1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_VERSION_X86_HPP
  26 #define CPU_X86_VM_VERSION_X86_HPP
  27 
  28 #include "memory/universe.hpp"
  29 #include "runtime/abstract_vm_version.hpp"
  30 #include "runtime/globals_extension.hpp"
  31 
  32 class VM_Version : public Abstract_VM_Version {
  33   friend class VMStructs;
  34   friend class JVMCIVMStructs;
  35 
  36  public:
  37   // cpuid result register layouts.  These are all unions of a uint32_t
  38   // (in case anyone wants access to the register as a whole) and a bitfield.
  39 
  40   union StdCpuid1Eax {
  41     uint32_t value;
  42     struct {
  43       uint32_t stepping   : 4,
  44                model      : 4,
  45                family     : 4,
  46                proc_type  : 2,
  47                           : 2,
  48                ext_model  : 4,
  49                ext_family : 8,
  50                           : 4;
  51     } bits;
  52   };
  53 
  54   union StdCpuid1Ebx { // example, unused
  55     uint32_t value;
  56     struct {
  57       uint32_t brand_id         : 8,
  58                clflush_size     : 8,
  59                threads_per_cpu  : 8,
  60                apic_id          : 8;
  61     } bits;
  62   };
  63 
  64   union StdCpuid1Ecx {
  65     uint32_t value;
  66     struct {
  67       uint32_t sse3     : 1,
  68                clmul    : 1,
  69                         : 1,
  70                monitor  : 1,
  71                         : 1,
  72                vmx      : 1,
  73                         : 1,
  74                est      : 1,
  75                         : 1,
  76                ssse3    : 1,
  77                cid      : 1,
  78                         : 1,
  79                fma      : 1,
  80                cmpxchg16: 1,
  81                         : 4,
  82                dca      : 1,
  83                sse4_1   : 1,
  84                sse4_2   : 1,
  85                         : 2,
  86                popcnt   : 1,
  87                         : 1,
  88                aes      : 1,
  89                         : 1,
  90                osxsave  : 1,
  91                avx      : 1,
  92                         : 3;
  93     } bits;
  94   };
  95 
  96   union StdCpuid1Edx {
  97     uint32_t value;
  98     struct {
  99       uint32_t          : 4,
 100                tsc      : 1,
 101                         : 3,
 102                cmpxchg8 : 1,
 103                         : 6,
 104                cmov     : 1,
 105                         : 3,
 106                clflush  : 1,
 107                         : 3,
 108                mmx      : 1,
 109                fxsr     : 1,
 110                sse      : 1,
 111                sse2     : 1,
 112                         : 1,
 113                ht       : 1,
 114                         : 3;
 115     } bits;
 116   };
 117 
 118   union DcpCpuid4Eax {
 119     uint32_t value;
 120     struct {
 121       uint32_t cache_type    : 5,
 122                              : 21,
 123                cores_per_cpu : 6;
 124     } bits;
 125   };
 126 
 127   union DcpCpuid4Ebx {
 128     uint32_t value;
 129     struct {
 130       uint32_t L1_line_size  : 12,
 131                partitions    : 10,
 132                associativity : 10;
 133     } bits;
 134   };
 135 
 136   union TplCpuidBEbx {
 137     uint32_t value;
 138     struct {
 139       uint32_t logical_cpus : 16,
 140                             : 16;
 141     } bits;
 142   };
 143 
 144   union ExtCpuid1Ecx {
 145     uint32_t value;
 146     struct {
 147       uint32_t LahfSahf     : 1,
 148                CmpLegacy    : 1,
 149                             : 3,
 150                lzcnt_intel  : 1,
 151                lzcnt        : 1,
 152                sse4a        : 1,
 153                misalignsse  : 1,
 154                prefetchw    : 1,
 155                             : 22;
 156     } bits;
 157   };
 158 
 159   union ExtCpuid1Edx {
 160     uint32_t value;
 161     struct {
 162       uint32_t           : 22,
 163                mmx_amd   : 1,
 164                mmx       : 1,
 165                fxsr      : 1,
 166                          : 4,
 167                long_mode : 1,
 168                tdnow2    : 1,
 169                tdnow     : 1;
 170     } bits;
 171   };
 172 
 173   union ExtCpuid5Ex {
 174     uint32_t value;
 175     struct {
 176       uint32_t L1_line_size : 8,
 177                L1_tag_lines : 8,
 178                L1_assoc     : 8,
 179                L1_size      : 8;
 180     } bits;
 181   };
 182 
 183   union ExtCpuid7Edx {
 184     uint32_t value;
 185     struct {
 186       uint32_t               : 8,
 187               tsc_invariance : 1,
 188                              : 23;
 189     } bits;
 190   };
 191 
 192   union ExtCpuid8Ecx {
 193     uint32_t value;
 194     struct {
 195       uint32_t cores_per_cpu : 8,
 196                              : 24;
 197     } bits;
 198   };
 199 
 200   union SefCpuid7Eax {
 201     uint32_t value;
 202   };
 203 
 204   union SefCpuid7Ebx {
 205     uint32_t value;
 206     struct {
 207       uint32_t fsgsbase : 1,
 208                         : 2,
 209                    bmi1 : 1,
 210                         : 1,
 211                    avx2 : 1,
 212                         : 2,
 213                    bmi2 : 1,
 214                    erms : 1,
 215                         : 1,
 216                     rtm : 1,
 217                         : 4,
 218                 avx512f : 1,
 219                avx512dq : 1,
 220                         : 1,
 221                     adx : 1,
 222                         : 3,
 223              clflushopt : 1,
 224                    clwb : 1,
 225                         : 1,
 226                avx512pf : 1,
 227                avx512er : 1,
 228                avx512cd : 1,
 229                     sha : 1,
 230                avx512bw : 1,
 231                avx512vl : 1;
 232     } bits;
 233   };
 234 
 235   union SefCpuid7Ecx {
 236     uint32_t value;
 237     struct {
 238       uint32_t prefetchwt1 : 1,
 239                avx512_vbmi : 1,
 240                       umip : 1,
 241                        pku : 1,
 242                      ospke : 1,
 243                            : 1,
 244               avx512_vbmi2 : 1,
 245                            : 1,
 246                       gfni : 1,
 247                       vaes : 1,
 248          avx512_vpclmulqdq : 1,
 249                avx512_vnni : 1,
 250              avx512_bitalg : 1,
 251                            : 1,
 252           avx512_vpopcntdq : 1,
 253                            : 17;
 254     } bits;
 255   };
 256 
 257   union SefCpuid7Edx {
 258     uint32_t value;
 259     struct {
 260       uint32_t             : 2,
 261              avx512_4vnniw : 1,
 262              avx512_4fmaps : 1,
 263                            : 28;
 264     } bits;
 265   };
 266 
 267   union ExtCpuid1EEbx {
 268     uint32_t value;
 269     struct {
 270       uint32_t                  : 8,
 271                threads_per_core : 8,
 272                                 : 16;
 273     } bits;
 274   };
 275 
 276   union XemXcr0Eax {
 277     uint32_t value;
 278     struct {
 279       uint32_t x87     : 1,
 280                sse     : 1,
 281                ymm     : 1,
 282                bndregs : 1,
 283                bndcsr  : 1,
 284                opmask  : 1,
 285                zmm512  : 1,
 286                zmm32   : 1,
 287                        : 24;
 288     } bits;
 289   };
 290 
 291 protected:
 292   static int _cpu;
 293   static int _model;
 294   static int _stepping;
 295 
 296   static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
 297   static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
 298 
 299   enum Feature_Flag {
 300     CPU_CX8      = (1 << 0), // next bits are from cpuid 1 (EDX)
 301     CPU_CMOV     = (1 << 1),
 302     CPU_FXSR     = (1 << 2),
 303     CPU_HT       = (1 << 3),
 304     CPU_MMX      = (1 << 4),
 305     CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
 306                                    // may not necessarily support other 3dnow instructions
 307     CPU_SSE      = (1 << 6),
 308     CPU_SSE2     = (1 << 7),
 309     CPU_SSE3     = (1 << 8),  // SSE3 comes from cpuid 1 (ECX)
 310     CPU_SSSE3    = (1 << 9),
 311     CPU_SSE4A    = (1 << 10),
 312     CPU_SSE4_1   = (1 << 11),
 313     CPU_SSE4_2   = (1 << 12),
 314     CPU_POPCNT   = (1 << 13),
 315     CPU_LZCNT    = (1 << 14),
 316     CPU_TSC      = (1 << 15),
 317     CPU_TSCINV   = (1 << 16),
 318     CPU_AVX      = (1 << 17),
 319     CPU_AVX2     = (1 << 18),
 320     CPU_AES      = (1 << 19),
 321     CPU_ERMS     = (1 << 20), // enhanced 'rep movsb/stosb' instructions
 322     CPU_CLMUL    = (1 << 21), // carryless multiply for CRC
 323     CPU_BMI1     = (1 << 22),
 324     CPU_BMI2     = (1 << 23),
 325     CPU_RTM      = (1 << 24), // Restricted Transactional Memory instructions
 326     CPU_ADX      = (1 << 25),
 327     CPU_AVX512F  = (1 << 26), // AVX 512bit foundation instructions
 328     CPU_AVX512DQ = (1 << 27),
 329     CPU_AVX512PF = (1 << 28),
 330     CPU_AVX512ER = (1 << 29),
 331     CPU_AVX512CD = (1 << 30)
 332     // Keeping sign bit 31 unassigned.
 333   };
 334 
 335 #define CPU_AVX512BW ((uint64_t)UCONST64(0x100000000)) // enums are limited to 31 bit
 336 #define CPU_AVX512VL ((uint64_t)UCONST64(0x200000000)) // EVEX instructions with smaller vector length
 337 #define CPU_SHA ((uint64_t)UCONST64(0x400000000))      // SHA instructions
 338 #define CPU_FMA ((uint64_t)UCONST64(0x800000000))      // FMA instructions
 339 #define CPU_VZEROUPPER ((uint64_t)UCONST64(0x1000000000))       // Vzeroupper instruction
 340 #define CPU_AVX512_VPOPCNTDQ ((uint64_t)UCONST64(0x2000000000)) // Vector popcount
 341 #define CPU_AVX512_VPCLMULQDQ ((uint64_t)UCONST64(0x4000000000)) //Vector carryless multiplication
 342 #define CPU_VAES ((uint64_t)UCONST64(0x8000000000))    // Vector AES instructions
 343 #define CPU_VNNI ((uint64_t)UCONST64(0x10000000000))   // Vector Neural Network Instructions
 344 #define CPU_VBMI2 ((uint64_t)UCONST64(0x20000000000))   // VBMI2 shift left double instructions
 345 
 346 #define CPU_FLUSH ((uint64_t)UCONST64(0x20000000000))  // flush instruction
 347 #define CPU_FLUSHOPT ((uint64_t)UCONST64(0x40000000000)) // flushopt instruction
 348 #define CPU_CLWB ((uint64_t)UCONST64(0x80000000000))   // clwb instruction
 349 
 350 enum Extended_Family {
 351     // AMD
 352     CPU_FAMILY_AMD_11H       = 0x11,
 353     // ZX
 354     CPU_FAMILY_ZX_CORE_F6    = 6,
 355     CPU_FAMILY_ZX_CORE_F7    = 7,
 356     // Intel
 357     CPU_FAMILY_INTEL_CORE    = 6,
 358     CPU_MODEL_NEHALEM        = 0x1e,
 359     CPU_MODEL_NEHALEM_EP     = 0x1a,
 360     CPU_MODEL_NEHALEM_EX     = 0x2e,
 361     CPU_MODEL_WESTMERE       = 0x25,
 362     CPU_MODEL_WESTMERE_EP    = 0x2c,
 363     CPU_MODEL_WESTMERE_EX    = 0x2f,
 364     CPU_MODEL_SANDYBRIDGE    = 0x2a,
 365     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
 366     CPU_MODEL_IVYBRIDGE_EP   = 0x3a,
 367     CPU_MODEL_HASWELL_E3     = 0x3c,
 368     CPU_MODEL_HASWELL_E7     = 0x3f,
 369     CPU_MODEL_BROADWELL      = 0x3d,
 370     CPU_MODEL_SKYLAKE        = 0x55
 371   };
 372 
 373   // cpuid information block.  All info derived from executing cpuid with
 374   // various function numbers is stored here.  Intel and AMD info is
 375   // merged in this block: accessor methods disentangle it.
 376   //
 377   // The info block is laid out in subblocks of 4 dwords corresponding to
 378   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 379   struct CpuidInfo {
 380     // cpuid function 0
 381     uint32_t std_max_function;
 382     uint32_t std_vendor_name_0;
 383     uint32_t std_vendor_name_1;
 384     uint32_t std_vendor_name_2;
 385 
 386     // cpuid function 1
 387     StdCpuid1Eax std_cpuid1_eax;
 388     StdCpuid1Ebx std_cpuid1_ebx;
 389     StdCpuid1Ecx std_cpuid1_ecx;
 390     StdCpuid1Edx std_cpuid1_edx;
 391 
 392     // cpuid function 4 (deterministic cache parameters)
 393     DcpCpuid4Eax dcp_cpuid4_eax;
 394     DcpCpuid4Ebx dcp_cpuid4_ebx;
 395     uint32_t     dcp_cpuid4_ecx; // unused currently
 396     uint32_t     dcp_cpuid4_edx; // unused currently
 397 
 398     // cpuid function 7 (structured extended features)
 399     SefCpuid7Eax sef_cpuid7_eax;
 400     SefCpuid7Ebx sef_cpuid7_ebx;
 401     SefCpuid7Ecx sef_cpuid7_ecx;
 402     SefCpuid7Edx sef_cpuid7_edx;
 403 
 404     // cpuid function 0xB (processor topology)
 405     // ecx = 0
 406     uint32_t     tpl_cpuidB0_eax;
 407     TplCpuidBEbx tpl_cpuidB0_ebx;
 408     uint32_t     tpl_cpuidB0_ecx; // unused currently
 409     uint32_t     tpl_cpuidB0_edx; // unused currently
 410 
 411     // ecx = 1
 412     uint32_t     tpl_cpuidB1_eax;
 413     TplCpuidBEbx tpl_cpuidB1_ebx;
 414     uint32_t     tpl_cpuidB1_ecx; // unused currently
 415     uint32_t     tpl_cpuidB1_edx; // unused currently
 416 
 417     // ecx = 2
 418     uint32_t     tpl_cpuidB2_eax;
 419     TplCpuidBEbx tpl_cpuidB2_ebx;
 420     uint32_t     tpl_cpuidB2_ecx; // unused currently
 421     uint32_t     tpl_cpuidB2_edx; // unused currently
 422 
 423     // cpuid function 0x80000000 // example, unused
 424     uint32_t ext_max_function;
 425     uint32_t ext_vendor_name_0;
 426     uint32_t ext_vendor_name_1;
 427     uint32_t ext_vendor_name_2;
 428 
 429     // cpuid function 0x80000001
 430     uint32_t     ext_cpuid1_eax; // reserved
 431     uint32_t     ext_cpuid1_ebx; // reserved
 432     ExtCpuid1Ecx ext_cpuid1_ecx;
 433     ExtCpuid1Edx ext_cpuid1_edx;
 434 
 435     // cpuid functions 0x80000002 thru 0x80000004: example, unused
 436     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
 437     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
 438     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
 439 
 440     // cpuid function 0x80000005 // AMD L1, Intel reserved
 441     uint32_t     ext_cpuid5_eax; // unused currently
 442     uint32_t     ext_cpuid5_ebx; // reserved
 443     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
 444     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 445 
 446     // cpuid function 0x80000007
 447     uint32_t     ext_cpuid7_eax; // reserved
 448     uint32_t     ext_cpuid7_ebx; // reserved
 449     uint32_t     ext_cpuid7_ecx; // reserved
 450     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
 451 
 452     // cpuid function 0x80000008
 453     uint32_t     ext_cpuid8_eax; // unused currently
 454     uint32_t     ext_cpuid8_ebx; // reserved
 455     ExtCpuid8Ecx ext_cpuid8_ecx;
 456     uint32_t     ext_cpuid8_edx; // reserved
 457 
 458     // cpuid function 0x8000001E // AMD 17h
 459     uint32_t      ext_cpuid1E_eax;
 460     ExtCpuid1EEbx ext_cpuid1E_ebx; // threads per core (AMD17h)
 461     uint32_t      ext_cpuid1E_ecx;
 462     uint32_t      ext_cpuid1E_edx; // unused currently
 463 
 464     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
 465     XemXcr0Eax   xem_xcr0_eax;
 466     uint32_t     xem_xcr0_edx; // reserved
 467 
 468     // Space to save ymm registers after signal handle
 469     int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
 470 
 471     // Space to save zmm registers after signal handle
 472     int          zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31
 473   };
 474 
 475   // The actual cpuid info block
 476   static CpuidInfo _cpuid_info;
 477 
 478   // Extractors and predicates
 479   static uint32_t extended_cpu_family() {
 480     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 481     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 482     return result;
 483   }
 484 
 485   static uint32_t extended_cpu_model() {
 486     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 487     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 488     return result;
 489   }
 490 
 491   static uint32_t cpu_stepping() {
 492     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 493     return result;
 494   }
 495 
 496   static uint logical_processor_count() {
 497     uint result = threads_per_core();
 498     return result;
 499   }
 500 
 501   static uint64_t feature_flags() {
 502     uint64_t result = 0;
 503     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 504       result |= CPU_CX8;
 505     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 506       result |= CPU_CMOV;
 507     if (_cpuid_info.std_cpuid1_edx.bits.clflush != 0)
 508       result |= CPU_FLUSH;
 509 #ifdef _LP64
 510     // clflush should always be available on x86_64
 511     // if not we are in real trouble because we rely on it
 512     // to flush the code cache.
 513     assert ((result & CPU_FLUSH) != 0, "clflush should be available");
 514 #endif
 515     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd_family() &&
 516         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 517       result |= CPU_FXSR;
 518     // HT flag is set for multi-core processors also.
 519     if (threads_per_core() > 1)
 520       result |= CPU_HT;
 521     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd_family() &&
 522         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 523       result |= CPU_MMX;
 524     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 525       result |= CPU_SSE;
 526     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 527       result |= CPU_SSE2;
 528     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 529       result |= CPU_SSE3;
 530     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 531       result |= CPU_SSSE3;
 532     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 533       result |= CPU_SSE4_1;
 534     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 535       result |= CPU_SSE4_2;
 536     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 537       result |= CPU_POPCNT;
 538     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
 539         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
 540         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
 541         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
 542       result |= CPU_AVX;
 543       result |= CPU_VZEROUPPER;
 544       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
 545         result |= CPU_AVX2;
 546       if (_cpuid_info.sef_cpuid7_ebx.bits.avx512f != 0 &&
 547           _cpuid_info.xem_xcr0_eax.bits.opmask != 0 &&
 548           _cpuid_info.xem_xcr0_eax.bits.zmm512 != 0 &&
 549           _cpuid_info.xem_xcr0_eax.bits.zmm32 != 0) {
 550         result |= CPU_AVX512F;
 551         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512cd != 0)
 552           result |= CPU_AVX512CD;
 553         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512dq != 0)
 554           result |= CPU_AVX512DQ;
 555         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512pf != 0)
 556           result |= CPU_AVX512PF;
 557         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512er != 0)
 558           result |= CPU_AVX512ER;
 559         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512bw != 0)
 560           result |= CPU_AVX512BW;
 561         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512vl != 0)
 562           result |= CPU_AVX512VL;
 563         if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vpopcntdq != 0)
 564           result |= CPU_AVX512_VPOPCNTDQ;
 565         if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vpclmulqdq != 0)
 566           result |= CPU_AVX512_VPCLMULQDQ;
 567         if (_cpuid_info.sef_cpuid7_ecx.bits.vaes != 0)
 568           result |= CPU_VAES;
 569         if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vnni != 0)
 570           result |= CPU_VNNI;
 571         if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vbmi2 != 0)
 572           result |= CPU_VBMI2;
 573       }
 574     }
 575     if (_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
 576       result |= CPU_BMI1;
 577     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
 578       result |= CPU_TSC;
 579     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
 580       result |= CPU_TSCINV;
 581     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
 582       result |= CPU_AES;
 583     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
 584       result |= CPU_ERMS;
 585     if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
 586       result |= CPU_CLMUL;
 587     if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
 588       result |= CPU_RTM;
 589     if (_cpuid_info.sef_cpuid7_ebx.bits.adx != 0)
 590        result |= CPU_ADX;
 591     if (_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
 592       result |= CPU_BMI2;
 593     if (_cpuid_info.sef_cpuid7_ebx.bits.sha != 0)
 594       result |= CPU_SHA;
 595     if (_cpuid_info.std_cpuid1_ecx.bits.fma != 0)
 596       result |= CPU_FMA;
 597     if (_cpuid_info.sef_cpuid7_ebx.bits.clflushopt != 0)
 598       result |= CPU_FLUSHOPT;
 599 
 600     // AMD|Hygon features.
 601     if (is_amd_family()) {
 602       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
 603           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
 604         result |= CPU_3DNOW_PREFETCH;
 605       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
 606         result |= CPU_LZCNT;
 607       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
 608         result |= CPU_SSE4A;
 609     }
 610     // Intel features.
 611     if (is_intel()) {
 612       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
 613         result |= CPU_LZCNT;
 614       // for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
 615       if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
 616         result |= CPU_3DNOW_PREFETCH;
 617       }
 618       if (_cpuid_info.sef_cpuid7_ebx.bits.clwb != 0) {
 619         result |= CPU_CLWB;
 620       }
 621     }
 622 
 623     // ZX features.
 624     if (is_zx()) {
 625       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
 626         result |= CPU_LZCNT;
 627       // for ZX, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
 628       if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
 629         result |= CPU_3DNOW_PREFETCH;
 630       }
 631     }
 632 
 633     return result;
 634   }
 635 
 636   static bool os_supports_avx_vectors() {
 637     bool retVal = false;
 638     int nreg = 2 LP64_ONLY(+2);
 639     if (supports_evex()) {
 640       // Verify that OS save/restore all bits of EVEX registers
 641       // during signal processing.
 642       retVal = true;
 643       for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
 644         if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
 645           retVal = false;
 646           break;
 647         }
 648       }
 649     } else if (supports_avx()) {
 650       // Verify that OS save/restore all bits of AVX registers
 651       // during signal processing.
 652       retVal = true;
 653       for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
 654         if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
 655           retVal = false;
 656           break;
 657         }
 658       }
 659       // zmm_save will be set on a EVEX enabled machine even if we choose AVX code gen
 660       if (retVal == false) {
 661         // Verify that OS save/restore all bits of EVEX registers
 662         // during signal processing.
 663         retVal = true;
 664         for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
 665           if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
 666             retVal = false;
 667             break;
 668           }
 669         }
 670       }
 671     }
 672     return retVal;
 673   }
 674 
 675   static void get_processor_features();
 676 
 677 public:
 678   // Offsets for cpuid asm stub
 679   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 680   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 681   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 682   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
 683   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 684   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 685   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
 686   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 687   static ByteSize ext_cpuid1E_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1E_eax); }
 688   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 689   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 690   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 691   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
 692   static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
 693   static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); }
 694 
 695   // The value used to check ymm register after signal handle
 696   static int ymm_test_value()    { return 0xCAFEBABE; }
 697 
 698   static void get_cpu_info_wrapper();
 699   static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
 700   static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
 701   static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
 702   static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
 703 
 704   static void clean_cpuFeatures()   { _features = 0; }
 705   static void set_avx_cpuFeatures() { _features = (CPU_SSE | CPU_SSE2 | CPU_AVX | CPU_VZEROUPPER ); }
 706   static void set_evex_cpuFeatures() { _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 | CPU_VZEROUPPER ); }
 707 
 708 
 709   // Initialization
 710   static void initialize();
 711 
 712   // Override Abstract_VM_Version implementation
 713   static void print_platform_virtualization_info(outputStream*);
 714 
 715   // Override Abstract_VM_Version implementation
 716   static bool use_biased_locking();
 717 
 718   // Asserts
 719   static void assert_is_initialized() {
 720     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 721   }
 722 
 723   //
 724   // Processor family:
 725   //       3   -  386
 726   //       4   -  486
 727   //       5   -  Pentium
 728   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 729   //              Pentium M, Core Solo, Core Duo, Core2 Duo
 730   //    family 6 model:   9,        13,       14,        15
 731   //    0x0f   -  Pentium 4, Opteron
 732   //
 733   // Note: The cpu family should be used to select between
 734   //       instruction sequences which are valid on all Intel
 735   //       processors.  Use the feature test functions below to
 736   //       determine whether a particular instruction is supported.
 737   //
 738   static int  cpu_family()        { return _cpu;}
 739   static bool is_P6()             { return cpu_family() >= 6; }
 740   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
 741   static bool is_hygon()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x6F677948; } // 'ogyH'
 742   static bool is_amd_family()     { return is_amd() || is_hygon(); }
 743   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
 744   static bool is_zx()             { assert_is_initialized(); return (_cpuid_info.std_vendor_name_0 == 0x746e6543) || (_cpuid_info.std_vendor_name_0 == 0x68532020); } // 'tneC'||'hS  '
 745   static bool is_atom_family()    { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x36) || (extended_cpu_model() == 0x37) || (extended_cpu_model() == 0x4D))); } //Silvermont and Centerton
 746   static bool is_knights_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x57) || (extended_cpu_model() == 0x85))); } // Xeon Phi 3200/5200/7200 and Future Xeon Phi
 747 
 748   static bool supports_processor_topology() {
 749     return (_cpuid_info.std_max_function >= 0xB) &&
 750            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
 751            // Some cpus have max cpuid >= 0xB but do not support processor topology.
 752            (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
 753   }
 754 
 755   static uint cores_per_cpu()  {
 756     uint result = 1;
 757     if (is_intel()) {
 758       bool supports_topology = supports_processor_topology();
 759       if (supports_topology) {
 760         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 761                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 762       }
 763       if (!supports_topology || result == 0) {
 764         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 765       }
 766     } else if (is_amd_family()) {
 767       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
 768     } else if (is_zx()) {
 769       bool supports_topology = supports_processor_topology();
 770       if (supports_topology) {
 771         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 772                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 773       }
 774       if (!supports_topology || result == 0) {
 775         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 776       }
 777     }
 778     return result;
 779   }
 780 
 781   static uint threads_per_core()  {
 782     uint result = 1;
 783     if (is_intel() && supports_processor_topology()) {
 784       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 785     } else if (is_zx() && supports_processor_topology()) {
 786       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 787     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
 788       if (cpu_family() >= 0x17) {
 789         result = _cpuid_info.ext_cpuid1E_ebx.bits.threads_per_core + 1;
 790       } else {
 791         result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
 792                  cores_per_cpu();
 793       }
 794     }
 795     return (result == 0 ? 1 : result);
 796   }
 797 
 798   static intx L1_line_size()  {
 799     intx result = 0;
 800     if (is_intel()) {
 801       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 802     } else if (is_amd_family()) {
 803       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
 804     } else if (is_zx()) {
 805       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 806     }
 807     if (result < 32) // not defined ?
 808       result = 32;   // 32 bytes by default on x86 and other x64
 809     return result;
 810   }
 811 
 812   static intx prefetch_data_size()  {
 813     return L1_line_size();
 814   }
 815 
 816   //
 817   // Feature identification
 818   //
 819   static bool supports_cpuid()    { return _features  != 0; }
 820   static bool supports_cmpxchg8() { return (_features & CPU_CX8) != 0; }
 821   static bool supports_cmov()     { return (_features & CPU_CMOV) != 0; }
 822   static bool supports_fxsr()     { return (_features & CPU_FXSR) != 0; }
 823   static bool supports_ht()       { return (_features & CPU_HT) != 0; }
 824   static bool supports_mmx()      { return (_features & CPU_MMX) != 0; }
 825   static bool supports_sse()      { return (_features & CPU_SSE) != 0; }
 826   static bool supports_sse2()     { return (_features & CPU_SSE2) != 0; }
 827   static bool supports_sse3()     { return (_features & CPU_SSE3) != 0; }
 828   static bool supports_ssse3()    { return (_features & CPU_SSSE3)!= 0; }
 829   static bool supports_sse4_1()   { return (_features & CPU_SSE4_1) != 0; }
 830   static bool supports_sse4_2()   { return (_features & CPU_SSE4_2) != 0; }
 831   static bool supports_popcnt()   { return (_features & CPU_POPCNT) != 0; }
 832   static bool supports_avx()      { return (_features & CPU_AVX) != 0; }
 833   static bool supports_avx2()     { return (_features & CPU_AVX2) != 0; }
 834   static bool supports_tsc()      { return (_features & CPU_TSC)    != 0; }
 835   static bool supports_aes()      { return (_features & CPU_AES) != 0; }
 836   static bool supports_erms()     { return (_features & CPU_ERMS) != 0; }
 837   static bool supports_clmul()    { return (_features & CPU_CLMUL) != 0; }
 838   static bool supports_rtm()      { return (_features & CPU_RTM) != 0; }
 839   static bool supports_bmi1()     { return (_features & CPU_BMI1) != 0; }
 840   static bool supports_bmi2()     { return (_features & CPU_BMI2) != 0; }
 841   static bool supports_adx()      { return (_features & CPU_ADX) != 0; }
 842   static bool supports_evex()     { return (_features & CPU_AVX512F) != 0; }
 843   static bool supports_avx512dq() { return (_features & CPU_AVX512DQ) != 0; }
 844   static bool supports_avx512pf() { return (_features & CPU_AVX512PF) != 0; }
 845   static bool supports_avx512er() { return (_features & CPU_AVX512ER) != 0; }
 846   static bool supports_avx512cd() { return (_features & CPU_AVX512CD) != 0; }
 847   static bool supports_avx512bw() { return (_features & CPU_AVX512BW) != 0; }
 848   static bool supports_avx512vl() { return (_features & CPU_AVX512VL) != 0; }
 849   static bool supports_avx512vlbw() { return (supports_evex() && supports_avx512bw() && supports_avx512vl()); }
 850   static bool supports_avx512vldq() { return (supports_evex() && supports_avx512dq() && supports_avx512vl()); }
 851   static bool supports_avx512vlbwdq() { return (supports_evex() && supports_avx512vl() &&
 852                                                 supports_avx512bw() && supports_avx512dq()); }
 853   static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); }
 854   static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); }
 855   static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); }
 856   static bool supports_avxonly()    { return ((supports_avx2() || supports_avx()) && !supports_evex()); }
 857   static bool supports_sha()        { return (_features & CPU_SHA) != 0; }
 858   static bool supports_fma()        { return (_features & CPU_FMA) != 0 && supports_avx(); }
 859   static bool supports_vzeroupper() { return (_features & CPU_VZEROUPPER) != 0; }
 860   static bool supports_vpopcntdq()  { return (_features & CPU_AVX512_VPOPCNTDQ) != 0; }
 861   static bool supports_avx512_vpclmulqdq() { return (_features & CPU_AVX512_VPCLMULQDQ) != 0; }
 862   static bool supports_vaes()       { return (_features & CPU_VAES) != 0; }
 863   static bool supports_vnni()       { return (_features & CPU_VNNI) != 0; }
 864   static bool supports_vbmi2()      { return (_features & CPU_VBMI2) != 0; }
 865 
 866   // Intel features
 867   static bool is_intel_family_core() { return is_intel() &&
 868                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
 869 
 870   static bool is_intel_tsc_synched_at_init()  {
 871     if (is_intel_family_core()) {
 872       uint32_t ext_model = extended_cpu_model();
 873       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
 874           ext_model == CPU_MODEL_WESTMERE_EP    ||
 875           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
 876           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
 877         // <= 2-socket invariant tsc support. EX versions are usually used
 878         // in > 2-socket systems and likely don't synchronize tscs at
 879         // initialization.
 880         // Code that uses tsc values must be prepared for them to arbitrarily
 881         // jump forward or backward.
 882         return true;
 883       }
 884     }
 885     return false;
 886   }
 887 
 888   // AMD features
 889   static bool supports_3dnow_prefetch()    { return (_features & CPU_3DNOW_PREFETCH) != 0; }
 890   static bool supports_mmx_ext()  { return is_amd_family() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
 891   static bool supports_lzcnt()    { return (_features & CPU_LZCNT) != 0; }
 892   static bool supports_sse4a()    { return (_features & CPU_SSE4A) != 0; }
 893 
 894   static bool is_amd_Barcelona()  { return is_amd() &&
 895                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
 896 
 897   // Intel and AMD newer cores support fast timestamps well
 898   static bool supports_tscinv_bit() {
 899     return (_features & CPU_TSCINV) != 0;
 900   }
 901   static bool supports_tscinv() {
 902     return supports_tscinv_bit() &&
 903       ((is_amd_family() && !is_amd_Barcelona()) ||
 904         is_intel_tsc_synched_at_init());
 905   }
 906 
 907   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
 908   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
 909                                            supports_sse3() && _model != 0x1C; }
 910 
 911   static bool supports_compare_and_exchange() { return true; }
 912 
 913   static intx allocate_prefetch_distance(bool use_watermark_prefetch) {
 914     // Hardware prefetching (distance/size in bytes):
 915     // Pentium 3 -  64 /  32
 916     // Pentium 4 - 256 / 128
 917     // Athlon    -  64 /  32 ????
 918     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
 919     // Core      - 128 /  64
 920     //
 921     // Software prefetching (distance in bytes / instruction with best score):
 922     // Pentium 3 - 128 / prefetchnta
 923     // Pentium 4 - 512 / prefetchnta
 924     // Athlon    - 128 / prefetchnta
 925     // Opteron   - 256 / prefetchnta
 926     // Core      - 256 / prefetchnta
 927     // It will be used only when AllocatePrefetchStyle > 0
 928 
 929     if (is_amd_family()) { // AMD | Hygon
 930       if (supports_sse2()) {
 931         return 256; // Opteron
 932       } else {
 933         return 128; // Athlon
 934       }
 935     } else { // Intel
 936       if (supports_sse3() && cpu_family() == 6) {
 937         if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
 938           return 192;
 939         } else if (use_watermark_prefetch) { // watermark prefetching on Core
 940 #ifdef _LP64
 941           return 384;
 942 #else
 943           return 320;
 944 #endif
 945         }
 946       }
 947       if (supports_sse2()) {
 948         if (cpu_family() == 6) {
 949           return 256; // Pentium M, Core, Core2
 950         } else {
 951           return 512; // Pentium 4
 952         }
 953       } else {
 954         return 128; // Pentium 3 (and all other old CPUs)
 955       }
 956     }
 957   }
 958 
 959   // SSE2 and later processors implement a 'pause' instruction
 960   // that can be used for efficient implementation of
 961   // the intrinsic for java.lang.Thread.onSpinWait()
 962   static bool supports_on_spin_wait() { return supports_sse2(); }
 963 
 964   // x86_64 supports fast class initialization checks for static methods.
 965   static bool supports_fast_class_init_checks() {
 966     return LP64_ONLY(true) NOT_LP64(false); // not implemented on x86_32
 967   }
 968 
 969   // there are several insns to force cache line sync to memory which
 970   // we can use to ensure mapped non-volatile memory is up to date with
 971   // pending in-cache changes.
 972   //
 973   // 64 bit cpus always support clflush which writes back and evicts
 974   // on 32 bit cpus support is recorded via a feature flag
 975   //
 976   // clflushopt is optional and acts like clflush except it does
 977   // not synchronize with other memory ops. it needs a preceding
 978   // and trailing StoreStore fence
 979   //
 980   // clwb is an optional, intel-specific instruction optional which
 981   // writes back without evicting the line. it also does not
 982   // synchronize with other memory ops. so, it also needs a preceding
 983   // and trailing StoreStore fence.
 984 
 985 #ifdef _LP64
 986   static bool supports_clflush() {
 987     // clflush should always be available on x86_64
 988     // if not we are in real trouble because we rely on it
 989     // to flush the code cache.
 990     // Unfortunately, Assembler::clflush is currently called as part
 991     // of generation of the code cache flush routine. This happens
 992     // under Universe::init before the processor features are set
 993     // up. Assembler::flush calls this routine to check that clflush
 994     // is allowed. So, we give the caller a free pass if Universe init
 995     // is still in progress.
 996     assert ((!Universe::is_fully_initialized() || (_features & CPU_FLUSH) != 0), "clflush should be available");
 997     return true;
 998   }
 999   static bool supports_clflushopt() { return ((_features & CPU_FLUSHOPT) != 0); }
1000   static bool supports_clwb() { return ((_features & CPU_CLWB) != 0); }
1001 #else
1002   static bool supports_clflush() { return  ((_features & CPU_FLUSH) != 0); }
1003   static bool supports_clflushopt() { return false; }
1004   static bool supports_clwb() { return false; }
1005 #endif // _LP64
1006 
1007   // support functions for virtualization detection
1008  private:
1009   static void check_virt_cpuid(uint32_t idx, uint32_t *regs);
1010   static void check_virtualizations();
1011 };
1012 
1013 #endif // CPU_X86_VM_VERSION_X86_HPP