--- /dev/null 2018-11-20 18:13:41.000000000 -0800 +++ new/src/hotspot/cpu/x86/macroAssembler_x86_aes.cpp 2018-11-20 18:13:39.949924800 -0800 @@ -0,0 +1,301 @@ +/* +* Copyright (c) 2018, Intel Corporation. +* +* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. +* +* This code is free software; you can redistribute it and/or modify it +* under the terms of the GNU General Public License version 2 only, as +* published by the Free Software Foundation. +* +* This code is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +* version 2 for more details (a copy is included in the LICENSE file that +* accompanied this code). +* +* You should have received a copy of the GNU General Public License version +* 2 along with this work; if not, write to the Free Software Foundation, +* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. +* +* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA +* or visit www.oracle.com if you need additional information or have any +* questions. +* +*/ + +#include "precompiled.hpp" +#include "asm/assembler.hpp" +#include "asm/assembler.inline.hpp" +#include "runtime/stubRoutines.hpp" +#include "macroAssembler_x86.hpp" + +// Multiply 128 x 128 bits, using 4 pclmulqdq operations +void MacroAssembler::schoolbookAAD(int i, Register htbl, XMMRegister data, + XMMRegister tmp0, XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3) { + movdqu(xmm15, Address(htbl, i * 16)); + vpclmulhqlqdq(tmp3, data, xmm15); // 0x01 + vpxor(tmp2, tmp2, tmp3, Assembler::AVX_128bit); + vpclmulldq(tmp3, data, xmm15); // 0x00 + vpxor(tmp0, tmp0, tmp3, Assembler::AVX_128bit); + vpclmulhdq(tmp3, data, xmm15); // 0x11 + vpxor(tmp1, tmp1, tmp3, Assembler::AVX_128bit); + vpclmullqhqdq(tmp3, data, xmm15); // 0x10 + vpxor(tmp2, tmp2, tmp3, Assembler::AVX_128bit); +} + +// Multiply two 128 bit numbers resulting in a 256 bit value +// Result of the multiplication followed by reduction stored in state +void MacroAssembler::gfmul(XMMRegister tmp0, XMMRegister state) { + const XMMRegister tmp1 = xmm4; + const XMMRegister tmp2 = xmm5; + const XMMRegister tmp3 = xmm6; + const XMMRegister tmp4 = xmm7; + + vpclmulldq(tmp1, state, tmp0); //0x00 (a0 * b0) + vpclmulhdq(tmp4, state, tmp0);//0x11 (a1 * b1) + vpclmullqhqdq(tmp2, state, tmp0);//0x10 (a1 * b0) + vpclmulhqlqdq(tmp3, state, tmp0); //0x01 (a0 * b1) + + vpxor(tmp2, tmp2, tmp3, Assembler::AVX_128bit); // (a0 * b1) + (a1 * b0) + + vpslldq(tmp3, tmp2, 8, Assembler::AVX_128bit); + vpsrldq(tmp2, tmp2, 8, Assembler::AVX_128bit); + vpxor(tmp1, tmp1, tmp3, Assembler::AVX_128bit); // tmp1 and tmp4 hold the result + vpxor(tmp4, tmp4, tmp2, Assembler::AVX_128bit); // of carryless multiplication + // Follows the reduction technique mentioned in + // Shift-XOR reduction described in Gueron-Kounavis May 2010 + // First phase of reduction + // + vpslld(xmm8, tmp1, 31, Assembler::AVX_128bit); // packed right shift shifting << 31 + vpslld(xmm9, tmp1, 30, Assembler::AVX_128bit); // packed right shift shifting << 30 + vpslld(xmm10, tmp1, 25, Assembler::AVX_128bit);// packed right shift shifting << 25 + // xor the shifted versions + vpxor(xmm8, xmm8, xmm9, Assembler::AVX_128bit); + vpxor(xmm8, xmm8, xmm10, Assembler::AVX_128bit); + vpslldq(xmm9, xmm8, 12, Assembler::AVX_128bit); + vpsrldq(xmm8, xmm8, 4, Assembler::AVX_128bit); + vpxor(tmp1, tmp1, xmm9, Assembler::AVX_128bit);// first phase of the reduction complete + // + // Second phase of the reduction + // + vpsrld(xmm9, tmp1, 1, Assembler::AVX_128bit);// packed left shifting >> 1 + vpsrld(xmm10, tmp1, 2, Assembler::AVX_128bit);// packed left shifting >> 2 + vpsrld(xmm11, tmp1, 7, Assembler::AVX_128bit);// packed left shifting >> 7 + vpxor(xmm9, xmm9, xmm10, Assembler::AVX_128bit);// xor the shifted versions + vpxor(xmm9, xmm9, xmm11, Assembler::AVX_128bit); + vpxor(xmm9, xmm9, xmm8, Assembler::AVX_128bit); + vpxor(tmp1, tmp1, xmm9, Assembler::AVX_128bit); + vpxor(state, tmp4, tmp1, Assembler::AVX_128bit);// the result is in state + ret(0); +} + +// This method takes in the subkey after expansion and generates 16 * 8 powers of subkey H using GFMUL operation. +// The powers are used for carry-less multiplication in scalar multiblock ghash operations. +void MacroAssembler::generateHtbl(Register htbl) { + const XMMRegister t = xmm0; + const XMMRegister tmp0 = xmm1; + Label GFMUL; + // load the original subkey hash + movdqu(t, Address(htbl, 0)); + // shuffle using long swap mask + movdqu(xmm10, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr())); + vpshufb(t, t, xmm10, Assembler::AVX_128bit); + //Save the shuffled mask as the first htbl entry + movdqu(Address(htbl, 0 * 16), t); + movdqu(tmp0, t); + // Compute H' = GFMUL(H, 2) + vpsrld(xmm3, t, 7, Assembler::AVX_128bit); + movdqu(xmm4, ExternalAddress(StubRoutines::x86::ghash_shufflemask_addr())); + vpshufb(xmm3, xmm3, xmm4, Assembler::AVX_128bit); + movl(rax, 0xff00); + movdl(xmm4, rax); + vpshufb(xmm4, xmm4, xmm3, Assembler::AVX_128bit); + movdqu(xmm5, ExternalAddress(StubRoutines::x86::ghash_polynomial_addr())); + vpand(xmm5, xmm5, xmm4, Assembler::AVX_128bit); + vpsrld(xmm3, t, 31, Assembler::AVX_128bit); + vpslld(xmm4, t, 1, Assembler::AVX_128bit); + vpslldq(xmm3, xmm3, 4, Assembler::AVX_128bit); + vpxor(t, xmm4, xmm3, Assembler::AVX_128bit);// t holds p(x) <<1 or H * 2 + + //Adding p(x)<<1 to xmm5 which holds the reduction polynomial + vpxor(t, t, xmm5, Assembler::AVX_128bit); + // tmp0 and t hold H. Now we compute powers of H by using GFMUL(H, H) + movdqu(tmp0, t); + // store GFMUL(H,2) + movdqu(Address(htbl, 1 * 16), t); // H * 2 + call(GFMUL, relocInfo::none); + movdqu(Address(htbl, 2 * 16), t); //H ^ 2 * 2 + call(GFMUL, relocInfo::none); + movdqu(Address(htbl, 3 * 16), t); //H ^ 3 * 2 + call(GFMUL, relocInfo::none); + movdqu(Address(htbl, 4 * 16), t); //H ^ 4 * 2 + call(GFMUL, relocInfo::none); + movdqu(Address(htbl, 5 * 16), t); //H ^ 5 * 2 + call(GFMUL, relocInfo::none); + movdqu(Address(htbl, 6 * 16), t); //H ^ 6 * 2 + call(GFMUL, relocInfo::none); + movdqu(Address(htbl, 7 * 16), t); //H ^ 7 * 2 + call(GFMUL, relocInfo::none); + movdqu(Address(htbl, 8 * 16), t); //H ^ 8 * 2 + + ret(0); + bind(GFMUL); + gfmul(tmp0, t); +} + +// Multiblock and single block GHASH computation using Shift XOR reduction technique +void MacroAssembler::avx_ghash(Register input_state, Register htbl, + Register input_data, Register blocks) { + + // temporary variables to hold input data and input state + const XMMRegister data = xmm1; + const XMMRegister state = xmm0; + // temporary variables to hold intermediate results + const XMMRegister tmp0 = xmm3; + const XMMRegister tmp1 = xmm4; + const XMMRegister tmp2 = xmm5; + const XMMRegister tmp3 = xmm6; + const XMMRegister tmp4 = xmm7; + // temporary variables to hold byte and long swap masks + const XMMRegister bswap_mask = xmm2; + const XMMRegister lswap_mask = xmm14; + + Label GENERATE_HTBL, BEGIN_PROCESS, GHASH_LOOP, BLOCK8_REDUCTION, + ONE_BLK_INIT, PROCESS_1_BLOCK, PROCESS_8_BLOCKS, SAVE_STATE, EXIT_GHASH; + + testptr(blocks, blocks); + jcc(Assembler::zero, EXIT_GHASH); + + // Check if Hashtable has been already generated + movdqu(tmp2, Address(htbl, 2 * 16)); + ptest(tmp2, tmp2); + jcc(Assembler::notZero, BEGIN_PROCESS); + call(GENERATE_HTBL, relocInfo::none); + + // Shuffle the input state + bind(BEGIN_PROCESS); + movdqu(lswap_mask, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr())); + movdqu(state, Address(input_state, 0)); + vpshufb(state, state, lswap_mask, Assembler::AVX_128bit); + + //Do 8 multiplies followed by a reduction processing 8 blocks of data at a time + //Each block = 16 bytes. + bind(PROCESS_8_BLOCKS); + cmpl(blocks, 8); + jcc(Assembler::below, ONE_BLK_INIT); + subl(blocks, 8); + movdqu(bswap_mask, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr())); + movdqu(data, Address(input_data, 16 * 7)); + vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); + //Loading 1*16 as calculated powers of H required starts at that location. + movdqu(xmm15, Address(htbl, 1 * 16)); + //Perform carryless multiplication of (H*2, data block #7) + vpclmulhqlqdq(tmp2, data, xmm15);//a0 * b1 + vpclmulldq(tmp0, data, xmm15);//a0 * b0 + vpclmulhdq(tmp1, data, xmm15);//a1 * b1 + vpclmullqhqdq(tmp3, data, xmm15);//a1* b0 + vpxor(tmp2, tmp2, tmp3, Assembler::AVX_128bit);// (a0 * b1) + (a1 * b0) + + movdqu(data, Address(input_data, 16 * 6)); + vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); + // Perform carryless multiplication of (H^2 * 2, data block #6) + schoolbookAAD(2, htbl, data, tmp0, tmp1, tmp2, tmp3); + + movdqu(data, Address(input_data, 16 * 5)); + vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); + // Perform carryless multiplication of (H^3 * 2, data block #5) + schoolbookAAD(3, htbl, data, tmp0, tmp1, tmp2, tmp3); + movdqu(data, Address(input_data, 16 * 4)); + vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); + // Perform carryless multiplication of (H^4 * 2, data block #4) + schoolbookAAD(4, htbl, data, tmp0, tmp1, tmp2, tmp3); + movdqu(data, Address(input_data, 16 * 3)); + vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); + // Perform carryless multiplication of (H^5 * 2, data block #3) + schoolbookAAD(5, htbl, data, tmp0, tmp1, tmp2, tmp3); + movdqu(data, Address(input_data, 16 * 2)); + vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); + // Perform carryless multiplication of (H^6 * 2, data block #2) + schoolbookAAD(6, htbl, data, tmp0, tmp1, tmp2, tmp3); + movdqu(data, Address(input_data, 16 * 1)); + vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); + // Perform carryless multiplication of (H^7 * 2, data block #1) + schoolbookAAD(7, htbl, data, tmp0, tmp1, tmp2, tmp3); + movdqu(data, Address(input_data, 16 * 0)); + // xor data block#0 with input state before perfoming carry-less multiplication + vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); + vpxor(data, data, state, Assembler::AVX_128bit); + // Perform carryless multiplication of (H^8 * 2, data block #0) + schoolbookAAD(8, htbl, data, tmp0, tmp1, tmp2, tmp3); + vpslldq(tmp3, tmp2, 8, Assembler::AVX_128bit); + vpsrldq(tmp2, tmp2, 8, Assembler::AVX_128bit); + vpxor(tmp0, tmp0, tmp3, Assembler::AVX_128bit);// tmp0, tmp1 contains aggregated results of + vpxor(tmp1, tmp1, tmp2, Assembler::AVX_128bit);// the multiplication operation + + // we have the 2 128-bit partially accumulated multiplication results in tmp0:tmp1 + // with higher 128-bit in tmp1 and lower 128-bit in corresponding tmp0 + // Follows the reduction technique mentioned in + // Shift-XOR reduction described in Gueron-Kounavis May 2010 + bind(BLOCK8_REDUCTION); + // First Phase of the reduction + vpslld(xmm8, tmp0, 31, Assembler::AVX_128bit); // packed right shifting << 31 + vpslld(xmm9, tmp0, 30, Assembler::AVX_128bit); // packed right shifting << 30 + vpslld(xmm10, tmp0, 25, Assembler::AVX_128bit); // packed right shifting << 25 + // xor the shifted versions + vpxor(xmm8, xmm8, xmm10, Assembler::AVX_128bit); + vpxor(xmm8, xmm8, xmm9, Assembler::AVX_128bit); + + vpslldq(xmm9, xmm8, 12, Assembler::AVX_128bit); + vpsrldq(xmm8, xmm8, 4, Assembler::AVX_128bit); + + vpxor(tmp0, tmp0, xmm9, Assembler::AVX_128bit); // first phase of reduction is complete + // second phase of the reduction + vpsrld(xmm9, tmp0, 1, Assembler::AVX_128bit); // packed left shifting >> 1 + vpsrld(xmm10, tmp0, 2, Assembler::AVX_128bit); // packed left shifting >> 2 + vpsrld(tmp2, tmp0, 7, Assembler::AVX_128bit); // packed left shifting >> 7 + // xor the shifted versions + vpxor(xmm9, xmm9, xmm10, Assembler::AVX_128bit); + vpxor(xmm9, xmm9, tmp2, Assembler::AVX_128bit); + vpxor(xmm9, xmm9, xmm8, Assembler::AVX_128bit); + vpxor(tmp0, xmm9, tmp0, Assembler::AVX_128bit); + // Final result is in state + vpxor(state, tmp0, tmp1, Assembler::AVX_128bit); + + lea(input_data, Address(input_data, 16 * 8)); + jmp(PROCESS_8_BLOCKS); + + // Since this is one block operation we will only use H * 2 i.e. the first power of H + bind(ONE_BLK_INIT); + movdqu(tmp0, Address(htbl, 1 * 16)); + movdqu(bswap_mask, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr())); + + //Do one (128 bit x 128 bit) carry-less multiplication at a time followed by a reduction. + bind(PROCESS_1_BLOCK); + cmpl(blocks, 0); + jcc(Assembler::equal, SAVE_STATE); + subl(blocks, 1); + movdqu(data, Address(input_data, 0)); + vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); + vpxor(state, state, data, Assembler::AVX_128bit); + // gfmul(H*2, state) + call(GHASH_LOOP, relocInfo::none); + addptr(input_data, 16); + jmp(PROCESS_1_BLOCK); + + bind(SAVE_STATE); + vpshufb(state, state, lswap_mask, Assembler::AVX_128bit); + movdqu(Address(input_state, 0), state); + jmp(EXIT_GHASH); + + bind(GHASH_LOOP); + gfmul(tmp0, state); + bind(GENERATE_HTBL); + generateHtbl(htbl); + + bind(EXIT_GHASH); + // zero out xmm registers used for Htbl storage + vpxor(xmm0, xmm0, xmm0, Assembler::AVX_128bit); + vpxor(xmm1, xmm1, xmm1, Assembler::AVX_128bit); + vpxor(xmm3, xmm3, xmm3, Assembler::AVX_128bit); + vpxor(xmm15, xmm15, xmm15, Assembler::AVX_128bit); +} \ No newline at end of file