1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1AllocRegion.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1ErgoVerbose.hpp"
  38 #include "gc/g1/g1EvacFailure.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Log.hpp"
  41 #include "gc/g1/g1MarkSweep.hpp"
  42 #include "gc/g1/g1OopClosures.inline.hpp"
  43 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  44 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  45 #include "gc/g1/g1RemSet.inline.hpp"
  46 #include "gc/g1/g1RootProcessor.hpp"
  47 #include "gc/g1/g1StringDedup.hpp"
  48 #include "gc/g1/g1YCTypes.hpp"
  49 #include "gc/g1/heapRegion.inline.hpp"
  50 #include "gc/g1/heapRegionRemSet.hpp"
  51 #include "gc/g1/heapRegionSet.inline.hpp"
  52 #include "gc/g1/suspendibleThreadSet.hpp"
  53 #include "gc/g1/vm_operations_g1.hpp"
  54 #include "gc/shared/gcHeapSummary.hpp"
  55 #include "gc/shared/gcLocker.inline.hpp"
  56 #include "gc/shared/gcTimer.hpp"
  57 #include "gc/shared/gcTrace.hpp"
  58 #include "gc/shared/gcTraceTime.hpp"
  59 #include "gc/shared/generationSpec.hpp"
  60 #include "gc/shared/isGCActiveMark.hpp"
  61 #include "gc/shared/referenceProcessor.hpp"
  62 #include "gc/shared/taskqueue.inline.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/iterator.hpp"
  65 #include "oops/oop.inline.hpp"
  66 #include "runtime/atomic.inline.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/vmThread.hpp"
  69 #include "utilities/globalDefinitions.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  73 
  74 // turn it on so that the contents of the young list (scan-only /
  75 // to-be-collected) are printed at "strategic" points before / during
  76 // / after the collection --- this is useful for debugging
  77 #define YOUNG_LIST_VERBOSE 0
  78 // CURRENT STATUS
  79 // This file is under construction.  Search for "FIXME".
  80 
  81 // INVARIANTS/NOTES
  82 //
  83 // All allocation activity covered by the G1CollectedHeap interface is
  84 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  85 // and allocate_new_tlab, which are the "entry" points to the
  86 // allocation code from the rest of the JVM.  (Note that this does not
  87 // apply to TLAB allocation, which is not part of this interface: it
  88 // is done by clients of this interface.)
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   bool _concurrent;
  94 public:
  95   RefineCardTableEntryClosure() : _concurrent(true) { }
  96 
  97   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  98     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  99     // This path is executed by the concurrent refine or mutator threads,
 100     // concurrently, and so we do not care if card_ptr contains references
 101     // that point into the collection set.
 102     assert(!oops_into_cset, "should be");
 103 
 104     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 105       // Caller will actually yield.
 106       return false;
 107     }
 108     // Otherwise, we finished successfully; return true.
 109     return true;
 110   }
 111 
 112   void set_concurrent(bool b) { _concurrent = b; }
 113 };
 114 
 115 
 116 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 117  private:
 118   size_t _num_processed;
 119 
 120  public:
 121   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 122 
 123   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 124     *card_ptr = CardTableModRefBS::dirty_card_val();
 125     _num_processed++;
 126     return true;
 127   }
 128 
 129   size_t num_processed() const { return _num_processed; }
 130 };
 131 
 132 YoungList::YoungList(G1CollectedHeap* g1h) :
 133     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 134     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 135   guarantee(check_list_empty(false), "just making sure...");
 136 }
 137 
 138 void YoungList::push_region(HeapRegion *hr) {
 139   assert(!hr->is_young(), "should not already be young");
 140   assert(hr->get_next_young_region() == NULL, "cause it should!");
 141 
 142   hr->set_next_young_region(_head);
 143   _head = hr;
 144 
 145   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 146   ++_length;
 147 }
 148 
 149 void YoungList::add_survivor_region(HeapRegion* hr) {
 150   assert(hr->is_survivor(), "should be flagged as survivor region");
 151   assert(hr->get_next_young_region() == NULL, "cause it should!");
 152 
 153   hr->set_next_young_region(_survivor_head);
 154   if (_survivor_head == NULL) {
 155     _survivor_tail = hr;
 156   }
 157   _survivor_head = hr;
 158   ++_survivor_length;
 159 }
 160 
 161 void YoungList::empty_list(HeapRegion* list) {
 162   while (list != NULL) {
 163     HeapRegion* next = list->get_next_young_region();
 164     list->set_next_young_region(NULL);
 165     list->uninstall_surv_rate_group();
 166     // This is called before a Full GC and all the non-empty /
 167     // non-humongous regions at the end of the Full GC will end up as
 168     // old anyway.
 169     list->set_old();
 170     list = next;
 171   }
 172 }
 173 
 174 void YoungList::empty_list() {
 175   assert(check_list_well_formed(), "young list should be well formed");
 176 
 177   empty_list(_head);
 178   _head = NULL;
 179   _length = 0;
 180 
 181   empty_list(_survivor_head);
 182   _survivor_head = NULL;
 183   _survivor_tail = NULL;
 184   _survivor_length = 0;
 185 
 186   _last_sampled_rs_lengths = 0;
 187 
 188   assert(check_list_empty(false), "just making sure...");
 189 }
 190 
 191 bool YoungList::check_list_well_formed() {
 192   bool ret = true;
 193 
 194   uint length = 0;
 195   HeapRegion* curr = _head;
 196   HeapRegion* last = NULL;
 197   while (curr != NULL) {
 198     if (!curr->is_young()) {
 199       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 200                              "incorrectly tagged (y: %d, surv: %d)",
 201                              p2i(curr->bottom()), p2i(curr->end()),
 202                              curr->is_young(), curr->is_survivor());
 203       ret = false;
 204     }
 205     ++length;
 206     last = curr;
 207     curr = curr->get_next_young_region();
 208   }
 209   ret = ret && (length == _length);
 210 
 211   if (!ret) {
 212     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 213     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 214                            length, _length);
 215   }
 216 
 217   return ret;
 218 }
 219 
 220 bool YoungList::check_list_empty(bool check_sample) {
 221   bool ret = true;
 222 
 223   if (_length != 0) {
 224     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 225                   _length);
 226     ret = false;
 227   }
 228   if (check_sample && _last_sampled_rs_lengths != 0) {
 229     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 230     ret = false;
 231   }
 232   if (_head != NULL) {
 233     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 234     ret = false;
 235   }
 236   if (!ret) {
 237     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 238   }
 239 
 240   return ret;
 241 }
 242 
 243 void
 244 YoungList::rs_length_sampling_init() {
 245   _sampled_rs_lengths = 0;
 246   _curr               = _head;
 247 }
 248 
 249 bool
 250 YoungList::rs_length_sampling_more() {
 251   return _curr != NULL;
 252 }
 253 
 254 void
 255 YoungList::rs_length_sampling_next() {
 256   assert( _curr != NULL, "invariant" );
 257   size_t rs_length = _curr->rem_set()->occupied();
 258 
 259   _sampled_rs_lengths += rs_length;
 260 
 261   // The current region may not yet have been added to the
 262   // incremental collection set (it gets added when it is
 263   // retired as the current allocation region).
 264   if (_curr->in_collection_set()) {
 265     // Update the collection set policy information for this region
 266     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 267   }
 268 
 269   _curr = _curr->get_next_young_region();
 270   if (_curr == NULL) {
 271     _last_sampled_rs_lengths = _sampled_rs_lengths;
 272     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 273   }
 274 }
 275 
 276 void
 277 YoungList::reset_auxilary_lists() {
 278   guarantee( is_empty(), "young list should be empty" );
 279   assert(check_list_well_formed(), "young list should be well formed");
 280 
 281   // Add survivor regions to SurvRateGroup.
 282   _g1h->g1_policy()->note_start_adding_survivor_regions();
 283   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 284 
 285   int young_index_in_cset = 0;
 286   for (HeapRegion* curr = _survivor_head;
 287        curr != NULL;
 288        curr = curr->get_next_young_region()) {
 289     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 290 
 291     // The region is a non-empty survivor so let's add it to
 292     // the incremental collection set for the next evacuation
 293     // pause.
 294     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 295     young_index_in_cset += 1;
 296   }
 297   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 298   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 299 
 300   _head   = _survivor_head;
 301   _length = _survivor_length;
 302   if (_survivor_head != NULL) {
 303     assert(_survivor_tail != NULL, "cause it shouldn't be");
 304     assert(_survivor_length > 0, "invariant");
 305     _survivor_tail->set_next_young_region(NULL);
 306   }
 307 
 308   // Don't clear the survivor list handles until the start of
 309   // the next evacuation pause - we need it in order to re-tag
 310   // the survivor regions from this evacuation pause as 'young'
 311   // at the start of the next.
 312 
 313   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 314 
 315   assert(check_list_well_formed(), "young list should be well formed");
 316 }
 317 
 318 void YoungList::print() {
 319   HeapRegion* lists[] = {_head,   _survivor_head};
 320   const char* names[] = {"YOUNG", "SURVIVOR"};
 321 
 322   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 323     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 324     HeapRegion *curr = lists[list];
 325     if (curr == NULL)
 326       gclog_or_tty->print_cr("  empty");
 327     while (curr != NULL) {
 328       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 329                              HR_FORMAT_PARAMS(curr),
 330                              p2i(curr->prev_top_at_mark_start()),
 331                              p2i(curr->next_top_at_mark_start()),
 332                              curr->age_in_surv_rate_group_cond());
 333       curr = curr->get_next_young_region();
 334     }
 335   }
 336 
 337   gclog_or_tty->cr();
 338 }
 339 
 340 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 341   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 342 }
 343 
 344 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 345   // The from card cache is not the memory that is actually committed. So we cannot
 346   // take advantage of the zero_filled parameter.
 347   reset_from_card_cache(start_idx, num_regions);
 348 }
 349 
 350 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 351 {
 352   // Claim the right to put the region on the dirty cards region list
 353   // by installing a self pointer.
 354   HeapRegion* next = hr->get_next_dirty_cards_region();
 355   if (next == NULL) {
 356     HeapRegion* res = (HeapRegion*)
 357       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 358                           NULL);
 359     if (res == NULL) {
 360       HeapRegion* head;
 361       do {
 362         // Put the region to the dirty cards region list.
 363         head = _dirty_cards_region_list;
 364         next = (HeapRegion*)
 365           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 366         if (next == head) {
 367           assert(hr->get_next_dirty_cards_region() == hr,
 368                  "hr->get_next_dirty_cards_region() != hr");
 369           if (next == NULL) {
 370             // The last region in the list points to itself.
 371             hr->set_next_dirty_cards_region(hr);
 372           } else {
 373             hr->set_next_dirty_cards_region(next);
 374           }
 375         }
 376       } while (next != head);
 377     }
 378   }
 379 }
 380 
 381 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 382 {
 383   HeapRegion* head;
 384   HeapRegion* hr;
 385   do {
 386     head = _dirty_cards_region_list;
 387     if (head == NULL) {
 388       return NULL;
 389     }
 390     HeapRegion* new_head = head->get_next_dirty_cards_region();
 391     if (head == new_head) {
 392       // The last region.
 393       new_head = NULL;
 394     }
 395     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 396                                           head);
 397   } while (hr != head);
 398   assert(hr != NULL, "invariant");
 399   hr->set_next_dirty_cards_region(NULL);
 400   return hr;
 401 }
 402 
 403 // Returns true if the reference points to an object that
 404 // can move in an incremental collection.
 405 bool G1CollectedHeap::is_scavengable(const void* p) {
 406   HeapRegion* hr = heap_region_containing(p);
 407   return !hr->is_pinned();
 408 }
 409 
 410 // Private methods.
 411 
 412 HeapRegion*
 413 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 414   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 415   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 416     if (!_secondary_free_list.is_empty()) {
 417       if (G1ConcRegionFreeingVerbose) {
 418         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 419                                "secondary_free_list has %u entries",
 420                                _secondary_free_list.length());
 421       }
 422       // It looks as if there are free regions available on the
 423       // secondary_free_list. Let's move them to the free_list and try
 424       // again to allocate from it.
 425       append_secondary_free_list();
 426 
 427       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 428              "empty we should have moved at least one entry to the free_list");
 429       HeapRegion* res = _hrm.allocate_free_region(is_old);
 430       if (G1ConcRegionFreeingVerbose) {
 431         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 432                                "allocated "HR_FORMAT" from secondary_free_list",
 433                                HR_FORMAT_PARAMS(res));
 434       }
 435       return res;
 436     }
 437 
 438     // Wait here until we get notified either when (a) there are no
 439     // more free regions coming or (b) some regions have been moved on
 440     // the secondary_free_list.
 441     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 442   }
 443 
 444   if (G1ConcRegionFreeingVerbose) {
 445     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 446                            "could not allocate from secondary_free_list");
 447   }
 448   return NULL;
 449 }
 450 
 451 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 452   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 453          "the only time we use this to allocate a humongous region is "
 454          "when we are allocating a single humongous region");
 455 
 456   HeapRegion* res;
 457   if (G1StressConcRegionFreeing) {
 458     if (!_secondary_free_list.is_empty()) {
 459       if (G1ConcRegionFreeingVerbose) {
 460         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 461                                "forced to look at the secondary_free_list");
 462       }
 463       res = new_region_try_secondary_free_list(is_old);
 464       if (res != NULL) {
 465         return res;
 466       }
 467     }
 468   }
 469 
 470   res = _hrm.allocate_free_region(is_old);
 471 
 472   if (res == NULL) {
 473     if (G1ConcRegionFreeingVerbose) {
 474       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 475                              "res == NULL, trying the secondary_free_list");
 476     }
 477     res = new_region_try_secondary_free_list(is_old);
 478   }
 479   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 480     // Currently, only attempts to allocate GC alloc regions set
 481     // do_expand to true. So, we should only reach here during a
 482     // safepoint. If this assumption changes we might have to
 483     // reconsider the use of _expand_heap_after_alloc_failure.
 484     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 485 
 486     ergo_verbose1(ErgoHeapSizing,
 487                   "attempt heap expansion",
 488                   ergo_format_reason("region allocation request failed")
 489                   ergo_format_byte("allocation request"),
 490                   word_size * HeapWordSize);
 491     if (expand(word_size * HeapWordSize)) {
 492       // Given that expand() succeeded in expanding the heap, and we
 493       // always expand the heap by an amount aligned to the heap
 494       // region size, the free list should in theory not be empty.
 495       // In either case allocate_free_region() will check for NULL.
 496       res = _hrm.allocate_free_region(is_old);
 497     } else {
 498       _expand_heap_after_alloc_failure = false;
 499     }
 500   }
 501   return res;
 502 }
 503 
 504 HeapWord*
 505 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 506                                                            uint num_regions,
 507                                                            size_t word_size,
 508                                                            AllocationContext_t context) {
 509   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 510   assert(is_humongous(word_size), "word_size should be humongous");
 511   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 512 
 513   // Index of last region in the series + 1.
 514   uint last = first + num_regions;
 515 
 516   // We need to initialize the region(s) we just discovered. This is
 517   // a bit tricky given that it can happen concurrently with
 518   // refinement threads refining cards on these regions and
 519   // potentially wanting to refine the BOT as they are scanning
 520   // those cards (this can happen shortly after a cleanup; see CR
 521   // 6991377). So we have to set up the region(s) carefully and in
 522   // a specific order.
 523 
 524   // The word size sum of all the regions we will allocate.
 525   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 526   assert(word_size <= word_size_sum, "sanity");
 527 
 528   // This will be the "starts humongous" region.
 529   HeapRegion* first_hr = region_at(first);
 530   // The header of the new object will be placed at the bottom of
 531   // the first region.
 532   HeapWord* new_obj = first_hr->bottom();
 533   // This will be the new end of the first region in the series that
 534   // should also match the end of the last region in the series.
 535   HeapWord* new_end = new_obj + word_size_sum;
 536   // This will be the new top of the first region that will reflect
 537   // this allocation.
 538   HeapWord* new_top = new_obj + word_size;
 539 
 540   // First, we need to zero the header of the space that we will be
 541   // allocating. When we update top further down, some refinement
 542   // threads might try to scan the region. By zeroing the header we
 543   // ensure that any thread that will try to scan the region will
 544   // come across the zero klass word and bail out.
 545   //
 546   // NOTE: It would not have been correct to have used
 547   // CollectedHeap::fill_with_object() and make the space look like
 548   // an int array. The thread that is doing the allocation will
 549   // later update the object header to a potentially different array
 550   // type and, for a very short period of time, the klass and length
 551   // fields will be inconsistent. This could cause a refinement
 552   // thread to calculate the object size incorrectly.
 553   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 554 
 555   // We will set up the first region as "starts humongous". This
 556   // will also update the BOT covering all the regions to reflect
 557   // that there is a single object that starts at the bottom of the
 558   // first region.
 559   first_hr->set_starts_humongous(new_top, new_end);
 560   first_hr->set_allocation_context(context);
 561   // Then, if there are any, we will set up the "continues
 562   // humongous" regions.
 563   HeapRegion* hr = NULL;
 564   for (uint i = first + 1; i < last; ++i) {
 565     hr = region_at(i);
 566     hr->set_continues_humongous(first_hr);
 567     hr->set_allocation_context(context);
 568   }
 569   // If we have "continues humongous" regions (hr != NULL), then the
 570   // end of the last one should match new_end.
 571   assert(hr == NULL || hr->end() == new_end, "sanity");
 572 
 573   // Up to this point no concurrent thread would have been able to
 574   // do any scanning on any region in this series. All the top
 575   // fields still point to bottom, so the intersection between
 576   // [bottom,top] and [card_start,card_end] will be empty. Before we
 577   // update the top fields, we'll do a storestore to make sure that
 578   // no thread sees the update to top before the zeroing of the
 579   // object header and the BOT initialization.
 580   OrderAccess::storestore();
 581 
 582   // Now that the BOT and the object header have been initialized,
 583   // we can update top of the "starts humongous" region.
 584   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 585          "new_top should be in this region");
 586   first_hr->set_top(new_top);
 587   if (_hr_printer.is_active()) {
 588     HeapWord* bottom = first_hr->bottom();
 589     HeapWord* end = first_hr->orig_end();
 590     if ((first + 1) == last) {
 591       // the series has a single humongous region
 592       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 593     } else {
 594       // the series has more than one humongous regions
 595       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 596     }
 597   }
 598 
 599   // Now, we will update the top fields of the "continues humongous"
 600   // regions. The reason we need to do this is that, otherwise,
 601   // these regions would look empty and this will confuse parts of
 602   // G1. For example, the code that looks for a consecutive number
 603   // of empty regions will consider them empty and try to
 604   // re-allocate them. We can extend is_empty() to also include
 605   // !is_continues_humongous(), but it is easier to just update the top
 606   // fields here. The way we set top for all regions (i.e., top ==
 607   // end for all regions but the last one, top == new_top for the
 608   // last one) is actually used when we will free up the humongous
 609   // region in free_humongous_region().
 610   hr = NULL;
 611   for (uint i = first + 1; i < last; ++i) {
 612     hr = region_at(i);
 613     if ((i + 1) == last) {
 614       // last continues humongous region
 615       assert(hr->bottom() < new_top && new_top <= hr->end(),
 616              "new_top should fall on this region");
 617       hr->set_top(new_top);
 618       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 619     } else {
 620       // not last one
 621       assert(new_top > hr->end(), "new_top should be above this region");
 622       hr->set_top(hr->end());
 623       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 624     }
 625   }
 626   // If we have continues humongous regions (hr != NULL), then the
 627   // end of the last one should match new_end and its top should
 628   // match new_top.
 629   assert(hr == NULL ||
 630          (hr->end() == new_end && hr->top() == new_top), "sanity");
 631   check_bitmaps("Humongous Region Allocation", first_hr);
 632 
 633   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 634   _allocator->increase_used(first_hr->used());
 635   _humongous_set.add(first_hr);
 636 
 637   return new_obj;
 638 }
 639 
 640 // If could fit into free regions w/o expansion, try.
 641 // Otherwise, if can expand, do so.
 642 // Otherwise, if using ex regions might help, try with ex given back.
 643 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 644   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 645 
 646   verify_region_sets_optional();
 647 
 648   uint first = G1_NO_HRM_INDEX;
 649   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 650 
 651   if (obj_regions == 1) {
 652     // Only one region to allocate, try to use a fast path by directly allocating
 653     // from the free lists. Do not try to expand here, we will potentially do that
 654     // later.
 655     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 656     if (hr != NULL) {
 657       first = hr->hrm_index();
 658     }
 659   } else {
 660     // We can't allocate humongous regions spanning more than one region while
 661     // cleanupComplete() is running, since some of the regions we find to be
 662     // empty might not yet be added to the free list. It is not straightforward
 663     // to know in which list they are on so that we can remove them. We only
 664     // need to do this if we need to allocate more than one region to satisfy the
 665     // current humongous allocation request. If we are only allocating one region
 666     // we use the one-region region allocation code (see above), that already
 667     // potentially waits for regions from the secondary free list.
 668     wait_while_free_regions_coming();
 669     append_secondary_free_list_if_not_empty_with_lock();
 670 
 671     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 672     // are lucky enough to find some.
 673     first = _hrm.find_contiguous_only_empty(obj_regions);
 674     if (first != G1_NO_HRM_INDEX) {
 675       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 676     }
 677   }
 678 
 679   if (first == G1_NO_HRM_INDEX) {
 680     // Policy: We could not find enough regions for the humongous object in the
 681     // free list. Look through the heap to find a mix of free and uncommitted regions.
 682     // If so, try expansion.
 683     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 684     if (first != G1_NO_HRM_INDEX) {
 685       // We found something. Make sure these regions are committed, i.e. expand
 686       // the heap. Alternatively we could do a defragmentation GC.
 687       ergo_verbose1(ErgoHeapSizing,
 688                     "attempt heap expansion",
 689                     ergo_format_reason("humongous allocation request failed")
 690                     ergo_format_byte("allocation request"),
 691                     word_size * HeapWordSize);
 692 
 693       _hrm.expand_at(first, obj_regions);
 694       g1_policy()->record_new_heap_size(num_regions());
 695 
 696 #ifdef ASSERT
 697       for (uint i = first; i < first + obj_regions; ++i) {
 698         HeapRegion* hr = region_at(i);
 699         assert(hr->is_free(), "sanity");
 700         assert(hr->is_empty(), "sanity");
 701         assert(is_on_master_free_list(hr), "sanity");
 702       }
 703 #endif
 704       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 705     } else {
 706       // Policy: Potentially trigger a defragmentation GC.
 707     }
 708   }
 709 
 710   HeapWord* result = NULL;
 711   if (first != G1_NO_HRM_INDEX) {
 712     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 713                                                        word_size, context);
 714     assert(result != NULL, "it should always return a valid result");
 715 
 716     // A successful humongous object allocation changes the used space
 717     // information of the old generation so we need to recalculate the
 718     // sizes and update the jstat counters here.
 719     g1mm()->update_sizes();
 720   }
 721 
 722   verify_region_sets_optional();
 723 
 724   return result;
 725 }
 726 
 727 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 728   assert_heap_not_locked_and_not_at_safepoint();
 729   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 730 
 731   uint dummy_gc_count_before;
 732   uint dummy_gclocker_retry_count = 0;
 733   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 734 }
 735 
 736 HeapWord*
 737 G1CollectedHeap::mem_allocate(size_t word_size,
 738                               bool*  gc_overhead_limit_was_exceeded) {
 739   assert_heap_not_locked_and_not_at_safepoint();
 740 
 741   // Loop until the allocation is satisfied, or unsatisfied after GC.
 742   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 743     uint gc_count_before;
 744 
 745     HeapWord* result = NULL;
 746     if (!is_humongous(word_size)) {
 747       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 748     } else {
 749       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 750     }
 751     if (result != NULL) {
 752       return result;
 753     }
 754 
 755     // Create the garbage collection operation...
 756     VM_G1CollectForAllocation op(gc_count_before, word_size);
 757     op.set_allocation_context(AllocationContext::current());
 758 
 759     // ...and get the VM thread to execute it.
 760     VMThread::execute(&op);
 761 
 762     if (op.prologue_succeeded() && op.pause_succeeded()) {
 763       // If the operation was successful we'll return the result even
 764       // if it is NULL. If the allocation attempt failed immediately
 765       // after a Full GC, it's unlikely we'll be able to allocate now.
 766       HeapWord* result = op.result();
 767       if (result != NULL && !is_humongous(word_size)) {
 768         // Allocations that take place on VM operations do not do any
 769         // card dirtying and we have to do it here. We only have to do
 770         // this for non-humongous allocations, though.
 771         dirty_young_block(result, word_size);
 772       }
 773       return result;
 774     } else {
 775       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 776         return NULL;
 777       }
 778       assert(op.result() == NULL,
 779              "the result should be NULL if the VM op did not succeed");
 780     }
 781 
 782     // Give a warning if we seem to be looping forever.
 783     if ((QueuedAllocationWarningCount > 0) &&
 784         (try_count % QueuedAllocationWarningCount == 0)) {
 785       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 786     }
 787   }
 788 
 789   ShouldNotReachHere();
 790   return NULL;
 791 }
 792 
 793 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 794                                                    AllocationContext_t context,
 795                                                    uint* gc_count_before_ret,
 796                                                    uint* gclocker_retry_count_ret) {
 797   // Make sure you read the note in attempt_allocation_humongous().
 798 
 799   assert_heap_not_locked_and_not_at_safepoint();
 800   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 801          "be called for humongous allocation requests");
 802 
 803   // We should only get here after the first-level allocation attempt
 804   // (attempt_allocation()) failed to allocate.
 805 
 806   // We will loop until a) we manage to successfully perform the
 807   // allocation or b) we successfully schedule a collection which
 808   // fails to perform the allocation. b) is the only case when we'll
 809   // return NULL.
 810   HeapWord* result = NULL;
 811   for (int try_count = 1; /* we'll return */; try_count += 1) {
 812     bool should_try_gc;
 813     uint gc_count_before;
 814 
 815     {
 816       MutexLockerEx x(Heap_lock);
 817       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 818                                                                                     false /* bot_updates */);
 819       if (result != NULL) {
 820         return result;
 821       }
 822 
 823       // If we reach here, attempt_allocation_locked() above failed to
 824       // allocate a new region. So the mutator alloc region should be NULL.
 825       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 826 
 827       if (GC_locker::is_active_and_needs_gc()) {
 828         if (g1_policy()->can_expand_young_list()) {
 829           // No need for an ergo verbose message here,
 830           // can_expand_young_list() does this when it returns true.
 831           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 832                                                                                        false /* bot_updates */);
 833           if (result != NULL) {
 834             return result;
 835           }
 836         }
 837         should_try_gc = false;
 838       } else {
 839         // The GCLocker may not be active but the GCLocker initiated
 840         // GC may not yet have been performed (GCLocker::needs_gc()
 841         // returns true). In this case we do not try this GC and
 842         // wait until the GCLocker initiated GC is performed, and
 843         // then retry the allocation.
 844         if (GC_locker::needs_gc()) {
 845           should_try_gc = false;
 846         } else {
 847           // Read the GC count while still holding the Heap_lock.
 848           gc_count_before = total_collections();
 849           should_try_gc = true;
 850         }
 851       }
 852     }
 853 
 854     if (should_try_gc) {
 855       bool succeeded;
 856       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 857                                    GCCause::_g1_inc_collection_pause);
 858       if (result != NULL) {
 859         assert(succeeded, "only way to get back a non-NULL result");
 860         return result;
 861       }
 862 
 863       if (succeeded) {
 864         // If we get here we successfully scheduled a collection which
 865         // failed to allocate. No point in trying to allocate
 866         // further. We'll just return NULL.
 867         MutexLockerEx x(Heap_lock);
 868         *gc_count_before_ret = total_collections();
 869         return NULL;
 870       }
 871     } else {
 872       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 873         MutexLockerEx x(Heap_lock);
 874         *gc_count_before_ret = total_collections();
 875         return NULL;
 876       }
 877       // The GCLocker is either active or the GCLocker initiated
 878       // GC has not yet been performed. Stall until it is and
 879       // then retry the allocation.
 880       GC_locker::stall_until_clear();
 881       (*gclocker_retry_count_ret) += 1;
 882     }
 883 
 884     // We can reach here if we were unsuccessful in scheduling a
 885     // collection (because another thread beat us to it) or if we were
 886     // stalled due to the GC locker. In either can we should retry the
 887     // allocation attempt in case another thread successfully
 888     // performed a collection and reclaimed enough space. We do the
 889     // first attempt (without holding the Heap_lock) here and the
 890     // follow-on attempt will be at the start of the next loop
 891     // iteration (after taking the Heap_lock).
 892     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 893                                                                            false /* bot_updates */);
 894     if (result != NULL) {
 895       return result;
 896     }
 897 
 898     // Give a warning if we seem to be looping forever.
 899     if ((QueuedAllocationWarningCount > 0) &&
 900         (try_count % QueuedAllocationWarningCount == 0)) {
 901       warning("G1CollectedHeap::attempt_allocation_slow() "
 902               "retries %d times", try_count);
 903     }
 904   }
 905 
 906   ShouldNotReachHere();
 907   return NULL;
 908 }
 909 
 910 void G1CollectedHeap::begin_archive_alloc_range() {
 911   assert_at_safepoint(true /* should_be_vm_thread */);
 912   if (_archive_allocator == NULL) {
 913     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 914   }
 915 }
 916 
 917 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 918   // Check whether the size would be considered humongous for a minimum-sized region.  
 919   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 920 }
 921 
 922 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 923   assert_at_safepoint(true /* should_be_vm_thread */);
 924   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 925 
 926   // Return NULL if the size would be considered humongous for a minimum-sized region.
 927   // Otherwise, attempt to perform the allocation in the archive space.
 928   if (is_archive_alloc_too_large(word_size)) {
 929     return NULL;
 930   }
 931   return _archive_allocator->archive_mem_allocate(word_size);
 932 }
 933 
 934 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges, 
 935                                               uint end_alignment) {
 936   assert_at_safepoint(true /* should_be_vm_thread */);
 937   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 938 
 939   // Call complete_archive to do the real work, filling in the MemRegion
 940   // array with the archive regions.  
 941   _archive_allocator->complete_archive(ranges, end_alignment);
 942   _archive_allocator->~G1ArchiveAllocator();
 943   _archive_allocator = NULL;
 944 }
 945 
 946 void G1CollectedHeap::fill_with_non_humongous_objects(HeapWord* base_address, size_t word_size) {
 947   // Create filler objects for the specified range, being careful not to 
 948   // create any humongous objects.
 949   if (!is_humongous(word_size)) {
 950     CollectedHeap::fill_with_object(base_address, word_size);
 951   } else {
 952     size_t remainder = word_size;
 953     size_t increment = humongous_threshold_for(HeapRegion::GrainWords) / 2;
 954     HeapWord* fill_top = base_address;
 955     // Don't let remainder get smaller than the minimum filler object size.
 956     while ((remainder > increment) && (remainder - increment >= min_fill_size())) {
 957       CollectedHeap::fill_with_object(fill_top, increment);
 958       fill_top += increment;
 959       remainder -= increment;
 960     }
 961     if (remainder != 0) {
 962       CollectedHeap::fill_with_object(fill_top, remainder);
 963     }
 964   }
 965 }
 966 
 967 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, uint count) {
 968   MemRegion mr = _hrm.reserved();
 969   for (uint i = 0; i < count; i++) {
 970     if (!mr.contains(ranges[i].start()) || !mr.contains(ranges[i].last())) {
 971       return false;
 972     }
 973   }
 974   return true;
 975 }
 976 
 977 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, uint count) {
 978   MutexLockerEx x(Heap_lock);
 979 
 980   MemRegion mr = _hrm.reserved();
 981   HeapWord* prev_end_addr = NULL;
 982   uint prev_end_index = 0;
 983 
 984   // Temporarily disable pretouching of heap pages.  This interface is used 
 985   // when mmap'ing archived heap data in, so pre-touching is wasted.
 986   FlagSetting fs(AlwaysPreTouch, false);
 987 
 988   // Enable archive object checking in G1MarkSweep.  We have to let it know
 989   // about each archive range, so that objects in those ranges aren't marked.
 990   G1MarkSweep::enable_archive_object_check();
 991 
 992   // For each specified MemRegion range, allocate the corresponding G1
 993   // regions and mark them as archive regions.
 994   // We expect the ranges in ascending order, without overlap.
 995   for (uint i = 0; i < count; i++) {
 996     HeapWord* base_address = ranges[i].start();
 997     size_t word_size = ranges[i].word_size();
 998     HeapWord* end_address = ranges[i].last();
 999 
1000     assert((base_address > prev_end_addr) && (base_address < end_address),
1001            "invalid range specification");
1002 
1003     prev_end_addr = end_address;
1004     uint start_index = _hrm.addr_to_index(base_address);
1005     uint end_index = _hrm.addr_to_index(end_address);
1006 
1007     // Check for ranges that begin/end in the same G1 region
1008     // as as the previous range.
1009     if (start_index == prev_end_index) {
1010       if (end_index == prev_end_index) {
1011         break;
1012       }
1013       start_index++;
1014     }
1015     prev_end_index = end_index;
1016 
1017     // Ensure that each contained G1 region is available and free,
1018     // returning false if not.
1019     for (uint curr_index = start_index; curr_index <= end_index; curr_index++) {
1020       HeapRegion* curr_region;
1021       if ((curr_region = _hrm.at_or_null(curr_index)) == NULL) {
1022         ergo_verbose1(ErgoHeapSizing,
1023                       "attempt heap expansion",
1024                       ergo_format_reason("pinning region")
1025                       ergo_format_byte("region size"),
1026                       HeapRegion::GrainWords * HeapWordSize);
1027         _hrm.expand_at(curr_index, 1);
1028       } else {
1029         if (!curr_region->is_free()) {
1030           return false;
1031         }
1032       }
1033     }
1034     
1035     _hrm.allocate_free_regions_starting_at(start_index, (end_index - start_index) + 1);
1036     _allocator->increase_used(word_size * HeapWordSize);
1037 
1038     // Mark each G1 region touched by the range as archive, add it to the old set, and set
1039     // the allocation context and top. 
1040     for (uint i = start_index; i <= end_index; i++) {
1041       HeapRegion* curr = region_at(i);
1042       assert(curr->is_empty() && !curr->is_pinned(), "Invalid MemRegion");
1043       _hr_printer.alloc(curr, G1HRPrinter::Archive);
1044       curr->set_allocation_context(AllocationContext::system());
1045       if (i != end_index) {
1046         curr->set_top(curr->end());
1047       } else {
1048         curr->set_top(end_address + 1);
1049       }
1050       curr->set_archive();
1051       _old_set.add(curr);
1052     }
1053 
1054     // Notify mark-sweep of the archive range.
1055     G1MarkSweep::mark_range_archive(base_address, end_address);
1056   }
1057   return true;
1058 }
1059 
1060 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, uint count) {
1061   MemRegion mr = _hrm.reserved();
1062   HeapWord *prev_end_addr = NULL;
1063   uint prev_end_index = 0;
1064 
1065   // For each MemRegion, create filler objects, if needed, in the G1 regions
1066   // that contain the address range.  The address range actually within the 
1067   // MemRegion will not be modified.  That is assumed to have been initialized
1068   // elsewhere, probably via an mmap of archived heap data.
1069   MutexLockerEx x(Heap_lock);
1070   for (uint i = 0; i < count; i++) {
1071     HeapWord* base_address = ranges[i].start();
1072     size_t word_size = ranges[i].word_size();
1073     HeapWord* end_address = ranges[i].last();
1074 
1075     assert(mr.contains(base_address) && mr.contains(end_address),
1076            "MemRegion outside of heap");
1077 
1078     uint start_index = _hrm.addr_to_index(base_address);
1079     uint end_index = _hrm.addr_to_index(end_address);
1080     HeapRegion* start_region = _hrm.addr_to_region(base_address);
1081     HeapRegion* end_region = _hrm.addr_to_region(end_address);
1082     HeapWord* bottom_address = start_region->bottom();
1083 
1084     // Check for a range beginning in the same region in which the
1085     // previous one ended.
1086     if (start_index == prev_end_index) {
1087       bottom_address = prev_end_addr;
1088       start_index++;
1089     }
1090 
1091 #ifdef ASSERT
1092     // Verify the regions were all marked as archive regions by
1093     // alloc_fixed_ranges.
1094     for (uint i = start_index; i <= end_index; i++) {
1095       HeapRegion* curr = region_at(i);
1096       assert(curr->is_archive(), "Invalid range in fill_archive_regions");
1097     }
1098 #endif
1099 
1100     prev_end_addr = base_address + word_size;
1101     prev_end_index = end_index;
1102 
1103     // Fill the low part of the first allocated region with dummy object(s),
1104     // if the region base does not match the range address, or if the previous
1105     // range ended within the same G1 region, and there is a gap.
1106     if (base_address != bottom_address) { 
1107       size_t fill_size = base_address - bottom_address;
1108       G1CollectedHeap::fill_with_non_humongous_objects(bottom_address, fill_size);
1109       _allocator->increase_used(fill_size * HeapWordSize);
1110     }
1111   }
1112 }
1113 
1114 
1115 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1116                                                         uint* gc_count_before_ret,
1117                                                         uint* gclocker_retry_count_ret) {
1118   // The structure of this method has a lot of similarities to
1119   // attempt_allocation_slow(). The reason these two were not merged
1120   // into a single one is that such a method would require several "if
1121   // allocation is not humongous do this, otherwise do that"
1122   // conditional paths which would obscure its flow. In fact, an early
1123   // version of this code did use a unified method which was harder to
1124   // follow and, as a result, it had subtle bugs that were hard to
1125   // track down. So keeping these two methods separate allows each to
1126   // be more readable. It will be good to keep these two in sync as
1127   // much as possible.
1128 
1129   assert_heap_not_locked_and_not_at_safepoint();
1130   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1131          "should only be called for humongous allocations");
1132 
1133   // Humongous objects can exhaust the heap quickly, so we should check if we
1134   // need to start a marking cycle at each humongous object allocation. We do
1135   // the check before we do the actual allocation. The reason for doing it
1136   // before the allocation is that we avoid having to keep track of the newly
1137   // allocated memory while we do a GC.
1138   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1139                                            word_size)) {
1140     collect(GCCause::_g1_humongous_allocation);
1141   }
1142 
1143   // We will loop until a) we manage to successfully perform the
1144   // allocation or b) we successfully schedule a collection which
1145   // fails to perform the allocation. b) is the only case when we'll
1146   // return NULL.
1147   HeapWord* result = NULL;
1148   for (int try_count = 1; /* we'll return */; try_count += 1) {
1149     bool should_try_gc;
1150     uint gc_count_before;
1151 
1152     {
1153       MutexLockerEx x(Heap_lock);
1154 
1155       // Given that humongous objects are not allocated in young
1156       // regions, we'll first try to do the allocation without doing a
1157       // collection hoping that there's enough space in the heap.
1158       result = humongous_obj_allocate(word_size, AllocationContext::current());
1159       if (result != NULL) {
1160         return result;
1161       }
1162 
1163       if (GC_locker::is_active_and_needs_gc()) {
1164         should_try_gc = false;
1165       } else {
1166          // The GCLocker may not be active but the GCLocker initiated
1167         // GC may not yet have been performed (GCLocker::needs_gc()
1168         // returns true). In this case we do not try this GC and
1169         // wait until the GCLocker initiated GC is performed, and
1170         // then retry the allocation.
1171         if (GC_locker::needs_gc()) {
1172           should_try_gc = false;
1173         } else {
1174           // Read the GC count while still holding the Heap_lock.
1175           gc_count_before = total_collections();
1176           should_try_gc = true;
1177         }
1178       }
1179     }
1180 
1181     if (should_try_gc) {
1182       // If we failed to allocate the humongous object, we should try to
1183       // do a collection pause (if we're allowed) in case it reclaims
1184       // enough space for the allocation to succeed after the pause.
1185 
1186       bool succeeded;
1187       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1188                                    GCCause::_g1_humongous_allocation);
1189       if (result != NULL) {
1190         assert(succeeded, "only way to get back a non-NULL result");
1191         return result;
1192       }
1193 
1194       if (succeeded) {
1195         // If we get here we successfully scheduled a collection which
1196         // failed to allocate. No point in trying to allocate
1197         // further. We'll just return NULL.
1198         MutexLockerEx x(Heap_lock);
1199         *gc_count_before_ret = total_collections();
1200         return NULL;
1201       }
1202     } else {
1203       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1204         MutexLockerEx x(Heap_lock);
1205         *gc_count_before_ret = total_collections();
1206         return NULL;
1207       }
1208       // The GCLocker is either active or the GCLocker initiated
1209       // GC has not yet been performed. Stall until it is and
1210       // then retry the allocation.
1211       GC_locker::stall_until_clear();
1212       (*gclocker_retry_count_ret) += 1;
1213     }
1214 
1215     // We can reach here if we were unsuccessful in scheduling a
1216     // collection (because another thread beat us to it) or if we were
1217     // stalled due to the GC locker. In either can we should retry the
1218     // allocation attempt in case another thread successfully
1219     // performed a collection and reclaimed enough space.  Give a
1220     // warning if we seem to be looping forever.
1221 
1222     if ((QueuedAllocationWarningCount > 0) &&
1223         (try_count % QueuedAllocationWarningCount == 0)) {
1224       warning("G1CollectedHeap::attempt_allocation_humongous() "
1225               "retries %d times", try_count);
1226     }
1227   }
1228 
1229   ShouldNotReachHere();
1230   return NULL;
1231 }
1232 
1233 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1234                                                            AllocationContext_t context,
1235                                                            bool expect_null_mutator_alloc_region) {
1236   assert_at_safepoint(true /* should_be_vm_thread */);
1237   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1238                                              !expect_null_mutator_alloc_region,
1239          "the current alloc region was unexpectedly found to be non-NULL");
1240 
1241   if (!is_humongous(word_size)) {
1242     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1243                                                       false /* bot_updates */);
1244   } else {
1245     HeapWord* result = humongous_obj_allocate(word_size, context);
1246     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1247       g1_policy()->set_initiate_conc_mark_if_possible();
1248     }
1249     return result;
1250   }
1251 
1252   ShouldNotReachHere();
1253 }
1254 
1255 class PostMCRemSetClearClosure: public HeapRegionClosure {
1256   G1CollectedHeap* _g1h;
1257   ModRefBarrierSet* _mr_bs;
1258 public:
1259   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1260     _g1h(g1h), _mr_bs(mr_bs) {}
1261 
1262   bool doHeapRegion(HeapRegion* r) {
1263     HeapRegionRemSet* hrrs = r->rem_set();
1264 
1265     if (r->is_continues_humongous()) {
1266       // We'll assert that the strong code root list and RSet is empty
1267       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1268       assert(hrrs->occupied() == 0, "RSet should be empty");
1269       return false;
1270     }
1271 
1272     _g1h->reset_gc_time_stamps(r);
1273     hrrs->clear();
1274     // You might think here that we could clear just the cards
1275     // corresponding to the used region.  But no: if we leave a dirty card
1276     // in a region we might allocate into, then it would prevent that card
1277     // from being enqueued, and cause it to be missed.
1278     // Re: the performance cost: we shouldn't be doing full GC anyway!
1279     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1280 
1281     return false;
1282   }
1283 };
1284 
1285 void G1CollectedHeap::clear_rsets_post_compaction() {
1286   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1287   heap_region_iterate(&rs_clear);
1288 }
1289 
1290 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1291   G1CollectedHeap*   _g1h;
1292   UpdateRSOopClosure _cl;
1293 public:
1294   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1295     _cl(g1->g1_rem_set(), worker_i),
1296     _g1h(g1)
1297   { }
1298 
1299   bool doHeapRegion(HeapRegion* r) {
1300     if (!r->is_continues_humongous()) {
1301       _cl.set_from(r);
1302       r->oop_iterate(&_cl);
1303     }
1304     return false;
1305   }
1306 };
1307 
1308 class ParRebuildRSTask: public AbstractGangTask {
1309   G1CollectedHeap* _g1;
1310   HeapRegionClaimer _hrclaimer;
1311 
1312 public:
1313   ParRebuildRSTask(G1CollectedHeap* g1) :
1314       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1315 
1316   void work(uint worker_id) {
1317     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1318     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1319   }
1320 };
1321 
1322 class PostCompactionPrinterClosure: public HeapRegionClosure {
1323 private:
1324   G1HRPrinter* _hr_printer;
1325 public:
1326   bool doHeapRegion(HeapRegion* hr) {
1327     assert(!hr->is_young(), "not expecting to find young regions");
1328     if (hr->is_free()) {
1329       // We only generate output for non-empty regions.
1330     } else if (hr->is_starts_humongous()) {
1331       if (hr->region_num() == 1) {
1332         // single humongous region
1333         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1334       } else {
1335         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1336       }
1337     } else if (hr->is_continues_humongous()) {
1338       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1339     } else if (hr->is_archive()) {
1340       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1341     } else if (hr->is_old()) {
1342       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1343     } else {
1344       ShouldNotReachHere();
1345     }
1346     return false;
1347   }
1348 
1349   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1350     : _hr_printer(hr_printer) { }
1351 };
1352 
1353 void G1CollectedHeap::print_hrm_post_compaction() {
1354   PostCompactionPrinterClosure cl(hr_printer());
1355   heap_region_iterate(&cl);
1356 }
1357 
1358 bool G1CollectedHeap::do_collection(bool explicit_gc,
1359                                     bool clear_all_soft_refs,
1360                                     size_t word_size) {
1361   assert_at_safepoint(true /* should_be_vm_thread */);
1362 
1363   if (GC_locker::check_active_before_gc()) {
1364     return false;
1365   }
1366 
1367   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1368   gc_timer->register_gc_start();
1369 
1370   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1371   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1372 
1373   SvcGCMarker sgcm(SvcGCMarker::FULL);
1374   ResourceMark rm;
1375 
1376   G1Log::update_level();
1377   print_heap_before_gc();
1378   trace_heap_before_gc(gc_tracer);
1379 
1380   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1381 
1382   verify_region_sets_optional();
1383 
1384   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1385                            collector_policy()->should_clear_all_soft_refs();
1386 
1387   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1388 
1389   {
1390     IsGCActiveMark x;
1391 
1392     // Timing
1393     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1394     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1395 
1396     {
1397       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1398       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1399       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1400 
1401       g1_policy()->record_full_collection_start();
1402 
1403       // Note: When we have a more flexible GC logging framework that
1404       // allows us to add optional attributes to a GC log record we
1405       // could consider timing and reporting how long we wait in the
1406       // following two methods.
1407       wait_while_free_regions_coming();
1408       // If we start the compaction before the CM threads finish
1409       // scanning the root regions we might trip them over as we'll
1410       // be moving objects / updating references. So let's wait until
1411       // they are done. By telling them to abort, they should complete
1412       // early.
1413       _cm->root_regions()->abort();
1414       _cm->root_regions()->wait_until_scan_finished();
1415       append_secondary_free_list_if_not_empty_with_lock();
1416 
1417       gc_prologue(true);
1418       increment_total_collections(true /* full gc */);
1419       increment_old_marking_cycles_started();
1420 
1421       assert(used() == recalculate_used(), "Should be equal");
1422 
1423       verify_before_gc();
1424 
1425       check_bitmaps("Full GC Start");
1426       pre_full_gc_dump(gc_timer);
1427 
1428       COMPILER2_PRESENT(DerivedPointerTable::clear());
1429 
1430       // Disable discovery and empty the discovered lists
1431       // for the CM ref processor.
1432       ref_processor_cm()->disable_discovery();
1433       ref_processor_cm()->abandon_partial_discovery();
1434       ref_processor_cm()->verify_no_references_recorded();
1435 
1436       // Abandon current iterations of concurrent marking and concurrent
1437       // refinement, if any are in progress. We have to do this before
1438       // wait_until_scan_finished() below.
1439       concurrent_mark()->abort();
1440 
1441       // Make sure we'll choose a new allocation region afterwards.
1442       _allocator->release_mutator_alloc_region();
1443       _allocator->abandon_gc_alloc_regions();
1444       g1_rem_set()->cleanupHRRS();
1445 
1446       // We should call this after we retire any currently active alloc
1447       // regions so that all the ALLOC / RETIRE events are generated
1448       // before the start GC event.
1449       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1450 
1451       // We may have added regions to the current incremental collection
1452       // set between the last GC or pause and now. We need to clear the
1453       // incremental collection set and then start rebuilding it afresh
1454       // after this full GC.
1455       abandon_collection_set(g1_policy()->inc_cset_head());
1456       g1_policy()->clear_incremental_cset();
1457       g1_policy()->stop_incremental_cset_building();
1458 
1459       tear_down_region_sets(false /* free_list_only */);
1460       g1_policy()->set_gcs_are_young(true);
1461 
1462       // See the comments in g1CollectedHeap.hpp and
1463       // G1CollectedHeap::ref_processing_init() about
1464       // how reference processing currently works in G1.
1465 
1466       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1467       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1468 
1469       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1470       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1471 
1472       ref_processor_stw()->enable_discovery();
1473       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1474 
1475       // Do collection work
1476       {
1477         HandleMark hm;  // Discard invalid handles created during gc
1478         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1479       }
1480 
1481       assert(num_free_regions() == 0, "we should not have added any free regions");
1482       rebuild_region_sets(false /* free_list_only */);
1483 
1484       // Enqueue any discovered reference objects that have
1485       // not been removed from the discovered lists.
1486       ref_processor_stw()->enqueue_discovered_references();
1487 
1488       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1489 
1490       MemoryService::track_memory_usage();
1491 
1492       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1493       ref_processor_stw()->verify_no_references_recorded();
1494 
1495       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1496       ClassLoaderDataGraph::purge();
1497       MetaspaceAux::verify_metrics();
1498 
1499       // Note: since we've just done a full GC, concurrent
1500       // marking is no longer active. Therefore we need not
1501       // re-enable reference discovery for the CM ref processor.
1502       // That will be done at the start of the next marking cycle.
1503       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1504       ref_processor_cm()->verify_no_references_recorded();
1505 
1506       reset_gc_time_stamp();
1507       // Since everything potentially moved, we will clear all remembered
1508       // sets, and clear all cards.  Later we will rebuild remembered
1509       // sets. We will also reset the GC time stamps of the regions.
1510       clear_rsets_post_compaction();
1511       check_gc_time_stamps();
1512 
1513       // Resize the heap if necessary.
1514       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1515 
1516       if (_hr_printer.is_active()) {
1517         // We should do this after we potentially resize the heap so
1518         // that all the COMMIT / UNCOMMIT events are generated before
1519         // the end GC event.
1520 
1521         print_hrm_post_compaction();
1522         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1523       }
1524 
1525       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1526       if (hot_card_cache->use_cache()) {
1527         hot_card_cache->reset_card_counts();
1528         hot_card_cache->reset_hot_cache();
1529       }
1530 
1531       // Rebuild remembered sets of all regions.
1532       uint n_workers =
1533         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1534                                                 workers()->active_workers(),
1535                                                 Threads::number_of_non_daemon_threads());
1536       workers()->set_active_workers(n_workers);
1537 
1538       ParRebuildRSTask rebuild_rs_task(this);
1539       workers()->run_task(&rebuild_rs_task);
1540 
1541       // Rebuild the strong code root lists for each region
1542       rebuild_strong_code_roots();
1543 
1544       if (true) { // FIXME
1545         MetaspaceGC::compute_new_size();
1546       }
1547 
1548 #ifdef TRACESPINNING
1549       ParallelTaskTerminator::print_termination_counts();
1550 #endif
1551 
1552       // Discard all rset updates
1553       JavaThread::dirty_card_queue_set().abandon_logs();
1554       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1555 
1556       _young_list->reset_sampled_info();
1557       // At this point there should be no regions in the
1558       // entire heap tagged as young.
1559       assert(check_young_list_empty(true /* check_heap */),
1560              "young list should be empty at this point");
1561 
1562       // Update the number of full collections that have been completed.
1563       increment_old_marking_cycles_completed(false /* concurrent */);
1564 
1565       _hrm.verify_optional();
1566       verify_region_sets_optional();
1567 
1568       verify_after_gc();
1569 
1570       // Clear the previous marking bitmap, if needed for bitmap verification.
1571       // Note we cannot do this when we clear the next marking bitmap in
1572       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1573       // objects marked during a full GC against the previous bitmap.
1574       // But we need to clear it before calling check_bitmaps below since
1575       // the full GC has compacted objects and updated TAMS but not updated
1576       // the prev bitmap.
1577       if (G1VerifyBitmaps) {
1578         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1579       }
1580       check_bitmaps("Full GC End");
1581 
1582       // Start a new incremental collection set for the next pause
1583       assert(g1_policy()->collection_set() == NULL, "must be");
1584       g1_policy()->start_incremental_cset_building();
1585 
1586       clear_cset_fast_test();
1587 
1588       _allocator->init_mutator_alloc_region();
1589 
1590       g1_policy()->record_full_collection_end();
1591 
1592       if (G1Log::fine()) {
1593         g1_policy()->print_heap_transition();
1594       }
1595 
1596       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1597       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1598       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1599       // before any GC notifications are raised.
1600       g1mm()->update_sizes();
1601 
1602       gc_epilogue(true);
1603     }
1604 
1605     if (G1Log::finer()) {
1606       g1_policy()->print_detailed_heap_transition(true /* full */);
1607     }
1608 
1609     print_heap_after_gc();
1610     trace_heap_after_gc(gc_tracer);
1611 
1612     post_full_gc_dump(gc_timer);
1613 
1614     gc_timer->register_gc_end();
1615     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1616   }
1617 
1618   return true;
1619 }
1620 
1621 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1622   // do_collection() will return whether it succeeded in performing
1623   // the GC. Currently, there is no facility on the
1624   // do_full_collection() API to notify the caller than the collection
1625   // did not succeed (e.g., because it was locked out by the GC
1626   // locker). So, right now, we'll ignore the return value.
1627   bool dummy = do_collection(true,                /* explicit_gc */
1628                              clear_all_soft_refs,
1629                              0                    /* word_size */);
1630 }
1631 
1632 // This code is mostly copied from TenuredGeneration.
1633 void
1634 G1CollectedHeap::
1635 resize_if_necessary_after_full_collection(size_t word_size) {
1636   // Include the current allocation, if any, and bytes that will be
1637   // pre-allocated to support collections, as "used".
1638   const size_t used_after_gc = used();
1639   const size_t capacity_after_gc = capacity();
1640   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1641 
1642   // This is enforced in arguments.cpp.
1643   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1644          "otherwise the code below doesn't make sense");
1645 
1646   // We don't have floating point command-line arguments
1647   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1648   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1649   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1650   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1651 
1652   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1653   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1654 
1655   // We have to be careful here as these two calculations can overflow
1656   // 32-bit size_t's.
1657   double used_after_gc_d = (double) used_after_gc;
1658   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1659   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1660 
1661   // Let's make sure that they are both under the max heap size, which
1662   // by default will make them fit into a size_t.
1663   double desired_capacity_upper_bound = (double) max_heap_size;
1664   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1665                                     desired_capacity_upper_bound);
1666   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1667                                     desired_capacity_upper_bound);
1668 
1669   // We can now safely turn them into size_t's.
1670   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1671   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1672 
1673   // This assert only makes sense here, before we adjust them
1674   // with respect to the min and max heap size.
1675   assert(minimum_desired_capacity <= maximum_desired_capacity,
1676          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1677                  "maximum_desired_capacity = "SIZE_FORMAT,
1678                  minimum_desired_capacity, maximum_desired_capacity));
1679 
1680   // Should not be greater than the heap max size. No need to adjust
1681   // it with respect to the heap min size as it's a lower bound (i.e.,
1682   // we'll try to make the capacity larger than it, not smaller).
1683   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1684   // Should not be less than the heap min size. No need to adjust it
1685   // with respect to the heap max size as it's an upper bound (i.e.,
1686   // we'll try to make the capacity smaller than it, not greater).
1687   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1688 
1689   if (capacity_after_gc < minimum_desired_capacity) {
1690     // Don't expand unless it's significant
1691     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1692     ergo_verbose4(ErgoHeapSizing,
1693                   "attempt heap expansion",
1694                   ergo_format_reason("capacity lower than "
1695                                      "min desired capacity after Full GC")
1696                   ergo_format_byte("capacity")
1697                   ergo_format_byte("occupancy")
1698                   ergo_format_byte_perc("min desired capacity"),
1699                   capacity_after_gc, used_after_gc,
1700                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1701     expand(expand_bytes);
1702 
1703     // No expansion, now see if we want to shrink
1704   } else if (capacity_after_gc > maximum_desired_capacity) {
1705     // Capacity too large, compute shrinking size
1706     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1707     ergo_verbose4(ErgoHeapSizing,
1708                   "attempt heap shrinking",
1709                   ergo_format_reason("capacity higher than "
1710                                      "max desired capacity after Full GC")
1711                   ergo_format_byte("capacity")
1712                   ergo_format_byte("occupancy")
1713                   ergo_format_byte_perc("max desired capacity"),
1714                   capacity_after_gc, used_after_gc,
1715                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1716     shrink(shrink_bytes);
1717   }
1718 }
1719 
1720 
1721 HeapWord*
1722 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1723                                            AllocationContext_t context,
1724                                            bool* succeeded) {
1725   assert_at_safepoint(true /* should_be_vm_thread */);
1726 
1727   *succeeded = true;
1728   // Let's attempt the allocation first.
1729   HeapWord* result =
1730     attempt_allocation_at_safepoint(word_size,
1731                                     context,
1732                                     false /* expect_null_mutator_alloc_region */);
1733   if (result != NULL) {
1734     assert(*succeeded, "sanity");
1735     return result;
1736   }
1737 
1738   // In a G1 heap, we're supposed to keep allocation from failing by
1739   // incremental pauses.  Therefore, at least for now, we'll favor
1740   // expansion over collection.  (This might change in the future if we can
1741   // do something smarter than full collection to satisfy a failed alloc.)
1742   result = expand_and_allocate(word_size, context);
1743   if (result != NULL) {
1744     assert(*succeeded, "sanity");
1745     return result;
1746   }
1747 
1748   // Expansion didn't work, we'll try to do a Full GC.
1749   bool gc_succeeded = do_collection(false, /* explicit_gc */
1750                                     false, /* clear_all_soft_refs */
1751                                     word_size);
1752   if (!gc_succeeded) {
1753     *succeeded = false;
1754     return NULL;
1755   }
1756 
1757   // Retry the allocation
1758   result = attempt_allocation_at_safepoint(word_size,
1759                                            context,
1760                                            true /* expect_null_mutator_alloc_region */);
1761   if (result != NULL) {
1762     assert(*succeeded, "sanity");
1763     return result;
1764   }
1765 
1766   // Then, try a Full GC that will collect all soft references.
1767   gc_succeeded = do_collection(false, /* explicit_gc */
1768                                true,  /* clear_all_soft_refs */
1769                                word_size);
1770   if (!gc_succeeded) {
1771     *succeeded = false;
1772     return NULL;
1773   }
1774 
1775   // Retry the allocation once more
1776   result = attempt_allocation_at_safepoint(word_size,
1777                                            context,
1778                                            true /* expect_null_mutator_alloc_region */);
1779   if (result != NULL) {
1780     assert(*succeeded, "sanity");
1781     return result;
1782   }
1783 
1784   assert(!collector_policy()->should_clear_all_soft_refs(),
1785          "Flag should have been handled and cleared prior to this point");
1786 
1787   // What else?  We might try synchronous finalization later.  If the total
1788   // space available is large enough for the allocation, then a more
1789   // complete compaction phase than we've tried so far might be
1790   // appropriate.
1791   assert(*succeeded, "sanity");
1792   return NULL;
1793 }
1794 
1795 // Attempting to expand the heap sufficiently
1796 // to support an allocation of the given "word_size".  If
1797 // successful, perform the allocation and return the address of the
1798 // allocated block, or else "NULL".
1799 
1800 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1801   assert_at_safepoint(true /* should_be_vm_thread */);
1802 
1803   verify_region_sets_optional();
1804 
1805   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1806   ergo_verbose1(ErgoHeapSizing,
1807                 "attempt heap expansion",
1808                 ergo_format_reason("allocation request failed")
1809                 ergo_format_byte("allocation request"),
1810                 word_size * HeapWordSize);
1811   if (expand(expand_bytes)) {
1812     _hrm.verify_optional();
1813     verify_region_sets_optional();
1814     return attempt_allocation_at_safepoint(word_size,
1815                                            context,
1816                                            false /* expect_null_mutator_alloc_region */);
1817   }
1818   return NULL;
1819 }
1820 
1821 bool G1CollectedHeap::expand(size_t expand_bytes) {
1822   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1823   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1824                                        HeapRegion::GrainBytes);
1825   ergo_verbose2(ErgoHeapSizing,
1826                 "expand the heap",
1827                 ergo_format_byte("requested expansion amount")
1828                 ergo_format_byte("attempted expansion amount"),
1829                 expand_bytes, aligned_expand_bytes);
1830 
1831   if (is_maximal_no_gc()) {
1832     ergo_verbose0(ErgoHeapSizing,
1833                       "did not expand the heap",
1834                       ergo_format_reason("heap already fully expanded"));
1835     return false;
1836   }
1837 
1838   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1839   assert(regions_to_expand > 0, "Must expand by at least one region");
1840 
1841   uint expanded_by = _hrm.expand_by(regions_to_expand);
1842 
1843   if (expanded_by > 0) {
1844     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1845     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1846     g1_policy()->record_new_heap_size(num_regions());
1847   } else {
1848     ergo_verbose0(ErgoHeapSizing,
1849                   "did not expand the heap",
1850                   ergo_format_reason("heap expansion operation failed"));
1851     // The expansion of the virtual storage space was unsuccessful.
1852     // Let's see if it was because we ran out of swap.
1853     if (G1ExitOnExpansionFailure &&
1854         _hrm.available() >= regions_to_expand) {
1855       // We had head room...
1856       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1857     }
1858   }
1859   return regions_to_expand > 0;
1860 }
1861 
1862 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1863   size_t aligned_shrink_bytes =
1864     ReservedSpace::page_align_size_down(shrink_bytes);
1865   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1866                                          HeapRegion::GrainBytes);
1867   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1868 
1869   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1870   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1871 
1872   ergo_verbose3(ErgoHeapSizing,
1873                 "shrink the heap",
1874                 ergo_format_byte("requested shrinking amount")
1875                 ergo_format_byte("aligned shrinking amount")
1876                 ergo_format_byte("attempted shrinking amount"),
1877                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1878   if (num_regions_removed > 0) {
1879     g1_policy()->record_new_heap_size(num_regions());
1880   } else {
1881     ergo_verbose0(ErgoHeapSizing,
1882                   "did not shrink the heap",
1883                   ergo_format_reason("heap shrinking operation failed"));
1884   }
1885 }
1886 
1887 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1888   verify_region_sets_optional();
1889 
1890   // We should only reach here at the end of a Full GC which means we
1891   // should not not be holding to any GC alloc regions. The method
1892   // below will make sure of that and do any remaining clean up.
1893   _allocator->abandon_gc_alloc_regions();
1894 
1895   // Instead of tearing down / rebuilding the free lists here, we
1896   // could instead use the remove_all_pending() method on free_list to
1897   // remove only the ones that we need to remove.
1898   tear_down_region_sets(true /* free_list_only */);
1899   shrink_helper(shrink_bytes);
1900   rebuild_region_sets(true /* free_list_only */);
1901 
1902   _hrm.verify_optional();
1903   verify_region_sets_optional();
1904 }
1905 
1906 // Public methods.
1907 
1908 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1909 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1910 #endif // _MSC_VER
1911 
1912 
1913 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1914   CollectedHeap(),
1915   _g1_policy(policy_),
1916   _dirty_card_queue_set(false),
1917   _into_cset_dirty_card_queue_set(false),
1918   _is_alive_closure_cm(this),
1919   _is_alive_closure_stw(this),
1920   _ref_processor_cm(NULL),
1921   _ref_processor_stw(NULL),
1922   _bot_shared(NULL),
1923   _evac_failure_scan_stack(NULL),
1924   _mark_in_progress(false),
1925   _cg1r(NULL),
1926   _g1mm(NULL),
1927   _refine_cte_cl(NULL),
1928   _full_collection(false),
1929   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1930   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1931   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1932   _humongous_reclaim_candidates(),
1933   _has_humongous_reclaim_candidates(false),
1934   _archive_allocator(NULL),
1935   _free_regions_coming(false),
1936   _young_list(new YoungList(this)),
1937   _gc_time_stamp(0),
1938   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1939   _old_plab_stats(OldPLABSize, PLABWeight),
1940   _expand_heap_after_alloc_failure(true),
1941   _surviving_young_words(NULL),
1942   _old_marking_cycles_started(0),
1943   _old_marking_cycles_completed(0),
1944   _concurrent_cycle_started(false),
1945   _heap_summary_sent(false),
1946   _in_cset_fast_test(),
1947   _dirty_cards_region_list(NULL),
1948   _worker_cset_start_region(NULL),
1949   _worker_cset_start_region_time_stamp(NULL),
1950   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1951   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1952   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1953   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1954 
1955   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1956                           /* are_GC_task_threads */true,
1957                           /* are_ConcurrentGC_threads */false);
1958   _workers->initialize_workers();
1959 
1960   _allocator = G1Allocator::create_allocator(this);
1961   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1962 
1963   int n_queues = (int)ParallelGCThreads;
1964   _task_queues = new RefToScanQueueSet(n_queues);
1965 
1966   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1967   assert(n_rem_sets > 0, "Invariant.");
1968 
1969   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1970   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1971   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1972 
1973   for (int i = 0; i < n_queues; i++) {
1974     RefToScanQueue* q = new RefToScanQueue();
1975     q->initialize();
1976     _task_queues->register_queue(i, q);
1977     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1978   }
1979   clear_cset_start_regions();
1980 
1981   // Initialize the G1EvacuationFailureALot counters and flags.
1982   NOT_PRODUCT(reset_evacuation_should_fail();)
1983 
1984   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1985 }
1986 
1987 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1988                                                                  size_t size,
1989                                                                  size_t translation_factor) {
1990   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1991   // Allocate a new reserved space, preferring to use large pages.
1992   ReservedSpace rs(size, preferred_page_size);
1993   G1RegionToSpaceMapper* result  =
1994     G1RegionToSpaceMapper::create_mapper(rs,
1995                                          size,
1996                                          rs.alignment(),
1997                                          HeapRegion::GrainBytes,
1998                                          translation_factor,
1999                                          mtGC);
2000   if (TracePageSizes) {
2001     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
2002                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2003   }
2004   return result;
2005 }
2006 
2007 jint G1CollectedHeap::initialize() {
2008   CollectedHeap::pre_initialize();
2009   os::enable_vtime();
2010 
2011   G1Log::init();
2012 
2013   // Necessary to satisfy locking discipline assertions.
2014 
2015   MutexLocker x(Heap_lock);
2016 
2017   // We have to initialize the printer before committing the heap, as
2018   // it will be used then.
2019   _hr_printer.set_active(G1PrintHeapRegions);
2020 
2021   // While there are no constraints in the GC code that HeapWordSize
2022   // be any particular value, there are multiple other areas in the
2023   // system which believe this to be true (e.g. oop->object_size in some
2024   // cases incorrectly returns the size in wordSize units rather than
2025   // HeapWordSize).
2026   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2027 
2028   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2029   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2030   size_t heap_alignment = collector_policy()->heap_alignment();
2031 
2032   // Ensure that the sizes are properly aligned.
2033   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2034   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2035   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2036 
2037   _refine_cte_cl = new RefineCardTableEntryClosure();
2038 
2039   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2040 
2041   // Reserve the maximum.
2042 
2043   // When compressed oops are enabled, the preferred heap base
2044   // is calculated by subtracting the requested size from the
2045   // 32Gb boundary and using the result as the base address for
2046   // heap reservation. If the requested size is not aligned to
2047   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2048   // into the ReservedHeapSpace constructor) then the actual
2049   // base of the reserved heap may end up differing from the
2050   // address that was requested (i.e. the preferred heap base).
2051   // If this happens then we could end up using a non-optimal
2052   // compressed oops mode.
2053 
2054   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2055                                                  heap_alignment);
2056 
2057   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2058 
2059   // Create the barrier set for the entire reserved region.
2060   G1SATBCardTableLoggingModRefBS* bs
2061     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2062   bs->initialize();
2063   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2064   set_barrier_set(bs);
2065 
2066   // Also create a G1 rem set.
2067   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2068 
2069   // Carve out the G1 part of the heap.
2070 
2071   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2072   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2073   G1RegionToSpaceMapper* heap_storage =
2074     G1RegionToSpaceMapper::create_mapper(g1_rs,
2075                                          g1_rs.size(),
2076                                          page_size,
2077                                          HeapRegion::GrainBytes,
2078                                          1,
2079                                          mtJavaHeap);
2080   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2081                        max_byte_size, page_size,
2082                        heap_rs.base(),
2083                        heap_rs.size());
2084   heap_storage->set_mapping_changed_listener(&_listener);
2085 
2086   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2087   G1RegionToSpaceMapper* bot_storage =
2088     create_aux_memory_mapper("Block offset table",
2089                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2090                              G1BlockOffsetSharedArray::heap_map_factor());
2091 
2092   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2093   G1RegionToSpaceMapper* cardtable_storage =
2094     create_aux_memory_mapper("Card table",
2095                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2096                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2097 
2098   G1RegionToSpaceMapper* card_counts_storage =
2099     create_aux_memory_mapper("Card counts table",
2100                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2101                              G1CardCounts::heap_map_factor());
2102 
2103   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2104   G1RegionToSpaceMapper* prev_bitmap_storage =
2105     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2106   G1RegionToSpaceMapper* next_bitmap_storage =
2107     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2108 
2109   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2110   g1_barrier_set()->initialize(cardtable_storage);
2111    // Do later initialization work for concurrent refinement.
2112   _cg1r->init(card_counts_storage);
2113 
2114   // 6843694 - ensure that the maximum region index can fit
2115   // in the remembered set structures.
2116   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2117   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2118 
2119   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2120   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2121   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2122             "too many cards per region");
2123 
2124   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2125 
2126   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2127 
2128   {
2129     HeapWord* start = _hrm.reserved().start();
2130     HeapWord* end = _hrm.reserved().end();
2131     size_t granularity = HeapRegion::GrainBytes;
2132 
2133     _in_cset_fast_test.initialize(start, end, granularity);
2134     _humongous_reclaim_candidates.initialize(start, end, granularity);
2135   }
2136 
2137   // Create the ConcurrentMark data structure and thread.
2138   // (Must do this late, so that "max_regions" is defined.)
2139   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2140   if (_cm == NULL || !_cm->completed_initialization()) {
2141     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2142     return JNI_ENOMEM;
2143   }
2144   _cmThread = _cm->cmThread();
2145 
2146   // Initialize the from_card cache structure of HeapRegionRemSet.
2147   HeapRegionRemSet::init_heap(max_regions());
2148 
2149   // Now expand into the initial heap size.
2150   if (!expand(init_byte_size)) {
2151     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2152     return JNI_ENOMEM;
2153   }
2154 
2155   // Perform any initialization actions delegated to the policy.
2156   g1_policy()->init();
2157 
2158   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2159                                                SATB_Q_FL_lock,
2160                                                G1SATBProcessCompletedThreshold,
2161                                                Shared_SATB_Q_lock);
2162 
2163   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2164                                                 DirtyCardQ_CBL_mon,
2165                                                 DirtyCardQ_FL_lock,
2166                                                 concurrent_g1_refine()->yellow_zone(),
2167                                                 concurrent_g1_refine()->red_zone(),
2168                                                 Shared_DirtyCardQ_lock);
2169 
2170   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2171                                     DirtyCardQ_CBL_mon,
2172                                     DirtyCardQ_FL_lock,
2173                                     -1, // never trigger processing
2174                                     -1, // no limit on length
2175                                     Shared_DirtyCardQ_lock,
2176                                     &JavaThread::dirty_card_queue_set());
2177 
2178   // Initialize the card queue set used to hold cards containing
2179   // references into the collection set.
2180   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2181                                              DirtyCardQ_CBL_mon,
2182                                              DirtyCardQ_FL_lock,
2183                                              -1, // never trigger processing
2184                                              -1, // no limit on length
2185                                              Shared_DirtyCardQ_lock,
2186                                              &JavaThread::dirty_card_queue_set());
2187 
2188   // Here we allocate the dummy HeapRegion that is required by the
2189   // G1AllocRegion class.
2190   HeapRegion* dummy_region = _hrm.get_dummy_region();
2191 
2192   // We'll re-use the same region whether the alloc region will
2193   // require BOT updates or not and, if it doesn't, then a non-young
2194   // region will complain that it cannot support allocations without
2195   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2196   dummy_region->set_eden();
2197   // Make sure it's full.
2198   dummy_region->set_top(dummy_region->end());
2199   G1AllocRegion::setup(this, dummy_region);
2200 
2201   _allocator->init_mutator_alloc_region();
2202 
2203   // Do create of the monitoring and management support so that
2204   // values in the heap have been properly initialized.
2205   _g1mm = new G1MonitoringSupport(this);
2206 
2207   G1StringDedup::initialize();
2208 
2209   return JNI_OK;
2210 }
2211 
2212 void G1CollectedHeap::stop() {
2213   // Stop all concurrent threads. We do this to make sure these threads
2214   // do not continue to execute and access resources (e.g. gclog_or_tty)
2215   // that are destroyed during shutdown.
2216   _cg1r->stop();
2217   _cmThread->stop();
2218   if (G1StringDedup::is_enabled()) {
2219     G1StringDedup::stop();
2220   }
2221 }
2222 
2223 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2224   return HeapRegion::max_region_size();
2225 }
2226 
2227 void G1CollectedHeap::post_initialize() {
2228   CollectedHeap::post_initialize();
2229   ref_processing_init();
2230 }
2231 
2232 void G1CollectedHeap::ref_processing_init() {
2233   // Reference processing in G1 currently works as follows:
2234   //
2235   // * There are two reference processor instances. One is
2236   //   used to record and process discovered references
2237   //   during concurrent marking; the other is used to
2238   //   record and process references during STW pauses
2239   //   (both full and incremental).
2240   // * Both ref processors need to 'span' the entire heap as
2241   //   the regions in the collection set may be dotted around.
2242   //
2243   // * For the concurrent marking ref processor:
2244   //   * Reference discovery is enabled at initial marking.
2245   //   * Reference discovery is disabled and the discovered
2246   //     references processed etc during remarking.
2247   //   * Reference discovery is MT (see below).
2248   //   * Reference discovery requires a barrier (see below).
2249   //   * Reference processing may or may not be MT
2250   //     (depending on the value of ParallelRefProcEnabled
2251   //     and ParallelGCThreads).
2252   //   * A full GC disables reference discovery by the CM
2253   //     ref processor and abandons any entries on it's
2254   //     discovered lists.
2255   //
2256   // * For the STW processor:
2257   //   * Non MT discovery is enabled at the start of a full GC.
2258   //   * Processing and enqueueing during a full GC is non-MT.
2259   //   * During a full GC, references are processed after marking.
2260   //
2261   //   * Discovery (may or may not be MT) is enabled at the start
2262   //     of an incremental evacuation pause.
2263   //   * References are processed near the end of a STW evacuation pause.
2264   //   * For both types of GC:
2265   //     * Discovery is atomic - i.e. not concurrent.
2266   //     * Reference discovery will not need a barrier.
2267 
2268   MemRegion mr = reserved_region();
2269 
2270   // Concurrent Mark ref processor
2271   _ref_processor_cm =
2272     new ReferenceProcessor(mr,    // span
2273                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2274                                 // mt processing
2275                            (uint) ParallelGCThreads,
2276                                 // degree of mt processing
2277                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2278                                 // mt discovery
2279                            (uint) MAX2(ParallelGCThreads, ConcGCThreads),
2280                                 // degree of mt discovery
2281                            false,
2282                                 // Reference discovery is not atomic
2283                            &_is_alive_closure_cm);
2284                                 // is alive closure
2285                                 // (for efficiency/performance)
2286 
2287   // STW ref processor
2288   _ref_processor_stw =
2289     new ReferenceProcessor(mr,    // span
2290                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2291                                 // mt processing
2292                            (uint) ParallelGCThreads,
2293                                 // degree of mt processing
2294                            (ParallelGCThreads > 1),
2295                                 // mt discovery
2296                            (uint) ParallelGCThreads,
2297                                 // degree of mt discovery
2298                            true,
2299                                 // Reference discovery is atomic
2300                            &_is_alive_closure_stw);
2301                                 // is alive closure
2302                                 // (for efficiency/performance)
2303 }
2304 
2305 size_t G1CollectedHeap::capacity() const {
2306   return _hrm.length() * HeapRegion::GrainBytes;
2307 }
2308 
2309 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2310   assert(!hr->is_continues_humongous(), "pre-condition");
2311   hr->reset_gc_time_stamp();
2312   if (hr->is_starts_humongous()) {
2313     uint first_index = hr->hrm_index() + 1;
2314     uint last_index = hr->last_hc_index();
2315     for (uint i = first_index; i < last_index; i += 1) {
2316       HeapRegion* chr = region_at(i);
2317       assert(chr->is_continues_humongous(), "sanity");
2318       chr->reset_gc_time_stamp();
2319     }
2320   }
2321 }
2322 
2323 #ifndef PRODUCT
2324 
2325 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2326 private:
2327   unsigned _gc_time_stamp;
2328   bool _failures;
2329 
2330 public:
2331   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2332     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2333 
2334   virtual bool doHeapRegion(HeapRegion* hr) {
2335     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2336     if (_gc_time_stamp != region_gc_time_stamp) {
2337       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2338                              "expected %d", HR_FORMAT_PARAMS(hr),
2339                              region_gc_time_stamp, _gc_time_stamp);
2340       _failures = true;
2341     }
2342     return false;
2343   }
2344 
2345   bool failures() { return _failures; }
2346 };
2347 
2348 void G1CollectedHeap::check_gc_time_stamps() {
2349   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2350   heap_region_iterate(&cl);
2351   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2352 }
2353 #endif // PRODUCT
2354 
2355 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2356                                                  DirtyCardQueue* into_cset_dcq,
2357                                                  bool concurrent,
2358                                                  uint worker_i) {
2359   // Clean cards in the hot card cache
2360   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2361   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2362 
2363   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2364   size_t n_completed_buffers = 0;
2365   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2366     n_completed_buffers++;
2367   }
2368   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2369   dcqs.clear_n_completed_buffers();
2370   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2371 }
2372 
2373 
2374 // Computes the sum of the storage used by the various regions.
2375 size_t G1CollectedHeap::used() const {
2376   size_t result = _allocator->used();
2377   if (_archive_allocator != NULL) {
2378     result += _archive_allocator->used();
2379   }
2380   return result;
2381 }
2382 
2383 size_t G1CollectedHeap::used_unlocked() const {
2384   return _allocator->used_unlocked();
2385 }
2386 
2387 class SumUsedClosure: public HeapRegionClosure {
2388   size_t _used;
2389 public:
2390   SumUsedClosure() : _used(0) {}
2391   bool doHeapRegion(HeapRegion* r) {
2392     if (!r->is_continues_humongous()) {
2393       _used += r->used();
2394     }
2395     return false;
2396   }
2397   size_t result() { return _used; }
2398 };
2399 
2400 size_t G1CollectedHeap::recalculate_used() const {
2401   double recalculate_used_start = os::elapsedTime();
2402 
2403   SumUsedClosure blk;
2404   heap_region_iterate(&blk);
2405 
2406   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2407   return blk.result();
2408 }
2409 
2410 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2411   switch (cause) {
2412     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2413     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2414     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2415     case GCCause::_g1_humongous_allocation: return true;
2416     case GCCause::_update_allocation_context_stats_inc: return true;
2417     case GCCause::_wb_conc_mark:            return true;
2418     default:                                return false;
2419   }
2420 }
2421 
2422 #ifndef PRODUCT
2423 void G1CollectedHeap::allocate_dummy_regions() {
2424   // Let's fill up most of the region
2425   size_t word_size = HeapRegion::GrainWords - 1024;
2426   // And as a result the region we'll allocate will be humongous.
2427   guarantee(is_humongous(word_size), "sanity");
2428 
2429   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2430     // Let's use the existing mechanism for the allocation
2431     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2432                                                  AllocationContext::system());
2433     if (dummy_obj != NULL) {
2434       MemRegion mr(dummy_obj, word_size);
2435       CollectedHeap::fill_with_object(mr);
2436     } else {
2437       // If we can't allocate once, we probably cannot allocate
2438       // again. Let's get out of the loop.
2439       break;
2440     }
2441   }
2442 }
2443 #endif // !PRODUCT
2444 
2445 void G1CollectedHeap::increment_old_marking_cycles_started() {
2446   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2447     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2448     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2449     _old_marking_cycles_started, _old_marking_cycles_completed));
2450 
2451   _old_marking_cycles_started++;
2452 }
2453 
2454 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2455   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2456 
2457   // We assume that if concurrent == true, then the caller is a
2458   // concurrent thread that was joined the Suspendible Thread
2459   // Set. If there's ever a cheap way to check this, we should add an
2460   // assert here.
2461 
2462   // Given that this method is called at the end of a Full GC or of a
2463   // concurrent cycle, and those can be nested (i.e., a Full GC can
2464   // interrupt a concurrent cycle), the number of full collections
2465   // completed should be either one (in the case where there was no
2466   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2467   // behind the number of full collections started.
2468 
2469   // This is the case for the inner caller, i.e. a Full GC.
2470   assert(concurrent ||
2471          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2472          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2473          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2474                  "is inconsistent with _old_marking_cycles_completed = %u",
2475                  _old_marking_cycles_started, _old_marking_cycles_completed));
2476 
2477   // This is the case for the outer caller, i.e. the concurrent cycle.
2478   assert(!concurrent ||
2479          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2480          err_msg("for outer caller (concurrent cycle): "
2481                  "_old_marking_cycles_started = %u "
2482                  "is inconsistent with _old_marking_cycles_completed = %u",
2483                  _old_marking_cycles_started, _old_marking_cycles_completed));
2484 
2485   _old_marking_cycles_completed += 1;
2486 
2487   // We need to clear the "in_progress" flag in the CM thread before
2488   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2489   // is set) so that if a waiter requests another System.gc() it doesn't
2490   // incorrectly see that a marking cycle is still in progress.
2491   if (concurrent) {
2492     _cmThread->clear_in_progress();
2493   }
2494 
2495   // This notify_all() will ensure that a thread that called
2496   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2497   // and it's waiting for a full GC to finish will be woken up. It is
2498   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2499   FullGCCount_lock->notify_all();
2500 }
2501 
2502 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2503   _concurrent_cycle_started = true;
2504   _gc_timer_cm->register_gc_start(start_time);
2505 
2506   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2507   trace_heap_before_gc(_gc_tracer_cm);
2508 }
2509 
2510 void G1CollectedHeap::register_concurrent_cycle_end() {
2511   if (_concurrent_cycle_started) {
2512     if (_cm->has_aborted()) {
2513       _gc_tracer_cm->report_concurrent_mode_failure();
2514     }
2515 
2516     _gc_timer_cm->register_gc_end();
2517     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2518 
2519     // Clear state variables to prepare for the next concurrent cycle.
2520     _concurrent_cycle_started = false;
2521     _heap_summary_sent = false;
2522   }
2523 }
2524 
2525 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2526   if (_concurrent_cycle_started) {
2527     // This function can be called when:
2528     //  the cleanup pause is run
2529     //  the concurrent cycle is aborted before the cleanup pause.
2530     //  the concurrent cycle is aborted after the cleanup pause,
2531     //   but before the concurrent cycle end has been registered.
2532     // Make sure that we only send the heap information once.
2533     if (!_heap_summary_sent) {
2534       trace_heap_after_gc(_gc_tracer_cm);
2535       _heap_summary_sent = true;
2536     }
2537   }
2538 }
2539 
2540 G1YCType G1CollectedHeap::yc_type() {
2541   bool is_young = g1_policy()->gcs_are_young();
2542   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2543   bool is_during_mark = mark_in_progress();
2544 
2545   if (is_initial_mark) {
2546     return InitialMark;
2547   } else if (is_during_mark) {
2548     return DuringMark;
2549   } else if (is_young) {
2550     return Normal;
2551   } else {
2552     return Mixed;
2553   }
2554 }
2555 
2556 void G1CollectedHeap::collect(GCCause::Cause cause) {
2557   assert_heap_not_locked();
2558 
2559   uint gc_count_before;
2560   uint old_marking_count_before;
2561   uint full_gc_count_before;
2562   bool retry_gc;
2563 
2564   do {
2565     retry_gc = false;
2566 
2567     {
2568       MutexLocker ml(Heap_lock);
2569 
2570       // Read the GC count while holding the Heap_lock
2571       gc_count_before = total_collections();
2572       full_gc_count_before = total_full_collections();
2573       old_marking_count_before = _old_marking_cycles_started;
2574     }
2575 
2576     if (should_do_concurrent_full_gc(cause)) {
2577       // Schedule an initial-mark evacuation pause that will start a
2578       // concurrent cycle. We're setting word_size to 0 which means that
2579       // we are not requesting a post-GC allocation.
2580       VM_G1IncCollectionPause op(gc_count_before,
2581                                  0,     /* word_size */
2582                                  true,  /* should_initiate_conc_mark */
2583                                  g1_policy()->max_pause_time_ms(),
2584                                  cause);
2585       op.set_allocation_context(AllocationContext::current());
2586 
2587       VMThread::execute(&op);
2588       if (!op.pause_succeeded()) {
2589         if (old_marking_count_before == _old_marking_cycles_started) {
2590           retry_gc = op.should_retry_gc();
2591         } else {
2592           // A Full GC happened while we were trying to schedule the
2593           // initial-mark GC. No point in starting a new cycle given
2594           // that the whole heap was collected anyway.
2595         }
2596 
2597         if (retry_gc) {
2598           if (GC_locker::is_active_and_needs_gc()) {
2599             GC_locker::stall_until_clear();
2600           }
2601         }
2602       }
2603     } else {
2604       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2605           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2606 
2607         // Schedule a standard evacuation pause. We're setting word_size
2608         // to 0 which means that we are not requesting a post-GC allocation.
2609         VM_G1IncCollectionPause op(gc_count_before,
2610                                    0,     /* word_size */
2611                                    false, /* should_initiate_conc_mark */
2612                                    g1_policy()->max_pause_time_ms(),
2613                                    cause);
2614         VMThread::execute(&op);
2615       } else {
2616         // Schedule a Full GC.
2617         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2618         VMThread::execute(&op);
2619       }
2620     }
2621   } while (retry_gc);
2622 }
2623 
2624 bool G1CollectedHeap::is_in(const void* p) const {
2625   if (_hrm.reserved().contains(p)) {
2626     // Given that we know that p is in the reserved space,
2627     // heap_region_containing_raw() should successfully
2628     // return the containing region.
2629     HeapRegion* hr = heap_region_containing_raw(p);
2630     return hr->is_in(p);
2631   } else {
2632     return false;
2633   }
2634 }
2635 
2636 #ifdef ASSERT
2637 bool G1CollectedHeap::is_in_exact(const void* p) const {
2638   bool contains = reserved_region().contains(p);
2639   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2640   if (contains && available) {
2641     return true;
2642   } else {
2643     return false;
2644   }
2645 }
2646 #endif
2647 
2648 // Iteration functions.
2649 
2650 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2651 
2652 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2653   ExtendedOopClosure* _cl;
2654 public:
2655   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2656   bool doHeapRegion(HeapRegion* r) {
2657     if (!r->is_continues_humongous()) {
2658       r->oop_iterate(_cl);
2659     }
2660     return false;
2661   }
2662 };
2663 
2664 // Iterates an ObjectClosure over all objects within a HeapRegion.
2665 
2666 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2667   ObjectClosure* _cl;
2668 public:
2669   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2670   bool doHeapRegion(HeapRegion* r) {
2671     if (!r->is_continues_humongous()) {
2672       r->object_iterate(_cl);
2673     }
2674     return false;
2675   }
2676 };
2677 
2678 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2679   IterateObjectClosureRegionClosure blk(cl);
2680   heap_region_iterate(&blk);
2681 }
2682 
2683 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2684   _hrm.iterate(cl);
2685 }
2686 
2687 void
2688 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2689                                          uint worker_id,
2690                                          HeapRegionClaimer *hrclaimer,
2691                                          bool concurrent) const {
2692   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2693 }
2694 
2695 // Clear the cached CSet starting regions and (more importantly)
2696 // the time stamps. Called when we reset the GC time stamp.
2697 void G1CollectedHeap::clear_cset_start_regions() {
2698   assert(_worker_cset_start_region != NULL, "sanity");
2699   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2700 
2701   for (uint i = 0; i < ParallelGCThreads; i++) {
2702     _worker_cset_start_region[i] = NULL;
2703     _worker_cset_start_region_time_stamp[i] = 0;
2704   }
2705 }
2706 
2707 // Given the id of a worker, obtain or calculate a suitable
2708 // starting region for iterating over the current collection set.
2709 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2710   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2711 
2712   HeapRegion* result = NULL;
2713   unsigned gc_time_stamp = get_gc_time_stamp();
2714 
2715   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2716     // Cached starting region for current worker was set
2717     // during the current pause - so it's valid.
2718     // Note: the cached starting heap region may be NULL
2719     // (when the collection set is empty).
2720     result = _worker_cset_start_region[worker_i];
2721     assert(result == NULL || result->in_collection_set(), "sanity");
2722     return result;
2723   }
2724 
2725   // The cached entry was not valid so let's calculate
2726   // a suitable starting heap region for this worker.
2727 
2728   // We want the parallel threads to start their collection
2729   // set iteration at different collection set regions to
2730   // avoid contention.
2731   // If we have:
2732   //          n collection set regions
2733   //          p threads
2734   // Then thread t will start at region floor ((t * n) / p)
2735 
2736   result = g1_policy()->collection_set();
2737   uint cs_size = g1_policy()->cset_region_length();
2738   uint active_workers = workers()->active_workers();
2739 
2740   uint end_ind   = (cs_size * worker_i) / active_workers;
2741   uint start_ind = 0;
2742 
2743   if (worker_i > 0 &&
2744       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2745     // Previous workers starting region is valid
2746     // so let's iterate from there
2747     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2748     result = _worker_cset_start_region[worker_i - 1];
2749   }
2750 
2751   for (uint i = start_ind; i < end_ind; i++) {
2752     result = result->next_in_collection_set();
2753   }
2754 
2755   // Note: the calculated starting heap region may be NULL
2756   // (when the collection set is empty).
2757   assert(result == NULL || result->in_collection_set(), "sanity");
2758   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2759          "should be updated only once per pause");
2760   _worker_cset_start_region[worker_i] = result;
2761   OrderAccess::storestore();
2762   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2763   return result;
2764 }
2765 
2766 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2767   HeapRegion* r = g1_policy()->collection_set();
2768   while (r != NULL) {
2769     HeapRegion* next = r->next_in_collection_set();
2770     if (cl->doHeapRegion(r)) {
2771       cl->incomplete();
2772       return;
2773     }
2774     r = next;
2775   }
2776 }
2777 
2778 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2779                                                   HeapRegionClosure *cl) {
2780   if (r == NULL) {
2781     // The CSet is empty so there's nothing to do.
2782     return;
2783   }
2784 
2785   assert(r->in_collection_set(),
2786          "Start region must be a member of the collection set.");
2787   HeapRegion* cur = r;
2788   while (cur != NULL) {
2789     HeapRegion* next = cur->next_in_collection_set();
2790     if (cl->doHeapRegion(cur) && false) {
2791       cl->incomplete();
2792       return;
2793     }
2794     cur = next;
2795   }
2796   cur = g1_policy()->collection_set();
2797   while (cur != r) {
2798     HeapRegion* next = cur->next_in_collection_set();
2799     if (cl->doHeapRegion(cur) && false) {
2800       cl->incomplete();
2801       return;
2802     }
2803     cur = next;
2804   }
2805 }
2806 
2807 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2808   HeapRegion* result = _hrm.next_region_in_heap(from);
2809   while (result != NULL && result->is_pinned()) {
2810     result = _hrm.next_region_in_heap(result);
2811   }
2812   return result;
2813 }
2814 
2815 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2816   HeapRegion* hr = heap_region_containing(addr);
2817   return hr->block_start(addr);
2818 }
2819 
2820 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2821   HeapRegion* hr = heap_region_containing(addr);
2822   return hr->block_size(addr);
2823 }
2824 
2825 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2826   HeapRegion* hr = heap_region_containing(addr);
2827   return hr->block_is_obj(addr);
2828 }
2829 
2830 bool G1CollectedHeap::supports_tlab_allocation() const {
2831   return true;
2832 }
2833 
2834 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2835   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2836 }
2837 
2838 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2839   return young_list()->eden_used_bytes();
2840 }
2841 
2842 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2843 // must be smaller than the humongous object limit.
2844 size_t G1CollectedHeap::max_tlab_size() const {
2845   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2846 }
2847 
2848 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2849   // Return the remaining space in the cur alloc region, but not less than
2850   // the min TLAB size.
2851 
2852   // Also, this value can be at most the humongous object threshold,
2853   // since we can't allow tlabs to grow big enough to accommodate
2854   // humongous objects.
2855 
2856   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2857   size_t max_tlab = max_tlab_size() * wordSize;
2858   if (hr == NULL) {
2859     return max_tlab;
2860   } else {
2861     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2862   }
2863 }
2864 
2865 size_t G1CollectedHeap::max_capacity() const {
2866   return _hrm.reserved().byte_size();
2867 }
2868 
2869 jlong G1CollectedHeap::millis_since_last_gc() {
2870   // assert(false, "NYI");
2871   return 0;
2872 }
2873 
2874 void G1CollectedHeap::prepare_for_verify() {
2875   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2876     ensure_parsability(false);
2877   }
2878   g1_rem_set()->prepare_for_verify();
2879 }
2880 
2881 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2882                                               VerifyOption vo) {
2883   switch (vo) {
2884   case VerifyOption_G1UsePrevMarking:
2885     return hr->obj_allocated_since_prev_marking(obj);
2886   case VerifyOption_G1UseNextMarking:
2887     return hr->obj_allocated_since_next_marking(obj);
2888   case VerifyOption_G1UseMarkWord:
2889     return false;
2890   default:
2891     ShouldNotReachHere();
2892   }
2893   return false; // keep some compilers happy
2894 }
2895 
2896 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2897   switch (vo) {
2898   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2899   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2900   case VerifyOption_G1UseMarkWord:    return NULL;
2901   default:                            ShouldNotReachHere();
2902   }
2903   return NULL; // keep some compilers happy
2904 }
2905 
2906 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2907   switch (vo) {
2908   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2909   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2910   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2911   default:                            ShouldNotReachHere();
2912   }
2913   return false; // keep some compilers happy
2914 }
2915 
2916 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2917   switch (vo) {
2918   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2919   case VerifyOption_G1UseNextMarking: return "NTAMS";
2920   case VerifyOption_G1UseMarkWord:    return "NONE";
2921   default:                            ShouldNotReachHere();
2922   }
2923   return NULL; // keep some compilers happy
2924 }
2925 
2926 class VerifyRootsClosure: public OopClosure {
2927 private:
2928   G1CollectedHeap* _g1h;
2929   VerifyOption     _vo;
2930   bool             _failures;
2931 public:
2932   // _vo == UsePrevMarking -> use "prev" marking information,
2933   // _vo == UseNextMarking -> use "next" marking information,
2934   // _vo == UseMarkWord    -> use mark word from object header.
2935   VerifyRootsClosure(VerifyOption vo) :
2936     _g1h(G1CollectedHeap::heap()),
2937     _vo(vo),
2938     _failures(false) { }
2939 
2940   bool failures() { return _failures; }
2941 
2942   template <class T> void do_oop_nv(T* p) {
2943     T heap_oop = oopDesc::load_heap_oop(p);
2944     if (!oopDesc::is_null(heap_oop)) {
2945       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2946       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2947         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2948                                "points to dead obj "PTR_FORMAT, p2i(p), p2i(obj));
2949         if (_vo == VerifyOption_G1UseMarkWord) {
2950           gclog_or_tty->print_cr("  Mark word: "INTPTR_FORMAT, (intptr_t)obj->mark());
2951         }
2952         obj->print_on(gclog_or_tty);
2953         _failures = true;
2954       }
2955     }
2956   }
2957 
2958   void do_oop(oop* p)       { do_oop_nv(p); }
2959   void do_oop(narrowOop* p) { do_oop_nv(p); }
2960 };
2961 
2962 class G1VerifyCodeRootOopClosure: public OopClosure {
2963   G1CollectedHeap* _g1h;
2964   OopClosure* _root_cl;
2965   nmethod* _nm;
2966   VerifyOption _vo;
2967   bool _failures;
2968 
2969   template <class T> void do_oop_work(T* p) {
2970     // First verify that this root is live
2971     _root_cl->do_oop(p);
2972 
2973     if (!G1VerifyHeapRegionCodeRoots) {
2974       // We're not verifying the code roots attached to heap region.
2975       return;
2976     }
2977 
2978     // Don't check the code roots during marking verification in a full GC
2979     if (_vo == VerifyOption_G1UseMarkWord) {
2980       return;
2981     }
2982 
2983     // Now verify that the current nmethod (which contains p) is
2984     // in the code root list of the heap region containing the
2985     // object referenced by p.
2986 
2987     T heap_oop = oopDesc::load_heap_oop(p);
2988     if (!oopDesc::is_null(heap_oop)) {
2989       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2990 
2991       // Now fetch the region containing the object
2992       HeapRegion* hr = _g1h->heap_region_containing(obj);
2993       HeapRegionRemSet* hrrs = hr->rem_set();
2994       // Verify that the strong code root list for this region
2995       // contains the nmethod
2996       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2997         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2998                                "from nmethod "PTR_FORMAT" not in strong "
2999                                "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3000                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
3001         _failures = true;
3002       }
3003     }
3004   }
3005 
3006 public:
3007   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3008     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3009 
3010   void do_oop(oop* p) { do_oop_work(p); }
3011   void do_oop(narrowOop* p) { do_oop_work(p); }
3012 
3013   void set_nmethod(nmethod* nm) { _nm = nm; }
3014   bool failures() { return _failures; }
3015 };
3016 
3017 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3018   G1VerifyCodeRootOopClosure* _oop_cl;
3019 
3020 public:
3021   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3022     _oop_cl(oop_cl) {}
3023 
3024   void do_code_blob(CodeBlob* cb) {
3025     nmethod* nm = cb->as_nmethod_or_null();
3026     if (nm != NULL) {
3027       _oop_cl->set_nmethod(nm);
3028       nm->oops_do(_oop_cl);
3029     }
3030   }
3031 };
3032 
3033 class YoungRefCounterClosure : public OopClosure {
3034   G1CollectedHeap* _g1h;
3035   int              _count;
3036  public:
3037   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3038   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3039   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3040 
3041   int count() { return _count; }
3042   void reset_count() { _count = 0; };
3043 };
3044 
3045 class VerifyKlassClosure: public KlassClosure {
3046   YoungRefCounterClosure _young_ref_counter_closure;
3047   OopClosure *_oop_closure;
3048  public:
3049   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3050   void do_klass(Klass* k) {
3051     k->oops_do(_oop_closure);
3052 
3053     _young_ref_counter_closure.reset_count();
3054     k->oops_do(&_young_ref_counter_closure);
3055     if (_young_ref_counter_closure.count() > 0) {
3056       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3057     }
3058   }
3059 };
3060 
3061 class VerifyLivenessOopClosure: public OopClosure {
3062   G1CollectedHeap* _g1h;
3063   VerifyOption _vo;
3064 public:
3065   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3066     _g1h(g1h), _vo(vo)
3067   { }
3068   void do_oop(narrowOop *p) { do_oop_work(p); }
3069   void do_oop(      oop *p) { do_oop_work(p); }
3070 
3071   template <class T> void do_oop_work(T *p) {
3072     oop obj = oopDesc::load_decode_heap_oop(p);
3073     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3074               "Dead object referenced by a not dead object");
3075   }
3076 };
3077 
3078 class VerifyObjsInRegionClosure: public ObjectClosure {
3079 private:
3080   G1CollectedHeap* _g1h;
3081   size_t _live_bytes;
3082   HeapRegion *_hr;
3083   VerifyOption _vo;
3084 public:
3085   // _vo == UsePrevMarking -> use "prev" marking information,
3086   // _vo == UseNextMarking -> use "next" marking information,
3087   // _vo == UseMarkWord    -> use mark word from object header.
3088   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3089     : _live_bytes(0), _hr(hr), _vo(vo) {
3090     _g1h = G1CollectedHeap::heap();
3091   }
3092   void do_object(oop o) {
3093     VerifyLivenessOopClosure isLive(_g1h, _vo);
3094     assert(o != NULL, "Huh?");
3095     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3096       // If the object is alive according to the mark word,
3097       // then verify that the marking information agrees.
3098       // Note we can't verify the contra-positive of the
3099       // above: if the object is dead (according to the mark
3100       // word), it may not be marked, or may have been marked
3101       // but has since became dead, or may have been allocated
3102       // since the last marking.
3103       if (_vo == VerifyOption_G1UseMarkWord) {
3104         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3105       }
3106 
3107       o->oop_iterate_no_header(&isLive);
3108       if (!_hr->obj_allocated_since_prev_marking(o)) {
3109         size_t obj_size = o->size();    // Make sure we don't overflow
3110         _live_bytes += (obj_size * HeapWordSize);
3111       }
3112     }
3113   }
3114   size_t live_bytes() { return _live_bytes; }
3115 };
3116 
3117 
3118 class VerifyArchiveOopClosure: public OopClosure {
3119 public:
3120   VerifyArchiveOopClosure(HeapRegion *hr) { }
3121   void do_oop(narrowOop *p) { do_oop_work(p); }
3122   void do_oop(      oop *p) { do_oop_work(p); }
3123 
3124   template <class T> void do_oop_work(T *p) {
3125     oop obj = oopDesc::load_decode_heap_oop(p);
3126     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3127               "Archive object references a non-pinned object");
3128   }
3129 };
3130 
3131 class VerifyArchiveRegionClosure: public ObjectClosure {
3132 public:
3133   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3134   // Verify that all object pointers are to pinned regions.
3135   void do_object(oop o) {
3136     VerifyArchiveOopClosure checkOop(NULL);
3137     assert(o != NULL, "Should not be here for NULL oops");
3138     o->oop_iterate_no_header(&checkOop);
3139   }
3140 };
3141 
3142 
3143 class VerifyRegionClosure: public HeapRegionClosure {
3144 private:
3145   bool             _par;
3146   VerifyOption     _vo;
3147   bool             _failures;
3148 public:
3149   // _vo == UsePrevMarking -> use "prev" marking information,
3150   // _vo == UseNextMarking -> use "next" marking information,
3151   // _vo == UseMarkWord    -> use mark word from object header.
3152   VerifyRegionClosure(bool par, VerifyOption vo)
3153     : _par(par),
3154       _vo(vo),
3155       _failures(false) {}
3156 
3157   bool failures() {
3158     return _failures;
3159   }
3160 
3161   bool doHeapRegion(HeapRegion* r) {
3162     // For archive regions, verify there are no heap pointers to
3163     // non-pinned regions. For all others, verify liveness info.
3164     if (r->is_archive()) {
3165       VerifyArchiveRegionClosure verify_oop_pointers(r);
3166       r->object_iterate(&verify_oop_pointers);
3167       return true;
3168     }
3169     if (!r->is_continues_humongous()) {
3170       bool failures = false;
3171       r->verify(_vo, &failures);
3172       if (failures) {
3173         _failures = true;
3174       } else {
3175         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3176         r->object_iterate(&not_dead_yet_cl);
3177         if (_vo != VerifyOption_G1UseNextMarking) {
3178           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3179             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3180                                    "max_live_bytes "SIZE_FORMAT" "
3181                                    "< calculated "SIZE_FORMAT,
3182                                    p2i(r->bottom()), p2i(r->end()),
3183                                    r->max_live_bytes(),
3184                                  not_dead_yet_cl.live_bytes());
3185             _failures = true;
3186           }
3187         } else {
3188           // When vo == UseNextMarking we cannot currently do a sanity
3189           // check on the live bytes as the calculation has not been
3190           // finalized yet.
3191         }
3192       }
3193     }
3194     return false; // stop the region iteration if we hit a failure
3195   }
3196 };
3197 
3198 // This is the task used for parallel verification of the heap regions
3199 
3200 class G1ParVerifyTask: public AbstractGangTask {
3201 private:
3202   G1CollectedHeap*  _g1h;
3203   VerifyOption      _vo;
3204   bool              _failures;
3205   HeapRegionClaimer _hrclaimer;
3206 
3207 public:
3208   // _vo == UsePrevMarking -> use "prev" marking information,
3209   // _vo == UseNextMarking -> use "next" marking information,
3210   // _vo == UseMarkWord    -> use mark word from object header.
3211   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3212       AbstractGangTask("Parallel verify task"),
3213       _g1h(g1h),
3214       _vo(vo),
3215       _failures(false),
3216       _hrclaimer(g1h->workers()->active_workers()) {}
3217 
3218   bool failures() {
3219     return _failures;
3220   }
3221 
3222   void work(uint worker_id) {
3223     HandleMark hm;
3224     VerifyRegionClosure blk(true, _vo);
3225     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3226     if (blk.failures()) {
3227       _failures = true;
3228     }
3229   }
3230 };
3231 
3232 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3233   if (SafepointSynchronize::is_at_safepoint()) {
3234     assert(Thread::current()->is_VM_thread(),
3235            "Expected to be executed serially by the VM thread at this point");
3236 
3237     if (!silent) { gclog_or_tty->print("Roots "); }
3238     VerifyRootsClosure rootsCl(vo);
3239     VerifyKlassClosure klassCl(this, &rootsCl);
3240     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3241 
3242     // We apply the relevant closures to all the oops in the
3243     // system dictionary, class loader data graph, the string table
3244     // and the nmethods in the code cache.
3245     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3246     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3247 
3248     {
3249       G1RootProcessor root_processor(this, 1);
3250       root_processor.process_all_roots(&rootsCl,
3251                                        &cldCl,
3252                                        &blobsCl);
3253     }
3254 
3255     bool failures = rootsCl.failures() || codeRootsCl.failures();
3256 
3257     if (vo != VerifyOption_G1UseMarkWord) {
3258       // If we're verifying during a full GC then the region sets
3259       // will have been torn down at the start of the GC. Therefore
3260       // verifying the region sets will fail. So we only verify
3261       // the region sets when not in a full GC.
3262       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3263       verify_region_sets();
3264     }
3265 
3266     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3267     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3268 
3269       G1ParVerifyTask task(this, vo);
3270       workers()->run_task(&task);
3271       if (task.failures()) {
3272         failures = true;
3273       }
3274 
3275     } else {
3276       VerifyRegionClosure blk(false, vo);
3277       heap_region_iterate(&blk);
3278       if (blk.failures()) {
3279         failures = true;
3280       }
3281     }
3282 
3283     if (G1StringDedup::is_enabled()) {
3284       if (!silent) gclog_or_tty->print("StrDedup ");
3285       G1StringDedup::verify();
3286     }
3287 
3288     if (failures) {
3289       gclog_or_tty->print_cr("Heap:");
3290       // It helps to have the per-region information in the output to
3291       // help us track down what went wrong. This is why we call
3292       // print_extended_on() instead of print_on().
3293       print_extended_on(gclog_or_tty);
3294       gclog_or_tty->cr();
3295       gclog_or_tty->flush();
3296     }
3297     guarantee(!failures, "there should not have been any failures");
3298   } else {
3299     if (!silent) {
3300       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3301       if (G1StringDedup::is_enabled()) {
3302         gclog_or_tty->print(", StrDedup");
3303       }
3304       gclog_or_tty->print(") ");
3305     }
3306   }
3307 }
3308 
3309 void G1CollectedHeap::verify(bool silent) {
3310   verify(silent, VerifyOption_G1UsePrevMarking);
3311 }
3312 
3313 double G1CollectedHeap::verify(bool guard, const char* msg) {
3314   double verify_time_ms = 0.0;
3315 
3316   if (guard && total_collections() >= VerifyGCStartAt) {
3317     double verify_start = os::elapsedTime();
3318     HandleMark hm;  // Discard invalid handles created during verification
3319     prepare_for_verify();
3320     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3321     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3322   }
3323 
3324   return verify_time_ms;
3325 }
3326 
3327 void G1CollectedHeap::verify_before_gc() {
3328   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3329   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3330 }
3331 
3332 void G1CollectedHeap::verify_after_gc() {
3333   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3334   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3335 }
3336 
3337 class PrintRegionClosure: public HeapRegionClosure {
3338   outputStream* _st;
3339 public:
3340   PrintRegionClosure(outputStream* st) : _st(st) {}
3341   bool doHeapRegion(HeapRegion* r) {
3342     r->print_on(_st);
3343     return false;
3344   }
3345 };
3346 
3347 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3348                                        const HeapRegion* hr,
3349                                        const VerifyOption vo) const {
3350   switch (vo) {
3351   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3352   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3353   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3354   default:                            ShouldNotReachHere();
3355   }
3356   return false; // keep some compilers happy
3357 }
3358 
3359 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3360                                        const VerifyOption vo) const {
3361   switch (vo) {
3362   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3363   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3364   case VerifyOption_G1UseMarkWord: {
3365     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3366     return !obj->is_gc_marked() && !hr->is_archive();
3367     }      
3368   default:                            ShouldNotReachHere();
3369   }
3370   return false; // keep some compilers happy
3371 }
3372 
3373 void G1CollectedHeap::print_on(outputStream* st) const {
3374   st->print(" %-20s", "garbage-first heap");
3375   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3376             capacity()/K, used_unlocked()/K);
3377   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3378             p2i(_hrm.reserved().start()),
3379             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3380             p2i(_hrm.reserved().end()));
3381   st->cr();
3382   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3383   uint young_regions = _young_list->length();
3384   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3385             (size_t) young_regions * HeapRegion::GrainBytes / K);
3386   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3387   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3388             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3389   st->cr();
3390   MetaspaceAux::print_on(st);
3391 }
3392 
3393 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3394   print_on(st);
3395 
3396   // Print the per-region information.
3397   st->cr();
3398   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3399                "HS=humongous(starts), HC=humongous(continues), "
3400                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3401                "PTAMS=previous top-at-mark-start, "
3402                "NTAMS=next top-at-mark-start)");
3403   PrintRegionClosure blk(st);
3404   heap_region_iterate(&blk);
3405 }
3406 
3407 void G1CollectedHeap::print_on_error(outputStream* st) const {
3408   this->CollectedHeap::print_on_error(st);
3409 
3410   if (_cm != NULL) {
3411     st->cr();
3412     _cm->print_on_error(st);
3413   }
3414 }
3415 
3416 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3417   workers()->print_worker_threads_on(st);
3418   _cmThread->print_on(st);
3419   st->cr();
3420   _cm->print_worker_threads_on(st);
3421   _cg1r->print_worker_threads_on(st);
3422   if (G1StringDedup::is_enabled()) {
3423     G1StringDedup::print_worker_threads_on(st);
3424   }
3425 }
3426 
3427 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3428   workers()->threads_do(tc);
3429   tc->do_thread(_cmThread);
3430   _cg1r->threads_do(tc);
3431   if (G1StringDedup::is_enabled()) {
3432     G1StringDedup::threads_do(tc);
3433   }
3434 }
3435 
3436 void G1CollectedHeap::print_tracing_info() const {
3437   // We'll overload this to mean "trace GC pause statistics."
3438   if (TraceYoungGenTime || TraceOldGenTime) {
3439     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3440     // to that.
3441     g1_policy()->print_tracing_info();
3442   }
3443   if (G1SummarizeRSetStats) {
3444     g1_rem_set()->print_summary_info();
3445   }
3446   if (G1SummarizeConcMark) {
3447     concurrent_mark()->print_summary_info();
3448   }
3449   g1_policy()->print_yg_surv_rate_info();
3450 }
3451 
3452 #ifndef PRODUCT
3453 // Helpful for debugging RSet issues.
3454 
3455 class PrintRSetsClosure : public HeapRegionClosure {
3456 private:
3457   const char* _msg;
3458   size_t _occupied_sum;
3459 
3460 public:
3461   bool doHeapRegion(HeapRegion* r) {
3462     HeapRegionRemSet* hrrs = r->rem_set();
3463     size_t occupied = hrrs->occupied();
3464     _occupied_sum += occupied;
3465 
3466     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3467                            HR_FORMAT_PARAMS(r));
3468     if (occupied == 0) {
3469       gclog_or_tty->print_cr("  RSet is empty");
3470     } else {
3471       hrrs->print();
3472     }
3473     gclog_or_tty->print_cr("----------");
3474     return false;
3475   }
3476 
3477   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3478     gclog_or_tty->cr();
3479     gclog_or_tty->print_cr("========================================");
3480     gclog_or_tty->print_cr("%s", msg);
3481     gclog_or_tty->cr();
3482   }
3483 
3484   ~PrintRSetsClosure() {
3485     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3486     gclog_or_tty->print_cr("========================================");
3487     gclog_or_tty->cr();
3488   }
3489 };
3490 
3491 void G1CollectedHeap::print_cset_rsets() {
3492   PrintRSetsClosure cl("Printing CSet RSets");
3493   collection_set_iterate(&cl);
3494 }
3495 
3496 void G1CollectedHeap::print_all_rsets() {
3497   PrintRSetsClosure cl("Printing All RSets");;
3498   heap_region_iterate(&cl);
3499 }
3500 #endif // PRODUCT
3501 
3502 G1CollectedHeap* G1CollectedHeap::heap() {
3503   CollectedHeap* heap = Universe::heap();
3504   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3505   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3506   return (G1CollectedHeap*)heap;
3507 }
3508 
3509 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3510   // always_do_update_barrier = false;
3511   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3512   // Fill TLAB's and such
3513   accumulate_statistics_all_tlabs();
3514   ensure_parsability(true);
3515 
3516   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3517       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3518     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3519   }
3520 }
3521 
3522 void G1CollectedHeap::gc_epilogue(bool full) {
3523 
3524   if (G1SummarizeRSetStats &&
3525       (G1SummarizeRSetStatsPeriod > 0) &&
3526       // we are at the end of the GC. Total collections has already been increased.
3527       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3528     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3529   }
3530 
3531   // FIXME: what is this about?
3532   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3533   // is set.
3534   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3535                         "derived pointer present"));
3536   // always_do_update_barrier = true;
3537 
3538   resize_all_tlabs();
3539   allocation_context_stats().update(full);
3540 
3541   // We have just completed a GC. Update the soft reference
3542   // policy with the new heap occupancy
3543   Universe::update_heap_info_at_gc();
3544 }
3545 
3546 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3547                                                uint gc_count_before,
3548                                                bool* succeeded,
3549                                                GCCause::Cause gc_cause) {
3550   assert_heap_not_locked_and_not_at_safepoint();
3551   g1_policy()->record_stop_world_start();
3552   VM_G1IncCollectionPause op(gc_count_before,
3553                              word_size,
3554                              false, /* should_initiate_conc_mark */
3555                              g1_policy()->max_pause_time_ms(),
3556                              gc_cause);
3557 
3558   op.set_allocation_context(AllocationContext::current());
3559   VMThread::execute(&op);
3560 
3561   HeapWord* result = op.result();
3562   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3563   assert(result == NULL || ret_succeeded,
3564          "the result should be NULL if the VM did not succeed");
3565   *succeeded = ret_succeeded;
3566 
3567   assert_heap_not_locked();
3568   return result;
3569 }
3570 
3571 void
3572 G1CollectedHeap::doConcurrentMark() {
3573   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3574   if (!_cmThread->in_progress()) {
3575     _cmThread->set_started();
3576     CGC_lock->notify();
3577   }
3578 }
3579 
3580 size_t G1CollectedHeap::pending_card_num() {
3581   size_t extra_cards = 0;
3582   JavaThread *curr = Threads::first();
3583   while (curr != NULL) {
3584     DirtyCardQueue& dcq = curr->dirty_card_queue();
3585     extra_cards += dcq.size();
3586     curr = curr->next();
3587   }
3588   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3589   size_t buffer_size = dcqs.buffer_size();
3590   size_t buffer_num = dcqs.completed_buffers_num();
3591 
3592   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3593   // in bytes - not the number of 'entries'. We need to convert
3594   // into a number of cards.
3595   return (buffer_size * buffer_num + extra_cards) / oopSize;
3596 }
3597 
3598 size_t G1CollectedHeap::cards_scanned() {
3599   return g1_rem_set()->cardsScanned();
3600 }
3601 
3602 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3603  private:
3604   size_t _total_humongous;
3605   size_t _candidate_humongous;
3606 
3607   DirtyCardQueue _dcq;
3608 
3609   // We don't nominate objects with many remembered set entries, on
3610   // the assumption that such objects are likely still live.
3611   bool is_remset_small(HeapRegion* region) const {
3612     HeapRegionRemSet* const rset = region->rem_set();
3613     return G1EagerReclaimHumongousObjectsWithStaleRefs
3614       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3615       : rset->is_empty();
3616   }
3617 
3618   bool is_typeArray_region(HeapRegion* region) const {
3619     return oop(region->bottom())->is_typeArray();
3620   }
3621 
3622   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3623     assert(region->is_starts_humongous(), "Must start a humongous object");
3624 
3625     // Candidate selection must satisfy the following constraints
3626     // while concurrent marking is in progress:
3627     //
3628     // * In order to maintain SATB invariants, an object must not be
3629     // reclaimed if it was allocated before the start of marking and
3630     // has not had its references scanned.  Such an object must have
3631     // its references (including type metadata) scanned to ensure no
3632     // live objects are missed by the marking process.  Objects
3633     // allocated after the start of concurrent marking don't need to
3634     // be scanned.
3635     //
3636     // * An object must not be reclaimed if it is on the concurrent
3637     // mark stack.  Objects allocated after the start of concurrent
3638     // marking are never pushed on the mark stack.
3639     //
3640     // Nominating only objects allocated after the start of concurrent
3641     // marking is sufficient to meet both constraints.  This may miss
3642     // some objects that satisfy the constraints, but the marking data
3643     // structures don't support efficiently performing the needed
3644     // additional tests or scrubbing of the mark stack.
3645     //
3646     // However, we presently only nominate is_typeArray() objects.
3647     // A humongous object containing references induces remembered
3648     // set entries on other regions.  In order to reclaim such an
3649     // object, those remembered sets would need to be cleaned up.
3650     //
3651     // We also treat is_typeArray() objects specially, allowing them
3652     // to be reclaimed even if allocated before the start of
3653     // concurrent mark.  For this we rely on mark stack insertion to
3654     // exclude is_typeArray() objects, preventing reclaiming an object
3655     // that is in the mark stack.  We also rely on the metadata for
3656     // such objects to be built-in and so ensured to be kept live.
3657     // Frequent allocation and drop of large binary blobs is an
3658     // important use case for eager reclaim, and this special handling
3659     // may reduce needed headroom.
3660 
3661     return is_typeArray_region(region) && is_remset_small(region);
3662   }
3663 
3664  public:
3665   RegisterHumongousWithInCSetFastTestClosure()
3666   : _total_humongous(0),
3667     _candidate_humongous(0),
3668     _dcq(&JavaThread::dirty_card_queue_set()) {
3669   }
3670 
3671   virtual bool doHeapRegion(HeapRegion* r) {
3672     if (!r->is_starts_humongous()) {
3673       return false;
3674     }
3675     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3676 
3677     bool is_candidate = humongous_region_is_candidate(g1h, r);
3678     uint rindex = r->hrm_index();
3679     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3680     if (is_candidate) {
3681       _candidate_humongous++;
3682       g1h->register_humongous_region_with_cset(rindex);
3683       // Is_candidate already filters out humongous object with large remembered sets.
3684       // If we have a humongous object with a few remembered sets, we simply flush these
3685       // remembered set entries into the DCQS. That will result in automatic
3686       // re-evaluation of their remembered set entries during the following evacuation
3687       // phase.
3688       if (!r->rem_set()->is_empty()) {
3689         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3690                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3691         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3692         HeapRegionRemSetIterator hrrs(r->rem_set());
3693         size_t card_index;
3694         while (hrrs.has_next(card_index)) {
3695           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3696           // The remembered set might contain references to already freed
3697           // regions. Filter out such entries to avoid failing card table
3698           // verification.
3699           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3700             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3701               *card_ptr = CardTableModRefBS::dirty_card_val();
3702               _dcq.enqueue(card_ptr);
3703             }
3704           }
3705         }
3706         r->rem_set()->clear_locked();
3707       }
3708       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3709     }
3710     _total_humongous++;
3711 
3712     return false;
3713   }
3714 
3715   size_t total_humongous() const { return _total_humongous; }
3716   size_t candidate_humongous() const { return _candidate_humongous; }
3717 
3718   void flush_rem_set_entries() { _dcq.flush(); }
3719 };
3720 
3721 void G1CollectedHeap::register_humongous_regions_with_cset() {
3722   if (!G1EagerReclaimHumongousObjects) {
3723     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3724     return;
3725   }
3726   double time = os::elapsed_counter();
3727 
3728   // Collect reclaim candidate information and register candidates with cset.
3729   RegisterHumongousWithInCSetFastTestClosure cl;
3730   heap_region_iterate(&cl);
3731 
3732   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3733   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3734                                                                   cl.total_humongous(),
3735                                                                   cl.candidate_humongous());
3736   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3737 
3738   // Finally flush all remembered set entries to re-check into the global DCQS.
3739   cl.flush_rem_set_entries();
3740 }
3741 
3742 void
3743 G1CollectedHeap::setup_surviving_young_words() {
3744   assert(_surviving_young_words == NULL, "pre-condition");
3745   uint array_length = g1_policy()->young_cset_region_length();
3746   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3747   if (_surviving_young_words == NULL) {
3748     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3749                           "Not enough space for young surv words summary.");
3750   }
3751   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3752 #ifdef ASSERT
3753   for (uint i = 0;  i < array_length; ++i) {
3754     assert( _surviving_young_words[i] == 0, "memset above" );
3755   }
3756 #endif // !ASSERT
3757 }
3758 
3759 void
3760 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3761   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3762   uint array_length = g1_policy()->young_cset_region_length();
3763   for (uint i = 0; i < array_length; ++i) {
3764     _surviving_young_words[i] += surv_young_words[i];
3765   }
3766 }
3767 
3768 void
3769 G1CollectedHeap::cleanup_surviving_young_words() {
3770   guarantee( _surviving_young_words != NULL, "pre-condition" );
3771   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3772   _surviving_young_words = NULL;
3773 }
3774 
3775 #ifdef ASSERT
3776 class VerifyCSetClosure: public HeapRegionClosure {
3777 public:
3778   bool doHeapRegion(HeapRegion* hr) {
3779     // Here we check that the CSet region's RSet is ready for parallel
3780     // iteration. The fields that we'll verify are only manipulated
3781     // when the region is part of a CSet and is collected. Afterwards,
3782     // we reset these fields when we clear the region's RSet (when the
3783     // region is freed) so they are ready when the region is
3784     // re-allocated. The only exception to this is if there's an
3785     // evacuation failure and instead of freeing the region we leave
3786     // it in the heap. In that case, we reset these fields during
3787     // evacuation failure handling.
3788     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3789 
3790     // Here's a good place to add any other checks we'd like to
3791     // perform on CSet regions.
3792     return false;
3793   }
3794 };
3795 #endif // ASSERT
3796 
3797 uint G1CollectedHeap::num_task_queues() const {
3798   return _task_queues->size();
3799 }
3800 
3801 #if TASKQUEUE_STATS
3802 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3803   st->print_raw_cr("GC Task Stats");
3804   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3805   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3806 }
3807 
3808 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3809   print_taskqueue_stats_hdr(st);
3810 
3811   TaskQueueStats totals;
3812   const uint n = num_task_queues();
3813   for (uint i = 0; i < n; ++i) {
3814     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3815     totals += task_queue(i)->stats;
3816   }
3817   st->print_raw("tot "); totals.print(st); st->cr();
3818 
3819   DEBUG_ONLY(totals.verify());
3820 }
3821 
3822 void G1CollectedHeap::reset_taskqueue_stats() {
3823   const uint n = num_task_queues();
3824   for (uint i = 0; i < n; ++i) {
3825     task_queue(i)->stats.reset();
3826   }
3827 }
3828 #endif // TASKQUEUE_STATS
3829 
3830 void G1CollectedHeap::log_gc_header() {
3831   if (!G1Log::fine()) {
3832     return;
3833   }
3834 
3835   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3836 
3837   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3838     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3839     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3840 
3841   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3842 }
3843 
3844 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3845   if (!G1Log::fine()) {
3846     return;
3847   }
3848 
3849   if (G1Log::finer()) {
3850     if (evacuation_failed()) {
3851       gclog_or_tty->print(" (to-space exhausted)");
3852     }
3853     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3854     g1_policy()->phase_times()->note_gc_end();
3855     g1_policy()->phase_times()->print(pause_time_sec);
3856     g1_policy()->print_detailed_heap_transition();
3857   } else {
3858     if (evacuation_failed()) {
3859       gclog_or_tty->print("--");
3860     }
3861     g1_policy()->print_heap_transition();
3862     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3863   }
3864   gclog_or_tty->flush();
3865 }
3866 
3867 bool
3868 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3869   assert_at_safepoint(true /* should_be_vm_thread */);
3870   guarantee(!is_gc_active(), "collection is not reentrant");
3871 
3872   if (GC_locker::check_active_before_gc()) {
3873     return false;
3874   }
3875 
3876   _gc_timer_stw->register_gc_start();
3877 
3878   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3879 
3880   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3881   ResourceMark rm;
3882 
3883   G1Log::update_level();
3884   print_heap_before_gc();
3885   trace_heap_before_gc(_gc_tracer_stw);
3886 
3887   verify_region_sets_optional();
3888   verify_dirty_young_regions();
3889 
3890   // This call will decide whether this pause is an initial-mark
3891   // pause. If it is, during_initial_mark_pause() will return true
3892   // for the duration of this pause.
3893   g1_policy()->decide_on_conc_mark_initiation();
3894 
3895   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3896   assert(!g1_policy()->during_initial_mark_pause() ||
3897           g1_policy()->gcs_are_young(), "sanity");
3898 
3899   // We also do not allow mixed GCs during marking.
3900   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3901 
3902   // Record whether this pause is an initial mark. When the current
3903   // thread has completed its logging output and it's safe to signal
3904   // the CM thread, the flag's value in the policy has been reset.
3905   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3906 
3907   // Inner scope for scope based logging, timers, and stats collection
3908   {
3909     EvacuationInfo evacuation_info;
3910 
3911     if (g1_policy()->during_initial_mark_pause()) {
3912       // We are about to start a marking cycle, so we increment the
3913       // full collection counter.
3914       increment_old_marking_cycles_started();
3915       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3916     }
3917 
3918     _gc_tracer_stw->report_yc_type(yc_type());
3919 
3920     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3921 
3922     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3923                                                                   workers()->active_workers(),
3924                                                                   Threads::number_of_non_daemon_threads());
3925     workers()->set_active_workers(active_workers);
3926 
3927     double pause_start_sec = os::elapsedTime();
3928     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3929     log_gc_header();
3930 
3931     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3932     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3933 
3934     // If the secondary_free_list is not empty, append it to the
3935     // free_list. No need to wait for the cleanup operation to finish;
3936     // the region allocation code will check the secondary_free_list
3937     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3938     // set, skip this step so that the region allocation code has to
3939     // get entries from the secondary_free_list.
3940     if (!G1StressConcRegionFreeing) {
3941       append_secondary_free_list_if_not_empty_with_lock();
3942     }
3943 
3944     assert(check_young_list_well_formed(), "young list should be well formed");
3945 
3946     // Don't dynamically change the number of GC threads this early.  A value of
3947     // 0 is used to indicate serial work.  When parallel work is done,
3948     // it will be set.
3949 
3950     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3951       IsGCActiveMark x;
3952 
3953       gc_prologue(false);
3954       increment_total_collections(false /* full gc */);
3955       increment_gc_time_stamp();
3956 
3957       verify_before_gc();
3958 
3959       check_bitmaps("GC Start");
3960 
3961       COMPILER2_PRESENT(DerivedPointerTable::clear());
3962 
3963       // Please see comment in g1CollectedHeap.hpp and
3964       // G1CollectedHeap::ref_processing_init() to see how
3965       // reference processing currently works in G1.
3966 
3967       // Enable discovery in the STW reference processor
3968       ref_processor_stw()->enable_discovery();
3969 
3970       {
3971         // We want to temporarily turn off discovery by the
3972         // CM ref processor, if necessary, and turn it back on
3973         // on again later if we do. Using a scoped
3974         // NoRefDiscovery object will do this.
3975         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3976 
3977         // Forget the current alloc region (we might even choose it to be part
3978         // of the collection set!).
3979         _allocator->release_mutator_alloc_region();
3980 
3981         // We should call this after we retire the mutator alloc
3982         // region(s) so that all the ALLOC / RETIRE events are generated
3983         // before the start GC event.
3984         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3985 
3986         // This timing is only used by the ergonomics to handle our pause target.
3987         // It is unclear why this should not include the full pause. We will
3988         // investigate this in CR 7178365.
3989         //
3990         // Preserving the old comment here if that helps the investigation:
3991         //
3992         // The elapsed time induced by the start time below deliberately elides
3993         // the possible verification above.
3994         double sample_start_time_sec = os::elapsedTime();
3995 
3996 #if YOUNG_LIST_VERBOSE
3997         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3998         _young_list->print();
3999         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4000 #endif // YOUNG_LIST_VERBOSE
4001 
4002         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4003 
4004         double scan_wait_start = os::elapsedTime();
4005         // We have to wait until the CM threads finish scanning the
4006         // root regions as it's the only way to ensure that all the
4007         // objects on them have been correctly scanned before we start
4008         // moving them during the GC.
4009         bool waited = _cm->root_regions()->wait_until_scan_finished();
4010         double wait_time_ms = 0.0;
4011         if (waited) {
4012           double scan_wait_end = os::elapsedTime();
4013           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4014         }
4015         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4016 
4017 #if YOUNG_LIST_VERBOSE
4018         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4019         _young_list->print();
4020 #endif // YOUNG_LIST_VERBOSE
4021 
4022         if (g1_policy()->during_initial_mark_pause()) {
4023           concurrent_mark()->checkpointRootsInitialPre();
4024         }
4025 
4026 #if YOUNG_LIST_VERBOSE
4027         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4028         _young_list->print();
4029         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4030 #endif // YOUNG_LIST_VERBOSE
4031 
4032         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4033 
4034         register_humongous_regions_with_cset();
4035 
4036         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4037 
4038         _cm->note_start_of_gc();
4039         // We call this after finalize_cset() to
4040         // ensure that the CSet has been finalized.
4041         _cm->verify_no_cset_oops();
4042 
4043         if (_hr_printer.is_active()) {
4044           HeapRegion* hr = g1_policy()->collection_set();
4045           while (hr != NULL) {
4046             _hr_printer.cset(hr);
4047             hr = hr->next_in_collection_set();
4048           }
4049         }
4050 
4051 #ifdef ASSERT
4052         VerifyCSetClosure cl;
4053         collection_set_iterate(&cl);
4054 #endif // ASSERT
4055 
4056         setup_surviving_young_words();
4057 
4058         // Initialize the GC alloc regions.
4059         _allocator->init_gc_alloc_regions(evacuation_info);
4060 
4061         // Actually do the work...
4062         evacuate_collection_set(evacuation_info);
4063 
4064         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4065 
4066         eagerly_reclaim_humongous_regions();
4067 
4068         g1_policy()->clear_collection_set();
4069 
4070         cleanup_surviving_young_words();
4071 
4072         // Start a new incremental collection set for the next pause.
4073         g1_policy()->start_incremental_cset_building();
4074 
4075         clear_cset_fast_test();
4076 
4077         _young_list->reset_sampled_info();
4078 
4079         // Don't check the whole heap at this point as the
4080         // GC alloc regions from this pause have been tagged
4081         // as survivors and moved on to the survivor list.
4082         // Survivor regions will fail the !is_young() check.
4083         assert(check_young_list_empty(false /* check_heap */),
4084           "young list should be empty");
4085 
4086 #if YOUNG_LIST_VERBOSE
4087         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4088         _young_list->print();
4089 #endif // YOUNG_LIST_VERBOSE
4090 
4091         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4092                                              _young_list->first_survivor_region(),
4093                                              _young_list->last_survivor_region());
4094 
4095         _young_list->reset_auxilary_lists();
4096 
4097         if (evacuation_failed()) {
4098           _allocator->set_used(recalculate_used());
4099           if (_archive_allocator != NULL) {
4100             _archive_allocator->clear_used();
4101           }
4102           for (uint i = 0; i < ParallelGCThreads; i++) {
4103             if (_evacuation_failed_info_array[i].has_failed()) {
4104               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4105             }
4106           }
4107         } else {
4108           // The "used" of the the collection set have already been subtracted
4109           // when they were freed.  Add in the bytes evacuated.
4110           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4111         }
4112 
4113         if (g1_policy()->during_initial_mark_pause()) {
4114           // We have to do this before we notify the CM threads that
4115           // they can start working to make sure that all the
4116           // appropriate initialization is done on the CM object.
4117           concurrent_mark()->checkpointRootsInitialPost();
4118           set_marking_started();
4119           // Note that we don't actually trigger the CM thread at
4120           // this point. We do that later when we're sure that
4121           // the current thread has completed its logging output.
4122         }
4123 
4124         allocate_dummy_regions();
4125 
4126 #if YOUNG_LIST_VERBOSE
4127         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4128         _young_list->print();
4129         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4130 #endif // YOUNG_LIST_VERBOSE
4131 
4132         _allocator->init_mutator_alloc_region();
4133 
4134         {
4135           size_t expand_bytes = g1_policy()->expansion_amount();
4136           if (expand_bytes > 0) {
4137             size_t bytes_before = capacity();
4138             // No need for an ergo verbose message here,
4139             // expansion_amount() does this when it returns a value > 0.
4140             if (!expand(expand_bytes)) {
4141               // We failed to expand the heap. Cannot do anything about it.
4142             }
4143           }
4144         }
4145 
4146         // We redo the verification but now wrt to the new CSet which
4147         // has just got initialized after the previous CSet was freed.
4148         _cm->verify_no_cset_oops();
4149         _cm->note_end_of_gc();
4150 
4151         // This timing is only used by the ergonomics to handle our pause target.
4152         // It is unclear why this should not include the full pause. We will
4153         // investigate this in CR 7178365.
4154         double sample_end_time_sec = os::elapsedTime();
4155         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4156         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4157 
4158         MemoryService::track_memory_usage();
4159 
4160         // In prepare_for_verify() below we'll need to scan the deferred
4161         // update buffers to bring the RSets up-to-date if
4162         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4163         // the update buffers we'll probably need to scan cards on the
4164         // regions we just allocated to (i.e., the GC alloc
4165         // regions). However, during the last GC we called
4166         // set_saved_mark() on all the GC alloc regions, so card
4167         // scanning might skip the [saved_mark_word()...top()] area of
4168         // those regions (i.e., the area we allocated objects into
4169         // during the last GC). But it shouldn't. Given that
4170         // saved_mark_word() is conditional on whether the GC time stamp
4171         // on the region is current or not, by incrementing the GC time
4172         // stamp here we invalidate all the GC time stamps on all the
4173         // regions and saved_mark_word() will simply return top() for
4174         // all the regions. This is a nicer way of ensuring this rather
4175         // than iterating over the regions and fixing them. In fact, the
4176         // GC time stamp increment here also ensures that
4177         // saved_mark_word() will return top() between pauses, i.e.,
4178         // during concurrent refinement. So we don't need the
4179         // is_gc_active() check to decided which top to use when
4180         // scanning cards (see CR 7039627).
4181         increment_gc_time_stamp();
4182 
4183         verify_after_gc();
4184         check_bitmaps("GC End");
4185 
4186         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4187         ref_processor_stw()->verify_no_references_recorded();
4188 
4189         // CM reference discovery will be re-enabled if necessary.
4190       }
4191 
4192       // We should do this after we potentially expand the heap so
4193       // that all the COMMIT events are generated before the end GC
4194       // event, and after we retire the GC alloc regions so that all
4195       // RETIRE events are generated before the end GC event.
4196       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4197 
4198 #ifdef TRACESPINNING
4199       ParallelTaskTerminator::print_termination_counts();
4200 #endif
4201 
4202       gc_epilogue(false);
4203     }
4204 
4205     // Print the remainder of the GC log output.
4206     log_gc_footer(os::elapsedTime() - pause_start_sec);
4207 
4208     // It is not yet to safe to tell the concurrent mark to
4209     // start as we have some optional output below. We don't want the
4210     // output from the concurrent mark thread interfering with this
4211     // logging output either.
4212 
4213     _hrm.verify_optional();
4214     verify_region_sets_optional();
4215 
4216     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4217     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4218 
4219     print_heap_after_gc();
4220     trace_heap_after_gc(_gc_tracer_stw);
4221 
4222     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4223     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4224     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4225     // before any GC notifications are raised.
4226     g1mm()->update_sizes();
4227 
4228     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4229     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4230     _gc_timer_stw->register_gc_end();
4231     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4232   }
4233   // It should now be safe to tell the concurrent mark thread to start
4234   // without its logging output interfering with the logging output
4235   // that came from the pause.
4236 
4237   if (should_start_conc_mark) {
4238     // CAUTION: after the doConcurrentMark() call below,
4239     // the concurrent marking thread(s) could be running
4240     // concurrently with us. Make sure that anything after
4241     // this point does not assume that we are the only GC thread
4242     // running. Note: of course, the actual marking work will
4243     // not start until the safepoint itself is released in
4244     // SuspendibleThreadSet::desynchronize().
4245     doConcurrentMark();
4246   }
4247 
4248   return true;
4249 }
4250 
4251 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4252   _drain_in_progress = false;
4253   set_evac_failure_closure(cl);
4254   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4255 }
4256 
4257 void G1CollectedHeap::finalize_for_evac_failure() {
4258   assert(_evac_failure_scan_stack != NULL &&
4259          _evac_failure_scan_stack->length() == 0,
4260          "Postcondition");
4261   assert(!_drain_in_progress, "Postcondition");
4262   delete _evac_failure_scan_stack;
4263   _evac_failure_scan_stack = NULL;
4264 }
4265 
4266 void G1CollectedHeap::remove_self_forwarding_pointers() {
4267   double remove_self_forwards_start = os::elapsedTime();
4268 
4269   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4270   workers()->run_task(&rsfp_task);
4271 
4272   // Now restore saved marks, if any.
4273   assert(_objs_with_preserved_marks.size() ==
4274             _preserved_marks_of_objs.size(), "Both or none.");
4275   while (!_objs_with_preserved_marks.is_empty()) {
4276     oop obj = _objs_with_preserved_marks.pop();
4277     markOop m = _preserved_marks_of_objs.pop();
4278     obj->set_mark(m);
4279   }
4280   _objs_with_preserved_marks.clear(true);
4281   _preserved_marks_of_objs.clear(true);
4282 
4283   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4284 }
4285 
4286 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4287   _evac_failure_scan_stack->push(obj);
4288 }
4289 
4290 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4291   assert(_evac_failure_scan_stack != NULL, "precondition");
4292 
4293   while (_evac_failure_scan_stack->length() > 0) {
4294      oop obj = _evac_failure_scan_stack->pop();
4295      _evac_failure_closure->set_region(heap_region_containing(obj));
4296      obj->oop_iterate_backwards(_evac_failure_closure);
4297   }
4298 }
4299 
4300 oop
4301 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4302                                                oop old) {
4303   assert(obj_in_cs(old),
4304          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4305                  p2i(old)));
4306   markOop m = old->mark();
4307   oop forward_ptr = old->forward_to_atomic(old);
4308   if (forward_ptr == NULL) {
4309     // Forward-to-self succeeded.
4310     assert(_par_scan_state != NULL, "par scan state");
4311     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4312     uint queue_num = _par_scan_state->queue_num();
4313 
4314     _evacuation_failed = true;
4315     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4316     if (_evac_failure_closure != cl) {
4317       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4318       assert(!_drain_in_progress,
4319              "Should only be true while someone holds the lock.");
4320       // Set the global evac-failure closure to the current thread's.
4321       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4322       set_evac_failure_closure(cl);
4323       // Now do the common part.
4324       handle_evacuation_failure_common(old, m);
4325       // Reset to NULL.
4326       set_evac_failure_closure(NULL);
4327     } else {
4328       // The lock is already held, and this is recursive.
4329       assert(_drain_in_progress, "This should only be the recursive case.");
4330       handle_evacuation_failure_common(old, m);
4331     }
4332     return old;
4333   } else {
4334     // Forward-to-self failed. Either someone else managed to allocate
4335     // space for this object (old != forward_ptr) or they beat us in
4336     // self-forwarding it (old == forward_ptr).
4337     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4338            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4339                    "should not be in the CSet",
4340                    p2i(old), p2i(forward_ptr)));
4341     return forward_ptr;
4342   }
4343 }
4344 
4345 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4346   preserve_mark_if_necessary(old, m);
4347 
4348   HeapRegion* r = heap_region_containing(old);
4349   if (!r->evacuation_failed()) {
4350     r->set_evacuation_failed(true);
4351     _hr_printer.evac_failure(r);
4352   }
4353 
4354   push_on_evac_failure_scan_stack(old);
4355 
4356   if (!_drain_in_progress) {
4357     // prevent recursion in copy_to_survivor_space()
4358     _drain_in_progress = true;
4359     drain_evac_failure_scan_stack();
4360     _drain_in_progress = false;
4361   }
4362 }
4363 
4364 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4365   assert(evacuation_failed(), "Oversaving!");
4366   // We want to call the "for_promotion_failure" version only in the
4367   // case of a promotion failure.
4368   if (m->must_be_preserved_for_promotion_failure(obj)) {
4369     _objs_with_preserved_marks.push(obj);
4370     _preserved_marks_of_objs.push(m);
4371   }
4372 }
4373 
4374 void G1ParCopyHelper::mark_object(oop obj) {
4375   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4376 
4377   // We know that the object is not moving so it's safe to read its size.
4378   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4379 }
4380 
4381 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4382   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4383   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4384   assert(from_obj != to_obj, "should not be self-forwarded");
4385 
4386   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4387   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4388 
4389   // The object might be in the process of being copied by another
4390   // worker so we cannot trust that its to-space image is
4391   // well-formed. So we have to read its size from its from-space
4392   // image which we know should not be changing.
4393   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4394 }
4395 
4396 template <class T>
4397 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4398   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4399     _scanned_klass->record_modified_oops();
4400   }
4401 }
4402 
4403 template <G1Barrier barrier, G1Mark do_mark_object>
4404 template <class T>
4405 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4406   T heap_oop = oopDesc::load_heap_oop(p);
4407 
4408   if (oopDesc::is_null(heap_oop)) {
4409     return;
4410   }
4411 
4412   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4413 
4414   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4415 
4416   const InCSetState state = _g1->in_cset_state(obj);
4417   if (state.is_in_cset()) {
4418     oop forwardee;
4419     markOop m = obj->mark();
4420     if (m->is_marked()) {
4421       forwardee = (oop) m->decode_pointer();
4422     } else {
4423       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4424     }
4425     assert(forwardee != NULL, "forwardee should not be NULL");
4426     oopDesc::encode_store_heap_oop(p, forwardee);
4427     if (do_mark_object != G1MarkNone && forwardee != obj) {
4428       // If the object is self-forwarded we don't need to explicitly
4429       // mark it, the evacuation failure protocol will do so.
4430       mark_forwarded_object(obj, forwardee);
4431     }
4432 
4433     if (barrier == G1BarrierKlass) {
4434       do_klass_barrier(p, forwardee);
4435     }
4436   } else {
4437     if (state.is_humongous()) {
4438       _g1->set_humongous_is_live(obj);
4439     }
4440     // The object is not in collection set. If we're a root scanning
4441     // closure during an initial mark pause then attempt to mark the object.
4442     if (do_mark_object == G1MarkFromRoot) {
4443       mark_object(obj);
4444     }
4445   }
4446 
4447   if (barrier == G1BarrierEvac) {
4448     _par_scan_state->update_rs(_from, p, _worker_id);
4449   }
4450 }
4451 
4452 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4453 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4454 
4455 class G1ParEvacuateFollowersClosure : public VoidClosure {
4456 protected:
4457   G1CollectedHeap*              _g1h;
4458   G1ParScanThreadState*         _par_scan_state;
4459   RefToScanQueueSet*            _queues;
4460   ParallelTaskTerminator*       _terminator;
4461 
4462   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4463   RefToScanQueueSet*      queues()         { return _queues; }
4464   ParallelTaskTerminator* terminator()     { return _terminator; }
4465 
4466 public:
4467   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4468                                 G1ParScanThreadState* par_scan_state,
4469                                 RefToScanQueueSet* queues,
4470                                 ParallelTaskTerminator* terminator)
4471     : _g1h(g1h), _par_scan_state(par_scan_state),
4472       _queues(queues), _terminator(terminator) {}
4473 
4474   void do_void();
4475 
4476 private:
4477   inline bool offer_termination();
4478 };
4479 
4480 bool G1ParEvacuateFollowersClosure::offer_termination() {
4481   G1ParScanThreadState* const pss = par_scan_state();
4482   pss->start_term_time();
4483   const bool res = terminator()->offer_termination();
4484   pss->end_term_time();
4485   return res;
4486 }
4487 
4488 void G1ParEvacuateFollowersClosure::do_void() {
4489   G1ParScanThreadState* const pss = par_scan_state();
4490   pss->trim_queue();
4491   do {
4492     pss->steal_and_trim_queue(queues());
4493   } while (!offer_termination());
4494 }
4495 
4496 class G1KlassScanClosure : public KlassClosure {
4497  G1ParCopyHelper* _closure;
4498  bool             _process_only_dirty;
4499  int              _count;
4500  public:
4501   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4502       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4503   void do_klass(Klass* klass) {
4504     // If the klass has not been dirtied we know that there's
4505     // no references into  the young gen and we can skip it.
4506    if (!_process_only_dirty || klass->has_modified_oops()) {
4507       // Clean the klass since we're going to scavenge all the metadata.
4508       klass->clear_modified_oops();
4509 
4510       // Tell the closure that this klass is the Klass to scavenge
4511       // and is the one to dirty if oops are left pointing into the young gen.
4512       _closure->set_scanned_klass(klass);
4513 
4514       klass->oops_do(_closure);
4515 
4516       _closure->set_scanned_klass(NULL);
4517     }
4518     _count++;
4519   }
4520 };
4521 
4522 class G1ParTask : public AbstractGangTask {
4523 protected:
4524   G1CollectedHeap*       _g1h;
4525   RefToScanQueueSet      *_queues;
4526   G1RootProcessor*       _root_processor;
4527   ParallelTaskTerminator _terminator;
4528   uint _n_workers;
4529 
4530   Mutex _stats_lock;
4531   Mutex* stats_lock() { return &_stats_lock; }
4532 
4533 public:
4534   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4535     : AbstractGangTask("G1 collection"),
4536       _g1h(g1h),
4537       _queues(task_queues),
4538       _root_processor(root_processor),
4539       _terminator(n_workers, _queues),
4540       _n_workers(n_workers),
4541       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4542   {}
4543 
4544   RefToScanQueueSet* queues() { return _queues; }
4545 
4546   RefToScanQueue *work_queue(int i) {
4547     return queues()->queue(i);
4548   }
4549 
4550   ParallelTaskTerminator* terminator() { return &_terminator; }
4551 
4552   // Helps out with CLD processing.
4553   //
4554   // During InitialMark we need to:
4555   // 1) Scavenge all CLDs for the young GC.
4556   // 2) Mark all objects directly reachable from strong CLDs.
4557   template <G1Mark do_mark_object>
4558   class G1CLDClosure : public CLDClosure {
4559     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4560     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4561     G1KlassScanClosure                                _klass_in_cld_closure;
4562     bool                                              _claim;
4563 
4564    public:
4565     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4566                  bool only_young, bool claim)
4567         : _oop_closure(oop_closure),
4568           _oop_in_klass_closure(oop_closure->g1(),
4569                                 oop_closure->pss(),
4570                                 oop_closure->rp()),
4571           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4572           _claim(claim) {
4573 
4574     }
4575 
4576     void do_cld(ClassLoaderData* cld) {
4577       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4578     }
4579   };
4580 
4581   void work(uint worker_id) {
4582     if (worker_id >= _n_workers) return;  // no work needed this round
4583 
4584     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4585 
4586     {
4587       ResourceMark rm;
4588       HandleMark   hm;
4589 
4590       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4591 
4592       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4593       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4594 
4595       pss.set_evac_failure_closure(&evac_failure_cl);
4596 
4597       bool only_young = _g1h->g1_policy()->gcs_are_young();
4598 
4599       // Non-IM young GC.
4600       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4601       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4602                                                                                only_young, // Only process dirty klasses.
4603                                                                                false);     // No need to claim CLDs.
4604       // IM young GC.
4605       //    Strong roots closures.
4606       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4607       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4608                                                                                false, // Process all klasses.
4609                                                                                true); // Need to claim CLDs.
4610       //    Weak roots closures.
4611       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4612       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4613                                                                                     false, // Process all klasses.
4614                                                                                     true); // Need to claim CLDs.
4615 
4616       OopClosure* strong_root_cl;
4617       OopClosure* weak_root_cl;
4618       CLDClosure* strong_cld_cl;
4619       CLDClosure* weak_cld_cl;
4620 
4621       bool trace_metadata = false;
4622 
4623       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4624         // We also need to mark copied objects.
4625         strong_root_cl = &scan_mark_root_cl;
4626         strong_cld_cl  = &scan_mark_cld_cl;
4627         if (ClassUnloadingWithConcurrentMark) {
4628           weak_root_cl = &scan_mark_weak_root_cl;
4629           weak_cld_cl  = &scan_mark_weak_cld_cl;
4630           trace_metadata = true;
4631         } else {
4632           weak_root_cl = &scan_mark_root_cl;
4633           weak_cld_cl  = &scan_mark_cld_cl;
4634         }
4635       } else {
4636         strong_root_cl = &scan_only_root_cl;
4637         weak_root_cl   = &scan_only_root_cl;
4638         strong_cld_cl  = &scan_only_cld_cl;
4639         weak_cld_cl    = &scan_only_cld_cl;
4640       }
4641 
4642       pss.start_strong_roots();
4643 
4644       _root_processor->evacuate_roots(strong_root_cl,
4645                                       weak_root_cl,
4646                                       strong_cld_cl,
4647                                       weak_cld_cl,
4648                                       trace_metadata,
4649                                       worker_id);
4650 
4651       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4652       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4653                                             weak_root_cl,
4654                                             worker_id);
4655       pss.end_strong_roots();
4656 
4657       {
4658         double start = os::elapsedTime();
4659         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4660         evac.do_void();
4661         double elapsed_sec = os::elapsedTime() - start;
4662         double term_sec = pss.term_time();
4663         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4664         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4665         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4666       }
4667       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4668       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4669 
4670       if (PrintTerminationStats) {
4671         MutexLocker x(stats_lock());
4672         pss.print_termination_stats(worker_id);
4673       }
4674 
4675       assert(pss.queue_is_empty(), "should be empty");
4676 
4677       // Close the inner scope so that the ResourceMark and HandleMark
4678       // destructors are executed here and are included as part of the
4679       // "GC Worker Time".
4680     }
4681     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4682   }
4683 };
4684 
4685 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4686 private:
4687   BoolObjectClosure* _is_alive;
4688   int _initial_string_table_size;
4689   int _initial_symbol_table_size;
4690 
4691   bool  _process_strings;
4692   int _strings_processed;
4693   int _strings_removed;
4694 
4695   bool  _process_symbols;
4696   int _symbols_processed;
4697   int _symbols_removed;
4698 
4699 public:
4700   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4701     AbstractGangTask("String/Symbol Unlinking"),
4702     _is_alive(is_alive),
4703     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4704     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4705 
4706     _initial_string_table_size = StringTable::the_table()->table_size();
4707     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4708     if (process_strings) {
4709       StringTable::clear_parallel_claimed_index();
4710     }
4711     if (process_symbols) {
4712       SymbolTable::clear_parallel_claimed_index();
4713     }
4714   }
4715 
4716   ~G1StringSymbolTableUnlinkTask() {
4717     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4718               err_msg("claim value %d after unlink less than initial string table size %d",
4719                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4720     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4721               err_msg("claim value %d after unlink less than initial symbol table size %d",
4722                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4723 
4724     if (G1TraceStringSymbolTableScrubbing) {
4725       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4726                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4727                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4728                              strings_processed(), strings_removed(),
4729                              symbols_processed(), symbols_removed());
4730     }
4731   }
4732 
4733   void work(uint worker_id) {
4734     int strings_processed = 0;
4735     int strings_removed = 0;
4736     int symbols_processed = 0;
4737     int symbols_removed = 0;
4738     if (_process_strings) {
4739       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4740       Atomic::add(strings_processed, &_strings_processed);
4741       Atomic::add(strings_removed, &_strings_removed);
4742     }
4743     if (_process_symbols) {
4744       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4745       Atomic::add(symbols_processed, &_symbols_processed);
4746       Atomic::add(symbols_removed, &_symbols_removed);
4747     }
4748   }
4749 
4750   size_t strings_processed() const { return (size_t)_strings_processed; }
4751   size_t strings_removed()   const { return (size_t)_strings_removed; }
4752 
4753   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4754   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4755 };
4756 
4757 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4758 private:
4759   static Monitor* _lock;
4760 
4761   BoolObjectClosure* const _is_alive;
4762   const bool               _unloading_occurred;
4763   const uint               _num_workers;
4764 
4765   // Variables used to claim nmethods.
4766   nmethod* _first_nmethod;
4767   volatile nmethod* _claimed_nmethod;
4768 
4769   // The list of nmethods that need to be processed by the second pass.
4770   volatile nmethod* _postponed_list;
4771   volatile uint     _num_entered_barrier;
4772 
4773  public:
4774   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4775       _is_alive(is_alive),
4776       _unloading_occurred(unloading_occurred),
4777       _num_workers(num_workers),
4778       _first_nmethod(NULL),
4779       _claimed_nmethod(NULL),
4780       _postponed_list(NULL),
4781       _num_entered_barrier(0)
4782   {
4783     nmethod::increase_unloading_clock();
4784     // Get first alive nmethod
4785     NMethodIterator iter = NMethodIterator();
4786     if(iter.next_alive()) {
4787       _first_nmethod = iter.method();
4788     }
4789     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4790   }
4791 
4792   ~G1CodeCacheUnloadingTask() {
4793     CodeCache::verify_clean_inline_caches();
4794 
4795     CodeCache::set_needs_cache_clean(false);
4796     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4797 
4798     CodeCache::verify_icholder_relocations();
4799   }
4800 
4801  private:
4802   void add_to_postponed_list(nmethod* nm) {
4803       nmethod* old;
4804       do {
4805         old = (nmethod*)_postponed_list;
4806         nm->set_unloading_next(old);
4807       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4808   }
4809 
4810   void clean_nmethod(nmethod* nm) {
4811     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4812 
4813     if (postponed) {
4814       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4815       add_to_postponed_list(nm);
4816     }
4817 
4818     // Mark that this thread has been cleaned/unloaded.
4819     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4820     nm->set_unloading_clock(nmethod::global_unloading_clock());
4821   }
4822 
4823   void clean_nmethod_postponed(nmethod* nm) {
4824     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4825   }
4826 
4827   static const int MaxClaimNmethods = 16;
4828 
4829   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4830     nmethod* first;
4831     NMethodIterator last;
4832 
4833     do {
4834       *num_claimed_nmethods = 0;
4835 
4836       first = (nmethod*)_claimed_nmethod;
4837       last = NMethodIterator(first);
4838 
4839       if (first != NULL) {
4840 
4841         for (int i = 0; i < MaxClaimNmethods; i++) {
4842           if (!last.next_alive()) {
4843             break;
4844           }
4845           claimed_nmethods[i] = last.method();
4846           (*num_claimed_nmethods)++;
4847         }
4848       }
4849 
4850     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4851   }
4852 
4853   nmethod* claim_postponed_nmethod() {
4854     nmethod* claim;
4855     nmethod* next;
4856 
4857     do {
4858       claim = (nmethod*)_postponed_list;
4859       if (claim == NULL) {
4860         return NULL;
4861       }
4862 
4863       next = claim->unloading_next();
4864 
4865     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4866 
4867     return claim;
4868   }
4869 
4870  public:
4871   // Mark that we're done with the first pass of nmethod cleaning.
4872   void barrier_mark(uint worker_id) {
4873     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4874     _num_entered_barrier++;
4875     if (_num_entered_barrier == _num_workers) {
4876       ml.notify_all();
4877     }
4878   }
4879 
4880   // See if we have to wait for the other workers to
4881   // finish their first-pass nmethod cleaning work.
4882   void barrier_wait(uint worker_id) {
4883     if (_num_entered_barrier < _num_workers) {
4884       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4885       while (_num_entered_barrier < _num_workers) {
4886           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4887       }
4888     }
4889   }
4890 
4891   // Cleaning and unloading of nmethods. Some work has to be postponed
4892   // to the second pass, when we know which nmethods survive.
4893   void work_first_pass(uint worker_id) {
4894     // The first nmethods is claimed by the first worker.
4895     if (worker_id == 0 && _first_nmethod != NULL) {
4896       clean_nmethod(_first_nmethod);
4897       _first_nmethod = NULL;
4898     }
4899 
4900     int num_claimed_nmethods;
4901     nmethod* claimed_nmethods[MaxClaimNmethods];
4902 
4903     while (true) {
4904       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4905 
4906       if (num_claimed_nmethods == 0) {
4907         break;
4908       }
4909 
4910       for (int i = 0; i < num_claimed_nmethods; i++) {
4911         clean_nmethod(claimed_nmethods[i]);
4912       }
4913     }
4914   }
4915 
4916   void work_second_pass(uint worker_id) {
4917     nmethod* nm;
4918     // Take care of postponed nmethods.
4919     while ((nm = claim_postponed_nmethod()) != NULL) {
4920       clean_nmethod_postponed(nm);
4921     }
4922   }
4923 };
4924 
4925 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4926 
4927 class G1KlassCleaningTask : public StackObj {
4928   BoolObjectClosure*                      _is_alive;
4929   volatile jint                           _clean_klass_tree_claimed;
4930   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4931 
4932  public:
4933   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4934       _is_alive(is_alive),
4935       _clean_klass_tree_claimed(0),
4936       _klass_iterator() {
4937   }
4938 
4939  private:
4940   bool claim_clean_klass_tree_task() {
4941     if (_clean_klass_tree_claimed) {
4942       return false;
4943     }
4944 
4945     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4946   }
4947 
4948   InstanceKlass* claim_next_klass() {
4949     Klass* klass;
4950     do {
4951       klass =_klass_iterator.next_klass();
4952     } while (klass != NULL && !klass->oop_is_instance());
4953 
4954     return (InstanceKlass*)klass;
4955   }
4956 
4957 public:
4958 
4959   void clean_klass(InstanceKlass* ik) {
4960     ik->clean_implementors_list(_is_alive);
4961     ik->clean_method_data(_is_alive);
4962 
4963     // G1 specific cleanup work that has
4964     // been moved here to be done in parallel.
4965     ik->clean_dependent_nmethods();
4966   }
4967 
4968   void work() {
4969     ResourceMark rm;
4970 
4971     // One worker will clean the subklass/sibling klass tree.
4972     if (claim_clean_klass_tree_task()) {
4973       Klass::clean_subklass_tree(_is_alive);
4974     }
4975 
4976     // All workers will help cleaning the classes,
4977     InstanceKlass* klass;
4978     while ((klass = claim_next_klass()) != NULL) {
4979       clean_klass(klass);
4980     }
4981   }
4982 };
4983 
4984 // To minimize the remark pause times, the tasks below are done in parallel.
4985 class G1ParallelCleaningTask : public AbstractGangTask {
4986 private:
4987   G1StringSymbolTableUnlinkTask _string_symbol_task;
4988   G1CodeCacheUnloadingTask      _code_cache_task;
4989   G1KlassCleaningTask           _klass_cleaning_task;
4990 
4991 public:
4992   // The constructor is run in the VMThread.
4993   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4994       AbstractGangTask("Parallel Cleaning"),
4995       _string_symbol_task(is_alive, process_strings, process_symbols),
4996       _code_cache_task(num_workers, is_alive, unloading_occurred),
4997       _klass_cleaning_task(is_alive) {
4998   }
4999 
5000   // The parallel work done by all worker threads.
5001   void work(uint worker_id) {
5002     // Do first pass of code cache cleaning.
5003     _code_cache_task.work_first_pass(worker_id);
5004 
5005     // Let the threads mark that the first pass is done.
5006     _code_cache_task.barrier_mark(worker_id);
5007 
5008     // Clean the Strings and Symbols.
5009     _string_symbol_task.work(worker_id);
5010 
5011     // Wait for all workers to finish the first code cache cleaning pass.
5012     _code_cache_task.barrier_wait(worker_id);
5013 
5014     // Do the second code cache cleaning work, which realize on
5015     // the liveness information gathered during the first pass.
5016     _code_cache_task.work_second_pass(worker_id);
5017 
5018     // Clean all klasses that were not unloaded.
5019     _klass_cleaning_task.work();
5020   }
5021 };
5022 
5023 
5024 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5025                                         bool process_strings,
5026                                         bool process_symbols,
5027                                         bool class_unloading_occurred) {
5028   uint n_workers = workers()->active_workers();
5029 
5030   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5031                                         n_workers, class_unloading_occurred);
5032   workers()->run_task(&g1_unlink_task);
5033 }
5034 
5035 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5036                                                      bool process_strings, bool process_symbols) {
5037   {
5038     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5039     workers()->run_task(&g1_unlink_task);
5040   }
5041 
5042   if (G1StringDedup::is_enabled()) {
5043     G1StringDedup::unlink(is_alive);
5044   }
5045 }
5046 
5047 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5048  private:
5049   DirtyCardQueueSet* _queue;
5050  public:
5051   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5052 
5053   virtual void work(uint worker_id) {
5054     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5055     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5056 
5057     RedirtyLoggedCardTableEntryClosure cl;
5058     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5059 
5060     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5061   }
5062 };
5063 
5064 void G1CollectedHeap::redirty_logged_cards() {
5065   double redirty_logged_cards_start = os::elapsedTime();
5066 
5067   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5068   dirty_card_queue_set().reset_for_par_iteration();
5069   workers()->run_task(&redirty_task);
5070 
5071   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5072   dcq.merge_bufferlists(&dirty_card_queue_set());
5073   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5074 
5075   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5076 }
5077 
5078 // Weak Reference Processing support
5079 
5080 // An always "is_alive" closure that is used to preserve referents.
5081 // If the object is non-null then it's alive.  Used in the preservation
5082 // of referent objects that are pointed to by reference objects
5083 // discovered by the CM ref processor.
5084 class G1AlwaysAliveClosure: public BoolObjectClosure {
5085   G1CollectedHeap* _g1;
5086 public:
5087   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5088   bool do_object_b(oop p) {
5089     if (p != NULL) {
5090       return true;
5091     }
5092     return false;
5093   }
5094 };
5095 
5096 bool G1STWIsAliveClosure::do_object_b(oop p) {
5097   // An object is reachable if it is outside the collection set,
5098   // or is inside and copied.
5099   return !_g1->obj_in_cs(p) || p->is_forwarded();
5100 }
5101 
5102 // Non Copying Keep Alive closure
5103 class G1KeepAliveClosure: public OopClosure {
5104   G1CollectedHeap* _g1;
5105 public:
5106   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5107   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5108   void do_oop(oop* p) {
5109     oop obj = *p;
5110     assert(obj != NULL, "the caller should have filtered out NULL values");
5111 
5112     const InCSetState cset_state = _g1->in_cset_state(obj);
5113     if (!cset_state.is_in_cset_or_humongous()) {
5114       return;
5115     }
5116     if (cset_state.is_in_cset()) {
5117       assert( obj->is_forwarded(), "invariant" );
5118       *p = obj->forwardee();
5119     } else {
5120       assert(!obj->is_forwarded(), "invariant" );
5121       assert(cset_state.is_humongous(),
5122              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5123       _g1->set_humongous_is_live(obj);
5124     }
5125   }
5126 };
5127 
5128 // Copying Keep Alive closure - can be called from both
5129 // serial and parallel code as long as different worker
5130 // threads utilize different G1ParScanThreadState instances
5131 // and different queues.
5132 
5133 class G1CopyingKeepAliveClosure: public OopClosure {
5134   G1CollectedHeap*         _g1h;
5135   OopClosure*              _copy_non_heap_obj_cl;
5136   G1ParScanThreadState*    _par_scan_state;
5137 
5138 public:
5139   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5140                             OopClosure* non_heap_obj_cl,
5141                             G1ParScanThreadState* pss):
5142     _g1h(g1h),
5143     _copy_non_heap_obj_cl(non_heap_obj_cl),
5144     _par_scan_state(pss)
5145   {}
5146 
5147   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5148   virtual void do_oop(      oop* p) { do_oop_work(p); }
5149 
5150   template <class T> void do_oop_work(T* p) {
5151     oop obj = oopDesc::load_decode_heap_oop(p);
5152 
5153     if (_g1h->is_in_cset_or_humongous(obj)) {
5154       // If the referent object has been forwarded (either copied
5155       // to a new location or to itself in the event of an
5156       // evacuation failure) then we need to update the reference
5157       // field and, if both reference and referent are in the G1
5158       // heap, update the RSet for the referent.
5159       //
5160       // If the referent has not been forwarded then we have to keep
5161       // it alive by policy. Therefore we have copy the referent.
5162       //
5163       // If the reference field is in the G1 heap then we can push
5164       // on the PSS queue. When the queue is drained (after each
5165       // phase of reference processing) the object and it's followers
5166       // will be copied, the reference field set to point to the
5167       // new location, and the RSet updated. Otherwise we need to
5168       // use the the non-heap or metadata closures directly to copy
5169       // the referent object and update the pointer, while avoiding
5170       // updating the RSet.
5171 
5172       if (_g1h->is_in_g1_reserved(p)) {
5173         _par_scan_state->push_on_queue(p);
5174       } else {
5175         assert(!Metaspace::contains((const void*)p),
5176                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5177         _copy_non_heap_obj_cl->do_oop(p);
5178       }
5179     }
5180   }
5181 };
5182 
5183 // Serial drain queue closure. Called as the 'complete_gc'
5184 // closure for each discovered list in some of the
5185 // reference processing phases.
5186 
5187 class G1STWDrainQueueClosure: public VoidClosure {
5188 protected:
5189   G1CollectedHeap* _g1h;
5190   G1ParScanThreadState* _par_scan_state;
5191 
5192   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5193 
5194 public:
5195   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5196     _g1h(g1h),
5197     _par_scan_state(pss)
5198   { }
5199 
5200   void do_void() {
5201     G1ParScanThreadState* const pss = par_scan_state();
5202     pss->trim_queue();
5203   }
5204 };
5205 
5206 // Parallel Reference Processing closures
5207 
5208 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5209 // processing during G1 evacuation pauses.
5210 
5211 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5212 private:
5213   G1CollectedHeap*   _g1h;
5214   RefToScanQueueSet* _queues;
5215   FlexibleWorkGang*  _workers;
5216   uint               _active_workers;
5217 
5218 public:
5219   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5220                            FlexibleWorkGang* workers,
5221                            RefToScanQueueSet *task_queues,
5222                            uint n_workers) :
5223     _g1h(g1h),
5224     _queues(task_queues),
5225     _workers(workers),
5226     _active_workers(n_workers)
5227   {
5228     assert(n_workers > 0, "shouldn't call this otherwise");
5229   }
5230 
5231   // Executes the given task using concurrent marking worker threads.
5232   virtual void execute(ProcessTask& task);
5233   virtual void execute(EnqueueTask& task);
5234 };
5235 
5236 // Gang task for possibly parallel reference processing
5237 
5238 class G1STWRefProcTaskProxy: public AbstractGangTask {
5239   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5240   ProcessTask&     _proc_task;
5241   G1CollectedHeap* _g1h;
5242   RefToScanQueueSet *_task_queues;
5243   ParallelTaskTerminator* _terminator;
5244 
5245 public:
5246   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5247                      G1CollectedHeap* g1h,
5248                      RefToScanQueueSet *task_queues,
5249                      ParallelTaskTerminator* terminator) :
5250     AbstractGangTask("Process reference objects in parallel"),
5251     _proc_task(proc_task),
5252     _g1h(g1h),
5253     _task_queues(task_queues),
5254     _terminator(terminator)
5255   {}
5256 
5257   virtual void work(uint worker_id) {
5258     // The reference processing task executed by a single worker.
5259     ResourceMark rm;
5260     HandleMark   hm;
5261 
5262     G1STWIsAliveClosure is_alive(_g1h);
5263 
5264     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5265     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5266 
5267     pss.set_evac_failure_closure(&evac_failure_cl);
5268 
5269     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5270 
5271     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5272 
5273     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5274 
5275     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5276       // We also need to mark copied objects.
5277       copy_non_heap_cl = &copy_mark_non_heap_cl;
5278     }
5279 
5280     // Keep alive closure.
5281     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5282 
5283     // Complete GC closure
5284     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5285 
5286     // Call the reference processing task's work routine.
5287     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5288 
5289     // Note we cannot assert that the refs array is empty here as not all
5290     // of the processing tasks (specifically phase2 - pp2_work) execute
5291     // the complete_gc closure (which ordinarily would drain the queue) so
5292     // the queue may not be empty.
5293   }
5294 };
5295 
5296 // Driver routine for parallel reference processing.
5297 // Creates an instance of the ref processing gang
5298 // task and has the worker threads execute it.
5299 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5300   assert(_workers != NULL, "Need parallel worker threads.");
5301 
5302   ParallelTaskTerminator terminator(_active_workers, _queues);
5303   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5304 
5305   _workers->run_task(&proc_task_proxy);
5306 }
5307 
5308 // Gang task for parallel reference enqueueing.
5309 
5310 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5311   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5312   EnqueueTask& _enq_task;
5313 
5314 public:
5315   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5316     AbstractGangTask("Enqueue reference objects in parallel"),
5317     _enq_task(enq_task)
5318   { }
5319 
5320   virtual void work(uint worker_id) {
5321     _enq_task.work(worker_id);
5322   }
5323 };
5324 
5325 // Driver routine for parallel reference enqueueing.
5326 // Creates an instance of the ref enqueueing gang
5327 // task and has the worker threads execute it.
5328 
5329 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5330   assert(_workers != NULL, "Need parallel worker threads.");
5331 
5332   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5333 
5334   _workers->run_task(&enq_task_proxy);
5335 }
5336 
5337 // End of weak reference support closures
5338 
5339 // Abstract task used to preserve (i.e. copy) any referent objects
5340 // that are in the collection set and are pointed to by reference
5341 // objects discovered by the CM ref processor.
5342 
5343 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5344 protected:
5345   G1CollectedHeap* _g1h;
5346   RefToScanQueueSet      *_queues;
5347   ParallelTaskTerminator _terminator;
5348   uint _n_workers;
5349 
5350 public:
5351   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5352     AbstractGangTask("ParPreserveCMReferents"),
5353     _g1h(g1h),
5354     _queues(task_queues),
5355     _terminator(workers, _queues),
5356     _n_workers(workers)
5357   { }
5358 
5359   void work(uint worker_id) {
5360     ResourceMark rm;
5361     HandleMark   hm;
5362 
5363     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5364     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5365 
5366     pss.set_evac_failure_closure(&evac_failure_cl);
5367 
5368     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5369 
5370     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5371 
5372     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5373 
5374     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5375 
5376     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5377       // We also need to mark copied objects.
5378       copy_non_heap_cl = &copy_mark_non_heap_cl;
5379     }
5380 
5381     // Is alive closure
5382     G1AlwaysAliveClosure always_alive(_g1h);
5383 
5384     // Copying keep alive closure. Applied to referent objects that need
5385     // to be copied.
5386     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5387 
5388     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5389 
5390     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5391     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5392 
5393     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5394     // So this must be true - but assert just in case someone decides to
5395     // change the worker ids.
5396     assert(worker_id < limit, "sanity");
5397     assert(!rp->discovery_is_atomic(), "check this code");
5398 
5399     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5400     for (uint idx = worker_id; idx < limit; idx += stride) {
5401       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5402 
5403       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5404       while (iter.has_next()) {
5405         // Since discovery is not atomic for the CM ref processor, we
5406         // can see some null referent objects.
5407         iter.load_ptrs(DEBUG_ONLY(true));
5408         oop ref = iter.obj();
5409 
5410         // This will filter nulls.
5411         if (iter.is_referent_alive()) {
5412           iter.make_referent_alive();
5413         }
5414         iter.move_to_next();
5415       }
5416     }
5417 
5418     // Drain the queue - which may cause stealing
5419     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5420     drain_queue.do_void();
5421     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5422     assert(pss.queue_is_empty(), "should be");
5423   }
5424 };
5425 
5426 // Weak Reference processing during an evacuation pause (part 1).
5427 void G1CollectedHeap::process_discovered_references() {
5428   double ref_proc_start = os::elapsedTime();
5429 
5430   ReferenceProcessor* rp = _ref_processor_stw;
5431   assert(rp->discovery_enabled(), "should have been enabled");
5432 
5433   // Any reference objects, in the collection set, that were 'discovered'
5434   // by the CM ref processor should have already been copied (either by
5435   // applying the external root copy closure to the discovered lists, or
5436   // by following an RSet entry).
5437   //
5438   // But some of the referents, that are in the collection set, that these
5439   // reference objects point to may not have been copied: the STW ref
5440   // processor would have seen that the reference object had already
5441   // been 'discovered' and would have skipped discovering the reference,
5442   // but would not have treated the reference object as a regular oop.
5443   // As a result the copy closure would not have been applied to the
5444   // referent object.
5445   //
5446   // We need to explicitly copy these referent objects - the references
5447   // will be processed at the end of remarking.
5448   //
5449   // We also need to do this copying before we process the reference
5450   // objects discovered by the STW ref processor in case one of these
5451   // referents points to another object which is also referenced by an
5452   // object discovered by the STW ref processor.
5453 
5454   uint no_of_gc_workers = workers()->active_workers();
5455 
5456   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5457                                                  no_of_gc_workers,
5458                                                  _task_queues);
5459 
5460   workers()->run_task(&keep_cm_referents);
5461 
5462   // Closure to test whether a referent is alive.
5463   G1STWIsAliveClosure is_alive(this);
5464 
5465   // Even when parallel reference processing is enabled, the processing
5466   // of JNI refs is serial and performed serially by the current thread
5467   // rather than by a worker. The following PSS will be used for processing
5468   // JNI refs.
5469 
5470   // Use only a single queue for this PSS.
5471   G1ParScanThreadState            pss(this, 0, NULL);
5472 
5473   // We do not embed a reference processor in the copying/scanning
5474   // closures while we're actually processing the discovered
5475   // reference objects.
5476   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5477 
5478   pss.set_evac_failure_closure(&evac_failure_cl);
5479 
5480   assert(pss.queue_is_empty(), "pre-condition");
5481 
5482   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5483 
5484   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5485 
5486   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5487 
5488   if (g1_policy()->during_initial_mark_pause()) {
5489     // We also need to mark copied objects.
5490     copy_non_heap_cl = &copy_mark_non_heap_cl;
5491   }
5492 
5493   // Keep alive closure.
5494   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5495 
5496   // Serial Complete GC closure
5497   G1STWDrainQueueClosure drain_queue(this, &pss);
5498 
5499   // Setup the soft refs policy...
5500   rp->setup_policy(false);
5501 
5502   ReferenceProcessorStats stats;
5503   if (!rp->processing_is_mt()) {
5504     // Serial reference processing...
5505     stats = rp->process_discovered_references(&is_alive,
5506                                               &keep_alive,
5507                                               &drain_queue,
5508                                               NULL,
5509                                               _gc_timer_stw,
5510                                               _gc_tracer_stw->gc_id());
5511   } else {
5512     // Parallel reference processing
5513     assert(rp->num_q() == no_of_gc_workers, "sanity");
5514     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5515 
5516     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5517     stats = rp->process_discovered_references(&is_alive,
5518                                               &keep_alive,
5519                                               &drain_queue,
5520                                               &par_task_executor,
5521                                               _gc_timer_stw,
5522                                               _gc_tracer_stw->gc_id());
5523   }
5524 
5525   _gc_tracer_stw->report_gc_reference_stats(stats);
5526 
5527   // We have completed copying any necessary live referent objects.
5528   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5529 
5530   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5531   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5532 }
5533 
5534 // Weak Reference processing during an evacuation pause (part 2).
5535 void G1CollectedHeap::enqueue_discovered_references() {
5536   double ref_enq_start = os::elapsedTime();
5537 
5538   ReferenceProcessor* rp = _ref_processor_stw;
5539   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5540 
5541   // Now enqueue any remaining on the discovered lists on to
5542   // the pending list.
5543   if (!rp->processing_is_mt()) {
5544     // Serial reference processing...
5545     rp->enqueue_discovered_references();
5546   } else {
5547     // Parallel reference enqueueing
5548 
5549     uint n_workers = workers()->active_workers();
5550 
5551     assert(rp->num_q() == n_workers, "sanity");
5552     assert(n_workers <= rp->max_num_q(), "sanity");
5553 
5554     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, n_workers);
5555     rp->enqueue_discovered_references(&par_task_executor);
5556   }
5557 
5558   rp->verify_no_references_recorded();
5559   assert(!rp->discovery_enabled(), "should have been disabled");
5560 
5561   // FIXME
5562   // CM's reference processing also cleans up the string and symbol tables.
5563   // Should we do that here also? We could, but it is a serial operation
5564   // and could significantly increase the pause time.
5565 
5566   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5567   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5568 }
5569 
5570 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5571   _expand_heap_after_alloc_failure = true;
5572   _evacuation_failed = false;
5573 
5574   // Should G1EvacuationFailureALot be in effect for this GC?
5575   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5576 
5577   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5578 
5579   // Disable the hot card cache.
5580   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5581   hot_card_cache->reset_hot_cache_claimed_index();
5582   hot_card_cache->set_use_cache(false);
5583 
5584   const uint n_workers = workers()->active_workers();
5585 
5586   init_for_evac_failure(NULL);
5587 
5588   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5589   double start_par_time_sec = os::elapsedTime();
5590   double end_par_time_sec;
5591 
5592   {
5593     G1RootProcessor root_processor(this, n_workers);
5594     G1ParTask g1_par_task(this, _task_queues, &root_processor, n_workers);
5595     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5596     if (g1_policy()->during_initial_mark_pause()) {
5597       ClassLoaderDataGraph::clear_claimed_marks();
5598     }
5599 
5600     // The individual threads will set their evac-failure closures.
5601     if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5602 
5603     workers()->run_task(&g1_par_task);
5604     end_par_time_sec = os::elapsedTime();
5605 
5606     // Closing the inner scope will execute the destructor
5607     // for the G1RootProcessor object. We record the current
5608     // elapsed time before closing the scope so that time
5609     // taken for the destructor is NOT included in the
5610     // reported parallel time.
5611   }
5612 
5613   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5614 
5615   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5616   phase_times->record_par_time(par_time_ms);
5617 
5618   double code_root_fixup_time_ms =
5619         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5620   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5621 
5622   // Process any discovered reference objects - we have
5623   // to do this _before_ we retire the GC alloc regions
5624   // as we may have to copy some 'reachable' referent
5625   // objects (and their reachable sub-graphs) that were
5626   // not copied during the pause.
5627   process_discovered_references();
5628 
5629   if (G1StringDedup::is_enabled()) {
5630     double fixup_start = os::elapsedTime();
5631 
5632     G1STWIsAliveClosure is_alive(this);
5633     G1KeepAliveClosure keep_alive(this);
5634     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5635 
5636     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5637     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5638   }
5639 
5640   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5641   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5642 
5643   // Reset and re-enable the hot card cache.
5644   // Note the counts for the cards in the regions in the
5645   // collection set are reset when the collection set is freed.
5646   hot_card_cache->reset_hot_cache();
5647   hot_card_cache->set_use_cache(true);
5648 
5649   purge_code_root_memory();
5650 
5651   finalize_for_evac_failure();
5652 
5653   if (evacuation_failed()) {
5654     remove_self_forwarding_pointers();
5655 
5656     // Reset the G1EvacuationFailureALot counters and flags
5657     // Note: the values are reset only when an actual
5658     // evacuation failure occurs.
5659     NOT_PRODUCT(reset_evacuation_should_fail();)
5660   }
5661 
5662   // Enqueue any remaining references remaining on the STW
5663   // reference processor's discovered lists. We need to do
5664   // this after the card table is cleaned (and verified) as
5665   // the act of enqueueing entries on to the pending list
5666   // will log these updates (and dirty their associated
5667   // cards). We need these updates logged to update any
5668   // RSets.
5669   enqueue_discovered_references();
5670 
5671   redirty_logged_cards();
5672   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5673 }
5674 
5675 void G1CollectedHeap::free_region(HeapRegion* hr,
5676                                   FreeRegionList* free_list,
5677                                   bool par,
5678                                   bool locked) {
5679   assert(!hr->is_free(), "the region should not be free");
5680   assert(!hr->is_empty(), "the region should not be empty");
5681   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5682   assert(free_list != NULL, "pre-condition");
5683 
5684   if (G1VerifyBitmaps) {
5685     MemRegion mr(hr->bottom(), hr->end());
5686     concurrent_mark()->clearRangePrevBitmap(mr);
5687   }
5688 
5689   // Clear the card counts for this region.
5690   // Note: we only need to do this if the region is not young
5691   // (since we don't refine cards in young regions).
5692   if (!hr->is_young()) {
5693     _cg1r->hot_card_cache()->reset_card_counts(hr);
5694   }
5695   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5696   free_list->add_ordered(hr);
5697 }
5698 
5699 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5700                                      FreeRegionList* free_list,
5701                                      bool par) {
5702   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5703   assert(free_list != NULL, "pre-condition");
5704 
5705   size_t hr_capacity = hr->capacity();
5706   // We need to read this before we make the region non-humongous,
5707   // otherwise the information will be gone.
5708   uint last_index = hr->last_hc_index();
5709   hr->clear_humongous();
5710   free_region(hr, free_list, par);
5711 
5712   uint i = hr->hrm_index() + 1;
5713   while (i < last_index) {
5714     HeapRegion* curr_hr = region_at(i);
5715     assert(curr_hr->is_continues_humongous(), "invariant");
5716     curr_hr->clear_humongous();
5717     free_region(curr_hr, free_list, par);
5718     i += 1;
5719   }
5720 }
5721 
5722 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5723                                        const HeapRegionSetCount& humongous_regions_removed) {
5724   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5725     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5726     _old_set.bulk_remove(old_regions_removed);
5727     _humongous_set.bulk_remove(humongous_regions_removed);
5728   }
5729 
5730 }
5731 
5732 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5733   assert(list != NULL, "list can't be null");
5734   if (!list->is_empty()) {
5735     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5736     _hrm.insert_list_into_free_list(list);
5737   }
5738 }
5739 
5740 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5741   _allocator->decrease_used(bytes);
5742 }
5743 
5744 class G1ParCleanupCTTask : public AbstractGangTask {
5745   G1SATBCardTableModRefBS* _ct_bs;
5746   G1CollectedHeap* _g1h;
5747   HeapRegion* volatile _su_head;
5748 public:
5749   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5750                      G1CollectedHeap* g1h) :
5751     AbstractGangTask("G1 Par Cleanup CT Task"),
5752     _ct_bs(ct_bs), _g1h(g1h) { }
5753 
5754   void work(uint worker_id) {
5755     HeapRegion* r;
5756     while (r = _g1h->pop_dirty_cards_region()) {
5757       clear_cards(r);
5758     }
5759   }
5760 
5761   void clear_cards(HeapRegion* r) {
5762     // Cards of the survivors should have already been dirtied.
5763     if (!r->is_survivor()) {
5764       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5765     }
5766   }
5767 };
5768 
5769 #ifndef PRODUCT
5770 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5771   G1CollectedHeap* _g1h;
5772   G1SATBCardTableModRefBS* _ct_bs;
5773 public:
5774   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5775     : _g1h(g1h), _ct_bs(ct_bs) { }
5776   virtual bool doHeapRegion(HeapRegion* r) {
5777     if (r->is_survivor()) {
5778       _g1h->verify_dirty_region(r);
5779     } else {
5780       _g1h->verify_not_dirty_region(r);
5781     }
5782     return false;
5783   }
5784 };
5785 
5786 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5787   // All of the region should be clean.
5788   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5789   MemRegion mr(hr->bottom(), hr->end());
5790   ct_bs->verify_not_dirty_region(mr);
5791 }
5792 
5793 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5794   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5795   // dirty allocated blocks as they allocate them. The thread that
5796   // retires each region and replaces it with a new one will do a
5797   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5798   // not dirty that area (one less thing to have to do while holding
5799   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5800   // is dirty.
5801   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5802   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5803   if (hr->is_young()) {
5804     ct_bs->verify_g1_young_region(mr);
5805   } else {
5806     ct_bs->verify_dirty_region(mr);
5807   }
5808 }
5809 
5810 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5811   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5812   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5813     verify_dirty_region(hr);
5814   }
5815 }
5816 
5817 void G1CollectedHeap::verify_dirty_young_regions() {
5818   verify_dirty_young_list(_young_list->first_region());
5819 }
5820 
5821 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5822                                                HeapWord* tams, HeapWord* end) {
5823   guarantee(tams <= end,
5824             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, p2i(tams), p2i(end)));
5825   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5826   if (result < end) {
5827     gclog_or_tty->cr();
5828     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5829                            bitmap_name, p2i(result));
5830     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5831                            bitmap_name, p2i(tams), p2i(end));
5832     return false;
5833   }
5834   return true;
5835 }
5836 
5837 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5838   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5839   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5840 
5841   HeapWord* bottom = hr->bottom();
5842   HeapWord* ptams  = hr->prev_top_at_mark_start();
5843   HeapWord* ntams  = hr->next_top_at_mark_start();
5844   HeapWord* end    = hr->end();
5845 
5846   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5847 
5848   bool res_n = true;
5849   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5850   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5851   // if we happen to be in that state.
5852   if (mark_in_progress() || !_cmThread->in_progress()) {
5853     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5854   }
5855   if (!res_p || !res_n) {
5856     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5857                            HR_FORMAT_PARAMS(hr));
5858     gclog_or_tty->print_cr("#### Caller: %s", caller);
5859     return false;
5860   }
5861   return true;
5862 }
5863 
5864 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5865   if (!G1VerifyBitmaps) return;
5866 
5867   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5868 }
5869 
5870 class G1VerifyBitmapClosure : public HeapRegionClosure {
5871 private:
5872   const char* _caller;
5873   G1CollectedHeap* _g1h;
5874   bool _failures;
5875 
5876 public:
5877   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5878     _caller(caller), _g1h(g1h), _failures(false) { }
5879 
5880   bool failures() { return _failures; }
5881 
5882   virtual bool doHeapRegion(HeapRegion* hr) {
5883     if (hr->is_continues_humongous()) return false;
5884 
5885     bool result = _g1h->verify_bitmaps(_caller, hr);
5886     if (!result) {
5887       _failures = true;
5888     }
5889     return false;
5890   }
5891 };
5892 
5893 void G1CollectedHeap::check_bitmaps(const char* caller) {
5894   if (!G1VerifyBitmaps) return;
5895 
5896   G1VerifyBitmapClosure cl(caller, this);
5897   heap_region_iterate(&cl);
5898   guarantee(!cl.failures(), "bitmap verification");
5899 }
5900 
5901 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5902  private:
5903   bool _failures;
5904  public:
5905   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5906 
5907   virtual bool doHeapRegion(HeapRegion* hr) {
5908     uint i = hr->hrm_index();
5909     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5910     if (hr->is_humongous()) {
5911       if (hr->in_collection_set()) {
5912         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5913         _failures = true;
5914         return true;
5915       }
5916       if (cset_state.is_in_cset()) {
5917         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5918         _failures = true;
5919         return true;
5920       }
5921       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5922         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5923         _failures = true;
5924         return true;
5925       }
5926     } else {
5927       if (cset_state.is_humongous()) {
5928         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5929         _failures = true;
5930         return true;
5931       }
5932       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5933         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5934                                hr->in_collection_set(), cset_state.value(), i);
5935         _failures = true;
5936         return true;
5937       }
5938       if (cset_state.is_in_cset()) {
5939         if (hr->is_young() != (cset_state.is_young())) {
5940           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5941                                  hr->is_young(), cset_state.value(), i);
5942           _failures = true;
5943           return true;
5944         }
5945         if (hr->is_old() != (cset_state.is_old())) {
5946           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5947                                  hr->is_old(), cset_state.value(), i);
5948           _failures = true;
5949           return true;
5950         }
5951       }
5952     }
5953     return false;
5954   }
5955 
5956   bool failures() const { return _failures; }
5957 };
5958 
5959 bool G1CollectedHeap::check_cset_fast_test() {
5960   G1CheckCSetFastTableClosure cl;
5961   _hrm.iterate(&cl);
5962   return !cl.failures();
5963 }
5964 #endif // PRODUCT
5965 
5966 void G1CollectedHeap::cleanUpCardTable() {
5967   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5968   double start = os::elapsedTime();
5969 
5970   {
5971     // Iterate over the dirty cards region list.
5972     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5973 
5974     workers()->run_task(&cleanup_task);
5975 #ifndef PRODUCT
5976     if (G1VerifyCTCleanup || VerifyAfterGC) {
5977       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5978       heap_region_iterate(&cleanup_verifier);
5979     }
5980 #endif
5981   }
5982 
5983   double elapsed = os::elapsedTime() - start;
5984   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5985 }
5986 
5987 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5988   size_t pre_used = 0;
5989   FreeRegionList local_free_list("Local List for CSet Freeing");
5990 
5991   double young_time_ms     = 0.0;
5992   double non_young_time_ms = 0.0;
5993 
5994   // Since the collection set is a superset of the the young list,
5995   // all we need to do to clear the young list is clear its
5996   // head and length, and unlink any young regions in the code below
5997   _young_list->clear();
5998 
5999   G1CollectorPolicy* policy = g1_policy();
6000 
6001   double start_sec = os::elapsedTime();
6002   bool non_young = true;
6003 
6004   HeapRegion* cur = cs_head;
6005   int age_bound = -1;
6006   size_t rs_lengths = 0;
6007 
6008   while (cur != NULL) {
6009     assert(!is_on_master_free_list(cur), "sanity");
6010     if (non_young) {
6011       if (cur->is_young()) {
6012         double end_sec = os::elapsedTime();
6013         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6014         non_young_time_ms += elapsed_ms;
6015 
6016         start_sec = os::elapsedTime();
6017         non_young = false;
6018       }
6019     } else {
6020       if (!cur->is_young()) {
6021         double end_sec = os::elapsedTime();
6022         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6023         young_time_ms += elapsed_ms;
6024 
6025         start_sec = os::elapsedTime();
6026         non_young = true;
6027       }
6028     }
6029 
6030     rs_lengths += cur->rem_set()->occupied_locked();
6031 
6032     HeapRegion* next = cur->next_in_collection_set();
6033     assert(cur->in_collection_set(), "bad CS");
6034     cur->set_next_in_collection_set(NULL);
6035     clear_in_cset(cur);
6036 
6037     if (cur->is_young()) {
6038       int index = cur->young_index_in_cset();
6039       assert(index != -1, "invariant");
6040       assert((uint) index < policy->young_cset_region_length(), "invariant");
6041       size_t words_survived = _surviving_young_words[index];
6042       cur->record_surv_words_in_group(words_survived);
6043 
6044       // At this point the we have 'popped' cur from the collection set
6045       // (linked via next_in_collection_set()) but it is still in the
6046       // young list (linked via next_young_region()). Clear the
6047       // _next_young_region field.
6048       cur->set_next_young_region(NULL);
6049     } else {
6050       int index = cur->young_index_in_cset();
6051       assert(index == -1, "invariant");
6052     }
6053 
6054     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6055             (!cur->is_young() && cur->young_index_in_cset() == -1),
6056             "invariant" );
6057 
6058     if (!cur->evacuation_failed()) {
6059       MemRegion used_mr = cur->used_region();
6060 
6061       // And the region is empty.
6062       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6063       pre_used += cur->used();
6064       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6065     } else {
6066       cur->uninstall_surv_rate_group();
6067       if (cur->is_young()) {
6068         cur->set_young_index_in_cset(-1);
6069       }
6070       cur->set_evacuation_failed(false);
6071       // The region is now considered to be old.
6072       cur->set_old();
6073       _old_set.add(cur);
6074       evacuation_info.increment_collectionset_used_after(cur->used());
6075     }
6076     cur = next;
6077   }
6078 
6079   evacuation_info.set_regions_freed(local_free_list.length());
6080   policy->record_max_rs_lengths(rs_lengths);
6081   policy->cset_regions_freed();
6082 
6083   double end_sec = os::elapsedTime();
6084   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6085 
6086   if (non_young) {
6087     non_young_time_ms += elapsed_ms;
6088   } else {
6089     young_time_ms += elapsed_ms;
6090   }
6091 
6092   prepend_to_freelist(&local_free_list);
6093   decrement_summary_bytes(pre_used);
6094   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6095   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6096 }
6097 
6098 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6099  private:
6100   FreeRegionList* _free_region_list;
6101   HeapRegionSet* _proxy_set;
6102   HeapRegionSetCount _humongous_regions_removed;
6103   size_t _freed_bytes;
6104  public:
6105 
6106   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6107     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6108   }
6109 
6110   virtual bool doHeapRegion(HeapRegion* r) {
6111     if (!r->is_starts_humongous()) {
6112       return false;
6113     }
6114 
6115     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6116 
6117     oop obj = (oop)r->bottom();
6118     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6119 
6120     // The following checks whether the humongous object is live are sufficient.
6121     // The main additional check (in addition to having a reference from the roots
6122     // or the young gen) is whether the humongous object has a remembered set entry.
6123     //
6124     // A humongous object cannot be live if there is no remembered set for it
6125     // because:
6126     // - there can be no references from within humongous starts regions referencing
6127     // the object because we never allocate other objects into them.
6128     // (I.e. there are no intra-region references that may be missed by the
6129     // remembered set)
6130     // - as soon there is a remembered set entry to the humongous starts region
6131     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6132     // until the end of a concurrent mark.
6133     //
6134     // It is not required to check whether the object has been found dead by marking
6135     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6136     // all objects allocated during that time are considered live.
6137     // SATB marking is even more conservative than the remembered set.
6138     // So if at this point in the collection there is no remembered set entry,
6139     // nobody has a reference to it.
6140     // At the start of collection we flush all refinement logs, and remembered sets
6141     // are completely up-to-date wrt to references to the humongous object.
6142     //
6143     // Other implementation considerations:
6144     // - never consider object arrays at this time because they would pose
6145     // considerable effort for cleaning up the the remembered sets. This is
6146     // required because stale remembered sets might reference locations that
6147     // are currently allocated into.
6148     uint region_idx = r->hrm_index();
6149     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6150         !r->rem_set()->is_empty()) {
6151 
6152       if (G1TraceEagerReclaimHumongousObjects) {
6153         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6154                                region_idx,
6155                                (size_t)obj->size() * HeapWordSize,
6156                                p2i(r->bottom()),
6157                                r->region_num(),
6158                                r->rem_set()->occupied(),
6159                                r->rem_set()->strong_code_roots_list_length(),
6160                                next_bitmap->isMarked(r->bottom()),
6161                                g1h->is_humongous_reclaim_candidate(region_idx),
6162                                obj->is_typeArray()
6163                               );
6164       }
6165 
6166       return false;
6167     }
6168 
6169     guarantee(obj->is_typeArray(),
6170               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6171                       PTR_FORMAT " is not.",
6172                       p2i(r->bottom())));
6173 
6174     if (G1TraceEagerReclaimHumongousObjects) {
6175       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6176                              region_idx,
6177                              (size_t)obj->size() * HeapWordSize,
6178                              p2i(r->bottom()),
6179                              r->region_num(),
6180                              r->rem_set()->occupied(),
6181                              r->rem_set()->strong_code_roots_list_length(),
6182                              next_bitmap->isMarked(r->bottom()),
6183                              g1h->is_humongous_reclaim_candidate(region_idx),
6184                              obj->is_typeArray()
6185                             );
6186     }
6187     // Need to clear mark bit of the humongous object if already set.
6188     if (next_bitmap->isMarked(r->bottom())) {
6189       next_bitmap->clear(r->bottom());
6190     }
6191     _freed_bytes += r->used();
6192     r->set_containing_set(NULL);
6193     _humongous_regions_removed.increment(1u, r->capacity());
6194     g1h->free_humongous_region(r, _free_region_list, false);
6195 
6196     return false;
6197   }
6198 
6199   HeapRegionSetCount& humongous_free_count() {
6200     return _humongous_regions_removed;
6201   }
6202 
6203   size_t bytes_freed() const {
6204     return _freed_bytes;
6205   }
6206 
6207   size_t humongous_reclaimed() const {
6208     return _humongous_regions_removed.length();
6209   }
6210 };
6211 
6212 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6213   assert_at_safepoint(true);
6214 
6215   if (!G1EagerReclaimHumongousObjects ||
6216       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6217     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6218     return;
6219   }
6220 
6221   double start_time = os::elapsedTime();
6222 
6223   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6224 
6225   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6226   heap_region_iterate(&cl);
6227 
6228   HeapRegionSetCount empty_set;
6229   remove_from_old_sets(empty_set, cl.humongous_free_count());
6230 
6231   G1HRPrinter* hrp = hr_printer();
6232   if (hrp->is_active()) {
6233     FreeRegionListIterator iter(&local_cleanup_list);
6234     while (iter.more_available()) {
6235       HeapRegion* hr = iter.get_next();
6236       hrp->cleanup(hr);
6237     }
6238   }
6239 
6240   prepend_to_freelist(&local_cleanup_list);
6241   decrement_summary_bytes(cl.bytes_freed());
6242 
6243   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6244                                                                     cl.humongous_reclaimed());
6245 }
6246 
6247 // This routine is similar to the above but does not record
6248 // any policy statistics or update free lists; we are abandoning
6249 // the current incremental collection set in preparation of a
6250 // full collection. After the full GC we will start to build up
6251 // the incremental collection set again.
6252 // This is only called when we're doing a full collection
6253 // and is immediately followed by the tearing down of the young list.
6254 
6255 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6256   HeapRegion* cur = cs_head;
6257 
6258   while (cur != NULL) {
6259     HeapRegion* next = cur->next_in_collection_set();
6260     assert(cur->in_collection_set(), "bad CS");
6261     cur->set_next_in_collection_set(NULL);
6262     clear_in_cset(cur);
6263     cur->set_young_index_in_cset(-1);
6264     cur = next;
6265   }
6266 }
6267 
6268 void G1CollectedHeap::set_free_regions_coming() {
6269   if (G1ConcRegionFreeingVerbose) {
6270     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6271                            "setting free regions coming");
6272   }
6273 
6274   assert(!free_regions_coming(), "pre-condition");
6275   _free_regions_coming = true;
6276 }
6277 
6278 void G1CollectedHeap::reset_free_regions_coming() {
6279   assert(free_regions_coming(), "pre-condition");
6280 
6281   {
6282     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6283     _free_regions_coming = false;
6284     SecondaryFreeList_lock->notify_all();
6285   }
6286 
6287   if (G1ConcRegionFreeingVerbose) {
6288     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6289                            "reset free regions coming");
6290   }
6291 }
6292 
6293 void G1CollectedHeap::wait_while_free_regions_coming() {
6294   // Most of the time we won't have to wait, so let's do a quick test
6295   // first before we take the lock.
6296   if (!free_regions_coming()) {
6297     return;
6298   }
6299 
6300   if (G1ConcRegionFreeingVerbose) {
6301     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6302                            "waiting for free regions");
6303   }
6304 
6305   {
6306     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6307     while (free_regions_coming()) {
6308       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6309     }
6310   }
6311 
6312   if (G1ConcRegionFreeingVerbose) {
6313     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6314                            "done waiting for free regions");
6315   }
6316 }
6317 
6318 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6319   _young_list->push_region(hr);
6320 }
6321 
6322 class NoYoungRegionsClosure: public HeapRegionClosure {
6323 private:
6324   bool _success;
6325 public:
6326   NoYoungRegionsClosure() : _success(true) { }
6327   bool doHeapRegion(HeapRegion* r) {
6328     if (r->is_young()) {
6329       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6330                              p2i(r->bottom()), p2i(r->end()));
6331       _success = false;
6332     }
6333     return false;
6334   }
6335   bool success() { return _success; }
6336 };
6337 
6338 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6339   bool ret = _young_list->check_list_empty(check_sample);
6340 
6341   if (check_heap) {
6342     NoYoungRegionsClosure closure;
6343     heap_region_iterate(&closure);
6344     ret = ret && closure.success();
6345   }
6346 
6347   return ret;
6348 }
6349 
6350 class TearDownRegionSetsClosure : public HeapRegionClosure {
6351 private:
6352   HeapRegionSet *_old_set;
6353 
6354 public:
6355   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6356 
6357   bool doHeapRegion(HeapRegion* r) {
6358     if (r->is_old()) {
6359       _old_set->remove(r);
6360     } else {
6361       // We ignore free regions, we'll empty the free list afterwards.
6362       // We ignore young regions, we'll empty the young list afterwards.
6363       // We ignore humongous regions, we're not tearing down the
6364       // humongous regions set.
6365       // We ignore archive regions.
6366       assert(r->is_free() || r->is_young() || r->is_humongous() || r->is_archive(),
6367              "it cannot be another type");
6368     }
6369     return false;
6370   }
6371 
6372   ~TearDownRegionSetsClosure() {
6373     assert(_old_set->is_empty(), "post-condition");
6374   }
6375 };
6376 
6377 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6378   assert_at_safepoint(true /* should_be_vm_thread */);
6379 
6380   if (!free_list_only) {
6381     TearDownRegionSetsClosure cl(&_old_set);
6382     heap_region_iterate(&cl);
6383 
6384     // Note that emptying the _young_list is postponed and instead done as
6385     // the first step when rebuilding the regions sets again. The reason for
6386     // this is that during a full GC string deduplication needs to know if
6387     // a collected region was young or old when the full GC was initiated.
6388   }
6389   _hrm.remove_all_free_regions();
6390 }
6391 
6392 class RebuildRegionSetsClosure : public HeapRegionClosure {
6393 private:
6394   bool            _free_list_only;
6395   HeapRegionSet*   _old_set;
6396   HeapRegionManager*   _hrm;
6397   size_t          _total_used;
6398 
6399 public:
6400   RebuildRegionSetsClosure(bool free_list_only,
6401                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6402     _free_list_only(free_list_only),
6403     _old_set(old_set), _hrm(hrm), _total_used(0) {
6404     assert(_hrm->num_free_regions() == 0, "pre-condition");
6405     if (!free_list_only) {
6406       assert(_old_set->is_empty(), "pre-condition");
6407     }
6408   }
6409 
6410   bool doHeapRegion(HeapRegion* r) {
6411     if (r->is_continues_humongous()) {
6412       return false;
6413     }
6414 
6415     if (r->is_empty()) {
6416       // Add free regions to the free list
6417       r->set_free();
6418       r->set_allocation_context(AllocationContext::system());
6419       _hrm->insert_into_free_list(r);
6420     } else if (!_free_list_only) {
6421       assert(!r->is_young(), "we should not come across young regions");
6422 
6423       if (r->is_humongous()) {
6424         // We ignore humongous regions, we left the humongous set unchanged 
6425       } else {
6426         // Objects that were compacted would have ended up on regions
6427         // that were previously old or free.  Archive regions (which are
6428         // old) will not have been touched.
6429         assert(r->is_free() || r->is_old(), "invariant");
6430         // We now consider them old, so register as such. Leave
6431         // archive regions set that way, however, while still adding
6432         // them to the old set.
6433         if (!r->is_archive()) {
6434           r->set_old();
6435         }
6436         _old_set->add(r);
6437       }
6438       _total_used += r->used();
6439     }
6440 
6441     return false;
6442   }
6443 
6444   size_t total_used() {
6445     return _total_used;
6446   }
6447 };
6448 
6449 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6450   assert_at_safepoint(true /* should_be_vm_thread */);
6451 
6452   if (!free_list_only) {
6453     _young_list->empty_list();
6454   }
6455 
6456   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6457   heap_region_iterate(&cl);
6458 
6459   if (!free_list_only) {
6460     _allocator->set_used(cl.total_used());
6461     if (_archive_allocator != NULL) {
6462       _archive_allocator->clear_used();
6463     }
6464   }
6465   assert(_allocator->used_unlocked() == recalculate_used(),
6466          err_msg("inconsistent _allocator->used_unlocked(), "
6467                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6468                  _allocator->used_unlocked(), recalculate_used()));
6469 }
6470 
6471 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6472   _refine_cte_cl->set_concurrent(concurrent);
6473 }
6474 
6475 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6476   HeapRegion* hr = heap_region_containing(p);
6477   return hr->is_in(p);
6478 }
6479 
6480 // Methods for the mutator alloc region
6481 
6482 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6483                                                       bool force) {
6484   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6485   assert(!force || g1_policy()->can_expand_young_list(),
6486          "if force is true we should be able to expand the young list");
6487   bool young_list_full = g1_policy()->is_young_list_full();
6488   if (force || !young_list_full) {
6489     HeapRegion* new_alloc_region = new_region(word_size,
6490                                               false /* is_old */,
6491                                               false /* do_expand */);
6492     if (new_alloc_region != NULL) {
6493       set_region_short_lived_locked(new_alloc_region);
6494       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6495       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6496       return new_alloc_region;
6497     }
6498   }
6499   return NULL;
6500 }
6501 
6502 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6503                                                   size_t allocated_bytes) {
6504   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6505   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6506 
6507   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6508   _allocator->increase_used(allocated_bytes);
6509   _hr_printer.retire(alloc_region);
6510   // We update the eden sizes here, when the region is retired,
6511   // instead of when it's allocated, since this is the point that its
6512   // used space has been recored in _summary_bytes_used.
6513   g1mm()->update_eden_size();
6514 }
6515 
6516 // Methods for the GC alloc regions
6517 
6518 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6519                                                  uint count,
6520                                                  InCSetState dest) {
6521   assert(FreeList_lock->owned_by_self(), "pre-condition");
6522 
6523   if (count < g1_policy()->max_regions(dest)) {
6524     const bool is_survivor = (dest.is_young());
6525     HeapRegion* new_alloc_region = new_region(word_size,
6526                                               !is_survivor,
6527                                               true /* do_expand */);
6528     if (new_alloc_region != NULL) {
6529       // We really only need to do this for old regions given that we
6530       // should never scan survivors. But it doesn't hurt to do it
6531       // for survivors too.
6532       new_alloc_region->record_timestamp();
6533       if (is_survivor) {
6534         new_alloc_region->set_survivor();
6535         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6536         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6537       } else {
6538         new_alloc_region->set_old();
6539         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6540         check_bitmaps("Old Region Allocation", new_alloc_region);
6541       }
6542       bool during_im = g1_policy()->during_initial_mark_pause();
6543       new_alloc_region->note_start_of_copying(during_im);
6544       return new_alloc_region;
6545     }
6546   }
6547   return NULL;
6548 }
6549 
6550 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6551                                              size_t allocated_bytes,
6552                                              InCSetState dest) {
6553   bool during_im = g1_policy()->during_initial_mark_pause();
6554   alloc_region->note_end_of_copying(during_im);
6555   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6556   if (dest.is_young()) {
6557     young_list()->add_survivor_region(alloc_region);
6558   } else {
6559     _old_set.add(alloc_region);
6560   }
6561   _hr_printer.retire(alloc_region);
6562 }
6563 
6564 HeapRegion* G1CollectedHeap::alloc_highest_available_region() {
6565   bool expanded = false;
6566   uint index = _hrm.find_highest_available(&expanded);
6567 
6568   if (index != G1_NO_HRM_INDEX) {
6569     if (expanded) {
6570       ergo_verbose1(ErgoHeapSizing,
6571                     "attempt heap expansion",
6572                     ergo_format_reason("requested address range outside heap bounds")
6573                     ergo_format_byte("region size"),
6574                     HeapRegion::GrainWords * HeapWordSize);
6575     }
6576     _hrm.allocate_free_regions_starting_at(index, 1);
6577     return region_at(index);
6578   }
6579   return NULL;
6580 }
6581 
6582 
6583 // Heap region set verification
6584 
6585 class VerifyRegionListsClosure : public HeapRegionClosure {
6586 private:
6587   HeapRegionSet*   _old_set;
6588   HeapRegionSet*   _humongous_set;
6589   HeapRegionManager*   _hrm;
6590 
6591 public:
6592   HeapRegionSetCount _old_count;
6593   HeapRegionSetCount _humongous_count;
6594   HeapRegionSetCount _free_count;
6595 
6596   VerifyRegionListsClosure(HeapRegionSet* old_set,
6597                            HeapRegionSet* humongous_set,
6598                            HeapRegionManager* hrm) :
6599     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6600     _old_count(), _humongous_count(), _free_count(){ }
6601 
6602   bool doHeapRegion(HeapRegion* hr) {
6603     if (hr->is_continues_humongous()) {
6604       return false;
6605     }
6606 
6607     if (hr->is_young()) {
6608       // TODO
6609     } else if (hr->is_starts_humongous()) {
6610       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6611       _humongous_count.increment(1u, hr->capacity());
6612     } else if (hr->is_empty()) {
6613       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6614       _free_count.increment(1u, hr->capacity());
6615     } else if (hr->is_old()) {
6616       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6617       _old_count.increment(1u, hr->capacity());
6618     } else {
6619       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6620       ShouldNotReachHere();
6621     }
6622     return false;
6623   }
6624 
6625   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6626     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6627     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6628         old_set->total_capacity_bytes(), _old_count.capacity()));
6629 
6630     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6631     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6632         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6633 
6634     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6635     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6636         free_list->total_capacity_bytes(), _free_count.capacity()));
6637   }
6638 };
6639 
6640 void G1CollectedHeap::verify_region_sets() {
6641   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6642 
6643   // First, check the explicit lists.
6644   _hrm.verify();
6645   {
6646     // Given that a concurrent operation might be adding regions to
6647     // the secondary free list we have to take the lock before
6648     // verifying it.
6649     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6650     _secondary_free_list.verify_list();
6651   }
6652 
6653   // If a concurrent region freeing operation is in progress it will
6654   // be difficult to correctly attributed any free regions we come
6655   // across to the correct free list given that they might belong to
6656   // one of several (free_list, secondary_free_list, any local lists,
6657   // etc.). So, if that's the case we will skip the rest of the
6658   // verification operation. Alternatively, waiting for the concurrent
6659   // operation to complete will have a non-trivial effect on the GC's
6660   // operation (no concurrent operation will last longer than the
6661   // interval between two calls to verification) and it might hide
6662   // any issues that we would like to catch during testing.
6663   if (free_regions_coming()) {
6664     return;
6665   }
6666 
6667   // Make sure we append the secondary_free_list on the free_list so
6668   // that all free regions we will come across can be safely
6669   // attributed to the free_list.
6670   append_secondary_free_list_if_not_empty_with_lock();
6671 
6672   // Finally, make sure that the region accounting in the lists is
6673   // consistent with what we see in the heap.
6674 
6675   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6676   heap_region_iterate(&cl);
6677   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6678 }
6679 
6680 // Optimized nmethod scanning
6681 
6682 class RegisterNMethodOopClosure: public OopClosure {
6683   G1CollectedHeap* _g1h;
6684   nmethod* _nm;
6685 
6686   template <class T> void do_oop_work(T* p) {
6687     T heap_oop = oopDesc::load_heap_oop(p);
6688     if (!oopDesc::is_null(heap_oop)) {
6689       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6690       HeapRegion* hr = _g1h->heap_region_containing(obj);
6691       assert(!hr->is_continues_humongous(),
6692              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6693                      " starting at "HR_FORMAT,
6694                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6695 
6696       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6697       hr->add_strong_code_root_locked(_nm);
6698     }
6699   }
6700 
6701 public:
6702   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6703     _g1h(g1h), _nm(nm) {}
6704 
6705   void do_oop(oop* p)       { do_oop_work(p); }
6706   void do_oop(narrowOop* p) { do_oop_work(p); }
6707 };
6708 
6709 class UnregisterNMethodOopClosure: public OopClosure {
6710   G1CollectedHeap* _g1h;
6711   nmethod* _nm;
6712 
6713   template <class T> void do_oop_work(T* p) {
6714     T heap_oop = oopDesc::load_heap_oop(p);
6715     if (!oopDesc::is_null(heap_oop)) {
6716       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6717       HeapRegion* hr = _g1h->heap_region_containing(obj);
6718       assert(!hr->is_continues_humongous(),
6719              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6720                      " starting at "HR_FORMAT,
6721                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6722 
6723       hr->remove_strong_code_root(_nm);
6724     }
6725   }
6726 
6727 public:
6728   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6729     _g1h(g1h), _nm(nm) {}
6730 
6731   void do_oop(oop* p)       { do_oop_work(p); }
6732   void do_oop(narrowOop* p) { do_oop_work(p); }
6733 };
6734 
6735 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6736   CollectedHeap::register_nmethod(nm);
6737 
6738   guarantee(nm != NULL, "sanity");
6739   RegisterNMethodOopClosure reg_cl(this, nm);
6740   nm->oops_do(&reg_cl);
6741 }
6742 
6743 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6744   CollectedHeap::unregister_nmethod(nm);
6745 
6746   guarantee(nm != NULL, "sanity");
6747   UnregisterNMethodOopClosure reg_cl(this, nm);
6748   nm->oops_do(&reg_cl, true);
6749 }
6750 
6751 void G1CollectedHeap::purge_code_root_memory() {
6752   double purge_start = os::elapsedTime();
6753   G1CodeRootSet::purge();
6754   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6755   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6756 }
6757 
6758 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6759   G1CollectedHeap* _g1h;
6760 
6761 public:
6762   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6763     _g1h(g1h) {}
6764 
6765   void do_code_blob(CodeBlob* cb) {
6766     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6767     if (nm == NULL) {
6768       return;
6769     }
6770 
6771     if (ScavengeRootsInCode) {
6772       _g1h->register_nmethod(nm);
6773     }
6774   }
6775 };
6776 
6777 void G1CollectedHeap::rebuild_strong_code_roots() {
6778   RebuildStrongCodeRootClosure blob_cl(this);
6779   CodeCache::blobs_do(&blob_cl);
6780 }