1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1AllocRegion.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1ErgoVerbose.hpp"
  38 #include "gc/g1/g1EvacFailure.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Log.hpp"
  41 #include "gc/g1/g1MarkSweep.hpp"
  42 #include "gc/g1/g1OopClosures.inline.hpp"
  43 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  44 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  45 #include "gc/g1/g1RemSet.inline.hpp"
  46 #include "gc/g1/g1RootProcessor.hpp"
  47 #include "gc/g1/g1StringDedup.hpp"
  48 #include "gc/g1/g1YCTypes.hpp"
  49 #include "gc/g1/heapRegion.inline.hpp"
  50 #include "gc/g1/heapRegionRemSet.hpp"
  51 #include "gc/g1/heapRegionSet.inline.hpp"
  52 #include "gc/g1/suspendibleThreadSet.hpp"
  53 #include "gc/g1/vm_operations_g1.hpp"
  54 #include "gc/shared/gcHeapSummary.hpp"
  55 #include "gc/shared/gcLocker.inline.hpp"
  56 #include "gc/shared/gcTimer.hpp"
  57 #include "gc/shared/gcTrace.hpp"
  58 #include "gc/shared/gcTraceTime.hpp"
  59 #include "gc/shared/generationSpec.hpp"
  60 #include "gc/shared/isGCActiveMark.hpp"
  61 #include "gc/shared/referenceProcessor.hpp"
  62 #include "gc/shared/taskqueue.inline.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/iterator.hpp"
  65 #include "oops/oop.inline.hpp"
  66 #include "runtime/atomic.inline.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/vmThread.hpp"
  69 #include "utilities/globalDefinitions.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  73 
  74 // turn it on so that the contents of the young list (scan-only /
  75 // to-be-collected) are printed at "strategic" points before / during
  76 // / after the collection --- this is useful for debugging
  77 #define YOUNG_LIST_VERBOSE 0
  78 // CURRENT STATUS
  79 // This file is under construction.  Search for "FIXME".
  80 
  81 // INVARIANTS/NOTES
  82 //
  83 // All allocation activity covered by the G1CollectedHeap interface is
  84 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  85 // and allocate_new_tlab, which are the "entry" points to the
  86 // allocation code from the rest of the JVM.  (Note that this does not
  87 // apply to TLAB allocation, which is not part of this interface: it
  88 // is done by clients of this interface.)
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   bool _concurrent;
  94 public:
  95   RefineCardTableEntryClosure() : _concurrent(true) { }
  96 
  97   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  98     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  99     // This path is executed by the concurrent refine or mutator threads,
 100     // concurrently, and so we do not care if card_ptr contains references
 101     // that point into the collection set.
 102     assert(!oops_into_cset, "should be");
 103 
 104     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 105       // Caller will actually yield.
 106       return false;
 107     }
 108     // Otherwise, we finished successfully; return true.
 109     return true;
 110   }
 111 
 112   void set_concurrent(bool b) { _concurrent = b; }
 113 };
 114 
 115 
 116 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 117  private:
 118   size_t _num_processed;
 119 
 120  public:
 121   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 122 
 123   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 124     *card_ptr = CardTableModRefBS::dirty_card_val();
 125     _num_processed++;
 126     return true;
 127   }
 128 
 129   size_t num_processed() const { return _num_processed; }
 130 };
 131 
 132 YoungList::YoungList(G1CollectedHeap* g1h) :
 133     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 134     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 135   guarantee(check_list_empty(false), "just making sure...");
 136 }
 137 
 138 void YoungList::push_region(HeapRegion *hr) {
 139   assert(!hr->is_young(), "should not already be young");
 140   assert(hr->get_next_young_region() == NULL, "cause it should!");
 141 
 142   hr->set_next_young_region(_head);
 143   _head = hr;
 144 
 145   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 146   ++_length;
 147 }
 148 
 149 void YoungList::add_survivor_region(HeapRegion* hr) {
 150   assert(hr->is_survivor(), "should be flagged as survivor region");
 151   assert(hr->get_next_young_region() == NULL, "cause it should!");
 152 
 153   hr->set_next_young_region(_survivor_head);
 154   if (_survivor_head == NULL) {
 155     _survivor_tail = hr;
 156   }
 157   _survivor_head = hr;
 158   ++_survivor_length;
 159 }
 160 
 161 void YoungList::empty_list(HeapRegion* list) {
 162   while (list != NULL) {
 163     HeapRegion* next = list->get_next_young_region();
 164     list->set_next_young_region(NULL);
 165     list->uninstall_surv_rate_group();
 166     // This is called before a Full GC and all the non-empty /
 167     // non-humongous regions at the end of the Full GC will end up as
 168     // old anyway.
 169     list->set_old();
 170     list = next;
 171   }
 172 }
 173 
 174 void YoungList::empty_list() {
 175   assert(check_list_well_formed(), "young list should be well formed");
 176 
 177   empty_list(_head);
 178   _head = NULL;
 179   _length = 0;
 180 
 181   empty_list(_survivor_head);
 182   _survivor_head = NULL;
 183   _survivor_tail = NULL;
 184   _survivor_length = 0;
 185 
 186   _last_sampled_rs_lengths = 0;
 187 
 188   assert(check_list_empty(false), "just making sure...");
 189 }
 190 
 191 bool YoungList::check_list_well_formed() {
 192   bool ret = true;
 193 
 194   uint length = 0;
 195   HeapRegion* curr = _head;
 196   HeapRegion* last = NULL;
 197   while (curr != NULL) {
 198     if (!curr->is_young()) {
 199       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 200                              "incorrectly tagged (y: %d, surv: %d)",
 201                              p2i(curr->bottom()), p2i(curr->end()),
 202                              curr->is_young(), curr->is_survivor());
 203       ret = false;
 204     }
 205     ++length;
 206     last = curr;
 207     curr = curr->get_next_young_region();
 208   }
 209   ret = ret && (length == _length);
 210 
 211   if (!ret) {
 212     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 213     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 214                            length, _length);
 215   }
 216 
 217   return ret;
 218 }
 219 
 220 bool YoungList::check_list_empty(bool check_sample) {
 221   bool ret = true;
 222 
 223   if (_length != 0) {
 224     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 225                   _length);
 226     ret = false;
 227   }
 228   if (check_sample && _last_sampled_rs_lengths != 0) {
 229     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 230     ret = false;
 231   }
 232   if (_head != NULL) {
 233     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 234     ret = false;
 235   }
 236   if (!ret) {
 237     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 238   }
 239 
 240   return ret;
 241 }
 242 
 243 void
 244 YoungList::rs_length_sampling_init() {
 245   _sampled_rs_lengths = 0;
 246   _curr               = _head;
 247 }
 248 
 249 bool
 250 YoungList::rs_length_sampling_more() {
 251   return _curr != NULL;
 252 }
 253 
 254 void
 255 YoungList::rs_length_sampling_next() {
 256   assert( _curr != NULL, "invariant" );
 257   size_t rs_length = _curr->rem_set()->occupied();
 258 
 259   _sampled_rs_lengths += rs_length;
 260 
 261   // The current region may not yet have been added to the
 262   // incremental collection set (it gets added when it is
 263   // retired as the current allocation region).
 264   if (_curr->in_collection_set()) {
 265     // Update the collection set policy information for this region
 266     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 267   }
 268 
 269   _curr = _curr->get_next_young_region();
 270   if (_curr == NULL) {
 271     _last_sampled_rs_lengths = _sampled_rs_lengths;
 272     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 273   }
 274 }
 275 
 276 void
 277 YoungList::reset_auxilary_lists() {
 278   guarantee( is_empty(), "young list should be empty" );
 279   assert(check_list_well_formed(), "young list should be well formed");
 280 
 281   // Add survivor regions to SurvRateGroup.
 282   _g1h->g1_policy()->note_start_adding_survivor_regions();
 283   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 284 
 285   int young_index_in_cset = 0;
 286   for (HeapRegion* curr = _survivor_head;
 287        curr != NULL;
 288        curr = curr->get_next_young_region()) {
 289     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 290 
 291     // The region is a non-empty survivor so let's add it to
 292     // the incremental collection set for the next evacuation
 293     // pause.
 294     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 295     young_index_in_cset += 1;
 296   }
 297   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 298   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 299 
 300   _head   = _survivor_head;
 301   _length = _survivor_length;
 302   if (_survivor_head != NULL) {
 303     assert(_survivor_tail != NULL, "cause it shouldn't be");
 304     assert(_survivor_length > 0, "invariant");
 305     _survivor_tail->set_next_young_region(NULL);
 306   }
 307 
 308   // Don't clear the survivor list handles until the start of
 309   // the next evacuation pause - we need it in order to re-tag
 310   // the survivor regions from this evacuation pause as 'young'
 311   // at the start of the next.
 312 
 313   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 314 
 315   assert(check_list_well_formed(), "young list should be well formed");
 316 }
 317 
 318 void YoungList::print() {
 319   HeapRegion* lists[] = {_head,   _survivor_head};
 320   const char* names[] = {"YOUNG", "SURVIVOR"};
 321 
 322   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 323     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 324     HeapRegion *curr = lists[list];
 325     if (curr == NULL)
 326       gclog_or_tty->print_cr("  empty");
 327     while (curr != NULL) {
 328       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 329                              HR_FORMAT_PARAMS(curr),
 330                              p2i(curr->prev_top_at_mark_start()),
 331                              p2i(curr->next_top_at_mark_start()),
 332                              curr->age_in_surv_rate_group_cond());
 333       curr = curr->get_next_young_region();
 334     }
 335   }
 336 
 337   gclog_or_tty->cr();
 338 }
 339 
 340 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 341   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 342 }
 343 
 344 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 345   // The from card cache is not the memory that is actually committed. So we cannot
 346   // take advantage of the zero_filled parameter.
 347   reset_from_card_cache(start_idx, num_regions);
 348 }
 349 
 350 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 351 {
 352   // Claim the right to put the region on the dirty cards region list
 353   // by installing a self pointer.
 354   HeapRegion* next = hr->get_next_dirty_cards_region();
 355   if (next == NULL) {
 356     HeapRegion* res = (HeapRegion*)
 357       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 358                           NULL);
 359     if (res == NULL) {
 360       HeapRegion* head;
 361       do {
 362         // Put the region to the dirty cards region list.
 363         head = _dirty_cards_region_list;
 364         next = (HeapRegion*)
 365           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 366         if (next == head) {
 367           assert(hr->get_next_dirty_cards_region() == hr,
 368                  "hr->get_next_dirty_cards_region() != hr");
 369           if (next == NULL) {
 370             // The last region in the list points to itself.
 371             hr->set_next_dirty_cards_region(hr);
 372           } else {
 373             hr->set_next_dirty_cards_region(next);
 374           }
 375         }
 376       } while (next != head);
 377     }
 378   }
 379 }
 380 
 381 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 382 {
 383   HeapRegion* head;
 384   HeapRegion* hr;
 385   do {
 386     head = _dirty_cards_region_list;
 387     if (head == NULL) {
 388       return NULL;
 389     }
 390     HeapRegion* new_head = head->get_next_dirty_cards_region();
 391     if (head == new_head) {
 392       // The last region.
 393       new_head = NULL;
 394     }
 395     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 396                                           head);
 397   } while (hr != head);
 398   assert(hr != NULL, "invariant");
 399   hr->set_next_dirty_cards_region(NULL);
 400   return hr;
 401 }
 402 
 403 // Returns true if the reference points to an object that
 404 // can move in an incremental collection.
 405 bool G1CollectedHeap::is_scavengable(const void* p) {
 406   HeapRegion* hr = heap_region_containing(p);
 407   return !hr->is_pinned();
 408 }
 409 
 410 // Private methods.
 411 
 412 HeapRegion*
 413 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 414   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 415   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 416     if (!_secondary_free_list.is_empty()) {
 417       if (G1ConcRegionFreeingVerbose) {
 418         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 419                                "secondary_free_list has %u entries",
 420                                _secondary_free_list.length());
 421       }
 422       // It looks as if there are free regions available on the
 423       // secondary_free_list. Let's move them to the free_list and try
 424       // again to allocate from it.
 425       append_secondary_free_list();
 426 
 427       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 428              "empty we should have moved at least one entry to the free_list");
 429       HeapRegion* res = _hrm.allocate_free_region(is_old);
 430       if (G1ConcRegionFreeingVerbose) {
 431         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 432                                "allocated "HR_FORMAT" from secondary_free_list",
 433                                HR_FORMAT_PARAMS(res));
 434       }
 435       return res;
 436     }
 437 
 438     // Wait here until we get notified either when (a) there are no
 439     // more free regions coming or (b) some regions have been moved on
 440     // the secondary_free_list.
 441     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 442   }
 443 
 444   if (G1ConcRegionFreeingVerbose) {
 445     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 446                            "could not allocate from secondary_free_list");
 447   }
 448   return NULL;
 449 }
 450 
 451 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 452   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 453          "the only time we use this to allocate a humongous region is "
 454          "when we are allocating a single humongous region");
 455 
 456   HeapRegion* res;
 457   if (G1StressConcRegionFreeing) {
 458     if (!_secondary_free_list.is_empty()) {
 459       if (G1ConcRegionFreeingVerbose) {
 460         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 461                                "forced to look at the secondary_free_list");
 462       }
 463       res = new_region_try_secondary_free_list(is_old);
 464       if (res != NULL) {
 465         return res;
 466       }
 467     }
 468   }
 469 
 470   res = _hrm.allocate_free_region(is_old);
 471 
 472   if (res == NULL) {
 473     if (G1ConcRegionFreeingVerbose) {
 474       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 475                              "res == NULL, trying the secondary_free_list");
 476     }
 477     res = new_region_try_secondary_free_list(is_old);
 478   }
 479   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 480     // Currently, only attempts to allocate GC alloc regions set
 481     // do_expand to true. So, we should only reach here during a
 482     // safepoint. If this assumption changes we might have to
 483     // reconsider the use of _expand_heap_after_alloc_failure.
 484     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 485 
 486     ergo_verbose1(ErgoHeapSizing,
 487                   "attempt heap expansion",
 488                   ergo_format_reason("region allocation request failed")
 489                   ergo_format_byte("allocation request"),
 490                   word_size * HeapWordSize);
 491     if (expand(word_size * HeapWordSize)) {
 492       // Given that expand() succeeded in expanding the heap, and we
 493       // always expand the heap by an amount aligned to the heap
 494       // region size, the free list should in theory not be empty.
 495       // In either case allocate_free_region() will check for NULL.
 496       res = _hrm.allocate_free_region(is_old);
 497     } else {
 498       _expand_heap_after_alloc_failure = false;
 499     }
 500   }
 501   return res;
 502 }
 503 
 504 HeapWord*
 505 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 506                                                            uint num_regions,
 507                                                            size_t word_size,
 508                                                            AllocationContext_t context) {
 509   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 510   assert(is_humongous(word_size), "word_size should be humongous");
 511   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 512 
 513   // Index of last region in the series + 1.
 514   uint last = first + num_regions;
 515 
 516   // We need to initialize the region(s) we just discovered. This is
 517   // a bit tricky given that it can happen concurrently with
 518   // refinement threads refining cards on these regions and
 519   // potentially wanting to refine the BOT as they are scanning
 520   // those cards (this can happen shortly after a cleanup; see CR
 521   // 6991377). So we have to set up the region(s) carefully and in
 522   // a specific order.
 523 
 524   // The word size sum of all the regions we will allocate.
 525   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 526   assert(word_size <= word_size_sum, "sanity");
 527 
 528   // This will be the "starts humongous" region.
 529   HeapRegion* first_hr = region_at(first);
 530   // The header of the new object will be placed at the bottom of
 531   // the first region.
 532   HeapWord* new_obj = first_hr->bottom();
 533   // This will be the new end of the first region in the series that
 534   // should also match the end of the last region in the series.
 535   HeapWord* new_end = new_obj + word_size_sum;
 536   // This will be the new top of the first region that will reflect
 537   // this allocation.
 538   HeapWord* new_top = new_obj + word_size;
 539 
 540   // First, we need to zero the header of the space that we will be
 541   // allocating. When we update top further down, some refinement
 542   // threads might try to scan the region. By zeroing the header we
 543   // ensure that any thread that will try to scan the region will
 544   // come across the zero klass word and bail out.
 545   //
 546   // NOTE: It would not have been correct to have used
 547   // CollectedHeap::fill_with_object() and make the space look like
 548   // an int array. The thread that is doing the allocation will
 549   // later update the object header to a potentially different array
 550   // type and, for a very short period of time, the klass and length
 551   // fields will be inconsistent. This could cause a refinement
 552   // thread to calculate the object size incorrectly.
 553   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 554 
 555   // We will set up the first region as "starts humongous". This
 556   // will also update the BOT covering all the regions to reflect
 557   // that there is a single object that starts at the bottom of the
 558   // first region.
 559   first_hr->set_starts_humongous(new_top, new_end);
 560   first_hr->set_allocation_context(context);
 561   // Then, if there are any, we will set up the "continues
 562   // humongous" regions.
 563   HeapRegion* hr = NULL;
 564   for (uint i = first + 1; i < last; ++i) {
 565     hr = region_at(i);
 566     hr->set_continues_humongous(first_hr);
 567     hr->set_allocation_context(context);
 568   }
 569   // If we have "continues humongous" regions (hr != NULL), then the
 570   // end of the last one should match new_end.
 571   assert(hr == NULL || hr->end() == new_end, "sanity");
 572 
 573   // Up to this point no concurrent thread would have been able to
 574   // do any scanning on any region in this series. All the top
 575   // fields still point to bottom, so the intersection between
 576   // [bottom,top] and [card_start,card_end] will be empty. Before we
 577   // update the top fields, we'll do a storestore to make sure that
 578   // no thread sees the update to top before the zeroing of the
 579   // object header and the BOT initialization.
 580   OrderAccess::storestore();
 581 
 582   // Now that the BOT and the object header have been initialized,
 583   // we can update top of the "starts humongous" region.
 584   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 585          "new_top should be in this region");
 586   first_hr->set_top(new_top);
 587   if (_hr_printer.is_active()) {
 588     HeapWord* bottom = first_hr->bottom();
 589     HeapWord* end = first_hr->orig_end();
 590     if ((first + 1) == last) {
 591       // the series has a single humongous region
 592       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 593     } else {
 594       // the series has more than one humongous regions
 595       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 596     }
 597   }
 598 
 599   // Now, we will update the top fields of the "continues humongous"
 600   // regions. The reason we need to do this is that, otherwise,
 601   // these regions would look empty and this will confuse parts of
 602   // G1. For example, the code that looks for a consecutive number
 603   // of empty regions will consider them empty and try to
 604   // re-allocate them. We can extend is_empty() to also include
 605   // !is_continues_humongous(), but it is easier to just update the top
 606   // fields here. The way we set top for all regions (i.e., top ==
 607   // end for all regions but the last one, top == new_top for the
 608   // last one) is actually used when we will free up the humongous
 609   // region in free_humongous_region().
 610   hr = NULL;
 611   for (uint i = first + 1; i < last; ++i) {
 612     hr = region_at(i);
 613     if ((i + 1) == last) {
 614       // last continues humongous region
 615       assert(hr->bottom() < new_top && new_top <= hr->end(),
 616              "new_top should fall on this region");
 617       hr->set_top(new_top);
 618       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 619     } else {
 620       // not last one
 621       assert(new_top > hr->end(), "new_top should be above this region");
 622       hr->set_top(hr->end());
 623       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 624     }
 625   }
 626   // If we have continues humongous regions (hr != NULL), then the
 627   // end of the last one should match new_end and its top should
 628   // match new_top.
 629   assert(hr == NULL ||
 630          (hr->end() == new_end && hr->top() == new_top), "sanity");
 631   check_bitmaps("Humongous Region Allocation", first_hr);
 632 
 633   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 634   _allocator->increase_used(first_hr->used());
 635   _humongous_set.add(first_hr);
 636 
 637   return new_obj;
 638 }
 639 
 640 // If could fit into free regions w/o expansion, try.
 641 // Otherwise, if can expand, do so.
 642 // Otherwise, if using ex regions might help, try with ex given back.
 643 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 644   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 645 
 646   verify_region_sets_optional();
 647 
 648   uint first = G1_NO_HRM_INDEX;
 649   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 650 
 651   if (obj_regions == 1) {
 652     // Only one region to allocate, try to use a fast path by directly allocating
 653     // from the free lists. Do not try to expand here, we will potentially do that
 654     // later.
 655     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 656     if (hr != NULL) {
 657       first = hr->hrm_index();
 658     }
 659   } else {
 660     // We can't allocate humongous regions spanning more than one region while
 661     // cleanupComplete() is running, since some of the regions we find to be
 662     // empty might not yet be added to the free list. It is not straightforward
 663     // to know in which list they are on so that we can remove them. We only
 664     // need to do this if we need to allocate more than one region to satisfy the
 665     // current humongous allocation request. If we are only allocating one region
 666     // we use the one-region region allocation code (see above), that already
 667     // potentially waits for regions from the secondary free list.
 668     wait_while_free_regions_coming();
 669     append_secondary_free_list_if_not_empty_with_lock();
 670 
 671     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 672     // are lucky enough to find some.
 673     first = _hrm.find_contiguous_only_empty(obj_regions);
 674     if (first != G1_NO_HRM_INDEX) {
 675       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 676     }
 677   }
 678 
 679   if (first == G1_NO_HRM_INDEX) {
 680     // Policy: We could not find enough regions for the humongous object in the
 681     // free list. Look through the heap to find a mix of free and uncommitted regions.
 682     // If so, try expansion.
 683     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 684     if (first != G1_NO_HRM_INDEX) {
 685       // We found something. Make sure these regions are committed, i.e. expand
 686       // the heap. Alternatively we could do a defragmentation GC.
 687       ergo_verbose1(ErgoHeapSizing,
 688                     "attempt heap expansion",
 689                     ergo_format_reason("humongous allocation request failed")
 690                     ergo_format_byte("allocation request"),
 691                     word_size * HeapWordSize);
 692 
 693       _hrm.expand_at(first, obj_regions);
 694       g1_policy()->record_new_heap_size(num_regions());
 695 
 696 #ifdef ASSERT
 697       for (uint i = first; i < first + obj_regions; ++i) {
 698         HeapRegion* hr = region_at(i);
 699         assert(hr->is_free(), "sanity");
 700         assert(hr->is_empty(), "sanity");
 701         assert(is_on_master_free_list(hr), "sanity");
 702       }
 703 #endif
 704       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 705     } else {
 706       // Policy: Potentially trigger a defragmentation GC.
 707     }
 708   }
 709 
 710   HeapWord* result = NULL;
 711   if (first != G1_NO_HRM_INDEX) {
 712     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 713                                                        word_size, context);
 714     assert(result != NULL, "it should always return a valid result");
 715 
 716     // A successful humongous object allocation changes the used space
 717     // information of the old generation so we need to recalculate the
 718     // sizes and update the jstat counters here.
 719     g1mm()->update_sizes();
 720   }
 721 
 722   verify_region_sets_optional();
 723 
 724   return result;
 725 }
 726 
 727 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 728   assert_heap_not_locked_and_not_at_safepoint();
 729   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 730 
 731   uint dummy_gc_count_before;
 732   uint dummy_gclocker_retry_count = 0;
 733   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 734 }
 735 
 736 HeapWord*
 737 G1CollectedHeap::mem_allocate(size_t word_size,
 738                               bool*  gc_overhead_limit_was_exceeded) {
 739   assert_heap_not_locked_and_not_at_safepoint();
 740 
 741   // Loop until the allocation is satisfied, or unsatisfied after GC.
 742   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 743     uint gc_count_before;
 744 
 745     HeapWord* result = NULL;
 746     if (!is_humongous(word_size)) {
 747       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 748     } else {
 749       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 750     }
 751     if (result != NULL) {
 752       return result;
 753     }
 754 
 755     // Create the garbage collection operation...
 756     VM_G1CollectForAllocation op(gc_count_before, word_size);
 757     op.set_allocation_context(AllocationContext::current());
 758 
 759     // ...and get the VM thread to execute it.
 760     VMThread::execute(&op);
 761 
 762     if (op.prologue_succeeded() && op.pause_succeeded()) {
 763       // If the operation was successful we'll return the result even
 764       // if it is NULL. If the allocation attempt failed immediately
 765       // after a Full GC, it's unlikely we'll be able to allocate now.
 766       HeapWord* result = op.result();
 767       if (result != NULL && !is_humongous(word_size)) {
 768         // Allocations that take place on VM operations do not do any
 769         // card dirtying and we have to do it here. We only have to do
 770         // this for non-humongous allocations, though.
 771         dirty_young_block(result, word_size);
 772       }
 773       return result;
 774     } else {
 775       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 776         return NULL;
 777       }
 778       assert(op.result() == NULL,
 779              "the result should be NULL if the VM op did not succeed");
 780     }
 781 
 782     // Give a warning if we seem to be looping forever.
 783     if ((QueuedAllocationWarningCount > 0) &&
 784         (try_count % QueuedAllocationWarningCount == 0)) {
 785       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 786     }
 787   }
 788 
 789   ShouldNotReachHere();
 790   return NULL;
 791 }
 792 
 793 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 794                                                    AllocationContext_t context,
 795                                                    uint* gc_count_before_ret,
 796                                                    uint* gclocker_retry_count_ret) {
 797   // Make sure you read the note in attempt_allocation_humongous().
 798 
 799   assert_heap_not_locked_and_not_at_safepoint();
 800   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 801          "be called for humongous allocation requests");
 802 
 803   // We should only get here after the first-level allocation attempt
 804   // (attempt_allocation()) failed to allocate.
 805 
 806   // We will loop until a) we manage to successfully perform the
 807   // allocation or b) we successfully schedule a collection which
 808   // fails to perform the allocation. b) is the only case when we'll
 809   // return NULL.
 810   HeapWord* result = NULL;
 811   for (int try_count = 1; /* we'll return */; try_count += 1) {
 812     bool should_try_gc;
 813     uint gc_count_before;
 814 
 815     {
 816       MutexLockerEx x(Heap_lock);
 817       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 818                                                                                     false /* bot_updates */);
 819       if (result != NULL) {
 820         return result;
 821       }
 822 
 823       // If we reach here, attempt_allocation_locked() above failed to
 824       // allocate a new region. So the mutator alloc region should be NULL.
 825       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 826 
 827       if (GC_locker::is_active_and_needs_gc()) {
 828         if (g1_policy()->can_expand_young_list()) {
 829           // No need for an ergo verbose message here,
 830           // can_expand_young_list() does this when it returns true.
 831           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 832                                                                                        false /* bot_updates */);
 833           if (result != NULL) {
 834             return result;
 835           }
 836         }
 837         should_try_gc = false;
 838       } else {
 839         // The GCLocker may not be active but the GCLocker initiated
 840         // GC may not yet have been performed (GCLocker::needs_gc()
 841         // returns true). In this case we do not try this GC and
 842         // wait until the GCLocker initiated GC is performed, and
 843         // then retry the allocation.
 844         if (GC_locker::needs_gc()) {
 845           should_try_gc = false;
 846         } else {
 847           // Read the GC count while still holding the Heap_lock.
 848           gc_count_before = total_collections();
 849           should_try_gc = true;
 850         }
 851       }
 852     }
 853 
 854     if (should_try_gc) {
 855       bool succeeded;
 856       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 857                                    GCCause::_g1_inc_collection_pause);
 858       if (result != NULL) {
 859         assert(succeeded, "only way to get back a non-NULL result");
 860         return result;
 861       }
 862 
 863       if (succeeded) {
 864         // If we get here we successfully scheduled a collection which
 865         // failed to allocate. No point in trying to allocate
 866         // further. We'll just return NULL.
 867         MutexLockerEx x(Heap_lock);
 868         *gc_count_before_ret = total_collections();
 869         return NULL;
 870       }
 871     } else {
 872       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 873         MutexLockerEx x(Heap_lock);
 874         *gc_count_before_ret = total_collections();
 875         return NULL;
 876       }
 877       // The GCLocker is either active or the GCLocker initiated
 878       // GC has not yet been performed. Stall until it is and
 879       // then retry the allocation.
 880       GC_locker::stall_until_clear();
 881       (*gclocker_retry_count_ret) += 1;
 882     }
 883 
 884     // We can reach here if we were unsuccessful in scheduling a
 885     // collection (because another thread beat us to it) or if we were
 886     // stalled due to the GC locker. In either can we should retry the
 887     // allocation attempt in case another thread successfully
 888     // performed a collection and reclaimed enough space. We do the
 889     // first attempt (without holding the Heap_lock) here and the
 890     // follow-on attempt will be at the start of the next loop
 891     // iteration (after taking the Heap_lock).
 892     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 893                                                                            false /* bot_updates */);
 894     if (result != NULL) {
 895       return result;
 896     }
 897 
 898     // Give a warning if we seem to be looping forever.
 899     if ((QueuedAllocationWarningCount > 0) &&
 900         (try_count % QueuedAllocationWarningCount == 0)) {
 901       warning("G1CollectedHeap::attempt_allocation_slow() "
 902               "retries %d times", try_count);
 903     }
 904   }
 905 
 906   ShouldNotReachHere();
 907   return NULL;
 908 }
 909 
 910 void G1CollectedHeap::begin_archive_alloc_range() {
 911   assert_at_safepoint(true /* should_be_vm_thread */);
 912   if (_archive_allocator == NULL) {
 913     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 914   }
 915 }
 916 
 917 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 918   // Allocations in archive regions cannot be of a size that would be considered
 919   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 920   // may be different at archive-restore time.
 921   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 922 }
 923 
 924 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 925   assert_at_safepoint(true /* should_be_vm_thread */);
 926   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 927   if (is_archive_alloc_too_large(word_size)) {
 928     return NULL;
 929   }
 930   return _archive_allocator->archive_mem_allocate(word_size);
 931 }
 932 
 933 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges, 
 934                                               size_t end_alignment_in_bytes) {
 935   assert_at_safepoint(true /* should_be_vm_thread */);
 936   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 937 
 938   // Call complete_archive to do the real work, filling in the MemRegion
 939   // array with the archive regions.  
 940   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 941   delete _archive_allocator;
 942   _archive_allocator = NULL;
 943 }
 944  
 945 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 946   assert(ranges != NULL, "MemRegion array NULL");
 947   assert(count != 0, "No MemRegions provided");
 948   MemRegion reserved = _hrm.reserved();
 949   for (size_t i = 0; i < count; i++) {
 950     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 951       return false;
 952     }
 953   }
 954   return true;
 955 }
 956 
 957 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 958   assert(ranges != NULL, "MemRegion array NULL");
 959   assert(count != 0, "No MemRegions provided");
 960   MutexLockerEx x(Heap_lock);
 961 
 962   MemRegion reserved = _hrm.reserved();
 963   HeapWord* prev_last_addr = NULL;
 964   HeapRegion* prev_last_region = NULL;
 965 
 966   // Temporarily disable pretouching of heap pages. This interface is used 
 967   // when mmap'ing archived heap data in, so pre-touching is wasted.
 968   FlagSetting fs(AlwaysPreTouch, false);
 969 
 970   // Enable archive object checking in G1MarkSweep. We have to let it know
 971   // about each archive range, so that objects in those ranges aren't marked.
 972   G1MarkSweep::enable_archive_object_check();
 973 
 974   // For each specified MemRegion range, allocate the corresponding G1
 975   // regions and mark them as archive regions. We expect the ranges in 
 976   // ascending starting address order, without overlap.
 977   for (size_t i = 0; i < count; i++) {
 978     MemRegion curr_range = ranges[i];
 979     HeapWord* start_address = curr_range.start();
 980     size_t word_size = curr_range.word_size();
 981     HeapWord* last_address = curr_range.last();
 982     size_t commits = 0;
 983 
 984     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 985               err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 986                       p2i(start_address), p2i(last_address)));
 987     guarantee(start_address > prev_last_addr,
 988               err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 989                       p2i(start_address), p2i(prev_last_addr)));
 990     prev_last_addr = last_address;
 991 
 992     // Check for ranges that start in the same G1 region in which the previous
 993     // range ended, and adjust the start address so we don't try to allocate
 994     // the same region again. If the current range is entirely within that
 995     // region, skip it, just adjusting the recorded top.
 996     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 997     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 998       start_address = start_region->end();
 999       if (start_address > last_address) {
1000         _allocator->increase_used(word_size * HeapWordSize);
1001         start_region->set_top(last_address + 1);
1002         continue;
1003       }
1004       start_region->set_top(start_address);
1005       curr_range = MemRegion(start_address, last_address + 1);
1006       start_region = _hrm.addr_to_region(start_address);
1007     }
1008 
1009     // Perform the actual region allocation, exiting if it fails.
1010     // Then note how much new space we have allocated.
1011     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1012       return false;
1013     }
1014     _allocator->increase_used(word_size * HeapWordSize);
1015     if (commits != 0) {
1016       ergo_verbose1(ErgoHeapSizing,
1017                     "attempt heap expansion",
1018                     ergo_format_reason("allocate archive regions")
1019                     ergo_format_byte("total size"),
1020                     HeapRegion::GrainWords * HeapWordSize * commits);
1021     }
1022 
1023     // Mark each G1 region touched by the range as archive, add it to the old set,
1024     // and set the allocation context and top. 
1025     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1026     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1027     prev_last_region = last_region;
1028 
1029     while (curr_region != NULL) {
1030       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1031              err_msg("Region already in use (index %u)", curr_region->hrm_index()));
1032       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1033       curr_region->set_allocation_context(AllocationContext::system());
1034       curr_region->set_archive();
1035       _old_set.add(curr_region);
1036       if (curr_region != last_region) {
1037         curr_region->set_top(curr_region->end());
1038         curr_region = _hrm.next_region_in_heap(curr_region);
1039       } else {
1040         curr_region->set_top(last_address + 1);
1041         curr_region = NULL;
1042       }
1043     }
1044 
1045     // Notify mark-sweep of the archive range.
1046     G1MarkSweep::mark_range_archive(curr_range);
1047   }
1048   return true;
1049 }
1050 
1051 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1052   assert(ranges != NULL, "MemRegion array NULL");
1053   assert(count != 0, "No MemRegions provided");
1054   MemRegion reserved = _hrm.reserved();
1055   HeapWord *prev_last_addr = NULL;
1056   HeapRegion* prev_last_region = NULL;
1057 
1058   // For each MemRegion, create filler objects, if needed, in the G1 regions
1059   // that contain the address range. The address range actually within the 
1060   // MemRegion will not be modified. That is assumed to have been initialized
1061   // elsewhere, probably via an mmap of archived heap data.
1062   MutexLockerEx x(Heap_lock);
1063   for (size_t i = 0; i < count; i++) {
1064     HeapWord* start_address = ranges[i].start();
1065     HeapWord* last_address = ranges[i].last();
1066 
1067     assert(reserved.contains(start_address) && reserved.contains(last_address),
1068            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1069                    p2i(start_address), p2i(last_address)));
1070     assert(start_address > prev_last_addr,
1071            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1072                    p2i(start_address), p2i(prev_last_addr)));
1073 
1074     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1075     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1076     HeapWord* bottom_address = start_region->bottom();
1077 
1078     // Check for a range beginning in the same region in which the
1079     // previous one ended.
1080     if (start_region == prev_last_region) {
1081       bottom_address = prev_last_addr + 1;
1082     }
1083 
1084     // Verify that the regions were all marked as archive regions by
1085     // alloc_archive_regions.
1086     HeapRegion* curr_region = start_region;
1087     while (curr_region != NULL) {
1088       guarantee(curr_region->is_archive(), 
1089                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1090       if (curr_region != last_region) {
1091         curr_region = _hrm.next_region_in_heap(curr_region);
1092       } else {
1093         curr_region = NULL;
1094       }
1095     }
1096 
1097     prev_last_addr = last_address;
1098     prev_last_region = last_region;
1099 
1100     // Fill the memory below the allocated range with dummy object(s),
1101     // if the region bottom does not match the range start, or if the previous
1102     // range ended within the same G1 region, and there is a gap.
1103     if (start_address != bottom_address) { 
1104       size_t fill_size = pointer_delta(start_address, bottom_address);
1105       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1106       _allocator->increase_used(fill_size * HeapWordSize);
1107     }
1108   }
1109 }
1110 
1111 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1112                                                         uint* gc_count_before_ret,
1113                                                         uint* gclocker_retry_count_ret) {
1114   // The structure of this method has a lot of similarities to
1115   // attempt_allocation_slow(). The reason these two were not merged
1116   // into a single one is that such a method would require several "if
1117   // allocation is not humongous do this, otherwise do that"
1118   // conditional paths which would obscure its flow. In fact, an early
1119   // version of this code did use a unified method which was harder to
1120   // follow and, as a result, it had subtle bugs that were hard to
1121   // track down. So keeping these two methods separate allows each to
1122   // be more readable. It will be good to keep these two in sync as
1123   // much as possible.
1124 
1125   assert_heap_not_locked_and_not_at_safepoint();
1126   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1127          "should only be called for humongous allocations");
1128 
1129   // Humongous objects can exhaust the heap quickly, so we should check if we
1130   // need to start a marking cycle at each humongous object allocation. We do
1131   // the check before we do the actual allocation. The reason for doing it
1132   // before the allocation is that we avoid having to keep track of the newly
1133   // allocated memory while we do a GC.
1134   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1135                                            word_size)) {
1136     collect(GCCause::_g1_humongous_allocation);
1137   }
1138 
1139   // We will loop until a) we manage to successfully perform the
1140   // allocation or b) we successfully schedule a collection which
1141   // fails to perform the allocation. b) is the only case when we'll
1142   // return NULL.
1143   HeapWord* result = NULL;
1144   for (int try_count = 1; /* we'll return */; try_count += 1) {
1145     bool should_try_gc;
1146     uint gc_count_before;
1147 
1148     {
1149       MutexLockerEx x(Heap_lock);
1150 
1151       // Given that humongous objects are not allocated in young
1152       // regions, we'll first try to do the allocation without doing a
1153       // collection hoping that there's enough space in the heap.
1154       result = humongous_obj_allocate(word_size, AllocationContext::current());
1155       if (result != NULL) {
1156         return result;
1157       }
1158 
1159       if (GC_locker::is_active_and_needs_gc()) {
1160         should_try_gc = false;
1161       } else {
1162          // The GCLocker may not be active but the GCLocker initiated
1163         // GC may not yet have been performed (GCLocker::needs_gc()
1164         // returns true). In this case we do not try this GC and
1165         // wait until the GCLocker initiated GC is performed, and
1166         // then retry the allocation.
1167         if (GC_locker::needs_gc()) {
1168           should_try_gc = false;
1169         } else {
1170           // Read the GC count while still holding the Heap_lock.
1171           gc_count_before = total_collections();
1172           should_try_gc = true;
1173         }
1174       }
1175     }
1176 
1177     if (should_try_gc) {
1178       // If we failed to allocate the humongous object, we should try to
1179       // do a collection pause (if we're allowed) in case it reclaims
1180       // enough space for the allocation to succeed after the pause.
1181 
1182       bool succeeded;
1183       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1184                                    GCCause::_g1_humongous_allocation);
1185       if (result != NULL) {
1186         assert(succeeded, "only way to get back a non-NULL result");
1187         return result;
1188       }
1189 
1190       if (succeeded) {
1191         // If we get here we successfully scheduled a collection which
1192         // failed to allocate. No point in trying to allocate
1193         // further. We'll just return NULL.
1194         MutexLockerEx x(Heap_lock);
1195         *gc_count_before_ret = total_collections();
1196         return NULL;
1197       }
1198     } else {
1199       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1200         MutexLockerEx x(Heap_lock);
1201         *gc_count_before_ret = total_collections();
1202         return NULL;
1203       }
1204       // The GCLocker is either active or the GCLocker initiated
1205       // GC has not yet been performed. Stall until it is and
1206       // then retry the allocation.
1207       GC_locker::stall_until_clear();
1208       (*gclocker_retry_count_ret) += 1;
1209     }
1210 
1211     // We can reach here if we were unsuccessful in scheduling a
1212     // collection (because another thread beat us to it) or if we were
1213     // stalled due to the GC locker. In either can we should retry the
1214     // allocation attempt in case another thread successfully
1215     // performed a collection and reclaimed enough space.  Give a
1216     // warning if we seem to be looping forever.
1217 
1218     if ((QueuedAllocationWarningCount > 0) &&
1219         (try_count % QueuedAllocationWarningCount == 0)) {
1220       warning("G1CollectedHeap::attempt_allocation_humongous() "
1221               "retries %d times", try_count);
1222     }
1223   }
1224 
1225   ShouldNotReachHere();
1226   return NULL;
1227 }
1228 
1229 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1230                                                            AllocationContext_t context,
1231                                                            bool expect_null_mutator_alloc_region) {
1232   assert_at_safepoint(true /* should_be_vm_thread */);
1233   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1234                                              !expect_null_mutator_alloc_region,
1235          "the current alloc region was unexpectedly found to be non-NULL");
1236 
1237   if (!is_humongous(word_size)) {
1238     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1239                                                       false /* bot_updates */);
1240   } else {
1241     HeapWord* result = humongous_obj_allocate(word_size, context);
1242     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1243       g1_policy()->set_initiate_conc_mark_if_possible();
1244     }
1245     return result;
1246   }
1247 
1248   ShouldNotReachHere();
1249 }
1250 
1251 class PostMCRemSetClearClosure: public HeapRegionClosure {
1252   G1CollectedHeap* _g1h;
1253   ModRefBarrierSet* _mr_bs;
1254 public:
1255   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1256     _g1h(g1h), _mr_bs(mr_bs) {}
1257 
1258   bool doHeapRegion(HeapRegion* r) {
1259     HeapRegionRemSet* hrrs = r->rem_set();
1260 
1261     if (r->is_continues_humongous()) {
1262       // We'll assert that the strong code root list and RSet is empty
1263       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1264       assert(hrrs->occupied() == 0, "RSet should be empty");
1265       return false;
1266     }
1267 
1268     _g1h->reset_gc_time_stamps(r);
1269     hrrs->clear();
1270     // You might think here that we could clear just the cards
1271     // corresponding to the used region.  But no: if we leave a dirty card
1272     // in a region we might allocate into, then it would prevent that card
1273     // from being enqueued, and cause it to be missed.
1274     // Re: the performance cost: we shouldn't be doing full GC anyway!
1275     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1276 
1277     return false;
1278   }
1279 };
1280 
1281 void G1CollectedHeap::clear_rsets_post_compaction() {
1282   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1283   heap_region_iterate(&rs_clear);
1284 }
1285 
1286 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1287   G1CollectedHeap*   _g1h;
1288   UpdateRSOopClosure _cl;
1289 public:
1290   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1291     _cl(g1->g1_rem_set(), worker_i),
1292     _g1h(g1)
1293   { }
1294 
1295   bool doHeapRegion(HeapRegion* r) {
1296     if (!r->is_continues_humongous()) {
1297       _cl.set_from(r);
1298       r->oop_iterate(&_cl);
1299     }
1300     return false;
1301   }
1302 };
1303 
1304 class ParRebuildRSTask: public AbstractGangTask {
1305   G1CollectedHeap* _g1;
1306   HeapRegionClaimer _hrclaimer;
1307 
1308 public:
1309   ParRebuildRSTask(G1CollectedHeap* g1) :
1310       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1311 
1312   void work(uint worker_id) {
1313     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1314     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1315   }
1316 };
1317 
1318 class PostCompactionPrinterClosure: public HeapRegionClosure {
1319 private:
1320   G1HRPrinter* _hr_printer;
1321 public:
1322   bool doHeapRegion(HeapRegion* hr) {
1323     assert(!hr->is_young(), "not expecting to find young regions");
1324     if (hr->is_free()) {
1325       // We only generate output for non-empty regions.
1326     } else if (hr->is_starts_humongous()) {
1327       if (hr->region_num() == 1) {
1328         // single humongous region
1329         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1330       } else {
1331         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1332       }
1333     } else if (hr->is_continues_humongous()) {
1334       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1335     } else if (hr->is_archive()) {
1336       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1337     } else if (hr->is_old()) {
1338       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1339     } else {
1340       ShouldNotReachHere();
1341     }
1342     return false;
1343   }
1344 
1345   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1346     : _hr_printer(hr_printer) { }
1347 };
1348 
1349 void G1CollectedHeap::print_hrm_post_compaction() {
1350   PostCompactionPrinterClosure cl(hr_printer());
1351   heap_region_iterate(&cl);
1352 }
1353 
1354 bool G1CollectedHeap::do_collection(bool explicit_gc,
1355                                     bool clear_all_soft_refs,
1356                                     size_t word_size) {
1357   assert_at_safepoint(true /* should_be_vm_thread */);
1358 
1359   if (GC_locker::check_active_before_gc()) {
1360     return false;
1361   }
1362 
1363   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1364   gc_timer->register_gc_start();
1365 
1366   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1367   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1368 
1369   SvcGCMarker sgcm(SvcGCMarker::FULL);
1370   ResourceMark rm;
1371 
1372   G1Log::update_level();
1373   print_heap_before_gc();
1374   trace_heap_before_gc(gc_tracer);
1375 
1376   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1377 
1378   verify_region_sets_optional();
1379 
1380   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1381                            collector_policy()->should_clear_all_soft_refs();
1382 
1383   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1384 
1385   {
1386     IsGCActiveMark x;
1387 
1388     // Timing
1389     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1390     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1391 
1392     {
1393       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1394       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1395       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1396 
1397       g1_policy()->record_full_collection_start();
1398 
1399       // Note: When we have a more flexible GC logging framework that
1400       // allows us to add optional attributes to a GC log record we
1401       // could consider timing and reporting how long we wait in the
1402       // following two methods.
1403       wait_while_free_regions_coming();
1404       // If we start the compaction before the CM threads finish
1405       // scanning the root regions we might trip them over as we'll
1406       // be moving objects / updating references. So let's wait until
1407       // they are done. By telling them to abort, they should complete
1408       // early.
1409       _cm->root_regions()->abort();
1410       _cm->root_regions()->wait_until_scan_finished();
1411       append_secondary_free_list_if_not_empty_with_lock();
1412 
1413       gc_prologue(true);
1414       increment_total_collections(true /* full gc */);
1415       increment_old_marking_cycles_started();
1416 
1417       assert(used() == recalculate_used(), "Should be equal");
1418 
1419       verify_before_gc();
1420 
1421       check_bitmaps("Full GC Start");
1422       pre_full_gc_dump(gc_timer);
1423 
1424       COMPILER2_PRESENT(DerivedPointerTable::clear());
1425 
1426       // Disable discovery and empty the discovered lists
1427       // for the CM ref processor.
1428       ref_processor_cm()->disable_discovery();
1429       ref_processor_cm()->abandon_partial_discovery();
1430       ref_processor_cm()->verify_no_references_recorded();
1431 
1432       // Abandon current iterations of concurrent marking and concurrent
1433       // refinement, if any are in progress. We have to do this before
1434       // wait_until_scan_finished() below.
1435       concurrent_mark()->abort();
1436 
1437       // Make sure we'll choose a new allocation region afterwards.
1438       _allocator->release_mutator_alloc_region();
1439       _allocator->abandon_gc_alloc_regions();
1440       g1_rem_set()->cleanupHRRS();
1441 
1442       // We should call this after we retire any currently active alloc
1443       // regions so that all the ALLOC / RETIRE events are generated
1444       // before the start GC event.
1445       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1446 
1447       // We may have added regions to the current incremental collection
1448       // set between the last GC or pause and now. We need to clear the
1449       // incremental collection set and then start rebuilding it afresh
1450       // after this full GC.
1451       abandon_collection_set(g1_policy()->inc_cset_head());
1452       g1_policy()->clear_incremental_cset();
1453       g1_policy()->stop_incremental_cset_building();
1454 
1455       tear_down_region_sets(false /* free_list_only */);
1456       g1_policy()->set_gcs_are_young(true);
1457 
1458       // See the comments in g1CollectedHeap.hpp and
1459       // G1CollectedHeap::ref_processing_init() about
1460       // how reference processing currently works in G1.
1461 
1462       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1463       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1464 
1465       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1466       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1467 
1468       ref_processor_stw()->enable_discovery();
1469       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1470 
1471       // Do collection work
1472       {
1473         HandleMark hm;  // Discard invalid handles created during gc
1474         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1475       }
1476 
1477       assert(num_free_regions() == 0, "we should not have added any free regions");
1478       rebuild_region_sets(false /* free_list_only */);
1479 
1480       // Enqueue any discovered reference objects that have
1481       // not been removed from the discovered lists.
1482       ref_processor_stw()->enqueue_discovered_references();
1483 
1484       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1485 
1486       MemoryService::track_memory_usage();
1487 
1488       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1489       ref_processor_stw()->verify_no_references_recorded();
1490 
1491       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1492       ClassLoaderDataGraph::purge();
1493       MetaspaceAux::verify_metrics();
1494 
1495       // Note: since we've just done a full GC, concurrent
1496       // marking is no longer active. Therefore we need not
1497       // re-enable reference discovery for the CM ref processor.
1498       // That will be done at the start of the next marking cycle.
1499       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1500       ref_processor_cm()->verify_no_references_recorded();
1501 
1502       reset_gc_time_stamp();
1503       // Since everything potentially moved, we will clear all remembered
1504       // sets, and clear all cards.  Later we will rebuild remembered
1505       // sets. We will also reset the GC time stamps of the regions.
1506       clear_rsets_post_compaction();
1507       check_gc_time_stamps();
1508 
1509       // Resize the heap if necessary.
1510       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1511 
1512       if (_hr_printer.is_active()) {
1513         // We should do this after we potentially resize the heap so
1514         // that all the COMMIT / UNCOMMIT events are generated before
1515         // the end GC event.
1516 
1517         print_hrm_post_compaction();
1518         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1519       }
1520 
1521       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1522       if (hot_card_cache->use_cache()) {
1523         hot_card_cache->reset_card_counts();
1524         hot_card_cache->reset_hot_cache();
1525       }
1526 
1527       // Rebuild remembered sets of all regions.
1528       uint n_workers =
1529         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1530                                                 workers()->active_workers(),
1531                                                 Threads::number_of_non_daemon_threads());
1532       workers()->set_active_workers(n_workers);
1533 
1534       ParRebuildRSTask rebuild_rs_task(this);
1535       workers()->run_task(&rebuild_rs_task);
1536 
1537       // Rebuild the strong code root lists for each region
1538       rebuild_strong_code_roots();
1539 
1540       if (true) { // FIXME
1541         MetaspaceGC::compute_new_size();
1542       }
1543 
1544 #ifdef TRACESPINNING
1545       ParallelTaskTerminator::print_termination_counts();
1546 #endif
1547 
1548       // Discard all rset updates
1549       JavaThread::dirty_card_queue_set().abandon_logs();
1550       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1551 
1552       _young_list->reset_sampled_info();
1553       // At this point there should be no regions in the
1554       // entire heap tagged as young.
1555       assert(check_young_list_empty(true /* check_heap */),
1556              "young list should be empty at this point");
1557 
1558       // Update the number of full collections that have been completed.
1559       increment_old_marking_cycles_completed(false /* concurrent */);
1560 
1561       _hrm.verify_optional();
1562       verify_region_sets_optional();
1563 
1564       verify_after_gc();
1565 
1566       // Clear the previous marking bitmap, if needed for bitmap verification.
1567       // Note we cannot do this when we clear the next marking bitmap in
1568       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1569       // objects marked during a full GC against the previous bitmap.
1570       // But we need to clear it before calling check_bitmaps below since
1571       // the full GC has compacted objects and updated TAMS but not updated
1572       // the prev bitmap.
1573       if (G1VerifyBitmaps) {
1574         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1575       }
1576       check_bitmaps("Full GC End");
1577 
1578       // Start a new incremental collection set for the next pause
1579       assert(g1_policy()->collection_set() == NULL, "must be");
1580       g1_policy()->start_incremental_cset_building();
1581 
1582       clear_cset_fast_test();
1583 
1584       _allocator->init_mutator_alloc_region();
1585 
1586       g1_policy()->record_full_collection_end();
1587 
1588       if (G1Log::fine()) {
1589         g1_policy()->print_heap_transition();
1590       }
1591 
1592       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1593       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1594       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1595       // before any GC notifications are raised.
1596       g1mm()->update_sizes();
1597 
1598       gc_epilogue(true);
1599     }
1600 
1601     if (G1Log::finer()) {
1602       g1_policy()->print_detailed_heap_transition(true /* full */);
1603     }
1604 
1605     print_heap_after_gc();
1606     trace_heap_after_gc(gc_tracer);
1607 
1608     post_full_gc_dump(gc_timer);
1609 
1610     gc_timer->register_gc_end();
1611     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1612   }
1613 
1614   return true;
1615 }
1616 
1617 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1618   // do_collection() will return whether it succeeded in performing
1619   // the GC. Currently, there is no facility on the
1620   // do_full_collection() API to notify the caller than the collection
1621   // did not succeed (e.g., because it was locked out by the GC
1622   // locker). So, right now, we'll ignore the return value.
1623   bool dummy = do_collection(true,                /* explicit_gc */
1624                              clear_all_soft_refs,
1625                              0                    /* word_size */);
1626 }
1627 
1628 // This code is mostly copied from TenuredGeneration.
1629 void
1630 G1CollectedHeap::
1631 resize_if_necessary_after_full_collection(size_t word_size) {
1632   // Include the current allocation, if any, and bytes that will be
1633   // pre-allocated to support collections, as "used".
1634   const size_t used_after_gc = used();
1635   const size_t capacity_after_gc = capacity();
1636   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1637 
1638   // This is enforced in arguments.cpp.
1639   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1640          "otherwise the code below doesn't make sense");
1641 
1642   // We don't have floating point command-line arguments
1643   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1644   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1645   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1646   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1647 
1648   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1649   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1650 
1651   // We have to be careful here as these two calculations can overflow
1652   // 32-bit size_t's.
1653   double used_after_gc_d = (double) used_after_gc;
1654   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1655   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1656 
1657   // Let's make sure that they are both under the max heap size, which
1658   // by default will make them fit into a size_t.
1659   double desired_capacity_upper_bound = (double) max_heap_size;
1660   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1661                                     desired_capacity_upper_bound);
1662   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1663                                     desired_capacity_upper_bound);
1664 
1665   // We can now safely turn them into size_t's.
1666   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1667   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1668 
1669   // This assert only makes sense here, before we adjust them
1670   // with respect to the min and max heap size.
1671   assert(minimum_desired_capacity <= maximum_desired_capacity,
1672          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1673                  "maximum_desired_capacity = "SIZE_FORMAT,
1674                  minimum_desired_capacity, maximum_desired_capacity));
1675 
1676   // Should not be greater than the heap max size. No need to adjust
1677   // it with respect to the heap min size as it's a lower bound (i.e.,
1678   // we'll try to make the capacity larger than it, not smaller).
1679   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1680   // Should not be less than the heap min size. No need to adjust it
1681   // with respect to the heap max size as it's an upper bound (i.e.,
1682   // we'll try to make the capacity smaller than it, not greater).
1683   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1684 
1685   if (capacity_after_gc < minimum_desired_capacity) {
1686     // Don't expand unless it's significant
1687     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1688     ergo_verbose4(ErgoHeapSizing,
1689                   "attempt heap expansion",
1690                   ergo_format_reason("capacity lower than "
1691                                      "min desired capacity after Full GC")
1692                   ergo_format_byte("capacity")
1693                   ergo_format_byte("occupancy")
1694                   ergo_format_byte_perc("min desired capacity"),
1695                   capacity_after_gc, used_after_gc,
1696                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1697     expand(expand_bytes);
1698 
1699     // No expansion, now see if we want to shrink
1700   } else if (capacity_after_gc > maximum_desired_capacity) {
1701     // Capacity too large, compute shrinking size
1702     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1703     ergo_verbose4(ErgoHeapSizing,
1704                   "attempt heap shrinking",
1705                   ergo_format_reason("capacity higher than "
1706                                      "max desired capacity after Full GC")
1707                   ergo_format_byte("capacity")
1708                   ergo_format_byte("occupancy")
1709                   ergo_format_byte_perc("max desired capacity"),
1710                   capacity_after_gc, used_after_gc,
1711                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1712     shrink(shrink_bytes);
1713   }
1714 }
1715 
1716 
1717 HeapWord*
1718 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1719                                            AllocationContext_t context,
1720                                            bool* succeeded) {
1721   assert_at_safepoint(true /* should_be_vm_thread */);
1722 
1723   *succeeded = true;
1724   // Let's attempt the allocation first.
1725   HeapWord* result =
1726     attempt_allocation_at_safepoint(word_size,
1727                                     context,
1728                                     false /* expect_null_mutator_alloc_region */);
1729   if (result != NULL) {
1730     assert(*succeeded, "sanity");
1731     return result;
1732   }
1733 
1734   // In a G1 heap, we're supposed to keep allocation from failing by
1735   // incremental pauses.  Therefore, at least for now, we'll favor
1736   // expansion over collection.  (This might change in the future if we can
1737   // do something smarter than full collection to satisfy a failed alloc.)
1738   result = expand_and_allocate(word_size, context);
1739   if (result != NULL) {
1740     assert(*succeeded, "sanity");
1741     return result;
1742   }
1743 
1744   // Expansion didn't work, we'll try to do a Full GC.
1745   bool gc_succeeded = do_collection(false, /* explicit_gc */
1746                                     false, /* clear_all_soft_refs */
1747                                     word_size);
1748   if (!gc_succeeded) {
1749     *succeeded = false;
1750     return NULL;
1751   }
1752 
1753   // Retry the allocation
1754   result = attempt_allocation_at_safepoint(word_size,
1755                                            context,
1756                                            true /* expect_null_mutator_alloc_region */);
1757   if (result != NULL) {
1758     assert(*succeeded, "sanity");
1759     return result;
1760   }
1761 
1762   // Then, try a Full GC that will collect all soft references.
1763   gc_succeeded = do_collection(false, /* explicit_gc */
1764                                true,  /* clear_all_soft_refs */
1765                                word_size);
1766   if (!gc_succeeded) {
1767     *succeeded = false;
1768     return NULL;
1769   }
1770 
1771   // Retry the allocation once more
1772   result = attempt_allocation_at_safepoint(word_size,
1773                                            context,
1774                                            true /* expect_null_mutator_alloc_region */);
1775   if (result != NULL) {
1776     assert(*succeeded, "sanity");
1777     return result;
1778   }
1779 
1780   assert(!collector_policy()->should_clear_all_soft_refs(),
1781          "Flag should have been handled and cleared prior to this point");
1782 
1783   // What else?  We might try synchronous finalization later.  If the total
1784   // space available is large enough for the allocation, then a more
1785   // complete compaction phase than we've tried so far might be
1786   // appropriate.
1787   assert(*succeeded, "sanity");
1788   return NULL;
1789 }
1790 
1791 // Attempting to expand the heap sufficiently
1792 // to support an allocation of the given "word_size".  If
1793 // successful, perform the allocation and return the address of the
1794 // allocated block, or else "NULL".
1795 
1796 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1797   assert_at_safepoint(true /* should_be_vm_thread */);
1798 
1799   verify_region_sets_optional();
1800 
1801   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1802   ergo_verbose1(ErgoHeapSizing,
1803                 "attempt heap expansion",
1804                 ergo_format_reason("allocation request failed")
1805                 ergo_format_byte("allocation request"),
1806                 word_size * HeapWordSize);
1807   if (expand(expand_bytes)) {
1808     _hrm.verify_optional();
1809     verify_region_sets_optional();
1810     return attempt_allocation_at_safepoint(word_size,
1811                                            context,
1812                                            false /* expect_null_mutator_alloc_region */);
1813   }
1814   return NULL;
1815 }
1816 
1817 bool G1CollectedHeap::expand(size_t expand_bytes) {
1818   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1819   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1820                                        HeapRegion::GrainBytes);
1821   ergo_verbose2(ErgoHeapSizing,
1822                 "expand the heap",
1823                 ergo_format_byte("requested expansion amount")
1824                 ergo_format_byte("attempted expansion amount"),
1825                 expand_bytes, aligned_expand_bytes);
1826 
1827   if (is_maximal_no_gc()) {
1828     ergo_verbose0(ErgoHeapSizing,
1829                       "did not expand the heap",
1830                       ergo_format_reason("heap already fully expanded"));
1831     return false;
1832   }
1833 
1834   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1835   assert(regions_to_expand > 0, "Must expand by at least one region");
1836 
1837   uint expanded_by = _hrm.expand_by(regions_to_expand);
1838 
1839   if (expanded_by > 0) {
1840     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1841     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1842     g1_policy()->record_new_heap_size(num_regions());
1843   } else {
1844     ergo_verbose0(ErgoHeapSizing,
1845                   "did not expand the heap",
1846                   ergo_format_reason("heap expansion operation failed"));
1847     // The expansion of the virtual storage space was unsuccessful.
1848     // Let's see if it was because we ran out of swap.
1849     if (G1ExitOnExpansionFailure &&
1850         _hrm.available() >= regions_to_expand) {
1851       // We had head room...
1852       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1853     }
1854   }
1855   return regions_to_expand > 0;
1856 }
1857 
1858 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1859   size_t aligned_shrink_bytes =
1860     ReservedSpace::page_align_size_down(shrink_bytes);
1861   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1862                                          HeapRegion::GrainBytes);
1863   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1864 
1865   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1866   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1867 
1868   ergo_verbose3(ErgoHeapSizing,
1869                 "shrink the heap",
1870                 ergo_format_byte("requested shrinking amount")
1871                 ergo_format_byte("aligned shrinking amount")
1872                 ergo_format_byte("attempted shrinking amount"),
1873                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1874   if (num_regions_removed > 0) {
1875     g1_policy()->record_new_heap_size(num_regions());
1876   } else {
1877     ergo_verbose0(ErgoHeapSizing,
1878                   "did not shrink the heap",
1879                   ergo_format_reason("heap shrinking operation failed"));
1880   }
1881 }
1882 
1883 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1884   verify_region_sets_optional();
1885 
1886   // We should only reach here at the end of a Full GC which means we
1887   // should not not be holding to any GC alloc regions. The method
1888   // below will make sure of that and do any remaining clean up.
1889   _allocator->abandon_gc_alloc_regions();
1890 
1891   // Instead of tearing down / rebuilding the free lists here, we
1892   // could instead use the remove_all_pending() method on free_list to
1893   // remove only the ones that we need to remove.
1894   tear_down_region_sets(true /* free_list_only */);
1895   shrink_helper(shrink_bytes);
1896   rebuild_region_sets(true /* free_list_only */);
1897 
1898   _hrm.verify_optional();
1899   verify_region_sets_optional();
1900 }
1901 
1902 // Public methods.
1903 
1904 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1905 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1906 #endif // _MSC_VER
1907 
1908 
1909 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1910   CollectedHeap(),
1911   _g1_policy(policy_),
1912   _dirty_card_queue_set(false),
1913   _into_cset_dirty_card_queue_set(false),
1914   _is_alive_closure_cm(this),
1915   _is_alive_closure_stw(this),
1916   _ref_processor_cm(NULL),
1917   _ref_processor_stw(NULL),
1918   _bot_shared(NULL),
1919   _evac_failure_scan_stack(NULL),
1920   _mark_in_progress(false),
1921   _cg1r(NULL),
1922   _g1mm(NULL),
1923   _refine_cte_cl(NULL),
1924   _full_collection(false),
1925   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1926   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1927   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1928   _humongous_reclaim_candidates(),
1929   _has_humongous_reclaim_candidates(false),
1930   _archive_allocator(NULL),
1931   _free_regions_coming(false),
1932   _young_list(new YoungList(this)),
1933   _gc_time_stamp(0),
1934   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1935   _old_plab_stats(OldPLABSize, PLABWeight),
1936   _expand_heap_after_alloc_failure(true),
1937   _surviving_young_words(NULL),
1938   _old_marking_cycles_started(0),
1939   _old_marking_cycles_completed(0),
1940   _concurrent_cycle_started(false),
1941   _heap_summary_sent(false),
1942   _in_cset_fast_test(),
1943   _dirty_cards_region_list(NULL),
1944   _worker_cset_start_region(NULL),
1945   _worker_cset_start_region_time_stamp(NULL),
1946   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1947   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1948   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1949   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1950 
1951   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1952                           /* are_GC_task_threads */true,
1953                           /* are_ConcurrentGC_threads */false);
1954   _workers->initialize_workers();
1955 
1956   _allocator = G1Allocator::create_allocator(this);
1957   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1958 
1959   // Override the default _filler_array_max_size so that no humongous filler
1960   // objects are created.
1961   _filler_array_max_size = _humongous_object_threshold_in_words;
1962 
1963   int n_queues = (int)ParallelGCThreads;
1964   _task_queues = new RefToScanQueueSet(n_queues);
1965 
1966   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1967   assert(n_rem_sets > 0, "Invariant.");
1968 
1969   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1970   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1971   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1972 
1973   for (int i = 0; i < n_queues; i++) {
1974     RefToScanQueue* q = new RefToScanQueue();
1975     q->initialize();
1976     _task_queues->register_queue(i, q);
1977     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1978   }
1979   clear_cset_start_regions();
1980 
1981   // Initialize the G1EvacuationFailureALot counters and flags.
1982   NOT_PRODUCT(reset_evacuation_should_fail();)
1983 
1984   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1985 }
1986 
1987 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1988                                                                  size_t size,
1989                                                                  size_t translation_factor) {
1990   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1991   // Allocate a new reserved space, preferring to use large pages.
1992   ReservedSpace rs(size, preferred_page_size);
1993   G1RegionToSpaceMapper* result  =
1994     G1RegionToSpaceMapper::create_mapper(rs,
1995                                          size,
1996                                          rs.alignment(),
1997                                          HeapRegion::GrainBytes,
1998                                          translation_factor,
1999                                          mtGC);
2000   if (TracePageSizes) {
2001     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
2002                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2003   }
2004   return result;
2005 }
2006 
2007 jint G1CollectedHeap::initialize() {
2008   CollectedHeap::pre_initialize();
2009   os::enable_vtime();
2010 
2011   G1Log::init();
2012 
2013   // Necessary to satisfy locking discipline assertions.
2014 
2015   MutexLocker x(Heap_lock);
2016 
2017   // We have to initialize the printer before committing the heap, as
2018   // it will be used then.
2019   _hr_printer.set_active(G1PrintHeapRegions);
2020 
2021   // While there are no constraints in the GC code that HeapWordSize
2022   // be any particular value, there are multiple other areas in the
2023   // system which believe this to be true (e.g. oop->object_size in some
2024   // cases incorrectly returns the size in wordSize units rather than
2025   // HeapWordSize).
2026   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2027 
2028   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2029   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2030   size_t heap_alignment = collector_policy()->heap_alignment();
2031 
2032   // Ensure that the sizes are properly aligned.
2033   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2034   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2035   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2036 
2037   _refine_cte_cl = new RefineCardTableEntryClosure();
2038 
2039   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2040 
2041   // Reserve the maximum.
2042 
2043   // When compressed oops are enabled, the preferred heap base
2044   // is calculated by subtracting the requested size from the
2045   // 32Gb boundary and using the result as the base address for
2046   // heap reservation. If the requested size is not aligned to
2047   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2048   // into the ReservedHeapSpace constructor) then the actual
2049   // base of the reserved heap may end up differing from the
2050   // address that was requested (i.e. the preferred heap base).
2051   // If this happens then we could end up using a non-optimal
2052   // compressed oops mode.
2053 
2054   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2055                                                  heap_alignment);
2056 
2057   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2058 
2059   // Create the barrier set for the entire reserved region.
2060   G1SATBCardTableLoggingModRefBS* bs
2061     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2062   bs->initialize();
2063   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2064   set_barrier_set(bs);
2065 
2066   // Also create a G1 rem set.
2067   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2068 
2069   // Carve out the G1 part of the heap.
2070 
2071   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2072   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2073   G1RegionToSpaceMapper* heap_storage =
2074     G1RegionToSpaceMapper::create_mapper(g1_rs,
2075                                          g1_rs.size(),
2076                                          page_size,
2077                                          HeapRegion::GrainBytes,
2078                                          1,
2079                                          mtJavaHeap);
2080   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2081                        max_byte_size, page_size,
2082                        heap_rs.base(),
2083                        heap_rs.size());
2084   heap_storage->set_mapping_changed_listener(&_listener);
2085 
2086   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2087   G1RegionToSpaceMapper* bot_storage =
2088     create_aux_memory_mapper("Block offset table",
2089                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2090                              G1BlockOffsetSharedArray::heap_map_factor());
2091 
2092   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2093   G1RegionToSpaceMapper* cardtable_storage =
2094     create_aux_memory_mapper("Card table",
2095                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2096                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2097 
2098   G1RegionToSpaceMapper* card_counts_storage =
2099     create_aux_memory_mapper("Card counts table",
2100                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2101                              G1CardCounts::heap_map_factor());
2102 
2103   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2104   G1RegionToSpaceMapper* prev_bitmap_storage =
2105     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2106   G1RegionToSpaceMapper* next_bitmap_storage =
2107     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2108 
2109   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2110   g1_barrier_set()->initialize(cardtable_storage);
2111    // Do later initialization work for concurrent refinement.
2112   _cg1r->init(card_counts_storage);
2113 
2114   // 6843694 - ensure that the maximum region index can fit
2115   // in the remembered set structures.
2116   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2117   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2118 
2119   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2120   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2121   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2122             "too many cards per region");
2123 
2124   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2125 
2126   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2127 
2128   {
2129     HeapWord* start = _hrm.reserved().start();
2130     HeapWord* end = _hrm.reserved().end();
2131     size_t granularity = HeapRegion::GrainBytes;
2132 
2133     _in_cset_fast_test.initialize(start, end, granularity);
2134     _humongous_reclaim_candidates.initialize(start, end, granularity);
2135   }
2136 
2137   // Create the ConcurrentMark data structure and thread.
2138   // (Must do this late, so that "max_regions" is defined.)
2139   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2140   if (_cm == NULL || !_cm->completed_initialization()) {
2141     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2142     return JNI_ENOMEM;
2143   }
2144   _cmThread = _cm->cmThread();
2145 
2146   // Initialize the from_card cache structure of HeapRegionRemSet.
2147   HeapRegionRemSet::init_heap(max_regions());
2148 
2149   // Now expand into the initial heap size.
2150   if (!expand(init_byte_size)) {
2151     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2152     return JNI_ENOMEM;
2153   }
2154 
2155   // Perform any initialization actions delegated to the policy.
2156   g1_policy()->init();
2157 
2158   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2159                                                SATB_Q_FL_lock,
2160                                                G1SATBProcessCompletedThreshold,
2161                                                Shared_SATB_Q_lock);
2162 
2163   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2164                                                 DirtyCardQ_CBL_mon,
2165                                                 DirtyCardQ_FL_lock,
2166                                                 concurrent_g1_refine()->yellow_zone(),
2167                                                 concurrent_g1_refine()->red_zone(),
2168                                                 Shared_DirtyCardQ_lock);
2169 
2170   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2171                                     DirtyCardQ_CBL_mon,
2172                                     DirtyCardQ_FL_lock,
2173                                     -1, // never trigger processing
2174                                     -1, // no limit on length
2175                                     Shared_DirtyCardQ_lock,
2176                                     &JavaThread::dirty_card_queue_set());
2177 
2178   // Initialize the card queue set used to hold cards containing
2179   // references into the collection set.
2180   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2181                                              DirtyCardQ_CBL_mon,
2182                                              DirtyCardQ_FL_lock,
2183                                              -1, // never trigger processing
2184                                              -1, // no limit on length
2185                                              Shared_DirtyCardQ_lock,
2186                                              &JavaThread::dirty_card_queue_set());
2187 
2188   // Here we allocate the dummy HeapRegion that is required by the
2189   // G1AllocRegion class.
2190   HeapRegion* dummy_region = _hrm.get_dummy_region();
2191 
2192   // We'll re-use the same region whether the alloc region will
2193   // require BOT updates or not and, if it doesn't, then a non-young
2194   // region will complain that it cannot support allocations without
2195   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2196   dummy_region->set_eden();
2197   // Make sure it's full.
2198   dummy_region->set_top(dummy_region->end());
2199   G1AllocRegion::setup(this, dummy_region);
2200 
2201   _allocator->init_mutator_alloc_region();
2202 
2203   // Do create of the monitoring and management support so that
2204   // values in the heap have been properly initialized.
2205   _g1mm = new G1MonitoringSupport(this);
2206 
2207   G1StringDedup::initialize();
2208 
2209   return JNI_OK;
2210 }
2211 
2212 void G1CollectedHeap::stop() {
2213   // Stop all concurrent threads. We do this to make sure these threads
2214   // do not continue to execute and access resources (e.g. gclog_or_tty)
2215   // that are destroyed during shutdown.
2216   _cg1r->stop();
2217   _cmThread->stop();
2218   if (G1StringDedup::is_enabled()) {
2219     G1StringDedup::stop();
2220   }
2221 }
2222 
2223 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2224   return HeapRegion::max_region_size();
2225 }
2226 
2227 void G1CollectedHeap::post_initialize() {
2228   CollectedHeap::post_initialize();
2229   ref_processing_init();
2230 }
2231 
2232 void G1CollectedHeap::ref_processing_init() {
2233   // Reference processing in G1 currently works as follows:
2234   //
2235   // * There are two reference processor instances. One is
2236   //   used to record and process discovered references
2237   //   during concurrent marking; the other is used to
2238   //   record and process references during STW pauses
2239   //   (both full and incremental).
2240   // * Both ref processors need to 'span' the entire heap as
2241   //   the regions in the collection set may be dotted around.
2242   //
2243   // * For the concurrent marking ref processor:
2244   //   * Reference discovery is enabled at initial marking.
2245   //   * Reference discovery is disabled and the discovered
2246   //     references processed etc during remarking.
2247   //   * Reference discovery is MT (see below).
2248   //   * Reference discovery requires a barrier (see below).
2249   //   * Reference processing may or may not be MT
2250   //     (depending on the value of ParallelRefProcEnabled
2251   //     and ParallelGCThreads).
2252   //   * A full GC disables reference discovery by the CM
2253   //     ref processor and abandons any entries on it's
2254   //     discovered lists.
2255   //
2256   // * For the STW processor:
2257   //   * Non MT discovery is enabled at the start of a full GC.
2258   //   * Processing and enqueueing during a full GC is non-MT.
2259   //   * During a full GC, references are processed after marking.
2260   //
2261   //   * Discovery (may or may not be MT) is enabled at the start
2262   //     of an incremental evacuation pause.
2263   //   * References are processed near the end of a STW evacuation pause.
2264   //   * For both types of GC:
2265   //     * Discovery is atomic - i.e. not concurrent.
2266   //     * Reference discovery will not need a barrier.
2267 
2268   MemRegion mr = reserved_region();
2269 
2270   // Concurrent Mark ref processor
2271   _ref_processor_cm =
2272     new ReferenceProcessor(mr,    // span
2273                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2274                                 // mt processing
2275                            (uint) ParallelGCThreads,
2276                                 // degree of mt processing
2277                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2278                                 // mt discovery
2279                            (uint) MAX2(ParallelGCThreads, ConcGCThreads),
2280                                 // degree of mt discovery
2281                            false,
2282                                 // Reference discovery is not atomic
2283                            &_is_alive_closure_cm);
2284                                 // is alive closure
2285                                 // (for efficiency/performance)
2286 
2287   // STW ref processor
2288   _ref_processor_stw =
2289     new ReferenceProcessor(mr,    // span
2290                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2291                                 // mt processing
2292                            (uint) ParallelGCThreads,
2293                                 // degree of mt processing
2294                            (ParallelGCThreads > 1),
2295                                 // mt discovery
2296                            (uint) ParallelGCThreads,
2297                                 // degree of mt discovery
2298                            true,
2299                                 // Reference discovery is atomic
2300                            &_is_alive_closure_stw);
2301                                 // is alive closure
2302                                 // (for efficiency/performance)
2303 }
2304 
2305 size_t G1CollectedHeap::capacity() const {
2306   return _hrm.length() * HeapRegion::GrainBytes;
2307 }
2308 
2309 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2310   assert(!hr->is_continues_humongous(), "pre-condition");
2311   hr->reset_gc_time_stamp();
2312   if (hr->is_starts_humongous()) {
2313     uint first_index = hr->hrm_index() + 1;
2314     uint last_index = hr->last_hc_index();
2315     for (uint i = first_index; i < last_index; i += 1) {
2316       HeapRegion* chr = region_at(i);
2317       assert(chr->is_continues_humongous(), "sanity");
2318       chr->reset_gc_time_stamp();
2319     }
2320   }
2321 }
2322 
2323 #ifndef PRODUCT
2324 
2325 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2326 private:
2327   unsigned _gc_time_stamp;
2328   bool _failures;
2329 
2330 public:
2331   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2332     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2333 
2334   virtual bool doHeapRegion(HeapRegion* hr) {
2335     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2336     if (_gc_time_stamp != region_gc_time_stamp) {
2337       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2338                              "expected %d", HR_FORMAT_PARAMS(hr),
2339                              region_gc_time_stamp, _gc_time_stamp);
2340       _failures = true;
2341     }
2342     return false;
2343   }
2344 
2345   bool failures() { return _failures; }
2346 };
2347 
2348 void G1CollectedHeap::check_gc_time_stamps() {
2349   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2350   heap_region_iterate(&cl);
2351   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2352 }
2353 #endif // PRODUCT
2354 
2355 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2356                                                  DirtyCardQueue* into_cset_dcq,
2357                                                  bool concurrent,
2358                                                  uint worker_i) {
2359   // Clean cards in the hot card cache
2360   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2361   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2362 
2363   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2364   size_t n_completed_buffers = 0;
2365   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2366     n_completed_buffers++;
2367   }
2368   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2369   dcqs.clear_n_completed_buffers();
2370   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2371 }
2372 
2373 
2374 // Computes the sum of the storage used by the various regions.
2375 size_t G1CollectedHeap::used() const {
2376   size_t result = _allocator->used();
2377   if (_archive_allocator != NULL) {
2378     result += _archive_allocator->used();
2379   }
2380   return result;
2381 }
2382 
2383 size_t G1CollectedHeap::used_unlocked() const {
2384   return _allocator->used_unlocked();
2385 }
2386 
2387 class SumUsedClosure: public HeapRegionClosure {
2388   size_t _used;
2389 public:
2390   SumUsedClosure() : _used(0) {}
2391   bool doHeapRegion(HeapRegion* r) {
2392     if (!r->is_continues_humongous()) {
2393       _used += r->used();
2394     }
2395     return false;
2396   }
2397   size_t result() { return _used; }
2398 };
2399 
2400 size_t G1CollectedHeap::recalculate_used() const {
2401   double recalculate_used_start = os::elapsedTime();
2402 
2403   SumUsedClosure blk;
2404   heap_region_iterate(&blk);
2405 
2406   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2407   return blk.result();
2408 }
2409 
2410 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2411   switch (cause) {
2412     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2413     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2414     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2415     case GCCause::_g1_humongous_allocation: return true;
2416     case GCCause::_update_allocation_context_stats_inc: return true;
2417     case GCCause::_wb_conc_mark:            return true;
2418     default:                                return false;
2419   }
2420 }
2421 
2422 #ifndef PRODUCT
2423 void G1CollectedHeap::allocate_dummy_regions() {
2424   // Let's fill up most of the region
2425   size_t word_size = HeapRegion::GrainWords - 1024;
2426   // And as a result the region we'll allocate will be humongous.
2427   guarantee(is_humongous(word_size), "sanity");
2428 
2429   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2430     // Let's use the existing mechanism for the allocation
2431     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2432                                                  AllocationContext::system());
2433     if (dummy_obj != NULL) {
2434       MemRegion mr(dummy_obj, word_size);
2435       CollectedHeap::fill_with_object(mr);
2436     } else {
2437       // If we can't allocate once, we probably cannot allocate
2438       // again. Let's get out of the loop.
2439       break;
2440     }
2441   }
2442 }
2443 #endif // !PRODUCT
2444 
2445 void G1CollectedHeap::increment_old_marking_cycles_started() {
2446   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2447     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2448     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2449     _old_marking_cycles_started, _old_marking_cycles_completed));
2450 
2451   _old_marking_cycles_started++;
2452 }
2453 
2454 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2455   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2456 
2457   // We assume that if concurrent == true, then the caller is a
2458   // concurrent thread that was joined the Suspendible Thread
2459   // Set. If there's ever a cheap way to check this, we should add an
2460   // assert here.
2461 
2462   // Given that this method is called at the end of a Full GC or of a
2463   // concurrent cycle, and those can be nested (i.e., a Full GC can
2464   // interrupt a concurrent cycle), the number of full collections
2465   // completed should be either one (in the case where there was no
2466   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2467   // behind the number of full collections started.
2468 
2469   // This is the case for the inner caller, i.e. a Full GC.
2470   assert(concurrent ||
2471          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2472          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2473          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2474                  "is inconsistent with _old_marking_cycles_completed = %u",
2475                  _old_marking_cycles_started, _old_marking_cycles_completed));
2476 
2477   // This is the case for the outer caller, i.e. the concurrent cycle.
2478   assert(!concurrent ||
2479          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2480          err_msg("for outer caller (concurrent cycle): "
2481                  "_old_marking_cycles_started = %u "
2482                  "is inconsistent with _old_marking_cycles_completed = %u",
2483                  _old_marking_cycles_started, _old_marking_cycles_completed));
2484 
2485   _old_marking_cycles_completed += 1;
2486 
2487   // We need to clear the "in_progress" flag in the CM thread before
2488   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2489   // is set) so that if a waiter requests another System.gc() it doesn't
2490   // incorrectly see that a marking cycle is still in progress.
2491   if (concurrent) {
2492     _cmThread->clear_in_progress();
2493   }
2494 
2495   // This notify_all() will ensure that a thread that called
2496   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2497   // and it's waiting for a full GC to finish will be woken up. It is
2498   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2499   FullGCCount_lock->notify_all();
2500 }
2501 
2502 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2503   _concurrent_cycle_started = true;
2504   _gc_timer_cm->register_gc_start(start_time);
2505 
2506   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2507   trace_heap_before_gc(_gc_tracer_cm);
2508 }
2509 
2510 void G1CollectedHeap::register_concurrent_cycle_end() {
2511   if (_concurrent_cycle_started) {
2512     if (_cm->has_aborted()) {
2513       _gc_tracer_cm->report_concurrent_mode_failure();
2514     }
2515 
2516     _gc_timer_cm->register_gc_end();
2517     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2518 
2519     // Clear state variables to prepare for the next concurrent cycle.
2520     _concurrent_cycle_started = false;
2521     _heap_summary_sent = false;
2522   }
2523 }
2524 
2525 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2526   if (_concurrent_cycle_started) {
2527     // This function can be called when:
2528     //  the cleanup pause is run
2529     //  the concurrent cycle is aborted before the cleanup pause.
2530     //  the concurrent cycle is aborted after the cleanup pause,
2531     //   but before the concurrent cycle end has been registered.
2532     // Make sure that we only send the heap information once.
2533     if (!_heap_summary_sent) {
2534       trace_heap_after_gc(_gc_tracer_cm);
2535       _heap_summary_sent = true;
2536     }
2537   }
2538 }
2539 
2540 G1YCType G1CollectedHeap::yc_type() {
2541   bool is_young = g1_policy()->gcs_are_young();
2542   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2543   bool is_during_mark = mark_in_progress();
2544 
2545   if (is_initial_mark) {
2546     return InitialMark;
2547   } else if (is_during_mark) {
2548     return DuringMark;
2549   } else if (is_young) {
2550     return Normal;
2551   } else {
2552     return Mixed;
2553   }
2554 }
2555 
2556 void G1CollectedHeap::collect(GCCause::Cause cause) {
2557   assert_heap_not_locked();
2558 
2559   uint gc_count_before;
2560   uint old_marking_count_before;
2561   uint full_gc_count_before;
2562   bool retry_gc;
2563 
2564   do {
2565     retry_gc = false;
2566 
2567     {
2568       MutexLocker ml(Heap_lock);
2569 
2570       // Read the GC count while holding the Heap_lock
2571       gc_count_before = total_collections();
2572       full_gc_count_before = total_full_collections();
2573       old_marking_count_before = _old_marking_cycles_started;
2574     }
2575 
2576     if (should_do_concurrent_full_gc(cause)) {
2577       // Schedule an initial-mark evacuation pause that will start a
2578       // concurrent cycle. We're setting word_size to 0 which means that
2579       // we are not requesting a post-GC allocation.
2580       VM_G1IncCollectionPause op(gc_count_before,
2581                                  0,     /* word_size */
2582                                  true,  /* should_initiate_conc_mark */
2583                                  g1_policy()->max_pause_time_ms(),
2584                                  cause);
2585       op.set_allocation_context(AllocationContext::current());
2586 
2587       VMThread::execute(&op);
2588       if (!op.pause_succeeded()) {
2589         if (old_marking_count_before == _old_marking_cycles_started) {
2590           retry_gc = op.should_retry_gc();
2591         } else {
2592           // A Full GC happened while we were trying to schedule the
2593           // initial-mark GC. No point in starting a new cycle given
2594           // that the whole heap was collected anyway.
2595         }
2596 
2597         if (retry_gc) {
2598           if (GC_locker::is_active_and_needs_gc()) {
2599             GC_locker::stall_until_clear();
2600           }
2601         }
2602       }
2603     } else {
2604       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2605           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2606 
2607         // Schedule a standard evacuation pause. We're setting word_size
2608         // to 0 which means that we are not requesting a post-GC allocation.
2609         VM_G1IncCollectionPause op(gc_count_before,
2610                                    0,     /* word_size */
2611                                    false, /* should_initiate_conc_mark */
2612                                    g1_policy()->max_pause_time_ms(),
2613                                    cause);
2614         VMThread::execute(&op);
2615       } else {
2616         // Schedule a Full GC.
2617         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2618         VMThread::execute(&op);
2619       }
2620     }
2621   } while (retry_gc);
2622 }
2623 
2624 bool G1CollectedHeap::is_in(const void* p) const {
2625   if (_hrm.reserved().contains(p)) {
2626     // Given that we know that p is in the reserved space,
2627     // heap_region_containing_raw() should successfully
2628     // return the containing region.
2629     HeapRegion* hr = heap_region_containing_raw(p);
2630     return hr->is_in(p);
2631   } else {
2632     return false;
2633   }
2634 }
2635 
2636 #ifdef ASSERT
2637 bool G1CollectedHeap::is_in_exact(const void* p) const {
2638   bool contains = reserved_region().contains(p);
2639   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2640   if (contains && available) {
2641     return true;
2642   } else {
2643     return false;
2644   }
2645 }
2646 #endif
2647 
2648 // Iteration functions.
2649 
2650 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2651 
2652 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2653   ExtendedOopClosure* _cl;
2654 public:
2655   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2656   bool doHeapRegion(HeapRegion* r) {
2657     if (!r->is_continues_humongous()) {
2658       r->oop_iterate(_cl);
2659     }
2660     return false;
2661   }
2662 };
2663 
2664 // Iterates an ObjectClosure over all objects within a HeapRegion.
2665 
2666 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2667   ObjectClosure* _cl;
2668 public:
2669   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2670   bool doHeapRegion(HeapRegion* r) {
2671     if (!r->is_continues_humongous()) {
2672       r->object_iterate(_cl);
2673     }
2674     return false;
2675   }
2676 };
2677 
2678 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2679   IterateObjectClosureRegionClosure blk(cl);
2680   heap_region_iterate(&blk);
2681 }
2682 
2683 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2684   _hrm.iterate(cl);
2685 }
2686 
2687 void
2688 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2689                                          uint worker_id,
2690                                          HeapRegionClaimer *hrclaimer,
2691                                          bool concurrent) const {
2692   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2693 }
2694 
2695 // Clear the cached CSet starting regions and (more importantly)
2696 // the time stamps. Called when we reset the GC time stamp.
2697 void G1CollectedHeap::clear_cset_start_regions() {
2698   assert(_worker_cset_start_region != NULL, "sanity");
2699   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2700 
2701   for (uint i = 0; i < ParallelGCThreads; i++) {
2702     _worker_cset_start_region[i] = NULL;
2703     _worker_cset_start_region_time_stamp[i] = 0;
2704   }
2705 }
2706 
2707 // Given the id of a worker, obtain or calculate a suitable
2708 // starting region for iterating over the current collection set.
2709 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2710   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2711 
2712   HeapRegion* result = NULL;
2713   unsigned gc_time_stamp = get_gc_time_stamp();
2714 
2715   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2716     // Cached starting region for current worker was set
2717     // during the current pause - so it's valid.
2718     // Note: the cached starting heap region may be NULL
2719     // (when the collection set is empty).
2720     result = _worker_cset_start_region[worker_i];
2721     assert(result == NULL || result->in_collection_set(), "sanity");
2722     return result;
2723   }
2724 
2725   // The cached entry was not valid so let's calculate
2726   // a suitable starting heap region for this worker.
2727 
2728   // We want the parallel threads to start their collection
2729   // set iteration at different collection set regions to
2730   // avoid contention.
2731   // If we have:
2732   //          n collection set regions
2733   //          p threads
2734   // Then thread t will start at region floor ((t * n) / p)
2735 
2736   result = g1_policy()->collection_set();
2737   uint cs_size = g1_policy()->cset_region_length();
2738   uint active_workers = workers()->active_workers();
2739 
2740   uint end_ind   = (cs_size * worker_i) / active_workers;
2741   uint start_ind = 0;
2742 
2743   if (worker_i > 0 &&
2744       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2745     // Previous workers starting region is valid
2746     // so let's iterate from there
2747     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2748     result = _worker_cset_start_region[worker_i - 1];
2749   }
2750 
2751   for (uint i = start_ind; i < end_ind; i++) {
2752     result = result->next_in_collection_set();
2753   }
2754 
2755   // Note: the calculated starting heap region may be NULL
2756   // (when the collection set is empty).
2757   assert(result == NULL || result->in_collection_set(), "sanity");
2758   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2759          "should be updated only once per pause");
2760   _worker_cset_start_region[worker_i] = result;
2761   OrderAccess::storestore();
2762   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2763   return result;
2764 }
2765 
2766 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2767   HeapRegion* r = g1_policy()->collection_set();
2768   while (r != NULL) {
2769     HeapRegion* next = r->next_in_collection_set();
2770     if (cl->doHeapRegion(r)) {
2771       cl->incomplete();
2772       return;
2773     }
2774     r = next;
2775   }
2776 }
2777 
2778 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2779                                                   HeapRegionClosure *cl) {
2780   if (r == NULL) {
2781     // The CSet is empty so there's nothing to do.
2782     return;
2783   }
2784 
2785   assert(r->in_collection_set(),
2786          "Start region must be a member of the collection set.");
2787   HeapRegion* cur = r;
2788   while (cur != NULL) {
2789     HeapRegion* next = cur->next_in_collection_set();
2790     if (cl->doHeapRegion(cur) && false) {
2791       cl->incomplete();
2792       return;
2793     }
2794     cur = next;
2795   }
2796   cur = g1_policy()->collection_set();
2797   while (cur != r) {
2798     HeapRegion* next = cur->next_in_collection_set();
2799     if (cl->doHeapRegion(cur) && false) {
2800       cl->incomplete();
2801       return;
2802     }
2803     cur = next;
2804   }
2805 }
2806 
2807 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2808   HeapRegion* result = _hrm.next_region_in_heap(from);
2809   while (result != NULL && result->is_pinned()) {
2810     result = _hrm.next_region_in_heap(result);
2811   }
2812   return result;
2813 }
2814 
2815 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2816   HeapRegion* hr = heap_region_containing(addr);
2817   return hr->block_start(addr);
2818 }
2819 
2820 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2821   HeapRegion* hr = heap_region_containing(addr);
2822   return hr->block_size(addr);
2823 }
2824 
2825 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2826   HeapRegion* hr = heap_region_containing(addr);
2827   return hr->block_is_obj(addr);
2828 }
2829 
2830 bool G1CollectedHeap::supports_tlab_allocation() const {
2831   return true;
2832 }
2833 
2834 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2835   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2836 }
2837 
2838 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2839   return young_list()->eden_used_bytes();
2840 }
2841 
2842 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2843 // must be smaller than the humongous object limit.
2844 size_t G1CollectedHeap::max_tlab_size() const {
2845   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2846 }
2847 
2848 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2849   // Return the remaining space in the cur alloc region, but not less than
2850   // the min TLAB size.
2851 
2852   // Also, this value can be at most the humongous object threshold,
2853   // since we can't allow tlabs to grow big enough to accommodate
2854   // humongous objects.
2855 
2856   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2857   size_t max_tlab = max_tlab_size() * wordSize;
2858   if (hr == NULL) {
2859     return max_tlab;
2860   } else {
2861     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2862   }
2863 }
2864 
2865 size_t G1CollectedHeap::max_capacity() const {
2866   return _hrm.reserved().byte_size();
2867 }
2868 
2869 jlong G1CollectedHeap::millis_since_last_gc() {
2870   // assert(false, "NYI");
2871   return 0;
2872 }
2873 
2874 void G1CollectedHeap::prepare_for_verify() {
2875   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2876     ensure_parsability(false);
2877   }
2878   g1_rem_set()->prepare_for_verify();
2879 }
2880 
2881 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2882                                               VerifyOption vo) {
2883   switch (vo) {
2884   case VerifyOption_G1UsePrevMarking:
2885     return hr->obj_allocated_since_prev_marking(obj);
2886   case VerifyOption_G1UseNextMarking:
2887     return hr->obj_allocated_since_next_marking(obj);
2888   case VerifyOption_G1UseMarkWord:
2889     return false;
2890   default:
2891     ShouldNotReachHere();
2892   }
2893   return false; // keep some compilers happy
2894 }
2895 
2896 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2897   switch (vo) {
2898   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2899   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2900   case VerifyOption_G1UseMarkWord:    return NULL;
2901   default:                            ShouldNotReachHere();
2902   }
2903   return NULL; // keep some compilers happy
2904 }
2905 
2906 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2907   switch (vo) {
2908   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2909   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2910   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2911   default:                            ShouldNotReachHere();
2912   }
2913   return false; // keep some compilers happy
2914 }
2915 
2916 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2917   switch (vo) {
2918   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2919   case VerifyOption_G1UseNextMarking: return "NTAMS";
2920   case VerifyOption_G1UseMarkWord:    return "NONE";
2921   default:                            ShouldNotReachHere();
2922   }
2923   return NULL; // keep some compilers happy
2924 }
2925 
2926 class VerifyRootsClosure: public OopClosure {
2927 private:
2928   G1CollectedHeap* _g1h;
2929   VerifyOption     _vo;
2930   bool             _failures;
2931 public:
2932   // _vo == UsePrevMarking -> use "prev" marking information,
2933   // _vo == UseNextMarking -> use "next" marking information,
2934   // _vo == UseMarkWord    -> use mark word from object header.
2935   VerifyRootsClosure(VerifyOption vo) :
2936     _g1h(G1CollectedHeap::heap()),
2937     _vo(vo),
2938     _failures(false) { }
2939 
2940   bool failures() { return _failures; }
2941 
2942   template <class T> void do_oop_nv(T* p) {
2943     T heap_oop = oopDesc::load_heap_oop(p);
2944     if (!oopDesc::is_null(heap_oop)) {
2945       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2946       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2947         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2948                                "points to dead obj "PTR_FORMAT, p2i(p), p2i(obj));
2949         if (_vo == VerifyOption_G1UseMarkWord) {
2950           gclog_or_tty->print_cr("  Mark word: "INTPTR_FORMAT, (intptr_t)obj->mark());
2951         }
2952         obj->print_on(gclog_or_tty);
2953         _failures = true;
2954       }
2955     }
2956   }
2957 
2958   void do_oop(oop* p)       { do_oop_nv(p); }
2959   void do_oop(narrowOop* p) { do_oop_nv(p); }
2960 };
2961 
2962 class G1VerifyCodeRootOopClosure: public OopClosure {
2963   G1CollectedHeap* _g1h;
2964   OopClosure* _root_cl;
2965   nmethod* _nm;
2966   VerifyOption _vo;
2967   bool _failures;
2968 
2969   template <class T> void do_oop_work(T* p) {
2970     // First verify that this root is live
2971     _root_cl->do_oop(p);
2972 
2973     if (!G1VerifyHeapRegionCodeRoots) {
2974       // We're not verifying the code roots attached to heap region.
2975       return;
2976     }
2977 
2978     // Don't check the code roots during marking verification in a full GC
2979     if (_vo == VerifyOption_G1UseMarkWord) {
2980       return;
2981     }
2982 
2983     // Now verify that the current nmethod (which contains p) is
2984     // in the code root list of the heap region containing the
2985     // object referenced by p.
2986 
2987     T heap_oop = oopDesc::load_heap_oop(p);
2988     if (!oopDesc::is_null(heap_oop)) {
2989       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2990 
2991       // Now fetch the region containing the object
2992       HeapRegion* hr = _g1h->heap_region_containing(obj);
2993       HeapRegionRemSet* hrrs = hr->rem_set();
2994       // Verify that the strong code root list for this region
2995       // contains the nmethod
2996       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2997         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2998                                "from nmethod "PTR_FORMAT" not in strong "
2999                                "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3000                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
3001         _failures = true;
3002       }
3003     }
3004   }
3005 
3006 public:
3007   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3008     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3009 
3010   void do_oop(oop* p) { do_oop_work(p); }
3011   void do_oop(narrowOop* p) { do_oop_work(p); }
3012 
3013   void set_nmethod(nmethod* nm) { _nm = nm; }
3014   bool failures() { return _failures; }
3015 };
3016 
3017 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3018   G1VerifyCodeRootOopClosure* _oop_cl;
3019 
3020 public:
3021   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3022     _oop_cl(oop_cl) {}
3023 
3024   void do_code_blob(CodeBlob* cb) {
3025     nmethod* nm = cb->as_nmethod_or_null();
3026     if (nm != NULL) {
3027       _oop_cl->set_nmethod(nm);
3028       nm->oops_do(_oop_cl);
3029     }
3030   }
3031 };
3032 
3033 class YoungRefCounterClosure : public OopClosure {
3034   G1CollectedHeap* _g1h;
3035   int              _count;
3036  public:
3037   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3038   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3039   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3040 
3041   int count() { return _count; }
3042   void reset_count() { _count = 0; };
3043 };
3044 
3045 class VerifyKlassClosure: public KlassClosure {
3046   YoungRefCounterClosure _young_ref_counter_closure;
3047   OopClosure *_oop_closure;
3048  public:
3049   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3050   void do_klass(Klass* k) {
3051     k->oops_do(_oop_closure);
3052 
3053     _young_ref_counter_closure.reset_count();
3054     k->oops_do(&_young_ref_counter_closure);
3055     if (_young_ref_counter_closure.count() > 0) {
3056       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3057     }
3058   }
3059 };
3060 
3061 class VerifyLivenessOopClosure: public OopClosure {
3062   G1CollectedHeap* _g1h;
3063   VerifyOption _vo;
3064 public:
3065   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3066     _g1h(g1h), _vo(vo)
3067   { }
3068   void do_oop(narrowOop *p) { do_oop_work(p); }
3069   void do_oop(      oop *p) { do_oop_work(p); }
3070 
3071   template <class T> void do_oop_work(T *p) {
3072     oop obj = oopDesc::load_decode_heap_oop(p);
3073     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3074               "Dead object referenced by a not dead object");
3075   }
3076 };
3077 
3078 class VerifyObjsInRegionClosure: public ObjectClosure {
3079 private:
3080   G1CollectedHeap* _g1h;
3081   size_t _live_bytes;
3082   HeapRegion *_hr;
3083   VerifyOption _vo;
3084 public:
3085   // _vo == UsePrevMarking -> use "prev" marking information,
3086   // _vo == UseNextMarking -> use "next" marking information,
3087   // _vo == UseMarkWord    -> use mark word from object header.
3088   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3089     : _live_bytes(0), _hr(hr), _vo(vo) {
3090     _g1h = G1CollectedHeap::heap();
3091   }
3092   void do_object(oop o) {
3093     VerifyLivenessOopClosure isLive(_g1h, _vo);
3094     assert(o != NULL, "Huh?");
3095     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3096       // If the object is alive according to the mark word,
3097       // then verify that the marking information agrees.
3098       // Note we can't verify the contra-positive of the
3099       // above: if the object is dead (according to the mark
3100       // word), it may not be marked, or may have been marked
3101       // but has since became dead, or may have been allocated
3102       // since the last marking.
3103       if (_vo == VerifyOption_G1UseMarkWord) {
3104         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3105       }
3106 
3107       o->oop_iterate_no_header(&isLive);
3108       if (!_hr->obj_allocated_since_prev_marking(o)) {
3109         size_t obj_size = o->size();    // Make sure we don't overflow
3110         _live_bytes += (obj_size * HeapWordSize);
3111       }
3112     }
3113   }
3114   size_t live_bytes() { return _live_bytes; }
3115 };
3116 
3117 class VerifyArchiveOopClosure: public OopClosure {
3118 public:
3119   VerifyArchiveOopClosure(HeapRegion *hr) { }
3120   void do_oop(narrowOop *p) { do_oop_work(p); }
3121   void do_oop(      oop *p) { do_oop_work(p); }
3122 
3123   template <class T> void do_oop_work(T *p) {
3124     oop obj = oopDesc::load_decode_heap_oop(p);
3125     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3126               err_msg("Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3127                       p2i(p), p2i(obj)));
3128   }
3129 };
3130 
3131 class VerifyArchiveRegionClosure: public ObjectClosure {
3132 public:
3133   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3134   // Verify that all object pointers are to archive regions.
3135   void do_object(oop o) {
3136     VerifyArchiveOopClosure checkOop(NULL);
3137     assert(o != NULL, "Should not be here for NULL oops");
3138     o->oop_iterate_no_header(&checkOop);
3139   }
3140 };
3141 
3142 class VerifyRegionClosure: public HeapRegionClosure {
3143 private:
3144   bool             _par;
3145   VerifyOption     _vo;
3146   bool             _failures;
3147 public:
3148   // _vo == UsePrevMarking -> use "prev" marking information,
3149   // _vo == UseNextMarking -> use "next" marking information,
3150   // _vo == UseMarkWord    -> use mark word from object header.
3151   VerifyRegionClosure(bool par, VerifyOption vo)
3152     : _par(par),
3153       _vo(vo),
3154       _failures(false) {}
3155 
3156   bool failures() {
3157     return _failures;
3158   }
3159 
3160   bool doHeapRegion(HeapRegion* r) {
3161     // For archive regions, verify there are no heap pointers to
3162     // non-pinned regions. For all others, verify liveness info.
3163     if (r->is_archive()) {
3164       VerifyArchiveRegionClosure verify_oop_pointers(r);
3165       r->object_iterate(&verify_oop_pointers);
3166       return true;
3167     }
3168     if (!r->is_continues_humongous()) {
3169       bool failures = false;
3170       r->verify(_vo, &failures);
3171       if (failures) {
3172         _failures = true;
3173       } else {
3174         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3175         r->object_iterate(&not_dead_yet_cl);
3176         if (_vo != VerifyOption_G1UseNextMarking) {
3177           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3178             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3179                                    "max_live_bytes "SIZE_FORMAT" "
3180                                    "< calculated "SIZE_FORMAT,
3181                                    p2i(r->bottom()), p2i(r->end()),
3182                                    r->max_live_bytes(),
3183                                  not_dead_yet_cl.live_bytes());
3184             _failures = true;
3185           }
3186         } else {
3187           // When vo == UseNextMarking we cannot currently do a sanity
3188           // check on the live bytes as the calculation has not been
3189           // finalized yet.
3190         }
3191       }
3192     }
3193     return false; // stop the region iteration if we hit a failure
3194   }
3195 };
3196 
3197 // This is the task used for parallel verification of the heap regions
3198 
3199 class G1ParVerifyTask: public AbstractGangTask {
3200 private:
3201   G1CollectedHeap*  _g1h;
3202   VerifyOption      _vo;
3203   bool              _failures;
3204   HeapRegionClaimer _hrclaimer;
3205 
3206 public:
3207   // _vo == UsePrevMarking -> use "prev" marking information,
3208   // _vo == UseNextMarking -> use "next" marking information,
3209   // _vo == UseMarkWord    -> use mark word from object header.
3210   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3211       AbstractGangTask("Parallel verify task"),
3212       _g1h(g1h),
3213       _vo(vo),
3214       _failures(false),
3215       _hrclaimer(g1h->workers()->active_workers()) {}
3216 
3217   bool failures() {
3218     return _failures;
3219   }
3220 
3221   void work(uint worker_id) {
3222     HandleMark hm;
3223     VerifyRegionClosure blk(true, _vo);
3224     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3225     if (blk.failures()) {
3226       _failures = true;
3227     }
3228   }
3229 };
3230 
3231 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3232   if (SafepointSynchronize::is_at_safepoint()) {
3233     assert(Thread::current()->is_VM_thread(),
3234            "Expected to be executed serially by the VM thread at this point");
3235 
3236     if (!silent) { gclog_or_tty->print("Roots "); }
3237     VerifyRootsClosure rootsCl(vo);
3238     VerifyKlassClosure klassCl(this, &rootsCl);
3239     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3240 
3241     // We apply the relevant closures to all the oops in the
3242     // system dictionary, class loader data graph, the string table
3243     // and the nmethods in the code cache.
3244     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3245     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3246 
3247     {
3248       G1RootProcessor root_processor(this, 1);
3249       root_processor.process_all_roots(&rootsCl,
3250                                        &cldCl,
3251                                        &blobsCl);
3252     }
3253 
3254     bool failures = rootsCl.failures() || codeRootsCl.failures();
3255 
3256     if (vo != VerifyOption_G1UseMarkWord) {
3257       // If we're verifying during a full GC then the region sets
3258       // will have been torn down at the start of the GC. Therefore
3259       // verifying the region sets will fail. So we only verify
3260       // the region sets when not in a full GC.
3261       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3262       verify_region_sets();
3263     }
3264 
3265     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3266     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3267 
3268       G1ParVerifyTask task(this, vo);
3269       workers()->run_task(&task);
3270       if (task.failures()) {
3271         failures = true;
3272       }
3273 
3274     } else {
3275       VerifyRegionClosure blk(false, vo);
3276       heap_region_iterate(&blk);
3277       if (blk.failures()) {
3278         failures = true;
3279       }
3280     }
3281 
3282     if (G1StringDedup::is_enabled()) {
3283       if (!silent) gclog_or_tty->print("StrDedup ");
3284       G1StringDedup::verify();
3285     }
3286 
3287     if (failures) {
3288       gclog_or_tty->print_cr("Heap:");
3289       // It helps to have the per-region information in the output to
3290       // help us track down what went wrong. This is why we call
3291       // print_extended_on() instead of print_on().
3292       print_extended_on(gclog_or_tty);
3293       gclog_or_tty->cr();
3294       gclog_or_tty->flush();
3295     }
3296     guarantee(!failures, "there should not have been any failures");
3297   } else {
3298     if (!silent) {
3299       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3300       if (G1StringDedup::is_enabled()) {
3301         gclog_or_tty->print(", StrDedup");
3302       }
3303       gclog_or_tty->print(") ");
3304     }
3305   }
3306 }
3307 
3308 void G1CollectedHeap::verify(bool silent) {
3309   verify(silent, VerifyOption_G1UsePrevMarking);
3310 }
3311 
3312 double G1CollectedHeap::verify(bool guard, const char* msg) {
3313   double verify_time_ms = 0.0;
3314 
3315   if (guard && total_collections() >= VerifyGCStartAt) {
3316     double verify_start = os::elapsedTime();
3317     HandleMark hm;  // Discard invalid handles created during verification
3318     prepare_for_verify();
3319     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3320     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3321   }
3322 
3323   return verify_time_ms;
3324 }
3325 
3326 void G1CollectedHeap::verify_before_gc() {
3327   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3328   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3329 }
3330 
3331 void G1CollectedHeap::verify_after_gc() {
3332   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3333   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3334 }
3335 
3336 class PrintRegionClosure: public HeapRegionClosure {
3337   outputStream* _st;
3338 public:
3339   PrintRegionClosure(outputStream* st) : _st(st) {}
3340   bool doHeapRegion(HeapRegion* r) {
3341     r->print_on(_st);
3342     return false;
3343   }
3344 };
3345 
3346 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3347                                        const HeapRegion* hr,
3348                                        const VerifyOption vo) const {
3349   switch (vo) {
3350   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3351   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3352   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3353   default:                            ShouldNotReachHere();
3354   }
3355   return false; // keep some compilers happy
3356 }
3357 
3358 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3359                                        const VerifyOption vo) const {
3360   switch (vo) {
3361   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3362   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3363   case VerifyOption_G1UseMarkWord: {
3364     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3365     return !obj->is_gc_marked() && !hr->is_archive();
3366   }      
3367   default:                            ShouldNotReachHere();
3368   }
3369   return false; // keep some compilers happy
3370 }
3371 
3372 void G1CollectedHeap::print_on(outputStream* st) const {
3373   st->print(" %-20s", "garbage-first heap");
3374   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3375             capacity()/K, used_unlocked()/K);
3376   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3377             p2i(_hrm.reserved().start()),
3378             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3379             p2i(_hrm.reserved().end()));
3380   st->cr();
3381   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3382   uint young_regions = _young_list->length();
3383   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3384             (size_t) young_regions * HeapRegion::GrainBytes / K);
3385   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3386   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3387             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3388   st->cr();
3389   MetaspaceAux::print_on(st);
3390 }
3391 
3392 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3393   print_on(st);
3394 
3395   // Print the per-region information.
3396   st->cr();
3397   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3398                "HS=humongous(starts), HC=humongous(continues), "
3399                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3400                "PTAMS=previous top-at-mark-start, "
3401                "NTAMS=next top-at-mark-start)");
3402   PrintRegionClosure blk(st);
3403   heap_region_iterate(&blk);
3404 }
3405 
3406 void G1CollectedHeap::print_on_error(outputStream* st) const {
3407   this->CollectedHeap::print_on_error(st);
3408 
3409   if (_cm != NULL) {
3410     st->cr();
3411     _cm->print_on_error(st);
3412   }
3413 }
3414 
3415 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3416   workers()->print_worker_threads_on(st);
3417   _cmThread->print_on(st);
3418   st->cr();
3419   _cm->print_worker_threads_on(st);
3420   _cg1r->print_worker_threads_on(st);
3421   if (G1StringDedup::is_enabled()) {
3422     G1StringDedup::print_worker_threads_on(st);
3423   }
3424 }
3425 
3426 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3427   workers()->threads_do(tc);
3428   tc->do_thread(_cmThread);
3429   _cg1r->threads_do(tc);
3430   if (G1StringDedup::is_enabled()) {
3431     G1StringDedup::threads_do(tc);
3432   }
3433 }
3434 
3435 void G1CollectedHeap::print_tracing_info() const {
3436   // We'll overload this to mean "trace GC pause statistics."
3437   if (TraceYoungGenTime || TraceOldGenTime) {
3438     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3439     // to that.
3440     g1_policy()->print_tracing_info();
3441   }
3442   if (G1SummarizeRSetStats) {
3443     g1_rem_set()->print_summary_info();
3444   }
3445   if (G1SummarizeConcMark) {
3446     concurrent_mark()->print_summary_info();
3447   }
3448   g1_policy()->print_yg_surv_rate_info();
3449 }
3450 
3451 #ifndef PRODUCT
3452 // Helpful for debugging RSet issues.
3453 
3454 class PrintRSetsClosure : public HeapRegionClosure {
3455 private:
3456   const char* _msg;
3457   size_t _occupied_sum;
3458 
3459 public:
3460   bool doHeapRegion(HeapRegion* r) {
3461     HeapRegionRemSet* hrrs = r->rem_set();
3462     size_t occupied = hrrs->occupied();
3463     _occupied_sum += occupied;
3464 
3465     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3466                            HR_FORMAT_PARAMS(r));
3467     if (occupied == 0) {
3468       gclog_or_tty->print_cr("  RSet is empty");
3469     } else {
3470       hrrs->print();
3471     }
3472     gclog_or_tty->print_cr("----------");
3473     return false;
3474   }
3475 
3476   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3477     gclog_or_tty->cr();
3478     gclog_or_tty->print_cr("========================================");
3479     gclog_or_tty->print_cr("%s", msg);
3480     gclog_or_tty->cr();
3481   }
3482 
3483   ~PrintRSetsClosure() {
3484     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3485     gclog_or_tty->print_cr("========================================");
3486     gclog_or_tty->cr();
3487   }
3488 };
3489 
3490 void G1CollectedHeap::print_cset_rsets() {
3491   PrintRSetsClosure cl("Printing CSet RSets");
3492   collection_set_iterate(&cl);
3493 }
3494 
3495 void G1CollectedHeap::print_all_rsets() {
3496   PrintRSetsClosure cl("Printing All RSets");;
3497   heap_region_iterate(&cl);
3498 }
3499 #endif // PRODUCT
3500 
3501 G1CollectedHeap* G1CollectedHeap::heap() {
3502   CollectedHeap* heap = Universe::heap();
3503   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3504   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3505   return (G1CollectedHeap*)heap;
3506 }
3507 
3508 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3509   // always_do_update_barrier = false;
3510   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3511   // Fill TLAB's and such
3512   accumulate_statistics_all_tlabs();
3513   ensure_parsability(true);
3514 
3515   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3516       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3517     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3518   }
3519 }
3520 
3521 void G1CollectedHeap::gc_epilogue(bool full) {
3522 
3523   if (G1SummarizeRSetStats &&
3524       (G1SummarizeRSetStatsPeriod > 0) &&
3525       // we are at the end of the GC. Total collections has already been increased.
3526       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3527     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3528   }
3529 
3530   // FIXME: what is this about?
3531   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3532   // is set.
3533   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3534                         "derived pointer present"));
3535   // always_do_update_barrier = true;
3536 
3537   resize_all_tlabs();
3538   allocation_context_stats().update(full);
3539 
3540   // We have just completed a GC. Update the soft reference
3541   // policy with the new heap occupancy
3542   Universe::update_heap_info_at_gc();
3543 }
3544 
3545 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3546                                                uint gc_count_before,
3547                                                bool* succeeded,
3548                                                GCCause::Cause gc_cause) {
3549   assert_heap_not_locked_and_not_at_safepoint();
3550   g1_policy()->record_stop_world_start();
3551   VM_G1IncCollectionPause op(gc_count_before,
3552                              word_size,
3553                              false, /* should_initiate_conc_mark */
3554                              g1_policy()->max_pause_time_ms(),
3555                              gc_cause);
3556 
3557   op.set_allocation_context(AllocationContext::current());
3558   VMThread::execute(&op);
3559 
3560   HeapWord* result = op.result();
3561   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3562   assert(result == NULL || ret_succeeded,
3563          "the result should be NULL if the VM did not succeed");
3564   *succeeded = ret_succeeded;
3565 
3566   assert_heap_not_locked();
3567   return result;
3568 }
3569 
3570 void
3571 G1CollectedHeap::doConcurrentMark() {
3572   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3573   if (!_cmThread->in_progress()) {
3574     _cmThread->set_started();
3575     CGC_lock->notify();
3576   }
3577 }
3578 
3579 size_t G1CollectedHeap::pending_card_num() {
3580   size_t extra_cards = 0;
3581   JavaThread *curr = Threads::first();
3582   while (curr != NULL) {
3583     DirtyCardQueue& dcq = curr->dirty_card_queue();
3584     extra_cards += dcq.size();
3585     curr = curr->next();
3586   }
3587   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3588   size_t buffer_size = dcqs.buffer_size();
3589   size_t buffer_num = dcqs.completed_buffers_num();
3590 
3591   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3592   // in bytes - not the number of 'entries'. We need to convert
3593   // into a number of cards.
3594   return (buffer_size * buffer_num + extra_cards) / oopSize;
3595 }
3596 
3597 size_t G1CollectedHeap::cards_scanned() {
3598   return g1_rem_set()->cardsScanned();
3599 }
3600 
3601 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3602  private:
3603   size_t _total_humongous;
3604   size_t _candidate_humongous;
3605 
3606   DirtyCardQueue _dcq;
3607 
3608   // We don't nominate objects with many remembered set entries, on
3609   // the assumption that such objects are likely still live.
3610   bool is_remset_small(HeapRegion* region) const {
3611     HeapRegionRemSet* const rset = region->rem_set();
3612     return G1EagerReclaimHumongousObjectsWithStaleRefs
3613       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3614       : rset->is_empty();
3615   }
3616 
3617   bool is_typeArray_region(HeapRegion* region) const {
3618     return oop(region->bottom())->is_typeArray();
3619   }
3620 
3621   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3622     assert(region->is_starts_humongous(), "Must start a humongous object");
3623 
3624     // Candidate selection must satisfy the following constraints
3625     // while concurrent marking is in progress:
3626     //
3627     // * In order to maintain SATB invariants, an object must not be
3628     // reclaimed if it was allocated before the start of marking and
3629     // has not had its references scanned.  Such an object must have
3630     // its references (including type metadata) scanned to ensure no
3631     // live objects are missed by the marking process.  Objects
3632     // allocated after the start of concurrent marking don't need to
3633     // be scanned.
3634     //
3635     // * An object must not be reclaimed if it is on the concurrent
3636     // mark stack.  Objects allocated after the start of concurrent
3637     // marking are never pushed on the mark stack.
3638     //
3639     // Nominating only objects allocated after the start of concurrent
3640     // marking is sufficient to meet both constraints.  This may miss
3641     // some objects that satisfy the constraints, but the marking data
3642     // structures don't support efficiently performing the needed
3643     // additional tests or scrubbing of the mark stack.
3644     //
3645     // However, we presently only nominate is_typeArray() objects.
3646     // A humongous object containing references induces remembered
3647     // set entries on other regions.  In order to reclaim such an
3648     // object, those remembered sets would need to be cleaned up.
3649     //
3650     // We also treat is_typeArray() objects specially, allowing them
3651     // to be reclaimed even if allocated before the start of
3652     // concurrent mark.  For this we rely on mark stack insertion to
3653     // exclude is_typeArray() objects, preventing reclaiming an object
3654     // that is in the mark stack.  We also rely on the metadata for
3655     // such objects to be built-in and so ensured to be kept live.
3656     // Frequent allocation and drop of large binary blobs is an
3657     // important use case for eager reclaim, and this special handling
3658     // may reduce needed headroom.
3659 
3660     return is_typeArray_region(region) && is_remset_small(region);
3661   }
3662 
3663  public:
3664   RegisterHumongousWithInCSetFastTestClosure()
3665   : _total_humongous(0),
3666     _candidate_humongous(0),
3667     _dcq(&JavaThread::dirty_card_queue_set()) {
3668   }
3669 
3670   virtual bool doHeapRegion(HeapRegion* r) {
3671     if (!r->is_starts_humongous()) {
3672       return false;
3673     }
3674     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3675 
3676     bool is_candidate = humongous_region_is_candidate(g1h, r);
3677     uint rindex = r->hrm_index();
3678     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3679     if (is_candidate) {
3680       _candidate_humongous++;
3681       g1h->register_humongous_region_with_cset(rindex);
3682       // Is_candidate already filters out humongous object with large remembered sets.
3683       // If we have a humongous object with a few remembered sets, we simply flush these
3684       // remembered set entries into the DCQS. That will result in automatic
3685       // re-evaluation of their remembered set entries during the following evacuation
3686       // phase.
3687       if (!r->rem_set()->is_empty()) {
3688         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3689                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3690         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3691         HeapRegionRemSetIterator hrrs(r->rem_set());
3692         size_t card_index;
3693         while (hrrs.has_next(card_index)) {
3694           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3695           // The remembered set might contain references to already freed
3696           // regions. Filter out such entries to avoid failing card table
3697           // verification.
3698           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3699             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3700               *card_ptr = CardTableModRefBS::dirty_card_val();
3701               _dcq.enqueue(card_ptr);
3702             }
3703           }
3704         }
3705         r->rem_set()->clear_locked();
3706       }
3707       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3708     }
3709     _total_humongous++;
3710 
3711     return false;
3712   }
3713 
3714   size_t total_humongous() const { return _total_humongous; }
3715   size_t candidate_humongous() const { return _candidate_humongous; }
3716 
3717   void flush_rem_set_entries() { _dcq.flush(); }
3718 };
3719 
3720 void G1CollectedHeap::register_humongous_regions_with_cset() {
3721   if (!G1EagerReclaimHumongousObjects) {
3722     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3723     return;
3724   }
3725   double time = os::elapsed_counter();
3726 
3727   // Collect reclaim candidate information and register candidates with cset.
3728   RegisterHumongousWithInCSetFastTestClosure cl;
3729   heap_region_iterate(&cl);
3730 
3731   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3732   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3733                                                                   cl.total_humongous(),
3734                                                                   cl.candidate_humongous());
3735   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3736 
3737   // Finally flush all remembered set entries to re-check into the global DCQS.
3738   cl.flush_rem_set_entries();
3739 }
3740 
3741 void
3742 G1CollectedHeap::setup_surviving_young_words() {
3743   assert(_surviving_young_words == NULL, "pre-condition");
3744   uint array_length = g1_policy()->young_cset_region_length();
3745   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3746   if (_surviving_young_words == NULL) {
3747     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3748                           "Not enough space for young surv words summary.");
3749   }
3750   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3751 #ifdef ASSERT
3752   for (uint i = 0;  i < array_length; ++i) {
3753     assert( _surviving_young_words[i] == 0, "memset above" );
3754   }
3755 #endif // !ASSERT
3756 }
3757 
3758 void
3759 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3760   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3761   uint array_length = g1_policy()->young_cset_region_length();
3762   for (uint i = 0; i < array_length; ++i) {
3763     _surviving_young_words[i] += surv_young_words[i];
3764   }
3765 }
3766 
3767 void
3768 G1CollectedHeap::cleanup_surviving_young_words() {
3769   guarantee( _surviving_young_words != NULL, "pre-condition" );
3770   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3771   _surviving_young_words = NULL;
3772 }
3773 
3774 #ifdef ASSERT
3775 class VerifyCSetClosure: public HeapRegionClosure {
3776 public:
3777   bool doHeapRegion(HeapRegion* hr) {
3778     // Here we check that the CSet region's RSet is ready for parallel
3779     // iteration. The fields that we'll verify are only manipulated
3780     // when the region is part of a CSet and is collected. Afterwards,
3781     // we reset these fields when we clear the region's RSet (when the
3782     // region is freed) so they are ready when the region is
3783     // re-allocated. The only exception to this is if there's an
3784     // evacuation failure and instead of freeing the region we leave
3785     // it in the heap. In that case, we reset these fields during
3786     // evacuation failure handling.
3787     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3788 
3789     // Here's a good place to add any other checks we'd like to
3790     // perform on CSet regions.
3791     return false;
3792   }
3793 };
3794 #endif // ASSERT
3795 
3796 uint G1CollectedHeap::num_task_queues() const {
3797   return _task_queues->size();
3798 }
3799 
3800 #if TASKQUEUE_STATS
3801 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3802   st->print_raw_cr("GC Task Stats");
3803   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3804   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3805 }
3806 
3807 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3808   print_taskqueue_stats_hdr(st);
3809 
3810   TaskQueueStats totals;
3811   const uint n = num_task_queues();
3812   for (uint i = 0; i < n; ++i) {
3813     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3814     totals += task_queue(i)->stats;
3815   }
3816   st->print_raw("tot "); totals.print(st); st->cr();
3817 
3818   DEBUG_ONLY(totals.verify());
3819 }
3820 
3821 void G1CollectedHeap::reset_taskqueue_stats() {
3822   const uint n = num_task_queues();
3823   for (uint i = 0; i < n; ++i) {
3824     task_queue(i)->stats.reset();
3825   }
3826 }
3827 #endif // TASKQUEUE_STATS
3828 
3829 void G1CollectedHeap::log_gc_header() {
3830   if (!G1Log::fine()) {
3831     return;
3832   }
3833 
3834   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3835 
3836   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3837     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3838     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3839 
3840   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3841 }
3842 
3843 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3844   if (!G1Log::fine()) {
3845     return;
3846   }
3847 
3848   if (G1Log::finer()) {
3849     if (evacuation_failed()) {
3850       gclog_or_tty->print(" (to-space exhausted)");
3851     }
3852     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3853     g1_policy()->phase_times()->note_gc_end();
3854     g1_policy()->phase_times()->print(pause_time_sec);
3855     g1_policy()->print_detailed_heap_transition();
3856   } else {
3857     if (evacuation_failed()) {
3858       gclog_or_tty->print("--");
3859     }
3860     g1_policy()->print_heap_transition();
3861     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3862   }
3863   gclog_or_tty->flush();
3864 }
3865 
3866 bool
3867 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3868   assert_at_safepoint(true /* should_be_vm_thread */);
3869   guarantee(!is_gc_active(), "collection is not reentrant");
3870 
3871   if (GC_locker::check_active_before_gc()) {
3872     return false;
3873   }
3874 
3875   _gc_timer_stw->register_gc_start();
3876 
3877   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3878 
3879   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3880   ResourceMark rm;
3881 
3882   G1Log::update_level();
3883   print_heap_before_gc();
3884   trace_heap_before_gc(_gc_tracer_stw);
3885 
3886   verify_region_sets_optional();
3887   verify_dirty_young_regions();
3888 
3889   // This call will decide whether this pause is an initial-mark
3890   // pause. If it is, during_initial_mark_pause() will return true
3891   // for the duration of this pause.
3892   g1_policy()->decide_on_conc_mark_initiation();
3893 
3894   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3895   assert(!g1_policy()->during_initial_mark_pause() ||
3896           g1_policy()->gcs_are_young(), "sanity");
3897 
3898   // We also do not allow mixed GCs during marking.
3899   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3900 
3901   // Record whether this pause is an initial mark. When the current
3902   // thread has completed its logging output and it's safe to signal
3903   // the CM thread, the flag's value in the policy has been reset.
3904   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3905 
3906   // Inner scope for scope based logging, timers, and stats collection
3907   {
3908     EvacuationInfo evacuation_info;
3909 
3910     if (g1_policy()->during_initial_mark_pause()) {
3911       // We are about to start a marking cycle, so we increment the
3912       // full collection counter.
3913       increment_old_marking_cycles_started();
3914       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3915     }
3916 
3917     _gc_tracer_stw->report_yc_type(yc_type());
3918 
3919     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3920 
3921     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3922                                                                   workers()->active_workers(),
3923                                                                   Threads::number_of_non_daemon_threads());
3924     workers()->set_active_workers(active_workers);
3925 
3926     double pause_start_sec = os::elapsedTime();
3927     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3928     log_gc_header();
3929 
3930     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3931     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3932 
3933     // If the secondary_free_list is not empty, append it to the
3934     // free_list. No need to wait for the cleanup operation to finish;
3935     // the region allocation code will check the secondary_free_list
3936     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3937     // set, skip this step so that the region allocation code has to
3938     // get entries from the secondary_free_list.
3939     if (!G1StressConcRegionFreeing) {
3940       append_secondary_free_list_if_not_empty_with_lock();
3941     }
3942 
3943     assert(check_young_list_well_formed(), "young list should be well formed");
3944 
3945     // Don't dynamically change the number of GC threads this early.  A value of
3946     // 0 is used to indicate serial work.  When parallel work is done,
3947     // it will be set.
3948 
3949     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3950       IsGCActiveMark x;
3951 
3952       gc_prologue(false);
3953       increment_total_collections(false /* full gc */);
3954       increment_gc_time_stamp();
3955 
3956       verify_before_gc();
3957 
3958       check_bitmaps("GC Start");
3959 
3960       COMPILER2_PRESENT(DerivedPointerTable::clear());
3961 
3962       // Please see comment in g1CollectedHeap.hpp and
3963       // G1CollectedHeap::ref_processing_init() to see how
3964       // reference processing currently works in G1.
3965 
3966       // Enable discovery in the STW reference processor
3967       ref_processor_stw()->enable_discovery();
3968 
3969       {
3970         // We want to temporarily turn off discovery by the
3971         // CM ref processor, if necessary, and turn it back on
3972         // on again later if we do. Using a scoped
3973         // NoRefDiscovery object will do this.
3974         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3975 
3976         // Forget the current alloc region (we might even choose it to be part
3977         // of the collection set!).
3978         _allocator->release_mutator_alloc_region();
3979 
3980         // We should call this after we retire the mutator alloc
3981         // region(s) so that all the ALLOC / RETIRE events are generated
3982         // before the start GC event.
3983         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3984 
3985         // This timing is only used by the ergonomics to handle our pause target.
3986         // It is unclear why this should not include the full pause. We will
3987         // investigate this in CR 7178365.
3988         //
3989         // Preserving the old comment here if that helps the investigation:
3990         //
3991         // The elapsed time induced by the start time below deliberately elides
3992         // the possible verification above.
3993         double sample_start_time_sec = os::elapsedTime();
3994 
3995 #if YOUNG_LIST_VERBOSE
3996         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3997         _young_list->print();
3998         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3999 #endif // YOUNG_LIST_VERBOSE
4000 
4001         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4002 
4003         double scan_wait_start = os::elapsedTime();
4004         // We have to wait until the CM threads finish scanning the
4005         // root regions as it's the only way to ensure that all the
4006         // objects on them have been correctly scanned before we start
4007         // moving them during the GC.
4008         bool waited = _cm->root_regions()->wait_until_scan_finished();
4009         double wait_time_ms = 0.0;
4010         if (waited) {
4011           double scan_wait_end = os::elapsedTime();
4012           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4013         }
4014         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4015 
4016 #if YOUNG_LIST_VERBOSE
4017         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4018         _young_list->print();
4019 #endif // YOUNG_LIST_VERBOSE
4020 
4021         if (g1_policy()->during_initial_mark_pause()) {
4022           concurrent_mark()->checkpointRootsInitialPre();
4023         }
4024 
4025 #if YOUNG_LIST_VERBOSE
4026         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4027         _young_list->print();
4028         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4029 #endif // YOUNG_LIST_VERBOSE
4030 
4031         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4032 
4033         register_humongous_regions_with_cset();
4034 
4035         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4036 
4037         _cm->note_start_of_gc();
4038         // We call this after finalize_cset() to
4039         // ensure that the CSet has been finalized.
4040         _cm->verify_no_cset_oops();
4041 
4042         if (_hr_printer.is_active()) {
4043           HeapRegion* hr = g1_policy()->collection_set();
4044           while (hr != NULL) {
4045             _hr_printer.cset(hr);
4046             hr = hr->next_in_collection_set();
4047           }
4048         }
4049 
4050 #ifdef ASSERT
4051         VerifyCSetClosure cl;
4052         collection_set_iterate(&cl);
4053 #endif // ASSERT
4054 
4055         setup_surviving_young_words();
4056 
4057         // Initialize the GC alloc regions.
4058         _allocator->init_gc_alloc_regions(evacuation_info);
4059 
4060         // Actually do the work...
4061         evacuate_collection_set(evacuation_info);
4062 
4063         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4064 
4065         eagerly_reclaim_humongous_regions();
4066 
4067         g1_policy()->clear_collection_set();
4068 
4069         cleanup_surviving_young_words();
4070 
4071         // Start a new incremental collection set for the next pause.
4072         g1_policy()->start_incremental_cset_building();
4073 
4074         clear_cset_fast_test();
4075 
4076         _young_list->reset_sampled_info();
4077 
4078         // Don't check the whole heap at this point as the
4079         // GC alloc regions from this pause have been tagged
4080         // as survivors and moved on to the survivor list.
4081         // Survivor regions will fail the !is_young() check.
4082         assert(check_young_list_empty(false /* check_heap */),
4083           "young list should be empty");
4084 
4085 #if YOUNG_LIST_VERBOSE
4086         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4087         _young_list->print();
4088 #endif // YOUNG_LIST_VERBOSE
4089 
4090         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4091                                              _young_list->first_survivor_region(),
4092                                              _young_list->last_survivor_region());
4093 
4094         _young_list->reset_auxilary_lists();
4095 
4096         if (evacuation_failed()) {
4097           _allocator->set_used(recalculate_used());
4098           if (_archive_allocator != NULL) {
4099             _archive_allocator->clear_used();
4100           }
4101           for (uint i = 0; i < ParallelGCThreads; i++) {
4102             if (_evacuation_failed_info_array[i].has_failed()) {
4103               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4104             }
4105           }
4106         } else {
4107           // The "used" of the the collection set have already been subtracted
4108           // when they were freed.  Add in the bytes evacuated.
4109           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4110         }
4111 
4112         if (g1_policy()->during_initial_mark_pause()) {
4113           // We have to do this before we notify the CM threads that
4114           // they can start working to make sure that all the
4115           // appropriate initialization is done on the CM object.
4116           concurrent_mark()->checkpointRootsInitialPost();
4117           set_marking_started();
4118           // Note that we don't actually trigger the CM thread at
4119           // this point. We do that later when we're sure that
4120           // the current thread has completed its logging output.
4121         }
4122 
4123         allocate_dummy_regions();
4124 
4125 #if YOUNG_LIST_VERBOSE
4126         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4127         _young_list->print();
4128         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4129 #endif // YOUNG_LIST_VERBOSE
4130 
4131         _allocator->init_mutator_alloc_region();
4132 
4133         {
4134           size_t expand_bytes = g1_policy()->expansion_amount();
4135           if (expand_bytes > 0) {
4136             size_t bytes_before = capacity();
4137             // No need for an ergo verbose message here,
4138             // expansion_amount() does this when it returns a value > 0.
4139             if (!expand(expand_bytes)) {
4140               // We failed to expand the heap. Cannot do anything about it.
4141             }
4142           }
4143         }
4144 
4145         // We redo the verification but now wrt to the new CSet which
4146         // has just got initialized after the previous CSet was freed.
4147         _cm->verify_no_cset_oops();
4148         _cm->note_end_of_gc();
4149 
4150         // This timing is only used by the ergonomics to handle our pause target.
4151         // It is unclear why this should not include the full pause. We will
4152         // investigate this in CR 7178365.
4153         double sample_end_time_sec = os::elapsedTime();
4154         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4155         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4156 
4157         MemoryService::track_memory_usage();
4158 
4159         // In prepare_for_verify() below we'll need to scan the deferred
4160         // update buffers to bring the RSets up-to-date if
4161         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4162         // the update buffers we'll probably need to scan cards on the
4163         // regions we just allocated to (i.e., the GC alloc
4164         // regions). However, during the last GC we called
4165         // set_saved_mark() on all the GC alloc regions, so card
4166         // scanning might skip the [saved_mark_word()...top()] area of
4167         // those regions (i.e., the area we allocated objects into
4168         // during the last GC). But it shouldn't. Given that
4169         // saved_mark_word() is conditional on whether the GC time stamp
4170         // on the region is current or not, by incrementing the GC time
4171         // stamp here we invalidate all the GC time stamps on all the
4172         // regions and saved_mark_word() will simply return top() for
4173         // all the regions. This is a nicer way of ensuring this rather
4174         // than iterating over the regions and fixing them. In fact, the
4175         // GC time stamp increment here also ensures that
4176         // saved_mark_word() will return top() between pauses, i.e.,
4177         // during concurrent refinement. So we don't need the
4178         // is_gc_active() check to decided which top to use when
4179         // scanning cards (see CR 7039627).
4180         increment_gc_time_stamp();
4181 
4182         verify_after_gc();
4183         check_bitmaps("GC End");
4184 
4185         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4186         ref_processor_stw()->verify_no_references_recorded();
4187 
4188         // CM reference discovery will be re-enabled if necessary.
4189       }
4190 
4191       // We should do this after we potentially expand the heap so
4192       // that all the COMMIT events are generated before the end GC
4193       // event, and after we retire the GC alloc regions so that all
4194       // RETIRE events are generated before the end GC event.
4195       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4196 
4197 #ifdef TRACESPINNING
4198       ParallelTaskTerminator::print_termination_counts();
4199 #endif
4200 
4201       gc_epilogue(false);
4202     }
4203 
4204     // Print the remainder of the GC log output.
4205     log_gc_footer(os::elapsedTime() - pause_start_sec);
4206 
4207     // It is not yet to safe to tell the concurrent mark to
4208     // start as we have some optional output below. We don't want the
4209     // output from the concurrent mark thread interfering with this
4210     // logging output either.
4211 
4212     _hrm.verify_optional();
4213     verify_region_sets_optional();
4214 
4215     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4216     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4217 
4218     print_heap_after_gc();
4219     trace_heap_after_gc(_gc_tracer_stw);
4220 
4221     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4222     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4223     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4224     // before any GC notifications are raised.
4225     g1mm()->update_sizes();
4226 
4227     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4228     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4229     _gc_timer_stw->register_gc_end();
4230     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4231   }
4232   // It should now be safe to tell the concurrent mark thread to start
4233   // without its logging output interfering with the logging output
4234   // that came from the pause.
4235 
4236   if (should_start_conc_mark) {
4237     // CAUTION: after the doConcurrentMark() call below,
4238     // the concurrent marking thread(s) could be running
4239     // concurrently with us. Make sure that anything after
4240     // this point does not assume that we are the only GC thread
4241     // running. Note: of course, the actual marking work will
4242     // not start until the safepoint itself is released in
4243     // SuspendibleThreadSet::desynchronize().
4244     doConcurrentMark();
4245   }
4246 
4247   return true;
4248 }
4249 
4250 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4251   _drain_in_progress = false;
4252   set_evac_failure_closure(cl);
4253   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4254 }
4255 
4256 void G1CollectedHeap::finalize_for_evac_failure() {
4257   assert(_evac_failure_scan_stack != NULL &&
4258          _evac_failure_scan_stack->length() == 0,
4259          "Postcondition");
4260   assert(!_drain_in_progress, "Postcondition");
4261   delete _evac_failure_scan_stack;
4262   _evac_failure_scan_stack = NULL;
4263 }
4264 
4265 void G1CollectedHeap::remove_self_forwarding_pointers() {
4266   double remove_self_forwards_start = os::elapsedTime();
4267 
4268   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4269   workers()->run_task(&rsfp_task);
4270 
4271   // Now restore saved marks, if any.
4272   assert(_objs_with_preserved_marks.size() ==
4273             _preserved_marks_of_objs.size(), "Both or none.");
4274   while (!_objs_with_preserved_marks.is_empty()) {
4275     oop obj = _objs_with_preserved_marks.pop();
4276     markOop m = _preserved_marks_of_objs.pop();
4277     obj->set_mark(m);
4278   }
4279   _objs_with_preserved_marks.clear(true);
4280   _preserved_marks_of_objs.clear(true);
4281 
4282   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4283 }
4284 
4285 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4286   _evac_failure_scan_stack->push(obj);
4287 }
4288 
4289 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4290   assert(_evac_failure_scan_stack != NULL, "precondition");
4291 
4292   while (_evac_failure_scan_stack->length() > 0) {
4293      oop obj = _evac_failure_scan_stack->pop();
4294      _evac_failure_closure->set_region(heap_region_containing(obj));
4295      obj->oop_iterate_backwards(_evac_failure_closure);
4296   }
4297 }
4298 
4299 oop
4300 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4301                                                oop old) {
4302   assert(obj_in_cs(old),
4303          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4304                  p2i(old)));
4305   markOop m = old->mark();
4306   oop forward_ptr = old->forward_to_atomic(old);
4307   if (forward_ptr == NULL) {
4308     // Forward-to-self succeeded.
4309     assert(_par_scan_state != NULL, "par scan state");
4310     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4311     uint queue_num = _par_scan_state->queue_num();
4312 
4313     _evacuation_failed = true;
4314     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4315     if (_evac_failure_closure != cl) {
4316       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4317       assert(!_drain_in_progress,
4318              "Should only be true while someone holds the lock.");
4319       // Set the global evac-failure closure to the current thread's.
4320       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4321       set_evac_failure_closure(cl);
4322       // Now do the common part.
4323       handle_evacuation_failure_common(old, m);
4324       // Reset to NULL.
4325       set_evac_failure_closure(NULL);
4326     } else {
4327       // The lock is already held, and this is recursive.
4328       assert(_drain_in_progress, "This should only be the recursive case.");
4329       handle_evacuation_failure_common(old, m);
4330     }
4331     return old;
4332   } else {
4333     // Forward-to-self failed. Either someone else managed to allocate
4334     // space for this object (old != forward_ptr) or they beat us in
4335     // self-forwarding it (old == forward_ptr).
4336     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4337            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4338                    "should not be in the CSet",
4339                    p2i(old), p2i(forward_ptr)));
4340     return forward_ptr;
4341   }
4342 }
4343 
4344 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4345   preserve_mark_if_necessary(old, m);
4346 
4347   HeapRegion* r = heap_region_containing(old);
4348   if (!r->evacuation_failed()) {
4349     r->set_evacuation_failed(true);
4350     _hr_printer.evac_failure(r);
4351   }
4352 
4353   push_on_evac_failure_scan_stack(old);
4354 
4355   if (!_drain_in_progress) {
4356     // prevent recursion in copy_to_survivor_space()
4357     _drain_in_progress = true;
4358     drain_evac_failure_scan_stack();
4359     _drain_in_progress = false;
4360   }
4361 }
4362 
4363 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4364   assert(evacuation_failed(), "Oversaving!");
4365   // We want to call the "for_promotion_failure" version only in the
4366   // case of a promotion failure.
4367   if (m->must_be_preserved_for_promotion_failure(obj)) {
4368     _objs_with_preserved_marks.push(obj);
4369     _preserved_marks_of_objs.push(m);
4370   }
4371 }
4372 
4373 void G1ParCopyHelper::mark_object(oop obj) {
4374   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4375 
4376   // We know that the object is not moving so it's safe to read its size.
4377   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4378 }
4379 
4380 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4381   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4382   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4383   assert(from_obj != to_obj, "should not be self-forwarded");
4384 
4385   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4386   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4387 
4388   // The object might be in the process of being copied by another
4389   // worker so we cannot trust that its to-space image is
4390   // well-formed. So we have to read its size from its from-space
4391   // image which we know should not be changing.
4392   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4393 }
4394 
4395 template <class T>
4396 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4397   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4398     _scanned_klass->record_modified_oops();
4399   }
4400 }
4401 
4402 template <G1Barrier barrier, G1Mark do_mark_object>
4403 template <class T>
4404 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4405   T heap_oop = oopDesc::load_heap_oop(p);
4406 
4407   if (oopDesc::is_null(heap_oop)) {
4408     return;
4409   }
4410 
4411   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4412 
4413   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4414 
4415   const InCSetState state = _g1->in_cset_state(obj);
4416   if (state.is_in_cset()) {
4417     oop forwardee;
4418     markOop m = obj->mark();
4419     if (m->is_marked()) {
4420       forwardee = (oop) m->decode_pointer();
4421     } else {
4422       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4423     }
4424     assert(forwardee != NULL, "forwardee should not be NULL");
4425     oopDesc::encode_store_heap_oop(p, forwardee);
4426     if (do_mark_object != G1MarkNone && forwardee != obj) {
4427       // If the object is self-forwarded we don't need to explicitly
4428       // mark it, the evacuation failure protocol will do so.
4429       mark_forwarded_object(obj, forwardee);
4430     }
4431 
4432     if (barrier == G1BarrierKlass) {
4433       do_klass_barrier(p, forwardee);
4434     }
4435   } else {
4436     if (state.is_humongous()) {
4437       _g1->set_humongous_is_live(obj);
4438     }
4439     // The object is not in collection set. If we're a root scanning
4440     // closure during an initial mark pause then attempt to mark the object.
4441     if (do_mark_object == G1MarkFromRoot) {
4442       mark_object(obj);
4443     }
4444   }
4445 
4446   if (barrier == G1BarrierEvac) {
4447     _par_scan_state->update_rs(_from, p, _worker_id);
4448   }
4449 }
4450 
4451 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4452 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4453 
4454 class G1ParEvacuateFollowersClosure : public VoidClosure {
4455 protected:
4456   G1CollectedHeap*              _g1h;
4457   G1ParScanThreadState*         _par_scan_state;
4458   RefToScanQueueSet*            _queues;
4459   ParallelTaskTerminator*       _terminator;
4460 
4461   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4462   RefToScanQueueSet*      queues()         { return _queues; }
4463   ParallelTaskTerminator* terminator()     { return _terminator; }
4464 
4465 public:
4466   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4467                                 G1ParScanThreadState* par_scan_state,
4468                                 RefToScanQueueSet* queues,
4469                                 ParallelTaskTerminator* terminator)
4470     : _g1h(g1h), _par_scan_state(par_scan_state),
4471       _queues(queues), _terminator(terminator) {}
4472 
4473   void do_void();
4474 
4475 private:
4476   inline bool offer_termination();
4477 };
4478 
4479 bool G1ParEvacuateFollowersClosure::offer_termination() {
4480   G1ParScanThreadState* const pss = par_scan_state();
4481   pss->start_term_time();
4482   const bool res = terminator()->offer_termination();
4483   pss->end_term_time();
4484   return res;
4485 }
4486 
4487 void G1ParEvacuateFollowersClosure::do_void() {
4488   G1ParScanThreadState* const pss = par_scan_state();
4489   pss->trim_queue();
4490   do {
4491     pss->steal_and_trim_queue(queues());
4492   } while (!offer_termination());
4493 }
4494 
4495 class G1KlassScanClosure : public KlassClosure {
4496  G1ParCopyHelper* _closure;
4497  bool             _process_only_dirty;
4498  int              _count;
4499  public:
4500   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4501       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4502   void do_klass(Klass* klass) {
4503     // If the klass has not been dirtied we know that there's
4504     // no references into  the young gen and we can skip it.
4505    if (!_process_only_dirty || klass->has_modified_oops()) {
4506       // Clean the klass since we're going to scavenge all the metadata.
4507       klass->clear_modified_oops();
4508 
4509       // Tell the closure that this klass is the Klass to scavenge
4510       // and is the one to dirty if oops are left pointing into the young gen.
4511       _closure->set_scanned_klass(klass);
4512 
4513       klass->oops_do(_closure);
4514 
4515       _closure->set_scanned_klass(NULL);
4516     }
4517     _count++;
4518   }
4519 };
4520 
4521 class G1ParTask : public AbstractGangTask {
4522 protected:
4523   G1CollectedHeap*       _g1h;
4524   RefToScanQueueSet      *_queues;
4525   G1RootProcessor*       _root_processor;
4526   ParallelTaskTerminator _terminator;
4527   uint _n_workers;
4528 
4529   Mutex _stats_lock;
4530   Mutex* stats_lock() { return &_stats_lock; }
4531 
4532 public:
4533   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4534     : AbstractGangTask("G1 collection"),
4535       _g1h(g1h),
4536       _queues(task_queues),
4537       _root_processor(root_processor),
4538       _terminator(n_workers, _queues),
4539       _n_workers(n_workers),
4540       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4541   {}
4542 
4543   RefToScanQueueSet* queues() { return _queues; }
4544 
4545   RefToScanQueue *work_queue(int i) {
4546     return queues()->queue(i);
4547   }
4548 
4549   ParallelTaskTerminator* terminator() { return &_terminator; }
4550 
4551   // Helps out with CLD processing.
4552   //
4553   // During InitialMark we need to:
4554   // 1) Scavenge all CLDs for the young GC.
4555   // 2) Mark all objects directly reachable from strong CLDs.
4556   template <G1Mark do_mark_object>
4557   class G1CLDClosure : public CLDClosure {
4558     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4559     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4560     G1KlassScanClosure                                _klass_in_cld_closure;
4561     bool                                              _claim;
4562 
4563    public:
4564     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4565                  bool only_young, bool claim)
4566         : _oop_closure(oop_closure),
4567           _oop_in_klass_closure(oop_closure->g1(),
4568                                 oop_closure->pss(),
4569                                 oop_closure->rp()),
4570           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4571           _claim(claim) {
4572 
4573     }
4574 
4575     void do_cld(ClassLoaderData* cld) {
4576       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4577     }
4578   };
4579 
4580   void work(uint worker_id) {
4581     if (worker_id >= _n_workers) return;  // no work needed this round
4582 
4583     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4584 
4585     {
4586       ResourceMark rm;
4587       HandleMark   hm;
4588 
4589       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4590 
4591       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4592       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4593 
4594       pss.set_evac_failure_closure(&evac_failure_cl);
4595 
4596       bool only_young = _g1h->g1_policy()->gcs_are_young();
4597 
4598       // Non-IM young GC.
4599       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4600       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4601                                                                                only_young, // Only process dirty klasses.
4602                                                                                false);     // No need to claim CLDs.
4603       // IM young GC.
4604       //    Strong roots closures.
4605       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4606       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4607                                                                                false, // Process all klasses.
4608                                                                                true); // Need to claim CLDs.
4609       //    Weak roots closures.
4610       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4611       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4612                                                                                     false, // Process all klasses.
4613                                                                                     true); // Need to claim CLDs.
4614 
4615       OopClosure* strong_root_cl;
4616       OopClosure* weak_root_cl;
4617       CLDClosure* strong_cld_cl;
4618       CLDClosure* weak_cld_cl;
4619 
4620       bool trace_metadata = false;
4621 
4622       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4623         // We also need to mark copied objects.
4624         strong_root_cl = &scan_mark_root_cl;
4625         strong_cld_cl  = &scan_mark_cld_cl;
4626         if (ClassUnloadingWithConcurrentMark) {
4627           weak_root_cl = &scan_mark_weak_root_cl;
4628           weak_cld_cl  = &scan_mark_weak_cld_cl;
4629           trace_metadata = true;
4630         } else {
4631           weak_root_cl = &scan_mark_root_cl;
4632           weak_cld_cl  = &scan_mark_cld_cl;
4633         }
4634       } else {
4635         strong_root_cl = &scan_only_root_cl;
4636         weak_root_cl   = &scan_only_root_cl;
4637         strong_cld_cl  = &scan_only_cld_cl;
4638         weak_cld_cl    = &scan_only_cld_cl;
4639       }
4640 
4641       pss.start_strong_roots();
4642 
4643       _root_processor->evacuate_roots(strong_root_cl,
4644                                       weak_root_cl,
4645                                       strong_cld_cl,
4646                                       weak_cld_cl,
4647                                       trace_metadata,
4648                                       worker_id);
4649 
4650       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4651       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4652                                             weak_root_cl,
4653                                             worker_id);
4654       pss.end_strong_roots();
4655 
4656       {
4657         double start = os::elapsedTime();
4658         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4659         evac.do_void();
4660         double elapsed_sec = os::elapsedTime() - start;
4661         double term_sec = pss.term_time();
4662         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4663         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4664         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4665       }
4666       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4667       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4668 
4669       if (PrintTerminationStats) {
4670         MutexLocker x(stats_lock());
4671         pss.print_termination_stats(worker_id);
4672       }
4673 
4674       assert(pss.queue_is_empty(), "should be empty");
4675 
4676       // Close the inner scope so that the ResourceMark and HandleMark
4677       // destructors are executed here and are included as part of the
4678       // "GC Worker Time".
4679     }
4680     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4681   }
4682 };
4683 
4684 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4685 private:
4686   BoolObjectClosure* _is_alive;
4687   int _initial_string_table_size;
4688   int _initial_symbol_table_size;
4689 
4690   bool  _process_strings;
4691   int _strings_processed;
4692   int _strings_removed;
4693 
4694   bool  _process_symbols;
4695   int _symbols_processed;
4696   int _symbols_removed;
4697 
4698 public:
4699   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4700     AbstractGangTask("String/Symbol Unlinking"),
4701     _is_alive(is_alive),
4702     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4703     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4704 
4705     _initial_string_table_size = StringTable::the_table()->table_size();
4706     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4707     if (process_strings) {
4708       StringTable::clear_parallel_claimed_index();
4709     }
4710     if (process_symbols) {
4711       SymbolTable::clear_parallel_claimed_index();
4712     }
4713   }
4714 
4715   ~G1StringSymbolTableUnlinkTask() {
4716     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4717               err_msg("claim value %d after unlink less than initial string table size %d",
4718                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4719     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4720               err_msg("claim value %d after unlink less than initial symbol table size %d",
4721                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4722 
4723     if (G1TraceStringSymbolTableScrubbing) {
4724       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4725                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4726                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4727                              strings_processed(), strings_removed(),
4728                              symbols_processed(), symbols_removed());
4729     }
4730   }
4731 
4732   void work(uint worker_id) {
4733     int strings_processed = 0;
4734     int strings_removed = 0;
4735     int symbols_processed = 0;
4736     int symbols_removed = 0;
4737     if (_process_strings) {
4738       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4739       Atomic::add(strings_processed, &_strings_processed);
4740       Atomic::add(strings_removed, &_strings_removed);
4741     }
4742     if (_process_symbols) {
4743       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4744       Atomic::add(symbols_processed, &_symbols_processed);
4745       Atomic::add(symbols_removed, &_symbols_removed);
4746     }
4747   }
4748 
4749   size_t strings_processed() const { return (size_t)_strings_processed; }
4750   size_t strings_removed()   const { return (size_t)_strings_removed; }
4751 
4752   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4753   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4754 };
4755 
4756 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4757 private:
4758   static Monitor* _lock;
4759 
4760   BoolObjectClosure* const _is_alive;
4761   const bool               _unloading_occurred;
4762   const uint               _num_workers;
4763 
4764   // Variables used to claim nmethods.
4765   nmethod* _first_nmethod;
4766   volatile nmethod* _claimed_nmethod;
4767 
4768   // The list of nmethods that need to be processed by the second pass.
4769   volatile nmethod* _postponed_list;
4770   volatile uint     _num_entered_barrier;
4771 
4772  public:
4773   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4774       _is_alive(is_alive),
4775       _unloading_occurred(unloading_occurred),
4776       _num_workers(num_workers),
4777       _first_nmethod(NULL),
4778       _claimed_nmethod(NULL),
4779       _postponed_list(NULL),
4780       _num_entered_barrier(0)
4781   {
4782     nmethod::increase_unloading_clock();
4783     // Get first alive nmethod
4784     NMethodIterator iter = NMethodIterator();
4785     if(iter.next_alive()) {
4786       _first_nmethod = iter.method();
4787     }
4788     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4789   }
4790 
4791   ~G1CodeCacheUnloadingTask() {
4792     CodeCache::verify_clean_inline_caches();
4793 
4794     CodeCache::set_needs_cache_clean(false);
4795     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4796 
4797     CodeCache::verify_icholder_relocations();
4798   }
4799 
4800  private:
4801   void add_to_postponed_list(nmethod* nm) {
4802       nmethod* old;
4803       do {
4804         old = (nmethod*)_postponed_list;
4805         nm->set_unloading_next(old);
4806       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4807   }
4808 
4809   void clean_nmethod(nmethod* nm) {
4810     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4811 
4812     if (postponed) {
4813       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4814       add_to_postponed_list(nm);
4815     }
4816 
4817     // Mark that this thread has been cleaned/unloaded.
4818     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4819     nm->set_unloading_clock(nmethod::global_unloading_clock());
4820   }
4821 
4822   void clean_nmethod_postponed(nmethod* nm) {
4823     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4824   }
4825 
4826   static const int MaxClaimNmethods = 16;
4827 
4828   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4829     nmethod* first;
4830     NMethodIterator last;
4831 
4832     do {
4833       *num_claimed_nmethods = 0;
4834 
4835       first = (nmethod*)_claimed_nmethod;
4836       last = NMethodIterator(first);
4837 
4838       if (first != NULL) {
4839 
4840         for (int i = 0; i < MaxClaimNmethods; i++) {
4841           if (!last.next_alive()) {
4842             break;
4843           }
4844           claimed_nmethods[i] = last.method();
4845           (*num_claimed_nmethods)++;
4846         }
4847       }
4848 
4849     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4850   }
4851 
4852   nmethod* claim_postponed_nmethod() {
4853     nmethod* claim;
4854     nmethod* next;
4855 
4856     do {
4857       claim = (nmethod*)_postponed_list;
4858       if (claim == NULL) {
4859         return NULL;
4860       }
4861 
4862       next = claim->unloading_next();
4863 
4864     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4865 
4866     return claim;
4867   }
4868 
4869  public:
4870   // Mark that we're done with the first pass of nmethod cleaning.
4871   void barrier_mark(uint worker_id) {
4872     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4873     _num_entered_barrier++;
4874     if (_num_entered_barrier == _num_workers) {
4875       ml.notify_all();
4876     }
4877   }
4878 
4879   // See if we have to wait for the other workers to
4880   // finish their first-pass nmethod cleaning work.
4881   void barrier_wait(uint worker_id) {
4882     if (_num_entered_barrier < _num_workers) {
4883       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4884       while (_num_entered_barrier < _num_workers) {
4885           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4886       }
4887     }
4888   }
4889 
4890   // Cleaning and unloading of nmethods. Some work has to be postponed
4891   // to the second pass, when we know which nmethods survive.
4892   void work_first_pass(uint worker_id) {
4893     // The first nmethods is claimed by the first worker.
4894     if (worker_id == 0 && _first_nmethod != NULL) {
4895       clean_nmethod(_first_nmethod);
4896       _first_nmethod = NULL;
4897     }
4898 
4899     int num_claimed_nmethods;
4900     nmethod* claimed_nmethods[MaxClaimNmethods];
4901 
4902     while (true) {
4903       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4904 
4905       if (num_claimed_nmethods == 0) {
4906         break;
4907       }
4908 
4909       for (int i = 0; i < num_claimed_nmethods; i++) {
4910         clean_nmethod(claimed_nmethods[i]);
4911       }
4912     }
4913   }
4914 
4915   void work_second_pass(uint worker_id) {
4916     nmethod* nm;
4917     // Take care of postponed nmethods.
4918     while ((nm = claim_postponed_nmethod()) != NULL) {
4919       clean_nmethod_postponed(nm);
4920     }
4921   }
4922 };
4923 
4924 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4925 
4926 class G1KlassCleaningTask : public StackObj {
4927   BoolObjectClosure*                      _is_alive;
4928   volatile jint                           _clean_klass_tree_claimed;
4929   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4930 
4931  public:
4932   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4933       _is_alive(is_alive),
4934       _clean_klass_tree_claimed(0),
4935       _klass_iterator() {
4936   }
4937 
4938  private:
4939   bool claim_clean_klass_tree_task() {
4940     if (_clean_klass_tree_claimed) {
4941       return false;
4942     }
4943 
4944     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4945   }
4946 
4947   InstanceKlass* claim_next_klass() {
4948     Klass* klass;
4949     do {
4950       klass =_klass_iterator.next_klass();
4951     } while (klass != NULL && !klass->oop_is_instance());
4952 
4953     return (InstanceKlass*)klass;
4954   }
4955 
4956 public:
4957 
4958   void clean_klass(InstanceKlass* ik) {
4959     ik->clean_implementors_list(_is_alive);
4960     ik->clean_method_data(_is_alive);
4961 
4962     // G1 specific cleanup work that has
4963     // been moved here to be done in parallel.
4964     ik->clean_dependent_nmethods();
4965   }
4966 
4967   void work() {
4968     ResourceMark rm;
4969 
4970     // One worker will clean the subklass/sibling klass tree.
4971     if (claim_clean_klass_tree_task()) {
4972       Klass::clean_subklass_tree(_is_alive);
4973     }
4974 
4975     // All workers will help cleaning the classes,
4976     InstanceKlass* klass;
4977     while ((klass = claim_next_klass()) != NULL) {
4978       clean_klass(klass);
4979     }
4980   }
4981 };
4982 
4983 // To minimize the remark pause times, the tasks below are done in parallel.
4984 class G1ParallelCleaningTask : public AbstractGangTask {
4985 private:
4986   G1StringSymbolTableUnlinkTask _string_symbol_task;
4987   G1CodeCacheUnloadingTask      _code_cache_task;
4988   G1KlassCleaningTask           _klass_cleaning_task;
4989 
4990 public:
4991   // The constructor is run in the VMThread.
4992   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4993       AbstractGangTask("Parallel Cleaning"),
4994       _string_symbol_task(is_alive, process_strings, process_symbols),
4995       _code_cache_task(num_workers, is_alive, unloading_occurred),
4996       _klass_cleaning_task(is_alive) {
4997   }
4998 
4999   // The parallel work done by all worker threads.
5000   void work(uint worker_id) {
5001     // Do first pass of code cache cleaning.
5002     _code_cache_task.work_first_pass(worker_id);
5003 
5004     // Let the threads mark that the first pass is done.
5005     _code_cache_task.barrier_mark(worker_id);
5006 
5007     // Clean the Strings and Symbols.
5008     _string_symbol_task.work(worker_id);
5009 
5010     // Wait for all workers to finish the first code cache cleaning pass.
5011     _code_cache_task.barrier_wait(worker_id);
5012 
5013     // Do the second code cache cleaning work, which realize on
5014     // the liveness information gathered during the first pass.
5015     _code_cache_task.work_second_pass(worker_id);
5016 
5017     // Clean all klasses that were not unloaded.
5018     _klass_cleaning_task.work();
5019   }
5020 };
5021 
5022 
5023 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5024                                         bool process_strings,
5025                                         bool process_symbols,
5026                                         bool class_unloading_occurred) {
5027   uint n_workers = workers()->active_workers();
5028 
5029   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5030                                         n_workers, class_unloading_occurred);
5031   workers()->run_task(&g1_unlink_task);
5032 }
5033 
5034 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5035                                                      bool process_strings, bool process_symbols) {
5036   {
5037     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5038     workers()->run_task(&g1_unlink_task);
5039   }
5040 
5041   if (G1StringDedup::is_enabled()) {
5042     G1StringDedup::unlink(is_alive);
5043   }
5044 }
5045 
5046 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5047  private:
5048   DirtyCardQueueSet* _queue;
5049  public:
5050   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5051 
5052   virtual void work(uint worker_id) {
5053     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5054     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5055 
5056     RedirtyLoggedCardTableEntryClosure cl;
5057     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5058 
5059     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5060   }
5061 };
5062 
5063 void G1CollectedHeap::redirty_logged_cards() {
5064   double redirty_logged_cards_start = os::elapsedTime();
5065 
5066   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5067   dirty_card_queue_set().reset_for_par_iteration();
5068   workers()->run_task(&redirty_task);
5069 
5070   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5071   dcq.merge_bufferlists(&dirty_card_queue_set());
5072   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5073 
5074   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5075 }
5076 
5077 // Weak Reference Processing support
5078 
5079 // An always "is_alive" closure that is used to preserve referents.
5080 // If the object is non-null then it's alive.  Used in the preservation
5081 // of referent objects that are pointed to by reference objects
5082 // discovered by the CM ref processor.
5083 class G1AlwaysAliveClosure: public BoolObjectClosure {
5084   G1CollectedHeap* _g1;
5085 public:
5086   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5087   bool do_object_b(oop p) {
5088     if (p != NULL) {
5089       return true;
5090     }
5091     return false;
5092   }
5093 };
5094 
5095 bool G1STWIsAliveClosure::do_object_b(oop p) {
5096   // An object is reachable if it is outside the collection set,
5097   // or is inside and copied.
5098   return !_g1->obj_in_cs(p) || p->is_forwarded();
5099 }
5100 
5101 // Non Copying Keep Alive closure
5102 class G1KeepAliveClosure: public OopClosure {
5103   G1CollectedHeap* _g1;
5104 public:
5105   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5106   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5107   void do_oop(oop* p) {
5108     oop obj = *p;
5109     assert(obj != NULL, "the caller should have filtered out NULL values");
5110 
5111     const InCSetState cset_state = _g1->in_cset_state(obj);
5112     if (!cset_state.is_in_cset_or_humongous()) {
5113       return;
5114     }
5115     if (cset_state.is_in_cset()) {
5116       assert( obj->is_forwarded(), "invariant" );
5117       *p = obj->forwardee();
5118     } else {
5119       assert(!obj->is_forwarded(), "invariant" );
5120       assert(cset_state.is_humongous(),
5121              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5122       _g1->set_humongous_is_live(obj);
5123     }
5124   }
5125 };
5126 
5127 // Copying Keep Alive closure - can be called from both
5128 // serial and parallel code as long as different worker
5129 // threads utilize different G1ParScanThreadState instances
5130 // and different queues.
5131 
5132 class G1CopyingKeepAliveClosure: public OopClosure {
5133   G1CollectedHeap*         _g1h;
5134   OopClosure*              _copy_non_heap_obj_cl;
5135   G1ParScanThreadState*    _par_scan_state;
5136 
5137 public:
5138   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5139                             OopClosure* non_heap_obj_cl,
5140                             G1ParScanThreadState* pss):
5141     _g1h(g1h),
5142     _copy_non_heap_obj_cl(non_heap_obj_cl),
5143     _par_scan_state(pss)
5144   {}
5145 
5146   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5147   virtual void do_oop(      oop* p) { do_oop_work(p); }
5148 
5149   template <class T> void do_oop_work(T* p) {
5150     oop obj = oopDesc::load_decode_heap_oop(p);
5151 
5152     if (_g1h->is_in_cset_or_humongous(obj)) {
5153       // If the referent object has been forwarded (either copied
5154       // to a new location or to itself in the event of an
5155       // evacuation failure) then we need to update the reference
5156       // field and, if both reference and referent are in the G1
5157       // heap, update the RSet for the referent.
5158       //
5159       // If the referent has not been forwarded then we have to keep
5160       // it alive by policy. Therefore we have copy the referent.
5161       //
5162       // If the reference field is in the G1 heap then we can push
5163       // on the PSS queue. When the queue is drained (after each
5164       // phase of reference processing) the object and it's followers
5165       // will be copied, the reference field set to point to the
5166       // new location, and the RSet updated. Otherwise we need to
5167       // use the the non-heap or metadata closures directly to copy
5168       // the referent object and update the pointer, while avoiding
5169       // updating the RSet.
5170 
5171       if (_g1h->is_in_g1_reserved(p)) {
5172         _par_scan_state->push_on_queue(p);
5173       } else {
5174         assert(!Metaspace::contains((const void*)p),
5175                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5176         _copy_non_heap_obj_cl->do_oop(p);
5177       }
5178     }
5179   }
5180 };
5181 
5182 // Serial drain queue closure. Called as the 'complete_gc'
5183 // closure for each discovered list in some of the
5184 // reference processing phases.
5185 
5186 class G1STWDrainQueueClosure: public VoidClosure {
5187 protected:
5188   G1CollectedHeap* _g1h;
5189   G1ParScanThreadState* _par_scan_state;
5190 
5191   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5192 
5193 public:
5194   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5195     _g1h(g1h),
5196     _par_scan_state(pss)
5197   { }
5198 
5199   void do_void() {
5200     G1ParScanThreadState* const pss = par_scan_state();
5201     pss->trim_queue();
5202   }
5203 };
5204 
5205 // Parallel Reference Processing closures
5206 
5207 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5208 // processing during G1 evacuation pauses.
5209 
5210 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5211 private:
5212   G1CollectedHeap*   _g1h;
5213   RefToScanQueueSet* _queues;
5214   FlexibleWorkGang*  _workers;
5215   uint               _active_workers;
5216 
5217 public:
5218   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5219                            FlexibleWorkGang* workers,
5220                            RefToScanQueueSet *task_queues,
5221                            uint n_workers) :
5222     _g1h(g1h),
5223     _queues(task_queues),
5224     _workers(workers),
5225     _active_workers(n_workers)
5226   {
5227     assert(n_workers > 0, "shouldn't call this otherwise");
5228   }
5229 
5230   // Executes the given task using concurrent marking worker threads.
5231   virtual void execute(ProcessTask& task);
5232   virtual void execute(EnqueueTask& task);
5233 };
5234 
5235 // Gang task for possibly parallel reference processing
5236 
5237 class G1STWRefProcTaskProxy: public AbstractGangTask {
5238   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5239   ProcessTask&     _proc_task;
5240   G1CollectedHeap* _g1h;
5241   RefToScanQueueSet *_task_queues;
5242   ParallelTaskTerminator* _terminator;
5243 
5244 public:
5245   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5246                      G1CollectedHeap* g1h,
5247                      RefToScanQueueSet *task_queues,
5248                      ParallelTaskTerminator* terminator) :
5249     AbstractGangTask("Process reference objects in parallel"),
5250     _proc_task(proc_task),
5251     _g1h(g1h),
5252     _task_queues(task_queues),
5253     _terminator(terminator)
5254   {}
5255 
5256   virtual void work(uint worker_id) {
5257     // The reference processing task executed by a single worker.
5258     ResourceMark rm;
5259     HandleMark   hm;
5260 
5261     G1STWIsAliveClosure is_alive(_g1h);
5262 
5263     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5264     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5265 
5266     pss.set_evac_failure_closure(&evac_failure_cl);
5267 
5268     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5269 
5270     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5271 
5272     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5273 
5274     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5275       // We also need to mark copied objects.
5276       copy_non_heap_cl = &copy_mark_non_heap_cl;
5277     }
5278 
5279     // Keep alive closure.
5280     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5281 
5282     // Complete GC closure
5283     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5284 
5285     // Call the reference processing task's work routine.
5286     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5287 
5288     // Note we cannot assert that the refs array is empty here as not all
5289     // of the processing tasks (specifically phase2 - pp2_work) execute
5290     // the complete_gc closure (which ordinarily would drain the queue) so
5291     // the queue may not be empty.
5292   }
5293 };
5294 
5295 // Driver routine for parallel reference processing.
5296 // Creates an instance of the ref processing gang
5297 // task and has the worker threads execute it.
5298 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5299   assert(_workers != NULL, "Need parallel worker threads.");
5300 
5301   ParallelTaskTerminator terminator(_active_workers, _queues);
5302   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5303 
5304   _workers->run_task(&proc_task_proxy);
5305 }
5306 
5307 // Gang task for parallel reference enqueueing.
5308 
5309 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5310   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5311   EnqueueTask& _enq_task;
5312 
5313 public:
5314   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5315     AbstractGangTask("Enqueue reference objects in parallel"),
5316     _enq_task(enq_task)
5317   { }
5318 
5319   virtual void work(uint worker_id) {
5320     _enq_task.work(worker_id);
5321   }
5322 };
5323 
5324 // Driver routine for parallel reference enqueueing.
5325 // Creates an instance of the ref enqueueing gang
5326 // task and has the worker threads execute it.
5327 
5328 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5329   assert(_workers != NULL, "Need parallel worker threads.");
5330 
5331   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5332 
5333   _workers->run_task(&enq_task_proxy);
5334 }
5335 
5336 // End of weak reference support closures
5337 
5338 // Abstract task used to preserve (i.e. copy) any referent objects
5339 // that are in the collection set and are pointed to by reference
5340 // objects discovered by the CM ref processor.
5341 
5342 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5343 protected:
5344   G1CollectedHeap* _g1h;
5345   RefToScanQueueSet      *_queues;
5346   ParallelTaskTerminator _terminator;
5347   uint _n_workers;
5348 
5349 public:
5350   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5351     AbstractGangTask("ParPreserveCMReferents"),
5352     _g1h(g1h),
5353     _queues(task_queues),
5354     _terminator(workers, _queues),
5355     _n_workers(workers)
5356   { }
5357 
5358   void work(uint worker_id) {
5359     ResourceMark rm;
5360     HandleMark   hm;
5361 
5362     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5363     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5364 
5365     pss.set_evac_failure_closure(&evac_failure_cl);
5366 
5367     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5368 
5369     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5370 
5371     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5372 
5373     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5374 
5375     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5376       // We also need to mark copied objects.
5377       copy_non_heap_cl = &copy_mark_non_heap_cl;
5378     }
5379 
5380     // Is alive closure
5381     G1AlwaysAliveClosure always_alive(_g1h);
5382 
5383     // Copying keep alive closure. Applied to referent objects that need
5384     // to be copied.
5385     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5386 
5387     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5388 
5389     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5390     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5391 
5392     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5393     // So this must be true - but assert just in case someone decides to
5394     // change the worker ids.
5395     assert(worker_id < limit, "sanity");
5396     assert(!rp->discovery_is_atomic(), "check this code");
5397 
5398     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5399     for (uint idx = worker_id; idx < limit; idx += stride) {
5400       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5401 
5402       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5403       while (iter.has_next()) {
5404         // Since discovery is not atomic for the CM ref processor, we
5405         // can see some null referent objects.
5406         iter.load_ptrs(DEBUG_ONLY(true));
5407         oop ref = iter.obj();
5408 
5409         // This will filter nulls.
5410         if (iter.is_referent_alive()) {
5411           iter.make_referent_alive();
5412         }
5413         iter.move_to_next();
5414       }
5415     }
5416 
5417     // Drain the queue - which may cause stealing
5418     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5419     drain_queue.do_void();
5420     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5421     assert(pss.queue_is_empty(), "should be");
5422   }
5423 };
5424 
5425 // Weak Reference processing during an evacuation pause (part 1).
5426 void G1CollectedHeap::process_discovered_references() {
5427   double ref_proc_start = os::elapsedTime();
5428 
5429   ReferenceProcessor* rp = _ref_processor_stw;
5430   assert(rp->discovery_enabled(), "should have been enabled");
5431 
5432   // Any reference objects, in the collection set, that were 'discovered'
5433   // by the CM ref processor should have already been copied (either by
5434   // applying the external root copy closure to the discovered lists, or
5435   // by following an RSet entry).
5436   //
5437   // But some of the referents, that are in the collection set, that these
5438   // reference objects point to may not have been copied: the STW ref
5439   // processor would have seen that the reference object had already
5440   // been 'discovered' and would have skipped discovering the reference,
5441   // but would not have treated the reference object as a regular oop.
5442   // As a result the copy closure would not have been applied to the
5443   // referent object.
5444   //
5445   // We need to explicitly copy these referent objects - the references
5446   // will be processed at the end of remarking.
5447   //
5448   // We also need to do this copying before we process the reference
5449   // objects discovered by the STW ref processor in case one of these
5450   // referents points to another object which is also referenced by an
5451   // object discovered by the STW ref processor.
5452 
5453   uint no_of_gc_workers = workers()->active_workers();
5454 
5455   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5456                                                  no_of_gc_workers,
5457                                                  _task_queues);
5458 
5459   workers()->run_task(&keep_cm_referents);
5460 
5461   // Closure to test whether a referent is alive.
5462   G1STWIsAliveClosure is_alive(this);
5463 
5464   // Even when parallel reference processing is enabled, the processing
5465   // of JNI refs is serial and performed serially by the current thread
5466   // rather than by a worker. The following PSS will be used for processing
5467   // JNI refs.
5468 
5469   // Use only a single queue for this PSS.
5470   G1ParScanThreadState            pss(this, 0, NULL);
5471 
5472   // We do not embed a reference processor in the copying/scanning
5473   // closures while we're actually processing the discovered
5474   // reference objects.
5475   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5476 
5477   pss.set_evac_failure_closure(&evac_failure_cl);
5478 
5479   assert(pss.queue_is_empty(), "pre-condition");
5480 
5481   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5482 
5483   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5484 
5485   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5486 
5487   if (g1_policy()->during_initial_mark_pause()) {
5488     // We also need to mark copied objects.
5489     copy_non_heap_cl = &copy_mark_non_heap_cl;
5490   }
5491 
5492   // Keep alive closure.
5493   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5494 
5495   // Serial Complete GC closure
5496   G1STWDrainQueueClosure drain_queue(this, &pss);
5497 
5498   // Setup the soft refs policy...
5499   rp->setup_policy(false);
5500 
5501   ReferenceProcessorStats stats;
5502   if (!rp->processing_is_mt()) {
5503     // Serial reference processing...
5504     stats = rp->process_discovered_references(&is_alive,
5505                                               &keep_alive,
5506                                               &drain_queue,
5507                                               NULL,
5508                                               _gc_timer_stw,
5509                                               _gc_tracer_stw->gc_id());
5510   } else {
5511     // Parallel reference processing
5512     assert(rp->num_q() == no_of_gc_workers, "sanity");
5513     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5514 
5515     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5516     stats = rp->process_discovered_references(&is_alive,
5517                                               &keep_alive,
5518                                               &drain_queue,
5519                                               &par_task_executor,
5520                                               _gc_timer_stw,
5521                                               _gc_tracer_stw->gc_id());
5522   }
5523 
5524   _gc_tracer_stw->report_gc_reference_stats(stats);
5525 
5526   // We have completed copying any necessary live referent objects.
5527   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5528 
5529   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5530   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5531 }
5532 
5533 // Weak Reference processing during an evacuation pause (part 2).
5534 void G1CollectedHeap::enqueue_discovered_references() {
5535   double ref_enq_start = os::elapsedTime();
5536 
5537   ReferenceProcessor* rp = _ref_processor_stw;
5538   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5539 
5540   // Now enqueue any remaining on the discovered lists on to
5541   // the pending list.
5542   if (!rp->processing_is_mt()) {
5543     // Serial reference processing...
5544     rp->enqueue_discovered_references();
5545   } else {
5546     // Parallel reference enqueueing
5547 
5548     uint n_workers = workers()->active_workers();
5549 
5550     assert(rp->num_q() == n_workers, "sanity");
5551     assert(n_workers <= rp->max_num_q(), "sanity");
5552 
5553     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, n_workers);
5554     rp->enqueue_discovered_references(&par_task_executor);
5555   }
5556 
5557   rp->verify_no_references_recorded();
5558   assert(!rp->discovery_enabled(), "should have been disabled");
5559 
5560   // FIXME
5561   // CM's reference processing also cleans up the string and symbol tables.
5562   // Should we do that here also? We could, but it is a serial operation
5563   // and could significantly increase the pause time.
5564 
5565   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5566   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5567 }
5568 
5569 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5570   _expand_heap_after_alloc_failure = true;
5571   _evacuation_failed = false;
5572 
5573   // Should G1EvacuationFailureALot be in effect for this GC?
5574   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5575 
5576   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5577 
5578   // Disable the hot card cache.
5579   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5580   hot_card_cache->reset_hot_cache_claimed_index();
5581   hot_card_cache->set_use_cache(false);
5582 
5583   const uint n_workers = workers()->active_workers();
5584 
5585   init_for_evac_failure(NULL);
5586 
5587   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5588   double start_par_time_sec = os::elapsedTime();
5589   double end_par_time_sec;
5590 
5591   {
5592     G1RootProcessor root_processor(this, n_workers);
5593     G1ParTask g1_par_task(this, _task_queues, &root_processor, n_workers);
5594     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5595     if (g1_policy()->during_initial_mark_pause()) {
5596       ClassLoaderDataGraph::clear_claimed_marks();
5597     }
5598 
5599     // The individual threads will set their evac-failure closures.
5600     if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5601 
5602     workers()->run_task(&g1_par_task);
5603     end_par_time_sec = os::elapsedTime();
5604 
5605     // Closing the inner scope will execute the destructor
5606     // for the G1RootProcessor object. We record the current
5607     // elapsed time before closing the scope so that time
5608     // taken for the destructor is NOT included in the
5609     // reported parallel time.
5610   }
5611 
5612   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5613 
5614   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5615   phase_times->record_par_time(par_time_ms);
5616 
5617   double code_root_fixup_time_ms =
5618         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5619   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5620 
5621   // Process any discovered reference objects - we have
5622   // to do this _before_ we retire the GC alloc regions
5623   // as we may have to copy some 'reachable' referent
5624   // objects (and their reachable sub-graphs) that were
5625   // not copied during the pause.
5626   process_discovered_references();
5627 
5628   if (G1StringDedup::is_enabled()) {
5629     double fixup_start = os::elapsedTime();
5630 
5631     G1STWIsAliveClosure is_alive(this);
5632     G1KeepAliveClosure keep_alive(this);
5633     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5634 
5635     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5636     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5637   }
5638 
5639   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5640   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5641 
5642   // Reset and re-enable the hot card cache.
5643   // Note the counts for the cards in the regions in the
5644   // collection set are reset when the collection set is freed.
5645   hot_card_cache->reset_hot_cache();
5646   hot_card_cache->set_use_cache(true);
5647 
5648   purge_code_root_memory();
5649 
5650   finalize_for_evac_failure();
5651 
5652   if (evacuation_failed()) {
5653     remove_self_forwarding_pointers();
5654 
5655     // Reset the G1EvacuationFailureALot counters and flags
5656     // Note: the values are reset only when an actual
5657     // evacuation failure occurs.
5658     NOT_PRODUCT(reset_evacuation_should_fail();)
5659   }
5660 
5661   // Enqueue any remaining references remaining on the STW
5662   // reference processor's discovered lists. We need to do
5663   // this after the card table is cleaned (and verified) as
5664   // the act of enqueueing entries on to the pending list
5665   // will log these updates (and dirty their associated
5666   // cards). We need these updates logged to update any
5667   // RSets.
5668   enqueue_discovered_references();
5669 
5670   redirty_logged_cards();
5671   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5672 }
5673 
5674 void G1CollectedHeap::free_region(HeapRegion* hr,
5675                                   FreeRegionList* free_list,
5676                                   bool par,
5677                                   bool locked) {
5678   assert(!hr->is_free(), "the region should not be free");
5679   assert(!hr->is_empty(), "the region should not be empty");
5680   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5681   assert(free_list != NULL, "pre-condition");
5682 
5683   if (G1VerifyBitmaps) {
5684     MemRegion mr(hr->bottom(), hr->end());
5685     concurrent_mark()->clearRangePrevBitmap(mr);
5686   }
5687 
5688   // Clear the card counts for this region.
5689   // Note: we only need to do this if the region is not young
5690   // (since we don't refine cards in young regions).
5691   if (!hr->is_young()) {
5692     _cg1r->hot_card_cache()->reset_card_counts(hr);
5693   }
5694   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5695   free_list->add_ordered(hr);
5696 }
5697 
5698 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5699                                      FreeRegionList* free_list,
5700                                      bool par) {
5701   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5702   assert(free_list != NULL, "pre-condition");
5703 
5704   size_t hr_capacity = hr->capacity();
5705   // We need to read this before we make the region non-humongous,
5706   // otherwise the information will be gone.
5707   uint last_index = hr->last_hc_index();
5708   hr->clear_humongous();
5709   free_region(hr, free_list, par);
5710 
5711   uint i = hr->hrm_index() + 1;
5712   while (i < last_index) {
5713     HeapRegion* curr_hr = region_at(i);
5714     assert(curr_hr->is_continues_humongous(), "invariant");
5715     curr_hr->clear_humongous();
5716     free_region(curr_hr, free_list, par);
5717     i += 1;
5718   }
5719 }
5720 
5721 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5722                                        const HeapRegionSetCount& humongous_regions_removed) {
5723   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5724     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5725     _old_set.bulk_remove(old_regions_removed);
5726     _humongous_set.bulk_remove(humongous_regions_removed);
5727   }
5728 
5729 }
5730 
5731 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5732   assert(list != NULL, "list can't be null");
5733   if (!list->is_empty()) {
5734     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5735     _hrm.insert_list_into_free_list(list);
5736   }
5737 }
5738 
5739 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5740   _allocator->decrease_used(bytes);
5741 }
5742 
5743 class G1ParCleanupCTTask : public AbstractGangTask {
5744   G1SATBCardTableModRefBS* _ct_bs;
5745   G1CollectedHeap* _g1h;
5746   HeapRegion* volatile _su_head;
5747 public:
5748   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5749                      G1CollectedHeap* g1h) :
5750     AbstractGangTask("G1 Par Cleanup CT Task"),
5751     _ct_bs(ct_bs), _g1h(g1h) { }
5752 
5753   void work(uint worker_id) {
5754     HeapRegion* r;
5755     while (r = _g1h->pop_dirty_cards_region()) {
5756       clear_cards(r);
5757     }
5758   }
5759 
5760   void clear_cards(HeapRegion* r) {
5761     // Cards of the survivors should have already been dirtied.
5762     if (!r->is_survivor()) {
5763       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5764     }
5765   }
5766 };
5767 
5768 #ifndef PRODUCT
5769 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5770   G1CollectedHeap* _g1h;
5771   G1SATBCardTableModRefBS* _ct_bs;
5772 public:
5773   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5774     : _g1h(g1h), _ct_bs(ct_bs) { }
5775   virtual bool doHeapRegion(HeapRegion* r) {
5776     if (r->is_survivor()) {
5777       _g1h->verify_dirty_region(r);
5778     } else {
5779       _g1h->verify_not_dirty_region(r);
5780     }
5781     return false;
5782   }
5783 };
5784 
5785 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5786   // All of the region should be clean.
5787   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5788   MemRegion mr(hr->bottom(), hr->end());
5789   ct_bs->verify_not_dirty_region(mr);
5790 }
5791 
5792 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5793   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5794   // dirty allocated blocks as they allocate them. The thread that
5795   // retires each region and replaces it with a new one will do a
5796   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5797   // not dirty that area (one less thing to have to do while holding
5798   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5799   // is dirty.
5800   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5801   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5802   if (hr->is_young()) {
5803     ct_bs->verify_g1_young_region(mr);
5804   } else {
5805     ct_bs->verify_dirty_region(mr);
5806   }
5807 }
5808 
5809 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5810   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5811   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5812     verify_dirty_region(hr);
5813   }
5814 }
5815 
5816 void G1CollectedHeap::verify_dirty_young_regions() {
5817   verify_dirty_young_list(_young_list->first_region());
5818 }
5819 
5820 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5821                                                HeapWord* tams, HeapWord* end) {
5822   guarantee(tams <= end,
5823             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, p2i(tams), p2i(end)));
5824   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5825   if (result < end) {
5826     gclog_or_tty->cr();
5827     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5828                            bitmap_name, p2i(result));
5829     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5830                            bitmap_name, p2i(tams), p2i(end));
5831     return false;
5832   }
5833   return true;
5834 }
5835 
5836 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5837   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5838   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5839 
5840   HeapWord* bottom = hr->bottom();
5841   HeapWord* ptams  = hr->prev_top_at_mark_start();
5842   HeapWord* ntams  = hr->next_top_at_mark_start();
5843   HeapWord* end    = hr->end();
5844 
5845   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5846 
5847   bool res_n = true;
5848   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5849   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5850   // if we happen to be in that state.
5851   if (mark_in_progress() || !_cmThread->in_progress()) {
5852     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5853   }
5854   if (!res_p || !res_n) {
5855     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5856                            HR_FORMAT_PARAMS(hr));
5857     gclog_or_tty->print_cr("#### Caller: %s", caller);
5858     return false;
5859   }
5860   return true;
5861 }
5862 
5863 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5864   if (!G1VerifyBitmaps) return;
5865 
5866   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5867 }
5868 
5869 class G1VerifyBitmapClosure : public HeapRegionClosure {
5870 private:
5871   const char* _caller;
5872   G1CollectedHeap* _g1h;
5873   bool _failures;
5874 
5875 public:
5876   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5877     _caller(caller), _g1h(g1h), _failures(false) { }
5878 
5879   bool failures() { return _failures; }
5880 
5881   virtual bool doHeapRegion(HeapRegion* hr) {
5882     if (hr->is_continues_humongous()) return false;
5883 
5884     bool result = _g1h->verify_bitmaps(_caller, hr);
5885     if (!result) {
5886       _failures = true;
5887     }
5888     return false;
5889   }
5890 };
5891 
5892 void G1CollectedHeap::check_bitmaps(const char* caller) {
5893   if (!G1VerifyBitmaps) return;
5894 
5895   G1VerifyBitmapClosure cl(caller, this);
5896   heap_region_iterate(&cl);
5897   guarantee(!cl.failures(), "bitmap verification");
5898 }
5899 
5900 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5901  private:
5902   bool _failures;
5903  public:
5904   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5905 
5906   virtual bool doHeapRegion(HeapRegion* hr) {
5907     uint i = hr->hrm_index();
5908     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5909     if (hr->is_humongous()) {
5910       if (hr->in_collection_set()) {
5911         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5912         _failures = true;
5913         return true;
5914       }
5915       if (cset_state.is_in_cset()) {
5916         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5917         _failures = true;
5918         return true;
5919       }
5920       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5921         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5922         _failures = true;
5923         return true;
5924       }
5925     } else {
5926       if (cset_state.is_humongous()) {
5927         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5928         _failures = true;
5929         return true;
5930       }
5931       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5932         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5933                                hr->in_collection_set(), cset_state.value(), i);
5934         _failures = true;
5935         return true;
5936       }
5937       if (cset_state.is_in_cset()) {
5938         if (hr->is_young() != (cset_state.is_young())) {
5939           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5940                                  hr->is_young(), cset_state.value(), i);
5941           _failures = true;
5942           return true;
5943         }
5944         if (hr->is_old() != (cset_state.is_old())) {
5945           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5946                                  hr->is_old(), cset_state.value(), i);
5947           _failures = true;
5948           return true;
5949         }
5950       }
5951     }
5952     return false;
5953   }
5954 
5955   bool failures() const { return _failures; }
5956 };
5957 
5958 bool G1CollectedHeap::check_cset_fast_test() {
5959   G1CheckCSetFastTableClosure cl;
5960   _hrm.iterate(&cl);
5961   return !cl.failures();
5962 }
5963 #endif // PRODUCT
5964 
5965 void G1CollectedHeap::cleanUpCardTable() {
5966   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5967   double start = os::elapsedTime();
5968 
5969   {
5970     // Iterate over the dirty cards region list.
5971     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5972 
5973     workers()->run_task(&cleanup_task);
5974 #ifndef PRODUCT
5975     if (G1VerifyCTCleanup || VerifyAfterGC) {
5976       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5977       heap_region_iterate(&cleanup_verifier);
5978     }
5979 #endif
5980   }
5981 
5982   double elapsed = os::elapsedTime() - start;
5983   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5984 }
5985 
5986 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5987   size_t pre_used = 0;
5988   FreeRegionList local_free_list("Local List for CSet Freeing");
5989 
5990   double young_time_ms     = 0.0;
5991   double non_young_time_ms = 0.0;
5992 
5993   // Since the collection set is a superset of the the young list,
5994   // all we need to do to clear the young list is clear its
5995   // head and length, and unlink any young regions in the code below
5996   _young_list->clear();
5997 
5998   G1CollectorPolicy* policy = g1_policy();
5999 
6000   double start_sec = os::elapsedTime();
6001   bool non_young = true;
6002 
6003   HeapRegion* cur = cs_head;
6004   int age_bound = -1;
6005   size_t rs_lengths = 0;
6006 
6007   while (cur != NULL) {
6008     assert(!is_on_master_free_list(cur), "sanity");
6009     if (non_young) {
6010       if (cur->is_young()) {
6011         double end_sec = os::elapsedTime();
6012         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6013         non_young_time_ms += elapsed_ms;
6014 
6015         start_sec = os::elapsedTime();
6016         non_young = false;
6017       }
6018     } else {
6019       if (!cur->is_young()) {
6020         double end_sec = os::elapsedTime();
6021         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6022         young_time_ms += elapsed_ms;
6023 
6024         start_sec = os::elapsedTime();
6025         non_young = true;
6026       }
6027     }
6028 
6029     rs_lengths += cur->rem_set()->occupied_locked();
6030 
6031     HeapRegion* next = cur->next_in_collection_set();
6032     assert(cur->in_collection_set(), "bad CS");
6033     cur->set_next_in_collection_set(NULL);
6034     clear_in_cset(cur);
6035 
6036     if (cur->is_young()) {
6037       int index = cur->young_index_in_cset();
6038       assert(index != -1, "invariant");
6039       assert((uint) index < policy->young_cset_region_length(), "invariant");
6040       size_t words_survived = _surviving_young_words[index];
6041       cur->record_surv_words_in_group(words_survived);
6042 
6043       // At this point the we have 'popped' cur from the collection set
6044       // (linked via next_in_collection_set()) but it is still in the
6045       // young list (linked via next_young_region()). Clear the
6046       // _next_young_region field.
6047       cur->set_next_young_region(NULL);
6048     } else {
6049       int index = cur->young_index_in_cset();
6050       assert(index == -1, "invariant");
6051     }
6052 
6053     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6054             (!cur->is_young() && cur->young_index_in_cset() == -1),
6055             "invariant" );
6056 
6057     if (!cur->evacuation_failed()) {
6058       MemRegion used_mr = cur->used_region();
6059 
6060       // And the region is empty.
6061       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6062       pre_used += cur->used();
6063       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6064     } else {
6065       cur->uninstall_surv_rate_group();
6066       if (cur->is_young()) {
6067         cur->set_young_index_in_cset(-1);
6068       }
6069       cur->set_evacuation_failed(false);
6070       // The region is now considered to be old.
6071       cur->set_old();
6072       _old_set.add(cur);
6073       evacuation_info.increment_collectionset_used_after(cur->used());
6074     }
6075     cur = next;
6076   }
6077 
6078   evacuation_info.set_regions_freed(local_free_list.length());
6079   policy->record_max_rs_lengths(rs_lengths);
6080   policy->cset_regions_freed();
6081 
6082   double end_sec = os::elapsedTime();
6083   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6084 
6085   if (non_young) {
6086     non_young_time_ms += elapsed_ms;
6087   } else {
6088     young_time_ms += elapsed_ms;
6089   }
6090 
6091   prepend_to_freelist(&local_free_list);
6092   decrement_summary_bytes(pre_used);
6093   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6094   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6095 }
6096 
6097 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6098  private:
6099   FreeRegionList* _free_region_list;
6100   HeapRegionSet* _proxy_set;
6101   HeapRegionSetCount _humongous_regions_removed;
6102   size_t _freed_bytes;
6103  public:
6104 
6105   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6106     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6107   }
6108 
6109   virtual bool doHeapRegion(HeapRegion* r) {
6110     if (!r->is_starts_humongous()) {
6111       return false;
6112     }
6113 
6114     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6115 
6116     oop obj = (oop)r->bottom();
6117     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6118 
6119     // The following checks whether the humongous object is live are sufficient.
6120     // The main additional check (in addition to having a reference from the roots
6121     // or the young gen) is whether the humongous object has a remembered set entry.
6122     //
6123     // A humongous object cannot be live if there is no remembered set for it
6124     // because:
6125     // - there can be no references from within humongous starts regions referencing
6126     // the object because we never allocate other objects into them.
6127     // (I.e. there are no intra-region references that may be missed by the
6128     // remembered set)
6129     // - as soon there is a remembered set entry to the humongous starts region
6130     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6131     // until the end of a concurrent mark.
6132     //
6133     // It is not required to check whether the object has been found dead by marking
6134     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6135     // all objects allocated during that time are considered live.
6136     // SATB marking is even more conservative than the remembered set.
6137     // So if at this point in the collection there is no remembered set entry,
6138     // nobody has a reference to it.
6139     // At the start of collection we flush all refinement logs, and remembered sets
6140     // are completely up-to-date wrt to references to the humongous object.
6141     //
6142     // Other implementation considerations:
6143     // - never consider object arrays at this time because they would pose
6144     // considerable effort for cleaning up the the remembered sets. This is
6145     // required because stale remembered sets might reference locations that
6146     // are currently allocated into.
6147     uint region_idx = r->hrm_index();
6148     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6149         !r->rem_set()->is_empty()) {
6150 
6151       if (G1TraceEagerReclaimHumongousObjects) {
6152         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6153                                region_idx,
6154                                (size_t)obj->size() * HeapWordSize,
6155                                p2i(r->bottom()),
6156                                r->region_num(),
6157                                r->rem_set()->occupied(),
6158                                r->rem_set()->strong_code_roots_list_length(),
6159                                next_bitmap->isMarked(r->bottom()),
6160                                g1h->is_humongous_reclaim_candidate(region_idx),
6161                                obj->is_typeArray()
6162                               );
6163       }
6164 
6165       return false;
6166     }
6167 
6168     guarantee(obj->is_typeArray(),
6169               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6170                       PTR_FORMAT " is not.",
6171                       p2i(r->bottom())));
6172 
6173     if (G1TraceEagerReclaimHumongousObjects) {
6174       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6175                              region_idx,
6176                              (size_t)obj->size() * HeapWordSize,
6177                              p2i(r->bottom()),
6178                              r->region_num(),
6179                              r->rem_set()->occupied(),
6180                              r->rem_set()->strong_code_roots_list_length(),
6181                              next_bitmap->isMarked(r->bottom()),
6182                              g1h->is_humongous_reclaim_candidate(region_idx),
6183                              obj->is_typeArray()
6184                             );
6185     }
6186     // Need to clear mark bit of the humongous object if already set.
6187     if (next_bitmap->isMarked(r->bottom())) {
6188       next_bitmap->clear(r->bottom());
6189     }
6190     _freed_bytes += r->used();
6191     r->set_containing_set(NULL);
6192     _humongous_regions_removed.increment(1u, r->capacity());
6193     g1h->free_humongous_region(r, _free_region_list, false);
6194 
6195     return false;
6196   }
6197 
6198   HeapRegionSetCount& humongous_free_count() {
6199     return _humongous_regions_removed;
6200   }
6201 
6202   size_t bytes_freed() const {
6203     return _freed_bytes;
6204   }
6205 
6206   size_t humongous_reclaimed() const {
6207     return _humongous_regions_removed.length();
6208   }
6209 };
6210 
6211 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6212   assert_at_safepoint(true);
6213 
6214   if (!G1EagerReclaimHumongousObjects ||
6215       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6216     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6217     return;
6218   }
6219 
6220   double start_time = os::elapsedTime();
6221 
6222   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6223 
6224   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6225   heap_region_iterate(&cl);
6226 
6227   HeapRegionSetCount empty_set;
6228   remove_from_old_sets(empty_set, cl.humongous_free_count());
6229 
6230   G1HRPrinter* hrp = hr_printer();
6231   if (hrp->is_active()) {
6232     FreeRegionListIterator iter(&local_cleanup_list);
6233     while (iter.more_available()) {
6234       HeapRegion* hr = iter.get_next();
6235       hrp->cleanup(hr);
6236     }
6237   }
6238 
6239   prepend_to_freelist(&local_cleanup_list);
6240   decrement_summary_bytes(cl.bytes_freed());
6241 
6242   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6243                                                                     cl.humongous_reclaimed());
6244 }
6245 
6246 // This routine is similar to the above but does not record
6247 // any policy statistics or update free lists; we are abandoning
6248 // the current incremental collection set in preparation of a
6249 // full collection. After the full GC we will start to build up
6250 // the incremental collection set again.
6251 // This is only called when we're doing a full collection
6252 // and is immediately followed by the tearing down of the young list.
6253 
6254 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6255   HeapRegion* cur = cs_head;
6256 
6257   while (cur != NULL) {
6258     HeapRegion* next = cur->next_in_collection_set();
6259     assert(cur->in_collection_set(), "bad CS");
6260     cur->set_next_in_collection_set(NULL);
6261     clear_in_cset(cur);
6262     cur->set_young_index_in_cset(-1);
6263     cur = next;
6264   }
6265 }
6266 
6267 void G1CollectedHeap::set_free_regions_coming() {
6268   if (G1ConcRegionFreeingVerbose) {
6269     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6270                            "setting free regions coming");
6271   }
6272 
6273   assert(!free_regions_coming(), "pre-condition");
6274   _free_regions_coming = true;
6275 }
6276 
6277 void G1CollectedHeap::reset_free_regions_coming() {
6278   assert(free_regions_coming(), "pre-condition");
6279 
6280   {
6281     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6282     _free_regions_coming = false;
6283     SecondaryFreeList_lock->notify_all();
6284   }
6285 
6286   if (G1ConcRegionFreeingVerbose) {
6287     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6288                            "reset free regions coming");
6289   }
6290 }
6291 
6292 void G1CollectedHeap::wait_while_free_regions_coming() {
6293   // Most of the time we won't have to wait, so let's do a quick test
6294   // first before we take the lock.
6295   if (!free_regions_coming()) {
6296     return;
6297   }
6298 
6299   if (G1ConcRegionFreeingVerbose) {
6300     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6301                            "waiting for free regions");
6302   }
6303 
6304   {
6305     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6306     while (free_regions_coming()) {
6307       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6308     }
6309   }
6310 
6311   if (G1ConcRegionFreeingVerbose) {
6312     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6313                            "done waiting for free regions");
6314   }
6315 }
6316 
6317 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6318   _young_list->push_region(hr);
6319 }
6320 
6321 class NoYoungRegionsClosure: public HeapRegionClosure {
6322 private:
6323   bool _success;
6324 public:
6325   NoYoungRegionsClosure() : _success(true) { }
6326   bool doHeapRegion(HeapRegion* r) {
6327     if (r->is_young()) {
6328       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6329                              p2i(r->bottom()), p2i(r->end()));
6330       _success = false;
6331     }
6332     return false;
6333   }
6334   bool success() { return _success; }
6335 };
6336 
6337 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6338   bool ret = _young_list->check_list_empty(check_sample);
6339 
6340   if (check_heap) {
6341     NoYoungRegionsClosure closure;
6342     heap_region_iterate(&closure);
6343     ret = ret && closure.success();
6344   }
6345 
6346   return ret;
6347 }
6348 
6349 class TearDownRegionSetsClosure : public HeapRegionClosure {
6350 private:
6351   HeapRegionSet *_old_set;
6352 
6353 public:
6354   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6355 
6356   bool doHeapRegion(HeapRegion* r) {
6357     if (r->is_old()) {
6358       _old_set->remove(r);
6359     } else {
6360       // We ignore free regions, we'll empty the free list afterwards.
6361       // We ignore young regions, we'll empty the young list afterwards.
6362       // We ignore humongous regions, we're not tearing down the
6363       // humongous regions set.
6364       assert(r->is_free() || r->is_young() || r->is_humongous(),
6365              "it cannot be another type");
6366     }
6367     return false;
6368   }
6369 
6370   ~TearDownRegionSetsClosure() {
6371     assert(_old_set->is_empty(), "post-condition");
6372   }
6373 };
6374 
6375 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6376   assert_at_safepoint(true /* should_be_vm_thread */);
6377 
6378   if (!free_list_only) {
6379     TearDownRegionSetsClosure cl(&_old_set);
6380     heap_region_iterate(&cl);
6381 
6382     // Note that emptying the _young_list is postponed and instead done as
6383     // the first step when rebuilding the regions sets again. The reason for
6384     // this is that during a full GC string deduplication needs to know if
6385     // a collected region was young or old when the full GC was initiated.
6386   }
6387   _hrm.remove_all_free_regions();
6388 }
6389 
6390 class RebuildRegionSetsClosure : public HeapRegionClosure {
6391 private:
6392   bool            _free_list_only;
6393   HeapRegionSet*   _old_set;
6394   HeapRegionManager*   _hrm;
6395   size_t          _total_used;
6396 
6397 public:
6398   RebuildRegionSetsClosure(bool free_list_only,
6399                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6400     _free_list_only(free_list_only),
6401     _old_set(old_set), _hrm(hrm), _total_used(0) {
6402     assert(_hrm->num_free_regions() == 0, "pre-condition");
6403     if (!free_list_only) {
6404       assert(_old_set->is_empty(), "pre-condition");
6405     }
6406   }
6407 
6408   bool doHeapRegion(HeapRegion* r) {
6409     if (r->is_continues_humongous()) {
6410       return false;
6411     }
6412 
6413     if (r->is_empty()) {
6414       // Add free regions to the free list
6415       r->set_free();
6416       r->set_allocation_context(AllocationContext::system());
6417       _hrm->insert_into_free_list(r);
6418     } else if (!_free_list_only) {
6419       assert(!r->is_young(), "we should not come across young regions");
6420 
6421       if (r->is_humongous()) {
6422         // We ignore humongous regions. We left the humongous set unchanged.
6423       } else {
6424         // Objects that were compacted would have ended up on regions
6425         // that were previously old or free.  Archive regions (which are
6426         // old) will not have been touched.
6427         assert(r->is_free() || r->is_old(), "invariant");
6428         // We now consider them old, so register as such. Leave
6429         // archive regions set that way, however, while still adding
6430         // them to the old set.
6431         if (!r->is_archive()) {
6432           r->set_old();
6433         }
6434         _old_set->add(r);
6435       }
6436       _total_used += r->used();
6437     }
6438 
6439     return false;
6440   }
6441 
6442   size_t total_used() {
6443     return _total_used;
6444   }
6445 };
6446 
6447 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6448   assert_at_safepoint(true /* should_be_vm_thread */);
6449 
6450   if (!free_list_only) {
6451     _young_list->empty_list();
6452   }
6453 
6454   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6455   heap_region_iterate(&cl);
6456 
6457   if (!free_list_only) {
6458     _allocator->set_used(cl.total_used());
6459     if (_archive_allocator != NULL) {
6460       _archive_allocator->clear_used();
6461     }
6462   }
6463   assert(_allocator->used_unlocked() == recalculate_used(),
6464          err_msg("inconsistent _allocator->used_unlocked(), "
6465                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6466                  _allocator->used_unlocked(), recalculate_used()));
6467 }
6468 
6469 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6470   _refine_cte_cl->set_concurrent(concurrent);
6471 }
6472 
6473 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6474   HeapRegion* hr = heap_region_containing(p);
6475   return hr->is_in(p);
6476 }
6477 
6478 // Methods for the mutator alloc region
6479 
6480 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6481                                                       bool force) {
6482   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6483   assert(!force || g1_policy()->can_expand_young_list(),
6484          "if force is true we should be able to expand the young list");
6485   bool young_list_full = g1_policy()->is_young_list_full();
6486   if (force || !young_list_full) {
6487     HeapRegion* new_alloc_region = new_region(word_size,
6488                                               false /* is_old */,
6489                                               false /* do_expand */);
6490     if (new_alloc_region != NULL) {
6491       set_region_short_lived_locked(new_alloc_region);
6492       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6493       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6494       return new_alloc_region;
6495     }
6496   }
6497   return NULL;
6498 }
6499 
6500 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6501                                                   size_t allocated_bytes) {
6502   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6503   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6504 
6505   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6506   _allocator->increase_used(allocated_bytes);
6507   _hr_printer.retire(alloc_region);
6508   // We update the eden sizes here, when the region is retired,
6509   // instead of when it's allocated, since this is the point that its
6510   // used space has been recored in _summary_bytes_used.
6511   g1mm()->update_eden_size();
6512 }
6513 
6514 // Methods for the GC alloc regions
6515 
6516 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6517                                                  uint count,
6518                                                  InCSetState dest) {
6519   assert(FreeList_lock->owned_by_self(), "pre-condition");
6520 
6521   if (count < g1_policy()->max_regions(dest)) {
6522     const bool is_survivor = (dest.is_young());
6523     HeapRegion* new_alloc_region = new_region(word_size,
6524                                               !is_survivor,
6525                                               true /* do_expand */);
6526     if (new_alloc_region != NULL) {
6527       // We really only need to do this for old regions given that we
6528       // should never scan survivors. But it doesn't hurt to do it
6529       // for survivors too.
6530       new_alloc_region->record_timestamp();
6531       if (is_survivor) {
6532         new_alloc_region->set_survivor();
6533         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6534         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6535       } else {
6536         new_alloc_region->set_old();
6537         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6538         check_bitmaps("Old Region Allocation", new_alloc_region);
6539       }
6540       bool during_im = g1_policy()->during_initial_mark_pause();
6541       new_alloc_region->note_start_of_copying(during_im);
6542       return new_alloc_region;
6543     }
6544   }
6545   return NULL;
6546 }
6547 
6548 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6549                                              size_t allocated_bytes,
6550                                              InCSetState dest) {
6551   bool during_im = g1_policy()->during_initial_mark_pause();
6552   alloc_region->note_end_of_copying(during_im);
6553   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6554   if (dest.is_young()) {
6555     young_list()->add_survivor_region(alloc_region);
6556   } else {
6557     _old_set.add(alloc_region);
6558   }
6559   _hr_printer.retire(alloc_region);
6560 }
6561 
6562 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6563   bool expanded = false;
6564   uint index = _hrm.find_highest_free(&expanded);
6565 
6566   if (index != G1_NO_HRM_INDEX) {
6567     if (expanded) {
6568       ergo_verbose1(ErgoHeapSizing,
6569                     "attempt heap expansion",
6570                     ergo_format_reason("requested address range outside heap bounds")
6571                     ergo_format_byte("region size"),
6572                     HeapRegion::GrainWords * HeapWordSize);
6573     }
6574     _hrm.allocate_free_regions_starting_at(index, 1);
6575     return region_at(index);
6576   }
6577   return NULL;
6578 }
6579 
6580 
6581 // Heap region set verification
6582 
6583 class VerifyRegionListsClosure : public HeapRegionClosure {
6584 private:
6585   HeapRegionSet*   _old_set;
6586   HeapRegionSet*   _humongous_set;
6587   HeapRegionManager*   _hrm;
6588 
6589 public:
6590   HeapRegionSetCount _old_count;
6591   HeapRegionSetCount _humongous_count;
6592   HeapRegionSetCount _free_count;
6593 
6594   VerifyRegionListsClosure(HeapRegionSet* old_set,
6595                            HeapRegionSet* humongous_set,
6596                            HeapRegionManager* hrm) :
6597     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6598     _old_count(), _humongous_count(), _free_count(){ }
6599 
6600   bool doHeapRegion(HeapRegion* hr) {
6601     if (hr->is_continues_humongous()) {
6602       return false;
6603     }
6604 
6605     if (hr->is_young()) {
6606       // TODO
6607     } else if (hr->is_starts_humongous()) {
6608       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6609       _humongous_count.increment(1u, hr->capacity());
6610     } else if (hr->is_empty()) {
6611       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6612       _free_count.increment(1u, hr->capacity());
6613     } else if (hr->is_old()) {
6614       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6615       _old_count.increment(1u, hr->capacity());
6616     } else {
6617       // There are no other valid region types. Check for one invalid
6618       // one we can identify: pinned without old or humongous set.
6619       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6620       ShouldNotReachHere();
6621     }
6622     return false;
6623   }
6624 
6625   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6626     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6627     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6628         old_set->total_capacity_bytes(), _old_count.capacity()));
6629 
6630     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6631     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6632         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6633 
6634     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6635     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6636         free_list->total_capacity_bytes(), _free_count.capacity()));
6637   }
6638 };
6639 
6640 void G1CollectedHeap::verify_region_sets() {
6641   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6642 
6643   // First, check the explicit lists.
6644   _hrm.verify();
6645   {
6646     // Given that a concurrent operation might be adding regions to
6647     // the secondary free list we have to take the lock before
6648     // verifying it.
6649     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6650     _secondary_free_list.verify_list();
6651   }
6652 
6653   // If a concurrent region freeing operation is in progress it will
6654   // be difficult to correctly attributed any free regions we come
6655   // across to the correct free list given that they might belong to
6656   // one of several (free_list, secondary_free_list, any local lists,
6657   // etc.). So, if that's the case we will skip the rest of the
6658   // verification operation. Alternatively, waiting for the concurrent
6659   // operation to complete will have a non-trivial effect on the GC's
6660   // operation (no concurrent operation will last longer than the
6661   // interval between two calls to verification) and it might hide
6662   // any issues that we would like to catch during testing.
6663   if (free_regions_coming()) {
6664     return;
6665   }
6666 
6667   // Make sure we append the secondary_free_list on the free_list so
6668   // that all free regions we will come across can be safely
6669   // attributed to the free_list.
6670   append_secondary_free_list_if_not_empty_with_lock();
6671 
6672   // Finally, make sure that the region accounting in the lists is
6673   // consistent with what we see in the heap.
6674 
6675   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6676   heap_region_iterate(&cl);
6677   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6678 }
6679 
6680 // Optimized nmethod scanning
6681 
6682 class RegisterNMethodOopClosure: public OopClosure {
6683   G1CollectedHeap* _g1h;
6684   nmethod* _nm;
6685 
6686   template <class T> void do_oop_work(T* p) {
6687     T heap_oop = oopDesc::load_heap_oop(p);
6688     if (!oopDesc::is_null(heap_oop)) {
6689       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6690       HeapRegion* hr = _g1h->heap_region_containing(obj);
6691       assert(!hr->is_continues_humongous(),
6692              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6693                      " starting at "HR_FORMAT,
6694                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6695 
6696       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6697       hr->add_strong_code_root_locked(_nm);
6698     }
6699   }
6700 
6701 public:
6702   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6703     _g1h(g1h), _nm(nm) {}
6704 
6705   void do_oop(oop* p)       { do_oop_work(p); }
6706   void do_oop(narrowOop* p) { do_oop_work(p); }
6707 };
6708 
6709 class UnregisterNMethodOopClosure: public OopClosure {
6710   G1CollectedHeap* _g1h;
6711   nmethod* _nm;
6712 
6713   template <class T> void do_oop_work(T* p) {
6714     T heap_oop = oopDesc::load_heap_oop(p);
6715     if (!oopDesc::is_null(heap_oop)) {
6716       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6717       HeapRegion* hr = _g1h->heap_region_containing(obj);
6718       assert(!hr->is_continues_humongous(),
6719              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6720                      " starting at "HR_FORMAT,
6721                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6722 
6723       hr->remove_strong_code_root(_nm);
6724     }
6725   }
6726 
6727 public:
6728   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6729     _g1h(g1h), _nm(nm) {}
6730 
6731   void do_oop(oop* p)       { do_oop_work(p); }
6732   void do_oop(narrowOop* p) { do_oop_work(p); }
6733 };
6734 
6735 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6736   CollectedHeap::register_nmethod(nm);
6737 
6738   guarantee(nm != NULL, "sanity");
6739   RegisterNMethodOopClosure reg_cl(this, nm);
6740   nm->oops_do(&reg_cl);
6741 }
6742 
6743 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6744   CollectedHeap::unregister_nmethod(nm);
6745 
6746   guarantee(nm != NULL, "sanity");
6747   UnregisterNMethodOopClosure reg_cl(this, nm);
6748   nm->oops_do(&reg_cl, true);
6749 }
6750 
6751 void G1CollectedHeap::purge_code_root_memory() {
6752   double purge_start = os::elapsedTime();
6753   G1CodeRootSet::purge();
6754   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6755   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6756 }
6757 
6758 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6759   G1CollectedHeap* _g1h;
6760 
6761 public:
6762   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6763     _g1h(g1h) {}
6764 
6765   void do_code_blob(CodeBlob* cb) {
6766     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6767     if (nm == NULL) {
6768       return;
6769     }
6770 
6771     if (ScavengeRootsInCode) {
6772       _g1h->register_nmethod(nm);
6773     }
6774   }
6775 };
6776 
6777 void G1CollectedHeap::rebuild_strong_code_roots() {
6778   RebuildStrongCodeRootClosure blob_cl(this);
6779   CodeCache::blobs_do(&blob_cl);
6780 }