1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/callGenerator.hpp"
  41 #include "opto/castnode.hpp"
  42 #include "opto/cfgnode.hpp"
  43 #include "opto/convertnode.hpp"
  44 #include "opto/countbitsnode.hpp"
  45 #include "opto/intrinsicnode.hpp"
  46 #include "opto/idealKit.hpp"
  47 #include "opto/mathexactnode.hpp"
  48 #include "opto/movenode.hpp"
  49 #include "opto/mulnode.hpp"
  50 #include "opto/narrowptrnode.hpp"
  51 #include "opto/opaquenode.hpp"
  52 #include "opto/parse.hpp"
  53 #include "opto/runtime.hpp"
  54 #include "opto/rootnode.hpp"
  55 #include "opto/subnode.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "prims/unsafe.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "utilities/macros.hpp"
  61 
  62 
  63 class LibraryIntrinsic : public InlineCallGenerator {
  64   // Extend the set of intrinsics known to the runtime:
  65  public:
  66  private:
  67   bool             _is_virtual;
  68   bool             _does_virtual_dispatch;
  69   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  70   int8_t           _last_predicate; // Last generated predicate
  71   vmIntrinsics::ID _intrinsic_id;
  72 
  73  public:
  74   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  75     : InlineCallGenerator(m),
  76       _is_virtual(is_virtual),
  77       _does_virtual_dispatch(does_virtual_dispatch),
  78       _predicates_count((int8_t)predicates_count),
  79       _last_predicate((int8_t)-1),
  80       _intrinsic_id(id)
  81   {
  82   }
  83   virtual bool is_intrinsic() const { return true; }
  84   virtual bool is_virtual()   const { return _is_virtual; }
  85   virtual bool is_predicated() const { return _predicates_count > 0; }
  86   virtual int  predicates_count() const { return _predicates_count; }
  87   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  88   virtual JVMState* generate(JVMState* jvms);
  89   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  90   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  91 };
  92 
  93 
  94 // Local helper class for LibraryIntrinsic:
  95 class LibraryCallKit : public GraphKit {
  96  private:
  97   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  98   Node*             _result;        // the result node, if any
  99   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
 100 
 101   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
 102 
 103  public:
 104   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 105     : GraphKit(jvms),
 106       _intrinsic(intrinsic),
 107       _result(NULL)
 108   {
 109     // Check if this is a root compile.  In that case we don't have a caller.
 110     if (!jvms->has_method()) {
 111       _reexecute_sp = sp();
 112     } else {
 113       // Find out how many arguments the interpreter needs when deoptimizing
 114       // and save the stack pointer value so it can used by uncommon_trap.
 115       // We find the argument count by looking at the declared signature.
 116       bool ignored_will_link;
 117       ciSignature* declared_signature = NULL;
 118       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 119       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 120       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 121     }
 122   }
 123 
 124   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 125 
 126   ciMethod*         caller()    const    { return jvms()->method(); }
 127   int               bci()       const    { return jvms()->bci(); }
 128   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 129   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 130   ciMethod*         callee()    const    { return _intrinsic->method(); }
 131 
 132   bool  try_to_inline(int predicate);
 133   Node* try_to_predicate(int predicate);
 134 
 135   void push_result() {
 136     // Push the result onto the stack.
 137     if (!stopped() && result() != NULL) {
 138       BasicType bt = result()->bottom_type()->basic_type();
 139       push_node(bt, result());
 140     }
 141   }
 142 
 143  private:
 144   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 145     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 146   }
 147 
 148   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 149   void  set_result(RegionNode* region, PhiNode* value);
 150   Node*     result() { return _result; }
 151 
 152   virtual int reexecute_sp() { return _reexecute_sp; }
 153 
 154   // Helper functions to inline natives
 155   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 156   Node* generate_slow_guard(Node* test, RegionNode* region);
 157   Node* generate_fair_guard(Node* test, RegionNode* region);
 158   Node* generate_negative_guard(Node* index, RegionNode* region,
 159                                 // resulting CastII of index:
 160                                 Node* *pos_index = NULL);
 161   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 162                              Node* array_length,
 163                              RegionNode* region);
 164   void  generate_string_range_check(Node* array, Node* offset,
 165                                     Node* length, bool char_count);
 166   Node* generate_current_thread(Node* &tls_output);
 167   Node* load_mirror_from_klass(Node* klass);
 168   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 169                                       RegionNode* region, int null_path,
 170                                       int offset);
 171   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 172                                RegionNode* region, int null_path) {
 173     int offset = java_lang_Class::klass_offset_in_bytes();
 174     return load_klass_from_mirror_common(mirror, never_see_null,
 175                                          region, null_path,
 176                                          offset);
 177   }
 178   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 179                                      RegionNode* region, int null_path) {
 180     int offset = java_lang_Class::array_klass_offset_in_bytes();
 181     return load_klass_from_mirror_common(mirror, never_see_null,
 182                                          region, null_path,
 183                                          offset);
 184   }
 185   Node* generate_access_flags_guard(Node* kls,
 186                                     int modifier_mask, int modifier_bits,
 187                                     RegionNode* region);
 188   Node* generate_interface_guard(Node* kls, RegionNode* region);
 189   Node* generate_array_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, false, false);
 191   }
 192   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 193     return generate_array_guard_common(kls, region, false, true);
 194   }
 195   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 196     return generate_array_guard_common(kls, region, true, false);
 197   }
 198   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 199     return generate_array_guard_common(kls, region, true, true);
 200   }
 201   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 202                                     bool obj_array, bool not_array);
 203   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 204   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 205                                      bool is_virtual = false, bool is_static = false);
 206   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 207     return generate_method_call(method_id, false, true);
 208   }
 209   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 210     return generate_method_call(method_id, true, false);
 211   }
 212   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 213   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 214 
 215   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 216   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 217   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 218   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 219   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 220                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 221   bool inline_string_indexOfChar();
 222   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 223   bool inline_string_toBytesU();
 224   bool inline_string_getCharsU();
 225   bool inline_string_copy(bool compress);
 226   bool inline_string_char_access(bool is_store);
 227   Node* round_double_node(Node* n);
 228   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 229   bool inline_math_native(vmIntrinsics::ID id);
 230   bool inline_math(vmIntrinsics::ID id);
 231   bool inline_double_math(vmIntrinsics::ID id);
 232   template <typename OverflowOp>
 233   bool inline_math_overflow(Node* arg1, Node* arg2);
 234   void inline_math_mathExact(Node* math, Node* test);
 235   bool inline_math_addExactI(bool is_increment);
 236   bool inline_math_addExactL(bool is_increment);
 237   bool inline_math_multiplyExactI();
 238   bool inline_math_multiplyExactL();
 239   bool inline_math_multiplyHigh();
 240   bool inline_math_negateExactI();
 241   bool inline_math_negateExactL();
 242   bool inline_math_subtractExactI(bool is_decrement);
 243   bool inline_math_subtractExactL(bool is_decrement);
 244   bool inline_min_max(vmIntrinsics::ID id);
 245   bool inline_notify(vmIntrinsics::ID id);
 246   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 247   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 248   int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type);
 249   Node* make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type = T_ILLEGAL, bool can_cast = false);
 250 
 251   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 252   DecoratorSet mo_decorator_for_access_kind(AccessKind kind);
 253   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 254   static bool klass_needs_init_guard(Node* kls);
 255   bool inline_unsafe_allocate();
 256   bool inline_unsafe_newArray(bool uninitialized);
 257   bool inline_unsafe_writeback0();
 258   bool inline_unsafe_writebackSync0(bool is_pre);
 259   bool inline_unsafe_copyMemory();
 260   bool inline_native_currentThread();
 261 
 262   bool inline_native_time_funcs(address method, const char* funcName);
 263 #ifdef JFR_HAVE_INTRINSICS
 264   bool inline_native_classID();
 265   bool inline_native_getEventWriter();
 266 #endif
 267   bool inline_native_Class_query(vmIntrinsics::ID id);
 268   bool inline_native_subtype_check();
 269   bool inline_native_getLength();
 270   bool inline_array_copyOf(bool is_copyOfRange);
 271   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 272   bool inline_preconditions_checkIndex();
 273   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array);
 274   bool inline_native_clone(bool is_virtual);
 275   bool inline_native_Reflection_getCallerClass();
 276   // Helper function for inlining native object hash method
 277   bool inline_native_hashcode(bool is_virtual, bool is_static);
 278   bool inline_native_getClass();
 279 
 280   // Helper functions for inlining arraycopy
 281   bool inline_arraycopy();
 282   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 283                                                 RegionNode* slow_region);
 284   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 285   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
 286                                       uint new_idx);
 287 
 288   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 289   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 290   bool inline_unsafe_fence(vmIntrinsics::ID id);
 291   bool inline_onspinwait();
 292   bool inline_fp_conversions(vmIntrinsics::ID id);
 293   bool inline_number_methods(vmIntrinsics::ID id);
 294   bool inline_reference_get();
 295   bool inline_Class_cast();
 296   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 297   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 298   bool inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id);
 299   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 300   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 301   Node* inline_electronicCodeBook_AESCrypt_predicate(bool decrypting);
 302   Node* inline_counterMode_AESCrypt_predicate();
 303   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 304   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 305   bool inline_ghash_processBlocks();
 306   bool inline_base64_encodeBlock();
 307   bool inline_sha_implCompress(vmIntrinsics::ID id);
 308   bool inline_digestBase_implCompressMB(int predicate);
 309   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 310                                  bool long_state, address stubAddr, const char *stubName,
 311                                  Node* src_start, Node* ofs, Node* limit);
 312   Node* get_state_from_sha_object(Node *sha_object);
 313   Node* get_state_from_sha5_object(Node *sha_object);
 314   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 315   bool inline_encodeISOArray();
 316   bool inline_updateCRC32();
 317   bool inline_updateBytesCRC32();
 318   bool inline_updateByteBufferCRC32();
 319   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 320   bool inline_updateBytesCRC32C();
 321   bool inline_updateDirectByteBufferCRC32C();
 322   bool inline_updateBytesAdler32();
 323   bool inline_updateByteBufferAdler32();
 324   bool inline_multiplyToLen();
 325   bool inline_hasNegatives();
 326   bool inline_squareToLen();
 327   bool inline_mulAdd();
 328   bool inline_montgomeryMultiply();
 329   bool inline_montgomerySquare();
 330   bool inline_vectorizedMismatch();
 331   bool inline_fma(vmIntrinsics::ID id);
 332   bool inline_character_compare(vmIntrinsics::ID id);
 333   bool inline_fp_min_max(vmIntrinsics::ID id);
 334 
 335   bool inline_profileBoolean();
 336   bool inline_isCompileConstant();
 337   void clear_upper_avx() {
 338 #ifdef X86
 339     if (UseAVX >= 2) {
 340       C->set_clear_upper_avx(true);
 341     }
 342 #endif
 343   }
 344 };
 345 
 346 //---------------------------make_vm_intrinsic----------------------------
 347 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 348   vmIntrinsics::ID id = m->intrinsic_id();
 349   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 350 
 351   if (!m->is_loaded()) {
 352     // Do not attempt to inline unloaded methods.
 353     return NULL;
 354   }
 355 
 356   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 357   bool is_available = false;
 358 
 359   {
 360     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 361     // the compiler must transition to '_thread_in_vm' state because both
 362     // methods access VM-internal data.
 363     VM_ENTRY_MARK;
 364     methodHandle mh(THREAD, m->get_Method());
 365     is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
 366                    !C->directive()->is_intrinsic_disabled(mh) &&
 367                    !vmIntrinsics::is_disabled_by_flags(mh);
 368 
 369   }
 370 
 371   if (is_available) {
 372     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 373     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 374     return new LibraryIntrinsic(m, is_virtual,
 375                                 vmIntrinsics::predicates_needed(id),
 376                                 vmIntrinsics::does_virtual_dispatch(id),
 377                                 (vmIntrinsics::ID) id);
 378   } else {
 379     return NULL;
 380   }
 381 }
 382 
 383 //----------------------register_library_intrinsics-----------------------
 384 // Initialize this file's data structures, for each Compile instance.
 385 void Compile::register_library_intrinsics() {
 386   // Nothing to do here.
 387 }
 388 
 389 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 390   LibraryCallKit kit(jvms, this);
 391   Compile* C = kit.C;
 392   int nodes = C->unique();
 393 #ifndef PRODUCT
 394   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 395     char buf[1000];
 396     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 397     tty->print_cr("Intrinsic %s", str);
 398   }
 399 #endif
 400   ciMethod* callee = kit.callee();
 401   const int bci    = kit.bci();
 402 
 403   // Try to inline the intrinsic.
 404   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 405       kit.try_to_inline(_last_predicate)) {
 406     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 407                                           : "(intrinsic)";
 408     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 409     if (C->print_intrinsics() || C->print_inlining()) {
 410       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 411     }
 412     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 413     if (C->log()) {
 414       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 415                      vmIntrinsics::name_at(intrinsic_id()),
 416                      (is_virtual() ? " virtual='1'" : ""),
 417                      C->unique() - nodes);
 418     }
 419     // Push the result from the inlined method onto the stack.
 420     kit.push_result();
 421     C->print_inlining_update(this);
 422     return kit.transfer_exceptions_into_jvms();
 423   }
 424 
 425   // The intrinsic bailed out
 426   if (jvms->has_method()) {
 427     // Not a root compile.
 428     const char* msg;
 429     if (callee->intrinsic_candidate()) {
 430       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 431     } else {
 432       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 433                          : "failed to inline (intrinsic), method not annotated";
 434     }
 435     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
 436     if (C->print_intrinsics() || C->print_inlining()) {
 437       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 438     }
 439   } else {
 440     // Root compile
 441     ResourceMark rm;
 442     stringStream msg_stream;
 443     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 444                      vmIntrinsics::name_at(intrinsic_id()),
 445                      is_virtual() ? " (virtual)" : "", bci);
 446     const char *msg = msg_stream.as_string();
 447     log_debug(jit, inlining)("%s", msg);
 448     if (C->print_intrinsics() || C->print_inlining()) {
 449       tty->print("%s", msg);
 450     }
 451   }
 452   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 453   C->print_inlining_update(this);
 454   return NULL;
 455 }
 456 
 457 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 458   LibraryCallKit kit(jvms, this);
 459   Compile* C = kit.C;
 460   int nodes = C->unique();
 461   _last_predicate = predicate;
 462 #ifndef PRODUCT
 463   assert(is_predicated() && predicate < predicates_count(), "sanity");
 464   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 465     char buf[1000];
 466     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 467     tty->print_cr("Predicate for intrinsic %s", str);
 468   }
 469 #endif
 470   ciMethod* callee = kit.callee();
 471   const int bci    = kit.bci();
 472 
 473   Node* slow_ctl = kit.try_to_predicate(predicate);
 474   if (!kit.failing()) {
 475     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 476                                           : "(intrinsic, predicate)";
 477     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 478     if (C->print_intrinsics() || C->print_inlining()) {
 479       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 480     }
 481     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 482     if (C->log()) {
 483       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 484                      vmIntrinsics::name_at(intrinsic_id()),
 485                      (is_virtual() ? " virtual='1'" : ""),
 486                      C->unique() - nodes);
 487     }
 488     return slow_ctl; // Could be NULL if the check folds.
 489   }
 490 
 491   // The intrinsic bailed out
 492   if (jvms->has_method()) {
 493     // Not a root compile.
 494     const char* msg = "failed to generate predicate for intrinsic";
 495     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
 496     if (C->print_intrinsics() || C->print_inlining()) {
 497       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 498     }
 499   } else {
 500     // Root compile
 501     ResourceMark rm;
 502     stringStream msg_stream;
 503     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 504                      vmIntrinsics::name_at(intrinsic_id()),
 505                      is_virtual() ? " (virtual)" : "", bci);
 506     const char *msg = msg_stream.as_string();
 507     log_debug(jit, inlining)("%s", msg);
 508     if (C->print_intrinsics() || C->print_inlining()) {
 509       C->print_inlining_stream()->print("%s", msg);
 510     }
 511   }
 512   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 513   return NULL;
 514 }
 515 
 516 bool LibraryCallKit::try_to_inline(int predicate) {
 517   // Handle symbolic names for otherwise undistinguished boolean switches:
 518   const bool is_store       = true;
 519   const bool is_compress    = true;
 520   const bool is_static      = true;
 521   const bool is_volatile    = true;
 522 
 523   if (!jvms()->has_method()) {
 524     // Root JVMState has a null method.
 525     assert(map()->memory()->Opcode() == Op_Parm, "");
 526     // Insert the memory aliasing node
 527     set_all_memory(reset_memory());
 528   }
 529   assert(merged_memory(), "");
 530 
 531 
 532   switch (intrinsic_id()) {
 533   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 534   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 535   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 536 
 537   case vmIntrinsics::_ceil:
 538   case vmIntrinsics::_floor:
 539   case vmIntrinsics::_rint:
 540   case vmIntrinsics::_dsin:
 541   case vmIntrinsics::_dcos:
 542   case vmIntrinsics::_dtan:
 543   case vmIntrinsics::_dabs:
 544   case vmIntrinsics::_fabs:
 545   case vmIntrinsics::_iabs:
 546   case vmIntrinsics::_labs:
 547   case vmIntrinsics::_datan2:
 548   case vmIntrinsics::_dsqrt:
 549   case vmIntrinsics::_dexp:
 550   case vmIntrinsics::_dlog:
 551   case vmIntrinsics::_dlog10:
 552   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 553 
 554   case vmIntrinsics::_min:
 555   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 556 
 557   case vmIntrinsics::_notify:
 558   case vmIntrinsics::_notifyAll:
 559     return inline_notify(intrinsic_id());
 560 
 561   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 562   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 563   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 564   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 565   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 566   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 567   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 568   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 569   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 570   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 571   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 572   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 573   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 574 
 575   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 576 
 577   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 578   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 579   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 580   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 581 
 582   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 583   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 584   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 585   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 586   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 587   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 588   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 589 
 590   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 591   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 592 
 593   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 594   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 595   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 596   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 597 
 598   case vmIntrinsics::_compressStringC:
 599   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 600   case vmIntrinsics::_inflateStringC:
 601   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 602 
 603   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 604   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 605   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 606   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 607   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 608   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 609   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 610   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 611   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 612 
 613   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 614   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 615   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 616   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 617   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 618   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 619   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 620   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 621   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 622 
 623   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 624   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 625   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 626   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 627   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 628   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 629   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 630   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 631   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 632 
 633   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 634   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 635   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 636   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 637   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 638   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 639   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 640   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 641   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 642 
 643   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 644   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 645   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 646   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 647 
 648   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 649   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 650   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 651   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 652 
 653   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 654   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 655   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 656   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 657   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 658   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 659   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 660   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 661   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 662 
 663   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 664   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 665   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 666   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 667   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 668   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 669   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 670   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 671   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 672 
 673   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 674   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 675   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 676   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 677   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 678   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 679   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 680   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 681   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 682 
 683   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 684   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 685   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 686   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 687   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 688   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 689   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 690   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 691   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 692 
 693   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 694   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 695   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 696   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 697   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 698 
 699   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 700   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 701   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 702   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 703   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 704   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 705   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 706   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 707   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 708   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 709   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 710   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 711   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 712   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 713   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 714   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 715   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 716   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 717   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 718   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 719 
 720   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 721   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 722   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 723   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 724   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 725   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 726   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 727   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 728   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 729   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 730   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 731   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 732   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 733   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 734   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 735 
 736   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 737   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 738   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 739   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 740 
 741   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 742   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 743   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 744   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 745   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 746 
 747   case vmIntrinsics::_loadFence:
 748   case vmIntrinsics::_storeFence:
 749   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 750 
 751   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 752 
 753   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 754 
 755 #ifdef JFR_HAVE_INTRINSICS
 756   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime");
 757   case vmIntrinsics::_getClassId:               return inline_native_classID();
 758   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 759 #endif
 760   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 761   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 762   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 763   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 764   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 765   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 766   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 767   case vmIntrinsics::_getLength:                return inline_native_getLength();
 768   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 769   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 770   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 771   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 772   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 773   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 774 
 775   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 776   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 777 
 778   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 779 
 780   case vmIntrinsics::_isInstance:
 781   case vmIntrinsics::_getModifiers:
 782   case vmIntrinsics::_isInterface:
 783   case vmIntrinsics::_isArray:
 784   case vmIntrinsics::_isPrimitive:
 785   case vmIntrinsics::_getSuperclass:
 786   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 787 
 788   case vmIntrinsics::_floatToRawIntBits:
 789   case vmIntrinsics::_floatToIntBits:
 790   case vmIntrinsics::_intBitsToFloat:
 791   case vmIntrinsics::_doubleToRawLongBits:
 792   case vmIntrinsics::_doubleToLongBits:
 793   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 794 
 795   case vmIntrinsics::_numberOfLeadingZeros_i:
 796   case vmIntrinsics::_numberOfLeadingZeros_l:
 797   case vmIntrinsics::_numberOfTrailingZeros_i:
 798   case vmIntrinsics::_numberOfTrailingZeros_l:
 799   case vmIntrinsics::_bitCount_i:
 800   case vmIntrinsics::_bitCount_l:
 801   case vmIntrinsics::_reverseBytes_i:
 802   case vmIntrinsics::_reverseBytes_l:
 803   case vmIntrinsics::_reverseBytes_s:
 804   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 805 
 806   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 807 
 808   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 809 
 810   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 811 
 812   case vmIntrinsics::_aescrypt_encryptBlock:
 813   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 814 
 815   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 816   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 817     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 818 
 819   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 820   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 821     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 822 
 823   case vmIntrinsics::_counterMode_AESCrypt:
 824     return inline_counterMode_AESCrypt(intrinsic_id());
 825 
 826   case vmIntrinsics::_sha_implCompress:
 827   case vmIntrinsics::_sha2_implCompress:
 828   case vmIntrinsics::_sha5_implCompress:
 829     return inline_sha_implCompress(intrinsic_id());
 830 
 831   case vmIntrinsics::_digestBase_implCompressMB:
 832     return inline_digestBase_implCompressMB(predicate);
 833 
 834   case vmIntrinsics::_multiplyToLen:
 835     return inline_multiplyToLen();
 836 
 837   case vmIntrinsics::_squareToLen:
 838     return inline_squareToLen();
 839 
 840   case vmIntrinsics::_mulAdd:
 841     return inline_mulAdd();
 842 
 843   case vmIntrinsics::_montgomeryMultiply:
 844     return inline_montgomeryMultiply();
 845   case vmIntrinsics::_montgomerySquare:
 846     return inline_montgomerySquare();
 847 
 848   case vmIntrinsics::_vectorizedMismatch:
 849     return inline_vectorizedMismatch();
 850 
 851   case vmIntrinsics::_ghash_processBlocks:
 852     return inline_ghash_processBlocks();
 853   case vmIntrinsics::_base64_encodeBlock:
 854     return inline_base64_encodeBlock();
 855 
 856   case vmIntrinsics::_encodeISOArray:
 857   case vmIntrinsics::_encodeByteISOArray:
 858     return inline_encodeISOArray();
 859 
 860   case vmIntrinsics::_updateCRC32:
 861     return inline_updateCRC32();
 862   case vmIntrinsics::_updateBytesCRC32:
 863     return inline_updateBytesCRC32();
 864   case vmIntrinsics::_updateByteBufferCRC32:
 865     return inline_updateByteBufferCRC32();
 866 
 867   case vmIntrinsics::_updateBytesCRC32C:
 868     return inline_updateBytesCRC32C();
 869   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 870     return inline_updateDirectByteBufferCRC32C();
 871 
 872   case vmIntrinsics::_updateBytesAdler32:
 873     return inline_updateBytesAdler32();
 874   case vmIntrinsics::_updateByteBufferAdler32:
 875     return inline_updateByteBufferAdler32();
 876 
 877   case vmIntrinsics::_profileBoolean:
 878     return inline_profileBoolean();
 879   case vmIntrinsics::_isCompileConstant:
 880     return inline_isCompileConstant();
 881 
 882   case vmIntrinsics::_hasNegatives:
 883     return inline_hasNegatives();
 884 
 885   case vmIntrinsics::_fmaD:
 886   case vmIntrinsics::_fmaF:
 887     return inline_fma(intrinsic_id());
 888 
 889   case vmIntrinsics::_isDigit:
 890   case vmIntrinsics::_isLowerCase:
 891   case vmIntrinsics::_isUpperCase:
 892   case vmIntrinsics::_isWhitespace:
 893     return inline_character_compare(intrinsic_id());
 894 
 895   case vmIntrinsics::_maxF:
 896   case vmIntrinsics::_minF:
 897   case vmIntrinsics::_maxD:
 898   case vmIntrinsics::_minD:
 899     return inline_fp_min_max(intrinsic_id());
 900 
 901   default:
 902     // If you get here, it may be that someone has added a new intrinsic
 903     // to the list in vmSymbols.hpp without implementing it here.
 904 #ifndef PRODUCT
 905     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 906       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 907                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 908     }
 909 #endif
 910     return false;
 911   }
 912 }
 913 
 914 Node* LibraryCallKit::try_to_predicate(int predicate) {
 915   if (!jvms()->has_method()) {
 916     // Root JVMState has a null method.
 917     assert(map()->memory()->Opcode() == Op_Parm, "");
 918     // Insert the memory aliasing node
 919     set_all_memory(reset_memory());
 920   }
 921   assert(merged_memory(), "");
 922 
 923   switch (intrinsic_id()) {
 924   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 925     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 926   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 927     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 928   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 929     return inline_electronicCodeBook_AESCrypt_predicate(false);
 930   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 931     return inline_electronicCodeBook_AESCrypt_predicate(true);
 932   case vmIntrinsics::_counterMode_AESCrypt:
 933     return inline_counterMode_AESCrypt_predicate();
 934   case vmIntrinsics::_digestBase_implCompressMB:
 935     return inline_digestBase_implCompressMB_predicate(predicate);
 936 
 937   default:
 938     // If you get here, it may be that someone has added a new intrinsic
 939     // to the list in vmSymbols.hpp without implementing it here.
 940 #ifndef PRODUCT
 941     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 942       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 943                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 944     }
 945 #endif
 946     Node* slow_ctl = control();
 947     set_control(top()); // No fast path instrinsic
 948     return slow_ctl;
 949   }
 950 }
 951 
 952 //------------------------------set_result-------------------------------
 953 // Helper function for finishing intrinsics.
 954 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 955   record_for_igvn(region);
 956   set_control(_gvn.transform(region));
 957   set_result( _gvn.transform(value));
 958   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 959 }
 960 
 961 //------------------------------generate_guard---------------------------
 962 // Helper function for generating guarded fast-slow graph structures.
 963 // The given 'test', if true, guards a slow path.  If the test fails
 964 // then a fast path can be taken.  (We generally hope it fails.)
 965 // In all cases, GraphKit::control() is updated to the fast path.
 966 // The returned value represents the control for the slow path.
 967 // The return value is never 'top'; it is either a valid control
 968 // or NULL if it is obvious that the slow path can never be taken.
 969 // Also, if region and the slow control are not NULL, the slow edge
 970 // is appended to the region.
 971 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 972   if (stopped()) {
 973     // Already short circuited.
 974     return NULL;
 975   }
 976 
 977   // Build an if node and its projections.
 978   // If test is true we take the slow path, which we assume is uncommon.
 979   if (_gvn.type(test) == TypeInt::ZERO) {
 980     // The slow branch is never taken.  No need to build this guard.
 981     return NULL;
 982   }
 983 
 984   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 985 
 986   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 987   if (if_slow == top()) {
 988     // The slow branch is never taken.  No need to build this guard.
 989     return NULL;
 990   }
 991 
 992   if (region != NULL)
 993     region->add_req(if_slow);
 994 
 995   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 996   set_control(if_fast);
 997 
 998   return if_slow;
 999 }
1000 
1001 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1002   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1003 }
1004 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1005   return generate_guard(test, region, PROB_FAIR);
1006 }
1007 
1008 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1009                                                      Node* *pos_index) {
1010   if (stopped())
1011     return NULL;                // already stopped
1012   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1013     return NULL;                // index is already adequately typed
1014   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1015   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1016   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1017   if (is_neg != NULL && pos_index != NULL) {
1018     // Emulate effect of Parse::adjust_map_after_if.
1019     Node* ccast = new CastIINode(index, TypeInt::POS);
1020     ccast->set_req(0, control());
1021     (*pos_index) = _gvn.transform(ccast);
1022   }
1023   return is_neg;
1024 }
1025 
1026 // Make sure that 'position' is a valid limit index, in [0..length].
1027 // There are two equivalent plans for checking this:
1028 //   A. (offset + copyLength)  unsigned<=  arrayLength
1029 //   B. offset  <=  (arrayLength - copyLength)
1030 // We require that all of the values above, except for the sum and
1031 // difference, are already known to be non-negative.
1032 // Plan A is robust in the face of overflow, if offset and copyLength
1033 // are both hugely positive.
1034 //
1035 // Plan B is less direct and intuitive, but it does not overflow at
1036 // all, since the difference of two non-negatives is always
1037 // representable.  Whenever Java methods must perform the equivalent
1038 // check they generally use Plan B instead of Plan A.
1039 // For the moment we use Plan A.
1040 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1041                                                   Node* subseq_length,
1042                                                   Node* array_length,
1043                                                   RegionNode* region) {
1044   if (stopped())
1045     return NULL;                // already stopped
1046   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1047   if (zero_offset && subseq_length->eqv_uncast(array_length))
1048     return NULL;                // common case of whole-array copy
1049   Node* last = subseq_length;
1050   if (!zero_offset)             // last += offset
1051     last = _gvn.transform(new AddINode(last, offset));
1052   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1053   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1054   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1055   return is_over;
1056 }
1057 
1058 // Emit range checks for the given String.value byte array
1059 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
1060   if (stopped()) {
1061     return; // already stopped
1062   }
1063   RegionNode* bailout = new RegionNode(1);
1064   record_for_igvn(bailout);
1065   if (char_count) {
1066     // Convert char count to byte count
1067     count = _gvn.transform(new LShiftINode(count, intcon(1)));
1068   }
1069 
1070   // Offset and count must not be negative
1071   generate_negative_guard(offset, bailout);
1072   generate_negative_guard(count, bailout);
1073   // Offset + count must not exceed length of array
1074   generate_limit_guard(offset, count, load_array_length(array), bailout);
1075 
1076   if (bailout->req() > 1) {
1077     PreserveJVMState pjvms(this);
1078     set_control(_gvn.transform(bailout));
1079     uncommon_trap(Deoptimization::Reason_intrinsic,
1080                   Deoptimization::Action_maybe_recompile);
1081   }
1082 }
1083 
1084 //--------------------------generate_current_thread--------------------
1085 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1086   ciKlass*    thread_klass = env()->Thread_klass();
1087   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1088   Node* thread = _gvn.transform(new ThreadLocalNode());
1089   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1090   Node* threadObj = _gvn.transform(LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(), thread_type, T_OBJECT, MemNode::unordered));
1091   tls_output = thread;
1092   return threadObj;
1093 }
1094 
1095 
1096 //------------------------------make_string_method_node------------------------
1097 // Helper method for String intrinsic functions. This version is called with
1098 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1099 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1100 // containing the lengths of str1 and str2.
1101 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1102   Node* result = NULL;
1103   switch (opcode) {
1104   case Op_StrIndexOf:
1105     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1106                                 str1_start, cnt1, str2_start, cnt2, ae);
1107     break;
1108   case Op_StrComp:
1109     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1110                              str1_start, cnt1, str2_start, cnt2, ae);
1111     break;
1112   case Op_StrEquals:
1113     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1114     // Use the constant length if there is one because optimized match rule may exist.
1115     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1116                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1117     break;
1118   default:
1119     ShouldNotReachHere();
1120     return NULL;
1121   }
1122 
1123   // All these intrinsics have checks.
1124   C->set_has_split_ifs(true); // Has chance for split-if optimization
1125   clear_upper_avx();
1126 
1127   return _gvn.transform(result);
1128 }
1129 
1130 //------------------------------inline_string_compareTo------------------------
1131 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1132   Node* arg1 = argument(0);
1133   Node* arg2 = argument(1);
1134 
1135   arg1 = must_be_not_null(arg1, true);
1136   arg2 = must_be_not_null(arg2, true);
1137 
1138   arg1 = access_resolve(arg1, ACCESS_READ);
1139   arg2 = access_resolve(arg2, ACCESS_READ);
1140 
1141   // Get start addr and length of first argument
1142   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1143   Node* arg1_cnt    = load_array_length(arg1);
1144 
1145   // Get start addr and length of second argument
1146   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1147   Node* arg2_cnt    = load_array_length(arg2);
1148 
1149   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1150   set_result(result);
1151   return true;
1152 }
1153 
1154 //------------------------------inline_string_equals------------------------
1155 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1156   Node* arg1 = argument(0);
1157   Node* arg2 = argument(1);
1158 
1159   // paths (plus control) merge
1160   RegionNode* region = new RegionNode(3);
1161   Node* phi = new PhiNode(region, TypeInt::BOOL);
1162 
1163   if (!stopped()) {
1164 
1165     arg1 = must_be_not_null(arg1, true);
1166     arg2 = must_be_not_null(arg2, true);
1167 
1168     arg1 = access_resolve(arg1, ACCESS_READ);
1169     arg2 = access_resolve(arg2, ACCESS_READ);
1170 
1171     // Get start addr and length of first argument
1172     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1173     Node* arg1_cnt    = load_array_length(arg1);
1174 
1175     // Get start addr and length of second argument
1176     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1177     Node* arg2_cnt    = load_array_length(arg2);
1178 
1179     // Check for arg1_cnt != arg2_cnt
1180     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1181     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1182     Node* if_ne = generate_slow_guard(bol, NULL);
1183     if (if_ne != NULL) {
1184       phi->init_req(2, intcon(0));
1185       region->init_req(2, if_ne);
1186     }
1187 
1188     // Check for count == 0 is done by assembler code for StrEquals.
1189 
1190     if (!stopped()) {
1191       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1192       phi->init_req(1, equals);
1193       region->init_req(1, control());
1194     }
1195   }
1196 
1197   // post merge
1198   set_control(_gvn.transform(region));
1199   record_for_igvn(region);
1200 
1201   set_result(_gvn.transform(phi));
1202   return true;
1203 }
1204 
1205 //------------------------------inline_array_equals----------------------------
1206 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1207   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1208   Node* arg1 = argument(0);
1209   Node* arg2 = argument(1);
1210 
1211   arg1 = access_resolve(arg1, ACCESS_READ);
1212   arg2 = access_resolve(arg2, ACCESS_READ);
1213 
1214   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1215   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1216   clear_upper_avx();
1217 
1218   return true;
1219 }
1220 
1221 //------------------------------inline_hasNegatives------------------------------
1222 bool LibraryCallKit::inline_hasNegatives() {
1223   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1224     return false;
1225   }
1226 
1227   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1228   // no receiver since it is static method
1229   Node* ba         = argument(0);
1230   Node* offset     = argument(1);
1231   Node* len        = argument(2);
1232 
1233   ba = must_be_not_null(ba, true);
1234 
1235   // Range checks
1236   generate_string_range_check(ba, offset, len, false);
1237   if (stopped()) {
1238     return true;
1239   }
1240   ba = access_resolve(ba, ACCESS_READ);
1241   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1242   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1243   set_result(_gvn.transform(result));
1244   return true;
1245 }
1246 
1247 bool LibraryCallKit::inline_preconditions_checkIndex() {
1248   Node* index = argument(0);
1249   Node* length = argument(1);
1250   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1251     return false;
1252   }
1253 
1254   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1255   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1256 
1257   {
1258     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1259     uncommon_trap(Deoptimization::Reason_intrinsic,
1260                   Deoptimization::Action_make_not_entrant);
1261   }
1262 
1263   if (stopped()) {
1264     return false;
1265   }
1266 
1267   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1268   BoolTest::mask btest = BoolTest::lt;
1269   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1270   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1271   _gvn.set_type(rc, rc->Value(&_gvn));
1272   if (!rc_bool->is_Con()) {
1273     record_for_igvn(rc);
1274   }
1275   set_control(_gvn.transform(new IfTrueNode(rc)));
1276   {
1277     PreserveJVMState pjvms(this);
1278     set_control(_gvn.transform(new IfFalseNode(rc)));
1279     uncommon_trap(Deoptimization::Reason_range_check,
1280                   Deoptimization::Action_make_not_entrant);
1281   }
1282 
1283   if (stopped()) {
1284     return false;
1285   }
1286 
1287   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1288   result->set_req(0, control());
1289   result = _gvn.transform(result);
1290   set_result(result);
1291   replace_in_map(index, result);
1292   clear_upper_avx();
1293   return true;
1294 }
1295 
1296 //------------------------------inline_string_indexOf------------------------
1297 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1298   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1299     return false;
1300   }
1301   Node* src = argument(0);
1302   Node* tgt = argument(1);
1303 
1304   // Make the merge point
1305   RegionNode* result_rgn = new RegionNode(4);
1306   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1307 
1308   src = must_be_not_null(src, true);
1309   tgt = must_be_not_null(tgt, true);
1310 
1311   src = access_resolve(src, ACCESS_READ);
1312   tgt = access_resolve(tgt, ACCESS_READ);
1313 
1314   // Get start addr and length of source string
1315   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1316   Node* src_count = load_array_length(src);
1317 
1318   // Get start addr and length of substring
1319   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1320   Node* tgt_count = load_array_length(tgt);
1321 
1322   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1323     // Divide src size by 2 if String is UTF16 encoded
1324     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1325   }
1326   if (ae == StrIntrinsicNode::UU) {
1327     // Divide substring size by 2 if String is UTF16 encoded
1328     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1329   }
1330 
1331   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1332   if (result != NULL) {
1333     result_phi->init_req(3, result);
1334     result_rgn->init_req(3, control());
1335   }
1336   set_control(_gvn.transform(result_rgn));
1337   record_for_igvn(result_rgn);
1338   set_result(_gvn.transform(result_phi));
1339 
1340   return true;
1341 }
1342 
1343 //-----------------------------inline_string_indexOf-----------------------
1344 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1345   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1346     return false;
1347   }
1348   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1349     return false;
1350   }
1351   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1352   Node* src         = argument(0); // byte[]
1353   Node* src_count   = argument(1); // char count
1354   Node* tgt         = argument(2); // byte[]
1355   Node* tgt_count   = argument(3); // char count
1356   Node* from_index  = argument(4); // char index
1357 
1358   src = must_be_not_null(src, true);
1359   tgt = must_be_not_null(tgt, true);
1360 
1361   src = access_resolve(src, ACCESS_READ);
1362   tgt = access_resolve(tgt, ACCESS_READ);
1363 
1364   // Multiply byte array index by 2 if String is UTF16 encoded
1365   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1366   src_count = _gvn.transform(new SubINode(src_count, from_index));
1367   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1368   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1369 
1370   // Range checks
1371   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1372   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1373   if (stopped()) {
1374     return true;
1375   }
1376 
1377   RegionNode* region = new RegionNode(5);
1378   Node* phi = new PhiNode(region, TypeInt::INT);
1379 
1380   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1381   if (result != NULL) {
1382     // The result is index relative to from_index if substring was found, -1 otherwise.
1383     // Generate code which will fold into cmove.
1384     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1385     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1386 
1387     Node* if_lt = generate_slow_guard(bol, NULL);
1388     if (if_lt != NULL) {
1389       // result == -1
1390       phi->init_req(3, result);
1391       region->init_req(3, if_lt);
1392     }
1393     if (!stopped()) {
1394       result = _gvn.transform(new AddINode(result, from_index));
1395       phi->init_req(4, result);
1396       region->init_req(4, control());
1397     }
1398   }
1399 
1400   set_control(_gvn.transform(region));
1401   record_for_igvn(region);
1402   set_result(_gvn.transform(phi));
1403   clear_upper_avx();
1404 
1405   return true;
1406 }
1407 
1408 // Create StrIndexOfNode with fast path checks
1409 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1410                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1411   // Check for substr count > string count
1412   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1413   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1414   Node* if_gt = generate_slow_guard(bol, NULL);
1415   if (if_gt != NULL) {
1416     phi->init_req(1, intcon(-1));
1417     region->init_req(1, if_gt);
1418   }
1419   if (!stopped()) {
1420     // Check for substr count == 0
1421     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1422     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1423     Node* if_zero = generate_slow_guard(bol, NULL);
1424     if (if_zero != NULL) {
1425       phi->init_req(2, intcon(0));
1426       region->init_req(2, if_zero);
1427     }
1428   }
1429   if (!stopped()) {
1430     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1431   }
1432   return NULL;
1433 }
1434 
1435 //-----------------------------inline_string_indexOfChar-----------------------
1436 bool LibraryCallKit::inline_string_indexOfChar() {
1437   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1438     return false;
1439   }
1440   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1441     return false;
1442   }
1443   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1444   Node* src         = argument(0); // byte[]
1445   Node* tgt         = argument(1); // tgt is int ch
1446   Node* from_index  = argument(2);
1447   Node* max         = argument(3);
1448 
1449   src = must_be_not_null(src, true);
1450   src = access_resolve(src, ACCESS_READ);
1451 
1452   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1453   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1454   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1455 
1456   // Range checks
1457   generate_string_range_check(src, src_offset, src_count, true);
1458   if (stopped()) {
1459     return true;
1460   }
1461 
1462   RegionNode* region = new RegionNode(3);
1463   Node* phi = new PhiNode(region, TypeInt::INT);
1464 
1465   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1466   C->set_has_split_ifs(true); // Has chance for split-if optimization
1467   _gvn.transform(result);
1468 
1469   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1470   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1471 
1472   Node* if_lt = generate_slow_guard(bol, NULL);
1473   if (if_lt != NULL) {
1474     // result == -1
1475     phi->init_req(2, result);
1476     region->init_req(2, if_lt);
1477   }
1478   if (!stopped()) {
1479     result = _gvn.transform(new AddINode(result, from_index));
1480     phi->init_req(1, result);
1481     region->init_req(1, control());
1482   }
1483   set_control(_gvn.transform(region));
1484   record_for_igvn(region);
1485   set_result(_gvn.transform(phi));
1486 
1487   return true;
1488 }
1489 //---------------------------inline_string_copy---------------------
1490 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1491 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1492 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1493 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1494 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1495 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1496 bool LibraryCallKit::inline_string_copy(bool compress) {
1497   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1498     return false;
1499   }
1500   int nargs = 5;  // 2 oops, 3 ints
1501   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1502 
1503   Node* src         = argument(0);
1504   Node* src_offset  = argument(1);
1505   Node* dst         = argument(2);
1506   Node* dst_offset  = argument(3);
1507   Node* length      = argument(4);
1508 
1509   // Check for allocation before we add nodes that would confuse
1510   // tightly_coupled_allocation()
1511   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1512 
1513   // Figure out the size and type of the elements we will be copying.
1514   const Type* src_type = src->Value(&_gvn);
1515   const Type* dst_type = dst->Value(&_gvn);
1516   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1517   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1518   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1519          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1520          "Unsupported array types for inline_string_copy");
1521 
1522   src = must_be_not_null(src, true);
1523   dst = must_be_not_null(dst, true);
1524 
1525   // Convert char[] offsets to byte[] offsets
1526   bool convert_src = (compress && src_elem == T_BYTE);
1527   bool convert_dst = (!compress && dst_elem == T_BYTE);
1528   if (convert_src) {
1529     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1530   } else if (convert_dst) {
1531     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1532   }
1533 
1534   // Range checks
1535   generate_string_range_check(src, src_offset, length, convert_src);
1536   generate_string_range_check(dst, dst_offset, length, convert_dst);
1537   if (stopped()) {
1538     return true;
1539   }
1540 
1541   src = access_resolve(src, ACCESS_READ);
1542   dst = access_resolve(dst, ACCESS_WRITE);
1543 
1544   Node* src_start = array_element_address(src, src_offset, src_elem);
1545   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1546   // 'src_start' points to src array + scaled offset
1547   // 'dst_start' points to dst array + scaled offset
1548   Node* count = NULL;
1549   if (compress) {
1550     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1551   } else {
1552     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1553   }
1554 
1555   if (alloc != NULL) {
1556     if (alloc->maybe_set_complete(&_gvn)) {
1557       // "You break it, you buy it."
1558       InitializeNode* init = alloc->initialization();
1559       assert(init->is_complete(), "we just did this");
1560       init->set_complete_with_arraycopy();
1561       assert(dst->is_CheckCastPP(), "sanity");
1562       assert(dst->in(0)->in(0) == init, "dest pinned");
1563     }
1564     // Do not let stores that initialize this object be reordered with
1565     // a subsequent store that would make this object accessible by
1566     // other threads.
1567     // Record what AllocateNode this StoreStore protects so that
1568     // escape analysis can go from the MemBarStoreStoreNode to the
1569     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1570     // based on the escape status of the AllocateNode.
1571     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1572   }
1573   if (compress) {
1574     set_result(_gvn.transform(count));
1575   }
1576   clear_upper_avx();
1577 
1578   return true;
1579 }
1580 
1581 #ifdef _LP64
1582 #define XTOP ,top() /*additional argument*/
1583 #else  //_LP64
1584 #define XTOP        /*no additional argument*/
1585 #endif //_LP64
1586 
1587 //------------------------inline_string_toBytesU--------------------------
1588 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1589 bool LibraryCallKit::inline_string_toBytesU() {
1590   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1591     return false;
1592   }
1593   // Get the arguments.
1594   Node* value     = argument(0);
1595   Node* offset    = argument(1);
1596   Node* length    = argument(2);
1597 
1598   Node* newcopy = NULL;
1599 
1600   // Set the original stack and the reexecute bit for the interpreter to reexecute
1601   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1602   { PreserveReexecuteState preexecs(this);
1603     jvms()->set_should_reexecute(true);
1604 
1605     // Check if a null path was taken unconditionally.
1606     value = null_check(value);
1607 
1608     RegionNode* bailout = new RegionNode(1);
1609     record_for_igvn(bailout);
1610 
1611     // Range checks
1612     generate_negative_guard(offset, bailout);
1613     generate_negative_guard(length, bailout);
1614     generate_limit_guard(offset, length, load_array_length(value), bailout);
1615     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1616     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1617 
1618     if (bailout->req() > 1) {
1619       PreserveJVMState pjvms(this);
1620       set_control(_gvn.transform(bailout));
1621       uncommon_trap(Deoptimization::Reason_intrinsic,
1622                     Deoptimization::Action_maybe_recompile);
1623     }
1624     if (stopped()) {
1625       return true;
1626     }
1627 
1628     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1629     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1630     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1631     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1632 
1633     // Calculate starting addresses.
1634     value = access_resolve(value, ACCESS_READ);
1635     Node* src_start = array_element_address(value, offset, T_CHAR);
1636     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1637 
1638     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1639     const TypeInt* toffset = gvn().type(offset)->is_int();
1640     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1641 
1642     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1643     const char* copyfunc_name = "arraycopy";
1644     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1645     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1646                       OptoRuntime::fast_arraycopy_Type(),
1647                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1648                       src_start, dst_start, ConvI2X(length) XTOP);
1649     // Do not let reads from the cloned object float above the arraycopy.
1650     if (alloc != NULL) {
1651       if (alloc->maybe_set_complete(&_gvn)) {
1652         // "You break it, you buy it."
1653         InitializeNode* init = alloc->initialization();
1654         assert(init->is_complete(), "we just did this");
1655         init->set_complete_with_arraycopy();
1656         assert(newcopy->is_CheckCastPP(), "sanity");
1657         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1658       }
1659       // Do not let stores that initialize this object be reordered with
1660       // a subsequent store that would make this object accessible by
1661       // other threads.
1662       // Record what AllocateNode this StoreStore protects so that
1663       // escape analysis can go from the MemBarStoreStoreNode to the
1664       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1665       // based on the escape status of the AllocateNode.
1666       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1667     } else {
1668       insert_mem_bar(Op_MemBarCPUOrder);
1669     }
1670   } // original reexecute is set back here
1671 
1672   C->set_has_split_ifs(true); // Has chance for split-if optimization
1673   if (!stopped()) {
1674     set_result(newcopy);
1675   }
1676   clear_upper_avx();
1677 
1678   return true;
1679 }
1680 
1681 //------------------------inline_string_getCharsU--------------------------
1682 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1683 bool LibraryCallKit::inline_string_getCharsU() {
1684   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1685     return false;
1686   }
1687 
1688   // Get the arguments.
1689   Node* src       = argument(0);
1690   Node* src_begin = argument(1);
1691   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1692   Node* dst       = argument(3);
1693   Node* dst_begin = argument(4);
1694 
1695   // Check for allocation before we add nodes that would confuse
1696   // tightly_coupled_allocation()
1697   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1698 
1699   // Check if a null path was taken unconditionally.
1700   src = null_check(src);
1701   dst = null_check(dst);
1702   if (stopped()) {
1703     return true;
1704   }
1705 
1706   // Get length and convert char[] offset to byte[] offset
1707   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1708   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1709 
1710   // Range checks
1711   generate_string_range_check(src, src_begin, length, true);
1712   generate_string_range_check(dst, dst_begin, length, false);
1713   if (stopped()) {
1714     return true;
1715   }
1716 
1717   if (!stopped()) {
1718     src = access_resolve(src, ACCESS_READ);
1719     dst = access_resolve(dst, ACCESS_WRITE);
1720 
1721     // Calculate starting addresses.
1722     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1723     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1724 
1725     // Check if array addresses are aligned to HeapWordSize
1726     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1727     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1728     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1729                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1730 
1731     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1732     const char* copyfunc_name = "arraycopy";
1733     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1734     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1735                       OptoRuntime::fast_arraycopy_Type(),
1736                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1737                       src_start, dst_start, ConvI2X(length) XTOP);
1738     // Do not let reads from the cloned object float above the arraycopy.
1739     if (alloc != NULL) {
1740       if (alloc->maybe_set_complete(&_gvn)) {
1741         // "You break it, you buy it."
1742         InitializeNode* init = alloc->initialization();
1743         assert(init->is_complete(), "we just did this");
1744         init->set_complete_with_arraycopy();
1745         assert(dst->is_CheckCastPP(), "sanity");
1746         assert(dst->in(0)->in(0) == init, "dest pinned");
1747       }
1748       // Do not let stores that initialize this object be reordered with
1749       // a subsequent store that would make this object accessible by
1750       // other threads.
1751       // Record what AllocateNode this StoreStore protects so that
1752       // escape analysis can go from the MemBarStoreStoreNode to the
1753       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1754       // based on the escape status of the AllocateNode.
1755       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1756     } else {
1757       insert_mem_bar(Op_MemBarCPUOrder);
1758     }
1759   }
1760 
1761   C->set_has_split_ifs(true); // Has chance for split-if optimization
1762   return true;
1763 }
1764 
1765 //----------------------inline_string_char_access----------------------------
1766 // Store/Load char to/from byte[] array.
1767 // static void StringUTF16.putChar(byte[] val, int index, int c)
1768 // static char StringUTF16.getChar(byte[] val, int index)
1769 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1770   Node* value  = argument(0);
1771   Node* index  = argument(1);
1772   Node* ch = is_store ? argument(2) : NULL;
1773 
1774   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1775   // correctly requires matched array shapes.
1776   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1777           "sanity: byte[] and char[] bases agree");
1778   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1779           "sanity: byte[] and char[] scales agree");
1780 
1781   // Bail when getChar over constants is requested: constant folding would
1782   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1783   // Java method would constant fold nicely instead.
1784   if (!is_store && value->is_Con() && index->is_Con()) {
1785     return false;
1786   }
1787 
1788   value = must_be_not_null(value, true);
1789   value = access_resolve(value, is_store ? ACCESS_WRITE : ACCESS_READ);
1790 
1791   Node* adr = array_element_address(value, index, T_CHAR);
1792   if (adr->is_top()) {
1793     return false;
1794   }
1795   if (is_store) {
1796     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1797   } else {
1798     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
1799     set_result(ch);
1800   }
1801   return true;
1802 }
1803 
1804 //--------------------------round_double_node--------------------------------
1805 // Round a double node if necessary.
1806 Node* LibraryCallKit::round_double_node(Node* n) {
1807   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1808     n = _gvn.transform(new RoundDoubleNode(0, n));
1809   return n;
1810 }
1811 
1812 //------------------------------inline_math-----------------------------------
1813 // public static double Math.abs(double)
1814 // public static double Math.sqrt(double)
1815 // public static double Math.log(double)
1816 // public static double Math.log10(double)
1817 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1818   Node* arg = round_double_node(argument(0));
1819   Node* n = NULL;
1820   switch (id) {
1821   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1822   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1823   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1824   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1825   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1826   default:  fatal_unexpected_iid(id);  break;
1827   }
1828   set_result(_gvn.transform(n));
1829   return true;
1830 }
1831 
1832 //------------------------------inline_math-----------------------------------
1833 // public static float Math.abs(float)
1834 // public static int Math.abs(int)
1835 // public static long Math.abs(long)
1836 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1837   Node* arg = argument(0);
1838   Node* n = NULL;
1839   switch (id) {
1840   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1841   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1842   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1843   default:  fatal_unexpected_iid(id);  break;
1844   }
1845   set_result(_gvn.transform(n));
1846   return true;
1847 }
1848 
1849 //------------------------------runtime_math-----------------------------
1850 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1851   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1852          "must be (DD)D or (D)D type");
1853 
1854   // Inputs
1855   Node* a = round_double_node(argument(0));
1856   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1857 
1858   const TypePtr* no_memory_effects = NULL;
1859   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1860                                  no_memory_effects,
1861                                  a, top(), b, b ? top() : NULL);
1862   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1863 #ifdef ASSERT
1864   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1865   assert(value_top == top(), "second value must be top");
1866 #endif
1867 
1868   set_result(value);
1869   return true;
1870 }
1871 
1872 //------------------------------inline_math_native-----------------------------
1873 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1874 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1875   switch (id) {
1876     // These intrinsics are not properly supported on all hardware
1877   case vmIntrinsics::_dsin:
1878     return StubRoutines::dsin() != NULL ?
1879       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1880       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1881   case vmIntrinsics::_dcos:
1882     return StubRoutines::dcos() != NULL ?
1883       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1884       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1885   case vmIntrinsics::_dtan:
1886     return StubRoutines::dtan() != NULL ?
1887       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1888       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1889   case vmIntrinsics::_dlog:
1890     return StubRoutines::dlog() != NULL ?
1891       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1892       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1893   case vmIntrinsics::_dlog10:
1894     return StubRoutines::dlog10() != NULL ?
1895       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1896       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1897 
1898     // These intrinsics are supported on all hardware
1899   case vmIntrinsics::_ceil:
1900   case vmIntrinsics::_floor:
1901   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1902   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1903   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1904   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1905   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1906   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1907 
1908   case vmIntrinsics::_dexp:
1909     return StubRoutines::dexp() != NULL ?
1910       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1911       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1912   case vmIntrinsics::_dpow: {
1913     Node* exp = round_double_node(argument(2));
1914     const TypeD* d = _gvn.type(exp)->isa_double_constant();
1915     if (d != NULL && d->getd() == 2.0) {
1916       // Special case: pow(x, 2.0) => x * x
1917       Node* base = round_double_node(argument(0));
1918       set_result(_gvn.transform(new MulDNode(base, base)));
1919       return true;
1920     }
1921     return StubRoutines::dpow() != NULL ?
1922       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1923       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1924   }
1925 #undef FN_PTR
1926 
1927    // These intrinsics are not yet correctly implemented
1928   case vmIntrinsics::_datan2:
1929     return false;
1930 
1931   default:
1932     fatal_unexpected_iid(id);
1933     return false;
1934   }
1935 }
1936 
1937 static bool is_simple_name(Node* n) {
1938   return (n->req() == 1         // constant
1939           || (n->is_Type() && n->as_Type()->type()->singleton())
1940           || n->is_Proj()       // parameter or return value
1941           || n->is_Phi()        // local of some sort
1942           );
1943 }
1944 
1945 //----------------------------inline_notify-----------------------------------*
1946 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1947   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1948   address func;
1949   if (id == vmIntrinsics::_notify) {
1950     func = OptoRuntime::monitor_notify_Java();
1951   } else {
1952     func = OptoRuntime::monitor_notifyAll_Java();
1953   }
1954   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1955   make_slow_call_ex(call, env()->Throwable_klass(), false);
1956   return true;
1957 }
1958 
1959 
1960 //----------------------------inline_min_max-----------------------------------
1961 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1962   set_result(generate_min_max(id, argument(0), argument(1)));
1963   return true;
1964 }
1965 
1966 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1967   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1968   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1969   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1970   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1971 
1972   {
1973     PreserveJVMState pjvms(this);
1974     PreserveReexecuteState preexecs(this);
1975     jvms()->set_should_reexecute(true);
1976 
1977     set_control(slow_path);
1978     set_i_o(i_o());
1979 
1980     uncommon_trap(Deoptimization::Reason_intrinsic,
1981                   Deoptimization::Action_none);
1982   }
1983 
1984   set_control(fast_path);
1985   set_result(math);
1986 }
1987 
1988 template <typename OverflowOp>
1989 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1990   typedef typename OverflowOp::MathOp MathOp;
1991 
1992   MathOp* mathOp = new MathOp(arg1, arg2);
1993   Node* operation = _gvn.transform( mathOp );
1994   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1995   inline_math_mathExact(operation, ofcheck);
1996   return true;
1997 }
1998 
1999 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2000   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2001 }
2002 
2003 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2004   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2005 }
2006 
2007 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2008   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2009 }
2010 
2011 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2012   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2013 }
2014 
2015 bool LibraryCallKit::inline_math_negateExactI() {
2016   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2017 }
2018 
2019 bool LibraryCallKit::inline_math_negateExactL() {
2020   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2021 }
2022 
2023 bool LibraryCallKit::inline_math_multiplyExactI() {
2024   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2025 }
2026 
2027 bool LibraryCallKit::inline_math_multiplyExactL() {
2028   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2029 }
2030 
2031 bool LibraryCallKit::inline_math_multiplyHigh() {
2032   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2033   return true;
2034 }
2035 
2036 Node*
2037 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2038   // These are the candidate return value:
2039   Node* xvalue = x0;
2040   Node* yvalue = y0;
2041 
2042   if (xvalue == yvalue) {
2043     return xvalue;
2044   }
2045 
2046   bool want_max = (id == vmIntrinsics::_max);
2047 
2048   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2049   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2050   if (txvalue == NULL || tyvalue == NULL)  return top();
2051   // This is not really necessary, but it is consistent with a
2052   // hypothetical MaxINode::Value method:
2053   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2054 
2055   // %%% This folding logic should (ideally) be in a different place.
2056   // Some should be inside IfNode, and there to be a more reliable
2057   // transformation of ?: style patterns into cmoves.  We also want
2058   // more powerful optimizations around cmove and min/max.
2059 
2060   // Try to find a dominating comparison of these guys.
2061   // It can simplify the index computation for Arrays.copyOf
2062   // and similar uses of System.arraycopy.
2063   // First, compute the normalized version of CmpI(x, y).
2064   int   cmp_op = Op_CmpI;
2065   Node* xkey = xvalue;
2066   Node* ykey = yvalue;
2067   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2068   if (ideal_cmpxy->is_Cmp()) {
2069     // E.g., if we have CmpI(length - offset, count),
2070     // it might idealize to CmpI(length, count + offset)
2071     cmp_op = ideal_cmpxy->Opcode();
2072     xkey = ideal_cmpxy->in(1);
2073     ykey = ideal_cmpxy->in(2);
2074   }
2075 
2076   // Start by locating any relevant comparisons.
2077   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2078   Node* cmpxy = NULL;
2079   Node* cmpyx = NULL;
2080   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2081     Node* cmp = start_from->fast_out(k);
2082     if (cmp->outcnt() > 0 &&            // must have prior uses
2083         cmp->in(0) == NULL &&           // must be context-independent
2084         cmp->Opcode() == cmp_op) {      // right kind of compare
2085       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2086       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2087     }
2088   }
2089 
2090   const int NCMPS = 2;
2091   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2092   int cmpn;
2093   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2094     if (cmps[cmpn] != NULL)  break;     // find a result
2095   }
2096   if (cmpn < NCMPS) {
2097     // Look for a dominating test that tells us the min and max.
2098     int depth = 0;                // Limit search depth for speed
2099     Node* dom = control();
2100     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2101       if (++depth >= 100)  break;
2102       Node* ifproj = dom;
2103       if (!ifproj->is_Proj())  continue;
2104       Node* iff = ifproj->in(0);
2105       if (!iff->is_If())  continue;
2106       Node* bol = iff->in(1);
2107       if (!bol->is_Bool())  continue;
2108       Node* cmp = bol->in(1);
2109       if (cmp == NULL)  continue;
2110       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2111         if (cmps[cmpn] == cmp)  break;
2112       if (cmpn == NCMPS)  continue;
2113       BoolTest::mask btest = bol->as_Bool()->_test._test;
2114       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2115       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2116       // At this point, we know that 'x btest y' is true.
2117       switch (btest) {
2118       case BoolTest::eq:
2119         // They are proven equal, so we can collapse the min/max.
2120         // Either value is the answer.  Choose the simpler.
2121         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2122           return yvalue;
2123         return xvalue;
2124       case BoolTest::lt:          // x < y
2125       case BoolTest::le:          // x <= y
2126         return (want_max ? yvalue : xvalue);
2127       case BoolTest::gt:          // x > y
2128       case BoolTest::ge:          // x >= y
2129         return (want_max ? xvalue : yvalue);
2130       default:
2131         break;
2132       }
2133     }
2134   }
2135 
2136   // We failed to find a dominating test.
2137   // Let's pick a test that might GVN with prior tests.
2138   Node*          best_bol   = NULL;
2139   BoolTest::mask best_btest = BoolTest::illegal;
2140   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2141     Node* cmp = cmps[cmpn];
2142     if (cmp == NULL)  continue;
2143     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2144       Node* bol = cmp->fast_out(j);
2145       if (!bol->is_Bool())  continue;
2146       BoolTest::mask btest = bol->as_Bool()->_test._test;
2147       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2148       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2149       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2150         best_bol   = bol->as_Bool();
2151         best_btest = btest;
2152       }
2153     }
2154   }
2155 
2156   Node* answer_if_true  = NULL;
2157   Node* answer_if_false = NULL;
2158   switch (best_btest) {
2159   default:
2160     if (cmpxy == NULL)
2161       cmpxy = ideal_cmpxy;
2162     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2163     // and fall through:
2164   case BoolTest::lt:          // x < y
2165   case BoolTest::le:          // x <= y
2166     answer_if_true  = (want_max ? yvalue : xvalue);
2167     answer_if_false = (want_max ? xvalue : yvalue);
2168     break;
2169   case BoolTest::gt:          // x > y
2170   case BoolTest::ge:          // x >= y
2171     answer_if_true  = (want_max ? xvalue : yvalue);
2172     answer_if_false = (want_max ? yvalue : xvalue);
2173     break;
2174   }
2175 
2176   jint hi, lo;
2177   if (want_max) {
2178     // We can sharpen the minimum.
2179     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2180     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2181   } else {
2182     // We can sharpen the maximum.
2183     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2184     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2185   }
2186 
2187   // Use a flow-free graph structure, to avoid creating excess control edges
2188   // which could hinder other optimizations.
2189   // Since Math.min/max is often used with arraycopy, we want
2190   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2191   Node* cmov = CMoveNode::make(NULL, best_bol,
2192                                answer_if_false, answer_if_true,
2193                                TypeInt::make(lo, hi, widen));
2194 
2195   return _gvn.transform(cmov);
2196 
2197   /*
2198   // This is not as desirable as it may seem, since Min and Max
2199   // nodes do not have a full set of optimizations.
2200   // And they would interfere, anyway, with 'if' optimizations
2201   // and with CMoveI canonical forms.
2202   switch (id) {
2203   case vmIntrinsics::_min:
2204     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2205   case vmIntrinsics::_max:
2206     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2207   default:
2208     ShouldNotReachHere();
2209   }
2210   */
2211 }
2212 
2213 inline int
2214 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2215   const TypePtr* base_type = TypePtr::NULL_PTR;
2216   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2217   if (base_type == NULL) {
2218     // Unknown type.
2219     return Type::AnyPtr;
2220   } else if (base_type == TypePtr::NULL_PTR) {
2221     // Since this is a NULL+long form, we have to switch to a rawptr.
2222     base   = _gvn.transform(new CastX2PNode(offset));
2223     offset = MakeConX(0);
2224     return Type::RawPtr;
2225   } else if (base_type->base() == Type::RawPtr) {
2226     return Type::RawPtr;
2227   } else if (base_type->isa_oopptr()) {
2228     // Base is never null => always a heap address.
2229     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2230       return Type::OopPtr;
2231     }
2232     // Offset is small => always a heap address.
2233     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2234     if (offset_type != NULL &&
2235         base_type->offset() == 0 &&     // (should always be?)
2236         offset_type->_lo >= 0 &&
2237         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2238       return Type::OopPtr;
2239     } else if (type == T_OBJECT) {
2240       // off heap access to an oop doesn't make any sense. Has to be on
2241       // heap.
2242       return Type::OopPtr;
2243     }
2244     // Otherwise, it might either be oop+off or NULL+addr.
2245     return Type::AnyPtr;
2246   } else {
2247     // No information:
2248     return Type::AnyPtr;
2249   }
2250 }
2251 
2252 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type, bool can_cast) {
2253   Node* uncasted_base = base;
2254   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2255   if (kind == Type::RawPtr) {
2256     return basic_plus_adr(top(), uncasted_base, offset);
2257   } else if (kind == Type::AnyPtr) {
2258     assert(base == uncasted_base, "unexpected base change");
2259     if (can_cast) {
2260       if (!_gvn.type(base)->speculative_maybe_null() &&
2261           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2262         // According to profiling, this access is always on
2263         // heap. Casting the base to not null and thus avoiding membars
2264         // around the access should allow better optimizations
2265         Node* null_ctl = top();
2266         base = null_check_oop(base, &null_ctl, true, true, true);
2267         assert(null_ctl->is_top(), "no null control here");
2268         return basic_plus_adr(base, offset);
2269       } else if (_gvn.type(base)->speculative_always_null() &&
2270                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2271         // According to profiling, this access is always off
2272         // heap.
2273         base = null_assert(base);
2274         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2275         offset = MakeConX(0);
2276         return basic_plus_adr(top(), raw_base, offset);
2277       }
2278     }
2279     // We don't know if it's an on heap or off heap access. Fall back
2280     // to raw memory access.
2281     base = access_resolve(base, decorators);
2282     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2283     return basic_plus_adr(top(), raw, offset);
2284   } else {
2285     assert(base == uncasted_base, "unexpected base change");
2286     // We know it's an on heap access so base can't be null
2287     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2288       base = must_be_not_null(base, true);
2289     }
2290     return basic_plus_adr(base, offset);
2291   }
2292 }
2293 
2294 //--------------------------inline_number_methods-----------------------------
2295 // inline int     Integer.numberOfLeadingZeros(int)
2296 // inline int        Long.numberOfLeadingZeros(long)
2297 //
2298 // inline int     Integer.numberOfTrailingZeros(int)
2299 // inline int        Long.numberOfTrailingZeros(long)
2300 //
2301 // inline int     Integer.bitCount(int)
2302 // inline int        Long.bitCount(long)
2303 //
2304 // inline char  Character.reverseBytes(char)
2305 // inline short     Short.reverseBytes(short)
2306 // inline int     Integer.reverseBytes(int)
2307 // inline long       Long.reverseBytes(long)
2308 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2309   Node* arg = argument(0);
2310   Node* n = NULL;
2311   switch (id) {
2312   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2313   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2314   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2315   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2316   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2317   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2318   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2319   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2320   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2321   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2322   default:  fatal_unexpected_iid(id);  break;
2323   }
2324   set_result(_gvn.transform(n));
2325   return true;
2326 }
2327 
2328 //----------------------------inline_unsafe_access----------------------------
2329 
2330 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2331   // Attempt to infer a sharper value type from the offset and base type.
2332   ciKlass* sharpened_klass = NULL;
2333 
2334   // See if it is an instance field, with an object type.
2335   if (alias_type->field() != NULL) {
2336     if (alias_type->field()->type()->is_klass()) {
2337       sharpened_klass = alias_type->field()->type()->as_klass();
2338     }
2339   }
2340 
2341   // See if it is a narrow oop array.
2342   if (adr_type->isa_aryptr()) {
2343     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2344       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2345       if (elem_type != NULL) {
2346         sharpened_klass = elem_type->klass();
2347       }
2348     }
2349   }
2350 
2351   // The sharpened class might be unloaded if there is no class loader
2352   // contraint in place.
2353   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2354     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2355 
2356 #ifndef PRODUCT
2357     if (C->print_intrinsics() || C->print_inlining()) {
2358       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2359       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2360     }
2361 #endif
2362     // Sharpen the value type.
2363     return tjp;
2364   }
2365   return NULL;
2366 }
2367 
2368 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2369   switch (kind) {
2370       case Relaxed:
2371         return MO_UNORDERED;
2372       case Opaque:
2373         return MO_RELAXED;
2374       case Acquire:
2375         return MO_ACQUIRE;
2376       case Release:
2377         return MO_RELEASE;
2378       case Volatile:
2379         return MO_SEQ_CST;
2380       default:
2381         ShouldNotReachHere();
2382         return 0;
2383   }
2384 }
2385 
2386 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2387   if (callee()->is_static())  return false;  // caller must have the capability!
2388   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2389   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2390   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2391   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2392 
2393   if (is_reference_type(type)) {
2394     decorators |= ON_UNKNOWN_OOP_REF;
2395   }
2396 
2397   if (unaligned) {
2398     decorators |= C2_UNALIGNED;
2399   }
2400 
2401 #ifndef PRODUCT
2402   {
2403     ResourceMark rm;
2404     // Check the signatures.
2405     ciSignature* sig = callee()->signature();
2406 #ifdef ASSERT
2407     if (!is_store) {
2408       // Object getReference(Object base, int/long offset), etc.
2409       BasicType rtype = sig->return_type()->basic_type();
2410       assert(rtype == type, "getter must return the expected value");
2411       assert(sig->count() == 2, "oop getter has 2 arguments");
2412       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2413       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2414     } else {
2415       // void putReference(Object base, int/long offset, Object x), etc.
2416       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2417       assert(sig->count() == 3, "oop putter has 3 arguments");
2418       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2419       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2420       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2421       assert(vtype == type, "putter must accept the expected value");
2422     }
2423 #endif // ASSERT
2424  }
2425 #endif //PRODUCT
2426 
2427   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2428 
2429   Node* receiver = argument(0);  // type: oop
2430 
2431   // Build address expression.
2432   Node* adr;
2433   Node* heap_base_oop = top();
2434   Node* offset = top();
2435   Node* val;
2436 
2437   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2438   Node* base = argument(1);  // type: oop
2439   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2440   offset = argument(2);  // type: long
2441   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2442   // to be plain byte offsets, which are also the same as those accepted
2443   // by oopDesc::field_addr.
2444   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2445          "fieldOffset must be byte-scaled");
2446   // 32-bit machines ignore the high half!
2447   offset = ConvL2X(offset);
2448   adr = make_unsafe_address(base, offset, is_store ? ACCESS_WRITE : ACCESS_READ, type, kind == Relaxed);
2449 
2450   if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) {
2451     if (type != T_OBJECT) {
2452       decorators |= IN_NATIVE; // off-heap primitive access
2453     } else {
2454       return false; // off-heap oop accesses are not supported
2455     }
2456   } else {
2457     heap_base_oop = base; // on-heap or mixed access
2458   }
2459 
2460   // Can base be NULL? Otherwise, always on-heap access.
2461   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2462 
2463   if (!can_access_non_heap) {
2464     decorators |= IN_HEAP;
2465   }
2466 
2467   val = is_store ? argument(4) : NULL;
2468 
2469   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2470   if (adr_type == TypePtr::NULL_PTR) {
2471     return false; // off-heap access with zero address
2472   }
2473 
2474   // Try to categorize the address.
2475   Compile::AliasType* alias_type = C->alias_type(adr_type);
2476   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2477 
2478   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2479       alias_type->adr_type() == TypeAryPtr::RANGE) {
2480     return false; // not supported
2481   }
2482 
2483   bool mismatched = false;
2484   BasicType bt = alias_type->basic_type();
2485   if (bt != T_ILLEGAL) {
2486     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2487     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2488       // Alias type doesn't differentiate between byte[] and boolean[]).
2489       // Use address type to get the element type.
2490       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2491     }
2492     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2493       // accessing an array field with getReference is not a mismatch
2494       bt = T_OBJECT;
2495     }
2496     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2497       // Don't intrinsify mismatched object accesses
2498       return false;
2499     }
2500     mismatched = (bt != type);
2501   } else if (alias_type->adr_type()->isa_oopptr()) {
2502     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2503   }
2504 
2505   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2506 
2507   if (mismatched) {
2508     decorators |= C2_MISMATCHED;
2509   }
2510 
2511   // First guess at the value type.
2512   const Type *value_type = Type::get_const_basic_type(type);
2513 
2514   // Figure out the memory ordering.
2515   decorators |= mo_decorator_for_access_kind(kind);
2516 
2517   if (!is_store && type == T_OBJECT) {
2518     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2519     if (tjp != NULL) {
2520       value_type = tjp;
2521     }
2522   }
2523 
2524   receiver = null_check(receiver);
2525   if (stopped()) {
2526     return true;
2527   }
2528   // Heap pointers get a null-check from the interpreter,
2529   // as a courtesy.  However, this is not guaranteed by Unsafe,
2530   // and it is not possible to fully distinguish unintended nulls
2531   // from intended ones in this API.
2532 
2533   if (!is_store) {
2534     Node* p = NULL;
2535     // Try to constant fold a load from a constant field
2536     ciField* field = alias_type->field();
2537     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2538       // final or stable field
2539       p = make_constant_from_field(field, heap_base_oop);
2540     }
2541 
2542     if (p == NULL) { // Could not constant fold the load
2543       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2544       // Normalize the value returned by getBoolean in the following cases
2545       if (type == T_BOOLEAN &&
2546           (mismatched ||
2547            heap_base_oop == top() ||                  // - heap_base_oop is NULL or
2548            (can_access_non_heap && field == NULL))    // - heap_base_oop is potentially NULL
2549                                                       //   and the unsafe access is made to large offset
2550                                                       //   (i.e., larger than the maximum offset necessary for any
2551                                                       //   field access)
2552             ) {
2553           IdealKit ideal = IdealKit(this);
2554 #define __ ideal.
2555           IdealVariable normalized_result(ideal);
2556           __ declarations_done();
2557           __ set(normalized_result, p);
2558           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2559           __ set(normalized_result, ideal.ConI(1));
2560           ideal.end_if();
2561           final_sync(ideal);
2562           p = __ value(normalized_result);
2563 #undef __
2564       }
2565     }
2566     if (type == T_ADDRESS) {
2567       p = gvn().transform(new CastP2XNode(NULL, p));
2568       p = ConvX2UL(p);
2569     }
2570     // The load node has the control of the preceding MemBarCPUOrder.  All
2571     // following nodes will have the control of the MemBarCPUOrder inserted at
2572     // the end of this method.  So, pushing the load onto the stack at a later
2573     // point is fine.
2574     set_result(p);
2575   } else {
2576     if (bt == T_ADDRESS) {
2577       // Repackage the long as a pointer.
2578       val = ConvL2X(val);
2579       val = gvn().transform(new CastX2PNode(val));
2580     }
2581     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2582   }
2583 
2584   return true;
2585 }
2586 
2587 //----------------------------inline_unsafe_load_store----------------------------
2588 // This method serves a couple of different customers (depending on LoadStoreKind):
2589 //
2590 // LS_cmp_swap:
2591 //
2592 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2593 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2594 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2595 //
2596 // LS_cmp_swap_weak:
2597 //
2598 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2599 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2600 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2601 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2602 //
2603 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2604 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2605 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2606 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2607 //
2608 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2609 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2610 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2611 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2612 //
2613 // LS_cmp_exchange:
2614 //
2615 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2616 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2617 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2618 //
2619 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2620 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2621 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2622 //
2623 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2624 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2625 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2626 //
2627 // LS_get_add:
2628 //
2629 //   int  getAndAddInt( Object o, long offset, int  delta)
2630 //   long getAndAddLong(Object o, long offset, long delta)
2631 //
2632 // LS_get_set:
2633 //
2634 //   int    getAndSet(Object o, long offset, int    newValue)
2635 //   long   getAndSet(Object o, long offset, long   newValue)
2636 //   Object getAndSet(Object o, long offset, Object newValue)
2637 //
2638 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2639   // This basic scheme here is the same as inline_unsafe_access, but
2640   // differs in enough details that combining them would make the code
2641   // overly confusing.  (This is a true fact! I originally combined
2642   // them, but even I was confused by it!) As much code/comments as
2643   // possible are retained from inline_unsafe_access though to make
2644   // the correspondences clearer. - dl
2645 
2646   if (callee()->is_static())  return false;  // caller must have the capability!
2647 
2648   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2649   decorators |= mo_decorator_for_access_kind(access_kind);
2650 
2651 #ifndef PRODUCT
2652   BasicType rtype;
2653   {
2654     ResourceMark rm;
2655     // Check the signatures.
2656     ciSignature* sig = callee()->signature();
2657     rtype = sig->return_type()->basic_type();
2658     switch(kind) {
2659       case LS_get_add:
2660       case LS_get_set: {
2661       // Check the signatures.
2662 #ifdef ASSERT
2663       assert(rtype == type, "get and set must return the expected type");
2664       assert(sig->count() == 3, "get and set has 3 arguments");
2665       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2666       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2667       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2668       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2669 #endif // ASSERT
2670         break;
2671       }
2672       case LS_cmp_swap:
2673       case LS_cmp_swap_weak: {
2674       // Check the signatures.
2675 #ifdef ASSERT
2676       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2677       assert(sig->count() == 4, "CAS has 4 arguments");
2678       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2679       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2680 #endif // ASSERT
2681         break;
2682       }
2683       case LS_cmp_exchange: {
2684       // Check the signatures.
2685 #ifdef ASSERT
2686       assert(rtype == type, "CAS must return the expected type");
2687       assert(sig->count() == 4, "CAS has 4 arguments");
2688       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2689       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2690 #endif // ASSERT
2691         break;
2692       }
2693       default:
2694         ShouldNotReachHere();
2695     }
2696   }
2697 #endif //PRODUCT
2698 
2699   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2700 
2701   // Get arguments:
2702   Node* receiver = NULL;
2703   Node* base     = NULL;
2704   Node* offset   = NULL;
2705   Node* oldval   = NULL;
2706   Node* newval   = NULL;
2707   switch(kind) {
2708     case LS_cmp_swap:
2709     case LS_cmp_swap_weak:
2710     case LS_cmp_exchange: {
2711       const bool two_slot_type = type2size[type] == 2;
2712       receiver = argument(0);  // type: oop
2713       base     = argument(1);  // type: oop
2714       offset   = argument(2);  // type: long
2715       oldval   = argument(4);  // type: oop, int, or long
2716       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2717       break;
2718     }
2719     case LS_get_add:
2720     case LS_get_set: {
2721       receiver = argument(0);  // type: oop
2722       base     = argument(1);  // type: oop
2723       offset   = argument(2);  // type: long
2724       oldval   = NULL;
2725       newval   = argument(4);  // type: oop, int, or long
2726       break;
2727     }
2728     default:
2729       ShouldNotReachHere();
2730   }
2731 
2732   // Build field offset expression.
2733   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2734   // to be plain byte offsets, which are also the same as those accepted
2735   // by oopDesc::field_addr.
2736   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2737   // 32-bit machines ignore the high half of long offsets
2738   offset = ConvL2X(offset);
2739   Node* adr = make_unsafe_address(base, offset, ACCESS_WRITE | ACCESS_READ, type, false);
2740   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2741 
2742   Compile::AliasType* alias_type = C->alias_type(adr_type);
2743   BasicType bt = alias_type->basic_type();
2744   if (bt != T_ILLEGAL &&
2745       (is_reference_type(bt) != (type == T_OBJECT))) {
2746     // Don't intrinsify mismatched object accesses.
2747     return false;
2748   }
2749 
2750   // For CAS, unlike inline_unsafe_access, there seems no point in
2751   // trying to refine types. Just use the coarse types here.
2752   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2753   const Type *value_type = Type::get_const_basic_type(type);
2754 
2755   switch (kind) {
2756     case LS_get_set:
2757     case LS_cmp_exchange: {
2758       if (type == T_OBJECT) {
2759         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2760         if (tjp != NULL) {
2761           value_type = tjp;
2762         }
2763       }
2764       break;
2765     }
2766     case LS_cmp_swap:
2767     case LS_cmp_swap_weak:
2768     case LS_get_add:
2769       break;
2770     default:
2771       ShouldNotReachHere();
2772   }
2773 
2774   // Null check receiver.
2775   receiver = null_check(receiver);
2776   if (stopped()) {
2777     return true;
2778   }
2779 
2780   int alias_idx = C->get_alias_index(adr_type);
2781 
2782   if (is_reference_type(type)) {
2783     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2784 
2785     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2786     // could be delayed during Parse (for example, in adjust_map_after_if()).
2787     // Execute transformation here to avoid barrier generation in such case.
2788     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2789       newval = _gvn.makecon(TypePtr::NULL_PTR);
2790 
2791     if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2792       // Refine the value to a null constant, when it is known to be null
2793       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2794     }
2795   }
2796 
2797   Node* result = NULL;
2798   switch (kind) {
2799     case LS_cmp_exchange: {
2800       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2801                                             oldval, newval, value_type, type, decorators);
2802       break;
2803     }
2804     case LS_cmp_swap_weak:
2805       decorators |= C2_WEAK_CMPXCHG;
2806     case LS_cmp_swap: {
2807       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2808                                              oldval, newval, value_type, type, decorators);
2809       break;
2810     }
2811     case LS_get_set: {
2812       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2813                                      newval, value_type, type, decorators);
2814       break;
2815     }
2816     case LS_get_add: {
2817       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2818                                     newval, value_type, type, decorators);
2819       break;
2820     }
2821     default:
2822       ShouldNotReachHere();
2823   }
2824 
2825   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2826   set_result(result);
2827   return true;
2828 }
2829 
2830 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2831   // Regardless of form, don't allow previous ld/st to move down,
2832   // then issue acquire, release, or volatile mem_bar.
2833   insert_mem_bar(Op_MemBarCPUOrder);
2834   switch(id) {
2835     case vmIntrinsics::_loadFence:
2836       insert_mem_bar(Op_LoadFence);
2837       return true;
2838     case vmIntrinsics::_storeFence:
2839       insert_mem_bar(Op_StoreFence);
2840       return true;
2841     case vmIntrinsics::_fullFence:
2842       insert_mem_bar(Op_MemBarVolatile);
2843       return true;
2844     default:
2845       fatal_unexpected_iid(id);
2846       return false;
2847   }
2848 }
2849 
2850 bool LibraryCallKit::inline_onspinwait() {
2851   insert_mem_bar(Op_OnSpinWait);
2852   return true;
2853 }
2854 
2855 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2856   if (!kls->is_Con()) {
2857     return true;
2858   }
2859   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2860   if (klsptr == NULL) {
2861     return true;
2862   }
2863   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2864   // don't need a guard for a klass that is already initialized
2865   return !ik->is_initialized();
2866 }
2867 
2868 //----------------------------inline_unsafe_writeback0-------------------------
2869 // public native void Unsafe.writeback0(long address)
2870 bool LibraryCallKit::inline_unsafe_writeback0() {
2871   if (!Matcher::has_match_rule(Op_CacheWB)) {
2872     return false;
2873   }
2874 #ifndef PRODUCT
2875   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2876   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2877   ciSignature* sig = callee()->signature();
2878   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2879 #endif
2880   null_check_receiver();  // null-check, then ignore
2881   Node *addr = argument(1);
2882   addr = new CastX2PNode(addr);
2883   addr = _gvn.transform(addr);
2884   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2885   flush = _gvn.transform(flush);
2886   set_memory(flush, TypeRawPtr::BOTTOM);
2887   return true;
2888 }
2889 
2890 //----------------------------inline_unsafe_writeback0-------------------------
2891 // public native void Unsafe.writeback0(long address)
2892 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2893   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2894     return false;
2895   }
2896   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2897     return false;
2898   }
2899 #ifndef PRODUCT
2900   assert(Matcher::has_match_rule(Op_CacheWB),
2901          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2902                 : "found match rule for CacheWBPostSync but not CacheWB"));
2903 
2904 #endif
2905   null_check_receiver();  // null-check, then ignore
2906   Node *sync;
2907   if (is_pre) {
2908     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2909   } else {
2910     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2911   }
2912   sync = _gvn.transform(sync);
2913   set_memory(sync, TypeRawPtr::BOTTOM);
2914   return true;
2915 }
2916 
2917 //----------------------------inline_unsafe_allocate---------------------------
2918 // public native Object Unsafe.allocateInstance(Class<?> cls);
2919 bool LibraryCallKit::inline_unsafe_allocate() {
2920   if (callee()->is_static())  return false;  // caller must have the capability!
2921 
2922   null_check_receiver();  // null-check, then ignore
2923   Node* cls = null_check(argument(1));
2924   if (stopped())  return true;
2925 
2926   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2927   kls = null_check(kls);
2928   if (stopped())  return true;  // argument was like int.class
2929 
2930   Node* test = NULL;
2931   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2932     // Note:  The argument might still be an illegal value like
2933     // Serializable.class or Object[].class.   The runtime will handle it.
2934     // But we must make an explicit check for initialization.
2935     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2936     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2937     // can generate code to load it as unsigned byte.
2938     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2939     Node* bits = intcon(InstanceKlass::fully_initialized);
2940     test = _gvn.transform(new SubINode(inst, bits));
2941     // The 'test' is non-zero if we need to take a slow path.
2942   }
2943 
2944   Node* obj = new_instance(kls, test);
2945   set_result(obj);
2946   return true;
2947 }
2948 
2949 //------------------------inline_native_time_funcs--------------
2950 // inline code for System.currentTimeMillis() and System.nanoTime()
2951 // these have the same type and signature
2952 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2953   const TypeFunc* tf = OptoRuntime::void_long_Type();
2954   const TypePtr* no_memory_effects = NULL;
2955   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2956   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2957 #ifdef ASSERT
2958   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2959   assert(value_top == top(), "second value must be top");
2960 #endif
2961   set_result(value);
2962   return true;
2963 }
2964 
2965 #ifdef JFR_HAVE_INTRINSICS
2966 
2967 /*
2968 * oop -> myklass
2969 * myklass->trace_id |= USED
2970 * return myklass->trace_id & ~0x3
2971 */
2972 bool LibraryCallKit::inline_native_classID() {
2973   Node* cls = null_check(argument(0), T_OBJECT);
2974   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2975   kls = null_check(kls, T_OBJECT);
2976 
2977   ByteSize offset = KLASS_TRACE_ID_OFFSET;
2978   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2979   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
2980 
2981   Node* clsused = longcon(0x01l); // set the class bit
2982   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
2983   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2984   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
2985 
2986 #ifdef TRACE_ID_META_BITS
2987   Node* mbits = longcon(~TRACE_ID_META_BITS);
2988   tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
2989 #endif
2990 #ifdef TRACE_ID_SHIFT
2991   Node* cbits = intcon(TRACE_ID_SHIFT);
2992   tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
2993 #endif
2994 
2995   set_result(tvalue);
2996   return true;
2997 
2998 }
2999 
3000 bool LibraryCallKit::inline_native_getEventWriter() {
3001   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3002 
3003   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
3004                                   in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3005 
3006   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3007 
3008   Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
3009   Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
3010 
3011   IfNode* iff_jobj_null =
3012     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
3013 
3014   enum { _normal_path = 1,
3015          _null_path = 2,
3016          PATH_LIMIT };
3017 
3018   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3019   PhiNode*    result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3020 
3021   Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
3022   result_rgn->init_req(_null_path, jobj_is_null);
3023   result_val->init_req(_null_path, null());
3024 
3025   Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
3026   set_control(jobj_is_not_null);
3027   Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT,
3028                           IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3029   result_rgn->init_req(_normal_path, control());
3030   result_val->init_req(_normal_path, res);
3031 
3032   set_result(result_rgn, result_val);
3033 
3034   return true;
3035 }
3036 
3037 #endif // JFR_HAVE_INTRINSICS
3038 
3039 //------------------------inline_native_currentThread------------------
3040 bool LibraryCallKit::inline_native_currentThread() {
3041   Node* junk = NULL;
3042   set_result(generate_current_thread(junk));
3043   return true;
3044 }
3045 
3046 //---------------------------load_mirror_from_klass----------------------------
3047 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3048 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3049   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3050   Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3051   // mirror = ((OopHandle)mirror)->resolve();
3052   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3053 }
3054 
3055 //-----------------------load_klass_from_mirror_common-------------------------
3056 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3057 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3058 // and branch to the given path on the region.
3059 // If never_see_null, take an uncommon trap on null, so we can optimistically
3060 // compile for the non-null case.
3061 // If the region is NULL, force never_see_null = true.
3062 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3063                                                     bool never_see_null,
3064                                                     RegionNode* region,
3065                                                     int null_path,
3066                                                     int offset) {
3067   if (region == NULL)  never_see_null = true;
3068   Node* p = basic_plus_adr(mirror, offset);
3069   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3070   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3071   Node* null_ctl = top();
3072   kls = null_check_oop(kls, &null_ctl, never_see_null);
3073   if (region != NULL) {
3074     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3075     region->init_req(null_path, null_ctl);
3076   } else {
3077     assert(null_ctl == top(), "no loose ends");
3078   }
3079   return kls;
3080 }
3081 
3082 //--------------------(inline_native_Class_query helpers)---------------------
3083 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3084 // Fall through if (mods & mask) == bits, take the guard otherwise.
3085 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3086   // Branch around if the given klass has the given modifier bit set.
3087   // Like generate_guard, adds a new path onto the region.
3088   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3089   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3090   Node* mask = intcon(modifier_mask);
3091   Node* bits = intcon(modifier_bits);
3092   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3093   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3094   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3095   return generate_fair_guard(bol, region);
3096 }
3097 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3098   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3099 }
3100 
3101 //-------------------------inline_native_Class_query-------------------
3102 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3103   const Type* return_type = TypeInt::BOOL;
3104   Node* prim_return_value = top();  // what happens if it's a primitive class?
3105   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3106   bool expect_prim = false;     // most of these guys expect to work on refs
3107 
3108   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3109 
3110   Node* mirror = argument(0);
3111   Node* obj    = top();
3112 
3113   switch (id) {
3114   case vmIntrinsics::_isInstance:
3115     // nothing is an instance of a primitive type
3116     prim_return_value = intcon(0);
3117     obj = argument(1);
3118     break;
3119   case vmIntrinsics::_getModifiers:
3120     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3121     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3122     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3123     break;
3124   case vmIntrinsics::_isInterface:
3125     prim_return_value = intcon(0);
3126     break;
3127   case vmIntrinsics::_isArray:
3128     prim_return_value = intcon(0);
3129     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3130     break;
3131   case vmIntrinsics::_isPrimitive:
3132     prim_return_value = intcon(1);
3133     expect_prim = true;  // obviously
3134     break;
3135   case vmIntrinsics::_getSuperclass:
3136     prim_return_value = null();
3137     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3138     break;
3139   case vmIntrinsics::_getClassAccessFlags:
3140     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3141     return_type = TypeInt::INT;  // not bool!  6297094
3142     break;
3143   default:
3144     fatal_unexpected_iid(id);
3145     break;
3146   }
3147 
3148   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3149   if (mirror_con == NULL)  return false;  // cannot happen?
3150 
3151 #ifndef PRODUCT
3152   if (C->print_intrinsics() || C->print_inlining()) {
3153     ciType* k = mirror_con->java_mirror_type();
3154     if (k) {
3155       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3156       k->print_name();
3157       tty->cr();
3158     }
3159   }
3160 #endif
3161 
3162   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3163   RegionNode* region = new RegionNode(PATH_LIMIT);
3164   record_for_igvn(region);
3165   PhiNode* phi = new PhiNode(region, return_type);
3166 
3167   // The mirror will never be null of Reflection.getClassAccessFlags, however
3168   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3169   // if it is. See bug 4774291.
3170 
3171   // For Reflection.getClassAccessFlags(), the null check occurs in
3172   // the wrong place; see inline_unsafe_access(), above, for a similar
3173   // situation.
3174   mirror = null_check(mirror);
3175   // If mirror or obj is dead, only null-path is taken.
3176   if (stopped())  return true;
3177 
3178   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3179 
3180   // Now load the mirror's klass metaobject, and null-check it.
3181   // Side-effects region with the control path if the klass is null.
3182   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3183   // If kls is null, we have a primitive mirror.
3184   phi->init_req(_prim_path, prim_return_value);
3185   if (stopped()) { set_result(region, phi); return true; }
3186   bool safe_for_replace = (region->in(_prim_path) == top());
3187 
3188   Node* p;  // handy temp
3189   Node* null_ctl;
3190 
3191   // Now that we have the non-null klass, we can perform the real query.
3192   // For constant classes, the query will constant-fold in LoadNode::Value.
3193   Node* query_value = top();
3194   switch (id) {
3195   case vmIntrinsics::_isInstance:
3196     // nothing is an instance of a primitive type
3197     query_value = gen_instanceof(obj, kls, safe_for_replace);
3198     break;
3199 
3200   case vmIntrinsics::_getModifiers:
3201     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3202     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3203     break;
3204 
3205   case vmIntrinsics::_isInterface:
3206     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3207     if (generate_interface_guard(kls, region) != NULL)
3208       // A guard was added.  If the guard is taken, it was an interface.
3209       phi->add_req(intcon(1));
3210     // If we fall through, it's a plain class.
3211     query_value = intcon(0);
3212     break;
3213 
3214   case vmIntrinsics::_isArray:
3215     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3216     if (generate_array_guard(kls, region) != NULL)
3217       // A guard was added.  If the guard is taken, it was an array.
3218       phi->add_req(intcon(1));
3219     // If we fall through, it's a plain class.
3220     query_value = intcon(0);
3221     break;
3222 
3223   case vmIntrinsics::_isPrimitive:
3224     query_value = intcon(0); // "normal" path produces false
3225     break;
3226 
3227   case vmIntrinsics::_getSuperclass:
3228     // The rules here are somewhat unfortunate, but we can still do better
3229     // with random logic than with a JNI call.
3230     // Interfaces store null or Object as _super, but must report null.
3231     // Arrays store an intermediate super as _super, but must report Object.
3232     // Other types can report the actual _super.
3233     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3234     if (generate_interface_guard(kls, region) != NULL)
3235       // A guard was added.  If the guard is taken, it was an interface.
3236       phi->add_req(null());
3237     if (generate_array_guard(kls, region) != NULL)
3238       // A guard was added.  If the guard is taken, it was an array.
3239       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3240     // If we fall through, it's a plain class.  Get its _super.
3241     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3242     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3243     null_ctl = top();
3244     kls = null_check_oop(kls, &null_ctl);
3245     if (null_ctl != top()) {
3246       // If the guard is taken, Object.superClass is null (both klass and mirror).
3247       region->add_req(null_ctl);
3248       phi   ->add_req(null());
3249     }
3250     if (!stopped()) {
3251       query_value = load_mirror_from_klass(kls);
3252     }
3253     break;
3254 
3255   case vmIntrinsics::_getClassAccessFlags:
3256     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3257     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3258     break;
3259 
3260   default:
3261     fatal_unexpected_iid(id);
3262     break;
3263   }
3264 
3265   // Fall-through is the normal case of a query to a real class.
3266   phi->init_req(1, query_value);
3267   region->init_req(1, control());
3268 
3269   C->set_has_split_ifs(true); // Has chance for split-if optimization
3270   set_result(region, phi);
3271   return true;
3272 }
3273 
3274 //-------------------------inline_Class_cast-------------------
3275 bool LibraryCallKit::inline_Class_cast() {
3276   Node* mirror = argument(0); // Class
3277   Node* obj    = argument(1);
3278   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3279   if (mirror_con == NULL) {
3280     return false;  // dead path (mirror->is_top()).
3281   }
3282   if (obj == NULL || obj->is_top()) {
3283     return false;  // dead path
3284   }
3285   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3286 
3287   // First, see if Class.cast() can be folded statically.
3288   // java_mirror_type() returns non-null for compile-time Class constants.
3289   ciType* tm = mirror_con->java_mirror_type();
3290   if (tm != NULL && tm->is_klass() &&
3291       tp != NULL && tp->klass() != NULL) {
3292     if (!tp->klass()->is_loaded()) {
3293       // Don't use intrinsic when class is not loaded.
3294       return false;
3295     } else {
3296       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3297       if (static_res == Compile::SSC_always_true) {
3298         // isInstance() is true - fold the code.
3299         set_result(obj);
3300         return true;
3301       } else if (static_res == Compile::SSC_always_false) {
3302         // Don't use intrinsic, have to throw ClassCastException.
3303         // If the reference is null, the non-intrinsic bytecode will
3304         // be optimized appropriately.
3305         return false;
3306       }
3307     }
3308   }
3309 
3310   // Bailout intrinsic and do normal inlining if exception path is frequent.
3311   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3312     return false;
3313   }
3314 
3315   // Generate dynamic checks.
3316   // Class.cast() is java implementation of _checkcast bytecode.
3317   // Do checkcast (Parse::do_checkcast()) optimizations here.
3318 
3319   mirror = null_check(mirror);
3320   // If mirror is dead, only null-path is taken.
3321   if (stopped()) {
3322     return true;
3323   }
3324 
3325   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3326   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3327   RegionNode* region = new RegionNode(PATH_LIMIT);
3328   record_for_igvn(region);
3329 
3330   // Now load the mirror's klass metaobject, and null-check it.
3331   // If kls is null, we have a primitive mirror and
3332   // nothing is an instance of a primitive type.
3333   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3334 
3335   Node* res = top();
3336   if (!stopped()) {
3337     Node* bad_type_ctrl = top();
3338     // Do checkcast optimizations.
3339     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3340     region->init_req(_bad_type_path, bad_type_ctrl);
3341   }
3342   if (region->in(_prim_path) != top() ||
3343       region->in(_bad_type_path) != top()) {
3344     // Let Interpreter throw ClassCastException.
3345     PreserveJVMState pjvms(this);
3346     set_control(_gvn.transform(region));
3347     uncommon_trap(Deoptimization::Reason_intrinsic,
3348                   Deoptimization::Action_maybe_recompile);
3349   }
3350   if (!stopped()) {
3351     set_result(res);
3352   }
3353   return true;
3354 }
3355 
3356 
3357 //--------------------------inline_native_subtype_check------------------------
3358 // This intrinsic takes the JNI calls out of the heart of
3359 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3360 bool LibraryCallKit::inline_native_subtype_check() {
3361   // Pull both arguments off the stack.
3362   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3363   args[0] = argument(0);
3364   args[1] = argument(1);
3365   Node* klasses[2];             // corresponding Klasses: superk, subk
3366   klasses[0] = klasses[1] = top();
3367 
3368   enum {
3369     // A full decision tree on {superc is prim, subc is prim}:
3370     _prim_0_path = 1,           // {P,N} => false
3371                                 // {P,P} & superc!=subc => false
3372     _prim_same_path,            // {P,P} & superc==subc => true
3373     _prim_1_path,               // {N,P} => false
3374     _ref_subtype_path,          // {N,N} & subtype check wins => true
3375     _both_ref_path,             // {N,N} & subtype check loses => false
3376     PATH_LIMIT
3377   };
3378 
3379   RegionNode* region = new RegionNode(PATH_LIMIT);
3380   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3381   record_for_igvn(region);
3382 
3383   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3384   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3385   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3386 
3387   // First null-check both mirrors and load each mirror's klass metaobject.
3388   int which_arg;
3389   for (which_arg = 0; which_arg <= 1; which_arg++) {
3390     Node* arg = args[which_arg];
3391     arg = null_check(arg);
3392     if (stopped())  break;
3393     args[which_arg] = arg;
3394 
3395     Node* p = basic_plus_adr(arg, class_klass_offset);
3396     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3397     klasses[which_arg] = _gvn.transform(kls);
3398   }
3399 
3400   // Resolve oops to stable for CmpP below.
3401   args[0] = access_resolve(args[0], 0);
3402   args[1] = access_resolve(args[1], 0);
3403 
3404   // Having loaded both klasses, test each for null.
3405   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3406   for (which_arg = 0; which_arg <= 1; which_arg++) {
3407     Node* kls = klasses[which_arg];
3408     Node* null_ctl = top();
3409     kls = null_check_oop(kls, &null_ctl, never_see_null);
3410     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3411     region->init_req(prim_path, null_ctl);
3412     if (stopped())  break;
3413     klasses[which_arg] = kls;
3414   }
3415 
3416   if (!stopped()) {
3417     // now we have two reference types, in klasses[0..1]
3418     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3419     Node* superk = klasses[0];  // the receiver
3420     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3421     // now we have a successful reference subtype check
3422     region->set_req(_ref_subtype_path, control());
3423   }
3424 
3425   // If both operands are primitive (both klasses null), then
3426   // we must return true when they are identical primitives.
3427   // It is convenient to test this after the first null klass check.
3428   set_control(region->in(_prim_0_path)); // go back to first null check
3429   if (!stopped()) {
3430     // Since superc is primitive, make a guard for the superc==subc case.
3431     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3432     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3433     generate_guard(bol_eq, region, PROB_FAIR);
3434     if (region->req() == PATH_LIMIT+1) {
3435       // A guard was added.  If the added guard is taken, superc==subc.
3436       region->swap_edges(PATH_LIMIT, _prim_same_path);
3437       region->del_req(PATH_LIMIT);
3438     }
3439     region->set_req(_prim_0_path, control()); // Not equal after all.
3440   }
3441 
3442   // these are the only paths that produce 'true':
3443   phi->set_req(_prim_same_path,   intcon(1));
3444   phi->set_req(_ref_subtype_path, intcon(1));
3445 
3446   // pull together the cases:
3447   assert(region->req() == PATH_LIMIT, "sane region");
3448   for (uint i = 1; i < region->req(); i++) {
3449     Node* ctl = region->in(i);
3450     if (ctl == NULL || ctl == top()) {
3451       region->set_req(i, top());
3452       phi   ->set_req(i, top());
3453     } else if (phi->in(i) == NULL) {
3454       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3455     }
3456   }
3457 
3458   set_control(_gvn.transform(region));
3459   set_result(_gvn.transform(phi));
3460   return true;
3461 }
3462 
3463 //---------------------generate_array_guard_common------------------------
3464 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3465                                                   bool obj_array, bool not_array) {
3466 
3467   if (stopped()) {
3468     return NULL;
3469   }
3470 
3471   // If obj_array/non_array==false/false:
3472   // Branch around if the given klass is in fact an array (either obj or prim).
3473   // If obj_array/non_array==false/true:
3474   // Branch around if the given klass is not an array klass of any kind.
3475   // If obj_array/non_array==true/true:
3476   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3477   // If obj_array/non_array==true/false:
3478   // Branch around if the kls is an oop array (Object[] or subtype)
3479   //
3480   // Like generate_guard, adds a new path onto the region.
3481   jint  layout_con = 0;
3482   Node* layout_val = get_layout_helper(kls, layout_con);
3483   if (layout_val == NULL) {
3484     bool query = (obj_array
3485                   ? Klass::layout_helper_is_objArray(layout_con)
3486                   : Klass::layout_helper_is_array(layout_con));
3487     if (query == not_array) {
3488       return NULL;                       // never a branch
3489     } else {                             // always a branch
3490       Node* always_branch = control();
3491       if (region != NULL)
3492         region->add_req(always_branch);
3493       set_control(top());
3494       return always_branch;
3495     }
3496   }
3497   // Now test the correct condition.
3498   jint  nval = (obj_array
3499                 ? (jint)(Klass::_lh_array_tag_type_value
3500                    <<    Klass::_lh_array_tag_shift)
3501                 : Klass::_lh_neutral_value);
3502   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3503   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3504   // invert the test if we are looking for a non-array
3505   if (not_array)  btest = BoolTest(btest).negate();
3506   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3507   return generate_fair_guard(bol, region);
3508 }
3509 
3510 
3511 //-----------------------inline_native_newArray--------------------------
3512 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3513 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3514 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3515   Node* mirror;
3516   Node* count_val;
3517   if (uninitialized) {
3518     mirror    = argument(1);
3519     count_val = argument(2);
3520   } else {
3521     mirror    = argument(0);
3522     count_val = argument(1);
3523   }
3524 
3525   mirror = null_check(mirror);
3526   // If mirror or obj is dead, only null-path is taken.
3527   if (stopped())  return true;
3528 
3529   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3530   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3531   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3532   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3533   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3534 
3535   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3536   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3537                                                   result_reg, _slow_path);
3538   Node* normal_ctl   = control();
3539   Node* no_array_ctl = result_reg->in(_slow_path);
3540 
3541   // Generate code for the slow case.  We make a call to newArray().
3542   set_control(no_array_ctl);
3543   if (!stopped()) {
3544     // Either the input type is void.class, or else the
3545     // array klass has not yet been cached.  Either the
3546     // ensuing call will throw an exception, or else it
3547     // will cache the array klass for next time.
3548     PreserveJVMState pjvms(this);
3549     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3550     Node* slow_result = set_results_for_java_call(slow_call);
3551     // this->control() comes from set_results_for_java_call
3552     result_reg->set_req(_slow_path, control());
3553     result_val->set_req(_slow_path, slow_result);
3554     result_io ->set_req(_slow_path, i_o());
3555     result_mem->set_req(_slow_path, reset_memory());
3556   }
3557 
3558   set_control(normal_ctl);
3559   if (!stopped()) {
3560     // Normal case:  The array type has been cached in the java.lang.Class.
3561     // The following call works fine even if the array type is polymorphic.
3562     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3563     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3564     result_reg->init_req(_normal_path, control());
3565     result_val->init_req(_normal_path, obj);
3566     result_io ->init_req(_normal_path, i_o());
3567     result_mem->init_req(_normal_path, reset_memory());
3568 
3569     if (uninitialized) {
3570       // Mark the allocation so that zeroing is skipped
3571       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3572       alloc->maybe_set_complete(&_gvn);
3573     }
3574   }
3575 
3576   // Return the combined state.
3577   set_i_o(        _gvn.transform(result_io)  );
3578   set_all_memory( _gvn.transform(result_mem));
3579 
3580   C->set_has_split_ifs(true); // Has chance for split-if optimization
3581   set_result(result_reg, result_val);
3582   return true;
3583 }
3584 
3585 //----------------------inline_native_getLength--------------------------
3586 // public static native int java.lang.reflect.Array.getLength(Object array);
3587 bool LibraryCallKit::inline_native_getLength() {
3588   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3589 
3590   Node* array = null_check(argument(0));
3591   // If array is dead, only null-path is taken.
3592   if (stopped())  return true;
3593 
3594   // Deoptimize if it is a non-array.
3595   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3596 
3597   if (non_array != NULL) {
3598     PreserveJVMState pjvms(this);
3599     set_control(non_array);
3600     uncommon_trap(Deoptimization::Reason_intrinsic,
3601                   Deoptimization::Action_maybe_recompile);
3602   }
3603 
3604   // If control is dead, only non-array-path is taken.
3605   if (stopped())  return true;
3606 
3607   // The works fine even if the array type is polymorphic.
3608   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3609   Node* result = load_array_length(array);
3610 
3611   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3612   set_result(result);
3613   return true;
3614 }
3615 
3616 //------------------------inline_array_copyOf----------------------------
3617 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3618 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3619 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3620   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3621 
3622   // Get the arguments.
3623   Node* original          = argument(0);
3624   Node* start             = is_copyOfRange? argument(1): intcon(0);
3625   Node* end               = is_copyOfRange? argument(2): argument(1);
3626   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3627 
3628   Node* newcopy = NULL;
3629 
3630   // Set the original stack and the reexecute bit for the interpreter to reexecute
3631   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3632   { PreserveReexecuteState preexecs(this);
3633     jvms()->set_should_reexecute(true);
3634 
3635     array_type_mirror = null_check(array_type_mirror);
3636     original          = null_check(original);
3637 
3638     // Check if a null path was taken unconditionally.
3639     if (stopped())  return true;
3640 
3641     Node* orig_length = load_array_length(original);
3642 
3643     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3644     klass_node = null_check(klass_node);
3645 
3646     RegionNode* bailout = new RegionNode(1);
3647     record_for_igvn(bailout);
3648 
3649     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3650     // Bail out if that is so.
3651     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3652     if (not_objArray != NULL) {
3653       // Improve the klass node's type from the new optimistic assumption:
3654       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3655       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3656       Node* cast = new CastPPNode(klass_node, akls);
3657       cast->init_req(0, control());
3658       klass_node = _gvn.transform(cast);
3659     }
3660 
3661     // Bail out if either start or end is negative.
3662     generate_negative_guard(start, bailout, &start);
3663     generate_negative_guard(end,   bailout, &end);
3664 
3665     Node* length = end;
3666     if (_gvn.type(start) != TypeInt::ZERO) {
3667       length = _gvn.transform(new SubINode(end, start));
3668     }
3669 
3670     // Bail out if length is negative.
3671     // Without this the new_array would throw
3672     // NegativeArraySizeException but IllegalArgumentException is what
3673     // should be thrown
3674     generate_negative_guard(length, bailout, &length);
3675 
3676     if (bailout->req() > 1) {
3677       PreserveJVMState pjvms(this);
3678       set_control(_gvn.transform(bailout));
3679       uncommon_trap(Deoptimization::Reason_intrinsic,
3680                     Deoptimization::Action_maybe_recompile);
3681     }
3682 
3683     if (!stopped()) {
3684       // How many elements will we copy from the original?
3685       // The answer is MinI(orig_length - start, length).
3686       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3687       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3688 
3689       original = access_resolve(original, ACCESS_READ);
3690 
3691       // Generate a direct call to the right arraycopy function(s).
3692       // We know the copy is disjoint but we might not know if the
3693       // oop stores need checking.
3694       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3695       // This will fail a store-check if x contains any non-nulls.
3696 
3697       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3698       // loads/stores but it is legal only if we're sure the
3699       // Arrays.copyOf would succeed. So we need all input arguments
3700       // to the copyOf to be validated, including that the copy to the
3701       // new array won't trigger an ArrayStoreException. That subtype
3702       // check can be optimized if we know something on the type of
3703       // the input array from type speculation.
3704       if (_gvn.type(klass_node)->singleton()) {
3705         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3706         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3707 
3708         int test = C->static_subtype_check(superk, subk);
3709         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3710           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3711           if (t_original->speculative_type() != NULL) {
3712             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3713           }
3714         }
3715       }
3716 
3717       bool validated = false;
3718       // Reason_class_check rather than Reason_intrinsic because we
3719       // want to intrinsify even if this traps.
3720       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3721         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3722                                                    klass_node);
3723 
3724         if (not_subtype_ctrl != top()) {
3725           PreserveJVMState pjvms(this);
3726           set_control(not_subtype_ctrl);
3727           uncommon_trap(Deoptimization::Reason_class_check,
3728                         Deoptimization::Action_make_not_entrant);
3729           assert(stopped(), "Should be stopped");
3730         }
3731         validated = true;
3732       }
3733 
3734       if (!stopped()) {
3735         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3736 
3737         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
3738                                                 load_object_klass(original), klass_node);
3739         if (!is_copyOfRange) {
3740           ac->set_copyof(validated);
3741         } else {
3742           ac->set_copyofrange(validated);
3743         }
3744         Node* n = _gvn.transform(ac);
3745         if (n == ac) {
3746           ac->connect_outputs(this);
3747         } else {
3748           assert(validated, "shouldn't transform if all arguments not validated");
3749           set_all_memory(n);
3750         }
3751       }
3752     }
3753   } // original reexecute is set back here
3754 
3755   C->set_has_split_ifs(true); // Has chance for split-if optimization
3756   if (!stopped()) {
3757     set_result(newcopy);
3758   }
3759   return true;
3760 }
3761 
3762 
3763 //----------------------generate_virtual_guard---------------------------
3764 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3765 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3766                                              RegionNode* slow_region) {
3767   ciMethod* method = callee();
3768   int vtable_index = method->vtable_index();
3769   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3770          "bad index %d", vtable_index);
3771   // Get the Method* out of the appropriate vtable entry.
3772   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
3773                      vtable_index*vtableEntry::size_in_bytes() +
3774                      vtableEntry::method_offset_in_bytes();
3775   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3776   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3777 
3778   // Compare the target method with the expected method (e.g., Object.hashCode).
3779   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3780 
3781   Node* native_call = makecon(native_call_addr);
3782   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3783   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3784 
3785   return generate_slow_guard(test_native, slow_region);
3786 }
3787 
3788 //-----------------------generate_method_call----------------------------
3789 // Use generate_method_call to make a slow-call to the real
3790 // method if the fast path fails.  An alternative would be to
3791 // use a stub like OptoRuntime::slow_arraycopy_Java.
3792 // This only works for expanding the current library call,
3793 // not another intrinsic.  (E.g., don't use this for making an
3794 // arraycopy call inside of the copyOf intrinsic.)
3795 CallJavaNode*
3796 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3797   // When compiling the intrinsic method itself, do not use this technique.
3798   guarantee(callee() != C->method(), "cannot make slow-call to self");
3799 
3800   ciMethod* method = callee();
3801   // ensure the JVMS we have will be correct for this call
3802   guarantee(method_id == method->intrinsic_id(), "must match");
3803 
3804   const TypeFunc* tf = TypeFunc::make(method);
3805   CallJavaNode* slow_call;
3806   if (is_static) {
3807     assert(!is_virtual, "");
3808     slow_call = new CallStaticJavaNode(C, tf,
3809                            SharedRuntime::get_resolve_static_call_stub(),
3810                            method, bci());
3811   } else if (is_virtual) {
3812     null_check_receiver();
3813     int vtable_index = Method::invalid_vtable_index;
3814     if (UseInlineCaches) {
3815       // Suppress the vtable call
3816     } else {
3817       // hashCode and clone are not a miranda methods,
3818       // so the vtable index is fixed.
3819       // No need to use the linkResolver to get it.
3820        vtable_index = method->vtable_index();
3821        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3822               "bad index %d", vtable_index);
3823     }
3824     slow_call = new CallDynamicJavaNode(tf,
3825                           SharedRuntime::get_resolve_virtual_call_stub(),
3826                           method, vtable_index, bci());
3827   } else {  // neither virtual nor static:  opt_virtual
3828     null_check_receiver();
3829     slow_call = new CallStaticJavaNode(C, tf,
3830                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3831                                 method, bci());
3832     slow_call->set_optimized_virtual(true);
3833   }
3834   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
3835     // To be able to issue a direct call (optimized virtual or virtual)
3836     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
3837     // about the method being invoked should be attached to the call site to
3838     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
3839     slow_call->set_override_symbolic_info(true);
3840   }
3841   set_arguments_for_java_call(slow_call);
3842   set_edges_for_java_call(slow_call);
3843   return slow_call;
3844 }
3845 
3846 
3847 /**
3848  * Build special case code for calls to hashCode on an object. This call may
3849  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3850  * slightly different code.
3851  */
3852 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3853   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3854   assert(!(is_virtual && is_static), "either virtual, special, or static");
3855 
3856   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3857 
3858   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3859   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3860   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3861   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3862   Node* obj = NULL;
3863   if (!is_static) {
3864     // Check for hashing null object
3865     obj = null_check_receiver();
3866     if (stopped())  return true;        // unconditionally null
3867     result_reg->init_req(_null_path, top());
3868     result_val->init_req(_null_path, top());
3869   } else {
3870     // Do a null check, and return zero if null.
3871     // System.identityHashCode(null) == 0
3872     obj = argument(0);
3873     Node* null_ctl = top();
3874     obj = null_check_oop(obj, &null_ctl);
3875     result_reg->init_req(_null_path, null_ctl);
3876     result_val->init_req(_null_path, _gvn.intcon(0));
3877   }
3878 
3879   // Unconditionally null?  Then return right away.
3880   if (stopped()) {
3881     set_control( result_reg->in(_null_path));
3882     if (!stopped())
3883       set_result(result_val->in(_null_path));
3884     return true;
3885   }
3886 
3887   // We only go to the fast case code if we pass a number of guards.  The
3888   // paths which do not pass are accumulated in the slow_region.
3889   RegionNode* slow_region = new RegionNode(1);
3890   record_for_igvn(slow_region);
3891 
3892   // If this is a virtual call, we generate a funny guard.  We pull out
3893   // the vtable entry corresponding to hashCode() from the target object.
3894   // If the target method which we are calling happens to be the native
3895   // Object hashCode() method, we pass the guard.  We do not need this
3896   // guard for non-virtual calls -- the caller is known to be the native
3897   // Object hashCode().
3898   if (is_virtual) {
3899     // After null check, get the object's klass.
3900     Node* obj_klass = load_object_klass(obj);
3901     generate_virtual_guard(obj_klass, slow_region);
3902   }
3903 
3904   // Get the header out of the object, use LoadMarkNode when available
3905   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3906   // The control of the load must be NULL. Otherwise, the load can move before
3907   // the null check after castPP removal.
3908   Node* no_ctrl = NULL;
3909   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3910 
3911   // Test the header to see if it is unlocked.
3912   Node *lock_mask      = _gvn.MakeConX(markWord::biased_lock_mask_in_place);
3913   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
3914   Node *unlocked_val   = _gvn.MakeConX(markWord::unlocked_value);
3915   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
3916   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
3917 
3918   generate_slow_guard(test_unlocked, slow_region);
3919 
3920   // Get the hash value and check to see that it has been properly assigned.
3921   // We depend on hash_mask being at most 32 bits and avoid the use of
3922   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3923   // vm: see markWord.hpp.
3924   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
3925   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
3926   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
3927   // This hack lets the hash bits live anywhere in the mark object now, as long
3928   // as the shift drops the relevant bits into the low 32 bits.  Note that
3929   // Java spec says that HashCode is an int so there's no point in capturing
3930   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3931   hshifted_header      = ConvX2I(hshifted_header);
3932   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
3933 
3934   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
3935   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
3936   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
3937 
3938   generate_slow_guard(test_assigned, slow_region);
3939 
3940   Node* init_mem = reset_memory();
3941   // fill in the rest of the null path:
3942   result_io ->init_req(_null_path, i_o());
3943   result_mem->init_req(_null_path, init_mem);
3944 
3945   result_val->init_req(_fast_path, hash_val);
3946   result_reg->init_req(_fast_path, control());
3947   result_io ->init_req(_fast_path, i_o());
3948   result_mem->init_req(_fast_path, init_mem);
3949 
3950   // Generate code for the slow case.  We make a call to hashCode().
3951   set_control(_gvn.transform(slow_region));
3952   if (!stopped()) {
3953     // No need for PreserveJVMState, because we're using up the present state.
3954     set_all_memory(init_mem);
3955     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3956     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3957     Node* slow_result = set_results_for_java_call(slow_call);
3958     // this->control() comes from set_results_for_java_call
3959     result_reg->init_req(_slow_path, control());
3960     result_val->init_req(_slow_path, slow_result);
3961     result_io  ->set_req(_slow_path, i_o());
3962     result_mem ->set_req(_slow_path, reset_memory());
3963   }
3964 
3965   // Return the combined state.
3966   set_i_o(        _gvn.transform(result_io)  );
3967   set_all_memory( _gvn.transform(result_mem));
3968 
3969   set_result(result_reg, result_val);
3970   return true;
3971 }
3972 
3973 //---------------------------inline_native_getClass----------------------------
3974 // public final native Class<?> java.lang.Object.getClass();
3975 //
3976 // Build special case code for calls to getClass on an object.
3977 bool LibraryCallKit::inline_native_getClass() {
3978   Node* obj = null_check_receiver();
3979   if (stopped())  return true;
3980   set_result(load_mirror_from_klass(load_object_klass(obj)));
3981   return true;
3982 }
3983 
3984 //-----------------inline_native_Reflection_getCallerClass---------------------
3985 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
3986 //
3987 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3988 //
3989 // NOTE: This code must perform the same logic as JVM_GetCallerClass
3990 // in that it must skip particular security frames and checks for
3991 // caller sensitive methods.
3992 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3993 #ifndef PRODUCT
3994   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3995     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3996   }
3997 #endif
3998 
3999   if (!jvms()->has_method()) {
4000 #ifndef PRODUCT
4001     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4002       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4003     }
4004 #endif
4005     return false;
4006   }
4007 
4008   // Walk back up the JVM state to find the caller at the required
4009   // depth.
4010   JVMState* caller_jvms = jvms();
4011 
4012   // Cf. JVM_GetCallerClass
4013   // NOTE: Start the loop at depth 1 because the current JVM state does
4014   // not include the Reflection.getCallerClass() frame.
4015   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4016     ciMethod* m = caller_jvms->method();
4017     switch (n) {
4018     case 0:
4019       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4020       break;
4021     case 1:
4022       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4023       if (!m->caller_sensitive()) {
4024 #ifndef PRODUCT
4025         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4026           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4027         }
4028 #endif
4029         return false;  // bail-out; let JVM_GetCallerClass do the work
4030       }
4031       break;
4032     default:
4033       if (!m->is_ignored_by_security_stack_walk()) {
4034         // We have reached the desired frame; return the holder class.
4035         // Acquire method holder as java.lang.Class and push as constant.
4036         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4037         ciInstance* caller_mirror = caller_klass->java_mirror();
4038         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4039 
4040 #ifndef PRODUCT
4041         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4042           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4043           tty->print_cr("  JVM state at this point:");
4044           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4045             ciMethod* m = jvms()->of_depth(i)->method();
4046             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4047           }
4048         }
4049 #endif
4050         return true;
4051       }
4052       break;
4053     }
4054   }
4055 
4056 #ifndef PRODUCT
4057   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4058     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4059     tty->print_cr("  JVM state at this point:");
4060     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4061       ciMethod* m = jvms()->of_depth(i)->method();
4062       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4063     }
4064   }
4065 #endif
4066 
4067   return false;  // bail-out; let JVM_GetCallerClass do the work
4068 }
4069 
4070 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4071   Node* arg = argument(0);
4072   Node* result = NULL;
4073 
4074   switch (id) {
4075   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4076   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4077   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4078   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4079 
4080   case vmIntrinsics::_doubleToLongBits: {
4081     // two paths (plus control) merge in a wood
4082     RegionNode *r = new RegionNode(3);
4083     Node *phi = new PhiNode(r, TypeLong::LONG);
4084 
4085     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4086     // Build the boolean node
4087     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4088 
4089     // Branch either way.
4090     // NaN case is less traveled, which makes all the difference.
4091     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4092     Node *opt_isnan = _gvn.transform(ifisnan);
4093     assert( opt_isnan->is_If(), "Expect an IfNode");
4094     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4095     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4096 
4097     set_control(iftrue);
4098 
4099     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4100     Node *slow_result = longcon(nan_bits); // return NaN
4101     phi->init_req(1, _gvn.transform( slow_result ));
4102     r->init_req(1, iftrue);
4103 
4104     // Else fall through
4105     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4106     set_control(iffalse);
4107 
4108     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4109     r->init_req(2, iffalse);
4110 
4111     // Post merge
4112     set_control(_gvn.transform(r));
4113     record_for_igvn(r);
4114 
4115     C->set_has_split_ifs(true); // Has chance for split-if optimization
4116     result = phi;
4117     assert(result->bottom_type()->isa_long(), "must be");
4118     break;
4119   }
4120 
4121   case vmIntrinsics::_floatToIntBits: {
4122     // two paths (plus control) merge in a wood
4123     RegionNode *r = new RegionNode(3);
4124     Node *phi = new PhiNode(r, TypeInt::INT);
4125 
4126     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4127     // Build the boolean node
4128     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4129 
4130     // Branch either way.
4131     // NaN case is less traveled, which makes all the difference.
4132     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4133     Node *opt_isnan = _gvn.transform(ifisnan);
4134     assert( opt_isnan->is_If(), "Expect an IfNode");
4135     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4136     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4137 
4138     set_control(iftrue);
4139 
4140     static const jint nan_bits = 0x7fc00000;
4141     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4142     phi->init_req(1, _gvn.transform( slow_result ));
4143     r->init_req(1, iftrue);
4144 
4145     // Else fall through
4146     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4147     set_control(iffalse);
4148 
4149     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4150     r->init_req(2, iffalse);
4151 
4152     // Post merge
4153     set_control(_gvn.transform(r));
4154     record_for_igvn(r);
4155 
4156     C->set_has_split_ifs(true); // Has chance for split-if optimization
4157     result = phi;
4158     assert(result->bottom_type()->isa_int(), "must be");
4159     break;
4160   }
4161 
4162   default:
4163     fatal_unexpected_iid(id);
4164     break;
4165   }
4166   set_result(_gvn.transform(result));
4167   return true;
4168 }
4169 
4170 //----------------------inline_unsafe_copyMemory-------------------------
4171 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4172 bool LibraryCallKit::inline_unsafe_copyMemory() {
4173   if (callee()->is_static())  return false;  // caller must have the capability!
4174   null_check_receiver();  // null-check receiver
4175   if (stopped())  return true;
4176 
4177   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4178 
4179   Node* src_ptr =         argument(1);   // type: oop
4180   Node* src_off = ConvL2X(argument(2));  // type: long
4181   Node* dst_ptr =         argument(4);   // type: oop
4182   Node* dst_off = ConvL2X(argument(5));  // type: long
4183   Node* size    = ConvL2X(argument(7));  // type: long
4184 
4185   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4186          "fieldOffset must be byte-scaled");
4187 
4188   src_ptr = access_resolve(src_ptr, ACCESS_READ);
4189   dst_ptr = access_resolve(dst_ptr, ACCESS_WRITE);
4190   Node* src = make_unsafe_address(src_ptr, src_off, ACCESS_READ);
4191   Node* dst = make_unsafe_address(dst_ptr, dst_off, ACCESS_WRITE);
4192 
4193   // Conservatively insert a memory barrier on all memory slices.
4194   // Do not let writes of the copy source or destination float below the copy.
4195   insert_mem_bar(Op_MemBarCPUOrder);
4196 
4197   Node* thread = _gvn.transform(new ThreadLocalNode());
4198   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
4199   BasicType doing_unsafe_access_bt = T_BYTE;
4200   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
4201 
4202   // update volatile field
4203   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4204 
4205   // Call it.  Note that the length argument is not scaled.
4206   make_runtime_call(RC_LEAF|RC_NO_FP,
4207                     OptoRuntime::fast_arraycopy_Type(),
4208                     StubRoutines::unsafe_arraycopy(),
4209                     "unsafe_arraycopy",
4210                     TypeRawPtr::BOTTOM,
4211                     src, dst, size XTOP);
4212 
4213   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4214 
4215   // Do not let reads of the copy destination float above the copy.
4216   insert_mem_bar(Op_MemBarCPUOrder);
4217 
4218   return true;
4219 }
4220 
4221 //------------------------clone_coping-----------------------------------
4222 // Helper function for inline_native_clone.
4223 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
4224   assert(obj_size != NULL, "");
4225   Node* raw_obj = alloc_obj->in(1);
4226   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4227 
4228   AllocateNode* alloc = NULL;
4229   if (ReduceBulkZeroing) {
4230     // We will be completely responsible for initializing this object -
4231     // mark Initialize node as complete.
4232     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4233     // The object was just allocated - there should be no any stores!
4234     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4235     // Mark as complete_with_arraycopy so that on AllocateNode
4236     // expansion, we know this AllocateNode is initialized by an array
4237     // copy and a StoreStore barrier exists after the array copy.
4238     alloc->initialization()->set_complete_with_arraycopy();
4239   }
4240 
4241   Node* size = _gvn.transform(obj_size);
4242   access_clone(obj, alloc_obj, size, is_array);
4243 
4244   // Do not let reads from the cloned object float above the arraycopy.
4245   if (alloc != NULL) {
4246     // Do not let stores that initialize this object be reordered with
4247     // a subsequent store that would make this object accessible by
4248     // other threads.
4249     // Record what AllocateNode this StoreStore protects so that
4250     // escape analysis can go from the MemBarStoreStoreNode to the
4251     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4252     // based on the escape status of the AllocateNode.
4253     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
4254   } else {
4255     insert_mem_bar(Op_MemBarCPUOrder);
4256   }
4257 }
4258 
4259 //------------------------inline_native_clone----------------------------
4260 // protected native Object java.lang.Object.clone();
4261 //
4262 // Here are the simple edge cases:
4263 //  null receiver => normal trap
4264 //  virtual and clone was overridden => slow path to out-of-line clone
4265 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4266 //
4267 // The general case has two steps, allocation and copying.
4268 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4269 //
4270 // Copying also has two cases, oop arrays and everything else.
4271 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4272 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4273 //
4274 // These steps fold up nicely if and when the cloned object's klass
4275 // can be sharply typed as an object array, a type array, or an instance.
4276 //
4277 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4278   PhiNode* result_val;
4279 
4280   // Set the reexecute bit for the interpreter to reexecute
4281   // the bytecode that invokes Object.clone if deoptimization happens.
4282   { PreserveReexecuteState preexecs(this);
4283     jvms()->set_should_reexecute(true);
4284 
4285     Node* obj = null_check_receiver();
4286     if (stopped())  return true;
4287 
4288     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4289 
4290     // If we are going to clone an instance, we need its exact type to
4291     // know the number and types of fields to convert the clone to
4292     // loads/stores. Maybe a speculative type can help us.
4293     if (!obj_type->klass_is_exact() &&
4294         obj_type->speculative_type() != NULL &&
4295         obj_type->speculative_type()->is_instance_klass()) {
4296       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4297       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4298           !spec_ik->has_injected_fields()) {
4299         ciKlass* k = obj_type->klass();
4300         if (!k->is_instance_klass() ||
4301             k->as_instance_klass()->is_interface() ||
4302             k->as_instance_klass()->has_subklass()) {
4303           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4304         }
4305       }
4306     }
4307 
4308     // Conservatively insert a memory barrier on all memory slices.
4309     // Do not let writes into the original float below the clone.
4310     insert_mem_bar(Op_MemBarCPUOrder);
4311 
4312     // paths into result_reg:
4313     enum {
4314       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4315       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4316       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4317       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4318       PATH_LIMIT
4319     };
4320     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4321     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4322     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4323     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4324     record_for_igvn(result_reg);
4325 
4326     Node* obj_klass = load_object_klass(obj);
4327     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4328     if (array_ctl != NULL) {
4329       // It's an array.
4330       PreserveJVMState pjvms(this);
4331       set_control(array_ctl);
4332       Node* obj_length = load_array_length(obj);
4333       Node* obj_size  = NULL;
4334       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4335 
4336       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4337       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, BarrierSetC2::Parsing)) {
4338         // If it is an oop array, it requires very special treatment,
4339         // because gc barriers are required when accessing the array.
4340         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4341         if (is_obja != NULL) {
4342           PreserveJVMState pjvms2(this);
4343           set_control(is_obja);
4344           obj = access_resolve(obj, ACCESS_READ);
4345           // Generate a direct call to the right arraycopy function(s).
4346           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4347           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4348           ac->set_clone_oop_array();
4349           Node* n = _gvn.transform(ac);
4350           assert(n == ac, "cannot disappear");
4351           ac->connect_outputs(this);
4352 
4353           result_reg->init_req(_objArray_path, control());
4354           result_val->init_req(_objArray_path, alloc_obj);
4355           result_i_o ->set_req(_objArray_path, i_o());
4356           result_mem ->set_req(_objArray_path, reset_memory());
4357         }
4358       }
4359       // Otherwise, there are no barriers to worry about.
4360       // (We can dispense with card marks if we know the allocation
4361       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4362       //  causes the non-eden paths to take compensating steps to
4363       //  simulate a fresh allocation, so that no further
4364       //  card marks are required in compiled code to initialize
4365       //  the object.)
4366 
4367       if (!stopped()) {
4368         copy_to_clone(obj, alloc_obj, obj_size, true);
4369 
4370         // Present the results of the copy.
4371         result_reg->init_req(_array_path, control());
4372         result_val->init_req(_array_path, alloc_obj);
4373         result_i_o ->set_req(_array_path, i_o());
4374         result_mem ->set_req(_array_path, reset_memory());
4375       }
4376     }
4377 
4378     // We only go to the instance fast case code if we pass a number of guards.
4379     // The paths which do not pass are accumulated in the slow_region.
4380     RegionNode* slow_region = new RegionNode(1);
4381     record_for_igvn(slow_region);
4382     if (!stopped()) {
4383       // It's an instance (we did array above).  Make the slow-path tests.
4384       // If this is a virtual call, we generate a funny guard.  We grab
4385       // the vtable entry corresponding to clone() from the target object.
4386       // If the target method which we are calling happens to be the
4387       // Object clone() method, we pass the guard.  We do not need this
4388       // guard for non-virtual calls; the caller is known to be the native
4389       // Object clone().
4390       if (is_virtual) {
4391         generate_virtual_guard(obj_klass, slow_region);
4392       }
4393 
4394       // The object must be easily cloneable and must not have a finalizer.
4395       // Both of these conditions may be checked in a single test.
4396       // We could optimize the test further, but we don't care.
4397       generate_access_flags_guard(obj_klass,
4398                                   // Test both conditions:
4399                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4400                                   // Must be cloneable but not finalizer:
4401                                   JVM_ACC_IS_CLONEABLE_FAST,
4402                                   slow_region);
4403     }
4404 
4405     if (!stopped()) {
4406       // It's an instance, and it passed the slow-path tests.
4407       PreserveJVMState pjvms(this);
4408       Node* obj_size  = NULL;
4409       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4410       // is reexecuted if deoptimization occurs and there could be problems when merging
4411       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4412       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4413 
4414       copy_to_clone(obj, alloc_obj, obj_size, false);
4415 
4416       // Present the results of the slow call.
4417       result_reg->init_req(_instance_path, control());
4418       result_val->init_req(_instance_path, alloc_obj);
4419       result_i_o ->set_req(_instance_path, i_o());
4420       result_mem ->set_req(_instance_path, reset_memory());
4421     }
4422 
4423     // Generate code for the slow case.  We make a call to clone().
4424     set_control(_gvn.transform(slow_region));
4425     if (!stopped()) {
4426       PreserveJVMState pjvms(this);
4427       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4428       // We need to deoptimize on exception (see comment above)
4429       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
4430       // this->control() comes from set_results_for_java_call
4431       result_reg->init_req(_slow_path, control());
4432       result_val->init_req(_slow_path, slow_result);
4433       result_i_o ->set_req(_slow_path, i_o());
4434       result_mem ->set_req(_slow_path, reset_memory());
4435     }
4436 
4437     // Return the combined state.
4438     set_control(    _gvn.transform(result_reg));
4439     set_i_o(        _gvn.transform(result_i_o));
4440     set_all_memory( _gvn.transform(result_mem));
4441   } // original reexecute is set back here
4442 
4443   set_result(_gvn.transform(result_val));
4444   return true;
4445 }
4446 
4447 // If we have a tightly coupled allocation, the arraycopy may take care
4448 // of the array initialization. If one of the guards we insert between
4449 // the allocation and the arraycopy causes a deoptimization, an
4450 // unitialized array will escape the compiled method. To prevent that
4451 // we set the JVM state for uncommon traps between the allocation and
4452 // the arraycopy to the state before the allocation so, in case of
4453 // deoptimization, we'll reexecute the allocation and the
4454 // initialization.
4455 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4456   if (alloc != NULL) {
4457     ciMethod* trap_method = alloc->jvms()->method();
4458     int trap_bci = alloc->jvms()->bci();
4459 
4460     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4461         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4462       // Make sure there's no store between the allocation and the
4463       // arraycopy otherwise visible side effects could be rexecuted
4464       // in case of deoptimization and cause incorrect execution.
4465       bool no_interfering_store = true;
4466       Node* mem = alloc->in(TypeFunc::Memory);
4467       if (mem->is_MergeMem()) {
4468         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4469           Node* n = mms.memory();
4470           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4471             assert(n->is_Store(), "what else?");
4472             no_interfering_store = false;
4473             break;
4474           }
4475         }
4476       } else {
4477         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4478           Node* n = mms.memory();
4479           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4480             assert(n->is_Store(), "what else?");
4481             no_interfering_store = false;
4482             break;
4483           }
4484         }
4485       }
4486 
4487       if (no_interfering_store) {
4488         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4489         uint size = alloc->req();
4490         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4491         old_jvms->set_map(sfpt);
4492         for (uint i = 0; i < size; i++) {
4493           sfpt->init_req(i, alloc->in(i));
4494         }
4495         // re-push array length for deoptimization
4496         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4497         old_jvms->set_sp(old_jvms->sp()+1);
4498         old_jvms->set_monoff(old_jvms->monoff()+1);
4499         old_jvms->set_scloff(old_jvms->scloff()+1);
4500         old_jvms->set_endoff(old_jvms->endoff()+1);
4501         old_jvms->set_should_reexecute(true);
4502 
4503         sfpt->set_i_o(map()->i_o());
4504         sfpt->set_memory(map()->memory());
4505         sfpt->set_control(map()->control());
4506 
4507         JVMState* saved_jvms = jvms();
4508         saved_reexecute_sp = _reexecute_sp;
4509 
4510         set_jvms(sfpt->jvms());
4511         _reexecute_sp = jvms()->sp();
4512 
4513         return saved_jvms;
4514       }
4515     }
4516   }
4517   return NULL;
4518 }
4519 
4520 // In case of a deoptimization, we restart execution at the
4521 // allocation, allocating a new array. We would leave an uninitialized
4522 // array in the heap that GCs wouldn't expect. Move the allocation
4523 // after the traps so we don't allocate the array if we
4524 // deoptimize. This is possible because tightly_coupled_allocation()
4525 // guarantees there's no observer of the allocated array at this point
4526 // and the control flow is simple enough.
4527 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4528                                                     int saved_reexecute_sp, uint new_idx) {
4529   if (saved_jvms != NULL && !stopped()) {
4530     assert(alloc != NULL, "only with a tightly coupled allocation");
4531     // restore JVM state to the state at the arraycopy
4532     saved_jvms->map()->set_control(map()->control());
4533     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4534     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4535     // If we've improved the types of some nodes (null check) while
4536     // emitting the guards, propagate them to the current state
4537     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4538     set_jvms(saved_jvms);
4539     _reexecute_sp = saved_reexecute_sp;
4540 
4541     // Remove the allocation from above the guards
4542     CallProjections callprojs;
4543     alloc->extract_projections(&callprojs, true);
4544     InitializeNode* init = alloc->initialization();
4545     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4546     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4547     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4548     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4549 
4550     // move the allocation here (after the guards)
4551     _gvn.hash_delete(alloc);
4552     alloc->set_req(TypeFunc::Control, control());
4553     alloc->set_req(TypeFunc::I_O, i_o());
4554     Node *mem = reset_memory();
4555     set_all_memory(mem);
4556     alloc->set_req(TypeFunc::Memory, mem);
4557     set_control(init->proj_out_or_null(TypeFunc::Control));
4558     set_i_o(callprojs.fallthrough_ioproj);
4559 
4560     // Update memory as done in GraphKit::set_output_for_allocation()
4561     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4562     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4563     if (ary_type->isa_aryptr() && length_type != NULL) {
4564       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4565     }
4566     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4567     int            elemidx  = C->get_alias_index(telemref);
4568     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
4569     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
4570 
4571     Node* allocx = _gvn.transform(alloc);
4572     assert(allocx == alloc, "where has the allocation gone?");
4573     assert(dest->is_CheckCastPP(), "not an allocation result?");
4574 
4575     _gvn.hash_delete(dest);
4576     dest->set_req(0, control());
4577     Node* destx = _gvn.transform(dest);
4578     assert(destx == dest, "where has the allocation result gone?");
4579   }
4580 }
4581 
4582 
4583 //------------------------------inline_arraycopy-----------------------
4584 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4585 //                                                      Object dest, int destPos,
4586 //                                                      int length);
4587 bool LibraryCallKit::inline_arraycopy() {
4588   // Get the arguments.
4589   Node* src         = argument(0);  // type: oop
4590   Node* src_offset  = argument(1);  // type: int
4591   Node* dest        = argument(2);  // type: oop
4592   Node* dest_offset = argument(3);  // type: int
4593   Node* length      = argument(4);  // type: int
4594 
4595   uint new_idx = C->unique();
4596 
4597   // Check for allocation before we add nodes that would confuse
4598   // tightly_coupled_allocation()
4599   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4600 
4601   int saved_reexecute_sp = -1;
4602   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4603   // See arraycopy_restore_alloc_state() comment
4604   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4605   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4606   // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
4607   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4608 
4609   // The following tests must be performed
4610   // (1) src and dest are arrays.
4611   // (2) src and dest arrays must have elements of the same BasicType
4612   // (3) src and dest must not be null.
4613   // (4) src_offset must not be negative.
4614   // (5) dest_offset must not be negative.
4615   // (6) length must not be negative.
4616   // (7) src_offset + length must not exceed length of src.
4617   // (8) dest_offset + length must not exceed length of dest.
4618   // (9) each element of an oop array must be assignable
4619 
4620   // (3) src and dest must not be null.
4621   // always do this here because we need the JVM state for uncommon traps
4622   Node* null_ctl = top();
4623   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4624   assert(null_ctl->is_top(), "no null control here");
4625   dest = null_check(dest, T_ARRAY);
4626 
4627   if (!can_emit_guards) {
4628     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4629     // guards but the arraycopy node could still take advantage of a
4630     // tightly allocated allocation. tightly_coupled_allocation() is
4631     // called again to make sure it takes the null check above into
4632     // account: the null check is mandatory and if it caused an
4633     // uncommon trap to be emitted then the allocation can't be
4634     // considered tightly coupled in this context.
4635     alloc = tightly_coupled_allocation(dest, NULL);
4636   }
4637 
4638   bool validated = false;
4639 
4640   const Type* src_type  = _gvn.type(src);
4641   const Type* dest_type = _gvn.type(dest);
4642   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4643   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4644 
4645   // Do we have the type of src?
4646   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4647   // Do we have the type of dest?
4648   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4649   // Is the type for src from speculation?
4650   bool src_spec = false;
4651   // Is the type for dest from speculation?
4652   bool dest_spec = false;
4653 
4654   if ((!has_src || !has_dest) && can_emit_guards) {
4655     // We don't have sufficient type information, let's see if
4656     // speculative types can help. We need to have types for both src
4657     // and dest so that it pays off.
4658 
4659     // Do we already have or could we have type information for src
4660     bool could_have_src = has_src;
4661     // Do we already have or could we have type information for dest
4662     bool could_have_dest = has_dest;
4663 
4664     ciKlass* src_k = NULL;
4665     if (!has_src) {
4666       src_k = src_type->speculative_type_not_null();
4667       if (src_k != NULL && src_k->is_array_klass()) {
4668         could_have_src = true;
4669       }
4670     }
4671 
4672     ciKlass* dest_k = NULL;
4673     if (!has_dest) {
4674       dest_k = dest_type->speculative_type_not_null();
4675       if (dest_k != NULL && dest_k->is_array_klass()) {
4676         could_have_dest = true;
4677       }
4678     }
4679 
4680     if (could_have_src && could_have_dest) {
4681       // This is going to pay off so emit the required guards
4682       if (!has_src) {
4683         src = maybe_cast_profiled_obj(src, src_k, true);
4684         src_type  = _gvn.type(src);
4685         top_src  = src_type->isa_aryptr();
4686         has_src = (top_src != NULL && top_src->klass() != NULL);
4687         src_spec = true;
4688       }
4689       if (!has_dest) {
4690         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4691         dest_type  = _gvn.type(dest);
4692         top_dest  = dest_type->isa_aryptr();
4693         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4694         dest_spec = true;
4695       }
4696     }
4697   }
4698 
4699   if (has_src && has_dest && can_emit_guards) {
4700     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4701     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4702     if (is_reference_type(src_elem))   src_elem  = T_OBJECT;
4703     if (is_reference_type(dest_elem))  dest_elem = T_OBJECT;
4704 
4705     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4706       // If both arrays are object arrays then having the exact types
4707       // for both will remove the need for a subtype check at runtime
4708       // before the call and may make it possible to pick a faster copy
4709       // routine (without a subtype check on every element)
4710       // Do we have the exact type of src?
4711       bool could_have_src = src_spec;
4712       // Do we have the exact type of dest?
4713       bool could_have_dest = dest_spec;
4714       ciKlass* src_k = top_src->klass();
4715       ciKlass* dest_k = top_dest->klass();
4716       if (!src_spec) {
4717         src_k = src_type->speculative_type_not_null();
4718         if (src_k != NULL && src_k->is_array_klass()) {
4719           could_have_src = true;
4720         }
4721       }
4722       if (!dest_spec) {
4723         dest_k = dest_type->speculative_type_not_null();
4724         if (dest_k != NULL && dest_k->is_array_klass()) {
4725           could_have_dest = true;
4726         }
4727       }
4728       if (could_have_src && could_have_dest) {
4729         // If we can have both exact types, emit the missing guards
4730         if (could_have_src && !src_spec) {
4731           src = maybe_cast_profiled_obj(src, src_k, true);
4732         }
4733         if (could_have_dest && !dest_spec) {
4734           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4735         }
4736       }
4737     }
4738   }
4739 
4740   ciMethod* trap_method = method();
4741   int trap_bci = bci();
4742   if (saved_jvms != NULL) {
4743     trap_method = alloc->jvms()->method();
4744     trap_bci = alloc->jvms()->bci();
4745   }
4746 
4747   bool negative_length_guard_generated = false;
4748 
4749   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4750       can_emit_guards &&
4751       !src->is_top() && !dest->is_top()) {
4752     // validate arguments: enables transformation the ArrayCopyNode
4753     validated = true;
4754 
4755     RegionNode* slow_region = new RegionNode(1);
4756     record_for_igvn(slow_region);
4757 
4758     // (1) src and dest are arrays.
4759     generate_non_array_guard(load_object_klass(src), slow_region);
4760     generate_non_array_guard(load_object_klass(dest), slow_region);
4761 
4762     // (2) src and dest arrays must have elements of the same BasicType
4763     // done at macro expansion or at Ideal transformation time
4764 
4765     // (4) src_offset must not be negative.
4766     generate_negative_guard(src_offset, slow_region);
4767 
4768     // (5) dest_offset must not be negative.
4769     generate_negative_guard(dest_offset, slow_region);
4770 
4771     // (7) src_offset + length must not exceed length of src.
4772     generate_limit_guard(src_offset, length,
4773                          load_array_length(src),
4774                          slow_region);
4775 
4776     // (8) dest_offset + length must not exceed length of dest.
4777     generate_limit_guard(dest_offset, length,
4778                          load_array_length(dest),
4779                          slow_region);
4780 
4781     // (6) length must not be negative.
4782     // This is also checked in generate_arraycopy() during macro expansion, but
4783     // we also have to check it here for the case where the ArrayCopyNode will
4784     // be eliminated by Escape Analysis.
4785     if (EliminateAllocations) {
4786       generate_negative_guard(length, slow_region);
4787       negative_length_guard_generated = true;
4788     }
4789 
4790     // (9) each element of an oop array must be assignable
4791     Node* src_klass  = load_object_klass(src);
4792     Node* dest_klass = load_object_klass(dest);
4793     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4794 
4795     if (not_subtype_ctrl != top()) {
4796       PreserveJVMState pjvms(this);
4797       set_control(not_subtype_ctrl);
4798       uncommon_trap(Deoptimization::Reason_intrinsic,
4799                     Deoptimization::Action_make_not_entrant);
4800       assert(stopped(), "Should be stopped");
4801     }
4802     {
4803       PreserveJVMState pjvms(this);
4804       set_control(_gvn.transform(slow_region));
4805       uncommon_trap(Deoptimization::Reason_intrinsic,
4806                     Deoptimization::Action_make_not_entrant);
4807       assert(stopped(), "Should be stopped");
4808     }
4809 
4810     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
4811     const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass());
4812     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
4813   }
4814 
4815   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
4816 
4817   if (stopped()) {
4818     return true;
4819   }
4820 
4821   Node* new_src = access_resolve(src, ACCESS_READ);
4822   Node* new_dest = access_resolve(dest, ACCESS_WRITE);
4823 
4824   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, new_src, src_offset, new_dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
4825                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4826                                           // so the compiler has a chance to eliminate them: during macro expansion,
4827                                           // we have to set their control (CastPP nodes are eliminated).
4828                                           load_object_klass(src), load_object_klass(dest),
4829                                           load_array_length(src), load_array_length(dest));
4830 
4831   ac->set_arraycopy(validated);
4832 
4833   Node* n = _gvn.transform(ac);
4834   if (n == ac) {
4835     ac->connect_outputs(this);
4836   } else {
4837     assert(validated, "shouldn't transform if all arguments not validated");
4838     set_all_memory(n);
4839   }
4840   clear_upper_avx();
4841 
4842 
4843   return true;
4844 }
4845 
4846 
4847 // Helper function which determines if an arraycopy immediately follows
4848 // an allocation, with no intervening tests or other escapes for the object.
4849 AllocateArrayNode*
4850 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4851                                            RegionNode* slow_region) {
4852   if (stopped())             return NULL;  // no fast path
4853   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4854 
4855   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4856   if (alloc == NULL)  return NULL;
4857 
4858   Node* rawmem = memory(Compile::AliasIdxRaw);
4859   // Is the allocation's memory state untouched?
4860   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4861     // Bail out if there have been raw-memory effects since the allocation.
4862     // (Example:  There might have been a call or safepoint.)
4863     return NULL;
4864   }
4865   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4866   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4867     return NULL;
4868   }
4869 
4870   // There must be no unexpected observers of this allocation.
4871   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4872     Node* obs = ptr->fast_out(i);
4873     if (obs != this->map()) {
4874       return NULL;
4875     }
4876   }
4877 
4878   // This arraycopy must unconditionally follow the allocation of the ptr.
4879   Node* alloc_ctl = ptr->in(0);
4880   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4881 
4882   Node* ctl = control();
4883   while (ctl != alloc_ctl) {
4884     // There may be guards which feed into the slow_region.
4885     // Any other control flow means that we might not get a chance
4886     // to finish initializing the allocated object.
4887     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4888       IfNode* iff = ctl->in(0)->as_If();
4889       Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con);
4890       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4891       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4892         ctl = iff->in(0);       // This test feeds the known slow_region.
4893         continue;
4894       }
4895       // One more try:  Various low-level checks bottom out in
4896       // uncommon traps.  If the debug-info of the trap omits
4897       // any reference to the allocation, as we've already
4898       // observed, then there can be no objection to the trap.
4899       bool found_trap = false;
4900       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4901         Node* obs = not_ctl->fast_out(j);
4902         if (obs->in(0) == not_ctl && obs->is_Call() &&
4903             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4904           found_trap = true; break;
4905         }
4906       }
4907       if (found_trap) {
4908         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4909         continue;
4910       }
4911     }
4912     return NULL;
4913   }
4914 
4915   // If we get this far, we have an allocation which immediately
4916   // precedes the arraycopy, and we can take over zeroing the new object.
4917   // The arraycopy will finish the initialization, and provide
4918   // a new control state to which we will anchor the destination pointer.
4919 
4920   return alloc;
4921 }
4922 
4923 //-------------inline_encodeISOArray-----------------------------------
4924 // encode char[] to byte[] in ISO_8859_1
4925 bool LibraryCallKit::inline_encodeISOArray() {
4926   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
4927   // no receiver since it is static method
4928   Node *src         = argument(0);
4929   Node *src_offset  = argument(1);
4930   Node *dst         = argument(2);
4931   Node *dst_offset  = argument(3);
4932   Node *length      = argument(4);
4933 
4934   src = must_be_not_null(src, true);
4935   dst = must_be_not_null(dst, true);
4936 
4937   src = access_resolve(src, ACCESS_READ);
4938   dst = access_resolve(dst, ACCESS_WRITE);
4939 
4940   const Type* src_type = src->Value(&_gvn);
4941   const Type* dst_type = dst->Value(&_gvn);
4942   const TypeAryPtr* top_src = src_type->isa_aryptr();
4943   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
4944   if (top_src  == NULL || top_src->klass()  == NULL ||
4945       top_dest == NULL || top_dest->klass() == NULL) {
4946     // failed array check
4947     return false;
4948   }
4949 
4950   // Figure out the size and type of the elements we will be copying.
4951   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4952   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4953   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
4954     return false;
4955   }
4956 
4957   Node* src_start = array_element_address(src, src_offset, T_CHAR);
4958   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
4959   // 'src_start' points to src array + scaled offset
4960   // 'dst_start' points to dst array + scaled offset
4961 
4962   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
4963   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
4964   enc = _gvn.transform(enc);
4965   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
4966   set_memory(res_mem, mtype);
4967   set_result(enc);
4968   clear_upper_avx();
4969 
4970   return true;
4971 }
4972 
4973 //-------------inline_multiplyToLen-----------------------------------
4974 bool LibraryCallKit::inline_multiplyToLen() {
4975   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
4976 
4977   address stubAddr = StubRoutines::multiplyToLen();
4978   if (stubAddr == NULL) {
4979     return false; // Intrinsic's stub is not implemented on this platform
4980   }
4981   const char* stubName = "multiplyToLen";
4982 
4983   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
4984 
4985   // no receiver because it is a static method
4986   Node* x    = argument(0);
4987   Node* xlen = argument(1);
4988   Node* y    = argument(2);
4989   Node* ylen = argument(3);
4990   Node* z    = argument(4);
4991 
4992   x = must_be_not_null(x, true);
4993   y = must_be_not_null(y, true);
4994 
4995   x = access_resolve(x, ACCESS_READ);
4996   y = access_resolve(y, ACCESS_READ);
4997   z = access_resolve(z, ACCESS_WRITE);
4998 
4999   const Type* x_type = x->Value(&_gvn);
5000   const Type* y_type = y->Value(&_gvn);
5001   const TypeAryPtr* top_x = x_type->isa_aryptr();
5002   const TypeAryPtr* top_y = y_type->isa_aryptr();
5003   if (top_x  == NULL || top_x->klass()  == NULL ||
5004       top_y == NULL || top_y->klass() == NULL) {
5005     // failed array check
5006     return false;
5007   }
5008 
5009   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5010   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5011   if (x_elem != T_INT || y_elem != T_INT) {
5012     return false;
5013   }
5014 
5015   // Set the original stack and the reexecute bit for the interpreter to reexecute
5016   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5017   // on the return from z array allocation in runtime.
5018   { PreserveReexecuteState preexecs(this);
5019     jvms()->set_should_reexecute(true);
5020 
5021     Node* x_start = array_element_address(x, intcon(0), x_elem);
5022     Node* y_start = array_element_address(y, intcon(0), y_elem);
5023     // 'x_start' points to x array + scaled xlen
5024     // 'y_start' points to y array + scaled ylen
5025 
5026     // Allocate the result array
5027     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5028     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5029     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5030 
5031     IdealKit ideal(this);
5032 
5033 #define __ ideal.
5034      Node* one = __ ConI(1);
5035      Node* zero = __ ConI(0);
5036      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5037      __ set(need_alloc, zero);
5038      __ set(z_alloc, z);
5039      __ if_then(z, BoolTest::eq, null()); {
5040        __ increment (need_alloc, one);
5041      } __ else_(); {
5042        // Update graphKit memory and control from IdealKit.
5043        sync_kit(ideal);
5044        Node *cast = new CastPPNode(z, TypePtr::NOTNULL);
5045        cast->init_req(0, control());
5046        _gvn.set_type(cast, cast->bottom_type());
5047        C->record_for_igvn(cast);
5048 
5049        Node* zlen_arg = load_array_length(cast);
5050        // Update IdealKit memory and control from graphKit.
5051        __ sync_kit(this);
5052        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5053          __ increment (need_alloc, one);
5054        } __ end_if();
5055      } __ end_if();
5056 
5057      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5058        // Update graphKit memory and control from IdealKit.
5059        sync_kit(ideal);
5060        Node * narr = new_array(klass_node, zlen, 1);
5061        // Update IdealKit memory and control from graphKit.
5062        __ sync_kit(this);
5063        __ set(z_alloc, narr);
5064      } __ end_if();
5065 
5066      sync_kit(ideal);
5067      z = __ value(z_alloc);
5068      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5069      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5070      // Final sync IdealKit and GraphKit.
5071      final_sync(ideal);
5072 #undef __
5073 
5074     Node* z_start = array_element_address(z, intcon(0), T_INT);
5075 
5076     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5077                                    OptoRuntime::multiplyToLen_Type(),
5078                                    stubAddr, stubName, TypePtr::BOTTOM,
5079                                    x_start, xlen, y_start, ylen, z_start, zlen);
5080   } // original reexecute is set back here
5081 
5082   C->set_has_split_ifs(true); // Has chance for split-if optimization
5083   set_result(z);
5084   return true;
5085 }
5086 
5087 //-------------inline_squareToLen------------------------------------
5088 bool LibraryCallKit::inline_squareToLen() {
5089   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5090 
5091   address stubAddr = StubRoutines::squareToLen();
5092   if (stubAddr == NULL) {
5093     return false; // Intrinsic's stub is not implemented on this platform
5094   }
5095   const char* stubName = "squareToLen";
5096 
5097   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5098 
5099   Node* x    = argument(0);
5100   Node* len  = argument(1);
5101   Node* z    = argument(2);
5102   Node* zlen = argument(3);
5103 
5104   x = must_be_not_null(x, true);
5105   z = must_be_not_null(z, true);
5106 
5107   x = access_resolve(x, ACCESS_READ);
5108   z = access_resolve(z, ACCESS_WRITE);
5109 
5110   const Type* x_type = x->Value(&_gvn);
5111   const Type* z_type = z->Value(&_gvn);
5112   const TypeAryPtr* top_x = x_type->isa_aryptr();
5113   const TypeAryPtr* top_z = z_type->isa_aryptr();
5114   if (top_x  == NULL || top_x->klass()  == NULL ||
5115       top_z  == NULL || top_z->klass()  == NULL) {
5116     // failed array check
5117     return false;
5118   }
5119 
5120   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5121   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5122   if (x_elem != T_INT || z_elem != T_INT) {
5123     return false;
5124   }
5125 
5126 
5127   Node* x_start = array_element_address(x, intcon(0), x_elem);
5128   Node* z_start = array_element_address(z, intcon(0), z_elem);
5129 
5130   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5131                                   OptoRuntime::squareToLen_Type(),
5132                                   stubAddr, stubName, TypePtr::BOTTOM,
5133                                   x_start, len, z_start, zlen);
5134 
5135   set_result(z);
5136   return true;
5137 }
5138 
5139 //-------------inline_mulAdd------------------------------------------
5140 bool LibraryCallKit::inline_mulAdd() {
5141   assert(UseMulAddIntrinsic, "not implemented on this platform");
5142 
5143   address stubAddr = StubRoutines::mulAdd();
5144   if (stubAddr == NULL) {
5145     return false; // Intrinsic's stub is not implemented on this platform
5146   }
5147   const char* stubName = "mulAdd";
5148 
5149   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5150 
5151   Node* out      = argument(0);
5152   Node* in       = argument(1);
5153   Node* offset   = argument(2);
5154   Node* len      = argument(3);
5155   Node* k        = argument(4);
5156 
5157   out = must_be_not_null(out, true);
5158 
5159   in = access_resolve(in, ACCESS_READ);
5160   out = access_resolve(out, ACCESS_WRITE);
5161 
5162   const Type* out_type = out->Value(&_gvn);
5163   const Type* in_type = in->Value(&_gvn);
5164   const TypeAryPtr* top_out = out_type->isa_aryptr();
5165   const TypeAryPtr* top_in = in_type->isa_aryptr();
5166   if (top_out  == NULL || top_out->klass()  == NULL ||
5167       top_in == NULL || top_in->klass() == NULL) {
5168     // failed array check
5169     return false;
5170   }
5171 
5172   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5173   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5174   if (out_elem != T_INT || in_elem != T_INT) {
5175     return false;
5176   }
5177 
5178   Node* outlen = load_array_length(out);
5179   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5180   Node* out_start = array_element_address(out, intcon(0), out_elem);
5181   Node* in_start = array_element_address(in, intcon(0), in_elem);
5182 
5183   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5184                                   OptoRuntime::mulAdd_Type(),
5185                                   stubAddr, stubName, TypePtr::BOTTOM,
5186                                   out_start,in_start, new_offset, len, k);
5187   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5188   set_result(result);
5189   return true;
5190 }
5191 
5192 //-------------inline_montgomeryMultiply-----------------------------------
5193 bool LibraryCallKit::inline_montgomeryMultiply() {
5194   address stubAddr = StubRoutines::montgomeryMultiply();
5195   if (stubAddr == NULL) {
5196     return false; // Intrinsic's stub is not implemented on this platform
5197   }
5198 
5199   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5200   const char* stubName = "montgomery_multiply";
5201 
5202   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5203 
5204   Node* a    = argument(0);
5205   Node* b    = argument(1);
5206   Node* n    = argument(2);
5207   Node* len  = argument(3);
5208   Node* inv  = argument(4);
5209   Node* m    = argument(6);
5210 
5211   a = access_resolve(a, ACCESS_READ);
5212   b = access_resolve(b, ACCESS_READ);
5213   n = access_resolve(n, ACCESS_READ);
5214   m = access_resolve(m, ACCESS_WRITE);
5215 
5216   const Type* a_type = a->Value(&_gvn);
5217   const TypeAryPtr* top_a = a_type->isa_aryptr();
5218   const Type* b_type = b->Value(&_gvn);
5219   const TypeAryPtr* top_b = b_type->isa_aryptr();
5220   const Type* n_type = a->Value(&_gvn);
5221   const TypeAryPtr* top_n = n_type->isa_aryptr();
5222   const Type* m_type = a->Value(&_gvn);
5223   const TypeAryPtr* top_m = m_type->isa_aryptr();
5224   if (top_a  == NULL || top_a->klass()  == NULL ||
5225       top_b == NULL || top_b->klass()  == NULL ||
5226       top_n == NULL || top_n->klass()  == NULL ||
5227       top_m == NULL || top_m->klass()  == NULL) {
5228     // failed array check
5229     return false;
5230   }
5231 
5232   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5233   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5234   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5235   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5236   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5237     return false;
5238   }
5239 
5240   // Make the call
5241   {
5242     Node* a_start = array_element_address(a, intcon(0), a_elem);
5243     Node* b_start = array_element_address(b, intcon(0), b_elem);
5244     Node* n_start = array_element_address(n, intcon(0), n_elem);
5245     Node* m_start = array_element_address(m, intcon(0), m_elem);
5246 
5247     Node* call = make_runtime_call(RC_LEAF,
5248                                    OptoRuntime::montgomeryMultiply_Type(),
5249                                    stubAddr, stubName, TypePtr::BOTTOM,
5250                                    a_start, b_start, n_start, len, inv, top(),
5251                                    m_start);
5252     set_result(m);
5253   }
5254 
5255   return true;
5256 }
5257 
5258 bool LibraryCallKit::inline_montgomerySquare() {
5259   address stubAddr = StubRoutines::montgomerySquare();
5260   if (stubAddr == NULL) {
5261     return false; // Intrinsic's stub is not implemented on this platform
5262   }
5263 
5264   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5265   const char* stubName = "montgomery_square";
5266 
5267   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5268 
5269   Node* a    = argument(0);
5270   Node* n    = argument(1);
5271   Node* len  = argument(2);
5272   Node* inv  = argument(3);
5273   Node* m    = argument(5);
5274 
5275   a = access_resolve(a, ACCESS_READ);
5276   n = access_resolve(n, ACCESS_READ);
5277   m = access_resolve(m, ACCESS_WRITE);
5278 
5279   const Type* a_type = a->Value(&_gvn);
5280   const TypeAryPtr* top_a = a_type->isa_aryptr();
5281   const Type* n_type = a->Value(&_gvn);
5282   const TypeAryPtr* top_n = n_type->isa_aryptr();
5283   const Type* m_type = a->Value(&_gvn);
5284   const TypeAryPtr* top_m = m_type->isa_aryptr();
5285   if (top_a  == NULL || top_a->klass()  == NULL ||
5286       top_n == NULL || top_n->klass()  == NULL ||
5287       top_m == NULL || top_m->klass()  == NULL) {
5288     // failed array check
5289     return false;
5290   }
5291 
5292   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5293   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5294   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5295   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5296     return false;
5297   }
5298 
5299   // Make the call
5300   {
5301     Node* a_start = array_element_address(a, intcon(0), a_elem);
5302     Node* n_start = array_element_address(n, intcon(0), n_elem);
5303     Node* m_start = array_element_address(m, intcon(0), m_elem);
5304 
5305     Node* call = make_runtime_call(RC_LEAF,
5306                                    OptoRuntime::montgomerySquare_Type(),
5307                                    stubAddr, stubName, TypePtr::BOTTOM,
5308                                    a_start, n_start, len, inv, top(),
5309                                    m_start);
5310     set_result(m);
5311   }
5312 
5313   return true;
5314 }
5315 
5316 //-------------inline_vectorizedMismatch------------------------------
5317 bool LibraryCallKit::inline_vectorizedMismatch() {
5318   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5319 
5320   address stubAddr = StubRoutines::vectorizedMismatch();
5321   if (stubAddr == NULL) {
5322     return false; // Intrinsic's stub is not implemented on this platform
5323   }
5324   const char* stubName = "vectorizedMismatch";
5325   int size_l = callee()->signature()->size();
5326   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5327 
5328   Node* obja = argument(0);
5329   Node* aoffset = argument(1);
5330   Node* objb = argument(3);
5331   Node* boffset = argument(4);
5332   Node* length = argument(6);
5333   Node* scale = argument(7);
5334 
5335   const Type* a_type = obja->Value(&_gvn);
5336   const Type* b_type = objb->Value(&_gvn);
5337   const TypeAryPtr* top_a = a_type->isa_aryptr();
5338   const TypeAryPtr* top_b = b_type->isa_aryptr();
5339   if (top_a == NULL || top_a->klass() == NULL ||
5340     top_b == NULL || top_b->klass() == NULL) {
5341     // failed array check
5342     return false;
5343   }
5344 
5345   Node* call;
5346   jvms()->set_should_reexecute(true);
5347 
5348   obja = access_resolve(obja, ACCESS_READ);
5349   objb = access_resolve(objb, ACCESS_READ);
5350   Node* obja_adr = make_unsafe_address(obja, aoffset, ACCESS_READ);
5351   Node* objb_adr = make_unsafe_address(objb, boffset, ACCESS_READ);
5352 
5353   call = make_runtime_call(RC_LEAF,
5354     OptoRuntime::vectorizedMismatch_Type(),
5355     stubAddr, stubName, TypePtr::BOTTOM,
5356     obja_adr, objb_adr, length, scale);
5357 
5358   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5359   set_result(result);
5360   return true;
5361 }
5362 
5363 /**
5364  * Calculate CRC32 for byte.
5365  * int java.util.zip.CRC32.update(int crc, int b)
5366  */
5367 bool LibraryCallKit::inline_updateCRC32() {
5368   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5369   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5370   // no receiver since it is static method
5371   Node* crc  = argument(0); // type: int
5372   Node* b    = argument(1); // type: int
5373 
5374   /*
5375    *    int c = ~ crc;
5376    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5377    *    b = b ^ (c >>> 8);
5378    *    crc = ~b;
5379    */
5380 
5381   Node* M1 = intcon(-1);
5382   crc = _gvn.transform(new XorINode(crc, M1));
5383   Node* result = _gvn.transform(new XorINode(crc, b));
5384   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5385 
5386   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5387   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5388   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5389   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5390 
5391   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5392   result = _gvn.transform(new XorINode(crc, result));
5393   result = _gvn.transform(new XorINode(result, M1));
5394   set_result(result);
5395   return true;
5396 }
5397 
5398 /**
5399  * Calculate CRC32 for byte[] array.
5400  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5401  */
5402 bool LibraryCallKit::inline_updateBytesCRC32() {
5403   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5404   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5405   // no receiver since it is static method
5406   Node* crc     = argument(0); // type: int
5407   Node* src     = argument(1); // type: oop
5408   Node* offset  = argument(2); // type: int
5409   Node* length  = argument(3); // type: int
5410 
5411   const Type* src_type = src->Value(&_gvn);
5412   const TypeAryPtr* top_src = src_type->isa_aryptr();
5413   if (top_src  == NULL || top_src->klass()  == NULL) {
5414     // failed array check
5415     return false;
5416   }
5417 
5418   // Figure out the size and type of the elements we will be copying.
5419   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5420   if (src_elem != T_BYTE) {
5421     return false;
5422   }
5423 
5424   // 'src_start' points to src array + scaled offset
5425   src = must_be_not_null(src, true);
5426   src = access_resolve(src, ACCESS_READ);
5427   Node* src_start = array_element_address(src, offset, src_elem);
5428 
5429   // We assume that range check is done by caller.
5430   // TODO: generate range check (offset+length < src.length) in debug VM.
5431 
5432   // Call the stub.
5433   address stubAddr = StubRoutines::updateBytesCRC32();
5434   const char *stubName = "updateBytesCRC32";
5435 
5436   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5437                                  stubAddr, stubName, TypePtr::BOTTOM,
5438                                  crc, src_start, length);
5439   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5440   set_result(result);
5441   return true;
5442 }
5443 
5444 /**
5445  * Calculate CRC32 for ByteBuffer.
5446  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5447  */
5448 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5449   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5450   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5451   // no receiver since it is static method
5452   Node* crc     = argument(0); // type: int
5453   Node* src     = argument(1); // type: long
5454   Node* offset  = argument(3); // type: int
5455   Node* length  = argument(4); // type: int
5456 
5457   src = ConvL2X(src);  // adjust Java long to machine word
5458   Node* base = _gvn.transform(new CastX2PNode(src));
5459   offset = ConvI2X(offset);
5460 
5461   // 'src_start' points to src array + scaled offset
5462   Node* src_start = basic_plus_adr(top(), base, offset);
5463 
5464   // Call the stub.
5465   address stubAddr = StubRoutines::updateBytesCRC32();
5466   const char *stubName = "updateBytesCRC32";
5467 
5468   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5469                                  stubAddr, stubName, TypePtr::BOTTOM,
5470                                  crc, src_start, length);
5471   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5472   set_result(result);
5473   return true;
5474 }
5475 
5476 //------------------------------get_table_from_crc32c_class-----------------------
5477 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5478   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5479   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5480 
5481   return table;
5482 }
5483 
5484 //------------------------------inline_updateBytesCRC32C-----------------------
5485 //
5486 // Calculate CRC32C for byte[] array.
5487 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5488 //
5489 bool LibraryCallKit::inline_updateBytesCRC32C() {
5490   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5491   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5492   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5493   // no receiver since it is a static method
5494   Node* crc     = argument(0); // type: int
5495   Node* src     = argument(1); // type: oop
5496   Node* offset  = argument(2); // type: int
5497   Node* end     = argument(3); // type: int
5498 
5499   Node* length = _gvn.transform(new SubINode(end, offset));
5500 
5501   const Type* src_type = src->Value(&_gvn);
5502   const TypeAryPtr* top_src = src_type->isa_aryptr();
5503   if (top_src  == NULL || top_src->klass()  == NULL) {
5504     // failed array check
5505     return false;
5506   }
5507 
5508   // Figure out the size and type of the elements we will be copying.
5509   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5510   if (src_elem != T_BYTE) {
5511     return false;
5512   }
5513 
5514   // 'src_start' points to src array + scaled offset
5515   src = must_be_not_null(src, true);
5516   src = access_resolve(src, ACCESS_READ);
5517   Node* src_start = array_element_address(src, offset, src_elem);
5518 
5519   // static final int[] byteTable in class CRC32C
5520   Node* table = get_table_from_crc32c_class(callee()->holder());
5521   table = must_be_not_null(table, true);
5522   table = access_resolve(table, ACCESS_READ);
5523   Node* table_start = array_element_address(table, intcon(0), T_INT);
5524 
5525   // We assume that range check is done by caller.
5526   // TODO: generate range check (offset+length < src.length) in debug VM.
5527 
5528   // Call the stub.
5529   address stubAddr = StubRoutines::updateBytesCRC32C();
5530   const char *stubName = "updateBytesCRC32C";
5531 
5532   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5533                                  stubAddr, stubName, TypePtr::BOTTOM,
5534                                  crc, src_start, length, table_start);
5535   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5536   set_result(result);
5537   return true;
5538 }
5539 
5540 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5541 //
5542 // Calculate CRC32C for DirectByteBuffer.
5543 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5544 //
5545 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5546   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5547   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5548   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5549   // no receiver since it is a static method
5550   Node* crc     = argument(0); // type: int
5551   Node* src     = argument(1); // type: long
5552   Node* offset  = argument(3); // type: int
5553   Node* end     = argument(4); // type: int
5554 
5555   Node* length = _gvn.transform(new SubINode(end, offset));
5556 
5557   src = ConvL2X(src);  // adjust Java long to machine word
5558   Node* base = _gvn.transform(new CastX2PNode(src));
5559   offset = ConvI2X(offset);
5560 
5561   // 'src_start' points to src array + scaled offset
5562   Node* src_start = basic_plus_adr(top(), base, offset);
5563 
5564   // static final int[] byteTable in class CRC32C
5565   Node* table = get_table_from_crc32c_class(callee()->holder());
5566   table = must_be_not_null(table, true);
5567   table = access_resolve(table, ACCESS_READ);
5568   Node* table_start = array_element_address(table, intcon(0), T_INT);
5569 
5570   // Call the stub.
5571   address stubAddr = StubRoutines::updateBytesCRC32C();
5572   const char *stubName = "updateBytesCRC32C";
5573 
5574   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5575                                  stubAddr, stubName, TypePtr::BOTTOM,
5576                                  crc, src_start, length, table_start);
5577   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5578   set_result(result);
5579   return true;
5580 }
5581 
5582 //------------------------------inline_updateBytesAdler32----------------------
5583 //
5584 // Calculate Adler32 checksum for byte[] array.
5585 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5586 //
5587 bool LibraryCallKit::inline_updateBytesAdler32() {
5588   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5589   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5590   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5591   // no receiver since it is static method
5592   Node* crc     = argument(0); // type: int
5593   Node* src     = argument(1); // type: oop
5594   Node* offset  = argument(2); // type: int
5595   Node* length  = argument(3); // type: int
5596 
5597   const Type* src_type = src->Value(&_gvn);
5598   const TypeAryPtr* top_src = src_type->isa_aryptr();
5599   if (top_src  == NULL || top_src->klass()  == NULL) {
5600     // failed array check
5601     return false;
5602   }
5603 
5604   // Figure out the size and type of the elements we will be copying.
5605   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5606   if (src_elem != T_BYTE) {
5607     return false;
5608   }
5609 
5610   // 'src_start' points to src array + scaled offset
5611   src = access_resolve(src, ACCESS_READ);
5612   Node* src_start = array_element_address(src, offset, src_elem);
5613 
5614   // We assume that range check is done by caller.
5615   // TODO: generate range check (offset+length < src.length) in debug VM.
5616 
5617   // Call the stub.
5618   address stubAddr = StubRoutines::updateBytesAdler32();
5619   const char *stubName = "updateBytesAdler32";
5620 
5621   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5622                                  stubAddr, stubName, TypePtr::BOTTOM,
5623                                  crc, src_start, length);
5624   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5625   set_result(result);
5626   return true;
5627 }
5628 
5629 //------------------------------inline_updateByteBufferAdler32---------------
5630 //
5631 // Calculate Adler32 checksum for DirectByteBuffer.
5632 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5633 //
5634 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5635   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5636   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5637   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5638   // no receiver since it is static method
5639   Node* crc     = argument(0); // type: int
5640   Node* src     = argument(1); // type: long
5641   Node* offset  = argument(3); // type: int
5642   Node* length  = argument(4); // type: int
5643 
5644   src = ConvL2X(src);  // adjust Java long to machine word
5645   Node* base = _gvn.transform(new CastX2PNode(src));
5646   offset = ConvI2X(offset);
5647 
5648   // 'src_start' points to src array + scaled offset
5649   Node* src_start = basic_plus_adr(top(), base, offset);
5650 
5651   // Call the stub.
5652   address stubAddr = StubRoutines::updateBytesAdler32();
5653   const char *stubName = "updateBytesAdler32";
5654 
5655   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5656                                  stubAddr, stubName, TypePtr::BOTTOM,
5657                                  crc, src_start, length);
5658 
5659   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5660   set_result(result);
5661   return true;
5662 }
5663 
5664 //----------------------------inline_reference_get----------------------------
5665 // public T java.lang.ref.Reference.get();
5666 bool LibraryCallKit::inline_reference_get() {
5667   const int referent_offset = java_lang_ref_Reference::referent_offset;
5668   guarantee(referent_offset > 0, "should have already been set");
5669 
5670   // Get the argument:
5671   Node* reference_obj = null_check_receiver();
5672   if (stopped()) return true;
5673 
5674   const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr();
5675   assert(tinst != NULL, "obj is null");
5676   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5677   ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass();
5678   ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent"),
5679                                                      ciSymbol::make("Ljava/lang/Object;"),
5680                                                      false);
5681   assert (field != NULL, "undefined field");
5682 
5683   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5684   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5685 
5686   ciInstanceKlass* klass = env()->Object_klass();
5687   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5688 
5689   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
5690   Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators);
5691   // Add memory barrier to prevent commoning reads from this field
5692   // across safepoint since GC can change its value.
5693   insert_mem_bar(Op_MemBarCPUOrder);
5694 
5695   set_result(result);
5696   return true;
5697 }
5698 
5699 
5700 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5701                                               bool is_exact=true, bool is_static=false,
5702                                               ciInstanceKlass * fromKls=NULL) {
5703   if (fromKls == NULL) {
5704     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5705     assert(tinst != NULL, "obj is null");
5706     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5707     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5708     fromKls = tinst->klass()->as_instance_klass();
5709   } else {
5710     assert(is_static, "only for static field access");
5711   }
5712   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5713                                               ciSymbol::make(fieldTypeString),
5714                                               is_static);
5715 
5716   assert (field != NULL, "undefined field");
5717   if (field == NULL) return (Node *) NULL;
5718 
5719   if (is_static) {
5720     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5721     fromObj = makecon(tip);
5722   }
5723 
5724   // Next code  copied from Parse::do_get_xxx():
5725 
5726   // Compute address and memory type.
5727   int offset  = field->offset_in_bytes();
5728   bool is_vol = field->is_volatile();
5729   ciType* field_klass = field->type();
5730   assert(field_klass->is_loaded(), "should be loaded");
5731   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5732   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5733   BasicType bt = field->layout_type();
5734 
5735   // Build the resultant type of the load
5736   const Type *type;
5737   if (bt == T_OBJECT) {
5738     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5739   } else {
5740     type = Type::get_const_basic_type(bt);
5741   }
5742 
5743   DecoratorSet decorators = IN_HEAP;
5744 
5745   if (is_vol) {
5746     decorators |= MO_SEQ_CST;
5747   }
5748 
5749   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
5750 }
5751 
5752 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5753                                                  bool is_exact = true, bool is_static = false,
5754                                                  ciInstanceKlass * fromKls = NULL) {
5755   if (fromKls == NULL) {
5756     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5757     assert(tinst != NULL, "obj is null");
5758     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5759     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5760     fromKls = tinst->klass()->as_instance_klass();
5761   }
5762   else {
5763     assert(is_static, "only for static field access");
5764   }
5765   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5766     ciSymbol::make(fieldTypeString),
5767     is_static);
5768 
5769   assert(field != NULL, "undefined field");
5770   assert(!field->is_volatile(), "not defined for volatile fields");
5771 
5772   if (is_static) {
5773     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5774     fromObj = makecon(tip);
5775   }
5776 
5777   // Next code  copied from Parse::do_get_xxx():
5778 
5779   // Compute address and memory type.
5780   int offset = field->offset_in_bytes();
5781   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5782 
5783   return adr;
5784 }
5785 
5786 //------------------------------inline_aescrypt_Block-----------------------
5787 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5788   address stubAddr = NULL;
5789   const char *stubName;
5790   assert(UseAES, "need AES instruction support");
5791 
5792   switch(id) {
5793   case vmIntrinsics::_aescrypt_encryptBlock:
5794     stubAddr = StubRoutines::aescrypt_encryptBlock();
5795     stubName = "aescrypt_encryptBlock";
5796     break;
5797   case vmIntrinsics::_aescrypt_decryptBlock:
5798     stubAddr = StubRoutines::aescrypt_decryptBlock();
5799     stubName = "aescrypt_decryptBlock";
5800     break;
5801   default:
5802     break;
5803   }
5804   if (stubAddr == NULL) return false;
5805 
5806   Node* aescrypt_object = argument(0);
5807   Node* src             = argument(1);
5808   Node* src_offset      = argument(2);
5809   Node* dest            = argument(3);
5810   Node* dest_offset     = argument(4);
5811 
5812   src = must_be_not_null(src, true);
5813   dest = must_be_not_null(dest, true);
5814 
5815   src = access_resolve(src, ACCESS_READ);
5816   dest = access_resolve(dest, ACCESS_WRITE);
5817 
5818   // (1) src and dest are arrays.
5819   const Type* src_type = src->Value(&_gvn);
5820   const Type* dest_type = dest->Value(&_gvn);
5821   const TypeAryPtr* top_src = src_type->isa_aryptr();
5822   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5823   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5824 
5825   // for the quick and dirty code we will skip all the checks.
5826   // we are just trying to get the call to be generated.
5827   Node* src_start  = src;
5828   Node* dest_start = dest;
5829   if (src_offset != NULL || dest_offset != NULL) {
5830     assert(src_offset != NULL && dest_offset != NULL, "");
5831     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5832     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5833   }
5834 
5835   // now need to get the start of its expanded key array
5836   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5837   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5838   if (k_start == NULL) return false;
5839 
5840   if (Matcher::pass_original_key_for_aes()) {
5841     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5842     // compatibility issues between Java key expansion and SPARC crypto instructions
5843     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5844     if (original_k_start == NULL) return false;
5845 
5846     // Call the stub.
5847     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5848                       stubAddr, stubName, TypePtr::BOTTOM,
5849                       src_start, dest_start, k_start, original_k_start);
5850   } else {
5851     // Call the stub.
5852     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5853                       stubAddr, stubName, TypePtr::BOTTOM,
5854                       src_start, dest_start, k_start);
5855   }
5856 
5857   return true;
5858 }
5859 
5860 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5861 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5862   address stubAddr = NULL;
5863   const char *stubName = NULL;
5864 
5865   assert(UseAES, "need AES instruction support");
5866 
5867   switch(id) {
5868   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5869     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5870     stubName = "cipherBlockChaining_encryptAESCrypt";
5871     break;
5872   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5873     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5874     stubName = "cipherBlockChaining_decryptAESCrypt";
5875     break;
5876   default:
5877     break;
5878   }
5879   if (stubAddr == NULL) return false;
5880 
5881   Node* cipherBlockChaining_object = argument(0);
5882   Node* src                        = argument(1);
5883   Node* src_offset                 = argument(2);
5884   Node* len                        = argument(3);
5885   Node* dest                       = argument(4);
5886   Node* dest_offset                = argument(5);
5887 
5888   src = must_be_not_null(src, false);
5889   dest = must_be_not_null(dest, false);
5890 
5891   src = access_resolve(src, ACCESS_READ);
5892   dest = access_resolve(dest, ACCESS_WRITE);
5893 
5894   // (1) src and dest are arrays.
5895   const Type* src_type = src->Value(&_gvn);
5896   const Type* dest_type = dest->Value(&_gvn);
5897   const TypeAryPtr* top_src = src_type->isa_aryptr();
5898   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5899   assert (top_src  != NULL && top_src->klass()  != NULL
5900           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5901 
5902   // checks are the responsibility of the caller
5903   Node* src_start  = src;
5904   Node* dest_start = dest;
5905   if (src_offset != NULL || dest_offset != NULL) {
5906     assert(src_offset != NULL && dest_offset != NULL, "");
5907     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5908     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5909   }
5910 
5911   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5912   // (because of the predicated logic executed earlier).
5913   // so we cast it here safely.
5914   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5915 
5916   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5917   if (embeddedCipherObj == NULL) return false;
5918 
5919   // cast it to what we know it will be at runtime
5920   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5921   assert(tinst != NULL, "CBC obj is null");
5922   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5923   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5924   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5925 
5926   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5927   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5928   const TypeOopPtr* xtype = aklass->as_instance_type();
5929   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5930   aescrypt_object = _gvn.transform(aescrypt_object);
5931 
5932   // we need to get the start of the aescrypt_object's expanded key array
5933   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5934   if (k_start == NULL) return false;
5935 
5936   // similarly, get the start address of the r vector
5937   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5938   if (objRvec == NULL) return false;
5939   objRvec = access_resolve(objRvec, ACCESS_WRITE);
5940   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5941 
5942   Node* cbcCrypt;
5943   if (Matcher::pass_original_key_for_aes()) {
5944     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5945     // compatibility issues between Java key expansion and SPARC crypto instructions
5946     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5947     if (original_k_start == NULL) return false;
5948 
5949     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5950     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5951                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5952                                  stubAddr, stubName, TypePtr::BOTTOM,
5953                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5954   } else {
5955     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5956     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5957                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5958                                  stubAddr, stubName, TypePtr::BOTTOM,
5959                                  src_start, dest_start, k_start, r_start, len);
5960   }
5961 
5962   // return cipher length (int)
5963   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5964   set_result(retvalue);
5965   return true;
5966 }
5967 
5968 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
5969 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
5970   address stubAddr = NULL;
5971   const char *stubName = NULL;
5972 
5973   assert(UseAES, "need AES instruction support");
5974 
5975   switch (id) {
5976   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
5977     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
5978     stubName = "electronicCodeBook_encryptAESCrypt";
5979     break;
5980   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
5981     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
5982     stubName = "electronicCodeBook_decryptAESCrypt";
5983     break;
5984   default:
5985     break;
5986   }
5987 
5988   if (stubAddr == NULL) return false;
5989 
5990   Node* electronicCodeBook_object = argument(0);
5991   Node* src                       = argument(1);
5992   Node* src_offset                = argument(2);
5993   Node* len                       = argument(3);
5994   Node* dest                      = argument(4);
5995   Node* dest_offset               = argument(5);
5996 
5997   // (1) src and dest are arrays.
5998   const Type* src_type = src->Value(&_gvn);
5999   const Type* dest_type = dest->Value(&_gvn);
6000   const TypeAryPtr* top_src = src_type->isa_aryptr();
6001   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6002   assert(top_src != NULL && top_src->klass() != NULL
6003          &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6004 
6005   // checks are the responsibility of the caller
6006   Node* src_start = src;
6007   Node* dest_start = dest;
6008   if (src_offset != NULL || dest_offset != NULL) {
6009     assert(src_offset != NULL && dest_offset != NULL, "");
6010     src_start = array_element_address(src, src_offset, T_BYTE);
6011     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6012   }
6013 
6014   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6015   // (because of the predicated logic executed earlier).
6016   // so we cast it here safely.
6017   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6018 
6019   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6020   if (embeddedCipherObj == NULL) return false;
6021 
6022   // cast it to what we know it will be at runtime
6023   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
6024   assert(tinst != NULL, "ECB obj is null");
6025   assert(tinst->klass()->is_loaded(), "ECB obj is not loaded");
6026   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6027   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6028 
6029   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6030   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6031   const TypeOopPtr* xtype = aklass->as_instance_type();
6032   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6033   aescrypt_object = _gvn.transform(aescrypt_object);
6034 
6035   // we need to get the start of the aescrypt_object's expanded key array
6036   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6037   if (k_start == NULL) return false;
6038 
6039   Node* ecbCrypt;
6040   if (Matcher::pass_original_key_for_aes()) {
6041     // no SPARC version for AES/ECB intrinsics now.
6042     return false;
6043   }
6044   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6045   ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
6046                                OptoRuntime::electronicCodeBook_aescrypt_Type(),
6047                                stubAddr, stubName, TypePtr::BOTTOM,
6048                                src_start, dest_start, k_start, len);
6049 
6050   // return cipher length (int)
6051   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
6052   set_result(retvalue);
6053   return true;
6054 }
6055 
6056 //------------------------------inline_counterMode_AESCrypt-----------------------
6057 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6058   assert(UseAES, "need AES instruction support");
6059   if (!UseAESCTRIntrinsics) return false;
6060 
6061   address stubAddr = NULL;
6062   const char *stubName = NULL;
6063   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6064     stubAddr = StubRoutines::counterMode_AESCrypt();
6065     stubName = "counterMode_AESCrypt";
6066   }
6067   if (stubAddr == NULL) return false;
6068 
6069   Node* counterMode_object = argument(0);
6070   Node* src = argument(1);
6071   Node* src_offset = argument(2);
6072   Node* len = argument(3);
6073   Node* dest = argument(4);
6074   Node* dest_offset = argument(5);
6075 
6076   src = access_resolve(src, ACCESS_READ);
6077   dest = access_resolve(dest, ACCESS_WRITE);
6078   counterMode_object = access_resolve(counterMode_object, ACCESS_WRITE);
6079 
6080   // (1) src and dest are arrays.
6081   const Type* src_type = src->Value(&_gvn);
6082   const Type* dest_type = dest->Value(&_gvn);
6083   const TypeAryPtr* top_src = src_type->isa_aryptr();
6084   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6085   assert(top_src != NULL && top_src->klass() != NULL &&
6086          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6087 
6088   // checks are the responsibility of the caller
6089   Node* src_start = src;
6090   Node* dest_start = dest;
6091   if (src_offset != NULL || dest_offset != NULL) {
6092     assert(src_offset != NULL && dest_offset != NULL, "");
6093     src_start = array_element_address(src, src_offset, T_BYTE);
6094     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6095   }
6096 
6097   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6098   // (because of the predicated logic executed earlier).
6099   // so we cast it here safely.
6100   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6101   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6102   if (embeddedCipherObj == NULL) return false;
6103   // cast it to what we know it will be at runtime
6104   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6105   assert(tinst != NULL, "CTR obj is null");
6106   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6107   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6108   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6109   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6110   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6111   const TypeOopPtr* xtype = aklass->as_instance_type();
6112   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6113   aescrypt_object = _gvn.transform(aescrypt_object);
6114   // we need to get the start of the aescrypt_object's expanded key array
6115   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6116   if (k_start == NULL) return false;
6117   // similarly, get the start address of the r vector
6118   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6119   if (obj_counter == NULL) return false;
6120   obj_counter = access_resolve(obj_counter, ACCESS_WRITE);
6121   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6122 
6123   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6124   if (saved_encCounter == NULL) return false;
6125   saved_encCounter = access_resolve(saved_encCounter, ACCESS_WRITE);
6126   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6127   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6128 
6129   Node* ctrCrypt;
6130   if (Matcher::pass_original_key_for_aes()) {
6131     // no SPARC version for AES/CTR intrinsics now.
6132     return false;
6133   }
6134   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6135   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6136                                OptoRuntime::counterMode_aescrypt_Type(),
6137                                stubAddr, stubName, TypePtr::BOTTOM,
6138                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6139 
6140   // return cipher length (int)
6141   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6142   set_result(retvalue);
6143   return true;
6144 }
6145 
6146 //------------------------------get_key_start_from_aescrypt_object-----------------------
6147 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6148 #if defined(PPC64) || defined(S390)
6149   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6150   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6151   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6152   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6153   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6154   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6155   if (objSessionK == NULL) {
6156     return (Node *) NULL;
6157   }
6158   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6159 #else
6160   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6161 #endif // PPC64
6162   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6163   if (objAESCryptKey == NULL) return (Node *) NULL;
6164 
6165   // now have the array, need to get the start address of the K array
6166   objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ);
6167   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6168   return k_start;
6169 }
6170 
6171 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6172 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6173   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6174   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6175   if (objAESCryptKey == NULL) return (Node *) NULL;
6176 
6177   // now have the array, need to get the start address of the lastKey array
6178   objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ);
6179   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6180   return original_k_start;
6181 }
6182 
6183 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6184 // Return node representing slow path of predicate check.
6185 // the pseudo code we want to emulate with this predicate is:
6186 // for encryption:
6187 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6188 // for decryption:
6189 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6190 //    note cipher==plain is more conservative than the original java code but that's OK
6191 //
6192 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6193   // The receiver was checked for NULL already.
6194   Node* objCBC = argument(0);
6195 
6196   Node* src = argument(1);
6197   Node* dest = argument(4);
6198 
6199   // Load embeddedCipher field of CipherBlockChaining object.
6200   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6201 
6202   // get AESCrypt klass for instanceOf check
6203   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6204   // will have same classloader as CipherBlockChaining object
6205   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6206   assert(tinst != NULL, "CBCobj is null");
6207   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6208 
6209   // we want to do an instanceof comparison against the AESCrypt class
6210   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6211   if (!klass_AESCrypt->is_loaded()) {
6212     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6213     Node* ctrl = control();
6214     set_control(top()); // no regular fast path
6215     return ctrl;
6216   }
6217 
6218   src = must_be_not_null(src, true);
6219   dest = must_be_not_null(dest, true);
6220 
6221   // Resolve oops to stable for CmpP below.
6222   src = access_resolve(src, 0);
6223   dest = access_resolve(dest, 0);
6224 
6225   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6226 
6227   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6228   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6229   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6230 
6231   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6232 
6233   // for encryption, we are done
6234   if (!decrypting)
6235     return instof_false;  // even if it is NULL
6236 
6237   // for decryption, we need to add a further check to avoid
6238   // taking the intrinsic path when cipher and plain are the same
6239   // see the original java code for why.
6240   RegionNode* region = new RegionNode(3);
6241   region->init_req(1, instof_false);
6242 
6243   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6244   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6245   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6246   region->init_req(2, src_dest_conjoint);
6247 
6248   record_for_igvn(region);
6249   return _gvn.transform(region);
6250 }
6251 
6252 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
6253 // Return node representing slow path of predicate check.
6254 // the pseudo code we want to emulate with this predicate is:
6255 // for encryption:
6256 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6257 // for decryption:
6258 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6259 //    note cipher==plain is more conservative than the original java code but that's OK
6260 //
6261 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
6262   // The receiver was checked for NULL already.
6263   Node* objECB = argument(0);
6264 
6265   // Load embeddedCipher field of ElectronicCodeBook object.
6266   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6267 
6268   // get AESCrypt klass for instanceOf check
6269   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6270   // will have same classloader as ElectronicCodeBook object
6271   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
6272   assert(tinst != NULL, "ECBobj is null");
6273   assert(tinst->klass()->is_loaded(), "ECBobj is not loaded");
6274 
6275   // we want to do an instanceof comparison against the AESCrypt class
6276   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6277   if (!klass_AESCrypt->is_loaded()) {
6278     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6279     Node* ctrl = control();
6280     set_control(top()); // no regular fast path
6281     return ctrl;
6282   }
6283   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6284 
6285   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6286   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6287   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6288 
6289   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6290 
6291   // for encryption, we are done
6292   if (!decrypting)
6293     return instof_false;  // even if it is NULL
6294 
6295   // for decryption, we need to add a further check to avoid
6296   // taking the intrinsic path when cipher and plain are the same
6297   // see the original java code for why.
6298   RegionNode* region = new RegionNode(3);
6299   region->init_req(1, instof_false);
6300   Node* src = argument(1);
6301   Node* dest = argument(4);
6302   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6303   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6304   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6305   region->init_req(2, src_dest_conjoint);
6306 
6307   record_for_igvn(region);
6308   return _gvn.transform(region);
6309 }
6310 
6311 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6312 // Return node representing slow path of predicate check.
6313 // the pseudo code we want to emulate with this predicate is:
6314 // for encryption:
6315 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6316 // for decryption:
6317 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6318 //    note cipher==plain is more conservative than the original java code but that's OK
6319 //
6320 
6321 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6322   // The receiver was checked for NULL already.
6323   Node* objCTR = argument(0);
6324 
6325   // Load embeddedCipher field of CipherBlockChaining object.
6326   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6327 
6328   // get AESCrypt klass for instanceOf check
6329   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6330   // will have same classloader as CipherBlockChaining object
6331   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6332   assert(tinst != NULL, "CTRobj is null");
6333   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6334 
6335   // we want to do an instanceof comparison against the AESCrypt class
6336   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6337   if (!klass_AESCrypt->is_loaded()) {
6338     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6339     Node* ctrl = control();
6340     set_control(top()); // no regular fast path
6341     return ctrl;
6342   }
6343 
6344   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6345   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6346   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6347   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6348   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6349 
6350   return instof_false; // even if it is NULL
6351 }
6352 
6353 //------------------------------inline_ghash_processBlocks
6354 bool LibraryCallKit::inline_ghash_processBlocks() {
6355   address stubAddr;
6356   const char *stubName;
6357   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6358 
6359   stubAddr = StubRoutines::ghash_processBlocks();
6360   stubName = "ghash_processBlocks";
6361 
6362   Node* data           = argument(0);
6363   Node* offset         = argument(1);
6364   Node* len            = argument(2);
6365   Node* state          = argument(3);
6366   Node* subkeyH        = argument(4);
6367 
6368   state = must_be_not_null(state, true);
6369   subkeyH = must_be_not_null(subkeyH, true);
6370   data = must_be_not_null(data, true);
6371 
6372   state = access_resolve(state, ACCESS_WRITE);
6373   subkeyH = access_resolve(subkeyH, ACCESS_READ);
6374   data = access_resolve(data, ACCESS_READ);
6375 
6376   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6377   assert(state_start, "state is NULL");
6378   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6379   assert(subkeyH_start, "subkeyH is NULL");
6380   Node* data_start  = array_element_address(data, offset, T_BYTE);
6381   assert(data_start, "data is NULL");
6382 
6383   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6384                                   OptoRuntime::ghash_processBlocks_Type(),
6385                                   stubAddr, stubName, TypePtr::BOTTOM,
6386                                   state_start, subkeyH_start, data_start, len);
6387   return true;
6388 }
6389 
6390 bool LibraryCallKit::inline_base64_encodeBlock() {
6391   address stubAddr;
6392   const char *stubName;
6393   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
6394   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
6395   stubAddr = StubRoutines::base64_encodeBlock();
6396   stubName = "encodeBlock";
6397 
6398   if (!stubAddr) return false;
6399   Node* base64obj = argument(0);
6400   Node* src = argument(1);
6401   Node* offset = argument(2);
6402   Node* len = argument(3);
6403   Node* dest = argument(4);
6404   Node* dp = argument(5);
6405   Node* isURL = argument(6);
6406 
6407   src = must_be_not_null(src, true);
6408   src = access_resolve(src, ACCESS_READ);
6409   dest = must_be_not_null(dest, true);
6410   dest = access_resolve(dest, ACCESS_WRITE);
6411 
6412   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
6413   assert(src_start, "source array is NULL");
6414   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
6415   assert(dest_start, "destination array is NULL");
6416 
6417   Node* base64 = make_runtime_call(RC_LEAF,
6418                                    OptoRuntime::base64_encodeBlock_Type(),
6419                                    stubAddr, stubName, TypePtr::BOTTOM,
6420                                    src_start, offset, len, dest_start, dp, isURL);
6421   return true;
6422 }
6423 
6424 //------------------------------inline_sha_implCompress-----------------------
6425 //
6426 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6427 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6428 //
6429 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6430 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6431 //
6432 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6433 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6434 //
6435 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6436   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6437 
6438   Node* sha_obj = argument(0);
6439   Node* src     = argument(1); // type oop
6440   Node* ofs     = argument(2); // type int
6441 
6442   const Type* src_type = src->Value(&_gvn);
6443   const TypeAryPtr* top_src = src_type->isa_aryptr();
6444   if (top_src  == NULL || top_src->klass()  == NULL) {
6445     // failed array check
6446     return false;
6447   }
6448   // Figure out the size and type of the elements we will be copying.
6449   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6450   if (src_elem != T_BYTE) {
6451     return false;
6452   }
6453   // 'src_start' points to src array + offset
6454   src = must_be_not_null(src, true);
6455   src = access_resolve(src, ACCESS_READ);
6456   Node* src_start = array_element_address(src, ofs, src_elem);
6457   Node* state = NULL;
6458   address stubAddr;
6459   const char *stubName;
6460 
6461   switch(id) {
6462   case vmIntrinsics::_sha_implCompress:
6463     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6464     state = get_state_from_sha_object(sha_obj);
6465     stubAddr = StubRoutines::sha1_implCompress();
6466     stubName = "sha1_implCompress";
6467     break;
6468   case vmIntrinsics::_sha2_implCompress:
6469     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6470     state = get_state_from_sha_object(sha_obj);
6471     stubAddr = StubRoutines::sha256_implCompress();
6472     stubName = "sha256_implCompress";
6473     break;
6474   case vmIntrinsics::_sha5_implCompress:
6475     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6476     state = get_state_from_sha5_object(sha_obj);
6477     stubAddr = StubRoutines::sha512_implCompress();
6478     stubName = "sha512_implCompress";
6479     break;
6480   default:
6481     fatal_unexpected_iid(id);
6482     return false;
6483   }
6484   if (state == NULL) return false;
6485 
6486   assert(stubAddr != NULL, "Stub is generated");
6487   if (stubAddr == NULL) return false;
6488 
6489   // Call the stub.
6490   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6491                                  stubAddr, stubName, TypePtr::BOTTOM,
6492                                  src_start, state);
6493 
6494   return true;
6495 }
6496 
6497 //------------------------------inline_digestBase_implCompressMB-----------------------
6498 //
6499 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6500 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6501 //
6502 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6503   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6504          "need SHA1/SHA256/SHA512 instruction support");
6505   assert((uint)predicate < 3, "sanity");
6506   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6507 
6508   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6509   Node* src            = argument(1); // byte[] array
6510   Node* ofs            = argument(2); // type int
6511   Node* limit          = argument(3); // type int
6512 
6513   const Type* src_type = src->Value(&_gvn);
6514   const TypeAryPtr* top_src = src_type->isa_aryptr();
6515   if (top_src  == NULL || top_src->klass()  == NULL) {
6516     // failed array check
6517     return false;
6518   }
6519   // Figure out the size and type of the elements we will be copying.
6520   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6521   if (src_elem != T_BYTE) {
6522     return false;
6523   }
6524   // 'src_start' points to src array + offset
6525   src = must_be_not_null(src, false);
6526   src = access_resolve(src, ACCESS_READ);
6527   Node* src_start = array_element_address(src, ofs, src_elem);
6528 
6529   const char* klass_SHA_name = NULL;
6530   const char* stub_name = NULL;
6531   address     stub_addr = NULL;
6532   bool        long_state = false;
6533 
6534   switch (predicate) {
6535   case 0:
6536     if (UseSHA1Intrinsics) {
6537       klass_SHA_name = "sun/security/provider/SHA";
6538       stub_name = "sha1_implCompressMB";
6539       stub_addr = StubRoutines::sha1_implCompressMB();
6540     }
6541     break;
6542   case 1:
6543     if (UseSHA256Intrinsics) {
6544       klass_SHA_name = "sun/security/provider/SHA2";
6545       stub_name = "sha256_implCompressMB";
6546       stub_addr = StubRoutines::sha256_implCompressMB();
6547     }
6548     break;
6549   case 2:
6550     if (UseSHA512Intrinsics) {
6551       klass_SHA_name = "sun/security/provider/SHA5";
6552       stub_name = "sha512_implCompressMB";
6553       stub_addr = StubRoutines::sha512_implCompressMB();
6554       long_state = true;
6555     }
6556     break;
6557   default:
6558     fatal("unknown SHA intrinsic predicate: %d", predicate);
6559   }
6560   if (klass_SHA_name != NULL) {
6561     assert(stub_addr != NULL, "Stub is generated");
6562     if (stub_addr == NULL) return false;
6563 
6564     // get DigestBase klass to lookup for SHA klass
6565     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6566     assert(tinst != NULL, "digestBase_obj is not instance???");
6567     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6568 
6569     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6570     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6571     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6572     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6573   }
6574   return false;
6575 }
6576 //------------------------------inline_sha_implCompressMB-----------------------
6577 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6578                                                bool long_state, address stubAddr, const char *stubName,
6579                                                Node* src_start, Node* ofs, Node* limit) {
6580   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6581   const TypeOopPtr* xtype = aklass->as_instance_type();
6582   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6583   sha_obj = _gvn.transform(sha_obj);
6584 
6585   Node* state;
6586   if (long_state) {
6587     state = get_state_from_sha5_object(sha_obj);
6588   } else {
6589     state = get_state_from_sha_object(sha_obj);
6590   }
6591   if (state == NULL) return false;
6592 
6593   // Call the stub.
6594   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6595                                  OptoRuntime::digestBase_implCompressMB_Type(),
6596                                  stubAddr, stubName, TypePtr::BOTTOM,
6597                                  src_start, state, ofs, limit);
6598   // return ofs (int)
6599   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6600   set_result(result);
6601 
6602   return true;
6603 }
6604 
6605 //------------------------------get_state_from_sha_object-----------------------
6606 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6607   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6608   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6609   if (sha_state == NULL) return (Node *) NULL;
6610 
6611   // now have the array, need to get the start address of the state array
6612   sha_state = access_resolve(sha_state, ACCESS_WRITE);
6613   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6614   return state;
6615 }
6616 
6617 //------------------------------get_state_from_sha5_object-----------------------
6618 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6619   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6620   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6621   if (sha_state == NULL) return (Node *) NULL;
6622 
6623   // now have the array, need to get the start address of the state array
6624   sha_state = access_resolve(sha_state, ACCESS_WRITE);
6625   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6626   return state;
6627 }
6628 
6629 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6630 // Return node representing slow path of predicate check.
6631 // the pseudo code we want to emulate with this predicate is:
6632 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6633 //
6634 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6635   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6636          "need SHA1/SHA256/SHA512 instruction support");
6637   assert((uint)predicate < 3, "sanity");
6638 
6639   // The receiver was checked for NULL already.
6640   Node* digestBaseObj = argument(0);
6641 
6642   // get DigestBase klass for instanceOf check
6643   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6644   assert(tinst != NULL, "digestBaseObj is null");
6645   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6646 
6647   const char* klass_SHA_name = NULL;
6648   switch (predicate) {
6649   case 0:
6650     if (UseSHA1Intrinsics) {
6651       // we want to do an instanceof comparison against the SHA class
6652       klass_SHA_name = "sun/security/provider/SHA";
6653     }
6654     break;
6655   case 1:
6656     if (UseSHA256Intrinsics) {
6657       // we want to do an instanceof comparison against the SHA2 class
6658       klass_SHA_name = "sun/security/provider/SHA2";
6659     }
6660     break;
6661   case 2:
6662     if (UseSHA512Intrinsics) {
6663       // we want to do an instanceof comparison against the SHA5 class
6664       klass_SHA_name = "sun/security/provider/SHA5";
6665     }
6666     break;
6667   default:
6668     fatal("unknown SHA intrinsic predicate: %d", predicate);
6669   }
6670 
6671   ciKlass* klass_SHA = NULL;
6672   if (klass_SHA_name != NULL) {
6673     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6674   }
6675   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6676     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6677     Node* ctrl = control();
6678     set_control(top()); // no intrinsic path
6679     return ctrl;
6680   }
6681   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6682 
6683   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6684   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6685   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6686   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6687 
6688   return instof_false;  // even if it is NULL
6689 }
6690 
6691 //-------------inline_fma-----------------------------------
6692 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6693   Node *a = NULL;
6694   Node *b = NULL;
6695   Node *c = NULL;
6696   Node* result = NULL;
6697   switch (id) {
6698   case vmIntrinsics::_fmaD:
6699     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6700     // no receiver since it is static method
6701     a = round_double_node(argument(0));
6702     b = round_double_node(argument(2));
6703     c = round_double_node(argument(4));
6704     result = _gvn.transform(new FmaDNode(control(), a, b, c));
6705     break;
6706   case vmIntrinsics::_fmaF:
6707     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6708     a = argument(0);
6709     b = argument(1);
6710     c = argument(2);
6711     result = _gvn.transform(new FmaFNode(control(), a, b, c));
6712     break;
6713   default:
6714     fatal_unexpected_iid(id);  break;
6715   }
6716   set_result(result);
6717   return true;
6718 }
6719 
6720 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
6721   // argument(0) is receiver
6722   Node* codePoint = argument(1);
6723   Node* n = NULL;
6724 
6725   switch (id) {
6726     case vmIntrinsics::_isDigit :
6727       n = new DigitNode(control(), codePoint);
6728       break;
6729     case vmIntrinsics::_isLowerCase :
6730       n = new LowerCaseNode(control(), codePoint);
6731       break;
6732     case vmIntrinsics::_isUpperCase :
6733       n = new UpperCaseNode(control(), codePoint);
6734       break;
6735     case vmIntrinsics::_isWhitespace :
6736       n = new WhitespaceNode(control(), codePoint);
6737       break;
6738     default:
6739       fatal_unexpected_iid(id);
6740   }
6741 
6742   set_result(_gvn.transform(n));
6743   return true;
6744 }
6745 
6746 //------------------------------inline_fp_min_max------------------------------
6747 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
6748 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
6749 
6750   // The intrinsic should be used only when the API branches aren't predictable,
6751   // the last one performing the most important comparison. The following heuristic
6752   // uses the branch statistics to eventually bail out if necessary.
6753 
6754   ciMethodData *md = callee()->method_data();
6755 
6756   if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) {
6757     ciCallProfile cp = caller()->call_profile_at_bci(bci());
6758 
6759     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
6760       // Bail out if the call-site didn't contribute enough to the statistics.
6761       return false;
6762     }
6763 
6764     uint taken = 0, not_taken = 0;
6765 
6766     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
6767       if (p->is_BranchData()) {
6768         taken = ((ciBranchData*)p)->taken();
6769         not_taken = ((ciBranchData*)p)->not_taken();
6770       }
6771     }
6772 
6773     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
6774     balance = balance < 0 ? -balance : balance;
6775     if ( balance > 0.2 ) {
6776       // Bail out if the most important branch is predictable enough.
6777       return false;
6778     }
6779   }
6780 */
6781 
6782   Node *a = NULL;
6783   Node *b = NULL;
6784   Node *n = NULL;
6785   switch (id) {
6786   case vmIntrinsics::_maxF:
6787   case vmIntrinsics::_minF:
6788     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
6789     a = argument(0);
6790     b = argument(1);
6791     break;
6792   case vmIntrinsics::_maxD:
6793   case vmIntrinsics::_minD:
6794     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
6795     a = round_double_node(argument(0));
6796     b = round_double_node(argument(2));
6797     break;
6798   default:
6799     fatal_unexpected_iid(id);
6800     break;
6801   }
6802   switch (id) {
6803   case vmIntrinsics::_maxF:  n = new MaxFNode(a, b);  break;
6804   case vmIntrinsics::_minF:  n = new MinFNode(a, b);  break;
6805   case vmIntrinsics::_maxD:  n = new MaxDNode(a, b);  break;
6806   case vmIntrinsics::_minD:  n = new MinDNode(a, b);  break;
6807   default:  fatal_unexpected_iid(id);  break;
6808   }
6809   set_result(_gvn.transform(n));
6810   return true;
6811 }
6812 
6813 bool LibraryCallKit::inline_profileBoolean() {
6814   Node* counts = argument(1);
6815   const TypeAryPtr* ary = NULL;
6816   ciArray* aobj = NULL;
6817   if (counts->is_Con()
6818       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6819       && (aobj = ary->const_oop()->as_array()) != NULL
6820       && (aobj->length() == 2)) {
6821     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6822     jint false_cnt = aobj->element_value(0).as_int();
6823     jint  true_cnt = aobj->element_value(1).as_int();
6824 
6825     if (C->log() != NULL) {
6826       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6827                      false_cnt, true_cnt);
6828     }
6829 
6830     if (false_cnt + true_cnt == 0) {
6831       // According to profile, never executed.
6832       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6833                           Deoptimization::Action_reinterpret);
6834       return true;
6835     }
6836 
6837     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6838     // is a number of each value occurrences.
6839     Node* result = argument(0);
6840     if (false_cnt == 0 || true_cnt == 0) {
6841       // According to profile, one value has been never seen.
6842       int expected_val = (false_cnt == 0) ? 1 : 0;
6843 
6844       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6845       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6846 
6847       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6848       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6849       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6850 
6851       { // Slow path: uncommon trap for never seen value and then reexecute
6852         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6853         // the value has been seen at least once.
6854         PreserveJVMState pjvms(this);
6855         PreserveReexecuteState preexecs(this);
6856         jvms()->set_should_reexecute(true);
6857 
6858         set_control(slow_path);
6859         set_i_o(i_o());
6860 
6861         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6862                             Deoptimization::Action_reinterpret);
6863       }
6864       // The guard for never seen value enables sharpening of the result and
6865       // returning a constant. It allows to eliminate branches on the same value
6866       // later on.
6867       set_control(fast_path);
6868       result = intcon(expected_val);
6869     }
6870     // Stop profiling.
6871     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6872     // By replacing method body with profile data (represented as ProfileBooleanNode
6873     // on IR level) we effectively disable profiling.
6874     // It enables full speed execution once optimized code is generated.
6875     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6876     C->record_for_igvn(profile);
6877     set_result(profile);
6878     return true;
6879   } else {
6880     // Continue profiling.
6881     // Profile data isn't available at the moment. So, execute method's bytecode version.
6882     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6883     // is compiled and counters aren't available since corresponding MethodHandle
6884     // isn't a compile-time constant.
6885     return false;
6886   }
6887 }
6888 
6889 bool LibraryCallKit::inline_isCompileConstant() {
6890   Node* n = argument(0);
6891   set_result(n->is_Con() ? intcon(1) : intcon(0));
6892   return true;
6893 }