($dst$$Register, $mem$$Address);
6584   %}
6585   ins_pipe(ialu_reg);
6586 %}
6587 
6588 
6589 //----------MemBar Instructions-----------------------------------------------
6590 // Memory barrier flavors
6591 
6592 instruct membar_acquire()
6593 %{
6594   match(MemBarAcquire);
6595   match(LoadFence);
6596   ins_cost(0);
6597 
6598   size(0);
6599   format %{ "MEMBAR-acquire ! (empty encoding)" %}
6600   ins_encode();
6601   ins_pipe(empty);
6602 %}
6603 
6604 instruct membar_acquire_lock()
6605 %{
6606   match(MemBarAcquireLock);
6607   ins_cost(0);
6608 
6609   size(0);
6610   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6611   ins_encode();
6612   ins_pipe(empty);
6613 %}
6614 
6615 instruct membar_release()
6616 %{
6617   match(MemBarRelease);
6618   match(StoreFence);
6619   ins_cost(0);
6620 
6621   size(0);
6622   format %{ "MEMBAR-release ! (empty encoding)" %}
6623   ins_encode();
6624   ins_pipe(empty);
6625 %}
6626 
6627 instruct membar_release_lock()
6628 %{
6629   match(MemBarReleaseLock);
6630   ins_cost(0);
6631 
6632   size(0);
6633   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6634   ins_encode();
6635   ins_pipe(empty);
6636 %}
6637 
6638 instruct membar_volatile(rFlagsReg cr) %{
6639   match(MemBarVolatile);
6640   effect(KILL cr);
6641   ins_cost(400);
6642 
6643   format %{
6644     $$template
6645     $$emit$$"lock addl [rsp + #0], 0\t! membar_volatile"
6646   %}
6647   ins_encode %{
6648     __ membar(Assembler::StoreLoad);
6649   %}
6650   ins_pipe(pipe_slow);
6651 %}
6652 
6653 instruct unnecessary_membar_volatile()
6654 %{
6655   match(MemBarVolatile);
6656   predicate(Matcher::post_store_load_barrier(n));
6657   ins_cost(0);
6658 
6659   size(0);
6660   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6661   ins_encode();
6662   ins_pipe(empty);
6663 %}
6664 
6665 instruct membar_storestore() %{
6666   match(MemBarStoreStore);
6667   ins_cost(0);
6668 
6669   size(0);
6670   format %{ "MEMBAR-storestore (empty encoding)" %}
6671   ins_encode( );
6672   ins_pipe(empty);
6673 %}
6674 
6675 //----------Move Instructions--------------------------------------------------
6676 
6677 instruct castX2P(rRegP dst, rRegL src)
6678 %{
6679   match(Set dst (CastX2P src));
6680 
6681   format %{ "movq    $dst, $src\t# long->ptr" %}
6682   ins_encode %{
6683     if ($dst$$reg != $src$$reg) {
6684       __ movptr($dst$$Register, $src$$Register);
6685     }
6686   %}
6687   ins_pipe(ialu_reg_reg); // XXX
6688 %}
6689 
6690 instruct castP2X(rRegL dst, rRegP src)
6691 %{
6692   match(Set dst (CastP2X src));
6693 
6694   format %{ "movq    $dst, $src\t# ptr -> long" %}
6695   ins_encode %{
6696     if ($dst$$reg != $src$$reg) {
6697       __ movptr($dst$$Register, $src$$Register);
6698     }
6699   %}
6700   ins_pipe(ialu_reg_reg); // XXX
6701 %}
6702 
6703 // Convert oop into int for vectors alignment masking
6704 instruct convP2I(rRegI dst, rRegP src)
6705 %{
6706   match(Set dst (ConvL2I (CastP2X src)));
6707 
6708   format %{ "movl    $dst, $src\t# ptr -> int" %}
6709   ins_encode %{
6710     __ movl($dst$$Register, $src$$Register);
6711   %}
6712   ins_pipe(ialu_reg_reg); // XXX
6713 %}
6714 
6715 // Convert compressed oop into int for vectors alignment masking
6716 // in case of 32bit oops (heap < 4Gb).
6717 instruct convN2I(rRegI dst, rRegN src)
6718 %{
6719   predicate(CompressedOops::shift() == 0);
6720   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6721 
6722   format %{ "movl    $dst, $src\t# compressed ptr -> int" %}
6723   ins_encode %{
6724     __ movl($dst$$Register, $src$$Register);
6725   %}
6726   ins_pipe(ialu_reg_reg); // XXX
6727 %}
6728 
6729 // Convert oop pointer into compressed form
6730 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
6731   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6732   match(Set dst (EncodeP src));
6733   effect(KILL cr);
6734   format %{ "encode_heap_oop $dst,$src" %}
6735   ins_encode %{
6736     Register s = $src$$Register;
6737     Register d = $dst$$Register;
6738     if (s != d) {
6739       __ movq(d, s);
6740     }
6741     __ encode_heap_oop(d);
6742   %}
6743   ins_pipe(ialu_reg_long);
6744 %}
6745 
6746 instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6747   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6748   match(Set dst (EncodeP src));
6749   effect(KILL cr);
6750   format %{ "encode_heap_oop_not_null $dst,$src" %}
6751   ins_encode %{
6752     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
6753   %}
6754   ins_pipe(ialu_reg_long);
6755 %}
6756 
6757 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
6758   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
6759             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
6760   match(Set dst (DecodeN src));
6761   effect(KILL cr);
6762   format %{ "decode_heap_oop $dst,$src" %}
6763   ins_encode %{
6764     Register s = $src$$Register;
6765     Register d = $dst$$Register;
6766     if (s != d) {
6767       __ movq(d, s);
6768     }
6769     __ decode_heap_oop(d);
6770   %}
6771   ins_pipe(ialu_reg_long);
6772 %}
6773 
6774 instruct decodeHeapOop_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6775   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
6776             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
6777   match(Set dst (DecodeN src));
6778   effect(KILL cr);
6779   format %{ "decode_heap_oop_not_null $dst,$src" %}
6780   ins_encode %{
6781     Register s = $src$$Register;
6782     Register d = $dst$$Register;
6783     if (s != d) {
6784       __ decode_heap_oop_not_null(d, s);
6785     } else {
6786       __ decode_heap_oop_not_null(d);
6787     }
6788   %}
6789   ins_pipe(ialu_reg_long);
6790 %}
6791 
6792 instruct encodeKlass_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6793   match(Set dst (EncodePKlass src));
6794   effect(KILL cr);
6795   format %{ "encode_klass_not_null $dst,$src" %}
6796   ins_encode %{
6797     __ encode_klass_not_null($dst$$Register, $src$$Register);
6798   %}
6799   ins_pipe(ialu_reg_long);
6800 %}
6801 
6802 instruct decodeKlass_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6803   match(Set dst (DecodeNKlass src));
6804   effect(KILL cr);
6805   format %{ "decode_klass_not_null $dst,$src" %}
6806   ins_encode %{
6807     Register s = $src$$Register;
6808     Register d = $dst$$Register;
6809     if (s != d) {
6810       __ decode_klass_not_null(d, s);
6811     } else {
6812       __ decode_klass_not_null(d);
6813     }
6814   %}
6815   ins_pipe(ialu_reg_long);
6816 %}
6817 
6818 
6819 //----------Conditional Move---------------------------------------------------
6820 // Jump
6821 // dummy instruction for generating temp registers
6822 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
6823   match(Jump (LShiftL switch_val shift));
6824   ins_cost(350);
6825   predicate(false);
6826   effect(TEMP dest);
6827 
6828   format %{ "leaq    $dest, [$constantaddress]\n\t"
6829             "jmp     [$dest + $switch_val << $shift]\n\t" %}
6830   ins_encode %{
6831     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6832     // to do that and the compiler is using that register as one it can allocate.
6833     // So we build it all by hand.
6834     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
6835     // ArrayAddress dispatch(table, index);
6836     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant);
6837     __ lea($dest$$Register, $constantaddress);
6838     __ jmp(dispatch);
6839   %}
6840   ins_pipe(pipe_jmp);
6841 %}
6842 
6843 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
6844   match(Jump (AddL (LShiftL switch_val shift) offset));
6845   ins_cost(350);
6846   effect(TEMP dest);
6847 
6848   format %{ "leaq    $dest, [$constantaddress]\n\t"
6849             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
6850   ins_encode %{
6851     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6852     // to do that and the compiler is using that register as one it can allocate.
6853     // So we build it all by hand.
6854     // Address index(noreg, switch_reg, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6855     // ArrayAddress dispatch(table, index);
6856     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6857     __ lea($dest$$Register, $constantaddress);
6858     __ jmp(dispatch);
6859   %}
6860   ins_pipe(pipe_jmp);
6861 %}
6862 
6863 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
6864   match(Jump switch_val);
6865   ins_cost(350);
6866   effect(TEMP dest);
6867 
6868   format %{ "leaq    $dest, [$constantaddress]\n\t"
6869             "jmp     [$dest + $switch_val]\n\t" %}
6870   ins_encode %{
6871     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6872     // to do that and the compiler is using that register as one it can allocate.
6873     // So we build it all by hand.
6874     // Address index(noreg, switch_reg, Address::times_1);
6875     // ArrayAddress dispatch(table, index);
6876     Address dispatch($dest$$Register, $switch_val$$Register, Address::times_1);
6877     __ lea($dest$$Register, $constantaddress);
6878     __ jmp(dispatch);
6879   %}
6880   ins_pipe(pipe_jmp);
6881 %}
6882 
6883 // Conditional move
6884 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
6885 %{
6886   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6887 
6888   ins_cost(200); // XXX
6889   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6890   opcode(0x0F, 0x40);
6891   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6892   ins_pipe(pipe_cmov_reg);
6893 %}
6894 
6895 instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
6896   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6897 
6898   ins_cost(200); // XXX
6899   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6900   opcode(0x0F, 0x40);
6901   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6902   ins_pipe(pipe_cmov_reg);
6903 %}
6904 
6905 instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
6906   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6907   ins_cost(200);
6908   expand %{
6909     cmovI_regU(cop, cr, dst, src);
6910   %}
6911 %}
6912 
6913 // Conditional move
6914 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
6915   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6916 
6917   ins_cost(250); // XXX
6918   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6919   opcode(0x0F, 0x40);
6920   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6921   ins_pipe(pipe_cmov_mem);
6922 %}
6923 
6924 // Conditional move
6925 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
6926 %{
6927   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6928 
6929   ins_cost(250); // XXX
6930   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6931   opcode(0x0F, 0x40);
6932   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6933   ins_pipe(pipe_cmov_mem);
6934 %}
6935 
6936 instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
6937   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6938   ins_cost(250);
6939   expand %{
6940     cmovI_memU(cop, cr, dst, src);
6941   %}
6942 %}
6943 
6944 // Conditional move
6945 instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
6946 %{
6947   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6948 
6949   ins_cost(200); // XXX
6950   format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
6951   opcode(0x0F, 0x40);
6952   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6953   ins_pipe(pipe_cmov_reg);
6954 %}
6955 
6956 // Conditional move
6957 instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
6958 %{
6959   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6960 
6961   ins_cost(200); // XXX
6962   format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
6963   opcode(0x0F, 0x40);
6964   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6965   ins_pipe(pipe_cmov_reg);
6966 %}
6967 
6968 instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
6969   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6970   ins_cost(200);
6971   expand %{
6972     cmovN_regU(cop, cr, dst, src);
6973   %}
6974 %}
6975 
6976 // Conditional move
6977 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
6978 %{
6979   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6980 
6981   ins_cost(200); // XXX
6982   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
6983   opcode(0x0F, 0x40);
6984   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6985   ins_pipe(pipe_cmov_reg);  // XXX
6986 %}
6987 
6988 // Conditional move
6989 instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
6990 %{
6991   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6992 
6993   ins_cost(200); // XXX
6994   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
6995   opcode(0x0F, 0x40);
6996   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6997   ins_pipe(pipe_cmov_reg); // XXX
6998 %}
6999 
7000 instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
7001   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7002   ins_cost(200);
7003   expand %{
7004     cmovP_regU(cop, cr, dst, src);
7005   %}
7006 %}
7007 
7008 // DISABLED: Requires the ADLC to emit a bottom_type call that
7009 // correctly meets the two pointer arguments; one is an incoming
7010 // register but the other is a memory operand.  ALSO appears to
7011 // be buggy with implicit null checks.
7012 //
7013 //// Conditional move
7014 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
7015 //%{
7016 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7017 //  ins_cost(250);
7018 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7019 //  opcode(0x0F,0x40);
7020 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
7021 //  ins_pipe( pipe_cmov_mem );
7022 //%}
7023 //
7024 //// Conditional move
7025 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
7026 //%{
7027 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7028 //  ins_cost(250);
7029 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7030 //  opcode(0x0F,0x40);
7031 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
7032 //  ins_pipe( pipe_cmov_mem );
7033 //%}
7034 
7035 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
7036 %{
7037   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7038 
7039   ins_cost(200); // XXX
7040   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
7041   opcode(0x0F, 0x40);
7042   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7043   ins_pipe(pipe_cmov_reg);  // XXX
7044 %}
7045 
7046 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
7047 %{
7048   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7049 
7050   ins_cost(200); // XXX
7051   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
7052   opcode(0x0F, 0x40);
7053   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
7054   ins_pipe(pipe_cmov_mem);  // XXX
7055 %}
7056 
7057 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
7058 %{
7059   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7060 
7061   ins_cost(200); // XXX
7062   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
7063   opcode(0x0F, 0x40);
7064   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7065   ins_pipe(pipe_cmov_reg); // XXX
7066 %}
7067 
7068 instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
7069   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7070   ins_cost(200);
7071   expand %{
7072     cmovL_regU(cop, cr, dst, src);
7073   %}
7074 %}
7075 
7076 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
7077 %{
7078   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7079 
7080   ins_cost(200); // XXX
7081   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
7082   opcode(0x0F, 0x40);
7083   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
7084   ins_pipe(pipe_cmov_mem); // XXX
7085 %}
7086 
7087 instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
7088   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7089   ins_cost(200);
7090   expand %{
7091     cmovL_memU(cop, cr, dst, src);
7092   %}
7093 %}
7094 
7095 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
7096 %{
7097   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7098 
7099   ins_cost(200); // XXX
7100   format %{ "jn$cop    skip\t# signed cmove float\n\t"
7101             "movss     $dst, $src\n"
7102     "skip:" %}
7103   ins_encode %{
7104     Label Lskip;
7105     // Invert sense of branch from sense of CMOV
7106     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7107     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7108     __ bind(Lskip);
7109   %}
7110   ins_pipe(pipe_slow);
7111 %}
7112 
7113 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
7114 // %{
7115 //   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
7116 
7117 //   ins_cost(200); // XXX
7118 //   format %{ "jn$cop    skip\t# signed cmove float\n\t"
7119 //             "movss     $dst, $src\n"
7120 //     "skip:" %}
7121 //   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
7122 //   ins_pipe(pipe_slow);
7123 // %}
7124 
7125 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
7126 %{
7127   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7128 
7129   ins_cost(200); // XXX
7130   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
7131             "movss     $dst, $src\n"
7132     "skip:" %}
7133   ins_encode %{
7134     Label Lskip;
7135     // Invert sense of branch from sense of CMOV
7136     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7137     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7138     __ bind(Lskip);
7139   %}
7140   ins_pipe(pipe_slow);
7141 %}
7142 
7143 instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
7144   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7145   ins_cost(200);
7146   expand %{
7147     cmovF_regU(cop, cr, dst, src);
7148   %}
7149 %}
7150 
7151 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
7152 %{
7153   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7154 
7155   ins_cost(200); // XXX
7156   format %{ "jn$cop    skip\t# signed cmove double\n\t"
7157             "movsd     $dst, $src\n"
7158     "skip:" %}
7159   ins_encode %{
7160     Label Lskip;
7161     // Invert sense of branch from sense of CMOV
7162     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7163     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7164     __ bind(Lskip);
7165   %}
7166   ins_pipe(pipe_slow);
7167 %}
7168 
7169 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
7170 %{
7171   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7172 
7173   ins_cost(200); // XXX
7174   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
7175             "movsd     $dst, $src\n"
7176     "skip:" %}
7177   ins_encode %{
7178     Label Lskip;
7179     // Invert sense of branch from sense of CMOV
7180     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7181     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7182     __ bind(Lskip);
7183   %}
7184   ins_pipe(pipe_slow);
7185 %}
7186 
7187 instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
7188   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7189   ins_cost(200);
7190   expand %{
7191     cmovD_regU(cop, cr, dst, src);
7192   %}
7193 %}
7194 
7195 //----------Arithmetic Instructions--------------------------------------------
7196 //----------Addition Instructions----------------------------------------------
7197 
7198 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7199 %{
7200   match(Set dst (AddI dst src));
7201   effect(KILL cr);
7202 
7203   format %{ "addl    $dst, $src\t# int" %}
7204   opcode(0x03);
7205   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7206   ins_pipe(ialu_reg_reg);
7207 %}
7208 
7209 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7210 %{
7211   match(Set dst (AddI dst src));
7212   effect(KILL cr);
7213 
7214   format %{ "addl    $dst, $src\t# int" %}
7215   opcode(0x81, 0x00); /* /0 id */
7216   ins_encode(OpcSErm(dst, src), Con8or32(src));
7217   ins_pipe( ialu_reg );
7218 %}
7219 
7220 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7221 %{
7222   match(Set dst (AddI dst (LoadI src)));
7223   effect(KILL cr);
7224 
7225   ins_cost(125); // XXX
7226   format %{ "addl    $dst, $src\t# int" %}
7227   opcode(0x03);
7228   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7229   ins_pipe(ialu_reg_mem);
7230 %}
7231 
7232 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7233 %{
7234   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7235   effect(KILL cr);
7236 
7237   ins_cost(150); // XXX
7238   format %{ "addl    $dst, $src\t# int" %}
7239   opcode(0x01); /* Opcode 01 /r */
7240   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7241   ins_pipe(ialu_mem_reg);
7242 %}
7243 
7244 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
7245 %{
7246   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7247   effect(KILL cr);
7248 
7249   ins_cost(125); // XXX
7250   format %{ "addl    $dst, $src\t# int" %}
7251   opcode(0x81); /* Opcode 81 /0 id */
7252   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7253   ins_pipe(ialu_mem_imm);
7254 %}
7255 
7256 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
7257 %{
7258   predicate(UseIncDec);
7259   match(Set dst (AddI dst src));
7260   effect(KILL cr);
7261 
7262   format %{ "incl    $dst\t# int" %}
7263   opcode(0xFF, 0x00); // FF /0
7264   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7265   ins_pipe(ialu_reg);
7266 %}
7267 
7268 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
7269 %{
7270   predicate(UseIncDec);
7271   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7272   effect(KILL cr);
7273 
7274   ins_cost(125); // XXX
7275   format %{ "incl    $dst\t# int" %}
7276   opcode(0xFF); /* Opcode FF /0 */
7277   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
7278   ins_pipe(ialu_mem_imm);
7279 %}
7280 
7281 // XXX why does that use AddI
7282 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
7283 %{
7284   predicate(UseIncDec);
7285   match(Set dst (AddI dst src));
7286   effect(KILL cr);
7287 
7288   format %{ "decl    $dst\t# int" %}
7289   opcode(0xFF, 0x01); // FF /1
7290   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7291   ins_pipe(ialu_reg);
7292 %}
7293 
7294 // XXX why does that use AddI
7295 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
7296 %{
7297   predicate(UseIncDec);
7298   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7299   effect(KILL cr);
7300 
7301   ins_cost(125); // XXX
7302   format %{ "decl    $dst\t# int" %}
7303   opcode(0xFF); /* Opcode FF /1 */
7304   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
7305   ins_pipe(ialu_mem_imm);
7306 %}
7307 
7308 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
7309 %{
7310   match(Set dst (AddI src0 src1));
7311 
7312   ins_cost(110);
7313   format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
7314   opcode(0x8D); /* 0x8D /r */
7315   ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7316   ins_pipe(ialu_reg_reg);
7317 %}
7318 
7319 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7320 %{
7321   match(Set dst (AddL dst src));
7322   effect(KILL cr);
7323 
7324   format %{ "addq    $dst, $src\t# long" %}
7325   opcode(0x03);
7326   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7327   ins_pipe(ialu_reg_reg);
7328 %}
7329 
7330 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
7331 %{
7332   match(Set dst (AddL dst src));
7333   effect(KILL cr);
7334 
7335   format %{ "addq    $dst, $src\t# long" %}
7336   opcode(0x81, 0x00); /* /0 id */
7337   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7338   ins_pipe( ialu_reg );
7339 %}
7340 
7341 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7342 %{
7343   match(Set dst (AddL dst (LoadL src)));
7344   effect(KILL cr);
7345 
7346   ins_cost(125); // XXX
7347   format %{ "addq    $dst, $src\t# long" %}
7348   opcode(0x03);
7349   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7350   ins_pipe(ialu_reg_mem);
7351 %}
7352 
7353 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7354 %{
7355   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7356   effect(KILL cr);
7357 
7358   ins_cost(150); // XXX
7359   format %{ "addq    $dst, $src\t# long" %}
7360   opcode(0x01); /* Opcode 01 /r */
7361   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7362   ins_pipe(ialu_mem_reg);
7363 %}
7364 
7365 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7366 %{
7367   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7368   effect(KILL cr);
7369 
7370   ins_cost(125); // XXX
7371   format %{ "addq    $dst, $src\t# long" %}
7372   opcode(0x81); /* Opcode 81 /0 id */
7373   ins_encode(REX_mem_wide(dst),
7374              OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7375   ins_pipe(ialu_mem_imm);
7376 %}
7377 
7378 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
7379 %{
7380   predicate(UseIncDec);
7381   match(Set dst (AddL dst src));
7382   effect(KILL cr);
7383 
7384   format %{ "incq    $dst\t# long" %}
7385   opcode(0xFF, 0x00); // FF /0
7386   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7387   ins_pipe(ialu_reg);
7388 %}
7389 
7390 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
7391 %{
7392   predicate(UseIncDec);
7393   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7394   effect(KILL cr);
7395 
7396   ins_cost(125); // XXX
7397   format %{ "incq    $dst\t# long" %}
7398   opcode(0xFF); /* Opcode FF /0 */
7399   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
7400   ins_pipe(ialu_mem_imm);
7401 %}
7402 
7403 // XXX why does that use AddL
7404 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
7405 %{
7406   predicate(UseIncDec);
7407   match(Set dst (AddL dst src));
7408   effect(KILL cr);
7409 
7410   format %{ "decq    $dst\t# long" %}
7411   opcode(0xFF, 0x01); // FF /1
7412   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7413   ins_pipe(ialu_reg);
7414 %}
7415 
7416 // XXX why does that use AddL
7417 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
7418 %{
7419   predicate(UseIncDec);
7420   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7421   effect(KILL cr);
7422 
7423   ins_cost(125); // XXX
7424   format %{ "decq    $dst\t# long" %}
7425   opcode(0xFF); /* Opcode FF /1 */
7426   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
7427   ins_pipe(ialu_mem_imm);
7428 %}
7429 
7430 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
7431 %{
7432   match(Set dst (AddL src0 src1));
7433 
7434   ins_cost(110);
7435   format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
7436   opcode(0x8D); /* 0x8D /r */
7437   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7438   ins_pipe(ialu_reg_reg);
7439 %}
7440 
7441 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
7442 %{
7443   match(Set dst (AddP dst src));
7444   effect(KILL cr);
7445 
7446   format %{ "addq    $dst, $src\t# ptr" %}
7447   opcode(0x03);
7448   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7449   ins_pipe(ialu_reg_reg);
7450 %}
7451 
7452 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
7453 %{
7454   match(Set dst (AddP dst src));
7455   effect(KILL cr);
7456 
7457   format %{ "addq    $dst, $src\t# ptr" %}
7458   opcode(0x81, 0x00); /* /0 id */
7459   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7460   ins_pipe( ialu_reg );
7461 %}
7462 
7463 // XXX addP mem ops ????
7464 
7465 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
7466 %{
7467   match(Set dst (AddP src0 src1));
7468 
7469   ins_cost(110);
7470   format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
7471   opcode(0x8D); /* 0x8D /r */
7472   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
7473   ins_pipe(ialu_reg_reg);
7474 %}
7475 
7476 instruct checkCastPP(rRegP dst)
7477 %{
7478   match(Set dst (CheckCastPP dst));
7479 
7480   size(0);
7481   format %{ "# checkcastPP of $dst" %}
7482   ins_encode(/* empty encoding */);
7483   ins_pipe(empty);
7484 %}
7485 
7486 instruct castPP(rRegP dst)
7487 %{
7488   match(Set dst (CastPP dst));
7489 
7490   size(0);
7491   format %{ "# castPP of $dst" %}
7492   ins_encode(/* empty encoding */);
7493   ins_pipe(empty);
7494 %}
7495 
7496 instruct castII(rRegI dst)
7497 %{
7498   match(Set dst (CastII dst));
7499 
7500   size(0);
7501   format %{ "# castII of $dst" %}
7502   ins_encode(/* empty encoding */);
7503   ins_cost(0);
7504   ins_pipe(empty);
7505 %}
7506 
7507 instruct castLL(rRegL dst)
7508 %{
7509   match(Set dst (CastLL dst));
7510 
7511   size(0);
7512   format %{ "# castLL of $dst" %}
7513   ins_encode(/* empty encoding */);
7514   ins_cost(0);
7515   ins_pipe(empty);
7516 %}
7517 
7518 // LoadP-locked same as a regular LoadP when used with compare-swap
7519 instruct loadPLocked(rRegP dst, memory mem)
7520 %{
7521   match(Set dst (LoadPLocked mem));
7522 
7523   ins_cost(125); // XXX
7524   format %{ "movq    $dst, $mem\t# ptr locked" %}
7525   opcode(0x8B);
7526   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7527   ins_pipe(ialu_reg_mem); // XXX
7528 %}
7529 
7530 // Conditional-store of the updated heap-top.
7531 // Used during allocation of the shared heap.
7532 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7533 
7534 instruct storePConditional(memory heap_top_ptr,
7535                            rax_RegP oldval, rRegP newval,
7536                            rFlagsReg cr)
7537 %{
7538   predicate(n->as_LoadStore()->barrier_data() == 0);
7539   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7540 
7541   format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
7542             "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
7543   opcode(0x0F, 0xB1);
7544   ins_encode(lock_prefix,
7545              REX_reg_mem_wide(newval, heap_top_ptr),
7546              OpcP, OpcS,
7547              reg_mem(newval, heap_top_ptr));
7548   ins_pipe(pipe_cmpxchg);
7549 %}
7550 
7551 // Conditional-store of an int value.
7552 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7553 instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
7554 %{
7555   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7556   effect(KILL oldval);
7557 
7558   format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7559   opcode(0x0F, 0xB1);
7560   ins_encode(lock_prefix,
7561              REX_reg_mem(newval, mem),
7562              OpcP, OpcS,
7563              reg_mem(newval, mem));
7564   ins_pipe(pipe_cmpxchg);
7565 %}
7566 
7567 // Conditional-store of a long value.
7568 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7569 instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
7570 %{
7571   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7572   effect(KILL oldval);
7573 
7574   format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7575   opcode(0x0F, 0xB1);
7576   ins_encode(lock_prefix,
7577              REX_reg_mem_wide(newval, mem),
7578              OpcP, OpcS,
7579              reg_mem(newval, mem));
7580   ins_pipe(pipe_cmpxchg);
7581 %}
7582 
7583 
7584 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7585 instruct compareAndSwapP(rRegI res,
7586                          memory mem_ptr,
7587                          rax_RegP oldval, rRegP newval,
7588                          rFlagsReg cr)
7589 %{
7590   predicate(VM_Version::supports_cx8() && n->as_LoadStore()->barrier_data() == 0);
7591   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7592   match(Set res (WeakCompareAndSwapP mem_ptr (Binary oldval newval)));
7593   effect(KILL cr, KILL oldval);
7594 
7595   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7596             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7597             "sete    $res\n\t"
7598             "movzbl  $res, $res" %}
7599   opcode(0x0F, 0xB1);
7600   ins_encode(lock_prefix,
7601              REX_reg_mem_wide(newval, mem_ptr),
7602              OpcP, OpcS,
7603              reg_mem(newval, mem_ptr),
7604              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7605              REX_reg_breg(res, res), // movzbl
7606              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7607   ins_pipe( pipe_cmpxchg );
7608 %}
7609 
7610 instruct compareAndSwapL(rRegI res,
7611                          memory mem_ptr,
7612                          rax_RegL oldval, rRegL newval,
7613                          rFlagsReg cr)
7614 %{
7615   predicate(VM_Version::supports_cx8());
7616   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7617   match(Set res (WeakCompareAndSwapL mem_ptr (Binary oldval newval)));
7618   effect(KILL cr, KILL oldval);
7619 
7620   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7621             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7622             "sete    $res\n\t"
7623             "movzbl  $res, $res" %}
7624   opcode(0x0F, 0xB1);
7625   ins_encode(lock_prefix,
7626              REX_reg_mem_wide(newval, mem_ptr),
7627              OpcP, OpcS,
7628              reg_mem(newval, mem_ptr),
7629              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7630              REX_reg_breg(res, res), // movzbl
7631              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7632   ins_pipe( pipe_cmpxchg );
7633 %}
7634 
7635 instruct compareAndSwapI(rRegI res,
7636                          memory mem_ptr,
7637                          rax_RegI oldval, rRegI newval,
7638                          rFlagsReg cr)
7639 %{
7640   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7641   match(Set res (WeakCompareAndSwapI mem_ptr (Binary oldval newval)));
7642   effect(KILL cr, KILL oldval);
7643 
7644   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7645             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7646             "sete    $res\n\t"
7647             "movzbl  $res, $res" %}
7648   opcode(0x0F, 0xB1);
7649   ins_encode(lock_prefix,
7650              REX_reg_mem(newval, mem_ptr),
7651              OpcP, OpcS,
7652              reg_mem(newval, mem_ptr),
7653              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7654              REX_reg_breg(res, res), // movzbl
7655              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7656   ins_pipe( pipe_cmpxchg );
7657 %}
7658 
7659 instruct compareAndSwapB(rRegI res,
7660                          memory mem_ptr,
7661                          rax_RegI oldval, rRegI newval,
7662                          rFlagsReg cr)
7663 %{
7664   match(Set res (CompareAndSwapB mem_ptr (Binary oldval newval)));
7665   match(Set res (WeakCompareAndSwapB mem_ptr (Binary oldval newval)));
7666   effect(KILL cr, KILL oldval);
7667 
7668   format %{ "cmpxchgb $mem_ptr,$newval\t# "
7669             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7670             "sete    $res\n\t"
7671             "movzbl  $res, $res" %}
7672   opcode(0x0F, 0xB0);
7673   ins_encode(lock_prefix,
7674              REX_breg_mem(newval, mem_ptr),
7675              OpcP, OpcS,
7676              reg_mem(newval, mem_ptr),
7677              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7678              REX_reg_breg(res, res), // movzbl
7679              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7680   ins_pipe( pipe_cmpxchg );
7681 %}
7682 
7683 instruct compareAndSwapS(rRegI res,
7684                          memory mem_ptr,
7685                          rax_RegI oldval, rRegI newval,
7686                          rFlagsReg cr)
7687 %{
7688   match(Set res (CompareAndSwapS mem_ptr (Binary oldval newval)));
7689   match(Set res (WeakCompareAndSwapS mem_ptr (Binary oldval newval)));
7690   effect(KILL cr, KILL oldval);
7691 
7692   format %{ "cmpxchgw $mem_ptr,$newval\t# "
7693             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7694             "sete    $res\n\t"
7695             "movzbl  $res, $res" %}
7696   opcode(0x0F, 0xB1);
7697   ins_encode(lock_prefix,
7698              SizePrefix,
7699              REX_reg_mem(newval, mem_ptr),
7700              OpcP, OpcS,
7701              reg_mem(newval, mem_ptr),
7702              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7703              REX_reg_breg(res, res), // movzbl
7704              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7705   ins_pipe( pipe_cmpxchg );
7706 %}
7707 
7708 instruct compareAndSwapN(rRegI res,
7709                           memory mem_ptr,
7710                           rax_RegN oldval, rRegN newval,
7711                           rFlagsReg cr) %{
7712   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7713   match(Set res (WeakCompareAndSwapN mem_ptr (Binary oldval newval)));
7714   effect(KILL cr, KILL oldval);
7715 
7716   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7717             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7718             "sete    $res\n\t"
7719             "movzbl  $res, $res" %}
7720   opcode(0x0F, 0xB1);
7721   ins_encode(lock_prefix,
7722              REX_reg_mem(newval, mem_ptr),
7723              OpcP, OpcS,
7724              reg_mem(newval, mem_ptr),
7725              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7726              REX_reg_breg(res, res), // movzbl
7727              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7728   ins_pipe( pipe_cmpxchg );
7729 %}
7730 
7731 instruct compareAndExchangeB(
7732                          memory mem_ptr,
7733                          rax_RegI oldval, rRegI newval,
7734                          rFlagsReg cr)
7735 %{
7736   match(Set oldval (CompareAndExchangeB mem_ptr (Binary oldval newval)));
7737   effect(KILL cr);
7738 
7739   format %{ "cmpxchgb $mem_ptr,$newval\t# "
7740             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7741   opcode(0x0F, 0xB0);
7742   ins_encode(lock_prefix,
7743              REX_breg_mem(newval, mem_ptr),
7744              OpcP, OpcS,
7745              reg_mem(newval, mem_ptr) // lock cmpxchg
7746              );
7747   ins_pipe( pipe_cmpxchg );
7748 %}
7749 
7750 instruct compareAndExchangeS(
7751                          memory mem_ptr,
7752                          rax_RegI oldval, rRegI newval,
7753                          rFlagsReg cr)
7754 %{
7755   match(Set oldval (CompareAndExchangeS mem_ptr (Binary oldval newval)));
7756   effect(KILL cr);
7757 
7758   format %{ "cmpxchgw $mem_ptr,$newval\t# "
7759             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7760   opcode(0x0F, 0xB1);
7761   ins_encode(lock_prefix,
7762              SizePrefix,
7763              REX_reg_mem(newval, mem_ptr),
7764              OpcP, OpcS,
7765              reg_mem(newval, mem_ptr) // lock cmpxchg
7766              );
7767   ins_pipe( pipe_cmpxchg );
7768 %}
7769 
7770 instruct compareAndExchangeI(
7771                          memory mem_ptr,
7772                          rax_RegI oldval, rRegI newval,
7773                          rFlagsReg cr)
7774 %{
7775   match(Set oldval (CompareAndExchangeI mem_ptr (Binary oldval newval)));
7776   effect(KILL cr);
7777 
7778   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7779             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7780   opcode(0x0F, 0xB1);
7781   ins_encode(lock_prefix,
7782              REX_reg_mem(newval, mem_ptr),
7783              OpcP, OpcS,
7784              reg_mem(newval, mem_ptr) // lock cmpxchg
7785              );
7786   ins_pipe( pipe_cmpxchg );
7787 %}
7788 
7789 instruct compareAndExchangeL(
7790                          memory mem_ptr,
7791                          rax_RegL oldval, rRegL newval,
7792                          rFlagsReg cr)
7793 %{
7794   predicate(VM_Version::supports_cx8());
7795   match(Set oldval (CompareAndExchangeL mem_ptr (Binary oldval newval)));
7796   effect(KILL cr);
7797 
7798   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7799             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7800   opcode(0x0F, 0xB1);
7801   ins_encode(lock_prefix,
7802              REX_reg_mem_wide(newval, mem_ptr),
7803              OpcP, OpcS,
7804              reg_mem(newval, mem_ptr)  // lock cmpxchg
7805             );
7806   ins_pipe( pipe_cmpxchg );
7807 %}
7808 
7809 instruct compareAndExchangeN(
7810                           memory mem_ptr,
7811                           rax_RegN oldval, rRegN newval,
7812                           rFlagsReg cr) %{
7813   match(Set oldval (CompareAndExchangeN mem_ptr (Binary oldval newval)));
7814   effect(KILL cr);
7815 
7816   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7817             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
7818   opcode(0x0F, 0xB1);
7819   ins_encode(lock_prefix,
7820              REX_reg_mem(newval, mem_ptr),
7821              OpcP, OpcS,
7822              reg_mem(newval, mem_ptr)  // lock cmpxchg
7823           );
7824   ins_pipe( pipe_cmpxchg );
7825 %}
7826 
7827 instruct compareAndExchangeP(
7828                          memory mem_ptr,
7829                          rax_RegP oldval, rRegP newval,
7830                          rFlagsReg cr)
7831 %{
7832   predicate(VM_Version::supports_cx8() && n->as_LoadStore()->barrier_data() == 0);
7833   match(Set oldval (CompareAndExchangeP mem_ptr (Binary oldval newval)));
7834   effect(KILL cr);
7835 
7836   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7837             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
7838   opcode(0x0F, 0xB1);
7839   ins_encode(lock_prefix,
7840              REX_reg_mem_wide(newval, mem_ptr),
7841              OpcP, OpcS,
7842              reg_mem(newval, mem_ptr)  // lock cmpxchg
7843           );
7844   ins_pipe( pipe_cmpxchg );
7845 %}
7846 
7847 instruct xaddB_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7848   predicate(n->as_LoadStore()->result_not_used());
7849   match(Set dummy (GetAndAddB mem add));
7850   effect(KILL cr);
7851   format %{ "ADDB  [$mem],$add" %}
7852   ins_encode %{
7853     __ lock();
7854     __ addb($mem$$Address, $add$$constant);
7855   %}
7856   ins_pipe( pipe_cmpxchg );
7857 %}
7858 
7859 instruct xaddB( memory mem, rRegI newval, rFlagsReg cr) %{
7860   match(Set newval (GetAndAddB mem newval));
7861   effect(KILL cr);
7862   format %{ "XADDB  [$mem],$newval" %}
7863   ins_encode %{
7864     __ lock();
7865     __ xaddb($mem$$Address, $newval$$Register);
7866   %}
7867   ins_pipe( pipe_cmpxchg );
7868 %}
7869 
7870 instruct xaddS_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7871   predicate(n->as_LoadStore()->result_not_used());
7872   match(Set dummy (GetAndAddS mem add));
7873   effect(KILL cr);
7874   format %{ "ADDW  [$mem],$add" %}
7875   ins_encode %{
7876     __ lock();
7877     __ addw($mem$$Address, $add$$constant);
7878   %}
7879   ins_pipe( pipe_cmpxchg );
7880 %}
7881 
7882 instruct xaddS( memory mem, rRegI newval, rFlagsReg cr) %{
7883   match(Set newval (GetAndAddS mem newval));
7884   effect(KILL cr);
7885   format %{ "XADDW  [$mem],$newval" %}
7886   ins_encode %{
7887     __ lock();
7888     __ xaddw($mem$$Address, $newval$$Register);
7889   %}
7890   ins_pipe( pipe_cmpxchg );
7891 %}
7892 
7893 instruct xaddI_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7894   predicate(n->as_LoadStore()->result_not_used());
7895   match(Set dummy (GetAndAddI mem add));
7896   effect(KILL cr);
7897   format %{ "ADDL  [$mem],$add" %}
7898   ins_encode %{
7899     __ lock();
7900     __ addl($mem$$Address, $add$$constant);
7901   %}
7902   ins_pipe( pipe_cmpxchg );
7903 %}
7904 
7905 instruct xaddI( memory mem, rRegI newval, rFlagsReg cr) %{
7906   match(Set newval (GetAndAddI mem newval));
7907   effect(KILL cr);
7908   format %{ "XADDL  [$mem],$newval" %}
7909   ins_encode %{
7910     __ lock();
7911     __ xaddl($mem$$Address, $newval$$Register);
7912   %}
7913   ins_pipe( pipe_cmpxchg );
7914 %}
7915 
7916 instruct xaddL_no_res( memory mem, Universe dummy, immL32 add, rFlagsReg cr) %{
7917   predicate(n->as_LoadStore()->result_not_used());
7918   match(Set dummy (GetAndAddL mem add));
7919   effect(KILL cr);
7920   format %{ "ADDQ  [$mem],$add" %}
7921   ins_encode %{
7922     __ lock();
7923     __ addq($mem$$Address, $add$$constant);
7924   %}
7925   ins_pipe( pipe_cmpxchg );
7926 %}
7927 
7928 instruct xaddL( memory mem, rRegL newval, rFlagsReg cr) %{
7929   match(Set newval (GetAndAddL mem newval));
7930   effect(KILL cr);
7931   format %{ "XADDQ  [$mem],$newval" %}
7932   ins_encode %{
7933     __ lock();
7934     __ xaddq($mem$$Address, $newval$$Register);
7935   %}
7936   ins_pipe( pipe_cmpxchg );
7937 %}
7938 
7939 instruct xchgB( memory mem, rRegI newval) %{
7940   match(Set newval (GetAndSetB mem newval));
7941   format %{ "XCHGB  $newval,[$mem]" %}
7942   ins_encode %{
7943     __ xchgb($newval$$Register, $mem$$Address);
7944   %}
7945   ins_pipe( pipe_cmpxchg );
7946 %}
7947 
7948 instruct xchgS( memory mem, rRegI newval) %{
7949   match(Set newval (GetAndSetS mem newval));
7950   format %{ "XCHGW  $newval,[$mem]" %}
7951   ins_encode %{
7952     __ xchgw($newval$$Register, $mem$$Address);
7953   %}
7954   ins_pipe( pipe_cmpxchg );
7955 %}
7956 
7957 instruct xchgI( memory mem, rRegI newval) %{
7958   match(Set newval (GetAndSetI mem newval));
7959   format %{ "XCHGL  $newval,[$mem]" %}
7960   ins_encode %{
7961     __ xchgl($newval$$Register, $mem$$Address);
7962   %}
7963   ins_pipe( pipe_cmpxchg );
7964 %}
7965 
7966 instruct xchgL( memory mem, rRegL newval) %{
7967   match(Set newval (GetAndSetL mem newval));
7968   format %{ "XCHGL  $newval,[$mem]" %}
7969   ins_encode %{
7970     __ xchgq($newval$$Register, $mem$$Address);
7971   %}
7972   ins_pipe( pipe_cmpxchg );
7973 %}
7974 
7975 instruct xchgP( memory mem, rRegP newval) %{
7976   match(Set newval (GetAndSetP mem newval));
7977   predicate(n->as_LoadStore()->barrier_data() == 0);
7978   format %{ "XCHGQ  $newval,[$mem]" %}
7979   ins_encode %{
7980     __ xchgq($newval$$Register, $mem$$Address);
7981   %}
7982   ins_pipe( pipe_cmpxchg );
7983 %}
7984 
7985 instruct xchgN( memory mem, rRegN newval) %{
7986   match(Set newval (GetAndSetN mem newval));
7987   format %{ "XCHGL  $newval,$mem]" %}
7988   ins_encode %{
7989     __ xchgl($newval$$Register, $mem$$Address);
7990   %}
7991   ins_pipe( pipe_cmpxchg );
7992 %}
7993 
7994 //----------Abs Instructions-------------------------------------------
7995 
7996 // Integer Absolute Instructions
7997 instruct absI_rReg(rRegI dst, rRegI src, rRegI tmp, rFlagsReg cr)
7998 %{
7999   match(Set dst (AbsI src));
8000   effect(TEMP dst, TEMP tmp, KILL cr);
8001   format %{ "movl $tmp, $src\n\t"
8002             "sarl $tmp, 31\n\t"
8003             "movl $dst, $src\n\t"
8004             "xorl $dst, $tmp\n\t"
8005             "subl $dst, $tmp\n"
8006           %}
8007   ins_encode %{
8008     __ movl($tmp$$Register, $src$$Register);
8009     __ sarl($tmp$$Register, 31);
8010     __ movl($dst$$Register, $src$$Register);
8011     __ xorl($dst$$Register, $tmp$$Register);
8012     __ subl($dst$$Register, $tmp$$Register);
8013   %}
8014 
8015   ins_pipe(ialu_reg_reg);
8016 %}
8017 
8018 // Long Absolute Instructions
8019 instruct absL_rReg(rRegL dst, rRegL src, rRegL tmp, rFlagsReg cr)
8020 %{
8021   match(Set dst (AbsL src));
8022   effect(TEMP dst, TEMP tmp, KILL cr);
8023   format %{ "movq $tmp, $src\n\t"
8024             "sarq $tmp, 63\n\t"
8025             "movq $dst, $src\n\t"
8026             "xorq $dst, $tmp\n\t"
8027             "subq $dst, $tmp\n"
8028           %}
8029   ins_encode %{
8030     __ movq($tmp$$Register, $src$$Register);
8031     __ sarq($tmp$$Register, 63);
8032     __ movq($dst$$Register, $src$$Register);
8033     __ xorq($dst$$Register, $tmp$$Register);
8034     __ subq($dst$$Register, $tmp$$Register);
8035   %}
8036 
8037   ins_pipe(ialu_reg_reg);
8038 %}
8039 
8040 //----------Subtraction Instructions-------------------------------------------
8041 
8042 // Integer Subtraction Instructions
8043 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8044 %{
8045   match(Set dst (SubI dst src));
8046   effect(KILL cr);
8047 
8048   format %{ "subl    $dst, $src\t# int" %}
8049   opcode(0x2B);
8050   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8051   ins_pipe(ialu_reg_reg);
8052 %}
8053 
8054 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8055 %{
8056   match(Set dst (SubI dst src));
8057   effect(KILL cr);
8058 
8059   format %{ "subl    $dst, $src\t# int" %}
8060   opcode(0x81, 0x05);  /* Opcode 81 /5 */
8061   ins_encode(OpcSErm(dst, src), Con8or32(src));
8062   ins_pipe(ialu_reg);
8063 %}
8064 
8065 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8066 %{
8067   match(Set dst (SubI dst (LoadI src)));
8068   effect(KILL cr);
8069 
8070   ins_cost(125);
8071   format %{ "subl    $dst, $src\t# int" %}
8072   opcode(0x2B);
8073   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8074   ins_pipe(ialu_reg_mem);
8075 %}
8076 
8077 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8078 %{
8079   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8080   effect(KILL cr);
8081 
8082   ins_cost(150);
8083   format %{ "subl    $dst, $src\t# int" %}
8084   opcode(0x29); /* Opcode 29 /r */
8085   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8086   ins_pipe(ialu_mem_reg);
8087 %}
8088 
8089 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
8090 %{
8091   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8092   effect(KILL cr);
8093 
8094   ins_cost(125); // XXX
8095   format %{ "subl    $dst, $src\t# int" %}
8096   opcode(0x81); /* Opcode 81 /5 id */
8097   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
8098   ins_pipe(ialu_mem_imm);
8099 %}
8100 
8101 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8102 %{
8103   match(Set dst (SubL dst src));
8104   effect(KILL cr);
8105 
8106   format %{ "subq    $dst, $src\t# long" %}
8107   opcode(0x2B);
8108   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8109   ins_pipe(ialu_reg_reg);
8110 %}
8111 
8112 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
8113 %{
8114   match(Set dst (SubL dst src));
8115   effect(KILL cr);
8116 
8117   format %{ "subq    $dst, $src\t# long" %}
8118   opcode(0x81, 0x05);  /* Opcode 81 /5 */
8119   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
8120   ins_pipe(ialu_reg);
8121 %}
8122 
8123 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
8124 %{
8125   match(Set dst (SubL dst (LoadL src)));
8126   effect(KILL cr);
8127 
8128   ins_cost(125);
8129   format %{ "subq    $dst, $src\t# long" %}
8130   opcode(0x2B);
8131   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
8132   ins_pipe(ialu_reg_mem);
8133 %}
8134 
8135 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
8136 %{
8137   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
8138   effect(KILL cr);
8139 
8140   ins_cost(150);
8141   format %{ "subq    $dst, $src\t# long" %}
8142   opcode(0x29); /* Opcode 29 /r */
8143   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
8144   ins_pipe(ialu_mem_reg);
8145 %}
8146 
8147 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
8148 %{
8149   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
8150   effect(KILL cr);
8151 
8152   ins_cost(125); // XXX
8153   format %{ "subq    $dst, $src\t# long" %}
8154   opcode(0x81); /* Opcode 81 /5 id */
8155   ins_encode(REX_mem_wide(dst),
8156              OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
8157   ins_pipe(ialu_mem_imm);
8158 %}
8159 
8160 // Subtract from a pointer
8161 // XXX hmpf???
8162 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
8163 %{
8164   match(Set dst (AddP dst (SubI zero src)));
8165   effect(KILL cr);
8166 
8167   format %{ "subq    $dst, $src\t# ptr - int" %}
8168   opcode(0x2B);
8169   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8170   ins_pipe(ialu_reg_reg);
8171 %}
8172 
8173 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
8174 %{
8175   match(Set dst (SubI zero dst));
8176   effect(KILL cr);
8177 
8178   format %{ "negl    $dst\t# int" %}
8179   opcode(0xF7, 0x03);  // Opcode F7 /3
8180   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8181   ins_pipe(ialu_reg);
8182 %}
8183 
8184 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
8185 %{
8186   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
8187   effect(KILL cr);
8188 
8189   format %{ "negl    $dst\t# int" %}
8190   opcode(0xF7, 0x03);  // Opcode F7 /3
8191   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8192   ins_pipe(ialu_reg);
8193 %}
8194 
8195 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
8196 %{
8197   match(Set dst (SubL zero dst));
8198   effect(KILL cr);
8199 
8200   format %{ "negq    $dst\t# long" %}
8201   opcode(0xF7, 0x03);  // Opcode F7 /3
8202   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8203   ins_pipe(ialu_reg);
8204 %}
8205 
8206 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
8207 %{
8208   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
8209   effect(KILL cr);
8210 
8211   format %{ "negq    $dst\t# long" %}
8212   opcode(0xF7, 0x03);  // Opcode F7 /3
8213   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8214   ins_pipe(ialu_reg);
8215 %}
8216 
8217 //----------Multiplication/Division Instructions-------------------------------
8218 // Integer Multiplication Instructions
8219 // Multiply Register
8220 
8221 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8222 %{
8223   match(Set dst (MulI dst src));
8224   effect(KILL cr);
8225 
8226   ins_cost(300);
8227   format %{ "imull   $dst, $src\t# int" %}
8228   opcode(0x0F, 0xAF);
8229   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8230   ins_pipe(ialu_reg_reg_alu0);
8231 %}
8232 
8233 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
8234 %{
8235   match(Set dst (MulI src imm));
8236   effect(KILL cr);
8237 
8238   ins_cost(300);
8239   format %{ "imull   $dst, $src, $imm\t# int" %}
8240   opcode(0x69); /* 69 /r id */
8241   ins_encode(REX_reg_reg(dst, src),
8242              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
8243   ins_pipe(ialu_reg_reg_alu0);
8244 %}
8245 
8246 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
8247 %{
8248   match(Set dst (MulI dst (LoadI src)));
8249   effect(KILL cr);
8250 
8251   ins_cost(350);
8252   format %{ "imull   $dst, $src\t# int" %}
8253   opcode(0x0F, 0xAF);
8254   ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
8255   ins_pipe(ialu_reg_mem_alu0);
8256 %}
8257 
8258 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
8259 %{
8260   match(Set dst (MulI (LoadI src) imm));
8261   effect(KILL cr);
8262 
8263   ins_cost(300);
8264   format %{ "imull   $dst, $src, $imm\t# int" %}
8265   opcode(0x69); /* 69 /r id */
8266   ins_encode(REX_reg_mem(dst, src),
8267              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
8268   ins_pipe(ialu_reg_mem_alu0);
8269 %}
8270 
8271 instruct mulAddS2I_rReg(rRegI dst, rRegI src1, rRegI src2, rRegI src3, rFlagsReg cr)
8272 %{
8273   match(Set dst (MulAddS2I (Binary dst src1) (Binary src2 src3)));
8274   effect(KILL cr, KILL src2);
8275 
8276   expand %{ mulI_rReg(dst, src1, cr);
8277            mulI_rReg(src2, src3, cr);
8278            addI_rReg(dst, src2, cr); %}
8279 %}
8280 
8281 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8282 %{
8283   match(Set dst (MulL dst src));
8284   effect(KILL cr);
8285 
8286   ins_cost(300);
8287   format %{ "imulq   $dst, $src\t# long" %}
8288   opcode(0x0F, 0xAF);
8289   ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
8290   ins_pipe(ialu_reg_reg_alu0);
8291 %}
8292 
8293 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
8294 %{
8295   match(Set dst (MulL src imm));
8296   effect(KILL cr);
8297 
8298   ins_cost(300);
8299   format %{ "imulq   $dst, $src, $imm\t# long" %}
8300   opcode(0x69); /* 69 /r id */
8301   ins_encode(REX_reg_reg_wide(dst, src),
8302              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
8303   ins_pipe(ialu_reg_reg_alu0);
8304 %}
8305 
8306 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
8307 %{
8308   match(Set dst (MulL dst (LoadL src)));
8309   effect(KILL cr);
8310 
8311   ins_cost(350);
8312   format %{ "imulq   $dst, $src\t# long" %}
8313   opcode(0x0F, 0xAF);
8314   ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
8315   ins_pipe(ialu_reg_mem_alu0);
8316 %}
8317 
8318 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
8319 %{
8320   match(Set dst (MulL (LoadL src) imm));
8321   effect(KILL cr);
8322 
8323   ins_cost(300);
8324   format %{ "imulq   $dst, $src, $imm\t# long" %}
8325   opcode(0x69); /* 69 /r id */
8326   ins_encode(REX_reg_mem_wide(dst, src),
8327              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
8328   ins_pipe(ialu_reg_mem_alu0);
8329 %}
8330 
8331 instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8332 %{
8333   match(Set dst (MulHiL src rax));
8334   effect(USE_KILL rax, KILL cr);
8335 
8336   ins_cost(300);
8337   format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
8338   opcode(0xF7, 0x5); /* Opcode F7 /5 */
8339   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8340   ins_pipe(ialu_reg_reg_alu0);
8341 %}
8342 
8343 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
8344                    rFlagsReg cr)
8345 %{
8346   match(Set rax (DivI rax div));
8347   effect(KILL rdx, KILL cr);
8348 
8349   ins_cost(30*100+10*100); // XXX
8350   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
8351             "jne,s   normal\n\t"
8352             "xorl    rdx, rdx\n\t"
8353             "cmpl    $div, -1\n\t"
8354             "je,s    done\n"
8355     "normal: cdql\n\t"
8356             "idivl   $div\n"
8357     "done:"        %}
8358   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8359   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8360   ins_pipe(ialu_reg_reg_alu0);
8361 %}
8362 
8363 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8364                    rFlagsReg cr)
8365 %{
8366   match(Set rax (DivL rax div));
8367   effect(KILL rdx, KILL cr);
8368 
8369   ins_cost(30*100+10*100); // XXX
8370   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8371             "cmpq    rax, rdx\n\t"
8372             "jne,s   normal\n\t"
8373             "xorl    rdx, rdx\n\t"
8374             "cmpq    $div, -1\n\t"
8375             "je,s    done\n"
8376     "normal: cdqq\n\t"
8377             "idivq   $div\n"
8378     "done:"        %}
8379   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8380   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8381   ins_pipe(ialu_reg_reg_alu0);
8382 %}
8383 
8384 // Integer DIVMOD with Register, both quotient and mod results
8385 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
8386                              rFlagsReg cr)
8387 %{
8388   match(DivModI rax div);
8389   effect(KILL cr);
8390 
8391   ins_cost(30*100+10*100); // XXX
8392   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
8393             "jne,s   normal\n\t"
8394             "xorl    rdx, rdx\n\t"
8395             "cmpl    $div, -1\n\t"
8396             "je,s    done\n"
8397     "normal: cdql\n\t"
8398             "idivl   $div\n"
8399     "done:"        %}
8400   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8401   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8402   ins_pipe(pipe_slow);
8403 %}
8404 
8405 // Long DIVMOD with Register, both quotient and mod results
8406 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8407                              rFlagsReg cr)
8408 %{
8409   match(DivModL rax div);
8410   effect(KILL cr);
8411 
8412   ins_cost(30*100+10*100); // XXX
8413   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8414             "cmpq    rax, rdx\n\t"
8415             "jne,s   normal\n\t"
8416             "xorl    rdx, rdx\n\t"
8417             "cmpq    $div, -1\n\t"
8418             "je,s    done\n"
8419     "normal: cdqq\n\t"
8420             "idivq   $div\n"
8421     "done:"        %}
8422   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8423   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8424   ins_pipe(pipe_slow);
8425 %}
8426 
8427 //----------- DivL-By-Constant-Expansions--------------------------------------
8428 // DivI cases are handled by the compiler
8429 
8430 // Magic constant, reciprocal of 10
8431 instruct loadConL_0x6666666666666667(rRegL dst)
8432 %{
8433   effect(DEF dst);
8434 
8435   format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
8436   ins_encode(load_immL(dst, 0x6666666666666667));
8437   ins_pipe(ialu_reg);
8438 %}
8439 
8440 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8441 %{
8442   effect(DEF dst, USE src, USE_KILL rax, KILL cr);
8443 
8444   format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
8445   opcode(0xF7, 0x5); /* Opcode F7 /5 */
8446   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8447   ins_pipe(ialu_reg_reg_alu0);
8448 %}
8449 
8450 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
8451 %{
8452   effect(USE_DEF dst, KILL cr);
8453 
8454   format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
8455   opcode(0xC1, 0x7); /* C1 /7 ib */
8456   ins_encode(reg_opc_imm_wide(dst, 0x3F));
8457   ins_pipe(ialu_reg);
8458 %}
8459 
8460 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
8461 %{
8462   effect(USE_DEF dst, KILL cr);
8463 
8464   format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
8465   opcode(0xC1, 0x7); /* C1 /7 ib */
8466   ins_encode(reg_opc_imm_wide(dst, 0x2));
8467   ins_pipe(ialu_reg);
8468 %}
8469 
8470 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
8471 %{
8472   match(Set dst (DivL src div));
8473 
8474   ins_cost((5+8)*100);
8475   expand %{
8476     rax_RegL rax;                     // Killed temp
8477     rFlagsReg cr;                     // Killed
8478     loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
8479     mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
8480     sarL_rReg_63(src, cr);            // sarq  src, 63
8481     sarL_rReg_2(dst, cr);             // sarq  rdx, 2
8482     subL_rReg(dst, src, cr);          // subl  rdx, src
8483   %}
8484 %}
8485 
8486 //-----------------------------------------------------------------------------
8487 
8488 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
8489                    rFlagsReg cr)
8490 %{
8491   match(Set rdx (ModI rax div));
8492   effect(KILL rax, KILL cr);
8493 
8494   ins_cost(300); // XXX
8495   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
8496             "jne,s   normal\n\t"
8497             "xorl    rdx, rdx\n\t"
8498             "cmpl    $div, -1\n\t"
8499             "je,s    done\n"
8500     "normal: cdql\n\t"
8501             "idivl   $div\n"
8502     "done:"        %}
8503   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8504   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8505   ins_pipe(ialu_reg_reg_alu0);
8506 %}
8507 
8508 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
8509                    rFlagsReg cr)
8510 %{
8511   match(Set rdx (ModL rax div));
8512   effect(KILL rax, KILL cr);
8513 
8514   ins_cost(300); // XXX
8515   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
8516             "cmpq    rax, rdx\n\t"
8517             "jne,s   normal\n\t"
8518             "xorl    rdx, rdx\n\t"
8519             "cmpq    $div, -1\n\t"
8520             "je,s    done\n"
8521     "normal: cdqq\n\t"
8522             "idivq   $div\n"
8523     "done:"        %}
8524   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8525   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8526   ins_pipe(ialu_reg_reg_alu0);
8527 %}
8528 
8529 // Integer Shift Instructions
8530 // Shift Left by one
8531 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8532 %{
8533   match(Set dst (LShiftI dst shift));
8534   effect(KILL cr);
8535 
8536   format %{ "sall    $dst, $shift" %}
8537   opcode(0xD1, 0x4); /* D1 /4 */
8538   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8539   ins_pipe(ialu_reg);
8540 %}
8541 
8542 // Shift Left by one
8543 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8544 %{
8545   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8546   effect(KILL cr);
8547 
8548   format %{ "sall    $dst, $shift\t" %}
8549   opcode(0xD1, 0x4); /* D1 /4 */
8550   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8551   ins_pipe(ialu_mem_imm);
8552 %}
8553 
8554 // Shift Left by 8-bit immediate
8555 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8556 %{
8557   match(Set dst (LShiftI dst shift));
8558   effect(KILL cr);
8559 
8560   format %{ "sall    $dst, $shift" %}
8561   opcode(0xC1, 0x4); /* C1 /4 ib */
8562   ins_encode(reg_opc_imm(dst, shift));
8563   ins_pipe(ialu_reg);
8564 %}
8565 
8566 // Shift Left by 8-bit immediate
8567 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8568 %{
8569   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8570   effect(KILL cr);
8571 
8572   format %{ "sall    $dst, $shift" %}
8573   opcode(0xC1, 0x4); /* C1 /4 ib */
8574   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8575   ins_pipe(ialu_mem_imm);
8576 %}
8577 
8578 // Shift Left by variable
8579 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8580 %{
8581   match(Set dst (LShiftI dst shift));
8582   effect(KILL cr);
8583 
8584   format %{ "sall    $dst, $shift" %}
8585   opcode(0xD3, 0x4); /* D3 /4 */
8586   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8587   ins_pipe(ialu_reg_reg);
8588 %}
8589 
8590 // Shift Left by variable
8591 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8592 %{
8593   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8594   effect(KILL cr);
8595 
8596   format %{ "sall    $dst, $shift" %}
8597   opcode(0xD3, 0x4); /* D3 /4 */
8598   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8599   ins_pipe(ialu_mem_reg);
8600 %}
8601 
8602 // Arithmetic shift right by one
8603 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8604 %{
8605   match(Set dst (RShiftI dst shift));
8606   effect(KILL cr);
8607 
8608   format %{ "sarl    $dst, $shift" %}
8609   opcode(0xD1, 0x7); /* D1 /7 */
8610   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8611   ins_pipe(ialu_reg);
8612 %}
8613 
8614 // Arithmetic shift right by one
8615 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8616 %{
8617   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8618   effect(KILL cr);
8619 
8620   format %{ "sarl    $dst, $shift" %}
8621   opcode(0xD1, 0x7); /* D1 /7 */
8622   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8623   ins_pipe(ialu_mem_imm);
8624 %}
8625 
8626 // Arithmetic Shift Right by 8-bit immediate
8627 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8628 %{
8629   match(Set dst (RShiftI dst shift));
8630   effect(KILL cr);
8631 
8632   format %{ "sarl    $dst, $shift" %}
8633   opcode(0xC1, 0x7); /* C1 /7 ib */
8634   ins_encode(reg_opc_imm(dst, shift));
8635   ins_pipe(ialu_mem_imm);
8636 %}
8637 
8638 // Arithmetic Shift Right by 8-bit immediate
8639 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8640 %{
8641   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8642   effect(KILL cr);
8643 
8644   format %{ "sarl    $dst, $shift" %}
8645   opcode(0xC1, 0x7); /* C1 /7 ib */
8646   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8647   ins_pipe(ialu_mem_imm);
8648 %}
8649 
8650 // Arithmetic Shift Right by variable
8651 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8652 %{
8653   match(Set dst (RShiftI dst shift));
8654   effect(KILL cr);
8655 
8656   format %{ "sarl    $dst, $shift" %}
8657   opcode(0xD3, 0x7); /* D3 /7 */
8658   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8659   ins_pipe(ialu_reg_reg);
8660 %}
8661 
8662 // Arithmetic Shift Right by variable
8663 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8664 %{
8665   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8666   effect(KILL cr);
8667 
8668   format %{ "sarl    $dst, $shift" %}
8669   opcode(0xD3, 0x7); /* D3 /7 */
8670   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8671   ins_pipe(ialu_mem_reg);
8672 %}
8673 
8674 // Logical shift right by one
8675 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8676 %{
8677   match(Set dst (URShiftI dst shift));
8678   effect(KILL cr);
8679 
8680   format %{ "shrl    $dst, $shift" %}
8681   opcode(0xD1, 0x5); /* D1 /5 */
8682   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8683   ins_pipe(ialu_reg);
8684 %}
8685 
8686 // Logical shift right by one
8687 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8688 %{
8689   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8690   effect(KILL cr);
8691 
8692   format %{ "shrl    $dst, $shift" %}
8693   opcode(0xD1, 0x5); /* D1 /5 */
8694   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8695   ins_pipe(ialu_mem_imm);
8696 %}
8697 
8698 // Logical Shift Right by 8-bit immediate
8699 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8700 %{
8701   match(Set dst (URShiftI dst shift));
8702   effect(KILL cr);
8703 
8704   format %{ "shrl    $dst, $shift" %}
8705   opcode(0xC1, 0x5); /* C1 /5 ib */
8706   ins_encode(reg_opc_imm(dst, shift));
8707   ins_pipe(ialu_reg);
8708 %}
8709 
8710 // Logical Shift Right by 8-bit immediate
8711 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8712 %{
8713   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8714   effect(KILL cr);
8715 
8716   format %{ "shrl    $dst, $shift" %}
8717   opcode(0xC1, 0x5); /* C1 /5 ib */
8718   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8719   ins_pipe(ialu_mem_imm);
8720 %}
8721 
8722 // Logical Shift Right by variable
8723 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8724 %{
8725   match(Set dst (URShiftI dst shift));
8726   effect(KILL cr);
8727 
8728   format %{ "shrl    $dst, $shift" %}
8729   opcode(0xD3, 0x5); /* D3 /5 */
8730   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8731   ins_pipe(ialu_reg_reg);
8732 %}
8733 
8734 // Logical Shift Right by variable
8735 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8736 %{
8737   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8738   effect(KILL cr);
8739 
8740   format %{ "shrl    $dst, $shift" %}
8741   opcode(0xD3, 0x5); /* D3 /5 */
8742   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8743   ins_pipe(ialu_mem_reg);
8744 %}
8745 
8746 // Long Shift Instructions
8747 // Shift Left by one
8748 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8749 %{
8750   match(Set dst (LShiftL dst shift));
8751   effect(KILL cr);
8752 
8753   format %{ "salq    $dst, $shift" %}
8754   opcode(0xD1, 0x4); /* D1 /4 */
8755   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8756   ins_pipe(ialu_reg);
8757 %}
8758 
8759 // Shift Left by one
8760 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8761 %{
8762   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8763   effect(KILL cr);
8764 
8765   format %{ "salq    $dst, $shift" %}
8766   opcode(0xD1, 0x4); /* D1 /4 */
8767   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8768   ins_pipe(ialu_mem_imm);
8769 %}
8770 
8771 // Shift Left by 8-bit immediate
8772 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8773 %{
8774   match(Set dst (LShiftL dst shift));
8775   effect(KILL cr);
8776 
8777   format %{ "salq    $dst, $shift" %}
8778   opcode(0xC1, 0x4); /* C1 /4 ib */
8779   ins_encode(reg_opc_imm_wide(dst, shift));
8780   ins_pipe(ialu_reg);
8781 %}
8782 
8783 // Shift Left by 8-bit immediate
8784 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8785 %{
8786   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8787   effect(KILL cr);
8788 
8789   format %{ "salq    $dst, $shift" %}
8790   opcode(0xC1, 0x4); /* C1 /4 ib */
8791   ins_encode(REX_mem_wide(dst), OpcP,
8792              RM_opc_mem(secondary, dst), Con8or32(shift));
8793   ins_pipe(ialu_mem_imm);
8794 %}
8795 
8796 // Shift Left by variable
8797 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8798 %{
8799   match(Set dst (LShiftL dst shift));
8800   effect(KILL cr);
8801 
8802   format %{ "salq    $dst, $shift" %}
8803   opcode(0xD3, 0x4); /* D3 /4 */
8804   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8805   ins_pipe(ialu_reg_reg);
8806 %}
8807 
8808 // Shift Left by variable
8809 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8810 %{
8811   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8812   effect(KILL cr);
8813 
8814   format %{ "salq    $dst, $shift" %}
8815   opcode(0xD3, 0x4); /* D3 /4 */
8816   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8817   ins_pipe(ialu_mem_reg);
8818 %}
8819 
8820 // Arithmetic shift right by one
8821 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8822 %{
8823   match(Set dst (RShiftL dst shift));
8824   effect(KILL cr);
8825 
8826   format %{ "sarq    $dst, $shift" %}
8827   opcode(0xD1, 0x7); /* D1 /7 */
8828   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8829   ins_pipe(ialu_reg);
8830 %}
8831 
8832 // Arithmetic shift right by one
8833 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8834 %{
8835   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8836   effect(KILL cr);
8837 
8838   format %{ "sarq    $dst, $shift" %}
8839   opcode(0xD1, 0x7); /* D1 /7 */
8840   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8841   ins_pipe(ialu_mem_imm);
8842 %}
8843 
8844 // Arithmetic Shift Right by 8-bit immediate
8845 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8846 %{
8847   match(Set dst (RShiftL dst shift));
8848   effect(KILL cr);
8849 
8850   format %{ "sarq    $dst, $shift" %}
8851   opcode(0xC1, 0x7); /* C1 /7 ib */
8852   ins_encode(reg_opc_imm_wide(dst, shift));
8853   ins_pipe(ialu_mem_imm);
8854 %}
8855 
8856 // Arithmetic Shift Right by 8-bit immediate
8857 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8858 %{
8859   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8860   effect(KILL cr);
8861 
8862   format %{ "sarq    $dst, $shift" %}
8863   opcode(0xC1, 0x7); /* C1 /7 ib */
8864   ins_encode(REX_mem_wide(dst), OpcP,
8865              RM_opc_mem(secondary, dst), Con8or32(shift));
8866   ins_pipe(ialu_mem_imm);
8867 %}
8868 
8869 // Arithmetic Shift Right by variable
8870 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8871 %{
8872   match(Set dst (RShiftL dst shift));
8873   effect(KILL cr);
8874 
8875   format %{ "sarq    $dst, $shift" %}
8876   opcode(0xD3, 0x7); /* D3 /7 */
8877   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8878   ins_pipe(ialu_reg_reg);
8879 %}
8880 
8881 // Arithmetic Shift Right by variable
8882 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8883 %{
8884   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8885   effect(KILL cr);
8886 
8887   format %{ "sarq    $dst, $shift" %}
8888   opcode(0xD3, 0x7); /* D3 /7 */
8889   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8890   ins_pipe(ialu_mem_reg);
8891 %}
8892 
8893 // Logical shift right by one
8894 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8895 %{
8896   match(Set dst (URShiftL dst shift));
8897   effect(KILL cr);
8898 
8899   format %{ "shrq    $dst, $shift" %}
8900   opcode(0xD1, 0x5); /* D1 /5 */
8901   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
8902   ins_pipe(ialu_reg);
8903 %}
8904 
8905 // Logical shift right by one
8906 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8907 %{
8908   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8909   effect(KILL cr);
8910 
8911   format %{ "shrq    $dst, $shift" %}
8912   opcode(0xD1, 0x5); /* D1 /5 */
8913   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8914   ins_pipe(ialu_mem_imm);
8915 %}
8916 
8917 // Logical Shift Right by 8-bit immediate
8918 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8919 %{
8920   match(Set dst (URShiftL dst shift));
8921   effect(KILL cr);
8922 
8923   format %{ "shrq    $dst, $shift" %}
8924   opcode(0xC1, 0x5); /* C1 /5 ib */
8925   ins_encode(reg_opc_imm_wide(dst, shift));
8926   ins_pipe(ialu_reg);
8927 %}
8928 
8929 
8930 // Logical Shift Right by 8-bit immediate
8931 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8932 %{
8933   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8934   effect(KILL cr);
8935 
8936   format %{ "shrq    $dst, $shift" %}
8937   opcode(0xC1, 0x5); /* C1 /5 ib */
8938   ins_encode(REX_mem_wide(dst), OpcP,
8939              RM_opc_mem(secondary, dst), Con8or32(shift));
8940   ins_pipe(ialu_mem_imm);
8941 %}
8942 
8943 // Logical Shift Right by variable
8944 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8945 %{
8946   match(Set dst (URShiftL dst shift));
8947   effect(KILL cr);
8948 
8949   format %{ "shrq    $dst, $shift" %}
8950   opcode(0xD3, 0x5); /* D3 /5 */
8951   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8952   ins_pipe(ialu_reg_reg);
8953 %}
8954 
8955 // Logical Shift Right by variable
8956 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8957 %{
8958   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8959   effect(KILL cr);
8960 
8961   format %{ "shrq    $dst, $shift" %}
8962   opcode(0xD3, 0x5); /* D3 /5 */
8963   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8964   ins_pipe(ialu_mem_reg);
8965 %}
8966 
8967 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8968 // This idiom is used by the compiler for the i2b bytecode.
8969 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
8970 %{
8971   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8972 
8973   format %{ "movsbl  $dst, $src\t# i2b" %}
8974   opcode(0x0F, 0xBE);
8975   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8976   ins_pipe(ialu_reg_reg);
8977 %}
8978 
8979 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8980 // This idiom is used by the compiler the i2s bytecode.
8981 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
8982 %{
8983   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8984 
8985   format %{ "movswl  $dst, $src\t# i2s" %}
8986   opcode(0x0F, 0xBF);
8987   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8988   ins_pipe(ialu_reg_reg);
8989 %}
8990 
8991 // ROL/ROR instructions
8992 
8993 // ROL expand
8994 instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
8995   effect(KILL cr, USE_DEF dst);
8996 
8997   format %{ "roll    $dst" %}
8998   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
8999   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
9000   ins_pipe(ialu_reg);
9001 %}
9002 
9003 instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
9004   effect(USE_DEF dst, USE shift, KILL cr);
9005 
9006   format %{ "roll    $dst, $shift" %}
9007   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
9008   ins_encode( reg_opc_imm(dst, shift) );
9009   ins_pipe(ialu_reg);
9010 %}
9011 
9012 instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
9013 %{
9014   effect(USE_DEF dst, USE shift, KILL cr);
9015 
9016   format %{ "roll    $dst, $shift" %}
9017   opcode(0xD3, 0x0); /* Opcode D3 /0 */
9018   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
9019   ins_pipe(ialu_reg_reg);
9020 %}
9021 // end of ROL expand
9022 
9023 // Rotate Left by one
9024 instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
9025 %{
9026   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9027 
9028   expand %{
9029     rolI_rReg_imm1(dst, cr);
9030   %}
9031 %}
9032 
9033 // Rotate Left by 8-bit immediate
9034 instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
9035 %{
9036   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9037   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9038 
9039   expand %{
9040     rolI_rReg_imm8(dst, lshift, cr);
9041   %}
9042 %}
9043 
9044 // Rotate Left by variable
9045 instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9046 %{
9047   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
9048 
9049   expand %{
9050     rolI_rReg_CL(dst, shift, cr);
9051   %}
9052 %}
9053 
9054 // Rotate Left by variable
9055 instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
9056 %{
9057   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
9058 
9059   expand %{
9060     rolI_rReg_CL(dst, shift, cr);
9061   %}
9062 %}
9063 
9064 // ROR expand
9065 instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
9066 %{
9067   effect(USE_DEF dst, KILL cr);
9068 
9069   format %{ "rorl    $dst" %}
9070   opcode(0xD1, 0x1); /* D1 /1 */
9071   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
9072   ins_pipe(ialu_reg);
9073 %}
9074 
9075 instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
9076 %{
9077   effect(USE_DEF dst, USE shift, KILL cr);
9078 
9079   format %{ "rorl    $dst, $shift" %}
9080   opcode(0xC1, 0x1); /* C1 /1 ib */
9081   ins_encode(reg_opc_imm(dst, shift));
9082   ins_pipe(ialu_reg);
9083 %}
9084 
9085 instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
9086 %{
9087   effect(USE_DEF dst, USE shift, KILL cr);
9088 
9089   format %{ "rorl    $dst, $shift" %}
9090   opcode(0xD3, 0x1); /* D3 /1 */
9091   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
9092   ins_pipe(ialu_reg_reg);
9093 %}
9094 // end of ROR expand
9095 
9096 // Rotate Right by one
9097 instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
9098 %{
9099   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9100 
9101   expand %{
9102     rorI_rReg_imm1(dst, cr);
9103   %}
9104 %}
9105 
9106 // Rotate Right by 8-bit immediate
9107 instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
9108 %{
9109   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9110   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9111 
9112   expand %{
9113     rorI_rReg_imm8(dst, rshift, cr);
9114   %}
9115 %}
9116 
9117 // Rotate Right by variable
9118 instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9119 %{
9120   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
9121 
9122   expand %{
9123     rorI_rReg_CL(dst, shift, cr);
9124   %}
9125 %}
9126 
9127 // Rotate Right by variable
9128 instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
9129 %{
9130   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
9131 
9132   expand %{
9133     rorI_rReg_CL(dst, shift, cr);
9134   %}
9135 %}
9136 
9137 // for long rotate
9138 // ROL expand
9139 instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
9140   effect(USE_DEF dst, KILL cr);
9141 
9142   format %{ "rolq    $dst" %}
9143   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
9144   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9145   ins_pipe(ialu_reg);
9146 %}
9147 
9148 instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
9149   effect(USE_DEF dst, USE shift, KILL cr);
9150 
9151   format %{ "rolq    $dst, $shift" %}
9152   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
9153   ins_encode( reg_opc_imm_wide(dst, shift) );
9154   ins_pipe(ialu_reg);
9155 %}
9156 
9157 instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
9158 %{
9159   effect(USE_DEF dst, USE shift, KILL cr);
9160 
9161   format %{ "rolq    $dst, $shift" %}
9162   opcode(0xD3, 0x0); /* Opcode D3 /0 */
9163   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9164   ins_pipe(ialu_reg_reg);
9165 %}
9166 // end of ROL expand
9167 
9168 // Rotate Left by one
9169 instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
9170 %{
9171   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
9172 
9173   expand %{
9174     rolL_rReg_imm1(dst, cr);
9175   %}
9176 %}
9177 
9178 // Rotate Left by 8-bit immediate
9179 instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
9180 %{
9181   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
9182   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
9183 
9184   expand %{
9185     rolL_rReg_imm8(dst, lshift, cr);
9186   %}
9187 %}
9188 
9189 // Rotate Left by variable
9190 instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9191 %{
9192   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
9193 
9194   expand %{
9195     rolL_rReg_CL(dst, shift, cr);
9196   %}
9197 %}
9198 
9199 // Rotate Left by variable
9200 instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
9201 %{
9202   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
9203 
9204   expand %{
9205     rolL_rReg_CL(dst, shift, cr);
9206   %}
9207 %}
9208 
9209 // ROR expand
9210 instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
9211 %{
9212   effect(USE_DEF dst, KILL cr);
9213 
9214   format %{ "rorq    $dst" %}
9215   opcode(0xD1, 0x1); /* D1 /1 */
9216   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9217   ins_pipe(ialu_reg);
9218 %}
9219 
9220 instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
9221 %{
9222   effect(USE_DEF dst, USE shift, KILL cr);
9223 
9224   format %{ "rorq    $dst, $shift" %}
9225   opcode(0xC1, 0x1); /* C1 /1 ib */
9226   ins_encode(reg_opc_imm_wide(dst, shift));
9227   ins_pipe(ialu_reg);
9228 %}
9229 
9230 instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
9231 %{
9232   effect(USE_DEF dst, USE shift, KILL cr);
9233 
9234   format %{ "rorq    $dst, $shift" %}
9235   opcode(0xD3, 0x1); /* D3 /1 */
9236   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9237   ins_pipe(ialu_reg_reg);
9238 %}
9239 // end of ROR expand
9240 
9241 // Rotate Right by one
9242 instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
9243 %{
9244   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
9245 
9246   expand %{
9247     rorL_rReg_imm1(dst, cr);
9248   %}
9249 %}
9250 
9251 // Rotate Right by 8-bit immediate
9252 instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
9253 %{
9254   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
9255   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
9256 
9257   expand %{
9258     rorL_rReg_imm8(dst, rshift, cr);
9259   %}
9260 %}
9261 
9262 // Rotate Right by variable
9263 instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9264 %{
9265   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
9266 
9267   expand %{
9268     rorL_rReg_CL(dst, shift, cr);
9269   %}
9270 %}
9271 
9272 // Rotate Right by variable
9273 instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
9274 %{
9275   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
9276 
9277   expand %{
9278     rorL_rReg_CL(dst, shift, cr);
9279   %}
9280 %}
9281 
9282 // Logical Instructions
9283 
9284 // Integer Logical Instructions
9285 
9286 // And Instructions
9287 // And Register with Register
9288 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9289 %{
9290   match(Set dst (AndI dst src));
9291   effect(KILL cr);
9292 
9293   format %{ "andl    $dst, $src\t# int" %}
9294   opcode(0x23);
9295   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9296   ins_pipe(ialu_reg_reg);
9297 %}
9298 
9299 // And Register with Immediate 255
9300 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
9301 %{
9302   match(Set dst (AndI dst src));
9303 
9304   format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
9305   opcode(0x0F, 0xB6);
9306   ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9307   ins_pipe(ialu_reg);
9308 %}
9309 
9310 // And Register with Immediate 255 and promote to long
9311 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
9312 %{
9313   match(Set dst (ConvI2L (AndI src mask)));
9314 
9315   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
9316   opcode(0x0F, 0xB6);
9317   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9318   ins_pipe(ialu_reg);
9319 %}
9320 
9321 // And Register with Immediate 65535
9322 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
9323 %{
9324   match(Set dst (AndI dst src));
9325 
9326   format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
9327   opcode(0x0F, 0xB7);
9328   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9329   ins_pipe(ialu_reg);
9330 %}
9331 
9332 // And Register with Immediate 65535 and promote to long
9333 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
9334 %{
9335   match(Set dst (ConvI2L (AndI src mask)));
9336 
9337   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
9338   opcode(0x0F, 0xB7);
9339   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9340   ins_pipe(ialu_reg);
9341 %}
9342 
9343 // And Register with Immediate
9344 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9345 %{
9346   match(Set dst (AndI dst src));
9347   effect(KILL cr);
9348 
9349   format %{ "andl    $dst, $src\t# int" %}
9350   opcode(0x81, 0x04); /* Opcode 81 /4 */
9351   ins_encode(OpcSErm(dst, src), Con8or32(src));
9352   ins_pipe(ialu_reg);
9353 %}
9354 
9355 // And Register with Memory
9356 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9357 %{
9358   match(Set dst (AndI dst (LoadI src)));
9359   effect(KILL cr);
9360 
9361   ins_cost(125);
9362   format %{ "andl    $dst, $src\t# int" %}
9363   opcode(0x23);
9364   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9365   ins_pipe(ialu_reg_mem);
9366 %}
9367 
9368 // And Memory with Register
9369 instruct andB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9370 %{
9371   match(Set dst (StoreB dst (AndI (LoadB dst) src)));
9372   effect(KILL cr);
9373 
9374   ins_cost(150);
9375   format %{ "andb    $dst, $src\t# byte" %}
9376   opcode(0x20);
9377   ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9378   ins_pipe(ialu_mem_reg);
9379 %}
9380 
9381 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9382 %{
9383   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9384   effect(KILL cr);
9385 
9386   ins_cost(150);
9387   format %{ "andl    $dst, $src\t# int" %}
9388   opcode(0x21); /* Opcode 21 /r */
9389   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9390   ins_pipe(ialu_mem_reg);
9391 %}
9392 
9393 // And Memory with Immediate
9394 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
9395 %{
9396   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9397   effect(KILL cr);
9398 
9399   ins_cost(125);
9400   format %{ "andl    $dst, $src\t# int" %}
9401   opcode(0x81, 0x4); /* Opcode 81 /4 id */
9402   ins_encode(REX_mem(dst), OpcSE(src),
9403              RM_opc_mem(secondary, dst), Con8or32(src));
9404   ins_pipe(ialu_mem_imm);
9405 %}
9406 
9407 // BMI1 instructions
9408 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, rFlagsReg cr) %{
9409   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2)));
9410   predicate(UseBMI1Instructions);
9411   effect(KILL cr);
9412 
9413   ins_cost(125);
9414   format %{ "andnl  $dst, $src1, $src2" %}
9415 
9416   ins_encode %{
9417     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
9418   %}
9419   ins_pipe(ialu_reg_mem);
9420 %}
9421 
9422 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, rFlagsReg cr) %{
9423   match(Set dst (AndI (XorI src1 minus_1) src2));
9424   predicate(UseBMI1Instructions);
9425   effect(KILL cr);
9426 
9427   format %{ "andnl  $dst, $src1, $src2" %}
9428 
9429   ins_encode %{
9430     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
9431   %}
9432   ins_pipe(ialu_reg);
9433 %}
9434 
9435 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, rFlagsReg cr) %{
9436   match(Set dst (AndI (SubI imm_zero src) src));
9437   predicate(UseBMI1Instructions);
9438   effect(KILL cr);
9439 
9440   format %{ "blsil  $dst, $src" %}
9441 
9442   ins_encode %{
9443     __ blsil($dst$$Register, $src$$Register);
9444   %}
9445   ins_pipe(ialu_reg);
9446 %}
9447 
9448 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, rFlagsReg cr) %{
9449   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
9450   predicate(UseBMI1Instructions);
9451   effect(KILL cr);
9452 
9453   ins_cost(125);
9454   format %{ "blsil  $dst, $src" %}
9455 
9456   ins_encode %{
9457     __ blsil($dst$$Register, $src$$Address);
9458   %}
9459   ins_pipe(ialu_reg_mem);
9460 %}
9461 
9462 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
9463 %{
9464   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ) );
9465   predicate(UseBMI1Instructions);
9466   effect(KILL cr);
9467 
9468   ins_cost(125);
9469   format %{ "blsmskl $dst, $src" %}
9470 
9471   ins_encode %{
9472     __ blsmskl($dst$$Register, $src$$Address);
9473   %}
9474   ins_pipe(ialu_reg_mem);
9475 %}
9476 
9477 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
9478 %{
9479   match(Set dst (XorI (AddI src minus_1) src));
9480   predicate(UseBMI1Instructions);
9481   effect(KILL cr);
9482 
9483   format %{ "blsmskl $dst, $src" %}
9484 
9485   ins_encode %{
9486     __ blsmskl($dst$$Register, $src$$Register);
9487   %}
9488 
9489   ins_pipe(ialu_reg);
9490 %}
9491 
9492 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
9493 %{
9494   match(Set dst (AndI (AddI src minus_1) src) );
9495   predicate(UseBMI1Instructions);
9496   effect(KILL cr);
9497 
9498   format %{ "blsrl  $dst, $src" %}
9499 
9500   ins_encode %{
9501     __ blsrl($dst$$Register, $src$$Register);
9502   %}
9503 
9504   ins_pipe(ialu_reg_mem);
9505 %}
9506 
9507 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
9508 %{
9509   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ) );
9510   predicate(UseBMI1Instructions);
9511   effect(KILL cr);
9512 
9513   ins_cost(125);
9514   format %{ "blsrl  $dst, $src" %}
9515 
9516   ins_encode %{
9517     __ blsrl($dst$$Register, $src$$Address);
9518   %}
9519 
9520   ins_pipe(ialu_reg);
9521 %}
9522 
9523 // Or Instructions
9524 // Or Register with Register
9525 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9526 %{
9527   match(Set dst (OrI dst src));
9528   effect(KILL cr);
9529 
9530   format %{ "orl     $dst, $src\t# int" %}
9531   opcode(0x0B);
9532   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9533   ins_pipe(ialu_reg_reg);
9534 %}
9535 
9536 // Or Register with Immediate
9537 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9538 %{
9539   match(Set dst (OrI dst src));
9540   effect(KILL cr);
9541 
9542   format %{ "orl     $dst, $src\t# int" %}
9543   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9544   ins_encode(OpcSErm(dst, src), Con8or32(src));
9545   ins_pipe(ialu_reg);
9546 %}
9547 
9548 // Or Register with Memory
9549 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9550 %{
9551   match(Set dst (OrI dst (LoadI src)));
9552   effect(KILL cr);
9553 
9554   ins_cost(125);
9555   format %{ "orl     $dst, $src\t# int" %}
9556   opcode(0x0B);
9557   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9558   ins_pipe(ialu_reg_mem);
9559 %}
9560 
9561 // Or Memory with Register
9562 instruct orB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9563 %{
9564   match(Set dst (StoreB dst (OrI (LoadB dst) src)));
9565   effect(KILL cr);
9566 
9567   ins_cost(150);
9568   format %{ "orb    $dst, $src\t# byte" %}
9569   opcode(0x08);
9570   ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9571   ins_pipe(ialu_mem_reg);
9572 %}
9573 
9574 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9575 %{
9576   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9577   effect(KILL cr);
9578 
9579   ins_cost(150);
9580   format %{ "orl     $dst, $src\t# int" %}
9581   opcode(0x09); /* Opcode 09 /r */
9582   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9583   ins_pipe(ialu_mem_reg);
9584 %}
9585 
9586 // Or Memory with Immediate
9587 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
9588 %{
9589   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9590   effect(KILL cr);
9591 
9592   ins_cost(125);
9593   format %{ "orl     $dst, $src\t# int" %}
9594   opcode(0x81, 0x1); /* Opcode 81 /1 id */
9595   ins_encode(REX_mem(dst), OpcSE(src),
9596              RM_opc_mem(secondary, dst), Con8or32(src));
9597   ins_pipe(ialu_mem_imm);
9598 %}
9599 
9600 // Xor Instructions
9601 // Xor Register with Register
9602 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9603 %{
9604   match(Set dst (XorI dst src));
9605   effect(KILL cr);
9606 
9607   format %{ "xorl    $dst, $src\t# int" %}
9608   opcode(0x33);
9609   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9610   ins_pipe(ialu_reg_reg);
9611 %}
9612 
9613 // Xor Register with Immediate -1
9614 instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
9615   match(Set dst (XorI dst imm));
9616 
9617   format %{ "not    $dst" %}
9618   ins_encode %{
9619      __ notl($dst$$Register);
9620   %}
9621   ins_pipe(ialu_reg);
9622 %}
9623 
9624 // Xor Register with Immediate
9625 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9626 %{
9627   match(Set dst (XorI dst src));
9628   effect(KILL cr);
9629 
9630   format %{ "xorl    $dst, $src\t# int" %}
9631   opcode(0x81, 0x06); /* Opcode 81 /6 id */
9632   ins_encode(OpcSErm(dst, src), Con8or32(src));
9633   ins_pipe(ialu_reg);
9634 %}
9635 
9636 // Xor Register with Memory
9637 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9638 %{
9639   match(Set dst (XorI dst (LoadI src)));
9640   effect(KILL cr);
9641 
9642   ins_cost(125);
9643   format %{ "xorl    $dst, $src\t# int" %}
9644   opcode(0x33);
9645   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9646   ins_pipe(ialu_reg_mem);
9647 %}
9648 
9649 // Xor Memory with Register
9650 instruct xorB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9651 %{
9652   match(Set dst (StoreB dst (XorI (LoadB dst) src)));
9653   effect(KILL cr);
9654 
9655   ins_cost(150);
9656   format %{ "xorb    $dst, $src\t# byte" %}
9657   opcode(0x30);
9658   ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9659   ins_pipe(ialu_mem_reg);
9660 %}
9661 
9662 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9663 %{
9664   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9665   effect(KILL cr);
9666 
9667   ins_cost(150);
9668   format %{ "xorl    $dst, $src\t# int" %}
9669   opcode(0x31); /* Opcode 31 /r */
9670   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9671   ins_pipe(ialu_mem_reg);
9672 %}
9673 
9674 // Xor Memory with Immediate
9675 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
9676 %{
9677   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9678   effect(KILL cr);
9679 
9680   ins_cost(125);
9681   format %{ "xorl    $dst, $src\t# int" %}
9682   opcode(0x81, 0x6); /* Opcode 81 /6 id */
9683   ins_encode(REX_mem(dst), OpcSE(src),
9684              RM_opc_mem(secondary, dst), Con8or32(src));
9685   ins_pipe(ialu_mem_imm);
9686 %}
9687 
9688 
9689 // Long Logical Instructions
9690 
9691 // And Instructions
9692 // And Register with Register
9693 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9694 %{
9695   match(Set dst (AndL dst src));
9696   effect(KILL cr);
9697 
9698   format %{ "andq    $dst, $src\t# long" %}
9699   opcode(0x23);
9700   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9701   ins_pipe(ialu_reg_reg);
9702 %}
9703 
9704 // And Register with Immediate 255
9705 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
9706 %{
9707   match(Set dst (AndL dst src));
9708 
9709   format %{ "movzbq  $dst, $dst\t# long & 0xFF" %}
9710   opcode(0x0F, 0xB6);
9711   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9712   ins_pipe(ialu_reg);
9713 %}
9714 
9715 // And Register with Immediate 65535
9716 instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
9717 %{
9718   match(Set dst (AndL dst src));
9719 
9720   format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
9721   opcode(0x0F, 0xB7);
9722   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9723   ins_pipe(ialu_reg);
9724 %}
9725 
9726 // And Register with Immediate
9727 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9728 %{
9729   match(Set dst (AndL dst src));
9730   effect(KILL cr);
9731 
9732   format %{ "andq    $dst, $src\t# long" %}
9733   opcode(0x81, 0x04); /* Opcode 81 /4 */
9734   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9735   ins_pipe(ialu_reg);
9736 %}
9737 
9738 // And Register with Memory
9739 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9740 %{
9741   match(Set dst (AndL dst (LoadL src)));
9742   effect(KILL cr);
9743 
9744   ins_cost(125);
9745   format %{ "andq    $dst, $src\t# long" %}
9746   opcode(0x23);
9747   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9748   ins_pipe(ialu_reg_mem);
9749 %}
9750 
9751 // And Memory with Register
9752 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9753 %{
9754   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9755   effect(KILL cr);
9756 
9757   ins_cost(150);
9758   format %{ "andq    $dst, $src\t# long" %}
9759   opcode(0x21); /* Opcode 21 /r */
9760   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9761   ins_pipe(ialu_mem_reg);
9762 %}
9763 
9764 // And Memory with Immediate
9765 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9766 %{
9767   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9768   effect(KILL cr);
9769 
9770   ins_cost(125);
9771   format %{ "andq    $dst, $src\t# long" %}
9772   opcode(0x81, 0x4); /* Opcode 81 /4 id */
9773   ins_encode(REX_mem_wide(dst), OpcSE(src),
9774              RM_opc_mem(secondary, dst), Con8or32(src));
9775   ins_pipe(ialu_mem_imm);
9776 %}
9777 
9778 instruct btrL_mem_imm(memory dst, immL_NotPow2 con, rFlagsReg cr)
9779 %{
9780   // con should be a pure 64-bit immediate given that not(con) is a power of 2
9781   // because AND/OR works well enough for 8/32-bit values.
9782   predicate(log2_long(~n->in(3)->in(2)->get_long()) > 30);
9783 
9784   match(Set dst (StoreL dst (AndL (LoadL dst) con)));
9785   effect(KILL cr);
9786 
9787   ins_cost(125);
9788   format %{ "btrq    $dst, log2(not($con))\t# long" %}
9789   ins_encode %{
9790     __ btrq($dst$$Address, log2_long(~$con$$constant));
9791   %}
9792   ins_pipe(ialu_mem_imm);
9793 %}
9794 
9795 // BMI1 instructions
9796 instruct andnL_rReg_rReg_mem(rRegL dst, rRegL src1, memory src2, immL_M1 minus_1, rFlagsReg cr) %{
9797   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2)));
9798   predicate(UseBMI1Instructions);
9799   effect(KILL cr);
9800 
9801   ins_cost(125);
9802   format %{ "andnq  $dst, $src1, $src2" %}
9803 
9804   ins_encode %{
9805     __ andnq($dst$$Register, $src1$$Register, $src2$$Address);
9806   %}
9807   ins_pipe(ialu_reg_mem);
9808 %}
9809 
9810 instruct andnL_rReg_rReg_rReg(rRegL dst, rRegL src1, rRegL src2, immL_M1 minus_1, rFlagsReg cr) %{
9811   match(Set dst (AndL (XorL src1 minus_1) src2));
9812   predicate(UseBMI1Instructions);
9813   effect(KILL cr);
9814 
9815   format %{ "andnq  $dst, $src1, $src2" %}
9816 
9817   ins_encode %{
9818   __ andnq($dst$$Register, $src1$$Register, $src2$$Register);
9819   %}
9820   ins_pipe(ialu_reg_mem);
9821 %}
9822 
9823 instruct blsiL_rReg_rReg(rRegL dst, rRegL src, immL0 imm_zero, rFlagsReg cr) %{
9824   match(Set dst (AndL (SubL imm_zero src) src));
9825   predicate(UseBMI1Instructions);
9826   effect(KILL cr);
9827 
9828   format %{ "blsiq  $dst, $src" %}
9829 
9830   ins_encode %{
9831     __ blsiq($dst$$Register, $src$$Register);
9832   %}
9833   ins_pipe(ialu_reg);
9834 %}
9835 
9836 instruct blsiL_rReg_mem(rRegL dst, memory src, immL0 imm_zero, rFlagsReg cr) %{
9837   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
9838   predicate(UseBMI1Instructions);
9839   effect(KILL cr);
9840 
9841   ins_cost(125);
9842   format %{ "blsiq  $dst, $src" %}
9843 
9844   ins_encode %{
9845     __ blsiq($dst$$Register, $src$$Address);
9846   %}
9847   ins_pipe(ialu_reg_mem);
9848 %}
9849 
9850 instruct blsmskL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9851 %{
9852   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ) );
9853   predicate(UseBMI1Instructions);
9854   effect(KILL cr);
9855 
9856   ins_cost(125);
9857   format %{ "blsmskq $dst, $src" %}
9858 
9859   ins_encode %{
9860     __ blsmskq($dst$$Register, $src$$Address);
9861   %}
9862   ins_pipe(ialu_reg_mem);
9863 %}
9864 
9865 instruct blsmskL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9866 %{
9867   match(Set dst (XorL (AddL src minus_1) src));
9868   predicate(UseBMI1Instructions);
9869   effect(KILL cr);
9870 
9871   format %{ "blsmskq $dst, $src" %}
9872 
9873   ins_encode %{
9874     __ blsmskq($dst$$Register, $src$$Register);
9875   %}
9876 
9877   ins_pipe(ialu_reg);
9878 %}
9879 
9880 instruct blsrL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9881 %{
9882   match(Set dst (AndL (AddL src minus_1) src) );
9883   predicate(UseBMI1Instructions);
9884   effect(KILL cr);
9885 
9886   format %{ "blsrq  $dst, $src" %}
9887 
9888   ins_encode %{
9889     __ blsrq($dst$$Register, $src$$Register);
9890   %}
9891 
9892   ins_pipe(ialu_reg);
9893 %}
9894 
9895 instruct blsrL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9896 %{
9897   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src)) );
9898   predicate(UseBMI1Instructions);
9899   effect(KILL cr);
9900 
9901   ins_cost(125);
9902   format %{ "blsrq  $dst, $src" %}
9903 
9904   ins_encode %{
9905     __ blsrq($dst$$Register, $src$$Address);
9906   %}
9907 
9908   ins_pipe(ialu_reg);
9909 %}
9910 
9911 // Or Instructions
9912 // Or Register with Register
9913 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9914 %{
9915   match(Set dst (OrL dst src));
9916   effect(KILL cr);
9917 
9918   format %{ "orq     $dst, $src\t# long" %}
9919   opcode(0x0B);
9920   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9921   ins_pipe(ialu_reg_reg);
9922 %}
9923 
9924 // Use any_RegP to match R15 (TLS register) without spilling.
9925 instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
9926   match(Set dst (OrL dst (CastP2X src)));
9927   effect(KILL cr);
9928 
9929   format %{ "orq     $dst, $src\t# long" %}
9930   opcode(0x0B);
9931   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9932   ins_pipe(ialu_reg_reg);
9933 %}
9934 
9935 
9936 // Or Register with Immediate
9937 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9938 %{
9939   match(Set dst (OrL dst src));
9940   effect(KILL cr);
9941 
9942   format %{ "orq     $dst, $src\t# long" %}
9943   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9944   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9945   ins_pipe(ialu_reg);
9946 %}
9947 
9948 // Or Register with Memory
9949 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9950 %{
9951   match(Set dst (OrL dst (LoadL src)));
9952   effect(KILL cr);
9953 
9954   ins_cost(125);
9955   format %{ "orq     $dst, $src\t# long" %}
9956   opcode(0x0B);
9957   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9958   ins_pipe(ialu_reg_mem);
9959 %}
9960 
9961 // Or Memory with Register
9962 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9963 %{
9964   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9965   effect(KILL cr);
9966 
9967   ins_cost(150);
9968   format %{ "orq     $dst, $src\t# long" %}
9969   opcode(0x09); /* Opcode 09 /r */
9970   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9971   ins_pipe(ialu_mem_reg);
9972 %}
9973 
9974 // Or Memory with Immediate
9975 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9976 %{
9977   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9978   effect(KILL cr);
9979 
9980   ins_cost(125);
9981   format %{ "orq     $dst, $src\t# long" %}
9982   opcode(0x81, 0x1); /* Opcode 81 /1 id */
9983   ins_encode(REX_mem_wide(dst), OpcSE(src),
9984              RM_opc_mem(secondary, dst), Con8or32(src));
9985   ins_pipe(ialu_mem_imm);
9986 %}
9987 
9988 instruct btsL_mem_imm(memory dst, immL_Pow2 con, rFlagsReg cr)
9989 %{
9990   // con should be a pure 64-bit power of 2 immediate
9991   // because AND/OR works well enough for 8/32-bit values.
9992   predicate(log2_long(n->in(3)->in(2)->get_long()) > 31);
9993 
9994   match(Set dst (StoreL dst (OrL (LoadL dst) con)));
9995   effect(KILL cr);
9996 
9997   ins_cost(125);
9998   format %{ "btsq    $dst, log2($con)\t# long" %}
9999   ins_encode %{
10000     __ btsq($dst$$Address, log2_long((julong)$con$$constant));
10001   %}
10002   ins_pipe(ialu_mem_imm);
10003 %}
10004 
10005 // Xor Instructions
10006 // Xor Register with Register
10007 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
10008 %{
10009   match(Set dst (XorL dst src));
10010   effect(KILL cr);
10011 
10012   format %{ "xorq    $dst, $src\t# long" %}
10013   opcode(0x33);
10014   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
10015   ins_pipe(ialu_reg_reg);
10016 %}
10017 
10018 // Xor Register with Immediate -1
10019 instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
10020   match(Set dst (XorL dst imm));
10021 
10022   format %{ "notq   $dst" %}
10023   ins_encode %{
10024      __ notq($dst$$Register);
10025   %}
10026   ins_pipe(ialu_reg);
10027 %}
10028 
10029 // Xor Register with Immediate
10030 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
10031 %{
10032   match(Set dst (XorL dst src));
10033   effect(KILL cr);
10034 
10035   format %{ "xorq    $dst, $src\t# long" %}
10036   opcode(0x81, 0x06); /* Opcode 81 /6 id */
10037   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
10038   ins_pipe(ialu_reg);
10039 %}
10040 
10041 // Xor Register with Memory
10042 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
10043 %{
10044   match(Set dst (XorL dst (LoadL src)));
10045   effect(KILL cr);
10046 
10047   ins_cost(125);
10048   format %{ "xorq    $dst, $src\t# long" %}
10049   opcode(0x33);
10050   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
10051   ins_pipe(ialu_reg_mem);
10052 %}
10053 
10054 // Xor Memory with Register
10055 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
10056 %{
10057   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
10058   effect(KILL cr);
10059 
10060   ins_cost(150);
10061   format %{ "xorq    $dst, $src\t# long" %}
10062   opcode(0x31); /* Opcode 31 /r */
10063   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
10064   ins_pipe(ialu_mem_reg);
10065 %}
10066 
10067 // Xor Memory with Immediate
10068 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
10069 %{
10070   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
10071   effect(KILL cr);
10072 
10073   ins_cost(125);
10074   format %{ "xorq    $dst, $src\t# long" %}
10075   opcode(0x81, 0x6); /* Opcode 81 /6 id */
10076   ins_encode(REX_mem_wide(dst), OpcSE(src),
10077              RM_opc_mem(secondary, dst), Con8or32(src));
10078   ins_pipe(ialu_mem_imm);
10079 %}
10080 
10081 // Convert Int to Boolean
10082 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
10083 %{
10084   match(Set dst (Conv2B src));
10085   effect(KILL cr);
10086 
10087   format %{ "testl   $src, $src\t# ci2b\n\t"
10088             "setnz   $dst\n\t"
10089             "movzbl  $dst, $dst" %}
10090   ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
10091              setNZ_reg(dst),
10092              REX_reg_breg(dst, dst), // movzbl
10093              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
10094   ins_pipe(pipe_slow); // XXX
10095 %}
10096 
10097 // Convert Pointer to Boolean
10098 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
10099 %{
10100   match(Set dst (Conv2B src));
10101   effect(KILL cr);
10102 
10103   format %{ "testq   $src, $src\t# cp2b\n\t"
10104             "setnz   $dst\n\t"
10105             "movzbl  $dst, $dst" %}
10106   ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
10107              setNZ_reg(dst),
10108              REX_reg_breg(dst, dst), // movzbl
10109              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
10110   ins_pipe(pipe_slow); // XXX
10111 %}
10112 
10113 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
10114 %{
10115   match(Set dst (CmpLTMask p q));
10116   effect(KILL cr);
10117 
10118   ins_cost(400);
10119   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
10120             "setlt   $dst\n\t"
10121             "movzbl  $dst, $dst\n\t"
10122             "negl    $dst" %}
10123   ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
10124              setLT_reg(dst),
10125              REX_reg_breg(dst, dst), // movzbl
10126              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
10127              neg_reg(dst));
10128   ins_pipe(pipe_slow);
10129 %}
10130 
10131 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
10132 %{
10133   match(Set dst (CmpLTMask dst zero));
10134   effect(KILL cr);
10135 
10136   ins_cost(100);
10137   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
10138   ins_encode %{
10139   __ sarl($dst$$Register, 31);
10140   %}
10141   ins_pipe(ialu_reg);
10142 %}
10143 
10144 /* Better to save a register than avoid a branch */
10145 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
10146 %{
10147   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
10148   effect(KILL cr);
10149   ins_cost(300);
10150   format %{ "subl    $p,$q\t# cadd_cmpLTMask\n\t"
10151             "jge     done\n\t"
10152             "addl    $p,$y\n"
10153             "done:   " %}
10154   ins_encode %{
10155     Register Rp = $p$$Register;
10156     Register Rq = $q$$Register;
10157     Register Ry = $y$$Register;
10158     Label done;
10159     __ subl(Rp, Rq);
10160     __ jccb(Assembler::greaterEqual, done);
10161     __ addl(Rp, Ry);
10162     __ bind(done);
10163   %}
10164   ins_pipe(pipe_cmplt);
10165 %}
10166 
10167 /* Better to save a register than avoid a branch */
10168 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
10169 %{
10170   match(Set y (AndI (CmpLTMask p q) y));
10171   effect(KILL cr);
10172 
10173   ins_cost(300);
10174 
10175   format %{ "cmpl    $p, $q\t# and_cmpLTMask\n\t"
10176             "jlt     done\n\t"
10177             "xorl    $y, $y\n"
10178             "done:   " %}
10179   ins_encode %{
10180     Register Rp = $p$$Register;
10181     Register Rq = $q$$Register;
10182     Register Ry = $y$$Register;
10183     Label done;
10184     __ cmpl(Rp, Rq);
10185     __ jccb(Assembler::less, done);
10186     __ xorl(Ry, Ry);
10187     __ bind(done);
10188   %}
10189   ins_pipe(pipe_cmplt);
10190 %}
10191 
10192 
10193 //---------- FP Instructions------------------------------------------------
10194 
10195 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
10196 %{
10197   match(Set cr (CmpF src1 src2));
10198 
10199   ins_cost(145);
10200   format %{ "ucomiss $src1, $src2\n\t"
10201             "jnp,s   exit\n\t"
10202             "pushfq\t# saw NaN, set CF\n\t"
10203             "andq    [rsp], #0xffffff2b\n\t"
10204             "popfq\n"
10205     "exit:" %}
10206   ins_encode %{
10207     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10208     emit_cmpfp_fixup(_masm);
10209   %}
10210   ins_pipe(pipe_slow);
10211 %}
10212 
10213 instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
10214   match(Set cr (CmpF src1 src2));
10215 
10216   ins_cost(100);
10217   format %{ "ucomiss $src1, $src2" %}
10218   ins_encode %{
10219     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10220   %}
10221   ins_pipe(pipe_slow);
10222 %}
10223 
10224 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
10225 %{
10226   match(Set cr (CmpF src1 (LoadF src2)));
10227 
10228   ins_cost(145);
10229   format %{ "ucomiss $src1, $src2\n\t"
10230             "jnp,s   exit\n\t"
10231             "pushfq\t# saw NaN, set CF\n\t"
10232             "andq    [rsp], #0xffffff2b\n\t"
10233             "popfq\n"
10234     "exit:" %}
10235   ins_encode %{
10236     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10237     emit_cmpfp_fixup(_masm);
10238   %}
10239   ins_pipe(pipe_slow);
10240 %}
10241 
10242 instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
10243   match(Set cr (CmpF src1 (LoadF src2)));
10244 
10245   ins_cost(100);
10246   format %{ "ucomiss $src1, $src2" %}
10247   ins_encode %{
10248     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10249   %}
10250   ins_pipe(pipe_slow);
10251 %}
10252 
10253 instruct cmpF_cc_imm(rFlagsRegU cr, regF src, immF con) %{
10254   match(Set cr (CmpF src con));
10255 
10256   ins_cost(145);
10257   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
10258             "jnp,s   exit\n\t"
10259             "pushfq\t# saw NaN, set CF\n\t"
10260             "andq    [rsp], #0xffffff2b\n\t"
10261             "popfq\n"
10262     "exit:" %}
10263   ins_encode %{
10264     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10265     emit_cmpfp_fixup(_masm);
10266   %}
10267   ins_pipe(pipe_slow);
10268 %}
10269 
10270 instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src, immF con) %{
10271   match(Set cr (CmpF src con));
10272   ins_cost(100);
10273   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con" %}
10274   ins_encode %{
10275     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10276   %}
10277   ins_pipe(pipe_slow);
10278 %}
10279 
10280 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
10281 %{
10282   match(Set cr (CmpD src1 src2));
10283 
10284   ins_cost(145);
10285   format %{ "ucomisd $src1, $src2\n\t"
10286             "jnp,s   exit\n\t"
10287             "pushfq\t# saw NaN, set CF\n\t"
10288             "andq    [rsp], #0xffffff2b\n\t"
10289             "popfq\n"
10290     "exit:" %}
10291   ins_encode %{
10292     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10293     emit_cmpfp_fixup(_masm);
10294   %}
10295   ins_pipe(pipe_slow);
10296 %}
10297 
10298 instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
10299   match(Set cr (CmpD src1 src2));
10300 
10301   ins_cost(100);
10302   format %{ "ucomisd $src1, $src2 test" %}
10303   ins_encode %{
10304     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10305   %}
10306   ins_pipe(pipe_slow);
10307 %}
10308 
10309 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
10310 %{
10311   match(Set cr (CmpD src1 (LoadD src2)));
10312 
10313   ins_cost(145);
10314   format %{ "ucomisd $src1, $src2\n\t"
10315             "jnp,s   exit\n\t"
10316             "pushfq\t# saw NaN, set CF\n\t"
10317             "andq    [rsp], #0xffffff2b\n\t"
10318             "popfq\n"
10319     "exit:" %}
10320   ins_encode %{
10321     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10322     emit_cmpfp_fixup(_masm);
10323   %}
10324   ins_pipe(pipe_slow);
10325 %}
10326 
10327 instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
10328   match(Set cr (CmpD src1 (LoadD src2)));
10329 
10330   ins_cost(100);
10331   format %{ "ucomisd $src1, $src2" %}
10332   ins_encode %{
10333     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10334   %}
10335   ins_pipe(pipe_slow);
10336 %}
10337 
10338 instruct cmpD_cc_imm(rFlagsRegU cr, regD src, immD con) %{
10339   match(Set cr (CmpD src con));
10340 
10341   ins_cost(145);
10342   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
10343             "jnp,s   exit\n\t"
10344             "pushfq\t# saw NaN, set CF\n\t"
10345             "andq    [rsp], #0xffffff2b\n\t"
10346             "popfq\n"
10347     "exit:" %}
10348   ins_encode %{
10349     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10350     emit_cmpfp_fixup(_masm);
10351   %}
10352   ins_pipe(pipe_slow);
10353 %}
10354 
10355 instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src, immD con) %{
10356   match(Set cr (CmpD src con));
10357   ins_cost(100);
10358   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con" %}
10359   ins_encode %{
10360     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10361   %}
10362   ins_pipe(pipe_slow);
10363 %}
10364 
10365 // Compare into -1,0,1
10366 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
10367 %{
10368   match(Set dst (CmpF3 src1 src2));
10369   effect(KILL cr);
10370 
10371   ins_cost(275);
10372   format %{ "ucomiss $src1, $src2\n\t"
10373             "movl    $dst, #-1\n\t"
10374             "jp,s    done\n\t"
10375             "jb,s    done\n\t"
10376             "setne   $dst\n\t"
10377             "movzbl  $dst, $dst\n"
10378     "done:" %}
10379   ins_encode %{
10380     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10381     emit_cmpfp3(_masm, $dst$$Register);
10382   %}
10383   ins_pipe(pipe_slow);
10384 %}
10385 
10386 // Compare into -1,0,1
10387 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
10388 %{
10389   match(Set dst (CmpF3 src1 (LoadF src2)));
10390   effect(KILL cr);
10391 
10392   ins_cost(275);
10393   format %{ "ucomiss $src1, $src2\n\t"
10394             "movl    $dst, #-1\n\t"
10395             "jp,s    done\n\t"
10396             "jb,s    done\n\t"
10397             "setne   $dst\n\t"
10398             "movzbl  $dst, $dst\n"
10399     "done:" %}
10400   ins_encode %{
10401     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10402     emit_cmpfp3(_masm, $dst$$Register);
10403   %}
10404   ins_pipe(pipe_slow);
10405 %}
10406 
10407 // Compare into -1,0,1
10408 instruct cmpF_imm(rRegI dst, regF src, immF con, rFlagsReg cr) %{
10409   match(Set dst (CmpF3 src con));
10410   effect(KILL cr);
10411 
10412   ins_cost(275);
10413   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
10414             "movl    $dst, #-1\n\t"
10415             "jp,s    done\n\t"
10416             "jb,s    done\n\t"
10417             "setne   $dst\n\t"
10418             "movzbl  $dst, $dst\n"
10419     "done:" %}
10420   ins_encode %{
10421     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10422     emit_cmpfp3(_masm, $dst$$Register);
10423   %}
10424   ins_pipe(pipe_slow);
10425 %}
10426 
10427 // Compare into -1,0,1
10428 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
10429 %{
10430   match(Set dst (CmpD3 src1 src2));
10431   effect(KILL cr);
10432 
10433   ins_cost(275);
10434   format %{ "ucomisd $src1, $src2\n\t"
10435             "movl    $dst, #-1\n\t"
10436             "jp,s    done\n\t"
10437             "jb,s    done\n\t"
10438             "setne   $dst\n\t"
10439             "movzbl  $dst, $dst\n"
10440     "done:" %}
10441   ins_encode %{
10442     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10443     emit_cmpfp3(_masm, $dst$$Register);
10444   %}
10445   ins_pipe(pipe_slow);
10446 %}
10447 
10448 // Compare into -1,0,1
10449 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
10450 %{
10451   match(Set dst (CmpD3 src1 (LoadD src2)));
10452   effect(KILL cr);
10453 
10454   ins_cost(275);
10455   format %{ "ucomisd $src1, $src2\n\t"
10456             "movl    $dst, #-1\n\t"
10457             "jp,s    done\n\t"
10458             "jb,s    done\n\t"
10459             "setne   $dst\n\t"
10460             "movzbl  $dst, $dst\n"
10461     "done:" %}
10462   ins_encode %{
10463     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10464     emit_cmpfp3(_masm, $dst$$Register);
10465   %}
10466   ins_pipe(pipe_slow);
10467 %}
10468 
10469 // Compare into -1,0,1
10470 instruct cmpD_imm(rRegI dst, regD src, immD con, rFlagsReg cr) %{
10471   match(Set dst (CmpD3 src con));
10472   effect(KILL cr);
10473 
10474   ins_cost(275);
10475   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
10476             "movl    $dst, #-1\n\t"
10477             "jp,s    done\n\t"
10478             "jb,s    done\n\t"
10479             "setne   $dst\n\t"
10480             "movzbl  $dst, $dst\n"
10481     "done:" %}
10482   ins_encode %{
10483     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10484     emit_cmpfp3(_masm, $dst$$Register);
10485   %}
10486   ins_pipe(pipe_slow);
10487 %}
10488 
10489 //----------Arithmetic Conversion Instructions---------------------------------
10490 
10491 instruct convF2D_reg_reg(regD dst, regF src)
10492 %{
10493   match(Set dst (ConvF2D src));
10494 
10495   format %{ "cvtss2sd $dst, $src" %}
10496   ins_encode %{
10497     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10498   %}
10499   ins_pipe(pipe_slow); // XXX
10500 %}
10501 
10502 instruct convF2D_reg_mem(regD dst, memory src)
10503 %{
10504   match(Set dst (ConvF2D (LoadF src)));
10505 
10506   format %{ "cvtss2sd $dst, $src" %}
10507   ins_encode %{
10508     __ cvtss2sd ($dst$$XMMRegister, $src$$Address);
10509   %}
10510   ins_pipe(pipe_slow); // XXX
10511 %}
10512 
10513 instruct convD2F_reg_reg(regF dst, regD src)
10514 %{
10515   match(Set dst (ConvD2F src));
10516 
10517   format %{ "cvtsd2ss $dst, $src" %}
10518   ins_encode %{
10519     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10520   %}
10521   ins_pipe(pipe_slow); // XXX
10522 %}
10523 
10524 instruct convD2F_reg_mem(regF dst, memory src)
10525 %{
10526   match(Set dst (ConvD2F (LoadD src)));
10527 
10528   format %{ "cvtsd2ss $dst, $src" %}
10529   ins_encode %{
10530     __ cvtsd2ss ($dst$$XMMRegister, $src$$Address);
10531   %}
10532   ins_pipe(pipe_slow); // XXX
10533 %}
10534 
10535 // XXX do mem variants
10536 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
10537 %{
10538   match(Set dst (ConvF2I src));
10539   effect(KILL cr);
10540   format %{ "convert_f2i $dst,$src" %}
10541   ins_encode %{
10542     __ convert_f2i($dst$$Register, $src$$XMMRegister);
10543   %}
10544   ins_pipe(pipe_slow);
10545 %}
10546 
10547 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
10548 %{
10549   match(Set dst (ConvF2L src));
10550   effect(KILL cr);
10551   format %{ "convert_f2l $dst,$src"%}
10552   ins_encode %{
10553     __ convert_f2l($dst$$Register, $src$$XMMRegister);
10554   %}
10555   ins_pipe(pipe_slow);
10556 %}
10557 
10558 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
10559 %{
10560   match(Set dst (ConvD2I src));
10561   effect(KILL cr);
10562   format %{ "convert_d2i $dst,$src"%}
10563   ins_encode %{
10564     __ convert_d2i($dst$$Register, $src$$XMMRegister);
10565   %}
10566   ins_pipe(pipe_slow);
10567 %}
10568 
10569 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
10570 %{
10571   match(Set dst (ConvD2L src));
10572   effect(KILL cr);
10573   format %{ "convert_d2l $dst,$src"%}
10574   ins_encode %{
10575     __ convert_d2l($dst$$Register, $src$$XMMRegister);
10576   %}
10577   ins_pipe(pipe_slow);
10578 %}
10579 
10580 instruct convI2F_reg_reg(regF dst, rRegI src)
10581 %{
10582   predicate(!UseXmmI2F);
10583   match(Set dst (ConvI2F src));
10584 
10585   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10586   ins_encode %{
10587     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
10588   %}
10589   ins_pipe(pipe_slow); // XXX
10590 %}
10591 
10592 instruct convI2F_reg_mem(regF dst, memory src)
10593 %{
10594   match(Set dst (ConvI2F (LoadI src)));
10595 
10596   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10597   ins_encode %{
10598     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Address);
10599   %}
10600   ins_pipe(pipe_slow); // XXX
10601 %}
10602 
10603 instruct convI2D_reg_reg(regD dst, rRegI src)
10604 %{
10605   predicate(!UseXmmI2D);
10606   match(Set dst (ConvI2D src));
10607 
10608   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10609   ins_encode %{
10610     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
10611   %}
10612   ins_pipe(pipe_slow); // XXX
10613 %}
10614 
10615 instruct convI2D_reg_mem(regD dst, memory src)
10616 %{
10617   match(Set dst (ConvI2D (LoadI src)));
10618 
10619   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10620   ins_encode %{
10621     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Address);
10622   %}
10623   ins_pipe(pipe_slow); // XXX
10624 %}
10625 
10626 instruct convXI2F_reg(regF dst, rRegI src)
10627 %{
10628   predicate(UseXmmI2F);
10629   match(Set dst (ConvI2F src));
10630 
10631   format %{ "movdl $dst, $src\n\t"
10632             "cvtdq2psl $dst, $dst\t# i2f" %}
10633   ins_encode %{
10634     __ movdl($dst$$XMMRegister, $src$$Register);
10635     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
10636   %}
10637   ins_pipe(pipe_slow); // XXX
10638 %}
10639 
10640 instruct convXI2D_reg(regD dst, rRegI src)
10641 %{
10642   predicate(UseXmmI2D);
10643   match(Set dst (ConvI2D src));
10644 
10645   format %{ "movdl $dst, $src\n\t"
10646             "cvtdq2pdl $dst, $dst\t# i2d" %}
10647   ins_encode %{
10648     __ movdl($dst$$XMMRegister, $src$$Register);
10649     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
10650   %}
10651   ins_pipe(pipe_slow); // XXX
10652 %}
10653 
10654 instruct convL2F_reg_reg(regF dst, rRegL src)
10655 %{
10656   match(Set dst (ConvL2F src));
10657 
10658   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10659   ins_encode %{
10660     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Register);
10661   %}
10662   ins_pipe(pipe_slow); // XXX
10663 %}
10664 
10665 instruct convL2F_reg_mem(regF dst, memory src)
10666 %{
10667   match(Set dst (ConvL2F (LoadL src)));
10668 
10669   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10670   ins_encode %{
10671     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Address);
10672   %}
10673   ins_pipe(pipe_slow); // XXX
10674 %}
10675 
10676 instruct convL2D_reg_reg(regD dst, rRegL src)
10677 %{
10678   match(Set dst (ConvL2D src));
10679 
10680   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10681   ins_encode %{
10682     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Register);
10683   %}
10684   ins_pipe(pipe_slow); // XXX
10685 %}
10686 
10687 instruct convL2D_reg_mem(regD dst, memory src)
10688 %{
10689   match(Set dst (ConvL2D (LoadL src)));
10690 
10691   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10692   ins_encode %{
10693     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Address);
10694   %}
10695   ins_pipe(pipe_slow); // XXX
10696 %}
10697 
10698 instruct convI2L_reg_reg(rRegL dst, rRegI src)
10699 %{
10700   match(Set dst (ConvI2L src));
10701 
10702   ins_cost(125);
10703   format %{ "movslq  $dst, $src\t# i2l" %}
10704   ins_encode %{
10705     __ movslq($dst$$Register, $src$$Register);
10706   %}
10707   ins_pipe(ialu_reg_reg);
10708 %}
10709 
10710 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
10711 // %{
10712 //   match(Set dst (ConvI2L src));
10713 // //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
10714 // //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
10715 //   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
10716 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
10717 //             ((const TypeNode*) n)->type()->is_long()->_lo ==
10718 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
10719 
10720 //   format %{ "movl    $dst, $src\t# unsigned i2l" %}
10721 //   ins_encode(enc_copy(dst, src));
10722 // //   opcode(0x63); // needs REX.W
10723 // //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
10724 //   ins_pipe(ialu_reg_reg);
10725 // %}
10726 
10727 // Zero-extend convert int to long
10728 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
10729 %{
10730   match(Set dst (AndL (ConvI2L src) mask));
10731 
10732   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10733   ins_encode %{
10734     if ($dst$$reg != $src$$reg) {
10735       __ movl($dst$$Register, $src$$Register);
10736     }
10737   %}
10738   ins_pipe(ialu_reg_reg);
10739 %}
10740 
10741 // Zero-extend convert int to long
10742 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
10743 %{
10744   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
10745 
10746   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10747   ins_encode %{
10748     __ movl($dst$$Register, $src$$Address);
10749   %}
10750   ins_pipe(ialu_reg_mem);
10751 %}
10752 
10753 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
10754 %{
10755   match(Set dst (AndL src mask));
10756 
10757   format %{ "movl    $dst, $src\t# zero-extend long" %}
10758   ins_encode %{
10759     __ movl($dst$$Register, $src$$Register);
10760   %}
10761   ins_pipe(ialu_reg_reg);
10762 %}
10763 
10764 instruct convL2I_reg_reg(rRegI dst, rRegL src)
10765 %{
10766   match(Set dst (ConvL2I src));
10767 
10768   format %{ "movl    $dst, $src\t# l2i" %}
10769   ins_encode %{
10770     __ movl($dst$$Register, $src$$Register);
10771   %}
10772   ins_pipe(ialu_reg_reg);
10773 %}
10774 
10775 
10776 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
10777   match(Set dst (MoveF2I src));
10778   effect(DEF dst, USE src);
10779 
10780   ins_cost(125);
10781   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
10782   ins_encode %{
10783     __ movl($dst$$Register, Address(rsp, $src$$disp));
10784   %}
10785   ins_pipe(ialu_reg_mem);
10786 %}
10787 
10788 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
10789   match(Set dst (MoveI2F src));
10790   effect(DEF dst, USE src);
10791 
10792   ins_cost(125);
10793   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
10794   ins_encode %{
10795     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
10796   %}
10797   ins_pipe(pipe_slow);
10798 %}
10799 
10800 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
10801   match(Set dst (MoveD2L src));
10802   effect(DEF dst, USE src);
10803 
10804   ins_cost(125);
10805   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
10806   ins_encode %{
10807     __ movq($dst$$Register, Address(rsp, $src$$disp));
10808   %}
10809   ins_pipe(ialu_reg_mem);
10810 %}
10811 
10812 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
10813   predicate(!UseXmmLoadAndClearUpper);
10814   match(Set dst (MoveL2D src));
10815   effect(DEF dst, USE src);
10816 
10817   ins_cost(125);
10818   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
10819   ins_encode %{
10820     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10821   %}
10822   ins_pipe(pipe_slow);
10823 %}
10824 
10825 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
10826   predicate(UseXmmLoadAndClearUpper);
10827   match(Set dst (MoveL2D src));
10828   effect(DEF dst, USE src);
10829 
10830   ins_cost(125);
10831   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
10832   ins_encode %{
10833     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10834   %}
10835   ins_pipe(pipe_slow);
10836 %}
10837 
10838 
10839 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
10840   match(Set dst (MoveF2I src));
10841   effect(DEF dst, USE src);
10842 
10843   ins_cost(95); // XXX
10844   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
10845   ins_encode %{
10846     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
10847   %}
10848   ins_pipe(pipe_slow);
10849 %}
10850 
10851 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
10852   match(Set dst (MoveI2F src));
10853   effect(DEF dst, USE src);
10854 
10855   ins_cost(100);
10856   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
10857   ins_encode %{
10858     __ movl(Address(rsp, $dst$$disp), $src$$Register);
10859   %}
10860   ins_pipe( ialu_mem_reg );
10861 %}
10862 
10863 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
10864   match(Set dst (MoveD2L src));
10865   effect(DEF dst, USE src);
10866 
10867   ins_cost(95); // XXX
10868   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
10869   ins_encode %{
10870     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
10871   %}
10872   ins_pipe(pipe_slow);
10873 %}
10874 
10875 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
10876   match(Set dst (MoveL2D src));
10877   effect(DEF dst, USE src);
10878 
10879   ins_cost(100);
10880   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
10881   ins_encode %{
10882     __ movq(Address(rsp, $dst$$disp), $src$$Register);
10883   %}
10884   ins_pipe(ialu_mem_reg);
10885 %}
10886 
10887 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
10888   match(Set dst (MoveF2I src));
10889   effect(DEF dst, USE src);
10890   ins_cost(85);
10891   format %{ "movd    $dst,$src\t# MoveF2I" %}
10892   ins_encode %{
10893     __ movdl($dst$$Register, $src$$XMMRegister);
10894   %}
10895   ins_pipe( pipe_slow );
10896 %}
10897 
10898 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
10899   match(Set dst (MoveD2L src));
10900   effect(DEF dst, USE src);
10901   ins_cost(85);
10902   format %{ "movd    $dst,$src\t# MoveD2L" %}
10903   ins_encode %{
10904     __ movdq($dst$$Register, $src$$XMMRegister);
10905   %}
10906   ins_pipe( pipe_slow );
10907 %}
10908 
10909 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
10910   match(Set dst (MoveI2F src));
10911   effect(DEF dst, USE src);
10912   ins_cost(100);
10913   format %{ "movd    $dst,$src\t# MoveI2F" %}
10914   ins_encode %{
10915     __ movdl($dst$$XMMRegister, $src$$Register);
10916   %}
10917   ins_pipe( pipe_slow );
10918 %}
10919 
10920 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
10921   match(Set dst (MoveL2D src));
10922   effect(DEF dst, USE src);
10923   ins_cost(100);
10924   format %{ "movd    $dst,$src\t# MoveL2D" %}
10925   ins_encode %{
10926      __ movdq($dst$$XMMRegister, $src$$Register);
10927   %}
10928   ins_pipe( pipe_slow );
10929 %}
10930 
10931 
10932 // =======================================================================
10933 // fast clearing of an array
10934 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegI zero,
10935                   Universe dummy, rFlagsReg cr)
10936 %{
10937   predicate(!((ClearArrayNode*)n)->is_large());
10938   match(Set dummy (ClearArray cnt base));
10939   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL zero, KILL cr);
10940 
10941   format %{ $$template
10942     $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10943     $$emit$$"cmp     InitArrayShortSize,rcx\n\t"
10944     $$emit$$"jg      LARGE\n\t"
10945     $$emit$$"dec     rcx\n\t"
10946     $$emit$$"js      DONE\t# Zero length\n\t"
10947     $$emit$$"mov     rax,(rdi,rcx,8)\t# LOOP\n\t"
10948     $$emit$$"dec     rcx\n\t"
10949     $$emit$$"jge     LOOP\n\t"
10950     $$emit$$"jmp     DONE\n\t"
10951     $$emit$$"# LARGE:\n\t"
10952     if (UseFastStosb) {
10953        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10954        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--\n\t"
10955     } else if (UseXMMForObjInit) {
10956        $$emit$$"mov     rdi,rax\n\t"
10957        $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
10958        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10959        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10960        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10961        $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
10962        $$emit$$"add     0x40,rax\n\t"
10963        $$emit$$"# L_zero_64_bytes:\n\t"
10964        $$emit$$"sub     0x8,rcx\n\t"
10965        $$emit$$"jge     L_loop\n\t"
10966        $$emit$$"add     0x4,rcx\n\t"
10967        $$emit$$"jl      L_tail\n\t"
10968        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10969        $$emit$$"add     0x20,rax\n\t"
10970        $$emit$$"sub     0x4,rcx\n\t"
10971        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10972        $$emit$$"add     0x4,rcx\n\t"
10973        $$emit$$"jle     L_end\n\t"
10974        $$emit$$"dec     rcx\n\t"
10975        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10976        $$emit$$"vmovq   xmm0,(rax)\n\t"
10977        $$emit$$"add     0x8,rax\n\t"
10978        $$emit$$"dec     rcx\n\t"
10979        $$emit$$"jge     L_sloop\n\t"
10980        $$emit$$"# L_end:\n\t"
10981     } else {
10982        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--\n\t"
10983     }
10984     $$emit$$"# DONE"
10985   %}
10986   ins_encode %{
10987     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
10988                  $tmp$$XMMRegister, false);
10989   %}
10990   ins_pipe(pipe_slow);
10991 %}
10992 
10993 instruct rep_stos_large(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegI zero,
10994                         Universe dummy, rFlagsReg cr)
10995 %{
10996   predicate(((ClearArrayNode*)n)->is_large());
10997   match(Set dummy (ClearArray cnt base));
10998   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL zero, KILL cr);
10999 
11000   format %{ $$template
11001     if (UseFastStosb) {
11002        $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
11003        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
11004        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--"
11005     } else if (UseXMMForObjInit) {
11006        $$emit$$"mov     rdi,rax\t# ClearArray:\n\t"
11007        $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
11008        $$emit$$"jmpq    L_zero_64_bytes\n\t"
11009        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
11010        $$emit$$"vmovdqu ymm0,(rax)\n\t"
11011        $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
11012        $$emit$$"add     0x40,rax\n\t"
11013        $$emit$$"# L_zero_64_bytes:\n\t"
11014        $$emit$$"sub     0x8,rcx\n\t"
11015        $$emit$$"jge     L_loop\n\t"
11016        $$emit$$"add     0x4,rcx\n\t"
11017        $$emit$$"jl      L_tail\n\t"
11018        $$emit$$"vmovdqu ymm0,(rax)\n\t"
11019        $$emit$$"add     0x20,rax\n\t"
11020        $$emit$$"sub     0x4,rcx\n\t"
11021        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
11022        $$emit$$"add     0x4,rcx\n\t"
11023        $$emit$$"jle     L_end\n\t"
11024        $$emit$$"dec     rcx\n\t"
11025        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
11026        $$emit$$"vmovq   xmm0,(rax)\n\t"
11027        $$emit$$"add     0x8,rax\n\t"
11028        $$emit$$"dec     rcx\n\t"
11029        $$emit$$"jge     L_sloop\n\t"
11030        $$emit$$"# L_end:\n\t"
11031     } else {
11032        $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
11033        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--"
11034     }
11035   %}
11036   ins_encode %{
11037     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
11038                  $tmp$$XMMRegister, true);
11039   %}
11040   ins_pipe(pipe_slow);
11041 %}
11042 
11043 instruct string_compareL(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11044                          rax_RegI result, legRegD tmp1, rFlagsReg cr)
11045 %{
11046   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
11047   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11048   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11049 
11050   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11051   ins_encode %{
11052     __ string_compare($str1$$Register, $str2$$Register,
11053                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11054                       $tmp1$$XMMRegister, StrIntrinsicNode::LL);
11055   %}
11056   ins_pipe( pipe_slow );
11057 %}
11058 
11059 instruct string_compareU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11060                          rax_RegI result, legRegD tmp1, rFlagsReg cr)
11061 %{
11062   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
11063   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11064   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11065 
11066   format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11067   ins_encode %{
11068     __ string_compare($str1$$Register, $str2$$Register,
11069                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11070                       $tmp1$$XMMRegister, StrIntrinsicNode::UU);
11071   %}
11072   ins_pipe( pipe_slow );
11073 %}
11074 
11075 instruct string_compareLU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11076                           rax_RegI result, legRegD tmp1, rFlagsReg cr)
11077 %{
11078   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
11079   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11080   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11081 
11082   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11083   ins_encode %{
11084     __ string_compare($str1$$Register, $str2$$Register,
11085                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11086                       $tmp1$$XMMRegister, StrIntrinsicNode::LU);
11087   %}
11088   ins_pipe( pipe_slow );
11089 %}
11090 
11091 instruct string_compareUL(rsi_RegP str1, rdx_RegI cnt1, rdi_RegP str2, rcx_RegI cnt2,
11092                           rax_RegI result, legRegD tmp1, rFlagsReg cr)
11093 %{
11094   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
11095   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11096   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11097 
11098   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11099   ins_encode %{
11100     __ string_compare($str2$$Register, $str1$$Register,
11101                       $cnt2$$Register, $cnt1$$Register, $result$$Register,
11102                       $tmp1$$XMMRegister, StrIntrinsicNode::UL);
11103   %}
11104   ins_pipe( pipe_slow );
11105 %}
11106 
11107 // fast search of substring with known size.
11108 instruct string_indexof_conL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11109                              rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11110 %{
11111   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
11112   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11113   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11114 
11115   format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
11116   ins_encode %{
11117     int icnt2 = (int)$int_cnt2$$constant;
11118     if (icnt2 >= 16) {
11119       // IndexOf for constant substrings with size >= 16 elements
11120       // which don't need to be loaded through stack.
11121       __ string_indexofC8($str1$$Register, $str2$$Register,
11122                           $cnt1$$Register, $cnt2$$Register,
11123                           icnt2, $result$$Register,
11124                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11125     } else {
11126       // Small strings are loaded through stack if they cross page boundary.
11127       __ string_indexof($str1$$Register, $str2$$Register,
11128                         $cnt1$$Register, $cnt2$$Register,
11129                         icnt2, $result$$Register,
11130                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11131     }
11132   %}
11133   ins_pipe( pipe_slow );
11134 %}
11135 
11136 // fast search of substring with known size.
11137 instruct string_indexof_conU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11138                              rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11139 %{
11140   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
11141   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11142   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11143 
11144   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
11145   ins_encode %{
11146     int icnt2 = (int)$int_cnt2$$constant;
11147     if (icnt2 >= 8) {
11148       // IndexOf for constant substrings with size >= 8 elements
11149       // which don't need to be loaded through stack.
11150       __ string_indexofC8($str1$$Register, $str2$$Register,
11151                           $cnt1$$Register, $cnt2$$Register,
11152                           icnt2, $result$$Register,
11153                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11154     } else {
11155       // Small strings are loaded through stack if they cross page boundary.
11156       __ string_indexof($str1$$Register, $str2$$Register,
11157                         $cnt1$$Register, $cnt2$$Register,
11158                         icnt2, $result$$Register,
11159                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11160     }
11161   %}
11162   ins_pipe( pipe_slow );
11163 %}
11164 
11165 // fast search of substring with known size.
11166 instruct string_indexof_conUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11167                               rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11168 %{
11169   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
11170   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11171   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11172 
11173   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
11174   ins_encode %{
11175     int icnt2 = (int)$int_cnt2$$constant;
11176     if (icnt2 >= 8) {
11177       // IndexOf for constant substrings with size >= 8 elements
11178       // which don't need to be loaded through stack.
11179       __ string_indexofC8($str1$$Register, $str2$$Register,
11180                           $cnt1$$Register, $cnt2$$Register,
11181                           icnt2, $result$$Register,
11182                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11183     } else {
11184       // Small strings are loaded through stack if they cross page boundary.
11185       __ string_indexof($str1$$Register, $str2$$Register,
11186                         $cnt1$$Register, $cnt2$$Register,
11187                         icnt2, $result$$Register,
11188                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11189     }
11190   %}
11191   ins_pipe( pipe_slow );
11192 %}
11193 
11194 instruct string_indexofL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11195                          rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
11196 %{
11197   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
11198   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11199   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11200 
11201   format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11202   ins_encode %{
11203     __ string_indexof($str1$$Register, $str2$$Register,
11204                       $cnt1$$Register, $cnt2$$Register,
11205                       (-1), $result$$Register,
11206                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11207   %}
11208   ins_pipe( pipe_slow );
11209 %}
11210 
11211 instruct string_indexofU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11212                          rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
11213 %{
11214   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
11215   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11216   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11217 
11218   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11219   ins_encode %{
11220     __ string_indexof($str1$$Register, $str2$$Register,
11221                       $cnt1$$Register, $cnt2$$Register,
11222                       (-1), $result$$Register,
11223                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11224   %}
11225   ins_pipe( pipe_slow );
11226 %}
11227 
11228 instruct string_indexofUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11229                           rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
11230 %{
11231   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
11232   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11233   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11234 
11235   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11236   ins_encode %{
11237     __ string_indexof($str1$$Register, $str2$$Register,
11238                       $cnt1$$Register, $cnt2$$Register,
11239                       (-1), $result$$Register,
11240                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11241   %}
11242   ins_pipe( pipe_slow );
11243 %}
11244 
11245 instruct string_indexofU_char(rdi_RegP str1, rdx_RegI cnt1, rax_RegI ch,
11246                               rbx_RegI result, legRegD tmp_vec1, legRegD tmp_vec2, legRegD tmp_vec3, rcx_RegI tmp, rFlagsReg cr)
11247 %{
11248   predicate(UseSSE42Intrinsics);
11249   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
11250   effect(TEMP tmp_vec1, TEMP tmp_vec2, TEMP tmp_vec3, USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP tmp, KILL cr);
11251   format %{ "String IndexOf char[] $str1,$cnt1,$ch -> $result   // KILL all" %}
11252   ins_encode %{
11253     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, $result$$Register,
11254                            $tmp_vec1$$XMMRegister, $tmp_vec2$$XMMRegister, $tmp_vec3$$XMMRegister, $tmp$$Register);
11255   %}
11256   ins_pipe( pipe_slow );
11257 %}
11258 
11259 // fast string equals
11260 instruct string_equals(rdi_RegP str1, rsi_RegP str2, rcx_RegI cnt, rax_RegI result,
11261                        legRegD tmp1, legRegD tmp2, rbx_RegI tmp3, rFlagsReg cr)
11262 %{
11263   match(Set result (StrEquals (Binary str1 str2) cnt));
11264   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11265 
11266   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11267   ins_encode %{
11268     __ arrays_equals(false, $str1$$Register, $str2$$Register,
11269                      $cnt$$Register, $result$$Register, $tmp3$$Register,
11270                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */);
11271   %}
11272   ins_pipe( pipe_slow );
11273 %}
11274 
11275 // fast array equals
11276 instruct array_equalsB(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11277                        legRegD tmp1, legRegD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11278 %{
11279   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
11280   match(Set result (AryEq ary1 ary2));
11281   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11282 
11283   format %{ "Array Equals byte[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11284   ins_encode %{
11285     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11286                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11287                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */);
11288   %}
11289   ins_pipe( pipe_slow );
11290 %}
11291 
11292 instruct array_equalsC(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11293                        legRegD tmp1, legRegD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11294 %{
11295   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
11296   match(Set result (AryEq ary1 ary2));
11297   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11298 
11299   format %{ "Array Equals char[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11300   ins_encode %{
11301     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11302                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11303                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, true /* char */);
11304   %}
11305   ins_pipe( pipe_slow );
11306 %}
11307 
11308 instruct has_negatives(rsi_RegP ary1, rcx_RegI len, rax_RegI result,
11309                        legRegD tmp1, legRegD tmp2, rbx_RegI tmp3, rFlagsReg cr)
11310 %{
11311   match(Set result (HasNegatives ary1 len));
11312   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL len, KILL tmp3, KILL cr);
11313 
11314   format %{ "has negatives byte[] $ary1,$len -> $result   // KILL $tmp1, $tmp2, $tmp3" %}
11315   ins_encode %{
11316     __ has_negatives($ary1$$Register, $len$$Register,
11317                      $result$$Register, $tmp3$$Register,
11318                      $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11319   %}
11320   ins_pipe( pipe_slow );
11321 %}
11322 
11323 // fast char[] to byte[] compression
11324 instruct string_compress(rsi_RegP src, rdi_RegP dst, rdx_RegI len, legRegD tmp1, legRegD tmp2, legRegD tmp3, legRegD tmp4,
11325                          rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11326   match(Set result (StrCompressedCopy src (Binary dst len)));
11327   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11328 
11329   format %{ "String Compress $src,$dst -> $result    // KILL RAX, RCX, RDX" %}
11330   ins_encode %{
11331     __ char_array_compress($src$$Register, $dst$$Register, $len$$Register,
11332                            $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11333                            $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11334   %}
11335   ins_pipe( pipe_slow );
11336 %}
11337 
11338 // fast byte[] to char[] inflation
11339 instruct string_inflate(Universe dummy, rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11340                         legRegD tmp1, rcx_RegI tmp2, rFlagsReg cr) %{
11341   match(Set dummy (StrInflatedCopy src (Binary dst len)));
11342   effect(TEMP tmp1, TEMP tmp2, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
11343 
11344   format %{ "String Inflate $src,$dst    // KILL $tmp1, $tmp2" %}
11345   ins_encode %{
11346     __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register,
11347                           $tmp1$$XMMRegister, $tmp2$$Register);
11348   %}
11349   ins_pipe( pipe_slow );
11350 %}
11351 
11352 // encode char[] to byte[] in ISO_8859_1
11353 instruct encode_iso_array(rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11354                           legRegD tmp1, legRegD tmp2, legRegD tmp3, legRegD tmp4,
11355                           rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11356   match(Set result (EncodeISOArray src (Binary dst len)));
11357   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11358 
11359   format %{ "Encode array $src,$dst,$len -> $result    // KILL RCX, RDX, $tmp1, $tmp2, $tmp3, $tmp4, RSI, RDI " %}
11360   ins_encode %{
11361     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11362                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11363                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11364   %}
11365   ins_pipe( pipe_slow );
11366 %}
11367 
11368 //----------Overflow Math Instructions-----------------------------------------
11369 
11370 instruct overflowAddI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11371 %{
11372   match(Set cr (OverflowAddI op1 op2));
11373   effect(DEF cr, USE_KILL op1, USE op2);
11374 
11375   format %{ "addl    $op1, $op2\t# overflow check int" %}
11376 
11377   ins_encode %{
11378     __ addl($op1$$Register, $op2$$Register);
11379   %}
11380   ins_pipe(ialu_reg_reg);
11381 %}
11382 
11383 instruct overflowAddI_rReg_imm(rFlagsReg cr, rax_RegI op1, immI op2)
11384 %{
11385   match(Set cr (OverflowAddI op1 op2));
11386   effect(DEF cr, USE_KILL op1, USE op2);
11387 
11388   format %{ "addl    $op1, $op2\t# overflow check int" %}
11389 
11390   ins_encode %{
11391     __ addl($op1$$Register, $op2$$constant);
11392   %}
11393   ins_pipe(ialu_reg_reg);
11394 %}
11395 
11396 instruct overflowAddL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11397 %{
11398   match(Set cr (OverflowAddL op1 op2));
11399   effect(DEF cr, USE_KILL op1, USE op2);
11400 
11401   format %{ "addq    $op1, $op2\t# overflow check long" %}
11402   ins_encode %{
11403     __ addq($op1$$Register, $op2$$Register);
11404   %}
11405   ins_pipe(ialu_reg_reg);
11406 %}
11407 
11408 instruct overflowAddL_rReg_imm(rFlagsReg cr, rax_RegL op1, immL32 op2)
11409 %{
11410   match(Set cr (OverflowAddL op1 op2));
11411   effect(DEF cr, USE_KILL op1, USE op2);
11412 
11413   format %{ "addq    $op1, $op2\t# overflow check long" %}
11414   ins_encode %{
11415     __ addq($op1$$Register, $op2$$constant);
11416   %}
11417   ins_pipe(ialu_reg_reg);
11418 %}
11419 
11420 instruct overflowSubI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11421 %{
11422   match(Set cr (OverflowSubI op1 op2));
11423 
11424   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11425   ins_encode %{
11426     __ cmpl($op1$$Register, $op2$$Register);
11427   %}
11428   ins_pipe(ialu_reg_reg);
11429 %}
11430 
11431 instruct overflowSubI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11432 %{
11433   match(Set cr (OverflowSubI op1 op2));
11434 
11435   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11436   ins_encode %{
11437     __ cmpl($op1$$Register, $op2$$constant);
11438   %}
11439   ins_pipe(ialu_reg_reg);
11440 %}
11441 
11442 instruct overflowSubL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11443 %{
11444   match(Set cr (OverflowSubL op1 op2));
11445 
11446   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11447   ins_encode %{
11448     __ cmpq($op1$$Register, $op2$$Register);
11449   %}
11450   ins_pipe(ialu_reg_reg);
11451 %}
11452 
11453 instruct overflowSubL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11454 %{
11455   match(Set cr (OverflowSubL op1 op2));
11456 
11457   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11458   ins_encode %{
11459     __ cmpq($op1$$Register, $op2$$constant);
11460   %}
11461   ins_pipe(ialu_reg_reg);
11462 %}
11463 
11464 instruct overflowNegI_rReg(rFlagsReg cr, immI0 zero, rax_RegI op2)
11465 %{
11466   match(Set cr (OverflowSubI zero op2));
11467   effect(DEF cr, USE_KILL op2);
11468 
11469   format %{ "negl    $op2\t# overflow check int" %}
11470   ins_encode %{
11471     __ negl($op2$$Register);
11472   %}
11473   ins_pipe(ialu_reg_reg);
11474 %}
11475 
11476 instruct overflowNegL_rReg(rFlagsReg cr, immL0 zero, rax_RegL op2)
11477 %{
11478   match(Set cr (OverflowSubL zero op2));
11479   effect(DEF cr, USE_KILL op2);
11480 
11481   format %{ "negq    $op2\t# overflow check long" %}
11482   ins_encode %{
11483     __ negq($op2$$Register);
11484   %}
11485   ins_pipe(ialu_reg_reg);
11486 %}
11487 
11488 instruct overflowMulI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11489 %{
11490   match(Set cr (OverflowMulI op1 op2));
11491   effect(DEF cr, USE_KILL op1, USE op2);
11492 
11493   format %{ "imull    $op1, $op2\t# overflow check int" %}
11494   ins_encode %{
11495     __ imull($op1$$Register, $op2$$Register);
11496   %}
11497   ins_pipe(ialu_reg_reg_alu0);
11498 %}
11499 
11500 instruct overflowMulI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
11501 %{
11502   match(Set cr (OverflowMulI op1 op2));
11503   effect(DEF cr, TEMP tmp, USE op1, USE op2);
11504 
11505   format %{ "imull    $tmp, $op1, $op2\t# overflow check int" %}
11506   ins_encode %{
11507     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
11508   %}
11509   ins_pipe(ialu_reg_reg_alu0);
11510 %}
11511 
11512 instruct overflowMulL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11513 %{
11514   match(Set cr (OverflowMulL op1 op2));
11515   effect(DEF cr, USE_KILL op1, USE op2);
11516 
11517   format %{ "imulq    $op1, $op2\t# overflow check long" %}
11518   ins_encode %{
11519     __ imulq($op1$$Register, $op2$$Register);
11520   %}
11521   ins_pipe(ialu_reg_reg_alu0);
11522 %}
11523 
11524 instruct overflowMulL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2, rRegL tmp)
11525 %{
11526   match(Set cr (OverflowMulL op1 op2));
11527   effect(DEF cr, TEMP tmp, USE op1, USE op2);
11528 
11529   format %{ "imulq    $tmp, $op1, $op2\t# overflow check long" %}
11530   ins_encode %{
11531     __ imulq($tmp$$Register, $op1$$Register, $op2$$constant);
11532   %}
11533   ins_pipe(ialu_reg_reg_alu0);
11534 %}
11535 
11536 
11537 //----------Control Flow Instructions------------------------------------------
11538 // Signed compare Instructions
11539 
11540 // XXX more variants!!
11541 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11542 %{
11543   match(Set cr (CmpI op1 op2));
11544   effect(DEF cr, USE op1, USE op2);
11545 
11546   format %{ "cmpl    $op1, $op2" %}
11547   opcode(0x3B);  /* Opcode 3B /r */
11548   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
11549   ins_pipe(ialu_cr_reg_reg);
11550 %}
11551 
11552 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11553 %{
11554   match(Set cr (CmpI op1 op2));
11555 
11556   format %{ "cmpl    $op1, $op2" %}
11557   opcode(0x81, 0x07); /* Opcode 81 /7 */
11558   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
11559   ins_pipe(ialu_cr_reg_imm);
11560 %}
11561 
11562 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
11563 %{
11564   match(Set cr (CmpI op1 (LoadI op2)));
11565 
11566   ins_cost(500); // XXX
11567   format %{ "cmpl    $op1, $op2" %}
11568   opcode(0x3B); /* Opcode 3B /r */
11569   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
11570   ins_pipe(ialu_cr_reg_mem);
11571 %}
11572 
11573 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
11574 %{
11575   match(Set cr (CmpI src zero));
11576 
11577   format %{ "testl   $src, $src" %}
11578   opcode(0x85);
11579   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
11580   ins_pipe(ialu_cr_reg_imm);
11581 %}
11582 
11583 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
11584 %{
11585   match(Set cr (CmpI (AndI src con) zero));
11586 
11587   format %{ "testl   $src, $con" %}
11588   opcode(0xF7, 0x00);
11589   ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
11590   ins_pipe(ialu_cr_reg_imm);
11591 %}
11592 
11593 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
11594 %{
11595   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
11596 
11597   format %{ "testl   $src, $mem" %}
11598   opcode(0x85);
11599   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
11600   ins_pipe(ialu_cr_reg_mem);
11601 %}
11602 
11603 // Unsigned compare Instructions; really, same as signed except they
11604 // produce an rFlagsRegU instead of rFlagsReg.
11605 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
11606 %{
11607   match(Set cr (CmpU op1 op2));
11608 
11609   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11610   opcode(0x3B); /* Opcode 3B /r */
11611   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
11612   ins_pipe(ialu_cr_reg_reg);
11613 %}
11614 
11615 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
11616 %{
11617   match(Set cr (CmpU op1 op2));
11618 
11619   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11620   opcode(0x81,0x07); /* Opcode 81 /7 */
11621   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
11622   ins_pipe(ialu_cr_reg_imm);
11623 %}
11624 
11625 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
11626 %{
11627   match(Set cr (CmpU op1 (LoadI op2)));
11628 
11629   ins_cost(500); // XXX
11630   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11631   opcode(0x3B); /* Opcode 3B /r */
11632   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
11633   ins_pipe(ialu_cr_reg_mem);
11634 %}
11635 
11636 // // // Cisc-spilled version of cmpU_rReg
11637 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
11638 // //%{
11639 // //  match(Set cr (CmpU (LoadI op1) op2));
11640 // //
11641 // //  format %{ "CMPu   $op1,$op2" %}
11642 // //  ins_cost(500);
11643 // //  opcode(0x39);  /* Opcode 39 /r */
11644 // //  ins_encode( OpcP, reg_mem( op1, op2) );
11645 // //%}
11646 
11647 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
11648 %{
11649   match(Set cr (CmpU src zero));
11650 
11651   format %{ "testl   $src, $src\t# unsigned" %}
11652   opcode(0x85);
11653   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
11654   ins_pipe(ialu_cr_reg_imm);
11655 %}
11656 
11657 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
11658 %{
11659   match(Set cr (CmpP op1 op2));
11660 
11661   format %{ "cmpq    $op1, $op2\t# ptr" %}
11662   opcode(0x3B); /* Opcode 3B /r */
11663   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11664   ins_pipe(ialu_cr_reg_reg);
11665 %}
11666 
11667 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
11668 %{
11669   match(Set cr (CmpP op1 (LoadP op2)));
11670   predicate(n->in(2)->as_Load()->barrier_data() == 0);
11671 
11672   ins_cost(500); // XXX
11673   format %{ "cmpq    $op1, $op2\t# ptr" %}
11674   opcode(0x3B); /* Opcode 3B /r */
11675   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11676   ins_pipe(ialu_cr_reg_mem);
11677 %}
11678 
11679 // // // Cisc-spilled version of cmpP_rReg
11680 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
11681 // //%{
11682 // //  match(Set cr (CmpP (LoadP op1) op2));
11683 // //
11684 // //  format %{ "CMPu   $op1,$op2" %}
11685 // //  ins_cost(500);
11686 // //  opcode(0x39);  /* Opcode 39 /r */
11687 // //  ins_encode( OpcP, reg_mem( op1, op2) );
11688 // //%}
11689 
11690 // XXX this is generalized by compP_rReg_mem???
11691 // Compare raw pointer (used in out-of-heap check).
11692 // Only works because non-oop pointers must be raw pointers
11693 // and raw pointers have no anti-dependencies.
11694 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
11695 %{
11696   predicate(n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none &&
11697             n->in(2)->as_Load()->barrier_data() == 0);
11698   match(Set cr (CmpP op1 (LoadP op2)));
11699 
11700   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
11701   opcode(0x3B); /* Opcode 3B /r */
11702   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11703   ins_pipe(ialu_cr_reg_mem);
11704 %}
11705 
11706 // This will generate a signed flags result. This should be OK since
11707 // any compare to a zero should be eq/neq.
11708 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
11709 %{
11710   match(Set cr (CmpP src zero));
11711 
11712   format %{ "testq   $src, $src\t# ptr" %}
11713   opcode(0x85);
11714   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11715   ins_pipe(ialu_cr_reg_imm);
11716 %}
11717 
11718 // This will generate a signed flags result. This should be OK since
11719 // any compare to a zero should be eq/neq.
11720 instruct testP_mem(rFlagsReg cr, memory op, immP0 zero)
11721 %{
11722   predicate((!UseCompressedOops || (CompressedOops::base() != NULL)) &&
11723             n->in(1)->as_Load()->barrier_data() == 0);
11724   match(Set cr (CmpP (LoadP op) zero));
11725 
11726   ins_cost(500); // XXX
11727   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
11728   opcode(0xF7); /* Opcode F7 /0 */
11729   ins_encode(REX_mem_wide(op),
11730              OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
11731   ins_pipe(ialu_cr_reg_imm);
11732 %}
11733 
11734 instruct testP_mem_reg0(rFlagsReg cr, memory mem, immP0 zero)
11735 %{
11736   predicate(UseCompressedOops && (CompressedOops::base() == NULL) &&
11737             (CompressedKlassPointers::base() == NULL) &&
11738             n->in(1)->as_Load()->barrier_data() == 0);
11739   match(Set cr (CmpP (LoadP mem) zero));
11740 
11741   format %{ "cmpq    R12, $mem\t# ptr (R12_heapbase==0)" %}
11742   ins_encode %{
11743     __ cmpq(r12, $mem$$Address);
11744   %}
11745   ins_pipe(ialu_cr_reg_mem);
11746 %}
11747 
11748 instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
11749 %{
11750   match(Set cr (CmpN op1 op2));
11751 
11752   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11753   ins_encode %{ __ cmpl($op1$$Register, $op2$$Register); %}
11754   ins_pipe(ialu_cr_reg_reg);
11755 %}
11756 
11757 instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
11758 %{
11759   match(Set cr (CmpN src (LoadN mem)));
11760 
11761   format %{ "cmpl    $src, $mem\t# compressed ptr" %}
11762   ins_encode %{
11763     __ cmpl($src$$Register, $mem$$Address);
11764   %}
11765   ins_pipe(ialu_cr_reg_mem);
11766 %}
11767 
11768 instruct compN_rReg_imm(rFlagsRegU cr, rRegN op1, immN op2) %{
11769   match(Set cr (CmpN op1 op2));
11770 
11771   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11772   ins_encode %{
11773     __ cmp_narrow_oop($op1$$Register, (jobject)$op2$$constant);
11774   %}
11775   ins_pipe(ialu_cr_reg_imm);
11776 %}
11777 
11778 instruct compN_mem_imm(rFlagsRegU cr, memory mem, immN src)
11779 %{
11780   match(Set cr (CmpN src (LoadN mem)));
11781 
11782   format %{ "cmpl    $mem, $src\t# compressed ptr" %}
11783   ins_encode %{
11784     __ cmp_narrow_oop($mem$$Address, (jobject)$src$$constant);
11785   %}
11786   ins_pipe(ialu_cr_reg_mem);
11787 %}
11788 
11789 instruct compN_rReg_imm_klass(rFlagsRegU cr, rRegN op1, immNKlass op2) %{
11790   match(Set cr (CmpN op1 op2));
11791 
11792   format %{ "cmpl    $op1, $op2\t# compressed klass ptr" %}
11793   ins_encode %{
11794     __ cmp_narrow_klass($op1$$Register, (Klass*)$op2$$constant);
11795   %}
11796   ins_pipe(ialu_cr_reg_imm);
11797 %}
11798 
11799 instruct compN_mem_imm_klass(rFlagsRegU cr, memory mem, immNKlass src)
11800 %{
11801   match(Set cr (CmpN src (LoadNKlass mem)));
11802 
11803   format %{ "cmpl    $mem, $src\t# compressed klass ptr" %}
11804   ins_encode %{
11805     __ cmp_narrow_klass($mem$$Address, (Klass*)$src$$constant);
11806   %}
11807   ins_pipe(ialu_cr_reg_mem);
11808 %}
11809 
11810 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
11811   match(Set cr (CmpN src zero));
11812 
11813   format %{ "testl   $src, $src\t# compressed ptr" %}
11814   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
11815   ins_pipe(ialu_cr_reg_imm);
11816 %}
11817 
11818 instruct testN_mem(rFlagsReg cr, memory mem, immN0 zero)
11819 %{
11820   predicate(CompressedOops::base() != NULL);
11821   match(Set cr (CmpN (LoadN mem) zero));
11822 
11823   ins_cost(500); // XXX
11824   format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
11825   ins_encode %{
11826     __ cmpl($mem$$Address, (int)0xFFFFFFFF);
11827   %}
11828   ins_pipe(ialu_cr_reg_mem);
11829 %}
11830 
11831 instruct testN_mem_reg0(rFlagsReg cr, memory mem, immN0 zero)
11832 %{
11833   predicate(CompressedOops::base() == NULL && (CompressedKlassPointers::base() == NULL));
11834   match(Set cr (CmpN (LoadN mem) zero));
11835 
11836   format %{ "cmpl    R12, $mem\t# compressed ptr (R12_heapbase==0)" %}
11837   ins_encode %{
11838     __ cmpl(r12, $mem$$Address);
11839   %}
11840   ins_pipe(ialu_cr_reg_mem);
11841 %}
11842 
11843 // Yanked all unsigned pointer compare operations.
11844 // Pointer compares are done with CmpP which is already unsigned.
11845 
11846 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11847 %{
11848   match(Set cr (CmpL op1 op2));
11849 
11850   format %{ "cmpq    $op1, $op2" %}
11851   opcode(0x3B);  /* Opcode 3B /r */
11852   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11853   ins_pipe(ialu_cr_reg_reg);
11854 %}
11855 
11856 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11857 %{
11858   match(Set cr (CmpL op1 op2));
11859 
11860   format %{ "cmpq    $op1, $op2" %}
11861   opcode(0x81, 0x07); /* Opcode 81 /7 */
11862   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
11863   ins_pipe(ialu_cr_reg_imm);
11864 %}
11865 
11866 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
11867 %{
11868   match(Set cr (CmpL op1 (LoadL op2)));
11869 
11870   format %{ "cmpq    $op1, $op2" %}
11871   opcode(0x3B); /* Opcode 3B /r */
11872   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11873   ins_pipe(ialu_cr_reg_mem);
11874 %}
11875 
11876 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
11877 %{
11878   match(Set cr (CmpL src zero));
11879 
11880   format %{ "testq   $src, $src" %}
11881   opcode(0x85);
11882   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11883   ins_pipe(ialu_cr_reg_imm);
11884 %}
11885 
11886 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
11887 %{
11888   match(Set cr (CmpL (AndL src con) zero));
11889 
11890   format %{ "testq   $src, $con\t# long" %}
11891   opcode(0xF7, 0x00);
11892   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
11893   ins_pipe(ialu_cr_reg_imm);
11894 %}
11895 
11896 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
11897 %{
11898   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
11899 
11900   format %{ "testq   $src, $mem" %}
11901   opcode(0x85);
11902   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11903   ins_pipe(ialu_cr_reg_mem);
11904 %}
11905 
11906 instruct testL_reg_mem2(rFlagsReg cr, rRegP src, memory mem, immL0 zero)
11907 %{
11908   match(Set cr (CmpL (AndL (CastP2X src) (LoadL mem)) zero));
11909 
11910   format %{ "testq   $src, $mem" %}
11911   opcode(0x85);
11912   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11913   ins_pipe(ialu_cr_reg_mem);
11914 %}
11915 
11916 // Manifest a CmpL result in an integer register.  Very painful.
11917 // This is the test to avoid.
11918 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
11919 %{
11920   match(Set dst (CmpL3 src1 src2));
11921   effect(KILL flags);
11922 
11923   ins_cost(275); // XXX
11924   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
11925             "movl    $dst, -1\n\t"
11926             "jl,s    done\n\t"
11927             "setne   $dst\n\t"
11928             "movzbl  $dst, $dst\n\t"
11929     "done:" %}
11930   ins_encode(cmpl3_flag(src1, src2, dst));
11931   ins_pipe(pipe_slow);
11932 %}
11933 
11934 // Unsigned long compare Instructions; really, same as signed long except they
11935 // produce an rFlagsRegU instead of rFlagsReg.
11936 instruct compUL_rReg(rFlagsRegU cr, rRegL op1, rRegL op2)
11937 %{
11938   match(Set cr (CmpUL op1 op2));
11939 
11940   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11941   opcode(0x3B);  /* Opcode 3B /r */
11942   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11943   ins_pipe(ialu_cr_reg_reg);
11944 %}
11945 
11946 instruct compUL_rReg_imm(rFlagsRegU cr, rRegL op1, immL32 op2)
11947 %{
11948   match(Set cr (CmpUL op1 op2));
11949 
11950   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11951   opcode(0x81, 0x07); /* Opcode 81 /7 */
11952   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
11953   ins_pipe(ialu_cr_reg_imm);
11954 %}
11955 
11956 instruct compUL_rReg_mem(rFlagsRegU cr, rRegL op1, memory op2)
11957 %{
11958   match(Set cr (CmpUL op1 (LoadL op2)));
11959 
11960   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11961   opcode(0x3B); /* Opcode 3B /r */
11962   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11963   ins_pipe(ialu_cr_reg_mem);
11964 %}
11965 
11966 instruct testUL_reg(rFlagsRegU cr, rRegL src, immL0 zero)
11967 %{
11968   match(Set cr (CmpUL src zero));
11969 
11970   format %{ "testq   $src, $src\t# unsigned" %}
11971   opcode(0x85);
11972   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11973   ins_pipe(ialu_cr_reg_imm);
11974 %}
11975 
11976 instruct compB_mem_imm(rFlagsReg cr, memory mem, immI8 imm)
11977 %{
11978   match(Set cr (CmpI (LoadB mem) imm));
11979 
11980   ins_cost(125);
11981   format %{ "cmpb    $mem, $imm" %}
11982   ins_encode %{ __ cmpb($mem$$Address, $imm$$constant); %}
11983   ins_pipe(ialu_cr_reg_mem);
11984 %}
11985 
11986 instruct testUB_mem_imm(rFlagsReg cr, memory mem, immU8 imm, immI0 zero)
11987 %{
11988   match(Set cr (CmpI (AndI (LoadUB mem) imm) zero));
11989 
11990   ins_cost(125);
11991   format %{ "testb   $mem, $imm\t# ubyte" %}
11992   ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
11993   ins_pipe(ialu_cr_reg_mem);
11994 %}
11995 
11996 instruct testB_mem_imm(rFlagsReg cr, memory mem, immI8 imm, immI0 zero)
11997 %{
11998   match(Set cr (CmpI (AndI (LoadB mem) imm) zero));
11999 
12000   ins_cost(125);
12001   format %{ "testb   $mem, $imm\t# byte" %}
12002   ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
12003   ins_pipe(ialu_cr_reg_mem);
12004 %}
12005 
12006 //----------Max and Min--------------------------------------------------------
12007 // Min Instructions
12008 
12009 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
12010 %{
12011   effect(USE_DEF dst, USE src, USE cr);
12012 
12013   format %{ "cmovlgt $dst, $src\t# min" %}
12014   opcode(0x0F, 0x4F);
12015   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
12016   ins_pipe(pipe_cmov_reg);
12017 %}
12018 
12019 
12020 instruct minI_rReg(rRegI dst, rRegI src)
12021 %{
12022   match(Set dst (MinI dst src));
12023 
12024   ins_cost(200);
12025   expand %{
12026     rFlagsReg cr;
12027     compI_rReg(cr, dst, src);
12028     cmovI_reg_g(dst, src, cr);
12029   %}
12030 %}
12031 
12032 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
12033 %{
12034   effect(USE_DEF dst, USE src, USE cr);
12035 
12036   format %{ "cmovllt $dst, $src\t# max" %}
12037   opcode(0x0F, 0x4C);
12038   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
12039   ins_pipe(pipe_cmov_reg);
12040 %}
12041 
12042 
12043 instruct maxI_rReg(rRegI dst, rRegI src)
12044 %{
12045   match(Set dst (MaxI dst src));
12046 
12047   ins_cost(200);
12048   expand %{
12049     rFlagsReg cr;
12050     compI_rReg(cr, dst, src);
12051     cmovI_reg_l(dst, src, cr);
12052   %}
12053 %}
12054 
12055 // ============================================================================
12056 // Branch Instructions
12057 
12058 // Jump Direct - Label defines a relative address from JMP+1
12059 instruct jmpDir(label labl)
12060 %{
12061   match(Goto);
12062   effect(USE labl);
12063 
12064   ins_cost(300);
12065   format %{ "jmp     $labl" %}
12066   size(5);
12067   ins_encode %{
12068     Label* L = $labl$$label;
12069     __ jmp(*L, false); // Always long jump
12070   %}
12071   ins_pipe(pipe_jmp);
12072 %}
12073 
12074 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12075 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
12076 %{
12077   match(If cop cr);
12078   effect(USE labl);
12079 
12080   ins_cost(300);
12081   format %{ "j$cop     $labl" %}
12082   size(6);
12083   ins_encode %{
12084     Label* L = $labl$$label;
12085     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12086   %}
12087   ins_pipe(pipe_jcc);
12088 %}
12089 
12090 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12091 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
12092 %{
12093   predicate(!n->has_vector_mask_set());
12094   match(CountedLoopEnd cop cr);
12095   effect(USE labl);
12096 
12097   ins_cost(300);
12098   format %{ "j$cop     $labl\t# loop end" %}
12099   size(6);
12100   ins_encode %{
12101     Label* L = $labl$$label;
12102     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12103   %}
12104   ins_pipe(pipe_jcc);
12105 %}
12106 
12107 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12108 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12109   predicate(!n->has_vector_mask_set());
12110   match(CountedLoopEnd cop cmp);
12111   effect(USE labl);
12112 
12113   ins_cost(300);
12114   format %{ "j$cop,u   $labl\t# loop end" %}
12115   size(6);
12116   ins_encode %{
12117     Label* L = $labl$$label;
12118     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12119   %}
12120   ins_pipe(pipe_jcc);
12121 %}
12122 
12123 instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12124   predicate(!n->has_vector_mask_set());
12125   match(CountedLoopEnd cop cmp);
12126   effect(USE labl);
12127 
12128   ins_cost(200);
12129   format %{ "j$cop,u   $labl\t# loop end" %}
12130   size(6);
12131   ins_encode %{
12132     Label* L = $labl$$label;
12133     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12134   %}
12135   ins_pipe(pipe_jcc);
12136 %}
12137 
12138 // mask version
12139 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12140 instruct jmpLoopEnd_and_restoreMask(cmpOp cop, rFlagsReg cr, label labl)
12141 %{
12142   predicate(n->has_vector_mask_set());
12143   match(CountedLoopEnd cop cr);
12144   effect(USE labl);
12145 
12146   ins_cost(400);
12147   format %{ "j$cop     $labl\t# loop end\n\t"
12148             "restorevectmask \t# vector mask restore for loops" %}
12149   size(10);
12150   ins_encode %{
12151     Label* L = $labl$$label;
12152     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12153     __ restorevectmask();
12154   %}
12155   ins_pipe(pipe_jcc);
12156 %}
12157 
12158 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12159 instruct jmpLoopEndU_and_restoreMask(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12160   predicate(n->has_vector_mask_set());
12161   match(CountedLoopEnd cop cmp);
12162   effect(USE labl);
12163 
12164   ins_cost(400);
12165   format %{ "j$cop,u   $labl\t# loop end\n\t"
12166             "restorevectmask \t# vector mask restore for loops" %}
12167   size(10);
12168   ins_encode %{
12169     Label* L = $labl$$label;
12170     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12171     __ restorevectmask();
12172   %}
12173   ins_pipe(pipe_jcc);
12174 %}
12175 
12176 instruct jmpLoopEndUCF_and_restoreMask(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12177   predicate(n->has_vector_mask_set());
12178   match(CountedLoopEnd cop cmp);
12179   effect(USE labl);
12180 
12181   ins_cost(300);
12182   format %{ "j$cop,u   $labl\t# loop end\n\t"
12183             "restorevectmask \t# vector mask restore for loops" %}
12184   size(10);
12185   ins_encode %{
12186     Label* L = $labl$$label;
12187     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12188     __ restorevectmask();
12189   %}
12190   ins_pipe(pipe_jcc);
12191 %}
12192 
12193 // Jump Direct Conditional - using unsigned comparison
12194 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12195   match(If cop cmp);
12196   effect(USE labl);
12197 
12198   ins_cost(300);
12199   format %{ "j$cop,u   $labl" %}
12200   size(6);
12201   ins_encode %{
12202     Label* L = $labl$$label;
12203     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12204   %}
12205   ins_pipe(pipe_jcc);
12206 %}
12207 
12208 instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12209   match(If cop cmp);
12210   effect(USE labl);
12211 
12212   ins_cost(200);
12213   format %{ "j$cop,u   $labl" %}
12214   size(6);
12215   ins_encode %{
12216     Label* L = $labl$$label;
12217     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12218   %}
12219   ins_pipe(pipe_jcc);
12220 %}
12221 
12222 instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12223   match(If cop cmp);
12224   effect(USE labl);
12225 
12226   ins_cost(200);
12227   format %{ $$template
12228     if ($cop$$cmpcode == Assembler::notEqual) {
12229       $$emit$$"jp,u    $labl\n\t"
12230       $$emit$$"j$cop,u   $labl"
12231     } else {
12232       $$emit$$"jp,u    done\n\t"
12233       $$emit$$"j$cop,u   $labl\n\t"
12234       $$emit$$"done:"
12235     }
12236   %}
12237   ins_encode %{
12238     Label* l = $labl$$label;
12239     if ($cop$$cmpcode == Assembler::notEqual) {
12240       __ jcc(Assembler::parity, *l, false);
12241       __ jcc(Assembler::notEqual, *l, false);
12242     } else if ($cop$$cmpcode == Assembler::equal) {
12243       Label done;
12244       __ jccb(Assembler::parity, done);
12245       __ jcc(Assembler::equal, *l, false);
12246       __ bind(done);
12247     } else {
12248        ShouldNotReachHere();
12249     }
12250   %}
12251   ins_pipe(pipe_jcc);
12252 %}
12253 
12254 // ============================================================================
12255 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
12256 // superklass array for an instance of the superklass.  Set a hidden
12257 // internal cache on a hit (cache is checked with exposed code in
12258 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
12259 // encoding ALSO sets flags.
12260 
12261 instruct partialSubtypeCheck(rdi_RegP result,
12262                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12263                              rFlagsReg cr)
12264 %{
12265   match(Set result (PartialSubtypeCheck sub super));
12266   effect(KILL rcx, KILL cr);
12267 
12268   ins_cost(1100);  // slightly larger than the next version
12269   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12270             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12271             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12272             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
12273             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
12274             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12275             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
12276     "miss:\t" %}
12277 
12278   opcode(0x1); // Force a XOR of RDI
12279   ins_encode(enc_PartialSubtypeCheck());
12280   ins_pipe(pipe_slow);
12281 %}
12282 
12283 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
12284                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12285                                      immP0 zero,
12286                                      rdi_RegP result)
12287 %{
12288   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12289   effect(KILL rcx, KILL result);
12290 
12291   ins_cost(1000);
12292   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12293             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12294             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12295             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
12296             "jne,s   miss\t\t# Missed: flags nz\n\t"
12297             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12298     "miss:\t" %}
12299 
12300   opcode(0x0); // No need to XOR RDI
12301   ins_encode(enc_PartialSubtypeCheck());
12302   ins_pipe(pipe_slow);
12303 %}
12304 
12305 // ============================================================================
12306 // Branch Instructions -- short offset versions
12307 //
12308 // These instructions are used to replace jumps of a long offset (the default
12309 // match) with jumps of a shorter offset.  These instructions are all tagged
12310 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12311 // match rules in general matching.  Instead, the ADLC generates a conversion
12312 // method in the MachNode which can be used to do in-place replacement of the
12313 // long variant with the shorter variant.  The compiler will determine if a
12314 // branch can be taken by the is_short_branch_offset() predicate in the machine
12315 // specific code section of the file.
12316 
12317 // Jump Direct - Label defines a relative address from JMP+1
12318 instruct jmpDir_short(label labl) %{
12319   match(Goto);
12320   effect(USE labl);
12321 
12322   ins_cost(300);
12323   format %{ "jmp,s   $labl" %}
12324   size(2);
12325   ins_encode %{
12326     Label* L = $labl$$label;
12327     __ jmpb(*L);
12328   %}
12329   ins_pipe(pipe_jmp);
12330   ins_short_branch(1);
12331 %}
12332 
12333 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12334 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
12335   match(If cop cr);
12336   effect(USE labl);
12337 
12338   ins_cost(300);
12339   format %{ "j$cop,s   $labl" %}
12340   size(2);
12341   ins_encode %{
12342     Label* L = $labl$$label;
12343     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12344   %}
12345   ins_pipe(pipe_jcc);
12346   ins_short_branch(1);
12347 %}
12348 
12349 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12350 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
12351   match(CountedLoopEnd cop cr);
12352   effect(USE labl);
12353 
12354   ins_cost(300);
12355   format %{ "j$cop,s   $labl\t# loop end" %}
12356   size(2);
12357   ins_encode %{
12358     Label* L = $labl$$label;
12359     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12360   %}
12361   ins_pipe(pipe_jcc);
12362   ins_short_branch(1);
12363 %}
12364 
12365 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12366 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12367   match(CountedLoopEnd cop cmp);
12368   effect(USE labl);
12369 
12370   ins_cost(300);
12371   format %{ "j$cop,us  $labl\t# loop end" %}
12372   size(2);
12373   ins_encode %{
12374     Label* L = $labl$$label;
12375     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12376   %}
12377   ins_pipe(pipe_jcc);
12378   ins_short_branch(1);
12379 %}
12380 
12381 instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12382   match(CountedLoopEnd cop cmp);
12383   effect(USE labl);
12384 
12385   ins_cost(300);
12386   format %{ "j$cop,us  $labl\t# loop end" %}
12387   size(2);
12388   ins_encode %{
12389     Label* L = $labl$$label;
12390     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12391   %}
12392   ins_pipe(pipe_jcc);
12393   ins_short_branch(1);
12394 %}
12395 
12396 // Jump Direct Conditional - using unsigned comparison
12397 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12398   match(If cop cmp);
12399   effect(USE labl);
12400 
12401   ins_cost(300);
12402   format %{ "j$cop,us  $labl" %}
12403   size(2);
12404   ins_encode %{
12405     Label* L = $labl$$label;
12406     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12407   %}
12408   ins_pipe(pipe_jcc);
12409   ins_short_branch(1);
12410 %}
12411 
12412 instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12413   match(If cop cmp);
12414   effect(USE labl);
12415 
12416   ins_cost(300);
12417   format %{ "j$cop,us  $labl" %}
12418   size(2);
12419   ins_encode %{
12420     Label* L = $labl$$label;
12421     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12422   %}
12423   ins_pipe(pipe_jcc);
12424   ins_short_branch(1);
12425 %}
12426 
12427 instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12428   match(If cop cmp);
12429   effect(USE labl);
12430 
12431   ins_cost(300);
12432   format %{ $$template
12433     if ($cop$$cmpcode == Assembler::notEqual) {
12434       $$emit$$"jp,u,s  $labl\n\t"
12435       $$emit$$"j$cop,u,s  $labl"
12436     } else {
12437       $$emit$$"jp,u,s  done\n\t"
12438       $$emit$$"j$cop,u,s  $labl\n\t"
12439       $$emit$$"done:"
12440     }
12441   %}
12442   size(4);
12443   ins_encode %{
12444     Label* l = $labl$$label;
12445     if ($cop$$cmpcode == Assembler::notEqual) {
12446       __ jccb(Assembler::parity, *l);
12447       __ jccb(Assembler::notEqual, *l);
12448     } else if ($cop$$cmpcode == Assembler::equal) {
12449       Label done;
12450       __ jccb(Assembler::parity, done);
12451       __ jccb(Assembler::equal, *l);
12452       __ bind(done);
12453     } else {
12454        ShouldNotReachHere();
12455     }
12456   %}
12457   ins_pipe(pipe_jcc);
12458   ins_short_branch(1);
12459 %}
12460 
12461 // ============================================================================
12462 // inlined locking and unlocking
12463 
12464 instruct cmpFastLockRTM(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rdx_RegI scr, rRegI cx1, rRegI cx2) %{
12465   predicate(Compile::current()->use_rtm());
12466   match(Set cr (FastLock object box));
12467   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
12468   ins_cost(300);
12469   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
12470   ins_encode %{
12471     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12472                  $scr$$Register, $cx1$$Register, $cx2$$Register,
12473                  _counters, _rtm_counters, _stack_rtm_counters,
12474                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
12475                  true, ra_->C->profile_rtm());
12476   %}
12477   ins_pipe(pipe_slow);
12478 %}
12479 
12480 instruct cmpFastLock(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rRegP scr) %{
12481   predicate(!Compile::current()->use_rtm());
12482   match(Set cr (FastLock object box));
12483   effect(TEMP tmp, TEMP scr, USE_KILL box);
12484   ins_cost(300);
12485   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr" %}
12486   ins_encode %{
12487     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12488                  $scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
12489   %}
12490   ins_pipe(pipe_slow);
12491 %}
12492 
12493 instruct cmpFastUnlock(rFlagsReg cr, rRegP object, rax_RegP box, rRegP tmp) %{
12494   match(Set cr (FastUnlock object box));
12495   effect(TEMP tmp, USE_KILL box);
12496   ins_cost(300);
12497   format %{ "fastunlock $object,$box\t! kills $box,$tmp" %}
12498   ins_encode %{
12499     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
12500   %}
12501   ins_pipe(pipe_slow);
12502 %}
12503 
12504 
12505 // ============================================================================
12506 // Safepoint Instructions
12507 instruct safePoint_poll_tls(rFlagsReg cr, rRegP poll)
12508 %{
12509   match(SafePoint poll);
12510   effect(KILL cr, USE poll);
12511 
12512   format %{ "testl   rax, [$poll]\t"
12513             "# Safepoint: poll for GC" %}
12514   ins_cost(125);
12515   size(4); /* setting an explicit size will cause debug builds to assert if size is incorrect */
12516   ins_encode %{
12517     __ relocate(relocInfo::poll_type);
12518     address pre_pc = __ pc();
12519     __ testl(rax, Address($poll$$Register, 0));
12520     assert(nativeInstruction_at(pre_pc)->is_safepoint_poll(), "must emit test %%eax [reg]");
12521   %}
12522   ins_pipe(ialu_reg_mem);
12523 %}
12524 
12525 // ============================================================================
12526 // Procedure Call/Return Instructions
12527 // Call Java Static Instruction
12528 // Note: If this code changes, the corresponding ret_addr_offset() and
12529 //       compute_padding() functions will have to be adjusted.
12530 instruct CallStaticJavaDirect(method meth) %{
12531   match(CallStaticJava);
12532   effect(USE meth);
12533 
12534   ins_cost(300);
12535   format %{ "call,static " %}
12536   opcode(0xE8); /* E8 cd */
12537   ins_encode(clear_avx, Java_Static_Call(meth), call_epilog);
12538   ins_pipe(pipe_slow);
12539   ins_alignment(4);
12540 %}
12541 
12542 // Call Java Dynamic Instruction
12543 // Note: If this code changes, the corresponding ret_addr_offset() and
12544 //       compute_padding() functions will have to be adjusted.
12545 instruct CallDynamicJavaDirect(method meth)
12546 %{
12547   match(CallDynamicJava);
12548   effect(USE meth);
12549 
12550   ins_cost(300);
12551   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
12552             "call,dynamic " %}
12553   ins_encode(clear_avx, Java_Dynamic_Call(meth), call_epilog);
12554   ins_pipe(pipe_slow);
12555   ins_alignment(4);
12556 %}
12557 
12558 // Call Runtime Instruction
12559 instruct CallRuntimeDirect(method meth)
12560 %{
12561   match(CallRuntime);
12562   effect(USE meth);
12563 
12564   ins_cost(300);
12565   format %{ "call,runtime " %}
12566   ins_encode(clear_avx, Java_To_Runtime(meth));
12567   ins_pipe(pipe_slow);
12568 %}
12569 
12570 // Call runtime without safepoint
12571 instruct CallLeafDirect(method meth)
12572 %{
12573   match(CallLeaf);
12574   effect(USE meth);
12575 
12576   ins_cost(300);
12577   format %{ "call_leaf,runtime " %}
12578   ins_encode(clear_avx, Java_To_Runtime(meth));
12579   ins_pipe(pipe_slow);
12580 %}
12581 
12582 // Call runtime without safepoint
12583 instruct CallLeafNoFPDirect(method meth)
12584 %{
12585   match(CallLeafNoFP);
12586   effect(USE meth);
12587 
12588   ins_cost(300);
12589   format %{ "call_leaf_nofp,runtime " %}
12590   ins_encode(clear_avx, Java_To_Runtime(meth));
12591   ins_pipe(pipe_slow);
12592 %}
12593 
12594 // Return Instruction
12595 // Remove the return address & jump to it.
12596 // Notice: We always emit a nop after a ret to make sure there is room
12597 // for safepoint patching
12598 instruct Ret()
12599 %{
12600   match(Return);
12601 
12602   format %{ "ret" %}
12603   opcode(0xC3);
12604   ins_encode(OpcP);
12605   ins_pipe(pipe_jmp);
12606 %}
12607 
12608 // Tail Call; Jump from runtime stub to Java code.
12609 // Also known as an 'interprocedural jump'.
12610 // Target of jump will eventually return to caller.
12611 // TailJump below removes the return address.
12612 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
12613 %{
12614   match(TailCall jump_target method_oop);
12615 
12616   ins_cost(300);
12617   format %{ "jmp     $jump_target\t# rbx holds method oop" %}
12618   opcode(0xFF, 0x4); /* Opcode FF /4 */
12619   ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
12620   ins_pipe(pipe_jmp);
12621 %}
12622 
12623 // Tail Jump; remove the return address; jump to target.
12624 // TailCall above leaves the return address around.
12625 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
12626 %{
12627   match(TailJump jump_target ex_oop);
12628 
12629   ins_cost(300);
12630   format %{ "popq    rdx\t# pop return address\n\t"
12631             "jmp     $jump_target" %}
12632   opcode(0xFF, 0x4); /* Opcode FF /4 */
12633   ins_encode(Opcode(0x5a), // popq rdx
12634              REX_reg(jump_target), OpcP, reg_opc(jump_target));
12635   ins_pipe(pipe_jmp);
12636 %}
12637 
12638 // Create exception oop: created by stack-crawling runtime code.
12639 // Created exception is now available to this handler, and is setup
12640 // just prior to jumping to this handler.  No code emitted.
12641 instruct CreateException(rax_RegP ex_oop)
12642 %{
12643   match(Set ex_oop (CreateEx));
12644 
12645   size(0);
12646   // use the following format syntax
12647   format %{ "# exception oop is in rax; no code emitted" %}
12648   ins_encode();
12649   ins_pipe(empty);
12650 %}
12651 
12652 // Rethrow exception:
12653 // The exception oop will come in the first argument position.
12654 // Then JUMP (not call) to the rethrow stub code.
12655 instruct RethrowException()
12656 %{
12657   match(Rethrow);
12658 
12659   // use the following format syntax
12660   format %{ "jmp     rethrow_stub" %}
12661   ins_encode(enc_rethrow);
12662   ins_pipe(pipe_jmp);
12663 %}
12664 
12665 // ============================================================================
12666 // This name is KNOWN by the ADLC and cannot be changed.
12667 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
12668 // for this guy.
12669 instruct tlsLoadP(r15_RegP dst) %{
12670   match(Set dst (ThreadLocal));
12671   effect(DEF dst);
12672 
12673   size(0);
12674   format %{ "# TLS is in R15" %}
12675   ins_encode( /*empty encoding*/ );
12676   ins_pipe(ialu_reg_reg);
12677 %}
12678 
12679 
12680 //----------PEEPHOLE RULES-----------------------------------------------------
12681 // These must follow all instruction definitions as they use the names
12682 // defined in the instructions definitions.
12683 //
12684 // peepmatch ( root_instr_name [preceding_instruction]* );
12685 //
12686 // peepconstraint %{
12687 // (instruction_number.operand_name relational_op instruction_number.operand_name
12688 //  [, ...] );
12689 // // instruction numbers are zero-based using left to right order in peepmatch
12690 //
12691 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
12692 // // provide an instruction_number.operand_name for each operand that appears
12693 // // in the replacement instruction's match rule
12694 //
12695 // ---------VM FLAGS---------------------------------------------------------
12696 //
12697 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12698 //
12699 // Each peephole rule is given an identifying number starting with zero and
12700 // increasing by one in the order seen by the parser.  An individual peephole
12701 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12702 // on the command-line.
12703 //
12704 // ---------CURRENT LIMITATIONS----------------------------------------------
12705 //
12706 // Only match adjacent instructions in same basic block
12707 // Only equality constraints
12708 // Only constraints between operands, not (0.dest_reg == RAX_enc)
12709 // Only one replacement instruction
12710 //
12711 // ---------EXAMPLE----------------------------------------------------------
12712 //
12713 // // pertinent parts of existing instructions in architecture description
12714 // instruct movI(rRegI dst, rRegI src)
12715 // %{
12716 //   match(Set dst (CopyI src));
12717 // %}
12718 //
12719 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
12720 // %{
12721 //   match(Set dst (AddI dst src));
12722 //   effect(KILL cr);
12723 // %}
12724 //
12725 // // Change (inc mov) to lea
12726 // peephole %{
12727 //   // increment preceeded by register-register move
12728 //   peepmatch ( incI_rReg movI );
12729 //   // require that the destination register of the increment
12730 //   // match the destination register of the move
12731 //   peepconstraint ( 0.dst == 1.dst );
12732 //   // construct a replacement instruction that sets
12733 //   // the destination to ( move's source register + one )
12734 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
12735 // %}
12736 //
12737 
12738 // Implementation no longer uses movX instructions since
12739 // machine-independent system no longer uses CopyX nodes.
12740 //
12741 // peephole
12742 // %{
12743 //   peepmatch (incI_rReg movI);
12744 //   peepconstraint (0.dst == 1.dst);
12745 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12746 // %}
12747 
12748 // peephole
12749 // %{
12750 //   peepmatch (decI_rReg movI);
12751 //   peepconstraint (0.dst == 1.dst);
12752 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12753 // %}
12754 
12755 // peephole
12756 // %{
12757 //   peepmatch (addI_rReg_imm movI);
12758 //   peepconstraint (0.dst == 1.dst);
12759 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12760 // %}
12761 
12762 // peephole
12763 // %{
12764 //   peepmatch (incL_rReg movL);
12765 //   peepconstraint (0.dst == 1.dst);
12766 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12767 // %}
12768 
12769 // peephole
12770 // %{
12771 //   peepmatch (decL_rReg movL);
12772 //   peepconstraint (0.dst == 1.dst);
12773 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12774 // %}
12775 
12776 // peephole
12777 // %{
12778 //   peepmatch (addL_rReg_imm movL);
12779 //   peepconstraint (0.dst == 1.dst);
12780 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12781 // %}
12782 
12783 // peephole
12784 // %{
12785 //   peepmatch (addP_rReg_imm movP);
12786 //   peepconstraint (0.dst == 1.dst);
12787 //   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
12788 // %}
12789 
12790 // // Change load of spilled value to only a spill
12791 // instruct storeI(memory mem, rRegI src)
12792 // %{
12793 //   match(Set mem (StoreI mem src));
12794 // %}
12795 //
12796 // instruct loadI(rRegI dst, memory mem)
12797 // %{
12798 //   match(Set dst (LoadI mem));
12799 // %}
12800 //
12801 
12802 peephole
12803 %{
12804   peepmatch (loadI storeI);
12805   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
12806   peepreplace (storeI(1.mem 1.mem 1.src));
12807 %}
12808 
12809 peephole
12810 %{
12811   peepmatch (loadL storeL);
12812   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
12813   peepreplace (storeL(1.mem 1.mem 1.src));
12814 %}
12815 
12816 //----------SMARTSPILL RULES---------------------------------------------------
12817 // These must follow all instruction definitions as they use the names
12818 // defined in the instructions definitions.