1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  27 
  28 #include "gc_implementation/g1/heapRegionSets.hpp"
  29 #include "utilities/taskqueue.hpp"
  30 
  31 class G1CollectedHeap;
  32 class CMTask;
  33 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
  34 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
  35 
  36 // Closure used by CM during concurrent reference discovery
  37 // and reference processing (during remarking) to determine
  38 // if a particular object is alive. It is primarily used
  39 // to determine if referents of discovered reference objects
  40 // are alive. An instance is also embedded into the
  41 // reference processor as the _is_alive_non_header field
  42 class G1CMIsAliveClosure: public BoolObjectClosure {
  43   G1CollectedHeap* _g1;
  44  public:
  45   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  46 
  47   void do_object(oop obj) {
  48     ShouldNotCallThis();
  49   }
  50   bool do_object_b(oop obj);
  51 };
  52 
  53 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  54 // class, with one bit per (1<<_shifter) HeapWords.
  55 
  56 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  57  protected:
  58   HeapWord* _bmStartWord;      // base address of range covered by map
  59   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  60   const int _shifter;          // map to char or bit
  61   VirtualSpace _virtual_space; // underlying the bit map
  62   BitMap    _bm;               // the bit map itself
  63 
  64  public:
  65   // constructor
  66   CMBitMapRO(int shifter);
  67 
  68   enum { do_yield = true };
  69 
  70   // inquiries
  71   HeapWord* startWord()   const { return _bmStartWord; }
  72   size_t    sizeInWords() const { return _bmWordSize;  }
  73   // the following is one past the last word in space
  74   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  75 
  76   // read marks
  77 
  78   bool isMarked(HeapWord* addr) const {
  79     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  80            "outside underlying space?");
  81     return _bm.at(heapWordToOffset(addr));
  82   }
  83 
  84   // iteration
  85   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  86   inline bool iterate(BitMapClosure* cl);
  87 
  88   // Return the address corresponding to the next marked bit at or after
  89   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  90   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  91   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
  92                                      HeapWord* limit = NULL) const;
  93   // Return the address corresponding to the next unmarked bit at or after
  94   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  95   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  96   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
  97                                        HeapWord* limit = NULL) const;
  98 
  99   // conversion utilities
 100   // XXX Fix these so that offsets are size_t's...
 101   HeapWord* offsetToHeapWord(size_t offset) const {
 102     return _bmStartWord + (offset << _shifter);
 103   }
 104   size_t heapWordToOffset(HeapWord* addr) const {
 105     return pointer_delta(addr, _bmStartWord) >> _shifter;
 106   }
 107   int heapWordDiffToOffsetDiff(size_t diff) const;
 108 
 109   HeapWord* nextObject(HeapWord* addr) {
 110     oop obj = (oop) addr;
 111     return addr + obj->size();
 112   }
 113 
 114   // debugging
 115   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
 116 };
 117 
 118 class CMBitMap : public CMBitMapRO {
 119 
 120  public:
 121   // constructor
 122   CMBitMap(int shifter) :
 123     CMBitMapRO(shifter) {}
 124 
 125   // Allocates the back store for the marking bitmap
 126   bool allocate(ReservedSpace heap_rs);
 127 
 128   // write marks
 129   void mark(HeapWord* addr) {
 130     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 131            "outside underlying space?");
 132     _bm.set_bit(heapWordToOffset(addr));
 133   }
 134   void clear(HeapWord* addr) {
 135     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 136            "outside underlying space?");
 137     _bm.clear_bit(heapWordToOffset(addr));
 138   }
 139   bool parMark(HeapWord* addr) {
 140     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 141            "outside underlying space?");
 142     return _bm.par_set_bit(heapWordToOffset(addr));
 143   }
 144   bool parClear(HeapWord* addr) {
 145     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 146            "outside underlying space?");
 147     return _bm.par_clear_bit(heapWordToOffset(addr));
 148   }
 149   void markRange(MemRegion mr);
 150   void clearAll();
 151   void clearRange(MemRegion mr);
 152 
 153   // Starting at the bit corresponding to "addr" (inclusive), find the next
 154   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
 155   // the end of this run (stopping at "end_addr").  Return the MemRegion
 156   // covering from the start of the region corresponding to the first bit
 157   // of the run to the end of the region corresponding to the last bit of
 158   // the run.  If there is no "1" bit at or after "addr", return an empty
 159   // MemRegion.
 160   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
 161 };
 162 
 163 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
 164 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
 165   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
 166   ConcurrentMark* _cm;
 167   oop*   _base;        // bottom of stack
 168   jint _index;       // one more than last occupied index
 169   jint _capacity;    // max #elements
 170   jint _saved_index; // value of _index saved at start of GC
 171   NOT_PRODUCT(jint _max_depth;)   // max depth plumbed during run
 172 
 173   bool  _overflow;
 174   bool  _should_expand;
 175   DEBUG_ONLY(bool _drain_in_progress;)
 176   DEBUG_ONLY(bool _drain_in_progress_yields;)
 177 
 178  public:
 179   CMMarkStack(ConcurrentMark* cm);
 180   ~CMMarkStack();
 181 
 182 #ifndef PRODUCT
 183   jint max_depth() const {
 184     return _max_depth;
 185   }
 186 #endif
 187 
 188   bool allocate(size_t capacity);
 189 
 190   oop pop() {
 191     if (!isEmpty()) {
 192       return _base[--_index] ;
 193     }
 194     return NULL;
 195   }
 196 
 197   // If overflow happens, don't do the push, and record the overflow.
 198   // *Requires* that "ptr" is already marked.
 199   void push(oop ptr) {
 200     if (isFull()) {
 201       // Record overflow.
 202       _overflow = true;
 203       return;
 204     } else {
 205       _base[_index++] = ptr;
 206       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 207     }
 208   }
 209   // Non-block impl.  Note: concurrency is allowed only with other
 210   // "par_push" operations, not with "pop" or "drain".  We would need
 211   // parallel versions of them if such concurrency was desired.
 212   void par_push(oop ptr);
 213 
 214   // Pushes the first "n" elements of "ptr_arr" on the stack.
 215   // Non-block impl.  Note: concurrency is allowed only with other
 216   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
 217   void par_adjoin_arr(oop* ptr_arr, int n);
 218 
 219   // Pushes the first "n" elements of "ptr_arr" on the stack.
 220   // Locking impl: concurrency is allowed only with
 221   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 222   // locking strategy.
 223   void par_push_arr(oop* ptr_arr, int n);
 224 
 225   // If returns false, the array was empty.  Otherwise, removes up to "max"
 226   // elements from the stack, and transfers them to "ptr_arr" in an
 227   // unspecified order.  The actual number transferred is given in "n" ("n
 228   // == 0" is deliberately redundant with the return value.)  Locking impl:
 229   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 230   // operations, which use the same locking strategy.
 231   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 232 
 233   // Drain the mark stack, applying the given closure to all fields of
 234   // objects on the stack.  (That is, continue until the stack is empty,
 235   // even if closure applications add entries to the stack.)  The "bm"
 236   // argument, if non-null, may be used to verify that only marked objects
 237   // are on the mark stack.  If "yield_after" is "true", then the
 238   // concurrent marker performing the drain offers to yield after
 239   // processing each object.  If a yield occurs, stops the drain operation
 240   // and returns false.  Otherwise, returns true.
 241   template<class OopClosureClass>
 242   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
 243 
 244   bool isEmpty()    { return _index == 0; }
 245   bool isFull()     { return _index == _capacity; }
 246   int  maxElems()   { return _capacity; }
 247 
 248   bool overflow() { return _overflow; }
 249   void clear_overflow() { _overflow = false; }
 250 
 251   bool should_expand() const { return _should_expand; }
 252   void set_should_expand();
 253 
 254   // Expand the stack, typically in response to an overflow condition
 255   void expand();
 256 
 257   int  size() { return _index; }
 258 
 259   void setEmpty()   { _index = 0; clear_overflow(); }
 260 
 261   // Record the current index.
 262   void note_start_of_gc();
 263 
 264   // Make sure that we have not added any entries to the stack during GC.
 265   void note_end_of_gc();
 266 
 267   // iterate over the oops in the mark stack, up to the bound recorded via
 268   // the call above.
 269   void oops_do(OopClosure* f);
 270 };
 271 
 272 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
 273 private:
 274 #ifndef PRODUCT
 275   uintx _num_remaining;
 276   bool _force;
 277 #endif // !defined(PRODUCT)
 278 
 279 public:
 280   void init() PRODUCT_RETURN;
 281   void update() PRODUCT_RETURN;
 282   bool should_force() PRODUCT_RETURN_( return false; );
 283 };
 284 
 285 // this will enable a variety of different statistics per GC task
 286 #define _MARKING_STATS_       0
 287 // this will enable the higher verbose levels
 288 #define _MARKING_VERBOSE_     0
 289 
 290 #if _MARKING_STATS_
 291 #define statsOnly(statement)  \
 292 do {                          \
 293   statement ;                 \
 294 } while (0)
 295 #else // _MARKING_STATS_
 296 #define statsOnly(statement)  \
 297 do {                          \
 298 } while (0)
 299 #endif // _MARKING_STATS_
 300 
 301 typedef enum {
 302   no_verbose  = 0,   // verbose turned off
 303   stats_verbose,     // only prints stats at the end of marking
 304   low_verbose,       // low verbose, mostly per region and per major event
 305   medium_verbose,    // a bit more detailed than low
 306   high_verbose       // per object verbose
 307 } CMVerboseLevel;
 308 
 309 class YoungList;
 310 
 311 // Root Regions are regions that are not empty at the beginning of a
 312 // marking cycle and which we might collect during an evacuation pause
 313 // while the cycle is active. Given that, during evacuation pauses, we
 314 // do not copy objects that are explicitly marked, what we have to do
 315 // for the root regions is to scan them and mark all objects reachable
 316 // from them. According to the SATB assumptions, we only need to visit
 317 // each object once during marking. So, as long as we finish this scan
 318 // before the next evacuation pause, we can copy the objects from the
 319 // root regions without having to mark them or do anything else to them.
 320 //
 321 // Currently, we only support root region scanning once (at the start
 322 // of the marking cycle) and the root regions are all the survivor
 323 // regions populated during the initial-mark pause.
 324 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
 325 private:
 326   YoungList*           _young_list;
 327   ConcurrentMark*      _cm;
 328 
 329   volatile bool        _scan_in_progress;
 330   volatile bool        _should_abort;
 331   HeapRegion* volatile _next_survivor;
 332 
 333 public:
 334   CMRootRegions();
 335   // We actually do most of the initialization in this method.
 336   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
 337 
 338   // Reset the claiming / scanning of the root regions.
 339   void prepare_for_scan();
 340 
 341   // Forces get_next() to return NULL so that the iteration aborts early.
 342   void abort() { _should_abort = true; }
 343 
 344   // Return true if the CM thread are actively scanning root regions,
 345   // false otherwise.
 346   bool scan_in_progress() { return _scan_in_progress; }
 347 
 348   // Claim the next root region to scan atomically, or return NULL if
 349   // all have been claimed.
 350   HeapRegion* claim_next();
 351 
 352   // Flag that we're done with root region scanning and notify anyone
 353   // who's waiting on it. If aborted is false, assume that all regions
 354   // have been claimed.
 355   void scan_finished();
 356 
 357   // If CM threads are still scanning root regions, wait until they
 358   // are done. Return true if we had to wait, false otherwise.
 359   bool wait_until_scan_finished();
 360 };
 361 
 362 class ConcurrentMarkThread;
 363 
 364 class ConcurrentMark: public CHeapObj<mtGC> {
 365   friend class CMMarkStack;
 366   friend class ConcurrentMarkThread;
 367   friend class CMTask;
 368   friend class CMBitMapClosure;
 369   friend class CMGlobalObjectClosure;
 370   friend class CMRemarkTask;
 371   friend class CMConcurrentMarkingTask;
 372   friend class G1ParNoteEndTask;
 373   friend class CalcLiveObjectsClosure;
 374   friend class G1CMRefProcTaskProxy;
 375   friend class G1CMRefProcTaskExecutor;
 376   friend class G1CMKeepAliveAndDrainClosure;
 377   friend class G1CMDrainMarkingStackClosure;
 378 
 379 protected:
 380   ConcurrentMarkThread* _cmThread;   // the thread doing the work
 381   G1CollectedHeap*      _g1h;        // the heap.
 382   uint                  _parallel_marking_threads; // the number of marking
 383                                                    // threads we're use
 384   uint                  _max_parallel_marking_threads; // max number of marking
 385                                                    // threads we'll ever use
 386   double                _sleep_factor; // how much we have to sleep, with
 387                                        // respect to the work we just did, to
 388                                        // meet the marking overhead goal
 389   double                _marking_task_overhead; // marking target overhead for
 390                                                 // a single task
 391 
 392   // same as the two above, but for the cleanup task
 393   double                _cleanup_sleep_factor;
 394   double                _cleanup_task_overhead;
 395 
 396   FreeRegionList        _cleanup_list;
 397 
 398   // Concurrent marking support structures
 399   CMBitMap                _markBitMap1;
 400   CMBitMap                _markBitMap2;
 401   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
 402   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
 403 
 404   BitMap                  _region_bm;
 405   BitMap                  _card_bm;
 406 
 407   // Heap bounds
 408   HeapWord*               _heap_start;
 409   HeapWord*               _heap_end;
 410 
 411   // Root region tracking and claiming.
 412   CMRootRegions           _root_regions;
 413 
 414   // For gray objects
 415   CMMarkStack             _markStack; // Grey objects behind global finger.
 416   HeapWord* volatile      _finger;  // the global finger, region aligned,
 417                                     // always points to the end of the
 418                                     // last claimed region
 419 
 420   // marking tasks
 421   uint                    _max_worker_id;// maximum worker id
 422   uint                    _active_tasks; // task num currently active
 423   CMTask**                _tasks;        // task queue array (max_worker_id len)
 424   CMTaskQueueSet*         _task_queues;  // task queue set
 425   ParallelTaskTerminator  _terminator;   // for termination
 426 
 427   // Two sync barriers that are used to synchronise tasks when an
 428   // overflow occurs. The algorithm is the following. All tasks enter
 429   // the first one to ensure that they have all stopped manipulating
 430   // the global data structures. After they exit it, they re-initialise
 431   // their data structures and task 0 re-initialises the global data
 432   // structures. Then, they enter the second sync barrier. This
 433   // ensure, that no task starts doing work before all data
 434   // structures (local and global) have been re-initialised. When they
 435   // exit it, they are free to start working again.
 436   WorkGangBarrierSync     _first_overflow_barrier_sync;
 437   WorkGangBarrierSync     _second_overflow_barrier_sync;
 438 
 439   // this is set by any task, when an overflow on the global data
 440   // structures is detected.
 441   volatile bool           _has_overflown;
 442   // true: marking is concurrent, false: we're in remark
 443   volatile bool           _concurrent;
 444   // set at the end of a Full GC so that marking aborts
 445   volatile bool           _has_aborted;
 446 
 447   // used when remark aborts due to an overflow to indicate that
 448   // another concurrent marking phase should start
 449   volatile bool           _restart_for_overflow;
 450 
 451   // This is true from the very start of concurrent marking until the
 452   // point when all the tasks complete their work. It is really used
 453   // to determine the points between the end of concurrent marking and
 454   // time of remark.
 455   volatile bool           _concurrent_marking_in_progress;
 456 
 457   // verbose level
 458   CMVerboseLevel          _verbose_level;
 459 
 460   // All of these times are in ms.
 461   NumberSeq _init_times;
 462   NumberSeq _remark_times;
 463   NumberSeq   _remark_mark_times;
 464   NumberSeq   _remark_weak_ref_times;
 465   NumberSeq _cleanup_times;
 466   double    _total_counting_time;
 467   double    _total_rs_scrub_time;
 468 
 469   double*   _accum_task_vtime;   // accumulated task vtime
 470 
 471   FlexibleWorkGang* _parallel_workers;
 472 
 473   ForceOverflowSettings _force_overflow_conc;
 474   ForceOverflowSettings _force_overflow_stw;
 475 
 476   void weakRefsWork(bool clear_all_soft_refs);
 477 
 478   void swapMarkBitMaps();
 479 
 480   // It resets the global marking data structures, as well as the
 481   // task local ones; should be called during initial mark.
 482   void reset();
 483 
 484   // Resets all the marking data structures. Called when we have to restart
 485   // marking or when marking completes (via set_non_marking_state below).
 486   void reset_marking_state(bool clear_overflow = true);
 487 
 488   // We do this after we're done with marking so that the marking data
 489   // structures are initialised to a sensible and predictable state.
 490   void set_non_marking_state();
 491 
 492   // It should be called to indicate which phase we're in (concurrent
 493   // mark or remark) and how many threads are currently active.
 494   void set_phase(uint active_tasks, bool concurrent);
 495 
 496   // prints all gathered CM-related statistics
 497   void print_stats();
 498 
 499   bool cleanup_list_is_empty() {
 500     return _cleanup_list.is_empty();
 501   }
 502 
 503   // accessor methods
 504   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 505   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 506   double sleep_factor()                     { return _sleep_factor; }
 507   double marking_task_overhead()            { return _marking_task_overhead;}
 508   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
 509   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
 510 
 511   bool use_parallel_marking_threads() const {
 512     assert(parallel_marking_threads() <=
 513            max_parallel_marking_threads(), "sanity");
 514     assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
 515            parallel_marking_threads() > 0,
 516            "parallel workers not set up correctly");
 517     return _parallel_workers != NULL;
 518   }
 519 
 520   HeapWord*               finger()          { return _finger;   }
 521   bool                    concurrent()      { return _concurrent; }
 522   uint                    active_tasks()    { return _active_tasks; }
 523   ParallelTaskTerminator* terminator()      { return &_terminator; }
 524 
 525   // It claims the next available region to be scanned by a marking
 526   // task/thread. It might return NULL if the next region is empty or
 527   // we have run out of regions. In the latter case, out_of_regions()
 528   // determines whether we've really run out of regions or the task
 529   // should call claim_region() again. This might seem a bit
 530   // awkward. Originally, the code was written so that claim_region()
 531   // either successfully returned with a non-empty region or there
 532   // were no more regions to be claimed. The problem with this was
 533   // that, in certain circumstances, it iterated over large chunks of
 534   // the heap finding only empty regions and, while it was working, it
 535   // was preventing the calling task to call its regular clock
 536   // method. So, this way, each task will spend very little time in
 537   // claim_region() and is allowed to call the regular clock method
 538   // frequently.
 539   HeapRegion* claim_region(uint worker_id);
 540 
 541   // It determines whether we've run out of regions to scan.
 542   bool        out_of_regions() { return _finger == _heap_end; }
 543 
 544   // Returns the task with the given id
 545   CMTask* task(int id) {
 546     assert(0 <= id && id < (int) _active_tasks,
 547            "task id not within active bounds");
 548     return _tasks[id];
 549   }
 550 
 551   // Returns the task queue with the given id
 552   CMTaskQueue* task_queue(int id) {
 553     assert(0 <= id && id < (int) _active_tasks,
 554            "task queue id not within active bounds");
 555     return (CMTaskQueue*) _task_queues->queue(id);
 556   }
 557 
 558   // Returns the task queue set
 559   CMTaskQueueSet* task_queues()  { return _task_queues; }
 560 
 561   // Access / manipulation of the overflow flag which is set to
 562   // indicate that the global stack has overflown
 563   bool has_overflown()           { return _has_overflown; }
 564   void set_has_overflown()       { _has_overflown = true; }
 565   void clear_has_overflown()     { _has_overflown = false; }
 566   bool restart_for_overflow()    { return _restart_for_overflow; }
 567 
 568   bool has_aborted()             { return _has_aborted; }
 569 
 570   // Methods to enter the two overflow sync barriers
 571   void enter_first_sync_barrier(uint worker_id);
 572   void enter_second_sync_barrier(uint worker_id);
 573 
 574   ForceOverflowSettings* force_overflow_conc() {
 575     return &_force_overflow_conc;
 576   }
 577 
 578   ForceOverflowSettings* force_overflow_stw() {
 579     return &_force_overflow_stw;
 580   }
 581 
 582   ForceOverflowSettings* force_overflow() {
 583     if (concurrent()) {
 584       return force_overflow_conc();
 585     } else {
 586       return force_overflow_stw();
 587     }
 588   }
 589 
 590   // Live Data Counting data structures...
 591   // These data structures are initialized at the start of
 592   // marking. They are written to while marking is active.
 593   // They are aggregated during remark; the aggregated values
 594   // are then used to populate the _region_bm, _card_bm, and
 595   // the total live bytes, which are then subsequently updated
 596   // during cleanup.
 597 
 598   // An array of bitmaps (one bit map per task). Each bitmap
 599   // is used to record the cards spanned by the live objects
 600   // marked by that task/worker.
 601   BitMap*  _count_card_bitmaps;
 602 
 603   // Used to record the number of marked live bytes
 604   // (for each region, by worker thread).
 605   size_t** _count_marked_bytes;
 606 
 607   // Card index of the bottom of the G1 heap. Used for biasing indices into
 608   // the card bitmaps.
 609   intptr_t _heap_bottom_card_num;
 610 
 611   // Set to true when initialization is complete
 612   bool _completed_initialization;
 613 
 614 public:
 615   // Manipulation of the global mark stack.
 616   // Notice that the first mark_stack_push is CAS-based, whereas the
 617   // two below are Mutex-based. This is OK since the first one is only
 618   // called during evacuation pauses and doesn't compete with the
 619   // other two (which are called by the marking tasks during
 620   // concurrent marking or remark).
 621   bool mark_stack_push(oop p) {
 622     _markStack.par_push(p);
 623     if (_markStack.overflow()) {
 624       set_has_overflown();
 625       return false;
 626     }
 627     return true;
 628   }
 629   bool mark_stack_push(oop* arr, int n) {
 630     _markStack.par_push_arr(arr, n);
 631     if (_markStack.overflow()) {
 632       set_has_overflown();
 633       return false;
 634     }
 635     return true;
 636   }
 637   void mark_stack_pop(oop* arr, int max, int* n) {
 638     _markStack.par_pop_arr(arr, max, n);
 639   }
 640   size_t mark_stack_size()                { return _markStack.size(); }
 641   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 642   bool mark_stack_overflow()              { return _markStack.overflow(); }
 643   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
 644 
 645   CMRootRegions* root_regions() { return &_root_regions; }
 646 
 647   bool concurrent_marking_in_progress() {
 648     return _concurrent_marking_in_progress;
 649   }
 650   void set_concurrent_marking_in_progress() {
 651     _concurrent_marking_in_progress = true;
 652   }
 653   void clear_concurrent_marking_in_progress() {
 654     _concurrent_marking_in_progress = false;
 655   }
 656 
 657   void update_accum_task_vtime(int i, double vtime) {
 658     _accum_task_vtime[i] += vtime;
 659   }
 660 
 661   double all_task_accum_vtime() {
 662     double ret = 0.0;
 663     for (uint i = 0; i < _max_worker_id; ++i)
 664       ret += _accum_task_vtime[i];
 665     return ret;
 666   }
 667 
 668   // Attempts to steal an object from the task queues of other tasks
 669   bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
 670     return _task_queues->steal(worker_id, hash_seed, obj);
 671   }
 672 
 673   ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
 674   ~ConcurrentMark();
 675 
 676   ConcurrentMarkThread* cmThread() { return _cmThread; }
 677 
 678   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 679   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 680 
 681   // Returns the number of GC threads to be used in a concurrent
 682   // phase based on the number of GC threads being used in a STW
 683   // phase.
 684   uint scale_parallel_threads(uint n_par_threads);
 685 
 686   // Calculates the number of GC threads to be used in a concurrent phase.
 687   uint calc_parallel_marking_threads();
 688 
 689   // The following three are interaction between CM and
 690   // G1CollectedHeap
 691 
 692   // This notifies CM that a root during initial-mark needs to be
 693   // grayed. It is MT-safe. word_size is the size of the object in
 694   // words. It is passed explicitly as sometimes we cannot calculate
 695   // it from the given object because it might be in an inconsistent
 696   // state (e.g., in to-space and being copied). So the caller is
 697   // responsible for dealing with this issue (e.g., get the size from
 698   // the from-space image when the to-space image might be
 699   // inconsistent) and always passing the size. hr is the region that
 700   // contains the object and it's passed optionally from callers who
 701   // might already have it (no point in recalculating it).
 702   inline void grayRoot(oop obj, size_t word_size,
 703                        uint worker_id, HeapRegion* hr = NULL);
 704 
 705   // It iterates over the heap and for each object it comes across it
 706   // will dump the contents of its reference fields, as well as
 707   // liveness information for the object and its referents. The dump
 708   // will be written to a file with the following name:
 709   // G1PrintReachableBaseFile + "." + str.
 710   // vo decides whether the prev (vo == UsePrevMarking), the next
 711   // (vo == UseNextMarking) marking information, or the mark word
 712   // (vo == UseMarkWord) will be used to determine the liveness of
 713   // each object / referent.
 714   // If all is true, all objects in the heap will be dumped, otherwise
 715   // only the live ones. In the dump the following symbols / breviations
 716   // are used:
 717   //   M : an explicitly live object (its bitmap bit is set)
 718   //   > : an implicitly live object (over tams)
 719   //   O : an object outside the G1 heap (typically: in the perm gen)
 720   //   NOT : a reference field whose referent is not live
 721   //   AND MARKED : indicates that an object is both explicitly and
 722   //   implicitly live (it should be one or the other, not both)
 723   void print_reachable(const char* str,
 724                        VerifyOption vo, bool all) PRODUCT_RETURN;
 725 
 726   // Clear the next marking bitmap (will be called concurrently).
 727   void clearNextBitmap();
 728 
 729   // These two do the work that needs to be done before and after the
 730   // initial root checkpoint. Since this checkpoint can be done at two
 731   // different points (i.e. an explicit pause or piggy-backed on a
 732   // young collection), then it's nice to be able to easily share the
 733   // pre/post code. It might be the case that we can put everything in
 734   // the post method. TP
 735   void checkpointRootsInitialPre();
 736   void checkpointRootsInitialPost();
 737 
 738   // Scan all the root regions and mark everything reachable from
 739   // them.
 740   void scanRootRegions();
 741 
 742   // Scan a single root region and mark everything reachable from it.
 743   void scanRootRegion(HeapRegion* hr, uint worker_id);
 744 
 745   // Do concurrent phase of marking, to a tentative transitive closure.
 746   void markFromRoots();
 747 
 748   void checkpointRootsFinal(bool clear_all_soft_refs);
 749   void checkpointRootsFinalWork();
 750   void cleanup();
 751   void completeCleanup();
 752 
 753   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 754   // this carefully!
 755   inline void markPrev(oop p);
 756 
 757   // Clears marks for all objects in the given range, for the prev,
 758   // next, or both bitmaps.  NB: the previous bitmap is usually
 759   // read-only, so use this carefully!
 760   void clearRangePrevBitmap(MemRegion mr);
 761   void clearRangeNextBitmap(MemRegion mr);
 762   void clearRangeBothBitmaps(MemRegion mr);
 763 
 764   // Notify data structures that a GC has started.
 765   void note_start_of_gc() {
 766     _markStack.note_start_of_gc();
 767   }
 768 
 769   // Notify data structures that a GC is finished.
 770   void note_end_of_gc() {
 771     _markStack.note_end_of_gc();
 772   }
 773 
 774   // Verify that there are no CSet oops on the stacks (taskqueues /
 775   // global mark stack), enqueued SATB buffers, per-thread SATB
 776   // buffers, and fingers (global / per-task). The boolean parameters
 777   // decide which of the above data structures to verify. If marking
 778   // is not in progress, it's a no-op.
 779   void verify_no_cset_oops(bool verify_stacks,
 780                            bool verify_enqueued_buffers,
 781                            bool verify_thread_buffers,
 782                            bool verify_fingers) PRODUCT_RETURN;
 783 
 784   // It is called at the end of an evacuation pause during marking so
 785   // that CM is notified of where the new end of the heap is. It
 786   // doesn't do anything if concurrent_marking_in_progress() is false,
 787   // unless the force parameter is true.
 788   void update_g1_committed(bool force = false);
 789 
 790   bool isMarked(oop p) const {
 791     assert(p != NULL && p->is_oop(), "expected an oop");
 792     HeapWord* addr = (HeapWord*)p;
 793     assert(addr >= _nextMarkBitMap->startWord() ||
 794            addr < _nextMarkBitMap->endWord(), "in a region");
 795 
 796     return _nextMarkBitMap->isMarked(addr);
 797   }
 798 
 799   inline bool not_yet_marked(oop p) const;
 800 
 801   // XXX Debug code
 802   bool containing_card_is_marked(void* p);
 803   bool containing_cards_are_marked(void* start, void* last);
 804 
 805   bool isPrevMarked(oop p) const {
 806     assert(p != NULL && p->is_oop(), "expected an oop");
 807     HeapWord* addr = (HeapWord*)p;
 808     assert(addr >= _prevMarkBitMap->startWord() ||
 809            addr < _prevMarkBitMap->endWord(), "in a region");
 810 
 811     return _prevMarkBitMap->isMarked(addr);
 812   }
 813 
 814   inline bool do_yield_check(uint worker_i = 0);
 815   inline bool should_yield();
 816 
 817   // Called to abort the marking cycle after a Full GC takes palce.
 818   void abort();
 819 
 820   // This prints the global/local fingers. It is used for debugging.
 821   NOT_PRODUCT(void print_finger();)
 822 
 823   void print_summary_info();
 824 
 825   void print_worker_threads_on(outputStream* st) const;
 826 
 827   // The following indicate whether a given verbose level has been
 828   // set. Notice that anything above stats is conditional to
 829   // _MARKING_VERBOSE_ having been set to 1
 830   bool verbose_stats() {
 831     return _verbose_level >= stats_verbose;
 832   }
 833   bool verbose_low() {
 834     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
 835   }
 836   bool verbose_medium() {
 837     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
 838   }
 839   bool verbose_high() {
 840     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
 841   }
 842 
 843   // Liveness counting
 844 
 845   // Utility routine to set an exclusive range of cards on the given
 846   // card liveness bitmap
 847   inline void set_card_bitmap_range(BitMap* card_bm,
 848                                     BitMap::idx_t start_idx,
 849                                     BitMap::idx_t end_idx,
 850                                     bool is_par);
 851 
 852   // Returns the card number of the bottom of the G1 heap.
 853   // Used in biasing indices into accounting card bitmaps.
 854   intptr_t heap_bottom_card_num() const {
 855     return _heap_bottom_card_num;
 856   }
 857 
 858   // Returns the card bitmap for a given task or worker id.
 859   BitMap* count_card_bitmap_for(uint worker_id) {
 860     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
 861     assert(_count_card_bitmaps != NULL, "uninitialized");
 862     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
 863     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
 864     return task_card_bm;
 865   }
 866 
 867   // Returns the array containing the marked bytes for each region,
 868   // for the given worker or task id.
 869   size_t* count_marked_bytes_array_for(uint worker_id) {
 870     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
 871     assert(_count_marked_bytes != NULL, "uninitialized");
 872     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
 873     assert(marked_bytes_array != NULL, "uninitialized");
 874     return marked_bytes_array;
 875   }
 876 
 877   // Returns the index in the liveness accounting card table bitmap
 878   // for the given address
 879   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
 880 
 881   // Counts the size of the given memory region in the the given
 882   // marked_bytes array slot for the given HeapRegion.
 883   // Sets the bits in the given card bitmap that are associated with the
 884   // cards that are spanned by the memory region.
 885   inline void count_region(MemRegion mr, HeapRegion* hr,
 886                            size_t* marked_bytes_array,
 887                            BitMap* task_card_bm);
 888 
 889   // Counts the given memory region in the task/worker counting
 890   // data structures for the given worker id.
 891   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
 892 
 893   // Counts the given memory region in the task/worker counting
 894   // data structures for the given worker id.
 895   inline void count_region(MemRegion mr, uint worker_id);
 896 
 897   // Counts the given object in the given task/worker counting
 898   // data structures.
 899   inline void count_object(oop obj, HeapRegion* hr,
 900                            size_t* marked_bytes_array,
 901                            BitMap* task_card_bm);
 902 
 903   // Counts the given object in the task/worker counting data
 904   // structures for the given worker id.
 905   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
 906 
 907   // Attempts to mark the given object and, if successful, counts
 908   // the object in the given task/worker counting structures.
 909   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
 910                                  size_t* marked_bytes_array,
 911                                  BitMap* task_card_bm);
 912 
 913   // Attempts to mark the given object and, if successful, counts
 914   // the object in the task/worker counting structures for the
 915   // given worker id.
 916   inline bool par_mark_and_count(oop obj, size_t word_size,
 917                                  HeapRegion* hr, uint worker_id);
 918 
 919   // Attempts to mark the given object and, if successful, counts
 920   // the object in the task/worker counting structures for the
 921   // given worker id.
 922   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
 923 
 924   // Similar to the above routine but we don't know the heap region that
 925   // contains the object to be marked/counted, which this routine looks up.
 926   inline bool par_mark_and_count(oop obj, uint worker_id);
 927 
 928   // Similar to the above routine but there are times when we cannot
 929   // safely calculate the size of obj due to races and we, therefore,
 930   // pass the size in as a parameter. It is the caller's reponsibility
 931   // to ensure that the size passed in for obj is valid.
 932   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
 933 
 934   // Unconditionally mark the given object, and unconditinally count
 935   // the object in the counting structures for worker id 0.
 936   // Should *not* be called from parallel code.
 937   inline bool mark_and_count(oop obj, HeapRegion* hr);
 938 
 939   // Similar to the above routine but we don't know the heap region that
 940   // contains the object to be marked/counted, which this routine looks up.
 941   // Should *not* be called from parallel code.
 942   inline bool mark_and_count(oop obj);
 943 
 944   // Returns true if initialization was successfully completed.
 945   bool completed_initialization() const {
 946     return _completed_initialization;
 947   }
 948 
 949 protected:
 950   // Clear all the per-task bitmaps and arrays used to store the
 951   // counting data.
 952   void clear_all_count_data();
 953 
 954   // Aggregates the counting data for each worker/task
 955   // that was constructed while marking. Also sets
 956   // the amount of marked bytes for each region and
 957   // the top at concurrent mark count.
 958   void aggregate_count_data();
 959 
 960   // Verification routine
 961   void verify_count_data();
 962 };
 963 
 964 // A class representing a marking task.
 965 class CMTask : public TerminatorTerminator {
 966 private:
 967   enum PrivateConstants {
 968     // the regular clock call is called once the scanned words reaches
 969     // this limit
 970     words_scanned_period          = 12*1024,
 971     // the regular clock call is called once the number of visited
 972     // references reaches this limit
 973     refs_reached_period           = 384,
 974     // initial value for the hash seed, used in the work stealing code
 975     init_hash_seed                = 17,
 976     // how many entries will be transferred between global stack and
 977     // local queues
 978     global_stack_transfer_size    = 16
 979   };
 980 
 981   uint                        _worker_id;
 982   G1CollectedHeap*            _g1h;
 983   ConcurrentMark*             _cm;
 984   CMBitMap*                   _nextMarkBitMap;
 985   // the task queue of this task
 986   CMTaskQueue*                _task_queue;
 987 private:
 988   // the task queue set---needed for stealing
 989   CMTaskQueueSet*             _task_queues;
 990   // indicates whether the task has been claimed---this is only  for
 991   // debugging purposes
 992   bool                        _claimed;
 993 
 994   // number of calls to this task
 995   int                         _calls;
 996 
 997   // when the virtual timer reaches this time, the marking step should
 998   // exit
 999   double                      _time_target_ms;
1000   // the start time of the current marking step
1001   double                      _start_time_ms;
1002 
1003   // the oop closure used for iterations over oops
1004   G1CMOopClosure*             _cm_oop_closure;
1005 
1006   // the region this task is scanning, NULL if we're not scanning any
1007   HeapRegion*                 _curr_region;
1008   // the local finger of this task, NULL if we're not scanning a region
1009   HeapWord*                   _finger;
1010   // limit of the region this task is scanning, NULL if we're not scanning one
1011   HeapWord*                   _region_limit;
1012 
1013   // the number of words this task has scanned
1014   size_t                      _words_scanned;
1015   // When _words_scanned reaches this limit, the regular clock is
1016   // called. Notice that this might be decreased under certain
1017   // circumstances (i.e. when we believe that we did an expensive
1018   // operation).
1019   size_t                      _words_scanned_limit;
1020   // the initial value of _words_scanned_limit (i.e. what it was
1021   // before it was decreased).
1022   size_t                      _real_words_scanned_limit;
1023 
1024   // the number of references this task has visited
1025   size_t                      _refs_reached;
1026   // When _refs_reached reaches this limit, the regular clock is
1027   // called. Notice this this might be decreased under certain
1028   // circumstances (i.e. when we believe that we did an expensive
1029   // operation).
1030   size_t                      _refs_reached_limit;
1031   // the initial value of _refs_reached_limit (i.e. what it was before
1032   // it was decreased).
1033   size_t                      _real_refs_reached_limit;
1034 
1035   // used by the work stealing stuff
1036   int                         _hash_seed;
1037   // if this is true, then the task has aborted for some reason
1038   bool                        _has_aborted;
1039   // set when the task aborts because it has met its time quota
1040   bool                        _has_timed_out;
1041   // true when we're draining SATB buffers; this avoids the task
1042   // aborting due to SATB buffers being available (as we're already
1043   // dealing with them)
1044   bool                        _draining_satb_buffers;
1045 
1046   // number sequence of past step times
1047   NumberSeq                   _step_times_ms;
1048   // elapsed time of this task
1049   double                      _elapsed_time_ms;
1050   // termination time of this task
1051   double                      _termination_time_ms;
1052   // when this task got into the termination protocol
1053   double                      _termination_start_time_ms;
1054 
1055   // true when the task is during a concurrent phase, false when it is
1056   // in the remark phase (so, in the latter case, we do not have to
1057   // check all the things that we have to check during the concurrent
1058   // phase, i.e. SATB buffer availability...)
1059   bool                        _concurrent;
1060 
1061   TruncatedSeq                _marking_step_diffs_ms;
1062 
1063   // Counting data structures. Embedding the task's marked_bytes_array
1064   // and card bitmap into the actual task saves having to go through
1065   // the ConcurrentMark object.
1066   size_t*                     _marked_bytes_array;
1067   BitMap*                     _card_bm;
1068 
1069   // LOTS of statistics related with this task
1070 #if _MARKING_STATS_
1071   NumberSeq                   _all_clock_intervals_ms;
1072   double                      _interval_start_time_ms;
1073 
1074   int                         _aborted;
1075   int                         _aborted_overflow;
1076   int                         _aborted_cm_aborted;
1077   int                         _aborted_yield;
1078   int                         _aborted_timed_out;
1079   int                         _aborted_satb;
1080   int                         _aborted_termination;
1081 
1082   int                         _steal_attempts;
1083   int                         _steals;
1084 
1085   int                         _clock_due_to_marking;
1086   int                         _clock_due_to_scanning;
1087 
1088   int                         _local_pushes;
1089   int                         _local_pops;
1090   int                         _local_max_size;
1091   int                         _objs_scanned;
1092 
1093   int                         _global_pushes;
1094   int                         _global_pops;
1095   int                         _global_max_size;
1096 
1097   int                         _global_transfers_to;
1098   int                         _global_transfers_from;
1099 
1100   int                         _regions_claimed;
1101   int                         _objs_found_on_bitmap;
1102 
1103   int                         _satb_buffers_processed;
1104 #endif // _MARKING_STATS_
1105 
1106   // it updates the local fields after this task has claimed
1107   // a new region to scan
1108   void setup_for_region(HeapRegion* hr);
1109   // it brings up-to-date the limit of the region
1110   void update_region_limit();
1111 
1112   // called when either the words scanned or the refs visited limit
1113   // has been reached
1114   void reached_limit();
1115   // recalculates the words scanned and refs visited limits
1116   void recalculate_limits();
1117   // decreases the words scanned and refs visited limits when we reach
1118   // an expensive operation
1119   void decrease_limits();
1120   // it checks whether the words scanned or refs visited reached their
1121   // respective limit and calls reached_limit() if they have
1122   void check_limits() {
1123     if (_words_scanned >= _words_scanned_limit ||
1124         _refs_reached >= _refs_reached_limit) {
1125       reached_limit();
1126     }
1127   }
1128   // this is supposed to be called regularly during a marking step as
1129   // it checks a bunch of conditions that might cause the marking step
1130   // to abort
1131   void regular_clock_call();
1132   bool concurrent() { return _concurrent; }
1133 
1134 public:
1135   // It resets the task; it should be called right at the beginning of
1136   // a marking phase.
1137   void reset(CMBitMap* _nextMarkBitMap);
1138   // it clears all the fields that correspond to a claimed region.
1139   void clear_region_fields();
1140 
1141   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
1142 
1143   // The main method of this class which performs a marking step
1144   // trying not to exceed the given duration. However, it might exit
1145   // prematurely, according to some conditions (i.e. SATB buffers are
1146   // available for processing).
1147   void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
1148 
1149   // These two calls start and stop the timer
1150   void record_start_time() {
1151     _elapsed_time_ms = os::elapsedTime() * 1000.0;
1152   }
1153   void record_end_time() {
1154     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
1155   }
1156 
1157   // returns the worker ID associated with this task.
1158   uint worker_id() { return _worker_id; }
1159 
1160   // From TerminatorTerminator. It determines whether this task should
1161   // exit the termination protocol after it's entered it.
1162   virtual bool should_exit_termination();
1163 
1164   // Resets the local region fields after a task has finished scanning a
1165   // region; or when they have become stale as a result of the region
1166   // being evacuated.
1167   void giveup_current_region();
1168 
1169   HeapWord* finger()            { return _finger; }
1170 
1171   bool has_aborted()            { return _has_aborted; }
1172   void set_has_aborted()        { _has_aborted = true; }
1173   void clear_has_aborted()      { _has_aborted = false; }
1174   bool has_timed_out()          { return _has_timed_out; }
1175   bool claimed()                { return _claimed; }
1176 
1177   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
1178 
1179   // It grays the object by marking it and, if necessary, pushing it
1180   // on the local queue
1181   inline void deal_with_reference(oop obj);
1182 
1183   // It scans an object and visits its children.
1184   void scan_object(oop obj);
1185 
1186   // It pushes an object on the local queue.
1187   inline void push(oop obj);
1188 
1189   // These two move entries to/from the global stack.
1190   void move_entries_to_global_stack();
1191   void get_entries_from_global_stack();
1192 
1193   // It pops and scans objects from the local queue. If partially is
1194   // true, then it stops when the queue size is of a given limit. If
1195   // partially is false, then it stops when the queue is empty.
1196   void drain_local_queue(bool partially);
1197   // It moves entries from the global stack to the local queue and
1198   // drains the local queue. If partially is true, then it stops when
1199   // both the global stack and the local queue reach a given size. If
1200   // partially if false, it tries to empty them totally.
1201   void drain_global_stack(bool partially);
1202   // It keeps picking SATB buffers and processing them until no SATB
1203   // buffers are available.
1204   void drain_satb_buffers();
1205 
1206   // moves the local finger to a new location
1207   inline void move_finger_to(HeapWord* new_finger) {
1208     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
1209     _finger = new_finger;
1210   }
1211 
1212   CMTask(uint worker_id, ConcurrentMark *cm,
1213          size_t* marked_bytes, BitMap* card_bm,
1214          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
1215 
1216   // it prints statistics associated with this task
1217   void print_stats();
1218 
1219 #if _MARKING_STATS_
1220   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
1221 #endif // _MARKING_STATS_
1222 };
1223 
1224 // Class that's used to to print out per-region liveness
1225 // information. It's currently used at the end of marking and also
1226 // after we sort the old regions at the end of the cleanup operation.
1227 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
1228 private:
1229   outputStream* _out;
1230 
1231   // Accumulators for these values.
1232   size_t _total_used_bytes;
1233   size_t _total_capacity_bytes;
1234   size_t _total_prev_live_bytes;
1235   size_t _total_next_live_bytes;
1236 
1237   // These are set up when we come across a "stars humongous" region
1238   // (as this is where most of this information is stored, not in the
1239   // subsequent "continues humongous" regions). After that, for every
1240   // region in a given humongous region series we deduce the right
1241   // values for it by simply subtracting the appropriate amount from
1242   // these fields. All these values should reach 0 after we've visited
1243   // the last region in the series.
1244   size_t _hum_used_bytes;
1245   size_t _hum_capacity_bytes;
1246   size_t _hum_prev_live_bytes;
1247   size_t _hum_next_live_bytes;
1248 
1249   static double perc(size_t val, size_t total) {
1250     if (total == 0) {
1251       return 0.0;
1252     } else {
1253       return 100.0 * ((double) val / (double) total);
1254     }
1255   }
1256 
1257   static double bytes_to_mb(size_t val) {
1258     return (double) val / (double) M;
1259   }
1260 
1261   // See the .cpp file.
1262   size_t get_hum_bytes(size_t* hum_bytes);
1263   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
1264                      size_t* prev_live_bytes, size_t* next_live_bytes);
1265 
1266 public:
1267   // The header and footer are printed in the constructor and
1268   // destructor respectively.
1269   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
1270   virtual bool doHeapRegion(HeapRegion* r);
1271   ~G1PrintRegionLivenessInfoClosure();
1272 };
1273 
1274 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP