1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/rootnode.hpp"
  42 #include "utilities/macros.hpp"
  43 
  44 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  45   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  46   _in_worklist(C->comp_arena()),
  47   _next_pidx(0),
  48   _collecting(true),
  49   _verify(false),
  50   _compile(C),
  51   _igvn(igvn),
  52   _node_map(C->comp_arena()) {
  53   // Add unknown java object.
  54   add_java_object(C->top(), PointsToNode::GlobalEscape);
  55   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  56   // Add ConP(#NULL) and ConN(#NULL) nodes.
  57   Node* oop_null = igvn->zerocon(T_OBJECT);
  58   assert(oop_null->_idx < nodes_size(), "should be created already");
  59   add_java_object(oop_null, PointsToNode::NoEscape);
  60   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  61   if (UseCompressedOops) {
  62     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  63     assert(noop_null->_idx < nodes_size(), "should be created already");
  64     map_ideal_node(noop_null, null_obj);
  65   }
  66   _pcmp_neq = NULL; // Should be initialized
  67   _pcmp_eq  = NULL;
  68 }
  69 
  70 bool ConnectionGraph::has_candidates(Compile *C) {
  71   // EA brings benefits only when the code has allocations and/or locks which
  72   // are represented by ideal Macro nodes.
  73   int cnt = C->macro_count();
  74   for (int i = 0; i < cnt; i++) {
  75     Node *n = C->macro_node(i);
  76     if (n->is_Allocate())
  77       return true;
  78     if (n->is_Lock()) {
  79       Node* obj = n->as_Lock()->obj_node()->uncast();
  80       if (!(obj->is_Parm() || obj->is_Con()))
  81         return true;
  82     }
  83     if (n->is_CallStaticJava() &&
  84         n->as_CallStaticJava()->is_boxing_method()) {
  85       return true;
  86     }
  87   }
  88   return false;
  89 }
  90 
  91 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  92   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  93   ResourceMark rm;
  94 
  95   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  96   // to create space for them in ConnectionGraph::_nodes[].
  97   Node* oop_null = igvn->zerocon(T_OBJECT);
  98   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  99   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
 100   // Perform escape analysis
 101   if (congraph->compute_escape()) {
 102     // There are non escaping objects.
 103     C->set_congraph(congraph);
 104   }
 105   // Cleanup.
 106   if (oop_null->outcnt() == 0)
 107     igvn->hash_delete(oop_null);
 108   if (noop_null->outcnt() == 0)
 109     igvn->hash_delete(noop_null);
 110 }
 111 
 112 bool ConnectionGraph::compute_escape() {
 113   Compile* C = _compile;
 114   PhaseGVN* igvn = _igvn;
 115 
 116   // Worklists used by EA.
 117   Unique_Node_List delayed_worklist;
 118   GrowableArray<Node*> alloc_worklist;
 119   GrowableArray<Node*> ptr_cmp_worklist;
 120   GrowableArray<Node*> storestore_worklist;
 121   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 122   GrowableArray<PointsToNode*>   ptnodes_worklist;
 123   GrowableArray<JavaObjectNode*> java_objects_worklist;
 124   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 125   GrowableArray<FieldNode*>      oop_fields_worklist;
 126   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 127 
 128   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 129 
 130   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 131   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 132   // Initialize worklist
 133   if (C->root() != NULL) {
 134     ideal_nodes.push(C->root());
 135   }
 136   // Processed ideal nodes are unique on ideal_nodes list
 137   // but several ideal nodes are mapped to the phantom_obj.
 138   // To avoid duplicated entries on the following worklists
 139   // add the phantom_obj only once to them.
 140   ptnodes_worklist.append(phantom_obj);
 141   java_objects_worklist.append(phantom_obj);
 142   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 143     Node* n = ideal_nodes.at(next);
 144     // Create PointsTo nodes and add them to Connection Graph. Called
 145     // only once per ideal node since ideal_nodes is Unique_Node list.
 146     add_node_to_connection_graph(n, &delayed_worklist);
 147     PointsToNode* ptn = ptnode_adr(n->_idx);
 148     if (ptn != NULL && ptn != phantom_obj) {
 149       ptnodes_worklist.append(ptn);
 150       if (ptn->is_JavaObject()) {
 151         java_objects_worklist.append(ptn->as_JavaObject());
 152         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 153             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 154           // Only allocations and java static calls results are interesting.
 155           non_escaped_worklist.append(ptn->as_JavaObject());
 156         }
 157       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 158         oop_fields_worklist.append(ptn->as_Field());
 159       }
 160     }
 161     if (n->is_MergeMem()) {
 162       // Collect all MergeMem nodes to add memory slices for
 163       // scalar replaceable objects in split_unique_types().
 164       _mergemem_worklist.append(n->as_MergeMem());
 165     } else if (OptimizePtrCompare && n->is_Cmp() &&
 166                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 167       // Collect compare pointers nodes.
 168       ptr_cmp_worklist.append(n);
 169     } else if (n->is_MemBarStoreStore()) {
 170       // Collect all MemBarStoreStore nodes so that depending on the
 171       // escape status of the associated Allocate node some of them
 172       // may be eliminated.
 173       storestore_worklist.append(n);
 174     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 175                (n->req() > MemBarNode::Precedent)) {
 176       record_for_optimizer(n);
 177 #ifdef ASSERT
 178     } else if (n->is_AddP()) {
 179       // Collect address nodes for graph verification.
 180       addp_worklist.append(n);
 181 #endif
 182     } else if (n->is_ArrayCopy()) {
 183       // Keep a list of ArrayCopy nodes so if one of its input is non
 184       // escaping, we can record a unique type
 185       arraycopy_worklist.append(n->as_ArrayCopy());
 186     }
 187     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 188       Node* m = n->fast_out(i);   // Get user
 189       ideal_nodes.push(m);
 190     }
 191   }
 192   if (non_escaped_worklist.length() == 0) {
 193     _collecting = false;
 194     return false; // Nothing to do.
 195   }
 196   // Add final simple edges to graph.
 197   while(delayed_worklist.size() > 0) {
 198     Node* n = delayed_worklist.pop();
 199     add_final_edges(n);
 200   }
 201   int ptnodes_length = ptnodes_worklist.length();
 202 
 203 #ifdef ASSERT
 204   if (VerifyConnectionGraph) {
 205     // Verify that no new simple edges could be created and all
 206     // local vars has edges.
 207     _verify = true;
 208     for (int next = 0; next < ptnodes_length; ++next) {
 209       PointsToNode* ptn = ptnodes_worklist.at(next);
 210       add_final_edges(ptn->ideal_node());
 211       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 212         ptn->dump();
 213         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 214       }
 215     }
 216     _verify = false;
 217   }
 218 #endif
 219   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 220   // processing, calls to CI to resolve symbols (types, fields, methods)
 221   // referenced in bytecode. During symbol resolution VM may throw
 222   // an exception which CI cleans and converts to compilation failure.
 223   if (C->failing())  return false;
 224 
 225   // 2. Finish Graph construction by propagating references to all
 226   //    java objects through graph.
 227   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 228                                  java_objects_worklist, oop_fields_worklist)) {
 229     // All objects escaped or hit time or iterations limits.
 230     _collecting = false;
 231     return false;
 232   }
 233 
 234   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 235   //    scalar replaceable allocations on alloc_worklist for processing
 236   //    in split_unique_types().
 237   int non_escaped_length = non_escaped_worklist.length();
 238   for (int next = 0; next < non_escaped_length; next++) {
 239     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 240     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 241     Node* n = ptn->ideal_node();
 242     if (n->is_Allocate()) {
 243       n->as_Allocate()->_is_non_escaping = noescape;
 244     }
 245     if (n->is_CallStaticJava()) {
 246       n->as_CallStaticJava()->_is_non_escaping = noescape;
 247     }
 248     if (noescape && ptn->scalar_replaceable()) {
 249       adjust_scalar_replaceable_state(ptn);
 250       if (ptn->scalar_replaceable()) {
 251         alloc_worklist.append(ptn->ideal_node());
 252       }
 253     }
 254   }
 255 
 256 #ifdef ASSERT
 257   if (VerifyConnectionGraph) {
 258     // Verify that graph is complete - no new edges could be added or needed.
 259     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 260                             java_objects_worklist, addp_worklist);
 261   }
 262   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 263   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 264          null_obj->edge_count() == 0 &&
 265          !null_obj->arraycopy_src() &&
 266          !null_obj->arraycopy_dst(), "sanity");
 267 #endif
 268 
 269   _collecting = false;
 270 
 271   } // TracePhase t3("connectionGraph")
 272 
 273   // 4. Optimize ideal graph based on EA information.
 274   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 275   if (has_non_escaping_obj) {
 276     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 277   }
 278 
 279 #ifndef PRODUCT
 280   if (PrintEscapeAnalysis) {
 281     dump(ptnodes_worklist); // Dump ConnectionGraph
 282   }
 283 #endif
 284 
 285   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 286 #ifdef ASSERT
 287   if (VerifyConnectionGraph) {
 288     int alloc_length = alloc_worklist.length();
 289     for (int next = 0; next < alloc_length; ++next) {
 290       Node* n = alloc_worklist.at(next);
 291       PointsToNode* ptn = ptnode_adr(n->_idx);
 292       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 293     }
 294   }
 295 #endif
 296 
 297   // 5. Separate memory graph for scalar replaceable allcations.
 298   if (has_scalar_replaceable_candidates &&
 299       C->AliasLevel() >= 3 && EliminateAllocations) {
 300     // Now use the escape information to create unique types for
 301     // scalar replaceable objects.
 302     split_unique_types(alloc_worklist, arraycopy_worklist);
 303     if (C->failing())  return false;
 304     C->print_method(PHASE_AFTER_EA, 2);
 305 
 306 #ifdef ASSERT
 307   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 308     tty->print("=== No allocations eliminated for ");
 309     C->method()->print_short_name();
 310     if(!EliminateAllocations) {
 311       tty->print(" since EliminateAllocations is off ===");
 312     } else if(!has_scalar_replaceable_candidates) {
 313       tty->print(" since there are no scalar replaceable candidates ===");
 314     } else if(C->AliasLevel() < 3) {
 315       tty->print(" since AliasLevel < 3 ===");
 316     }
 317     tty->cr();
 318 #endif
 319   }
 320   return has_non_escaping_obj;
 321 }
 322 
 323 // Utility function for nodes that load an object
 324 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 325   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 326   // ThreadLocal has RawPtr type.
 327   const Type* t = _igvn->type(n);
 328   if (t->make_ptr() != NULL) {
 329     Node* adr = n->in(MemNode::Address);
 330 #ifdef ASSERT
 331     if (!adr->is_AddP()) {
 332       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 333     } else {
 334       assert((ptnode_adr(adr->_idx) == NULL ||
 335               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 336     }
 337 #endif
 338     add_local_var_and_edge(n, PointsToNode::NoEscape,
 339                            adr, delayed_worklist);
 340   }
 341 }
 342 
 343 // Populate Connection Graph with PointsTo nodes and create simple
 344 // connection graph edges.
 345 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 346   assert(!_verify, "this method should not be called for verification");
 347   PhaseGVN* igvn = _igvn;
 348   uint n_idx = n->_idx;
 349   PointsToNode* n_ptn = ptnode_adr(n_idx);
 350   if (n_ptn != NULL)
 351     return; // No need to redefine PointsTo node during first iteration.
 352 
 353   int opcode = n->Opcode();
 354   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode);
 355   if (gc_handled) {
 356     return; // Ignore node if already handled by GC.
 357   }
 358 
 359   if (n->is_Call()) {
 360     // Arguments to allocation and locking don't escape.
 361     if (n->is_AbstractLock()) {
 362       // Put Lock and Unlock nodes on IGVN worklist to process them during
 363       // first IGVN optimization when escape information is still available.
 364       record_for_optimizer(n);
 365     } else if (n->is_Allocate()) {
 366       add_call_node(n->as_Call());
 367       record_for_optimizer(n);
 368     } else {
 369       if (n->is_CallStaticJava()) {
 370         const char* name = n->as_CallStaticJava()->_name;
 371         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 372           return; // Skip uncommon traps
 373       }
 374       // Don't mark as processed since call's arguments have to be processed.
 375       delayed_worklist->push(n);
 376       // Check if a call returns an object.
 377       if ((n->as_Call()->returns_pointer() &&
 378            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) ||
 379           (n->is_CallStaticJava() &&
 380            n->as_CallStaticJava()->is_boxing_method())) {
 381         add_call_node(n->as_Call());
 382       }
 383     }
 384     return;
 385   }
 386   // Put this check here to process call arguments since some call nodes
 387   // point to phantom_obj.
 388   if (n_ptn == phantom_obj || n_ptn == null_obj)
 389     return; // Skip predefined nodes.
 390 
 391   switch (opcode) {
 392     case Op_AddP: {
 393       Node* base = get_addp_base(n);
 394       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 395       // Field nodes are created for all field types. They are used in
 396       // adjust_scalar_replaceable_state() and split_unique_types().
 397       // Note, non-oop fields will have only base edges in Connection
 398       // Graph because such fields are not used for oop loads and stores.
 399       int offset = address_offset(n, igvn);
 400       add_field(n, PointsToNode::NoEscape, offset);
 401       if (ptn_base == NULL) {
 402         delayed_worklist->push(n); // Process it later.
 403       } else {
 404         n_ptn = ptnode_adr(n_idx);
 405         add_base(n_ptn->as_Field(), ptn_base);
 406       }
 407       break;
 408     }
 409     case Op_CastX2P: {
 410       map_ideal_node(n, phantom_obj);
 411       break;
 412     }
 413     case Op_CastPP:
 414     case Op_CheckCastPP:
 415     case Op_EncodeP:
 416     case Op_DecodeN:
 417     case Op_EncodePKlass:
 418     case Op_DecodeNKlass: {
 419       add_local_var_and_edge(n, PointsToNode::NoEscape,
 420                              n->in(1), delayed_worklist);
 421       break;
 422     }
 423     case Op_CMoveP: {
 424       add_local_var(n, PointsToNode::NoEscape);
 425       // Do not add edges during first iteration because some could be
 426       // not defined yet.
 427       delayed_worklist->push(n);
 428       break;
 429     }
 430     case Op_ConP:
 431     case Op_ConN:
 432     case Op_ConNKlass: {
 433       // assume all oop constants globally escape except for null
 434       PointsToNode::EscapeState es;
 435       const Type* t = igvn->type(n);
 436       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 437         es = PointsToNode::NoEscape;
 438       } else {
 439         es = PointsToNode::GlobalEscape;
 440       }
 441       add_java_object(n, es);
 442       break;
 443     }
 444     case Op_CreateEx: {
 445       // assume that all exception objects globally escape
 446       map_ideal_node(n, phantom_obj);
 447       break;
 448     }
 449     case Op_LoadKlass:
 450     case Op_LoadNKlass: {
 451       // Unknown class is loaded
 452       map_ideal_node(n, phantom_obj);
 453       break;
 454     }
 455     case Op_LoadP:
 456     case Op_LoadN:
 457     case Op_LoadPLocked: {
 458       add_objload_to_connection_graph(n, delayed_worklist);
 459       break;
 460     }
 461     case Op_Parm: {
 462       map_ideal_node(n, phantom_obj);
 463       break;
 464     }
 465     case Op_PartialSubtypeCheck: {
 466       // Produces Null or notNull and is used in only in CmpP so
 467       // phantom_obj could be used.
 468       map_ideal_node(n, phantom_obj); // Result is unknown
 469       break;
 470     }
 471     case Op_Phi: {
 472       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 473       // ThreadLocal has RawPtr type.
 474       const Type* t = n->as_Phi()->type();
 475       if (t->make_ptr() != NULL) {
 476         add_local_var(n, PointsToNode::NoEscape);
 477         // Do not add edges during first iteration because some could be
 478         // not defined yet.
 479         delayed_worklist->push(n);
 480       }
 481       break;
 482     }
 483     case Op_Proj: {
 484       // we are only interested in the oop result projection from a call
 485       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 486           n->in(0)->as_Call()->returns_pointer()) {
 487         add_local_var_and_edge(n, PointsToNode::NoEscape,
 488                                n->in(0), delayed_worklist);
 489       }
 490       break;
 491     }
 492     case Op_Rethrow: // Exception object escapes
 493     case Op_Return: {
 494       if (n->req() > TypeFunc::Parms &&
 495           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 496         // Treat Return value as LocalVar with GlobalEscape escape state.
 497         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 498                                n->in(TypeFunc::Parms), delayed_worklist);
 499       }
 500       break;
 501     }
 502     case Op_CompareAndExchangeP:
 503     case Op_CompareAndExchangeN:
 504     case Op_GetAndSetP:
 505     case Op_GetAndSetN: {
 506       add_objload_to_connection_graph(n, delayed_worklist);
 507       // fallthrough
 508     }
 509     case Op_StoreP:
 510     case Op_StoreN:
 511     case Op_StoreNKlass:
 512     case Op_StorePConditional:
 513     case Op_WeakCompareAndSwapP:
 514     case Op_WeakCompareAndSwapN:
 515     case Op_CompareAndSwapP:
 516     case Op_CompareAndSwapN: {
 517       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
 518       break;
 519     }
 520     case Op_AryEq:
 521     case Op_HasNegatives:
 522     case Op_StrComp:
 523     case Op_StrEquals:
 524     case Op_StrIndexOf:
 525     case Op_StrIndexOfChar:
 526     case Op_StrInflatedCopy:
 527     case Op_StrCompressedCopy:
 528     case Op_EncodeISOArray: {
 529       add_local_var(n, PointsToNode::ArgEscape);
 530       delayed_worklist->push(n); // Process it later.
 531       break;
 532     }
 533     case Op_ThreadLocal: {
 534       add_java_object(n, PointsToNode::ArgEscape);
 535       break;
 536     }
 537     default:
 538       ; // Do nothing for nodes not related to EA.
 539   }
 540   return;
 541 }
 542 
 543 #ifdef ASSERT
 544 #define ELSE_FAIL(name)                               \
 545       /* Should not be called for not pointer type. */  \
 546       n->dump(1);                                       \
 547       assert(false, name);                              \
 548       break;
 549 #else
 550 #define ELSE_FAIL(name) \
 551       break;
 552 #endif
 553 
 554 // Add final simple edges to graph.
 555 void ConnectionGraph::add_final_edges(Node *n) {
 556   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 557 #ifdef ASSERT
 558   if (_verify && n_ptn->is_JavaObject())
 559     return; // This method does not change graph for JavaObject.
 560 #endif
 561 
 562   if (n->is_Call()) {
 563     process_call_arguments(n->as_Call());
 564     return;
 565   }
 566   assert(n->is_Store() || n->is_LoadStore() ||
 567          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 568          "node should be registered already");
 569   int opcode = n->Opcode();
 570   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
 571   if (gc_handled) {
 572     return; // Ignore node if already handled by GC.
 573   }
 574   switch (opcode) {
 575     case Op_AddP: {
 576       Node* base = get_addp_base(n);
 577       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 578       assert(ptn_base != NULL, "field's base should be registered");
 579       add_base(n_ptn->as_Field(), ptn_base);
 580       break;
 581     }
 582     case Op_CastPP:
 583     case Op_CheckCastPP:
 584     case Op_EncodeP:
 585     case Op_DecodeN:
 586     case Op_EncodePKlass:
 587     case Op_DecodeNKlass: {
 588       add_local_var_and_edge(n, PointsToNode::NoEscape,
 589                              n->in(1), NULL);
 590       break;
 591     }
 592     case Op_CMoveP: {
 593       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 594         Node* in = n->in(i);
 595         if (in == NULL)
 596           continue;  // ignore NULL
 597         Node* uncast_in = in->uncast();
 598         if (uncast_in->is_top() || uncast_in == n)
 599           continue;  // ignore top or inputs which go back this node
 600         PointsToNode* ptn = ptnode_adr(in->_idx);
 601         assert(ptn != NULL, "node should be registered");
 602         add_edge(n_ptn, ptn);
 603       }
 604       break;
 605     }
 606     case Op_LoadP:
 607     case Op_LoadN:
 608     case Op_LoadPLocked: {
 609       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 610       // ThreadLocal has RawPtr type.
 611       const Type* t = _igvn->type(n);
 612       if (t->make_ptr() != NULL) {
 613         Node* adr = n->in(MemNode::Address);
 614         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 615         break;
 616       }
 617       ELSE_FAIL("Op_LoadP");
 618     }
 619     case Op_Phi: {
 620       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 621       // ThreadLocal has RawPtr type.
 622       const Type* t = n->as_Phi()->type();
 623       if (t->make_ptr() != NULL) {
 624         for (uint i = 1; i < n->req(); i++) {
 625           Node* in = n->in(i);
 626           if (in == NULL)
 627             continue;  // ignore NULL
 628           Node* uncast_in = in->uncast();
 629           if (uncast_in->is_top() || uncast_in == n)
 630             continue;  // ignore top or inputs which go back this node
 631           PointsToNode* ptn = ptnode_adr(in->_idx);
 632           assert(ptn != NULL, "node should be registered");
 633           add_edge(n_ptn, ptn);
 634         }
 635         break;
 636       }
 637       ELSE_FAIL("Op_Phi");
 638     }
 639     case Op_Proj: {
 640       // we are only interested in the oop result projection from a call
 641       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 642           n->in(0)->as_Call()->returns_pointer()) {
 643         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 644         break;
 645       }
 646       ELSE_FAIL("Op_Proj");
 647     }
 648     case Op_Rethrow: // Exception object escapes
 649     case Op_Return: {
 650       if (n->req() > TypeFunc::Parms &&
 651           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 652         // Treat Return value as LocalVar with GlobalEscape escape state.
 653         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 654                                n->in(TypeFunc::Parms), NULL);
 655         break;
 656       }
 657       ELSE_FAIL("Op_Return");
 658     }
 659     case Op_StoreP:
 660     case Op_StoreN:
 661     case Op_StoreNKlass:
 662     case Op_StorePConditional:
 663     case Op_CompareAndExchangeP:
 664     case Op_CompareAndExchangeN:
 665     case Op_CompareAndSwapP:
 666     case Op_CompareAndSwapN:
 667     case Op_WeakCompareAndSwapP:
 668     case Op_WeakCompareAndSwapN:
 669     case Op_GetAndSetP:
 670     case Op_GetAndSetN: {
 671       if (add_final_edges_unsafe_access(n, opcode)) {
 672         break;
 673       }
 674       ELSE_FAIL("Op_StoreP");
 675     }
 676     case Op_AryEq:
 677     case Op_HasNegatives:
 678     case Op_StrComp:
 679     case Op_StrEquals:
 680     case Op_StrIndexOf:
 681     case Op_StrIndexOfChar:
 682     case Op_StrInflatedCopy:
 683     case Op_StrCompressedCopy:
 684     case Op_EncodeISOArray: {
 685       // char[]/byte[] arrays passed to string intrinsic do not escape but
 686       // they are not scalar replaceable. Adjust escape state for them.
 687       // Start from in(2) edge since in(1) is memory edge.
 688       for (uint i = 2; i < n->req(); i++) {
 689         Node* adr = n->in(i);
 690         const Type* at = _igvn->type(adr);
 691         if (!adr->is_top() && at->isa_ptr()) {
 692           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 693                  at->isa_ptr() != NULL, "expecting a pointer");
 694           if (adr->is_AddP()) {
 695             adr = get_addp_base(adr);
 696           }
 697           PointsToNode* ptn = ptnode_adr(adr->_idx);
 698           assert(ptn != NULL, "node should be registered");
 699           add_edge(n_ptn, ptn);
 700         }
 701       }
 702       break;
 703     }
 704     default: {
 705       // This method should be called only for EA specific nodes which may
 706       // miss some edges when they were created.
 707 #ifdef ASSERT
 708       n->dump(1);
 709 #endif
 710       guarantee(false, "unknown node");
 711     }
 712   }
 713   return;
 714 }
 715 
 716 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
 717   Node* adr = n->in(MemNode::Address);
 718   const Type* adr_type = _igvn->type(adr);
 719   adr_type = adr_type->make_ptr();
 720   if (adr_type == NULL) {
 721     return; // skip dead nodes
 722   }
 723   if (adr_type->isa_oopptr()
 724       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 725           && adr_type == TypeRawPtr::NOTNULL
 726           && adr->in(AddPNode::Address)->is_Proj()
 727           && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 728     delayed_worklist->push(n); // Process it later.
 729 #ifdef ASSERT
 730     assert (adr->is_AddP(), "expecting an AddP");
 731     if (adr_type == TypeRawPtr::NOTNULL) {
 732       // Verify a raw address for a store captured by Initialize node.
 733       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 734       assert(offs != Type::OffsetBot, "offset must be a constant");
 735     }
 736 #endif
 737   } else {
 738     // Ignore copy the displaced header to the BoxNode (OSR compilation).
 739     if (adr->is_BoxLock()) {
 740       return;
 741     }
 742     // Stored value escapes in unsafe access.
 743     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 744       delayed_worklist->push(n); // Process unsafe access later.
 745       return;
 746     }
 747 #ifdef ASSERT
 748     n->dump(1);
 749     assert(false, "not unsafe");
 750 #endif
 751   }
 752 }
 753 
 754 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
 755   Node* adr = n->in(MemNode::Address);
 756   const Type *adr_type = _igvn->type(adr);
 757   adr_type = adr_type->make_ptr();
 758 #ifdef ASSERT
 759   if (adr_type == NULL) {
 760     n->dump(1);
 761     assert(adr_type != NULL, "dead node should not be on list");
 762     return true;
 763   }
 764 #endif
 765 
 766   if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 767       opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 768     add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 769   }
 770 
 771   if (adr_type->isa_oopptr()
 772       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 773            && adr_type == TypeRawPtr::NOTNULL
 774            && adr->in(AddPNode::Address)->is_Proj()
 775            && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 776     // Point Address to Value
 777     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 778     assert(adr_ptn != NULL &&
 779            adr_ptn->as_Field()->is_oop(), "node should be registered");
 780     Node* val = n->in(MemNode::ValueIn);
 781     PointsToNode* ptn = ptnode_adr(val->_idx);
 782     assert(ptn != NULL, "node should be registered");
 783     add_edge(adr_ptn, ptn);
 784     return true;
 785   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 786     // Stored value escapes in unsafe access.
 787     Node* val = n->in(MemNode::ValueIn);
 788     PointsToNode* ptn = ptnode_adr(val->_idx);
 789     assert(ptn != NULL, "node should be registered");
 790     set_escape_state(ptn, PointsToNode::GlobalEscape);
 791     // Add edge to object for unsafe access with offset.
 792     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 793     assert(adr_ptn != NULL, "node should be registered");
 794     if (adr_ptn->is_Field()) {
 795       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 796       add_edge(adr_ptn, ptn);
 797     }
 798     return true;
 799   }
 800   return false;
 801 }
 802 
 803 void ConnectionGraph::add_call_node(CallNode* call) {
 804   assert(call->returns_pointer(), "only for call which returns pointer");
 805   uint call_idx = call->_idx;
 806   if (call->is_Allocate()) {
 807     Node* k = call->in(AllocateNode::KlassNode);
 808     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 809     assert(kt != NULL, "TypeKlassPtr  required.");
 810     ciKlass* cik = kt->klass();
 811     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 812     bool scalar_replaceable = true;
 813     if (call->is_AllocateArray()) {
 814       if (!cik->is_array_klass()) { // StressReflectiveCode
 815         es = PointsToNode::GlobalEscape;
 816       } else {
 817         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 818         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 819           // Not scalar replaceable if the length is not constant or too big.
 820           scalar_replaceable = false;
 821         }
 822       }
 823     } else {  // Allocate instance
 824       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 825           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 826          !cik->is_instance_klass() || // StressReflectiveCode
 827          !cik->as_instance_klass()->can_be_instantiated() ||
 828           cik->as_instance_klass()->has_finalizer()) {
 829         es = PointsToNode::GlobalEscape;
 830       }
 831     }
 832     add_java_object(call, es);
 833     PointsToNode* ptn = ptnode_adr(call_idx);
 834     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 835       ptn->set_scalar_replaceable(false);
 836     }
 837   } else if (call->is_CallStaticJava()) {
 838     // Call nodes could be different types:
 839     //
 840     // 1. CallDynamicJavaNode (what happened during call is unknown):
 841     //
 842     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 843     //
 844     //    - all oop arguments are escaping globally;
 845     //
 846     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 847     //
 848     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 849     //
 850     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 851     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 852     //      during call is returned;
 853     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 854     //      which are returned and does not escape during call;
 855     //
 856     //    - oop arguments escaping status is defined by bytecode analysis;
 857     //
 858     // For a static call, we know exactly what method is being called.
 859     // Use bytecode estimator to record whether the call's return value escapes.
 860     ciMethod* meth = call->as_CallJava()->method();
 861     if (meth == NULL) {
 862       const char* name = call->as_CallStaticJava()->_name;
 863       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 864       // Returns a newly allocated unescaped object.
 865       add_java_object(call, PointsToNode::NoEscape);
 866       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 867     } else if (meth->is_boxing_method()) {
 868       // Returns boxing object
 869       PointsToNode::EscapeState es;
 870       vmIntrinsics::ID intr = meth->intrinsic_id();
 871       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 872         // It does not escape if object is always allocated.
 873         es = PointsToNode::NoEscape;
 874       } else {
 875         // It escapes globally if object could be loaded from cache.
 876         es = PointsToNode::GlobalEscape;
 877       }
 878       add_java_object(call, es);
 879     } else {
 880       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 881       call_analyzer->copy_dependencies(_compile->dependencies());
 882       if (call_analyzer->is_return_allocated()) {
 883         // Returns a newly allocated unescaped object, simply
 884         // update dependency information.
 885         // Mark it as NoEscape so that objects referenced by
 886         // it's fields will be marked as NoEscape at least.
 887         add_java_object(call, PointsToNode::NoEscape);
 888         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 889       } else {
 890         // Determine whether any arguments are returned.
 891         const TypeTuple* d = call->tf()->domain();
 892         bool ret_arg = false;
 893         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 894           if (d->field_at(i)->isa_ptr() != NULL &&
 895               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 896             ret_arg = true;
 897             break;
 898           }
 899         }
 900         if (ret_arg) {
 901           add_local_var(call, PointsToNode::ArgEscape);
 902         } else {
 903           // Returns unknown object.
 904           map_ideal_node(call, phantom_obj);
 905         }
 906       }
 907     }
 908   } else {
 909     // An other type of call, assume the worst case:
 910     // returned value is unknown and globally escapes.
 911     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 912     map_ideal_node(call, phantom_obj);
 913   }
 914 }
 915 
 916 void ConnectionGraph::process_call_arguments(CallNode *call) {
 917     bool is_arraycopy = false;
 918     switch (call->Opcode()) {
 919 #ifdef ASSERT
 920     case Op_Allocate:
 921     case Op_AllocateArray:
 922     case Op_Lock:
 923     case Op_Unlock:
 924       assert(false, "should be done already");
 925       break;
 926 #endif
 927     case Op_ArrayCopy:
 928     case Op_CallLeafNoFP:
 929       // Most array copies are ArrayCopy nodes at this point but there
 930       // are still a few direct calls to the copy subroutines (See
 931       // PhaseStringOpts::copy_string())
 932       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 933         call->as_CallLeaf()->is_call_to_arraycopystub();
 934       // fall through
 935     case Op_CallLeaf: {
 936       // Stub calls, objects do not escape but they are not scale replaceable.
 937       // Adjust escape state for outgoing arguments.
 938       const TypeTuple * d = call->tf()->domain();
 939       bool src_has_oops = false;
 940       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 941         const Type* at = d->field_at(i);
 942         Node *arg = call->in(i);
 943         if (arg == NULL) {
 944           continue;
 945         }
 946         const Type *aat = _igvn->type(arg);
 947         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 948           continue;
 949         if (arg->is_AddP()) {
 950           //
 951           // The inline_native_clone() case when the arraycopy stub is called
 952           // after the allocation before Initialize and CheckCastPP nodes.
 953           // Or normal arraycopy for object arrays case.
 954           //
 955           // Set AddP's base (Allocate) as not scalar replaceable since
 956           // pointer to the base (with offset) is passed as argument.
 957           //
 958           arg = get_addp_base(arg);
 959         }
 960         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 961         assert(arg_ptn != NULL, "should be registered");
 962         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 963         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 964           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 965                  aat->isa_ptr() != NULL, "expecting an Ptr");
 966           bool arg_has_oops = aat->isa_oopptr() &&
 967                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 968                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 969           if (i == TypeFunc::Parms) {
 970             src_has_oops = arg_has_oops;
 971           }
 972           //
 973           // src or dst could be j.l.Object when other is basic type array:
 974           //
 975           //   arraycopy(char[],0,Object*,0,size);
 976           //   arraycopy(Object*,0,char[],0,size);
 977           //
 978           // Don't add edges in such cases.
 979           //
 980           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 981                                        arg_has_oops && (i > TypeFunc::Parms);
 982 #ifdef ASSERT
 983           if (!(is_arraycopy ||
 984                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
 985                 (call->as_CallLeaf()->_name != NULL &&
 986                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 987                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 988                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
 989                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 990                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 991                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 992                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 993                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 ||
 994                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 ||
 995                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
 996                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 997                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
 998                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 999                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
1000                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
1001                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
1002                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1003                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1004                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1005                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1006                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1007                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1008                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1009                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1010                  ))) {
1011             call->dump();
1012             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1013           }
1014 #endif
1015           // Always process arraycopy's destination object since
1016           // we need to add all possible edges to references in
1017           // source object.
1018           if (arg_esc >= PointsToNode::ArgEscape &&
1019               !arg_is_arraycopy_dest) {
1020             continue;
1021           }
1022           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1023           if (call->is_ArrayCopy()) {
1024             ArrayCopyNode* ac = call->as_ArrayCopy();
1025             if (ac->is_clonebasic() ||
1026                 ac->is_arraycopy_validated() ||
1027                 ac->is_copyof_validated() ||
1028                 ac->is_copyofrange_validated()) {
1029               es = PointsToNode::NoEscape;
1030             }
1031           }
1032           set_escape_state(arg_ptn, es);
1033           if (arg_is_arraycopy_dest) {
1034             Node* src = call->in(TypeFunc::Parms);
1035             if (src->is_AddP()) {
1036               src = get_addp_base(src);
1037             }
1038             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1039             assert(src_ptn != NULL, "should be registered");
1040             if (arg_ptn != src_ptn) {
1041               // Special arraycopy edge:
1042               // A destination object's field can't have the source object
1043               // as base since objects escape states are not related.
1044               // Only escape state of destination object's fields affects
1045               // escape state of fields in source object.
1046               add_arraycopy(call, es, src_ptn, arg_ptn);
1047             }
1048           }
1049         }
1050       }
1051       break;
1052     }
1053     case Op_CallStaticJava: {
1054       // For a static call, we know exactly what method is being called.
1055       // Use bytecode estimator to record the call's escape affects
1056 #ifdef ASSERT
1057       const char* name = call->as_CallStaticJava()->_name;
1058       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1059 #endif
1060       ciMethod* meth = call->as_CallJava()->method();
1061       if ((meth != NULL) && meth->is_boxing_method()) {
1062         break; // Boxing methods do not modify any oops.
1063       }
1064       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1065       // fall-through if not a Java method or no analyzer information
1066       if (call_analyzer != NULL) {
1067         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1068         const TypeTuple* d = call->tf()->domain();
1069         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1070           const Type* at = d->field_at(i);
1071           int k = i - TypeFunc::Parms;
1072           Node* arg = call->in(i);
1073           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1074           if (at->isa_ptr() != NULL &&
1075               call_analyzer->is_arg_returned(k)) {
1076             // The call returns arguments.
1077             if (call_ptn != NULL) { // Is call's result used?
1078               assert(call_ptn->is_LocalVar(), "node should be registered");
1079               assert(arg_ptn != NULL, "node should be registered");
1080               add_edge(call_ptn, arg_ptn);
1081             }
1082           }
1083           if (at->isa_oopptr() != NULL &&
1084               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1085             if (!call_analyzer->is_arg_stack(k)) {
1086               // The argument global escapes
1087               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1088             } else {
1089               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1090               if (!call_analyzer->is_arg_local(k)) {
1091                 // The argument itself doesn't escape, but any fields might
1092                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1093               }
1094             }
1095           }
1096         }
1097         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1098           // The call returns arguments.
1099           assert(call_ptn->edge_count() > 0, "sanity");
1100           if (!call_analyzer->is_return_local()) {
1101             // Returns also unknown object.
1102             add_edge(call_ptn, phantom_obj);
1103           }
1104         }
1105         break;
1106       }
1107     }
1108     default: {
1109       // Fall-through here if not a Java method or no analyzer information
1110       // or some other type of call, assume the worst case: all arguments
1111       // globally escape.
1112       const TypeTuple* d = call->tf()->domain();
1113       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1114         const Type* at = d->field_at(i);
1115         if (at->isa_oopptr() != NULL) {
1116           Node* arg = call->in(i);
1117           if (arg->is_AddP()) {
1118             arg = get_addp_base(arg);
1119           }
1120           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1121           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1122         }
1123       }
1124     }
1125   }
1126 }
1127 
1128 
1129 // Finish Graph construction.
1130 bool ConnectionGraph::complete_connection_graph(
1131                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1132                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1133                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1134                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1135   // Normally only 1-3 passes needed to build Connection Graph depending
1136   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1137   // Set limit to 20 to catch situation when something did go wrong and
1138   // bailout Escape Analysis.
1139   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1140 #define CG_BUILD_ITER_LIMIT 20
1141 
1142   // Propagate GlobalEscape and ArgEscape escape states and check that
1143   // we still have non-escaping objects. The method pushs on _worklist
1144   // Field nodes which reference phantom_object.
1145   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1146     return false; // Nothing to do.
1147   }
1148   // Now propagate references to all JavaObject nodes.
1149   int java_objects_length = java_objects_worklist.length();
1150   elapsedTimer time;
1151   bool timeout = false;
1152   int new_edges = 1;
1153   int iterations = 0;
1154   do {
1155     while ((new_edges > 0) &&
1156            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1157       double start_time = time.seconds();
1158       time.start();
1159       new_edges = 0;
1160       // Propagate references to phantom_object for nodes pushed on _worklist
1161       // by find_non_escaped_objects() and find_field_value().
1162       new_edges += add_java_object_edges(phantom_obj, false);
1163       for (int next = 0; next < java_objects_length; ++next) {
1164         JavaObjectNode* ptn = java_objects_worklist.at(next);
1165         new_edges += add_java_object_edges(ptn, true);
1166 
1167 #define SAMPLE_SIZE 4
1168         if ((next % SAMPLE_SIZE) == 0) {
1169           // Each 4 iterations calculate how much time it will take
1170           // to complete graph construction.
1171           time.stop();
1172           // Poll for requests from shutdown mechanism to quiesce compiler
1173           // because Connection graph construction may take long time.
1174           CompileBroker::maybe_block();
1175           double stop_time = time.seconds();
1176           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1177           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1178           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1179             timeout = true;
1180             break; // Timeout
1181           }
1182           start_time = stop_time;
1183           time.start();
1184         }
1185 #undef SAMPLE_SIZE
1186 
1187       }
1188       if (timeout) break;
1189       if (new_edges > 0) {
1190         // Update escape states on each iteration if graph was updated.
1191         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1192           return false; // Nothing to do.
1193         }
1194       }
1195       time.stop();
1196       if (time.seconds() >= EscapeAnalysisTimeout) {
1197         timeout = true;
1198         break;
1199       }
1200     }
1201     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1202       time.start();
1203       // Find fields which have unknown value.
1204       int fields_length = oop_fields_worklist.length();
1205       for (int next = 0; next < fields_length; next++) {
1206         FieldNode* field = oop_fields_worklist.at(next);
1207         if (field->edge_count() == 0) {
1208           new_edges += find_field_value(field);
1209           // This code may added new edges to phantom_object.
1210           // Need an other cycle to propagate references to phantom_object.
1211         }
1212       }
1213       time.stop();
1214       if (time.seconds() >= EscapeAnalysisTimeout) {
1215         timeout = true;
1216         break;
1217       }
1218     } else {
1219       new_edges = 0; // Bailout
1220     }
1221   } while (new_edges > 0);
1222 
1223   // Bailout if passed limits.
1224   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1225     Compile* C = _compile;
1226     if (C->log() != NULL) {
1227       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1228       C->log()->text("%s", timeout ? "time" : "iterations");
1229       C->log()->end_elem(" limit'");
1230     }
1231     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1232            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1233     // Possible infinite build_connection_graph loop,
1234     // bailout (no changes to ideal graph were made).
1235     return false;
1236   }
1237 #ifdef ASSERT
1238   if (Verbose && PrintEscapeAnalysis) {
1239     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1240                   iterations, nodes_size(), ptnodes_worklist.length());
1241   }
1242 #endif
1243 
1244 #undef CG_BUILD_ITER_LIMIT
1245 
1246   // Find fields initialized by NULL for non-escaping Allocations.
1247   int non_escaped_length = non_escaped_worklist.length();
1248   for (int next = 0; next < non_escaped_length; next++) {
1249     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1250     PointsToNode::EscapeState es = ptn->escape_state();
1251     assert(es <= PointsToNode::ArgEscape, "sanity");
1252     if (es == PointsToNode::NoEscape) {
1253       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1254         // Adding references to NULL object does not change escape states
1255         // since it does not escape. Also no fields are added to NULL object.
1256         add_java_object_edges(null_obj, false);
1257       }
1258     }
1259     Node* n = ptn->ideal_node();
1260     if (n->is_Allocate()) {
1261       // The object allocated by this Allocate node will never be
1262       // seen by an other thread. Mark it so that when it is
1263       // expanded no MemBarStoreStore is added.
1264       InitializeNode* ini = n->as_Allocate()->initialization();
1265       if (ini != NULL)
1266         ini->set_does_not_escape();
1267     }
1268   }
1269   return true; // Finished graph construction.
1270 }
1271 
1272 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1273 // and check that we still have non-escaping java objects.
1274 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1275                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1276   GrowableArray<PointsToNode*> escape_worklist;
1277   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1278   int ptnodes_length = ptnodes_worklist.length();
1279   for (int next = 0; next < ptnodes_length; ++next) {
1280     PointsToNode* ptn = ptnodes_worklist.at(next);
1281     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1282         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1283       escape_worklist.push(ptn);
1284     }
1285   }
1286   // Set escape states to referenced nodes (edges list).
1287   while (escape_worklist.length() > 0) {
1288     PointsToNode* ptn = escape_worklist.pop();
1289     PointsToNode::EscapeState es  = ptn->escape_state();
1290     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1291     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1292         es >= PointsToNode::ArgEscape) {
1293       // GlobalEscape or ArgEscape state of field means it has unknown value.
1294       if (add_edge(ptn, phantom_obj)) {
1295         // New edge was added
1296         add_field_uses_to_worklist(ptn->as_Field());
1297       }
1298     }
1299     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1300       PointsToNode* e = i.get();
1301       if (e->is_Arraycopy()) {
1302         assert(ptn->arraycopy_dst(), "sanity");
1303         // Propagate only fields escape state through arraycopy edge.
1304         if (e->fields_escape_state() < field_es) {
1305           set_fields_escape_state(e, field_es);
1306           escape_worklist.push(e);
1307         }
1308       } else if (es >= field_es) {
1309         // fields_escape_state is also set to 'es' if it is less than 'es'.
1310         if (e->escape_state() < es) {
1311           set_escape_state(e, es);
1312           escape_worklist.push(e);
1313         }
1314       } else {
1315         // Propagate field escape state.
1316         bool es_changed = false;
1317         if (e->fields_escape_state() < field_es) {
1318           set_fields_escape_state(e, field_es);
1319           es_changed = true;
1320         }
1321         if ((e->escape_state() < field_es) &&
1322             e->is_Field() && ptn->is_JavaObject() &&
1323             e->as_Field()->is_oop()) {
1324           // Change escape state of referenced fields.
1325           set_escape_state(e, field_es);
1326           es_changed = true;
1327         } else if (e->escape_state() < es) {
1328           set_escape_state(e, es);
1329           es_changed = true;
1330         }
1331         if (es_changed) {
1332           escape_worklist.push(e);
1333         }
1334       }
1335     }
1336   }
1337   // Remove escaped objects from non_escaped list.
1338   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1339     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1340     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1341       non_escaped_worklist.delete_at(next);
1342     }
1343     if (ptn->escape_state() == PointsToNode::NoEscape) {
1344       // Find fields in non-escaped allocations which have unknown value.
1345       find_init_values(ptn, phantom_obj, NULL);
1346     }
1347   }
1348   return (non_escaped_worklist.length() > 0);
1349 }
1350 
1351 // Add all references to JavaObject node by walking over all uses.
1352 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1353   int new_edges = 0;
1354   if (populate_worklist) {
1355     // Populate _worklist by uses of jobj's uses.
1356     for (UseIterator i(jobj); i.has_next(); i.next()) {
1357       PointsToNode* use = i.get();
1358       if (use->is_Arraycopy())
1359         continue;
1360       add_uses_to_worklist(use);
1361       if (use->is_Field() && use->as_Field()->is_oop()) {
1362         // Put on worklist all field's uses (loads) and
1363         // related field nodes (same base and offset).
1364         add_field_uses_to_worklist(use->as_Field());
1365       }
1366     }
1367   }
1368   for (int l = 0; l < _worklist.length(); l++) {
1369     PointsToNode* use = _worklist.at(l);
1370     if (PointsToNode::is_base_use(use)) {
1371       // Add reference from jobj to field and from field to jobj (field's base).
1372       use = PointsToNode::get_use_node(use)->as_Field();
1373       if (add_base(use->as_Field(), jobj)) {
1374         new_edges++;
1375       }
1376       continue;
1377     }
1378     assert(!use->is_JavaObject(), "sanity");
1379     if (use->is_Arraycopy()) {
1380       if (jobj == null_obj) // NULL object does not have field edges
1381         continue;
1382       // Added edge from Arraycopy node to arraycopy's source java object
1383       if (add_edge(use, jobj)) {
1384         jobj->set_arraycopy_src();
1385         new_edges++;
1386       }
1387       // and stop here.
1388       continue;
1389     }
1390     if (!add_edge(use, jobj))
1391       continue; // No new edge added, there was such edge already.
1392     new_edges++;
1393     if (use->is_LocalVar()) {
1394       add_uses_to_worklist(use);
1395       if (use->arraycopy_dst()) {
1396         for (EdgeIterator i(use); i.has_next(); i.next()) {
1397           PointsToNode* e = i.get();
1398           if (e->is_Arraycopy()) {
1399             if (jobj == null_obj) // NULL object does not have field edges
1400               continue;
1401             // Add edge from arraycopy's destination java object to Arraycopy node.
1402             if (add_edge(jobj, e)) {
1403               new_edges++;
1404               jobj->set_arraycopy_dst();
1405             }
1406           }
1407         }
1408       }
1409     } else {
1410       // Added new edge to stored in field values.
1411       // Put on worklist all field's uses (loads) and
1412       // related field nodes (same base and offset).
1413       add_field_uses_to_worklist(use->as_Field());
1414     }
1415   }
1416   _worklist.clear();
1417   _in_worklist.reset();
1418   return new_edges;
1419 }
1420 
1421 // Put on worklist all related field nodes.
1422 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1423   assert(field->is_oop(), "sanity");
1424   int offset = field->offset();
1425   add_uses_to_worklist(field);
1426   // Loop over all bases of this field and push on worklist Field nodes
1427   // with the same offset and base (since they may reference the same field).
1428   for (BaseIterator i(field); i.has_next(); i.next()) {
1429     PointsToNode* base = i.get();
1430     add_fields_to_worklist(field, base);
1431     // Check if the base was source object of arraycopy and go over arraycopy's
1432     // destination objects since values stored to a field of source object are
1433     // accessable by uses (loads) of fields of destination objects.
1434     if (base->arraycopy_src()) {
1435       for (UseIterator j(base); j.has_next(); j.next()) {
1436         PointsToNode* arycp = j.get();
1437         if (arycp->is_Arraycopy()) {
1438           for (UseIterator k(arycp); k.has_next(); k.next()) {
1439             PointsToNode* abase = k.get();
1440             if (abase->arraycopy_dst() && abase != base) {
1441               // Look for the same arraycopy reference.
1442               add_fields_to_worklist(field, abase);
1443             }
1444           }
1445         }
1446       }
1447     }
1448   }
1449 }
1450 
1451 // Put on worklist all related field nodes.
1452 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1453   int offset = field->offset();
1454   if (base->is_LocalVar()) {
1455     for (UseIterator j(base); j.has_next(); j.next()) {
1456       PointsToNode* f = j.get();
1457       if (PointsToNode::is_base_use(f)) { // Field
1458         f = PointsToNode::get_use_node(f);
1459         if (f == field || !f->as_Field()->is_oop())
1460           continue;
1461         int offs = f->as_Field()->offset();
1462         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1463           add_to_worklist(f);
1464         }
1465       }
1466     }
1467   } else {
1468     assert(base->is_JavaObject(), "sanity");
1469     if (// Skip phantom_object since it is only used to indicate that
1470         // this field's content globally escapes.
1471         (base != phantom_obj) &&
1472         // NULL object node does not have fields.
1473         (base != null_obj)) {
1474       for (EdgeIterator i(base); i.has_next(); i.next()) {
1475         PointsToNode* f = i.get();
1476         // Skip arraycopy edge since store to destination object field
1477         // does not update value in source object field.
1478         if (f->is_Arraycopy()) {
1479           assert(base->arraycopy_dst(), "sanity");
1480           continue;
1481         }
1482         if (f == field || !f->as_Field()->is_oop())
1483           continue;
1484         int offs = f->as_Field()->offset();
1485         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1486           add_to_worklist(f);
1487         }
1488       }
1489     }
1490   }
1491 }
1492 
1493 // Find fields which have unknown value.
1494 int ConnectionGraph::find_field_value(FieldNode* field) {
1495   // Escaped fields should have init value already.
1496   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1497   int new_edges = 0;
1498   for (BaseIterator i(field); i.has_next(); i.next()) {
1499     PointsToNode* base = i.get();
1500     if (base->is_JavaObject()) {
1501       // Skip Allocate's fields which will be processed later.
1502       if (base->ideal_node()->is_Allocate())
1503         return 0;
1504       assert(base == null_obj, "only NULL ptr base expected here");
1505     }
1506   }
1507   if (add_edge(field, phantom_obj)) {
1508     // New edge was added
1509     new_edges++;
1510     add_field_uses_to_worklist(field);
1511   }
1512   return new_edges;
1513 }
1514 
1515 // Find fields initializing values for allocations.
1516 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1517   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1518   int new_edges = 0;
1519   Node* alloc = pta->ideal_node();
1520   if (init_val == phantom_obj) {
1521     // Do nothing for Allocate nodes since its fields values are
1522     // "known" unless they are initialized by arraycopy/clone.
1523     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1524       return 0;
1525     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1526 #ifdef ASSERT
1527     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1528       const char* name = alloc->as_CallStaticJava()->_name;
1529       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1530     }
1531 #endif
1532     // Non-escaped allocation returned from Java or runtime call have
1533     // unknown values in fields.
1534     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1535       PointsToNode* field = i.get();
1536       if (field->is_Field() && field->as_Field()->is_oop()) {
1537         if (add_edge(field, phantom_obj)) {
1538           // New edge was added
1539           new_edges++;
1540           add_field_uses_to_worklist(field->as_Field());
1541         }
1542       }
1543     }
1544     return new_edges;
1545   }
1546   assert(init_val == null_obj, "sanity");
1547   // Do nothing for Call nodes since its fields values are unknown.
1548   if (!alloc->is_Allocate())
1549     return 0;
1550 
1551   InitializeNode* ini = alloc->as_Allocate()->initialization();
1552   bool visited_bottom_offset = false;
1553   GrowableArray<int> offsets_worklist;
1554 
1555   // Check if an oop field's initializing value is recorded and add
1556   // a corresponding NULL if field's value if it is not recorded.
1557   // Connection Graph does not record a default initialization by NULL
1558   // captured by Initialize node.
1559   //
1560   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1561     PointsToNode* field = i.get(); // Field (AddP)
1562     if (!field->is_Field() || !field->as_Field()->is_oop())
1563       continue; // Not oop field
1564     int offset = field->as_Field()->offset();
1565     if (offset == Type::OffsetBot) {
1566       if (!visited_bottom_offset) {
1567         // OffsetBot is used to reference array's element,
1568         // always add reference to NULL to all Field nodes since we don't
1569         // known which element is referenced.
1570         if (add_edge(field, null_obj)) {
1571           // New edge was added
1572           new_edges++;
1573           add_field_uses_to_worklist(field->as_Field());
1574           visited_bottom_offset = true;
1575         }
1576       }
1577     } else {
1578       // Check only oop fields.
1579       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1580       if (adr_type->isa_rawptr()) {
1581 #ifdef ASSERT
1582         // Raw pointers are used for initializing stores so skip it
1583         // since it should be recorded already
1584         Node* base = get_addp_base(field->ideal_node());
1585         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1586                (base->in(0) == alloc),"unexpected pointer type");
1587 #endif
1588         continue;
1589       }
1590       if (!offsets_worklist.contains(offset)) {
1591         offsets_worklist.append(offset);
1592         Node* value = NULL;
1593         if (ini != NULL) {
1594           // StoreP::memory_type() == T_ADDRESS
1595           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1596           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1597           // Make sure initializing store has the same type as this AddP.
1598           // This AddP may reference non existing field because it is on a
1599           // dead branch of bimorphic call which is not eliminated yet.
1600           if (store != NULL && store->is_Store() &&
1601               store->as_Store()->memory_type() == ft) {
1602             value = store->in(MemNode::ValueIn);
1603 #ifdef ASSERT
1604             if (VerifyConnectionGraph) {
1605               // Verify that AddP already points to all objects the value points to.
1606               PointsToNode* val = ptnode_adr(value->_idx);
1607               assert((val != NULL), "should be processed already");
1608               PointsToNode* missed_obj = NULL;
1609               if (val->is_JavaObject()) {
1610                 if (!field->points_to(val->as_JavaObject())) {
1611                   missed_obj = val;
1612                 }
1613               } else {
1614                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1615                   tty->print_cr("----------init store has invalid value -----");
1616                   store->dump();
1617                   val->dump();
1618                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1619                 }
1620                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1621                   PointsToNode* obj = j.get();
1622                   if (obj->is_JavaObject()) {
1623                     if (!field->points_to(obj->as_JavaObject())) {
1624                       missed_obj = obj;
1625                       break;
1626                     }
1627                   }
1628                 }
1629               }
1630               if (missed_obj != NULL) {
1631                 tty->print_cr("----------field---------------------------------");
1632                 field->dump();
1633                 tty->print_cr("----------missed referernce to object-----------");
1634                 missed_obj->dump();
1635                 tty->print_cr("----------object referernced by init store -----");
1636                 store->dump();
1637                 val->dump();
1638                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1639               }
1640             }
1641 #endif
1642           } else {
1643             // There could be initializing stores which follow allocation.
1644             // For example, a volatile field store is not collected
1645             // by Initialize node.
1646             //
1647             // Need to check for dependent loads to separate such stores from
1648             // stores which follow loads. For now, add initial value NULL so
1649             // that compare pointers optimization works correctly.
1650           }
1651         }
1652         if (value == NULL) {
1653           // A field's initializing value was not recorded. Add NULL.
1654           if (add_edge(field, null_obj)) {
1655             // New edge was added
1656             new_edges++;
1657             add_field_uses_to_worklist(field->as_Field());
1658           }
1659         }
1660       }
1661     }
1662   }
1663   return new_edges;
1664 }
1665 
1666 // Adjust scalar_replaceable state after Connection Graph is built.
1667 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1668   // Search for non-escaping objects which are not scalar replaceable
1669   // and mark them to propagate the state to referenced objects.
1670 
1671   // 1. An object is not scalar replaceable if the field into which it is
1672   // stored has unknown offset (stored into unknown element of an array).
1673   //
1674   for (UseIterator i(jobj); i.has_next(); i.next()) {
1675     PointsToNode* use = i.get();
1676     if (use->is_Arraycopy()) {
1677       continue;
1678     }
1679     if (use->is_Field()) {
1680       FieldNode* field = use->as_Field();
1681       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1682       if (field->offset() == Type::OffsetBot) {
1683         jobj->set_scalar_replaceable(false);
1684         return;
1685       }
1686       // 2. An object is not scalar replaceable if the field into which it is
1687       // stored has multiple bases one of which is null.
1688       if (field->base_count() > 1) {
1689         for (BaseIterator i(field); i.has_next(); i.next()) {
1690           PointsToNode* base = i.get();
1691           if (base == null_obj) {
1692             jobj->set_scalar_replaceable(false);
1693             return;
1694           }
1695         }
1696       }
1697     }
1698     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1699     // 3. An object is not scalar replaceable if it is merged with other objects.
1700     for (EdgeIterator j(use); j.has_next(); j.next()) {
1701       PointsToNode* ptn = j.get();
1702       if (ptn->is_JavaObject() && ptn != jobj) {
1703         // Mark all objects.
1704         jobj->set_scalar_replaceable(false);
1705          ptn->set_scalar_replaceable(false);
1706       }
1707     }
1708     if (!jobj->scalar_replaceable()) {
1709       return;
1710     }
1711   }
1712 
1713   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1714     if (j.get()->is_Arraycopy()) {
1715       continue;
1716     }
1717 
1718     // Non-escaping object node should point only to field nodes.
1719     FieldNode* field = j.get()->as_Field();
1720     int offset = field->as_Field()->offset();
1721 
1722     // 4. An object is not scalar replaceable if it has a field with unknown
1723     // offset (array's element is accessed in loop).
1724     if (offset == Type::OffsetBot) {
1725       jobj->set_scalar_replaceable(false);
1726       return;
1727     }
1728     // 5. Currently an object is not scalar replaceable if a LoadStore node
1729     // access its field since the field value is unknown after it.
1730     //
1731     Node* n = field->ideal_node();
1732 
1733     // Test for an unsafe access that was parsed as maybe off heap
1734     // (with a CheckCastPP to raw memory).
1735     assert(n->is_AddP(), "expect an address computation");
1736     if (n->in(AddPNode::Base)->is_top() &&
1737         n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) {
1738       assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected");
1739       assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected");
1740       jobj->set_scalar_replaceable(false);
1741       return;
1742     }
1743 
1744     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1745       Node* u = n->fast_out(i);
1746       if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) {
1747         jobj->set_scalar_replaceable(false);
1748         return;
1749       }
1750     }
1751 
1752     // 6. Or the address may point to more then one object. This may produce
1753     // the false positive result (set not scalar replaceable)
1754     // since the flow-insensitive escape analysis can't separate
1755     // the case when stores overwrite the field's value from the case
1756     // when stores happened on different control branches.
1757     //
1758     // Note: it will disable scalar replacement in some cases:
1759     //
1760     //    Point p[] = new Point[1];
1761     //    p[0] = new Point(); // Will be not scalar replaced
1762     //
1763     // but it will save us from incorrect optimizations in next cases:
1764     //
1765     //    Point p[] = new Point[1];
1766     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1767     //
1768     if (field->base_count() > 1) {
1769       for (BaseIterator i(field); i.has_next(); i.next()) {
1770         PointsToNode* base = i.get();
1771         // Don't take into account LocalVar nodes which
1772         // may point to only one object which should be also
1773         // this field's base by now.
1774         if (base->is_JavaObject() && base != jobj) {
1775           // Mark all bases.
1776           jobj->set_scalar_replaceable(false);
1777           base->set_scalar_replaceable(false);
1778         }
1779       }
1780     }
1781   }
1782 }
1783 
1784 #ifdef ASSERT
1785 void ConnectionGraph::verify_connection_graph(
1786                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1787                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1788                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1789                          GrowableArray<Node*>& addp_worklist) {
1790   // Verify that graph is complete - no new edges could be added.
1791   int java_objects_length = java_objects_worklist.length();
1792   int non_escaped_length  = non_escaped_worklist.length();
1793   int new_edges = 0;
1794   for (int next = 0; next < java_objects_length; ++next) {
1795     JavaObjectNode* ptn = java_objects_worklist.at(next);
1796     new_edges += add_java_object_edges(ptn, true);
1797   }
1798   assert(new_edges == 0, "graph was not complete");
1799   // Verify that escape state is final.
1800   int length = non_escaped_worklist.length();
1801   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1802   assert((non_escaped_length == non_escaped_worklist.length()) &&
1803          (non_escaped_length == length) &&
1804          (_worklist.length() == 0), "escape state was not final");
1805 
1806   // Verify fields information.
1807   int addp_length = addp_worklist.length();
1808   for (int next = 0; next < addp_length; ++next ) {
1809     Node* n = addp_worklist.at(next);
1810     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1811     if (field->is_oop()) {
1812       // Verify that field has all bases
1813       Node* base = get_addp_base(n);
1814       PointsToNode* ptn = ptnode_adr(base->_idx);
1815       if (ptn->is_JavaObject()) {
1816         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1817       } else {
1818         assert(ptn->is_LocalVar(), "sanity");
1819         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1820           PointsToNode* e = i.get();
1821           if (e->is_JavaObject()) {
1822             assert(field->has_base(e->as_JavaObject()), "sanity");
1823           }
1824         }
1825       }
1826       // Verify that all fields have initializing values.
1827       if (field->edge_count() == 0) {
1828         tty->print_cr("----------field does not have references----------");
1829         field->dump();
1830         for (BaseIterator i(field); i.has_next(); i.next()) {
1831           PointsToNode* base = i.get();
1832           tty->print_cr("----------field has next base---------------------");
1833           base->dump();
1834           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1835             tty->print_cr("----------base has fields-------------------------");
1836             for (EdgeIterator j(base); j.has_next(); j.next()) {
1837               j.get()->dump();
1838             }
1839             tty->print_cr("----------base has references---------------------");
1840             for (UseIterator j(base); j.has_next(); j.next()) {
1841               j.get()->dump();
1842             }
1843           }
1844         }
1845         for (UseIterator i(field); i.has_next(); i.next()) {
1846           i.get()->dump();
1847         }
1848         assert(field->edge_count() > 0, "sanity");
1849       }
1850     }
1851   }
1852 }
1853 #endif
1854 
1855 // Optimize ideal graph.
1856 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1857                                            GrowableArray<Node*>& storestore_worklist) {
1858   Compile* C = _compile;
1859   PhaseIterGVN* igvn = _igvn;
1860   if (EliminateLocks) {
1861     // Mark locks before changing ideal graph.
1862     int cnt = C->macro_count();
1863     for( int i=0; i < cnt; i++ ) {
1864       Node *n = C->macro_node(i);
1865       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1866         AbstractLockNode* alock = n->as_AbstractLock();
1867         if (!alock->is_non_esc_obj()) {
1868           if (not_global_escape(alock->obj_node())) {
1869             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1870             // The lock could be marked eliminated by lock coarsening
1871             // code during first IGVN before EA. Replace coarsened flag
1872             // to eliminate all associated locks/unlocks.
1873 #ifdef ASSERT
1874             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1875 #endif
1876             alock->set_non_esc_obj();
1877           }
1878         }
1879       }
1880     }
1881   }
1882 
1883   if (OptimizePtrCompare) {
1884     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1885     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1886     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1887     // Optimize objects compare.
1888     while (ptr_cmp_worklist.length() != 0) {
1889       Node *n = ptr_cmp_worklist.pop();
1890       Node *res = optimize_ptr_compare(n);
1891       if (res != NULL) {
1892 #ifndef PRODUCT
1893         if (PrintOptimizePtrCompare) {
1894           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1895           if (Verbose) {
1896             n->dump(1);
1897           }
1898         }
1899 #endif
1900         igvn->replace_node(n, res);
1901       }
1902     }
1903     // cleanup
1904     if (_pcmp_neq->outcnt() == 0)
1905       igvn->hash_delete(_pcmp_neq);
1906     if (_pcmp_eq->outcnt()  == 0)
1907       igvn->hash_delete(_pcmp_eq);
1908   }
1909 
1910   // For MemBarStoreStore nodes added in library_call.cpp, check
1911   // escape status of associated AllocateNode and optimize out
1912   // MemBarStoreStore node if the allocated object never escapes.
1913   while (storestore_worklist.length() != 0) {
1914     Node *n = storestore_worklist.pop();
1915     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1916     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1917     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1918     if (not_global_escape(alloc)) {
1919       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1920       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1921       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1922       igvn->register_new_node_with_optimizer(mb);
1923       igvn->replace_node(storestore, mb);
1924     }
1925   }
1926 }
1927 
1928 // Optimize objects compare.
1929 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1930   assert(OptimizePtrCompare, "sanity");
1931   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1932   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1933   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1934   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1935   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1936   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1937 
1938   // Check simple cases first.
1939   if (jobj1 != NULL) {
1940     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1941       if (jobj1 == jobj2) {
1942         // Comparing the same not escaping object.
1943         return _pcmp_eq;
1944       }
1945       Node* obj = jobj1->ideal_node();
1946       // Comparing not escaping allocation.
1947       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1948           !ptn2->points_to(jobj1)) {
1949         return _pcmp_neq; // This includes nullness check.
1950       }
1951     }
1952   }
1953   if (jobj2 != NULL) {
1954     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1955       Node* obj = jobj2->ideal_node();
1956       // Comparing not escaping allocation.
1957       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1958           !ptn1->points_to(jobj2)) {
1959         return _pcmp_neq; // This includes nullness check.
1960       }
1961     }
1962   }
1963   if (jobj1 != NULL && jobj1 != phantom_obj &&
1964       jobj2 != NULL && jobj2 != phantom_obj &&
1965       jobj1->ideal_node()->is_Con() &&
1966       jobj2->ideal_node()->is_Con()) {
1967     // Klass or String constants compare. Need to be careful with
1968     // compressed pointers - compare types of ConN and ConP instead of nodes.
1969     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1970     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1971     if (t1->make_ptr() == t2->make_ptr()) {
1972       return _pcmp_eq;
1973     } else {
1974       return _pcmp_neq;
1975     }
1976   }
1977   if (ptn1->meet(ptn2)) {
1978     return NULL; // Sets are not disjoint
1979   }
1980 
1981   // Sets are disjoint.
1982   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1983   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1984   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1985   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1986   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
1987       (set2_has_unknown_ptr && set1_has_null_ptr)) {
1988     // Check nullness of unknown object.
1989     return NULL;
1990   }
1991 
1992   // Disjointness by itself is not sufficient since
1993   // alias analysis is not complete for escaped objects.
1994   // Disjoint sets are definitely unrelated only when
1995   // at least one set has only not escaping allocations.
1996   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1997     if (ptn1->non_escaping_allocation()) {
1998       return _pcmp_neq;
1999     }
2000   }
2001   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
2002     if (ptn2->non_escaping_allocation()) {
2003       return _pcmp_neq;
2004     }
2005   }
2006   return NULL;
2007 }
2008 
2009 // Connection Graph constuction functions.
2010 
2011 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
2012   PointsToNode* ptadr = _nodes.at(n->_idx);
2013   if (ptadr != NULL) {
2014     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
2015     return;
2016   }
2017   Compile* C = _compile;
2018   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2019   _nodes.at_put(n->_idx, ptadr);
2020 }
2021 
2022 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2023   PointsToNode* ptadr = _nodes.at(n->_idx);
2024   if (ptadr != NULL) {
2025     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2026     return;
2027   }
2028   Compile* C = _compile;
2029   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2030   _nodes.at_put(n->_idx, ptadr);
2031 }
2032 
2033 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2034   PointsToNode* ptadr = _nodes.at(n->_idx);
2035   if (ptadr != NULL) {
2036     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2037     return;
2038   }
2039   bool unsafe = false;
2040   bool is_oop = is_oop_field(n, offset, &unsafe);
2041   if (unsafe) {
2042     es = PointsToNode::GlobalEscape;
2043   }
2044   Compile* C = _compile;
2045   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2046   _nodes.at_put(n->_idx, field);
2047 }
2048 
2049 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2050                                     PointsToNode* src, PointsToNode* dst) {
2051   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2052   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2053   PointsToNode* ptadr = _nodes.at(n->_idx);
2054   if (ptadr != NULL) {
2055     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2056     return;
2057   }
2058   Compile* C = _compile;
2059   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2060   _nodes.at_put(n->_idx, ptadr);
2061   // Add edge from arraycopy node to source object.
2062   (void)add_edge(ptadr, src);
2063   src->set_arraycopy_src();
2064   // Add edge from destination object to arraycopy node.
2065   (void)add_edge(dst, ptadr);
2066   dst->set_arraycopy_dst();
2067 }
2068 
2069 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2070   const Type* adr_type = n->as_AddP()->bottom_type();
2071   BasicType bt = T_INT;
2072   if (offset == Type::OffsetBot) {
2073     // Check only oop fields.
2074     if (!adr_type->isa_aryptr() ||
2075         (adr_type->isa_aryptr()->klass() == NULL) ||
2076          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2077       // OffsetBot is used to reference array's element. Ignore first AddP.
2078       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2079         bt = T_OBJECT;
2080       }
2081     }
2082   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2083     if (adr_type->isa_instptr()) {
2084       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2085       if (field != NULL) {
2086         bt = field->layout_type();
2087       } else {
2088         // Check for unsafe oop field access
2089         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2090             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2091             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2092             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2093           bt = T_OBJECT;
2094           (*unsafe) = true;
2095         }
2096       }
2097     } else if (adr_type->isa_aryptr()) {
2098       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2099         // Ignore array length load.
2100       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2101         // Ignore first AddP.
2102       } else {
2103         const Type* elemtype = adr_type->isa_aryptr()->elem();
2104         bt = elemtype->array_element_basic_type();
2105       }
2106     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2107       // Allocation initialization, ThreadLocal field access, unsafe access
2108       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2109           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2110           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2111           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2112         bt = T_OBJECT;
2113       }
2114     }
2115   }
2116   // Note: T_NARROWOOP is not classed as a real reference type
2117   return (is_reference_type(bt) || bt == T_NARROWOOP);
2118 }
2119 
2120 // Returns unique pointed java object or NULL.
2121 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2122   assert(!_collecting, "should not call when contructed graph");
2123   // If the node was created after the escape computation we can't answer.
2124   uint idx = n->_idx;
2125   if (idx >= nodes_size()) {
2126     return NULL;
2127   }
2128   PointsToNode* ptn = ptnode_adr(idx);
2129   if (ptn == NULL) {
2130     return NULL;
2131   }
2132   if (ptn->is_JavaObject()) {
2133     return ptn->as_JavaObject();
2134   }
2135   assert(ptn->is_LocalVar(), "sanity");
2136   // Check all java objects it points to.
2137   JavaObjectNode* jobj = NULL;
2138   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2139     PointsToNode* e = i.get();
2140     if (e->is_JavaObject()) {
2141       if (jobj == NULL) {
2142         jobj = e->as_JavaObject();
2143       } else if (jobj != e) {
2144         return NULL;
2145       }
2146     }
2147   }
2148   return jobj;
2149 }
2150 
2151 // Return true if this node points only to non-escaping allocations.
2152 bool PointsToNode::non_escaping_allocation() {
2153   if (is_JavaObject()) {
2154     Node* n = ideal_node();
2155     if (n->is_Allocate() || n->is_CallStaticJava()) {
2156       return (escape_state() == PointsToNode::NoEscape);
2157     } else {
2158       return false;
2159     }
2160   }
2161   assert(is_LocalVar(), "sanity");
2162   // Check all java objects it points to.
2163   for (EdgeIterator i(this); i.has_next(); i.next()) {
2164     PointsToNode* e = i.get();
2165     if (e->is_JavaObject()) {
2166       Node* n = e->ideal_node();
2167       if ((e->escape_state() != PointsToNode::NoEscape) ||
2168           !(n->is_Allocate() || n->is_CallStaticJava())) {
2169         return false;
2170       }
2171     }
2172   }
2173   return true;
2174 }
2175 
2176 // Return true if we know the node does not escape globally.
2177 bool ConnectionGraph::not_global_escape(Node *n) {
2178   assert(!_collecting, "should not call during graph construction");
2179   // If the node was created after the escape computation we can't answer.
2180   uint idx = n->_idx;
2181   if (idx >= nodes_size()) {
2182     return false;
2183   }
2184   PointsToNode* ptn = ptnode_adr(idx);
2185   if (ptn == NULL) {
2186     return false; // not in congraph (e.g. ConI)
2187   }
2188   PointsToNode::EscapeState es = ptn->escape_state();
2189   // If we have already computed a value, return it.
2190   if (es >= PointsToNode::GlobalEscape)
2191     return false;
2192   if (ptn->is_JavaObject()) {
2193     return true; // (es < PointsToNode::GlobalEscape);
2194   }
2195   assert(ptn->is_LocalVar(), "sanity");
2196   // Check all java objects it points to.
2197   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2198     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2199       return false;
2200   }
2201   return true;
2202 }
2203 
2204 
2205 // Helper functions
2206 
2207 // Return true if this node points to specified node or nodes it points to.
2208 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2209   if (is_JavaObject()) {
2210     return (this == ptn);
2211   }
2212   assert(is_LocalVar() || is_Field(), "sanity");
2213   for (EdgeIterator i(this); i.has_next(); i.next()) {
2214     if (i.get() == ptn)
2215       return true;
2216   }
2217   return false;
2218 }
2219 
2220 // Return true if one node points to an other.
2221 bool PointsToNode::meet(PointsToNode* ptn) {
2222   if (this == ptn) {
2223     return true;
2224   } else if (ptn->is_JavaObject()) {
2225     return this->points_to(ptn->as_JavaObject());
2226   } else if (this->is_JavaObject()) {
2227     return ptn->points_to(this->as_JavaObject());
2228   }
2229   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2230   int ptn_count =  ptn->edge_count();
2231   for (EdgeIterator i(this); i.has_next(); i.next()) {
2232     PointsToNode* this_e = i.get();
2233     for (int j = 0; j < ptn_count; j++) {
2234       if (this_e == ptn->edge(j))
2235         return true;
2236     }
2237   }
2238   return false;
2239 }
2240 
2241 #ifdef ASSERT
2242 // Return true if bases point to this java object.
2243 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2244   for (BaseIterator i(this); i.has_next(); i.next()) {
2245     if (i.get() == jobj)
2246       return true;
2247   }
2248   return false;
2249 }
2250 #endif
2251 
2252 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2253   const Type *adr_type = phase->type(adr);
2254   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2255       adr->in(AddPNode::Address)->is_Proj() &&
2256       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2257     // We are computing a raw address for a store captured by an Initialize
2258     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2259     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2260     assert(offs != Type::OffsetBot ||
2261            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2262            "offset must be a constant or it is initialization of array");
2263     return offs;
2264   }
2265   const TypePtr *t_ptr = adr_type->isa_ptr();
2266   assert(t_ptr != NULL, "must be a pointer type");
2267   return t_ptr->offset();
2268 }
2269 
2270 Node* ConnectionGraph::get_addp_base(Node *addp) {
2271   assert(addp->is_AddP(), "must be AddP");
2272   //
2273   // AddP cases for Base and Address inputs:
2274   // case #1. Direct object's field reference:
2275   //     Allocate
2276   //       |
2277   //     Proj #5 ( oop result )
2278   //       |
2279   //     CheckCastPP (cast to instance type)
2280   //      | |
2281   //     AddP  ( base == address )
2282   //
2283   // case #2. Indirect object's field reference:
2284   //      Phi
2285   //       |
2286   //     CastPP (cast to instance type)
2287   //      | |
2288   //     AddP  ( base == address )
2289   //
2290   // case #3. Raw object's field reference for Initialize node:
2291   //      Allocate
2292   //        |
2293   //      Proj #5 ( oop result )
2294   //  top   |
2295   //     \  |
2296   //     AddP  ( base == top )
2297   //
2298   // case #4. Array's element reference:
2299   //   {CheckCastPP | CastPP}
2300   //     |  | |
2301   //     |  AddP ( array's element offset )
2302   //     |  |
2303   //     AddP ( array's offset )
2304   //
2305   // case #5. Raw object's field reference for arraycopy stub call:
2306   //          The inline_native_clone() case when the arraycopy stub is called
2307   //          after the allocation before Initialize and CheckCastPP nodes.
2308   //      Allocate
2309   //        |
2310   //      Proj #5 ( oop result )
2311   //       | |
2312   //       AddP  ( base == address )
2313   //
2314   // case #6. Constant Pool, ThreadLocal, CastX2P or
2315   //          Raw object's field reference:
2316   //      {ConP, ThreadLocal, CastX2P, raw Load}
2317   //  top   |
2318   //     \  |
2319   //     AddP  ( base == top )
2320   //
2321   // case #7. Klass's field reference.
2322   //      LoadKlass
2323   //       | |
2324   //       AddP  ( base == address )
2325   //
2326   // case #8. narrow Klass's field reference.
2327   //      LoadNKlass
2328   //       |
2329   //      DecodeN
2330   //       | |
2331   //       AddP  ( base == address )
2332   //
2333   // case #9. Mixed unsafe access
2334   //    {instance}
2335   //        |
2336   //      CheckCastPP (raw)
2337   //  top   |
2338   //     \  |
2339   //     AddP  ( base == top )
2340   //
2341   Node *base = addp->in(AddPNode::Base);
2342   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
2343     base = addp->in(AddPNode::Address);
2344     while (base->is_AddP()) {
2345       // Case #6 (unsafe access) may have several chained AddP nodes.
2346       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2347       base = base->in(AddPNode::Address);
2348     }
2349     if (base->Opcode() == Op_CheckCastPP &&
2350         base->bottom_type()->isa_rawptr() &&
2351         _igvn->type(base->in(1))->isa_oopptr()) {
2352       base = base->in(1); // Case #9
2353     } else {
2354       Node* uncast_base = base->uncast();
2355       int opcode = uncast_base->Opcode();
2356       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2357              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2358              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2359              (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2360     }
2361   }
2362   return base;
2363 }
2364 
2365 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2366   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2367   Node* addp2 = addp->raw_out(0);
2368   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2369       addp2->in(AddPNode::Base) == n &&
2370       addp2->in(AddPNode::Address) == addp) {
2371     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2372     //
2373     // Find array's offset to push it on worklist first and
2374     // as result process an array's element offset first (pushed second)
2375     // to avoid CastPP for the array's offset.
2376     // Otherwise the inserted CastPP (LocalVar) will point to what
2377     // the AddP (Field) points to. Which would be wrong since
2378     // the algorithm expects the CastPP has the same point as
2379     // as AddP's base CheckCastPP (LocalVar).
2380     //
2381     //    ArrayAllocation
2382     //     |
2383     //    CheckCastPP
2384     //     |
2385     //    memProj (from ArrayAllocation CheckCastPP)
2386     //     |  ||
2387     //     |  ||   Int (element index)
2388     //     |  ||    |   ConI (log(element size))
2389     //     |  ||    |   /
2390     //     |  ||   LShift
2391     //     |  ||  /
2392     //     |  AddP (array's element offset)
2393     //     |  |
2394     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2395     //     | / /
2396     //     AddP (array's offset)
2397     //      |
2398     //     Load/Store (memory operation on array's element)
2399     //
2400     return addp2;
2401   }
2402   return NULL;
2403 }
2404 
2405 //
2406 // Adjust the type and inputs of an AddP which computes the
2407 // address of a field of an instance
2408 //
2409 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2410   PhaseGVN* igvn = _igvn;
2411   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2412   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2413   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2414   if (t == NULL) {
2415     // We are computing a raw address for a store captured by an Initialize
2416     // compute an appropriate address type (cases #3 and #5).
2417     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2418     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2419     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2420     assert(offs != Type::OffsetBot, "offset must be a constant");
2421     t = base_t->add_offset(offs)->is_oopptr();
2422   }
2423   int inst_id =  base_t->instance_id();
2424   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2425                              "old type must be non-instance or match new type");
2426 
2427   // The type 't' could be subclass of 'base_t'.
2428   // As result t->offset() could be large then base_t's size and it will
2429   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2430   // constructor verifies correctness of the offset.
2431   //
2432   // It could happened on subclass's branch (from the type profiling
2433   // inlining) which was not eliminated during parsing since the exactness
2434   // of the allocation type was not propagated to the subclass type check.
2435   //
2436   // Or the type 't' could be not related to 'base_t' at all.
2437   // It could happened when CHA type is different from MDO type on a dead path
2438   // (for example, from instanceof check) which is not collapsed during parsing.
2439   //
2440   // Do nothing for such AddP node and don't process its users since
2441   // this code branch will go away.
2442   //
2443   if (!t->is_known_instance() &&
2444       !base_t->klass()->is_subtype_of(t->klass())) {
2445      return false; // bail out
2446   }
2447   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2448   // Do NOT remove the next line: ensure a new alias index is allocated
2449   // for the instance type. Note: C++ will not remove it since the call
2450   // has side effect.
2451   int alias_idx = _compile->get_alias_index(tinst);
2452   igvn->set_type(addp, tinst);
2453   // record the allocation in the node map
2454   set_map(addp, get_map(base->_idx));
2455   // Set addp's Base and Address to 'base'.
2456   Node *abase = addp->in(AddPNode::Base);
2457   Node *adr   = addp->in(AddPNode::Address);
2458   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2459       adr->in(0)->_idx == (uint)inst_id) {
2460     // Skip AddP cases #3 and #5.
2461   } else {
2462     assert(!abase->is_top(), "sanity"); // AddP case #3
2463     if (abase != base) {
2464       igvn->hash_delete(addp);
2465       addp->set_req(AddPNode::Base, base);
2466       if (abase == adr) {
2467         addp->set_req(AddPNode::Address, base);
2468       } else {
2469         // AddP case #4 (adr is array's element offset AddP node)
2470 #ifdef ASSERT
2471         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2472         assert(adr->is_AddP() && atype != NULL &&
2473                atype->instance_id() == inst_id, "array's element offset should be processed first");
2474 #endif
2475       }
2476       igvn->hash_insert(addp);
2477     }
2478   }
2479   // Put on IGVN worklist since at least addp's type was changed above.
2480   record_for_optimizer(addp);
2481   return true;
2482 }
2483 
2484 //
2485 // Create a new version of orig_phi if necessary. Returns either the newly
2486 // created phi or an existing phi.  Sets create_new to indicate whether a new
2487 // phi was created.  Cache the last newly created phi in the node map.
2488 //
2489 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2490   Compile *C = _compile;
2491   PhaseGVN* igvn = _igvn;
2492   new_created = false;
2493   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2494   // nothing to do if orig_phi is bottom memory or matches alias_idx
2495   if (phi_alias_idx == alias_idx) {
2496     return orig_phi;
2497   }
2498   // Have we recently created a Phi for this alias index?
2499   PhiNode *result = get_map_phi(orig_phi->_idx);
2500   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2501     return result;
2502   }
2503   // Previous check may fail when the same wide memory Phi was split into Phis
2504   // for different memory slices. Search all Phis for this region.
2505   if (result != NULL) {
2506     Node* region = orig_phi->in(0);
2507     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2508       Node* phi = region->fast_out(i);
2509       if (phi->is_Phi() &&
2510           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2511         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2512         return phi->as_Phi();
2513       }
2514     }
2515   }
2516   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2517     if (C->do_escape_analysis() == true && !C->failing()) {
2518       // Retry compilation without escape analysis.
2519       // If this is the first failure, the sentinel string will "stick"
2520       // to the Compile object, and the C2Compiler will see it and retry.
2521       C->record_failure(C2Compiler::retry_no_escape_analysis());
2522     }
2523     return NULL;
2524   }
2525   orig_phi_worklist.append_if_missing(orig_phi);
2526   const TypePtr *atype = C->get_adr_type(alias_idx);
2527   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2528   C->copy_node_notes_to(result, orig_phi);
2529   igvn->set_type(result, result->bottom_type());
2530   record_for_optimizer(result);
2531   set_map(orig_phi, result);
2532   new_created = true;
2533   return result;
2534 }
2535 
2536 //
2537 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2538 // specified alias index.
2539 //
2540 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2541   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2542   Compile *C = _compile;
2543   PhaseGVN* igvn = _igvn;
2544   bool new_phi_created;
2545   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2546   if (!new_phi_created) {
2547     return result;
2548   }
2549   GrowableArray<PhiNode *>  phi_list;
2550   GrowableArray<uint>  cur_input;
2551   PhiNode *phi = orig_phi;
2552   uint idx = 1;
2553   bool finished = false;
2554   while(!finished) {
2555     while (idx < phi->req()) {
2556       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2557       if (mem != NULL && mem->is_Phi()) {
2558         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2559         if (new_phi_created) {
2560           // found an phi for which we created a new split, push current one on worklist and begin
2561           // processing new one
2562           phi_list.push(phi);
2563           cur_input.push(idx);
2564           phi = mem->as_Phi();
2565           result = newphi;
2566           idx = 1;
2567           continue;
2568         } else {
2569           mem = newphi;
2570         }
2571       }
2572       if (C->failing()) {
2573         return NULL;
2574       }
2575       result->set_req(idx++, mem);
2576     }
2577 #ifdef ASSERT
2578     // verify that the new Phi has an input for each input of the original
2579     assert( phi->req() == result->req(), "must have same number of inputs.");
2580     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2581 #endif
2582     // Check if all new phi's inputs have specified alias index.
2583     // Otherwise use old phi.
2584     for (uint i = 1; i < phi->req(); i++) {
2585       Node* in = result->in(i);
2586       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2587     }
2588     // we have finished processing a Phi, see if there are any more to do
2589     finished = (phi_list.length() == 0 );
2590     if (!finished) {
2591       phi = phi_list.pop();
2592       idx = cur_input.pop();
2593       PhiNode *prev_result = get_map_phi(phi->_idx);
2594       prev_result->set_req(idx++, result);
2595       result = prev_result;
2596     }
2597   }
2598   return result;
2599 }
2600 
2601 //
2602 // The next methods are derived from methods in MemNode.
2603 //
2604 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2605   Node *mem = mmem;
2606   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2607   // means an array I have not precisely typed yet.  Do not do any
2608   // alias stuff with it any time soon.
2609   if (toop->base() != Type::AnyPtr &&
2610       !(toop->klass() != NULL &&
2611         toop->klass()->is_java_lang_Object() &&
2612         toop->offset() == Type::OffsetBot)) {
2613     mem = mmem->memory_at(alias_idx);
2614     // Update input if it is progress over what we have now
2615   }
2616   return mem;
2617 }
2618 
2619 //
2620 // Move memory users to their memory slices.
2621 //
2622 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2623   Compile* C = _compile;
2624   PhaseGVN* igvn = _igvn;
2625   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2626   assert(tp != NULL, "ptr type");
2627   int alias_idx = C->get_alias_index(tp);
2628   int general_idx = C->get_general_index(alias_idx);
2629 
2630   // Move users first
2631   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2632     Node* use = n->fast_out(i);
2633     if (use->is_MergeMem()) {
2634       MergeMemNode* mmem = use->as_MergeMem();
2635       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2636       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2637         continue; // Nothing to do
2638       }
2639       // Replace previous general reference to mem node.
2640       uint orig_uniq = C->unique();
2641       Node* m = find_inst_mem(n, general_idx, orig_phis);
2642       assert(orig_uniq == C->unique(), "no new nodes");
2643       mmem->set_memory_at(general_idx, m);
2644       --imax;
2645       --i;
2646     } else if (use->is_MemBar()) {
2647       assert(!use->is_Initialize(), "initializing stores should not be moved");
2648       if (use->req() > MemBarNode::Precedent &&
2649           use->in(MemBarNode::Precedent) == n) {
2650         // Don't move related membars.
2651         record_for_optimizer(use);
2652         continue;
2653       }
2654       tp = use->as_MemBar()->adr_type()->isa_ptr();
2655       if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
2656           alias_idx == general_idx) {
2657         continue; // Nothing to do
2658       }
2659       // Move to general memory slice.
2660       uint orig_uniq = C->unique();
2661       Node* m = find_inst_mem(n, general_idx, orig_phis);
2662       assert(orig_uniq == C->unique(), "no new nodes");
2663       igvn->hash_delete(use);
2664       imax -= use->replace_edge(n, m);
2665       igvn->hash_insert(use);
2666       record_for_optimizer(use);
2667       --i;
2668 #ifdef ASSERT
2669     } else if (use->is_Mem()) {
2670       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2671         // Don't move related cardmark.
2672         continue;
2673       }
2674       // Memory nodes should have new memory input.
2675       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2676       assert(tp != NULL, "ptr type");
2677       int idx = C->get_alias_index(tp);
2678       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2679              "Following memory nodes should have new memory input or be on the same memory slice");
2680     } else if (use->is_Phi()) {
2681       // Phi nodes should be split and moved already.
2682       tp = use->as_Phi()->adr_type()->isa_ptr();
2683       assert(tp != NULL, "ptr type");
2684       int idx = C->get_alias_index(tp);
2685       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2686     } else {
2687       use->dump();
2688       assert(false, "should not be here");
2689 #endif
2690     }
2691   }
2692 }
2693 
2694 //
2695 // Search memory chain of "mem" to find a MemNode whose address
2696 // is the specified alias index.
2697 //
2698 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2699   if (orig_mem == NULL)
2700     return orig_mem;
2701   Compile* C = _compile;
2702   PhaseGVN* igvn = _igvn;
2703   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2704   bool is_instance = (toop != NULL) && toop->is_known_instance();
2705   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
2706   Node *prev = NULL;
2707   Node *result = orig_mem;
2708   while (prev != result) {
2709     prev = result;
2710     if (result == start_mem)
2711       break;  // hit one of our sentinels
2712     if (result->is_Mem()) {
2713       const Type *at = igvn->type(result->in(MemNode::Address));
2714       if (at == Type::TOP)
2715         break; // Dead
2716       assert (at->isa_ptr() != NULL, "pointer type required.");
2717       int idx = C->get_alias_index(at->is_ptr());
2718       if (idx == alias_idx)
2719         break; // Found
2720       if (!is_instance && (at->isa_oopptr() == NULL ||
2721                            !at->is_oopptr()->is_known_instance())) {
2722         break; // Do not skip store to general memory slice.
2723       }
2724       result = result->in(MemNode::Memory);
2725     }
2726     if (!is_instance)
2727       continue;  // don't search further for non-instance types
2728     // skip over a call which does not affect this memory slice
2729     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2730       Node *proj_in = result->in(0);
2731       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2732         break;  // hit one of our sentinels
2733       } else if (proj_in->is_Call()) {
2734         // ArrayCopy node processed here as well
2735         CallNode *call = proj_in->as_Call();
2736         if (!call->may_modify(toop, igvn)) {
2737           result = call->in(TypeFunc::Memory);
2738         }
2739       } else if (proj_in->is_Initialize()) {
2740         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2741         // Stop if this is the initialization for the object instance which
2742         // which contains this memory slice, otherwise skip over it.
2743         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2744           result = proj_in->in(TypeFunc::Memory);
2745         }
2746       } else if (proj_in->is_MemBar()) {
2747         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2748             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2749             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2750           // clone
2751           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2752           if (ac->may_modify(toop, igvn)) {
2753             break;
2754           }
2755         }
2756         result = proj_in->in(TypeFunc::Memory);
2757       }
2758     } else if (result->is_MergeMem()) {
2759       MergeMemNode *mmem = result->as_MergeMem();
2760       result = step_through_mergemem(mmem, alias_idx, toop);
2761       if (result == mmem->base_memory()) {
2762         // Didn't find instance memory, search through general slice recursively.
2763         result = mmem->memory_at(C->get_general_index(alias_idx));
2764         result = find_inst_mem(result, alias_idx, orig_phis);
2765         if (C->failing()) {
2766           return NULL;
2767         }
2768         mmem->set_memory_at(alias_idx, result);
2769       }
2770     } else if (result->is_Phi() &&
2771                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2772       Node *un = result->as_Phi()->unique_input(igvn);
2773       if (un != NULL) {
2774         orig_phis.append_if_missing(result->as_Phi());
2775         result = un;
2776       } else {
2777         break;
2778       }
2779     } else if (result->is_ClearArray()) {
2780       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2781         // Can not bypass initialization of the instance
2782         // we are looking for.
2783         break;
2784       }
2785       // Otherwise skip it (the call updated 'result' value).
2786     } else if (result->Opcode() == Op_SCMemProj) {
2787       Node* mem = result->in(0);
2788       Node* adr = NULL;
2789       if (mem->is_LoadStore()) {
2790         adr = mem->in(MemNode::Address);
2791       } else {
2792         assert(mem->Opcode() == Op_EncodeISOArray ||
2793                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2794         adr = mem->in(3); // Memory edge corresponds to destination array
2795       }
2796       const Type *at = igvn->type(adr);
2797       if (at != Type::TOP) {
2798         assert(at->isa_ptr() != NULL, "pointer type required.");
2799         int idx = C->get_alias_index(at->is_ptr());
2800         if (idx == alias_idx) {
2801           // Assert in debug mode
2802           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2803           break; // In product mode return SCMemProj node
2804         }
2805       }
2806       result = mem->in(MemNode::Memory);
2807     } else if (result->Opcode() == Op_StrInflatedCopy) {
2808       Node* adr = result->in(3); // Memory edge corresponds to destination array
2809       const Type *at = igvn->type(adr);
2810       if (at != Type::TOP) {
2811         assert(at->isa_ptr() != NULL, "pointer type required.");
2812         int idx = C->get_alias_index(at->is_ptr());
2813         if (idx == alias_idx) {
2814           // Assert in debug mode
2815           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2816           break; // In product mode return SCMemProj node
2817         }
2818       }
2819       result = result->in(MemNode::Memory);
2820     }
2821   }
2822   if (result->is_Phi()) {
2823     PhiNode *mphi = result->as_Phi();
2824     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2825     const TypePtr *t = mphi->adr_type();
2826     if (!is_instance) {
2827       // Push all non-instance Phis on the orig_phis worklist to update inputs
2828       // during Phase 4 if needed.
2829       orig_phis.append_if_missing(mphi);
2830     } else if (C->get_alias_index(t) != alias_idx) {
2831       // Create a new Phi with the specified alias index type.
2832       result = split_memory_phi(mphi, alias_idx, orig_phis);
2833     }
2834   }
2835   // the result is either MemNode, PhiNode, InitializeNode.
2836   return result;
2837 }
2838 
2839 //
2840 //  Convert the types of unescaped object to instance types where possible,
2841 //  propagate the new type information through the graph, and update memory
2842 //  edges and MergeMem inputs to reflect the new type.
2843 //
2844 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2845 //  The processing is done in 4 phases:
2846 //
2847 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2848 //            types for the CheckCastPP for allocations where possible.
2849 //            Propagate the new types through users as follows:
2850 //               casts and Phi:  push users on alloc_worklist
2851 //               AddP:  cast Base and Address inputs to the instance type
2852 //                      push any AddP users on alloc_worklist and push any memnode
2853 //                      users onto memnode_worklist.
2854 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2855 //            search the Memory chain for a store with the appropriate type
2856 //            address type.  If a Phi is found, create a new version with
2857 //            the appropriate memory slices from each of the Phi inputs.
2858 //            For stores, process the users as follows:
2859 //               MemNode:  push on memnode_worklist
2860 //               MergeMem: push on mergemem_worklist
2861 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2862 //            moving the first node encountered of each  instance type to the
2863 //            the input corresponding to its alias index.
2864 //            appropriate memory slice.
2865 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2866 //
2867 // In the following example, the CheckCastPP nodes are the cast of allocation
2868 // results and the allocation of node 29 is unescaped and eligible to be an
2869 // instance type.
2870 //
2871 // We start with:
2872 //
2873 //     7 Parm #memory
2874 //    10  ConI  "12"
2875 //    19  CheckCastPP   "Foo"
2876 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2877 //    29  CheckCastPP   "Foo"
2878 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2879 //
2880 //    40  StoreP  25   7  20   ... alias_index=4
2881 //    50  StoreP  35  40  30   ... alias_index=4
2882 //    60  StoreP  45  50  20   ... alias_index=4
2883 //    70  LoadP    _  60  30   ... alias_index=4
2884 //    80  Phi     75  50  60   Memory alias_index=4
2885 //    90  LoadP    _  80  30   ... alias_index=4
2886 //   100  LoadP    _  80  20   ... alias_index=4
2887 //
2888 //
2889 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2890 // and creating a new alias index for node 30.  This gives:
2891 //
2892 //     7 Parm #memory
2893 //    10  ConI  "12"
2894 //    19  CheckCastPP   "Foo"
2895 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2896 //    29  CheckCastPP   "Foo"  iid=24
2897 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2898 //
2899 //    40  StoreP  25   7  20   ... alias_index=4
2900 //    50  StoreP  35  40  30   ... alias_index=6
2901 //    60  StoreP  45  50  20   ... alias_index=4
2902 //    70  LoadP    _  60  30   ... alias_index=6
2903 //    80  Phi     75  50  60   Memory alias_index=4
2904 //    90  LoadP    _  80  30   ... alias_index=6
2905 //   100  LoadP    _  80  20   ... alias_index=4
2906 //
2907 // In phase 2, new memory inputs are computed for the loads and stores,
2908 // And a new version of the phi is created.  In phase 4, the inputs to
2909 // node 80 are updated and then the memory nodes are updated with the
2910 // values computed in phase 2.  This results in:
2911 //
2912 //     7 Parm #memory
2913 //    10  ConI  "12"
2914 //    19  CheckCastPP   "Foo"
2915 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2916 //    29  CheckCastPP   "Foo"  iid=24
2917 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2918 //
2919 //    40  StoreP  25  7   20   ... alias_index=4
2920 //    50  StoreP  35  7   30   ... alias_index=6
2921 //    60  StoreP  45  40  20   ... alias_index=4
2922 //    70  LoadP    _  50  30   ... alias_index=6
2923 //    80  Phi     75  40  60   Memory alias_index=4
2924 //   120  Phi     75  50  50   Memory alias_index=6
2925 //    90  LoadP    _ 120  30   ... alias_index=6
2926 //   100  LoadP    _  80  20   ... alias_index=4
2927 //
2928 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2929   GrowableArray<Node *>  memnode_worklist;
2930   GrowableArray<PhiNode *>  orig_phis;
2931   PhaseIterGVN  *igvn = _igvn;
2932   uint new_index_start = (uint) _compile->num_alias_types();
2933   Arena* arena = Thread::current()->resource_area();
2934   VectorSet visited(arena);
2935   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2936   uint unique_old = _compile->unique();
2937 
2938   //  Phase 1:  Process possible allocations from alloc_worklist.
2939   //  Create instance types for the CheckCastPP for allocations where possible.
2940   //
2941   // (Note: don't forget to change the order of the second AddP node on
2942   //  the alloc_worklist if the order of the worklist processing is changed,
2943   //  see the comment in find_second_addp().)
2944   //
2945   while (alloc_worklist.length() != 0) {
2946     Node *n = alloc_worklist.pop();
2947     uint ni = n->_idx;
2948     if (n->is_Call()) {
2949       CallNode *alloc = n->as_Call();
2950       // copy escape information to call node
2951       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2952       PointsToNode::EscapeState es = ptn->escape_state();
2953       // We have an allocation or call which returns a Java object,
2954       // see if it is unescaped.
2955       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2956         continue;
2957       // Find CheckCastPP for the allocate or for the return value of a call
2958       n = alloc->result_cast();
2959       if (n == NULL) {            // No uses except Initialize node
2960         if (alloc->is_Allocate()) {
2961           // Set the scalar_replaceable flag for allocation
2962           // so it could be eliminated if it has no uses.
2963           alloc->as_Allocate()->_is_scalar_replaceable = true;
2964         }
2965         if (alloc->is_CallStaticJava()) {
2966           // Set the scalar_replaceable flag for boxing method
2967           // so it could be eliminated if it has no uses.
2968           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2969         }
2970         continue;
2971       }
2972       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2973         assert(!alloc->is_Allocate(), "allocation should have unique type");
2974         continue;
2975       }
2976 
2977       // The inline code for Object.clone() casts the allocation result to
2978       // java.lang.Object and then to the actual type of the allocated
2979       // object. Detect this case and use the second cast.
2980       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2981       // the allocation result is cast to java.lang.Object and then
2982       // to the actual Array type.
2983       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2984           && (alloc->is_AllocateArray() ||
2985               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2986         Node *cast2 = NULL;
2987         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2988           Node *use = n->fast_out(i);
2989           if (use->is_CheckCastPP()) {
2990             cast2 = use;
2991             break;
2992           }
2993         }
2994         if (cast2 != NULL) {
2995           n = cast2;
2996         } else {
2997           // Non-scalar replaceable if the allocation type is unknown statically
2998           // (reflection allocation), the object can't be restored during
2999           // deoptimization without precise type.
3000           continue;
3001         }
3002       }
3003 
3004       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
3005       if (t == NULL)
3006         continue;  // not a TypeOopPtr
3007       if (!t->klass_is_exact())
3008         continue; // not an unique type
3009 
3010       if (alloc->is_Allocate()) {
3011         // Set the scalar_replaceable flag for allocation
3012         // so it could be eliminated.
3013         alloc->as_Allocate()->_is_scalar_replaceable = true;
3014       }
3015       if (alloc->is_CallStaticJava()) {
3016         // Set the scalar_replaceable flag for boxing method
3017         // so it could be eliminated.
3018         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
3019       }
3020       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
3021       // in order for an object to be scalar-replaceable, it must be:
3022       //   - a direct allocation (not a call returning an object)
3023       //   - non-escaping
3024       //   - eligible to be a unique type
3025       //   - not determined to be ineligible by escape analysis
3026       set_map(alloc, n);
3027       set_map(n, alloc);
3028       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3029       igvn->hash_delete(n);
3030       igvn->set_type(n,  tinst);
3031       n->raise_bottom_type(tinst);
3032       igvn->hash_insert(n);
3033       record_for_optimizer(n);
3034       // Allocate an alias index for the header fields. Accesses to
3035       // the header emitted during macro expansion wouldn't have
3036       // correct memory state otherwise.
3037       _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes()));
3038       _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes()));
3039       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
3040 
3041         // First, put on the worklist all Field edges from Connection Graph
3042         // which is more accurate than putting immediate users from Ideal Graph.
3043         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3044           PointsToNode* tgt = e.get();
3045           if (tgt->is_Arraycopy()) {
3046             continue;
3047           }
3048           Node* use = tgt->ideal_node();
3049           assert(tgt->is_Field() && use->is_AddP(),
3050                  "only AddP nodes are Field edges in CG");
3051           if (use->outcnt() > 0) { // Don't process dead nodes
3052             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3053             if (addp2 != NULL) {
3054               assert(alloc->is_AllocateArray(),"array allocation was expected");
3055               alloc_worklist.append_if_missing(addp2);
3056             }
3057             alloc_worklist.append_if_missing(use);
3058           }
3059         }
3060 
3061         // An allocation may have an Initialize which has raw stores. Scan
3062         // the users of the raw allocation result and push AddP users
3063         // on alloc_worklist.
3064         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
3065         assert (raw_result != NULL, "must have an allocation result");
3066         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3067           Node *use = raw_result->fast_out(i);
3068           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3069             Node* addp2 = find_second_addp(use, raw_result);
3070             if (addp2 != NULL) {
3071               assert(alloc->is_AllocateArray(),"array allocation was expected");
3072               alloc_worklist.append_if_missing(addp2);
3073             }
3074             alloc_worklist.append_if_missing(use);
3075           } else if (use->is_MemBar()) {
3076             memnode_worklist.append_if_missing(use);
3077           }
3078         }
3079       }
3080     } else if (n->is_AddP()) {
3081       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3082       if (jobj == NULL || jobj == phantom_obj) {
3083 #ifdef ASSERT
3084         ptnode_adr(get_addp_base(n)->_idx)->dump();
3085         ptnode_adr(n->_idx)->dump();
3086         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3087 #endif
3088         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3089         return;
3090       }
3091       Node *base = get_map(jobj->idx());  // CheckCastPP node
3092       if (!split_AddP(n, base)) continue; // wrong type from dead path
3093     } else if (n->is_Phi() ||
3094                n->is_CheckCastPP() ||
3095                n->is_EncodeP() ||
3096                n->is_DecodeN() ||
3097                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3098       if (visited.test_set(n->_idx)) {
3099         assert(n->is_Phi(), "loops only through Phi's");
3100         continue;  // already processed
3101       }
3102       JavaObjectNode* jobj = unique_java_object(n);
3103       if (jobj == NULL || jobj == phantom_obj) {
3104 #ifdef ASSERT
3105         ptnode_adr(n->_idx)->dump();
3106         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3107 #endif
3108         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3109         return;
3110       } else {
3111         Node *val = get_map(jobj->idx());   // CheckCastPP node
3112         TypeNode *tn = n->as_Type();
3113         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3114         assert(tinst != NULL && tinst->is_known_instance() &&
3115                tinst->instance_id() == jobj->idx() , "instance type expected.");
3116 
3117         const Type *tn_type = igvn->type(tn);
3118         const TypeOopPtr *tn_t;
3119         if (tn_type->isa_narrowoop()) {
3120           tn_t = tn_type->make_ptr()->isa_oopptr();
3121         } else {
3122           tn_t = tn_type->isa_oopptr();
3123         }
3124         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3125           if (tn_type->isa_narrowoop()) {
3126             tn_type = tinst->make_narrowoop();
3127           } else {
3128             tn_type = tinst;
3129           }
3130           igvn->hash_delete(tn);
3131           igvn->set_type(tn, tn_type);
3132           tn->set_type(tn_type);
3133           igvn->hash_insert(tn);
3134           record_for_optimizer(n);
3135         } else {
3136           assert(tn_type == TypePtr::NULL_PTR ||
3137                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3138                  "unexpected type");
3139           continue; // Skip dead path with different type
3140         }
3141       }
3142     } else {
3143       debug_only(n->dump();)
3144       assert(false, "EA: unexpected node");
3145       continue;
3146     }
3147     // push allocation's users on appropriate worklist
3148     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3149       Node *use = n->fast_out(i);
3150       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3151         // Load/store to instance's field
3152         memnode_worklist.append_if_missing(use);
3153       } else if (use->is_MemBar()) {
3154         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3155           memnode_worklist.append_if_missing(use);
3156         }
3157       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3158         Node* addp2 = find_second_addp(use, n);
3159         if (addp2 != NULL) {
3160           alloc_worklist.append_if_missing(addp2);
3161         }
3162         alloc_worklist.append_if_missing(use);
3163       } else if (use->is_Phi() ||
3164                  use->is_CheckCastPP() ||
3165                  use->is_EncodeNarrowPtr() ||
3166                  use->is_DecodeNarrowPtr() ||
3167                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3168         alloc_worklist.append_if_missing(use);
3169 #ifdef ASSERT
3170       } else if (use->is_Mem()) {
3171         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3172       } else if (use->is_MergeMem()) {
3173         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3174       } else if (use->is_SafePoint()) {
3175         // Look for MergeMem nodes for calls which reference unique allocation
3176         // (through CheckCastPP nodes) even for debug info.
3177         Node* m = use->in(TypeFunc::Memory);
3178         if (m->is_MergeMem()) {
3179           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3180         }
3181       } else if (use->Opcode() == Op_EncodeISOArray) {
3182         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3183           // EncodeISOArray overwrites destination array
3184           memnode_worklist.append_if_missing(use);
3185         }
3186       } else {
3187         uint op = use->Opcode();
3188         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3189             (use->in(MemNode::Memory) == n)) {
3190           // They overwrite memory edge corresponding to destination array,
3191           memnode_worklist.append_if_missing(use);
3192         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3193               op == Op_CastP2X || op == Op_StoreCM ||
3194               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3195               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3196               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
3197               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
3198           n->dump();
3199           use->dump();
3200           assert(false, "EA: missing allocation reference path");
3201         }
3202 #endif
3203       }
3204     }
3205 
3206   }
3207 
3208   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3209   // type, record it in the ArrayCopy node so we know what memory this
3210   // node uses/modified.
3211   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3212     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3213     Node* dest = ac->in(ArrayCopyNode::Dest);
3214     if (dest->is_AddP()) {
3215       dest = get_addp_base(dest);
3216     }
3217     JavaObjectNode* jobj = unique_java_object(dest);
3218     if (jobj != NULL) {
3219       Node *base = get_map(jobj->idx());
3220       if (base != NULL) {
3221         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3222         ac->_dest_type = base_t;
3223       }
3224     }
3225     Node* src = ac->in(ArrayCopyNode::Src);
3226     if (src->is_AddP()) {
3227       src = get_addp_base(src);
3228     }
3229     jobj = unique_java_object(src);
3230     if (jobj != NULL) {
3231       Node* base = get_map(jobj->idx());
3232       if (base != NULL) {
3233         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3234         ac->_src_type = base_t;
3235       }
3236     }
3237   }
3238 
3239   // New alias types were created in split_AddP().
3240   uint new_index_end = (uint) _compile->num_alias_types();
3241   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3242 
3243   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3244   //            compute new values for Memory inputs  (the Memory inputs are not
3245   //            actually updated until phase 4.)
3246   if (memnode_worklist.length() == 0)
3247     return;  // nothing to do
3248   while (memnode_worklist.length() != 0) {
3249     Node *n = memnode_worklist.pop();
3250     if (visited.test_set(n->_idx))
3251       continue;
3252     if (n->is_Phi() || n->is_ClearArray()) {
3253       // we don't need to do anything, but the users must be pushed
3254     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3255       // we don't need to do anything, but the users must be pushed
3256       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
3257       if (n == NULL)
3258         continue;
3259     } else if (n->Opcode() == Op_StrCompressedCopy ||
3260                n->Opcode() == Op_EncodeISOArray) {
3261       // get the memory projection
3262       n = n->find_out_with(Op_SCMemProj);
3263       assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3264     } else {
3265       assert(n->is_Mem(), "memory node required.");
3266       Node *addr = n->in(MemNode::Address);
3267       const Type *addr_t = igvn->type(addr);
3268       if (addr_t == Type::TOP)
3269         continue;
3270       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3271       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3272       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3273       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3274       if (_compile->failing()) {
3275         return;
3276       }
3277       if (mem != n->in(MemNode::Memory)) {
3278         // We delay the memory edge update since we need old one in
3279         // MergeMem code below when instances memory slices are separated.
3280         set_map(n, mem);
3281       }
3282       if (n->is_Load()) {
3283         continue;  // don't push users
3284       } else if (n->is_LoadStore()) {
3285         // get the memory projection
3286         n = n->find_out_with(Op_SCMemProj);
3287         assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3288       }
3289     }
3290     // push user on appropriate worklist
3291     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3292       Node *use = n->fast_out(i);
3293       if (use->is_Phi() || use->is_ClearArray()) {
3294         memnode_worklist.append_if_missing(use);
3295       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3296         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3297           continue;
3298         memnode_worklist.append_if_missing(use);
3299       } else if (use->is_MemBar()) {
3300         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3301           memnode_worklist.append_if_missing(use);
3302         }
3303 #ifdef ASSERT
3304       } else if(use->is_Mem()) {
3305         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3306       } else if (use->is_MergeMem()) {
3307         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3308       } else if (use->Opcode() == Op_EncodeISOArray) {
3309         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3310           // EncodeISOArray overwrites destination array
3311           memnode_worklist.append_if_missing(use);
3312         }
3313       } else {
3314         uint op = use->Opcode();
3315         if ((use->in(MemNode::Memory) == n) &&
3316             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3317           // They overwrite memory edge corresponding to destination array,
3318           memnode_worklist.append_if_missing(use);
3319         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3320               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3321               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3322               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3323           n->dump();
3324           use->dump();
3325           assert(false, "EA: missing memory path");
3326         }
3327 #endif
3328       }
3329     }
3330   }
3331 
3332   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3333   //            Walk each memory slice moving the first node encountered of each
3334   //            instance type to the the input corresponding to its alias index.
3335   uint length = _mergemem_worklist.length();
3336   for( uint next = 0; next < length; ++next ) {
3337     MergeMemNode* nmm = _mergemem_worklist.at(next);
3338     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3339     // Note: we don't want to use MergeMemStream here because we only want to
3340     // scan inputs which exist at the start, not ones we add during processing.
3341     // Note 2: MergeMem may already contains instance memory slices added
3342     // during find_inst_mem() call when memory nodes were processed above.
3343     igvn->hash_delete(nmm);
3344     uint nslices = MIN2(nmm->req(), new_index_start);
3345     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3346       Node* mem = nmm->in(i);
3347       Node* cur = NULL;
3348       if (mem == NULL || mem->is_top())
3349         continue;
3350       // First, update mergemem by moving memory nodes to corresponding slices
3351       // if their type became more precise since this mergemem was created.
3352       while (mem->is_Mem()) {
3353         const Type *at = igvn->type(mem->in(MemNode::Address));
3354         if (at != Type::TOP) {
3355           assert (at->isa_ptr() != NULL, "pointer type required.");
3356           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3357           if (idx == i) {
3358             if (cur == NULL)
3359               cur = mem;
3360           } else {
3361             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3362               nmm->set_memory_at(idx, mem);
3363             }
3364           }
3365         }
3366         mem = mem->in(MemNode::Memory);
3367       }
3368       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3369       // Find any instance of the current type if we haven't encountered
3370       // already a memory slice of the instance along the memory chain.
3371       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3372         if((uint)_compile->get_general_index(ni) == i) {
3373           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3374           if (nmm->is_empty_memory(m)) {
3375             Node* result = find_inst_mem(mem, ni, orig_phis);
3376             if (_compile->failing()) {
3377               return;
3378             }
3379             nmm->set_memory_at(ni, result);
3380           }
3381         }
3382       }
3383     }
3384     // Find the rest of instances values
3385     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3386       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3387       Node* result = step_through_mergemem(nmm, ni, tinst);
3388       if (result == nmm->base_memory()) {
3389         // Didn't find instance memory, search through general slice recursively.
3390         result = nmm->memory_at(_compile->get_general_index(ni));
3391         result = find_inst_mem(result, ni, orig_phis);
3392         if (_compile->failing()) {
3393           return;
3394         }
3395         nmm->set_memory_at(ni, result);
3396       }
3397     }
3398     igvn->hash_insert(nmm);
3399     record_for_optimizer(nmm);
3400   }
3401 
3402   //  Phase 4:  Update the inputs of non-instance memory Phis and
3403   //            the Memory input of memnodes
3404   // First update the inputs of any non-instance Phi's from
3405   // which we split out an instance Phi.  Note we don't have
3406   // to recursively process Phi's encounted on the input memory
3407   // chains as is done in split_memory_phi() since they  will
3408   // also be processed here.
3409   for (int j = 0; j < orig_phis.length(); j++) {
3410     PhiNode *phi = orig_phis.at(j);
3411     int alias_idx = _compile->get_alias_index(phi->adr_type());
3412     igvn->hash_delete(phi);
3413     for (uint i = 1; i < phi->req(); i++) {
3414       Node *mem = phi->in(i);
3415       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3416       if (_compile->failing()) {
3417         return;
3418       }
3419       if (mem != new_mem) {
3420         phi->set_req(i, new_mem);
3421       }
3422     }
3423     igvn->hash_insert(phi);
3424     record_for_optimizer(phi);
3425   }
3426 
3427   // Update the memory inputs of MemNodes with the value we computed
3428   // in Phase 2 and move stores memory users to corresponding memory slices.
3429   // Disable memory split verification code until the fix for 6984348.
3430   // Currently it produces false negative results since it does not cover all cases.
3431 #if 0 // ifdef ASSERT
3432   visited.Reset();
3433   Node_Stack old_mems(arena, _compile->unique() >> 2);
3434 #endif
3435   for (uint i = 0; i < ideal_nodes.size(); i++) {
3436     Node*    n = ideal_nodes.at(i);
3437     Node* nmem = get_map(n->_idx);
3438     assert(nmem != NULL, "sanity");
3439     if (n->is_Mem()) {
3440 #if 0 // ifdef ASSERT
3441       Node* old_mem = n->in(MemNode::Memory);
3442       if (!visited.test_set(old_mem->_idx)) {
3443         old_mems.push(old_mem, old_mem->outcnt());
3444       }
3445 #endif
3446       assert(n->in(MemNode::Memory) != nmem, "sanity");
3447       if (!n->is_Load()) {
3448         // Move memory users of a store first.
3449         move_inst_mem(n, orig_phis);
3450       }
3451       // Now update memory input
3452       igvn->hash_delete(n);
3453       n->set_req(MemNode::Memory, nmem);
3454       igvn->hash_insert(n);
3455       record_for_optimizer(n);
3456     } else {
3457       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3458              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3459     }
3460   }
3461 #if 0 // ifdef ASSERT
3462   // Verify that memory was split correctly
3463   while (old_mems.is_nonempty()) {
3464     Node* old_mem = old_mems.node();
3465     uint  old_cnt = old_mems.index();
3466     old_mems.pop();
3467     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3468   }
3469 #endif
3470 }
3471 
3472 #ifndef PRODUCT
3473 static const char *node_type_names[] = {
3474   "UnknownType",
3475   "JavaObject",
3476   "LocalVar",
3477   "Field",
3478   "Arraycopy"
3479 };
3480 
3481 static const char *esc_names[] = {
3482   "UnknownEscape",
3483   "NoEscape",
3484   "ArgEscape",
3485   "GlobalEscape"
3486 };
3487 
3488 void PointsToNode::dump(bool print_state) const {
3489   NodeType nt = node_type();
3490   tty->print("%s ", node_type_names[(int) nt]);
3491   if (print_state) {
3492     EscapeState es = escape_state();
3493     EscapeState fields_es = fields_escape_state();
3494     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3495     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3496       tty->print("NSR ");
3497   }
3498   if (is_Field()) {
3499     FieldNode* f = (FieldNode*)this;
3500     if (f->is_oop())
3501       tty->print("oop ");
3502     if (f->offset() > 0)
3503       tty->print("+%d ", f->offset());
3504     tty->print("(");
3505     for (BaseIterator i(f); i.has_next(); i.next()) {
3506       PointsToNode* b = i.get();
3507       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3508     }
3509     tty->print(" )");
3510   }
3511   tty->print("[");
3512   for (EdgeIterator i(this); i.has_next(); i.next()) {
3513     PointsToNode* e = i.get();
3514     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3515   }
3516   tty->print(" [");
3517   for (UseIterator i(this); i.has_next(); i.next()) {
3518     PointsToNode* u = i.get();
3519     bool is_base = false;
3520     if (PointsToNode::is_base_use(u)) {
3521       is_base = true;
3522       u = PointsToNode::get_use_node(u)->as_Field();
3523     }
3524     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3525   }
3526   tty->print(" ]]  ");
3527   if (_node == NULL)
3528     tty->print_cr("<null>");
3529   else
3530     _node->dump();
3531 }
3532 
3533 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3534   bool first = true;
3535   int ptnodes_length = ptnodes_worklist.length();
3536   for (int i = 0; i < ptnodes_length; i++) {
3537     PointsToNode *ptn = ptnodes_worklist.at(i);
3538     if (ptn == NULL || !ptn->is_JavaObject())
3539       continue;
3540     PointsToNode::EscapeState es = ptn->escape_state();
3541     if ((es != PointsToNode::NoEscape) && !Verbose) {
3542       continue;
3543     }
3544     Node* n = ptn->ideal_node();
3545     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3546                              n->as_CallStaticJava()->is_boxing_method())) {
3547       if (first) {
3548         tty->cr();
3549         tty->print("======== Connection graph for ");
3550         _compile->method()->print_short_name();
3551         tty->cr();
3552         first = false;
3553       }
3554       ptn->dump();
3555       // Print all locals and fields which reference this allocation
3556       for (UseIterator j(ptn); j.has_next(); j.next()) {
3557         PointsToNode* use = j.get();
3558         if (use->is_LocalVar()) {
3559           use->dump(Verbose);
3560         } else if (Verbose) {
3561           use->dump();
3562         }
3563       }
3564       tty->cr();
3565     }
3566   }
3567 }
3568 #endif
3569 
3570 void ConnectionGraph::record_for_optimizer(Node *n) {
3571   _igvn->_worklist.push(n);
3572   _igvn->add_users_to_worklist(n);
3573 }