1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootProcessor.hpp"
  48 #include "gc/g1/g1StringDedup.hpp"
  49 #include "gc/g1/g1YCTypes.hpp"
  50 #include "gc/g1/heapRegion.inline.hpp"
  51 #include "gc/g1/heapRegionRemSet.hpp"
  52 #include "gc/g1/heapRegionSet.inline.hpp"
  53 #include "gc/g1/suspendibleThreadSet.hpp"
  54 #include "gc/g1/vm_operations_g1.hpp"
  55 #include "gc/shared/gcHeapSummary.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "memory/allocation.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/atomic.inline.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/orderAccess.inline.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "utilities/globalDefinitions.hpp"
  72 #include "utilities/stack.inline.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Local to this file.
  93 
  94 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  95   bool _concurrent;
  96 public:
  97   RefineCardTableEntryClosure() : _concurrent(true) { }
  98 
  99   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 100     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 101     // This path is executed by the concurrent refine or mutator threads,
 102     // concurrently, and so we do not care if card_ptr contains references
 103     // that point into the collection set.
 104     assert(!oops_into_cset, "should be");
 105 
 106     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 107       // Caller will actually yield.
 108       return false;
 109     }
 110     // Otherwise, we finished successfully; return true.
 111     return true;
 112   }
 113 
 114   void set_concurrent(bool b) { _concurrent = b; }
 115 };
 116 
 117 
 118 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 119  private:
 120   size_t _num_processed;
 121 
 122  public:
 123   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 124 
 125   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 126     *card_ptr = CardTableModRefBS::dirty_card_val();
 127     _num_processed++;
 128     return true;
 129   }
 130 
 131   size_t num_processed() const { return _num_processed; }
 132 };
 133 
 134 YoungList::YoungList(G1CollectedHeap* g1h) :
 135     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 136     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 137   guarantee(check_list_empty(false), "just making sure...");
 138 }
 139 
 140 void YoungList::push_region(HeapRegion *hr) {
 141   assert(!hr->is_young(), "should not already be young");
 142   assert(hr->get_next_young_region() == NULL, "cause it should!");
 143 
 144   hr->set_next_young_region(_head);
 145   _head = hr;
 146 
 147   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 148   ++_length;
 149 }
 150 
 151 void YoungList::add_survivor_region(HeapRegion* hr) {
 152   assert(hr->is_survivor(), "should be flagged as survivor region");
 153   assert(hr->get_next_young_region() == NULL, "cause it should!");
 154 
 155   hr->set_next_young_region(_survivor_head);
 156   if (_survivor_head == NULL) {
 157     _survivor_tail = hr;
 158   }
 159   _survivor_head = hr;
 160   ++_survivor_length;
 161 }
 162 
 163 void YoungList::empty_list(HeapRegion* list) {
 164   while (list != NULL) {
 165     HeapRegion* next = list->get_next_young_region();
 166     list->set_next_young_region(NULL);
 167     list->uninstall_surv_rate_group();
 168     // This is called before a Full GC and all the non-empty /
 169     // non-humongous regions at the end of the Full GC will end up as
 170     // old anyway.
 171     list->set_old();
 172     list = next;
 173   }
 174 }
 175 
 176 void YoungList::empty_list() {
 177   assert(check_list_well_formed(), "young list should be well formed");
 178 
 179   empty_list(_head);
 180   _head = NULL;
 181   _length = 0;
 182 
 183   empty_list(_survivor_head);
 184   _survivor_head = NULL;
 185   _survivor_tail = NULL;
 186   _survivor_length = 0;
 187 
 188   _last_sampled_rs_lengths = 0;
 189 
 190   assert(check_list_empty(false), "just making sure...");
 191 }
 192 
 193 bool YoungList::check_list_well_formed() {
 194   bool ret = true;
 195 
 196   uint length = 0;
 197   HeapRegion* curr = _head;
 198   HeapRegion* last = NULL;
 199   while (curr != NULL) {
 200     if (!curr->is_young()) {
 201       gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
 202                              "incorrectly tagged (y: %d, surv: %d)",
 203                              p2i(curr->bottom()), p2i(curr->end()),
 204                              curr->is_young(), curr->is_survivor());
 205       ret = false;
 206     }
 207     ++length;
 208     last = curr;
 209     curr = curr->get_next_young_region();
 210   }
 211   ret = ret && (length == _length);
 212 
 213   if (!ret) {
 214     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 215     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 216                            length, _length);
 217   }
 218 
 219   return ret;
 220 }
 221 
 222 bool YoungList::check_list_empty(bool check_sample) {
 223   bool ret = true;
 224 
 225   if (_length != 0) {
 226     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 227                   _length);
 228     ret = false;
 229   }
 230   if (check_sample && _last_sampled_rs_lengths != 0) {
 231     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 232     ret = false;
 233   }
 234   if (_head != NULL) {
 235     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 236     ret = false;
 237   }
 238   if (!ret) {
 239     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 240   }
 241 
 242   return ret;
 243 }
 244 
 245 void
 246 YoungList::rs_length_sampling_init() {
 247   _sampled_rs_lengths = 0;
 248   _curr               = _head;
 249 }
 250 
 251 bool
 252 YoungList::rs_length_sampling_more() {
 253   return _curr != NULL;
 254 }
 255 
 256 void
 257 YoungList::rs_length_sampling_next() {
 258   assert( _curr != NULL, "invariant" );
 259   size_t rs_length = _curr->rem_set()->occupied();
 260 
 261   _sampled_rs_lengths += rs_length;
 262 
 263   // The current region may not yet have been added to the
 264   // incremental collection set (it gets added when it is
 265   // retired as the current allocation region).
 266   if (_curr->in_collection_set()) {
 267     // Update the collection set policy information for this region
 268     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 269   }
 270 
 271   _curr = _curr->get_next_young_region();
 272   if (_curr == NULL) {
 273     _last_sampled_rs_lengths = _sampled_rs_lengths;
 274     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 275   }
 276 }
 277 
 278 void
 279 YoungList::reset_auxilary_lists() {
 280   guarantee( is_empty(), "young list should be empty" );
 281   assert(check_list_well_formed(), "young list should be well formed");
 282 
 283   // Add survivor regions to SurvRateGroup.
 284   _g1h->g1_policy()->note_start_adding_survivor_regions();
 285   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 286 
 287   int young_index_in_cset = 0;
 288   for (HeapRegion* curr = _survivor_head;
 289        curr != NULL;
 290        curr = curr->get_next_young_region()) {
 291     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 292 
 293     // The region is a non-empty survivor so let's add it to
 294     // the incremental collection set for the next evacuation
 295     // pause.
 296     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 297     young_index_in_cset += 1;
 298   }
 299   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 300   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 301 
 302   _head   = _survivor_head;
 303   _length = _survivor_length;
 304   if (_survivor_head != NULL) {
 305     assert(_survivor_tail != NULL, "cause it shouldn't be");
 306     assert(_survivor_length > 0, "invariant");
 307     _survivor_tail->set_next_young_region(NULL);
 308   }
 309 
 310   // Don't clear the survivor list handles until the start of
 311   // the next evacuation pause - we need it in order to re-tag
 312   // the survivor regions from this evacuation pause as 'young'
 313   // at the start of the next.
 314 
 315   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 316 
 317   assert(check_list_well_formed(), "young list should be well formed");
 318 }
 319 
 320 void YoungList::print() {
 321   HeapRegion* lists[] = {_head,   _survivor_head};
 322   const char* names[] = {"YOUNG", "SURVIVOR"};
 323 
 324   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 325     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 326     HeapRegion *curr = lists[list];
 327     if (curr == NULL)
 328       gclog_or_tty->print_cr("  empty");
 329     while (curr != NULL) {
 330       gclog_or_tty->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
 331                              HR_FORMAT_PARAMS(curr),
 332                              p2i(curr->prev_top_at_mark_start()),
 333                              p2i(curr->next_top_at_mark_start()),
 334                              curr->age_in_surv_rate_group_cond());
 335       curr = curr->get_next_young_region();
 336     }
 337   }
 338 
 339   gclog_or_tty->cr();
 340 }
 341 
 342 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 343   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 344 }
 345 
 346 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 347   // The from card cache is not the memory that is actually committed. So we cannot
 348   // take advantage of the zero_filled parameter.
 349   reset_from_card_cache(start_idx, num_regions);
 350 }
 351 
 352 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 353 {
 354   // Claim the right to put the region on the dirty cards region list
 355   // by installing a self pointer.
 356   HeapRegion* next = hr->get_next_dirty_cards_region();
 357   if (next == NULL) {
 358     HeapRegion* res = (HeapRegion*)
 359       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 360                           NULL);
 361     if (res == NULL) {
 362       HeapRegion* head;
 363       do {
 364         // Put the region to the dirty cards region list.
 365         head = _dirty_cards_region_list;
 366         next = (HeapRegion*)
 367           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 368         if (next == head) {
 369           assert(hr->get_next_dirty_cards_region() == hr,
 370                  "hr->get_next_dirty_cards_region() != hr");
 371           if (next == NULL) {
 372             // The last region in the list points to itself.
 373             hr->set_next_dirty_cards_region(hr);
 374           } else {
 375             hr->set_next_dirty_cards_region(next);
 376           }
 377         }
 378       } while (next != head);
 379     }
 380   }
 381 }
 382 
 383 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 384 {
 385   HeapRegion* head;
 386   HeapRegion* hr;
 387   do {
 388     head = _dirty_cards_region_list;
 389     if (head == NULL) {
 390       return NULL;
 391     }
 392     HeapRegion* new_head = head->get_next_dirty_cards_region();
 393     if (head == new_head) {
 394       // The last region.
 395       new_head = NULL;
 396     }
 397     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 398                                           head);
 399   } while (hr != head);
 400   assert(hr != NULL, "invariant");
 401   hr->set_next_dirty_cards_region(NULL);
 402   return hr;
 403 }
 404 
 405 // Returns true if the reference points to an object that
 406 // can move in an incremental collection.
 407 bool G1CollectedHeap::is_scavengable(const void* p) {
 408   HeapRegion* hr = heap_region_containing(p);
 409   return !hr->is_pinned();
 410 }
 411 
 412 // Private methods.
 413 
 414 HeapRegion*
 415 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 416   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 417   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 418     if (!_secondary_free_list.is_empty()) {
 419       if (G1ConcRegionFreeingVerbose) {
 420         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 421                                "secondary_free_list has %u entries",
 422                                _secondary_free_list.length());
 423       }
 424       // It looks as if there are free regions available on the
 425       // secondary_free_list. Let's move them to the free_list and try
 426       // again to allocate from it.
 427       append_secondary_free_list();
 428 
 429       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 430              "empty we should have moved at least one entry to the free_list");
 431       HeapRegion* res = _hrm.allocate_free_region(is_old);
 432       if (G1ConcRegionFreeingVerbose) {
 433         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 434                                "allocated " HR_FORMAT " from secondary_free_list",
 435                                HR_FORMAT_PARAMS(res));
 436       }
 437       return res;
 438     }
 439 
 440     // Wait here until we get notified either when (a) there are no
 441     // more free regions coming or (b) some regions have been moved on
 442     // the secondary_free_list.
 443     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 444   }
 445 
 446   if (G1ConcRegionFreeingVerbose) {
 447     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 448                            "could not allocate from secondary_free_list");
 449   }
 450   return NULL;
 451 }
 452 
 453 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 454   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 455          "the only time we use this to allocate a humongous region is "
 456          "when we are allocating a single humongous region");
 457 
 458   HeapRegion* res;
 459   if (G1StressConcRegionFreeing) {
 460     if (!_secondary_free_list.is_empty()) {
 461       if (G1ConcRegionFreeingVerbose) {
 462         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 463                                "forced to look at the secondary_free_list");
 464       }
 465       res = new_region_try_secondary_free_list(is_old);
 466       if (res != NULL) {
 467         return res;
 468       }
 469     }
 470   }
 471 
 472   res = _hrm.allocate_free_region(is_old);
 473 
 474   if (res == NULL) {
 475     if (G1ConcRegionFreeingVerbose) {
 476       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 477                              "res == NULL, trying the secondary_free_list");
 478     }
 479     res = new_region_try_secondary_free_list(is_old);
 480   }
 481   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 482     // Currently, only attempts to allocate GC alloc regions set
 483     // do_expand to true. So, we should only reach here during a
 484     // safepoint. If this assumption changes we might have to
 485     // reconsider the use of _expand_heap_after_alloc_failure.
 486     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 487 
 488     ergo_verbose1(ErgoHeapSizing,
 489                   "attempt heap expansion",
 490                   ergo_format_reason("region allocation request failed")
 491                   ergo_format_byte("allocation request"),
 492                   word_size * HeapWordSize);
 493     if (expand(word_size * HeapWordSize)) {
 494       // Given that expand() succeeded in expanding the heap, and we
 495       // always expand the heap by an amount aligned to the heap
 496       // region size, the free list should in theory not be empty.
 497       // In either case allocate_free_region() will check for NULL.
 498       res = _hrm.allocate_free_region(is_old);
 499     } else {
 500       _expand_heap_after_alloc_failure = false;
 501     }
 502   }
 503   return res;
 504 }
 505 
 506 HeapWord*
 507 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 508                                                            uint num_regions,
 509                                                            size_t word_size,
 510                                                            AllocationContext_t context) {
 511   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 512   assert(is_humongous(word_size), "word_size should be humongous");
 513   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 514 
 515   // Index of last region in the series + 1.
 516   uint last = first + num_regions;
 517 
 518   // We need to initialize the region(s) we just discovered. This is
 519   // a bit tricky given that it can happen concurrently with
 520   // refinement threads refining cards on these regions and
 521   // potentially wanting to refine the BOT as they are scanning
 522   // those cards (this can happen shortly after a cleanup; see CR
 523   // 6991377). So we have to set up the region(s) carefully and in
 524   // a specific order.
 525 
 526   // The word size sum of all the regions we will allocate.
 527   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 528   assert(word_size <= word_size_sum, "sanity");
 529 
 530   // This will be the "starts humongous" region.
 531   HeapRegion* first_hr = region_at(first);
 532   // The header of the new object will be placed at the bottom of
 533   // the first region.
 534   HeapWord* new_obj = first_hr->bottom();
 535   // This will be the new end of the first region in the series that
 536   // should also match the end of the last region in the series.
 537   HeapWord* new_end = new_obj + word_size_sum;
 538   // This will be the new top of the first region that will reflect
 539   // this allocation.
 540   HeapWord* new_top = new_obj + word_size;
 541 
 542   // First, we need to zero the header of the space that we will be
 543   // allocating. When we update top further down, some refinement
 544   // threads might try to scan the region. By zeroing the header we
 545   // ensure that any thread that will try to scan the region will
 546   // come across the zero klass word and bail out.
 547   //
 548   // NOTE: It would not have been correct to have used
 549   // CollectedHeap::fill_with_object() and make the space look like
 550   // an int array. The thread that is doing the allocation will
 551   // later update the object header to a potentially different array
 552   // type and, for a very short period of time, the klass and length
 553   // fields will be inconsistent. This could cause a refinement
 554   // thread to calculate the object size incorrectly.
 555   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 556 
 557   // We will set up the first region as "starts humongous". This
 558   // will also update the BOT covering all the regions to reflect
 559   // that there is a single object that starts at the bottom of the
 560   // first region.
 561   first_hr->set_starts_humongous(new_top, new_end);
 562   first_hr->set_allocation_context(context);
 563   // Then, if there are any, we will set up the "continues
 564   // humongous" regions.
 565   HeapRegion* hr = NULL;
 566   for (uint i = first + 1; i < last; ++i) {
 567     hr = region_at(i);
 568     hr->set_continues_humongous(first_hr);
 569     hr->set_allocation_context(context);
 570   }
 571   // If we have "continues humongous" regions (hr != NULL), then the
 572   // end of the last one should match new_end.
 573   assert(hr == NULL || hr->end() == new_end, "sanity");
 574 
 575   // Up to this point no concurrent thread would have been able to
 576   // do any scanning on any region in this series. All the top
 577   // fields still point to bottom, so the intersection between
 578   // [bottom,top] and [card_start,card_end] will be empty. Before we
 579   // update the top fields, we'll do a storestore to make sure that
 580   // no thread sees the update to top before the zeroing of the
 581   // object header and the BOT initialization.
 582   OrderAccess::storestore();
 583 
 584   // Now that the BOT and the object header have been initialized,
 585   // we can update top of the "starts humongous" region.
 586   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 587          "new_top should be in this region");
 588   first_hr->set_top(new_top);
 589   if (_hr_printer.is_active()) {
 590     HeapWord* bottom = first_hr->bottom();
 591     HeapWord* end = first_hr->orig_end();
 592     if ((first + 1) == last) {
 593       // the series has a single humongous region
 594       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 595     } else {
 596       // the series has more than one humongous regions
 597       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 598     }
 599   }
 600 
 601   // Now, we will update the top fields of the "continues humongous"
 602   // regions. The reason we need to do this is that, otherwise,
 603   // these regions would look empty and this will confuse parts of
 604   // G1. For example, the code that looks for a consecutive number
 605   // of empty regions will consider them empty and try to
 606   // re-allocate them. We can extend is_empty() to also include
 607   // !is_continues_humongous(), but it is easier to just update the top
 608   // fields here. The way we set top for all regions (i.e., top ==
 609   // end for all regions but the last one, top == new_top for the
 610   // last one) is actually used when we will free up the humongous
 611   // region in free_humongous_region().
 612   hr = NULL;
 613   for (uint i = first + 1; i < last; ++i) {
 614     hr = region_at(i);
 615     if ((i + 1) == last) {
 616       // last continues humongous region
 617       assert(hr->bottom() < new_top && new_top <= hr->end(),
 618              "new_top should fall on this region");
 619       hr->set_top(new_top);
 620       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 621     } else {
 622       // not last one
 623       assert(new_top > hr->end(), "new_top should be above this region");
 624       hr->set_top(hr->end());
 625       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 626     }
 627   }
 628   // If we have continues humongous regions (hr != NULL), then the
 629   // end of the last one should match new_end and its top should
 630   // match new_top.
 631   assert(hr == NULL ||
 632          (hr->end() == new_end && hr->top() == new_top), "sanity");
 633   check_bitmaps("Humongous Region Allocation", first_hr);
 634 
 635   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 636   increase_used(first_hr->used());
 637   _humongous_set.add(first_hr);
 638 
 639   return new_obj;
 640 }
 641 
 642 // If could fit into free regions w/o expansion, try.
 643 // Otherwise, if can expand, do so.
 644 // Otherwise, if using ex regions might help, try with ex given back.
 645 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 646   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 647 
 648   verify_region_sets_optional();
 649 
 650   uint first = G1_NO_HRM_INDEX;
 651   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 652 
 653   if (obj_regions == 1) {
 654     // Only one region to allocate, try to use a fast path by directly allocating
 655     // from the free lists. Do not try to expand here, we will potentially do that
 656     // later.
 657     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 658     if (hr != NULL) {
 659       first = hr->hrm_index();
 660     }
 661   } else {
 662     // We can't allocate humongous regions spanning more than one region while
 663     // cleanupComplete() is running, since some of the regions we find to be
 664     // empty might not yet be added to the free list. It is not straightforward
 665     // to know in which list they are on so that we can remove them. We only
 666     // need to do this if we need to allocate more than one region to satisfy the
 667     // current humongous allocation request. If we are only allocating one region
 668     // we use the one-region region allocation code (see above), that already
 669     // potentially waits for regions from the secondary free list.
 670     wait_while_free_regions_coming();
 671     append_secondary_free_list_if_not_empty_with_lock();
 672 
 673     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 674     // are lucky enough to find some.
 675     first = _hrm.find_contiguous_only_empty(obj_regions);
 676     if (first != G1_NO_HRM_INDEX) {
 677       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 678     }
 679   }
 680 
 681   if (first == G1_NO_HRM_INDEX) {
 682     // Policy: We could not find enough regions for the humongous object in the
 683     // free list. Look through the heap to find a mix of free and uncommitted regions.
 684     // If so, try expansion.
 685     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 686     if (first != G1_NO_HRM_INDEX) {
 687       // We found something. Make sure these regions are committed, i.e. expand
 688       // the heap. Alternatively we could do a defragmentation GC.
 689       ergo_verbose1(ErgoHeapSizing,
 690                     "attempt heap expansion",
 691                     ergo_format_reason("humongous allocation request failed")
 692                     ergo_format_byte("allocation request"),
 693                     word_size * HeapWordSize);
 694 
 695       _hrm.expand_at(first, obj_regions);
 696       g1_policy()->record_new_heap_size(num_regions());
 697 
 698 #ifdef ASSERT
 699       for (uint i = first; i < first + obj_regions; ++i) {
 700         HeapRegion* hr = region_at(i);
 701         assert(hr->is_free(), "sanity");
 702         assert(hr->is_empty(), "sanity");
 703         assert(is_on_master_free_list(hr), "sanity");
 704       }
 705 #endif
 706       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 707     } else {
 708       // Policy: Potentially trigger a defragmentation GC.
 709     }
 710   }
 711 
 712   HeapWord* result = NULL;
 713   if (first != G1_NO_HRM_INDEX) {
 714     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 715                                                        word_size, context);
 716     assert(result != NULL, "it should always return a valid result");
 717 
 718     // A successful humongous object allocation changes the used space
 719     // information of the old generation so we need to recalculate the
 720     // sizes and update the jstat counters here.
 721     g1mm()->update_sizes();
 722   }
 723 
 724   verify_region_sets_optional();
 725 
 726   return result;
 727 }
 728 
 729 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 730   assert_heap_not_locked_and_not_at_safepoint();
 731   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 732 
 733   uint dummy_gc_count_before;
 734   uint dummy_gclocker_retry_count = 0;
 735   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 736 }
 737 
 738 HeapWord*
 739 G1CollectedHeap::mem_allocate(size_t word_size,
 740                               bool*  gc_overhead_limit_was_exceeded) {
 741   assert_heap_not_locked_and_not_at_safepoint();
 742 
 743   // Loop until the allocation is satisfied, or unsatisfied after GC.
 744   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 745     uint gc_count_before;
 746 
 747     HeapWord* result = NULL;
 748     if (!is_humongous(word_size)) {
 749       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 750     } else {
 751       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 752     }
 753     if (result != NULL) {
 754       return result;
 755     }
 756 
 757     // Create the garbage collection operation...
 758     VM_G1CollectForAllocation op(gc_count_before, word_size);
 759     op.set_allocation_context(AllocationContext::current());
 760 
 761     // ...and get the VM thread to execute it.
 762     VMThread::execute(&op);
 763 
 764     if (op.prologue_succeeded() && op.pause_succeeded()) {
 765       // If the operation was successful we'll return the result even
 766       // if it is NULL. If the allocation attempt failed immediately
 767       // after a Full GC, it's unlikely we'll be able to allocate now.
 768       HeapWord* result = op.result();
 769       if (result != NULL && !is_humongous(word_size)) {
 770         // Allocations that take place on VM operations do not do any
 771         // card dirtying and we have to do it here. We only have to do
 772         // this for non-humongous allocations, though.
 773         dirty_young_block(result, word_size);
 774       }
 775       return result;
 776     } else {
 777       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 778         return NULL;
 779       }
 780       assert(op.result() == NULL,
 781              "the result should be NULL if the VM op did not succeed");
 782     }
 783 
 784     // Give a warning if we seem to be looping forever.
 785     if ((QueuedAllocationWarningCount > 0) &&
 786         (try_count % QueuedAllocationWarningCount == 0)) {
 787       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 788     }
 789   }
 790 
 791   ShouldNotReachHere();
 792   return NULL;
 793 }
 794 
 795 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 796                                                    AllocationContext_t context,
 797                                                    uint* gc_count_before_ret,
 798                                                    uint* gclocker_retry_count_ret) {
 799   // Make sure you read the note in attempt_allocation_humongous().
 800 
 801   assert_heap_not_locked_and_not_at_safepoint();
 802   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 803          "be called for humongous allocation requests");
 804 
 805   // We should only get here after the first-level allocation attempt
 806   // (attempt_allocation()) failed to allocate.
 807 
 808   // We will loop until a) we manage to successfully perform the
 809   // allocation or b) we successfully schedule a collection which
 810   // fails to perform the allocation. b) is the only case when we'll
 811   // return NULL.
 812   HeapWord* result = NULL;
 813   for (int try_count = 1; /* we'll return */; try_count += 1) {
 814     bool should_try_gc;
 815     uint gc_count_before;
 816 
 817     {
 818       MutexLockerEx x(Heap_lock);
 819       result = _allocator->attempt_allocation_locked(word_size, context);
 820       if (result != NULL) {
 821         return result;
 822       }
 823 
 824       if (GC_locker::is_active_and_needs_gc()) {
 825         if (g1_policy()->can_expand_young_list()) {
 826           // No need for an ergo verbose message here,
 827           // can_expand_young_list() does this when it returns true.
 828           result = _allocator->attempt_allocation_force(word_size, context);
 829           if (result != NULL) {
 830             return result;
 831           }
 832         }
 833         should_try_gc = false;
 834       } else {
 835         // The GCLocker may not be active but the GCLocker initiated
 836         // GC may not yet have been performed (GCLocker::needs_gc()
 837         // returns true). In this case we do not try this GC and
 838         // wait until the GCLocker initiated GC is performed, and
 839         // then retry the allocation.
 840         if (GC_locker::needs_gc()) {
 841           should_try_gc = false;
 842         } else {
 843           // Read the GC count while still holding the Heap_lock.
 844           gc_count_before = total_collections();
 845           should_try_gc = true;
 846         }
 847       }
 848     }
 849 
 850     if (should_try_gc) {
 851       bool succeeded;
 852       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 853                                    GCCause::_g1_inc_collection_pause);
 854       if (result != NULL) {
 855         assert(succeeded, "only way to get back a non-NULL result");
 856         return result;
 857       }
 858 
 859       if (succeeded) {
 860         // If we get here we successfully scheduled a collection which
 861         // failed to allocate. No point in trying to allocate
 862         // further. We'll just return NULL.
 863         MutexLockerEx x(Heap_lock);
 864         *gc_count_before_ret = total_collections();
 865         return NULL;
 866       }
 867     } else {
 868       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 869         MutexLockerEx x(Heap_lock);
 870         *gc_count_before_ret = total_collections();
 871         return NULL;
 872       }
 873       // The GCLocker is either active or the GCLocker initiated
 874       // GC has not yet been performed. Stall until it is and
 875       // then retry the allocation.
 876       GC_locker::stall_until_clear();
 877       (*gclocker_retry_count_ret) += 1;
 878     }
 879 
 880     // We can reach here if we were unsuccessful in scheduling a
 881     // collection (because another thread beat us to it) or if we were
 882     // stalled due to the GC locker. In either can we should retry the
 883     // allocation attempt in case another thread successfully
 884     // performed a collection and reclaimed enough space. We do the
 885     // first attempt (without holding the Heap_lock) here and the
 886     // follow-on attempt will be at the start of the next loop
 887     // iteration (after taking the Heap_lock).
 888     result = _allocator->attempt_allocation(word_size, context);
 889     if (result != NULL) {
 890       return result;
 891     }
 892 
 893     // Give a warning if we seem to be looping forever.
 894     if ((QueuedAllocationWarningCount > 0) &&
 895         (try_count % QueuedAllocationWarningCount == 0)) {
 896       warning("G1CollectedHeap::attempt_allocation_slow() "
 897               "retries %d times", try_count);
 898     }
 899   }
 900 
 901   ShouldNotReachHere();
 902   return NULL;
 903 }
 904 
 905 void G1CollectedHeap::begin_archive_alloc_range() {
 906   assert_at_safepoint(true /* should_be_vm_thread */);
 907   if (_archive_allocator == NULL) {
 908     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 909   }
 910 }
 911 
 912 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 913   // Allocations in archive regions cannot be of a size that would be considered
 914   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 915   // may be different at archive-restore time.
 916   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 917 }
 918 
 919 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 920   assert_at_safepoint(true /* should_be_vm_thread */);
 921   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 922   if (is_archive_alloc_too_large(word_size)) {
 923     return NULL;
 924   }
 925   return _archive_allocator->archive_mem_allocate(word_size);
 926 }
 927 
 928 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 929                                               size_t end_alignment_in_bytes) {
 930   assert_at_safepoint(true /* should_be_vm_thread */);
 931   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 932 
 933   // Call complete_archive to do the real work, filling in the MemRegion
 934   // array with the archive regions.
 935   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 936   delete _archive_allocator;
 937   _archive_allocator = NULL;
 938 }
 939 
 940 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 941   assert(ranges != NULL, "MemRegion array NULL");
 942   assert(count != 0, "No MemRegions provided");
 943   MemRegion reserved = _hrm.reserved();
 944   for (size_t i = 0; i < count; i++) {
 945     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 946       return false;
 947     }
 948   }
 949   return true;
 950 }
 951 
 952 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 953   assert(!is_init_completed(), "Expect to be called at JVM init time");
 954   assert(ranges != NULL, "MemRegion array NULL");
 955   assert(count != 0, "No MemRegions provided");
 956   MutexLockerEx x(Heap_lock);
 957 
 958   MemRegion reserved = _hrm.reserved();
 959   HeapWord* prev_last_addr = NULL;
 960   HeapRegion* prev_last_region = NULL;
 961 
 962   // Temporarily disable pretouching of heap pages. This interface is used
 963   // when mmap'ing archived heap data in, so pre-touching is wasted.
 964   FlagSetting fs(AlwaysPreTouch, false);
 965 
 966   // Enable archive object checking in G1MarkSweep. We have to let it know
 967   // about each archive range, so that objects in those ranges aren't marked.
 968   G1MarkSweep::enable_archive_object_check();
 969 
 970   // For each specified MemRegion range, allocate the corresponding G1
 971   // regions and mark them as archive regions. We expect the ranges in
 972   // ascending starting address order, without overlap.
 973   for (size_t i = 0; i < count; i++) {
 974     MemRegion curr_range = ranges[i];
 975     HeapWord* start_address = curr_range.start();
 976     size_t word_size = curr_range.word_size();
 977     HeapWord* last_address = curr_range.last();
 978     size_t commits = 0;
 979 
 980     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 981               err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 982               p2i(start_address), p2i(last_address)));
 983     guarantee(start_address > prev_last_addr,
 984               err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 985               p2i(start_address), p2i(prev_last_addr)));
 986     prev_last_addr = last_address;
 987 
 988     // Check for ranges that start in the same G1 region in which the previous
 989     // range ended, and adjust the start address so we don't try to allocate
 990     // the same region again. If the current range is entirely within that
 991     // region, skip it, just adjusting the recorded top.
 992     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 993     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 994       start_address = start_region->end();
 995       if (start_address > last_address) {
 996         increase_used(word_size * HeapWordSize);
 997         start_region->set_top(last_address + 1);
 998         continue;
 999       }
1000       start_region->set_top(start_address);
1001       curr_range = MemRegion(start_address, last_address + 1);
1002       start_region = _hrm.addr_to_region(start_address);
1003     }
1004 
1005     // Perform the actual region allocation, exiting if it fails.
1006     // Then note how much new space we have allocated.
1007     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1008       return false;
1009     }
1010     increase_used(word_size * HeapWordSize);
1011     if (commits != 0) {
1012       ergo_verbose1(ErgoHeapSizing,
1013                     "attempt heap expansion",
1014                     ergo_format_reason("allocate archive regions")
1015                     ergo_format_byte("total size"),
1016                     HeapRegion::GrainWords * HeapWordSize * commits);
1017     }
1018 
1019     // Mark each G1 region touched by the range as archive, add it to the old set,
1020     // and set the allocation context and top.
1021     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1022     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1023     prev_last_region = last_region;
1024 
1025     while (curr_region != NULL) {
1026       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1027              err_msg("Region already in use (index %u)", curr_region->hrm_index()));
1028       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1029       curr_region->set_allocation_context(AllocationContext::system());
1030       curr_region->set_archive();
1031       _old_set.add(curr_region);
1032       if (curr_region != last_region) {
1033         curr_region->set_top(curr_region->end());
1034         curr_region = _hrm.next_region_in_heap(curr_region);
1035       } else {
1036         curr_region->set_top(last_address + 1);
1037         curr_region = NULL;
1038       }
1039     }
1040 
1041     // Notify mark-sweep of the archive range.
1042     G1MarkSweep::set_range_archive(curr_range, true);
1043   }
1044   return true;
1045 }
1046 
1047 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1048   assert(!is_init_completed(), "Expect to be called at JVM init time");
1049   assert(ranges != NULL, "MemRegion array NULL");
1050   assert(count != 0, "No MemRegions provided");
1051   MemRegion reserved = _hrm.reserved();
1052   HeapWord *prev_last_addr = NULL;
1053   HeapRegion* prev_last_region = NULL;
1054 
1055   // For each MemRegion, create filler objects, if needed, in the G1 regions
1056   // that contain the address range. The address range actually within the
1057   // MemRegion will not be modified. That is assumed to have been initialized
1058   // elsewhere, probably via an mmap of archived heap data.
1059   MutexLockerEx x(Heap_lock);
1060   for (size_t i = 0; i < count; i++) {
1061     HeapWord* start_address = ranges[i].start();
1062     HeapWord* last_address = ranges[i].last();
1063 
1064     assert(reserved.contains(start_address) && reserved.contains(last_address),
1065            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1066                    p2i(start_address), p2i(last_address)));
1067     assert(start_address > prev_last_addr,
1068            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1069                    p2i(start_address), p2i(prev_last_addr)));
1070 
1071     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1072     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1073     HeapWord* bottom_address = start_region->bottom();
1074 
1075     // Check for a range beginning in the same region in which the
1076     // previous one ended.
1077     if (start_region == prev_last_region) {
1078       bottom_address = prev_last_addr + 1;
1079     }
1080 
1081     // Verify that the regions were all marked as archive regions by
1082     // alloc_archive_regions.
1083     HeapRegion* curr_region = start_region;
1084     while (curr_region != NULL) {
1085       guarantee(curr_region->is_archive(),
1086                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1087       if (curr_region != last_region) {
1088         curr_region = _hrm.next_region_in_heap(curr_region);
1089       } else {
1090         curr_region = NULL;
1091       }
1092     }
1093 
1094     prev_last_addr = last_address;
1095     prev_last_region = last_region;
1096 
1097     // Fill the memory below the allocated range with dummy object(s),
1098     // if the region bottom does not match the range start, or if the previous
1099     // range ended within the same G1 region, and there is a gap.
1100     if (start_address != bottom_address) {
1101       size_t fill_size = pointer_delta(start_address, bottom_address);
1102       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1103       increase_used(fill_size * HeapWordSize);
1104     }
1105   }
1106 }
1107 
1108 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
1109                                                      uint* gc_count_before_ret,
1110                                                      uint* gclocker_retry_count_ret) {
1111   assert_heap_not_locked_and_not_at_safepoint();
1112   assert(!is_humongous(word_size), "attempt_allocation() should not "
1113          "be called for humongous allocation requests");
1114 
1115   AllocationContext_t context = AllocationContext::current();
1116   HeapWord* result = _allocator->attempt_allocation(word_size, context);
1117 
1118   if (result == NULL) {
1119     result = attempt_allocation_slow(word_size,
1120                                      context,
1121                                      gc_count_before_ret,
1122                                      gclocker_retry_count_ret);
1123   }
1124   assert_heap_not_locked();
1125   if (result != NULL) {
1126     dirty_young_block(result, word_size);
1127   }
1128   return result;
1129 }
1130 
1131 void G1CollectedHeap::free_archive_regions(MemRegion* ranges, size_t count) {
1132   assert(!is_init_completed(), "Expect to be called at JVM init time");
1133   assert(ranges != NULL, "MemRegion array NULL");
1134   assert(count != 0, "No MemRegions provided");
1135   MemRegion reserved = _hrm.reserved();
1136   HeapWord* prev_last_addr = NULL;
1137   HeapRegion* prev_last_region = NULL;
1138   FreeRegionList local_free_list("Local List for Freeing Archive Regions");
1139   size_t size_used = 0;
1140 
1141   // For each Memregion, free the G1 regions that constitute it, and 
1142   // notify mark-sweep that the range is no longer to be considered 'archive.' 
1143   MutexLockerEx x(Heap_lock);
1144   for (size_t i = 0; i < count; i++) {
1145     HeapWord* start_address = ranges[i].start();
1146     HeapWord* last_address = ranges[i].last();
1147 
1148     assert(reserved.contains(start_address) && reserved.contains(last_address),
1149            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1150                    p2i(start_address), p2i(last_address)));
1151     assert(start_address > prev_last_addr,
1152            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1153                    p2i(start_address), p2i(prev_last_addr)));
1154     size_used += ranges[i].byte_size();
1155     prev_last_addr = last_address;
1156 
1157     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1158     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1159 
1160     // Check for ranges that start in the same G1 region in which the previous
1161     // range ended, and adjust the start address so we don't try to free
1162     // the same region again. If the current range is entirely within that
1163     // region, skip it.
1164     if (start_region == prev_last_region) {
1165       start_address = start_region->end();
1166       if (start_address > last_address) {
1167         continue;
1168       }
1169       start_region = _hrm.addr_to_region(start_address);
1170     }
1171     prev_last_region = last_region;
1172 
1173     // After verifying that each region was marked as an archive region by
1174     // alloc_archive_regions, free it.
1175     HeapRegion* curr_region = start_region;
1176     while (curr_region != NULL) {
1177       guarantee(curr_region->is_archive(),
1178                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1179 
1180       _old_set.remove(curr_region);
1181       free_region(curr_region, &local_free_list, false /* par */, true /* locked */);
1182       if (curr_region != last_region) {
1183         curr_region = _hrm.next_region_in_heap(curr_region);
1184       } else {
1185         curr_region = NULL;
1186       }
1187     }
1188 
1189     // Notify mark-sweep that this is no longer an archive range.
1190     G1MarkSweep::set_range_archive(ranges[i], false);
1191   }
1192 
1193   prepend_to_freelist(&local_free_list);
1194   decrease_used(size_used);
1195 }
1196 
1197 
1198 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1199                                                         uint* gc_count_before_ret,
1200                                                         uint* gclocker_retry_count_ret) {
1201   // The structure of this method has a lot of similarities to
1202   // attempt_allocation_slow(). The reason these two were not merged
1203   // into a single one is that such a method would require several "if
1204   // allocation is not humongous do this, otherwise do that"
1205   // conditional paths which would obscure its flow. In fact, an early
1206   // version of this code did use a unified method which was harder to
1207   // follow and, as a result, it had subtle bugs that were hard to
1208   // track down. So keeping these two methods separate allows each to
1209   // be more readable. It will be good to keep these two in sync as
1210   // much as possible.
1211 
1212   assert_heap_not_locked_and_not_at_safepoint();
1213   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1214          "should only be called for humongous allocations");
1215 
1216   // Humongous objects can exhaust the heap quickly, so we should check if we
1217   // need to start a marking cycle at each humongous object allocation. We do
1218   // the check before we do the actual allocation. The reason for doing it
1219   // before the allocation is that we avoid having to keep track of the newly
1220   // allocated memory while we do a GC.
1221   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1222                                            word_size)) {
1223     collect(GCCause::_g1_humongous_allocation);
1224   }
1225 
1226   // We will loop until a) we manage to successfully perform the
1227   // allocation or b) we successfully schedule a collection which
1228   // fails to perform the allocation. b) is the only case when we'll
1229   // return NULL.
1230   HeapWord* result = NULL;
1231   for (int try_count = 1; /* we'll return */; try_count += 1) {
1232     bool should_try_gc;
1233     uint gc_count_before;
1234 
1235     {
1236       MutexLockerEx x(Heap_lock);
1237 
1238       // Given that humongous objects are not allocated in young
1239       // regions, we'll first try to do the allocation without doing a
1240       // collection hoping that there's enough space in the heap.
1241       result = humongous_obj_allocate(word_size, AllocationContext::current());
1242       if (result != NULL) {
1243         return result;
1244       }
1245 
1246       if (GC_locker::is_active_and_needs_gc()) {
1247         should_try_gc = false;
1248       } else {
1249          // The GCLocker may not be active but the GCLocker initiated
1250         // GC may not yet have been performed (GCLocker::needs_gc()
1251         // returns true). In this case we do not try this GC and
1252         // wait until the GCLocker initiated GC is performed, and
1253         // then retry the allocation.
1254         if (GC_locker::needs_gc()) {
1255           should_try_gc = false;
1256         } else {
1257           // Read the GC count while still holding the Heap_lock.
1258           gc_count_before = total_collections();
1259           should_try_gc = true;
1260         }
1261       }
1262     }
1263 
1264     if (should_try_gc) {
1265       // If we failed to allocate the humongous object, we should try to
1266       // do a collection pause (if we're allowed) in case it reclaims
1267       // enough space for the allocation to succeed after the pause.
1268 
1269       bool succeeded;
1270       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1271                                    GCCause::_g1_humongous_allocation);
1272       if (result != NULL) {
1273         assert(succeeded, "only way to get back a non-NULL result");
1274         return result;
1275       }
1276 
1277       if (succeeded) {
1278         // If we get here we successfully scheduled a collection which
1279         // failed to allocate. No point in trying to allocate
1280         // further. We'll just return NULL.
1281         MutexLockerEx x(Heap_lock);
1282         *gc_count_before_ret = total_collections();
1283         return NULL;
1284       }
1285     } else {
1286       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1287         MutexLockerEx x(Heap_lock);
1288         *gc_count_before_ret = total_collections();
1289         return NULL;
1290       }
1291       // The GCLocker is either active or the GCLocker initiated
1292       // GC has not yet been performed. Stall until it is and
1293       // then retry the allocation.
1294       GC_locker::stall_until_clear();
1295       (*gclocker_retry_count_ret) += 1;
1296     }
1297 
1298     // We can reach here if we were unsuccessful in scheduling a
1299     // collection (because another thread beat us to it) or if we were
1300     // stalled due to the GC locker. In either can we should retry the
1301     // allocation attempt in case another thread successfully
1302     // performed a collection and reclaimed enough space.  Give a
1303     // warning if we seem to be looping forever.
1304 
1305     if ((QueuedAllocationWarningCount > 0) &&
1306         (try_count % QueuedAllocationWarningCount == 0)) {
1307       warning("G1CollectedHeap::attempt_allocation_humongous() "
1308               "retries %d times", try_count);
1309     }
1310   }
1311 
1312   ShouldNotReachHere();
1313   return NULL;
1314 }
1315 
1316 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1317                                                            AllocationContext_t context,
1318                                                            bool expect_null_mutator_alloc_region) {
1319   assert_at_safepoint(true /* should_be_vm_thread */);
1320   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1321          "the current alloc region was unexpectedly found to be non-NULL");
1322 
1323   if (!is_humongous(word_size)) {
1324     return _allocator->attempt_allocation_locked(word_size, context);
1325   } else {
1326     HeapWord* result = humongous_obj_allocate(word_size, context);
1327     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1328       collector_state()->set_initiate_conc_mark_if_possible(true);
1329     }
1330     return result;
1331   }
1332 
1333   ShouldNotReachHere();
1334 }
1335 
1336 class PostMCRemSetClearClosure: public HeapRegionClosure {
1337   G1CollectedHeap* _g1h;
1338   ModRefBarrierSet* _mr_bs;
1339 public:
1340   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1341     _g1h(g1h), _mr_bs(mr_bs) {}
1342 
1343   bool doHeapRegion(HeapRegion* r) {
1344     HeapRegionRemSet* hrrs = r->rem_set();
1345 
1346     if (r->is_continues_humongous()) {
1347       // We'll assert that the strong code root list and RSet is empty
1348       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1349       assert(hrrs->occupied() == 0, "RSet should be empty");
1350       return false;
1351     }
1352 
1353     _g1h->reset_gc_time_stamps(r);
1354     hrrs->clear();
1355     // You might think here that we could clear just the cards
1356     // corresponding to the used region.  But no: if we leave a dirty card
1357     // in a region we might allocate into, then it would prevent that card
1358     // from being enqueued, and cause it to be missed.
1359     // Re: the performance cost: we shouldn't be doing full GC anyway!
1360     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1361 
1362     return false;
1363   }
1364 };
1365 
1366 void G1CollectedHeap::clear_rsets_post_compaction() {
1367   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1368   heap_region_iterate(&rs_clear);
1369 }
1370 
1371 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1372   G1CollectedHeap*   _g1h;
1373   UpdateRSOopClosure _cl;
1374 public:
1375   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1376     _cl(g1->g1_rem_set(), worker_i),
1377     _g1h(g1)
1378   { }
1379 
1380   bool doHeapRegion(HeapRegion* r) {
1381     if (!r->is_continues_humongous()) {
1382       _cl.set_from(r);
1383       r->oop_iterate(&_cl);
1384     }
1385     return false;
1386   }
1387 };
1388 
1389 class ParRebuildRSTask: public AbstractGangTask {
1390   G1CollectedHeap* _g1;
1391   HeapRegionClaimer _hrclaimer;
1392 
1393 public:
1394   ParRebuildRSTask(G1CollectedHeap* g1) :
1395       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1396 
1397   void work(uint worker_id) {
1398     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1399     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1400   }
1401 };
1402 
1403 class PostCompactionPrinterClosure: public HeapRegionClosure {
1404 private:
1405   G1HRPrinter* _hr_printer;
1406 public:
1407   bool doHeapRegion(HeapRegion* hr) {
1408     assert(!hr->is_young(), "not expecting to find young regions");
1409     if (hr->is_free()) {
1410       // We only generate output for non-empty regions.
1411     } else if (hr->is_starts_humongous()) {
1412       if (hr->region_num() == 1) {
1413         // single humongous region
1414         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1415       } else {
1416         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1417       }
1418     } else if (hr->is_continues_humongous()) {
1419       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1420     } else if (hr->is_archive()) {
1421       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1422     } else if (hr->is_old()) {
1423       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1424     } else {
1425       ShouldNotReachHere();
1426     }
1427     return false;
1428   }
1429 
1430   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1431     : _hr_printer(hr_printer) { }
1432 };
1433 
1434 void G1CollectedHeap::print_hrm_post_compaction() {
1435   PostCompactionPrinterClosure cl(hr_printer());
1436   heap_region_iterate(&cl);
1437 }
1438 
1439 bool G1CollectedHeap::do_collection(bool explicit_gc,
1440                                     bool clear_all_soft_refs,
1441                                     size_t word_size) {
1442   assert_at_safepoint(true /* should_be_vm_thread */);
1443 
1444   if (GC_locker::check_active_before_gc()) {
1445     return false;
1446   }
1447 
1448   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1449   gc_timer->register_gc_start();
1450 
1451   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1452   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1453 
1454   SvcGCMarker sgcm(SvcGCMarker::FULL);
1455   ResourceMark rm;
1456 
1457   G1Log::update_level();
1458   print_heap_before_gc();
1459   trace_heap_before_gc(gc_tracer);
1460 
1461   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1462 
1463   verify_region_sets_optional();
1464 
1465   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1466                            collector_policy()->should_clear_all_soft_refs();
1467 
1468   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1469 
1470   {
1471     IsGCActiveMark x;
1472 
1473     // Timing
1474     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1475     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1476 
1477     {
1478       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1479       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1480       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1481 
1482       g1_policy()->record_full_collection_start();
1483 
1484       // Note: When we have a more flexible GC logging framework that
1485       // allows us to add optional attributes to a GC log record we
1486       // could consider timing and reporting how long we wait in the
1487       // following two methods.
1488       wait_while_free_regions_coming();
1489       // If we start the compaction before the CM threads finish
1490       // scanning the root regions we might trip them over as we'll
1491       // be moving objects / updating references. So let's wait until
1492       // they are done. By telling them to abort, they should complete
1493       // early.
1494       _cm->root_regions()->abort();
1495       _cm->root_regions()->wait_until_scan_finished();
1496       append_secondary_free_list_if_not_empty_with_lock();
1497 
1498       gc_prologue(true);
1499       increment_total_collections(true /* full gc */);
1500       increment_old_marking_cycles_started();
1501 
1502       assert(used() == recalculate_used(), "Should be equal");
1503 
1504       verify_before_gc();
1505 
1506       check_bitmaps("Full GC Start");
1507       pre_full_gc_dump(gc_timer);
1508 
1509       COMPILER2_PRESENT(DerivedPointerTable::clear());
1510 
1511       // Disable discovery and empty the discovered lists
1512       // for the CM ref processor.
1513       ref_processor_cm()->disable_discovery();
1514       ref_processor_cm()->abandon_partial_discovery();
1515       ref_processor_cm()->verify_no_references_recorded();
1516 
1517       // Abandon current iterations of concurrent marking and concurrent
1518       // refinement, if any are in progress. We have to do this before
1519       // wait_until_scan_finished() below.
1520       concurrent_mark()->abort();
1521 
1522       // Make sure we'll choose a new allocation region afterwards.
1523       _allocator->release_mutator_alloc_region();
1524       _allocator->abandon_gc_alloc_regions();
1525       g1_rem_set()->cleanupHRRS();
1526 
1527       // We should call this after we retire any currently active alloc
1528       // regions so that all the ALLOC / RETIRE events are generated
1529       // before the start GC event.
1530       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1531 
1532       // We may have added regions to the current incremental collection
1533       // set between the last GC or pause and now. We need to clear the
1534       // incremental collection set and then start rebuilding it afresh
1535       // after this full GC.
1536       abandon_collection_set(g1_policy()->inc_cset_head());
1537       g1_policy()->clear_incremental_cset();
1538       g1_policy()->stop_incremental_cset_building();
1539 
1540       tear_down_region_sets(false /* free_list_only */);
1541       collector_state()->set_gcs_are_young(true);
1542 
1543       // See the comments in g1CollectedHeap.hpp and
1544       // G1CollectedHeap::ref_processing_init() about
1545       // how reference processing currently works in G1.
1546 
1547       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1548       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1549 
1550       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1551       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1552 
1553       ref_processor_stw()->enable_discovery();
1554       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1555 
1556       // Do collection work
1557       {
1558         HandleMark hm;  // Discard invalid handles created during gc
1559         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1560       }
1561 
1562       assert(num_free_regions() == 0, "we should not have added any free regions");
1563       rebuild_region_sets(false /* free_list_only */);
1564 
1565       // Enqueue any discovered reference objects that have
1566       // not been removed from the discovered lists.
1567       ref_processor_stw()->enqueue_discovered_references();
1568 
1569       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1570 
1571       MemoryService::track_memory_usage();
1572 
1573       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1574       ref_processor_stw()->verify_no_references_recorded();
1575 
1576       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1577       ClassLoaderDataGraph::purge();
1578       MetaspaceAux::verify_metrics();
1579 
1580       // Note: since we've just done a full GC, concurrent
1581       // marking is no longer active. Therefore we need not
1582       // re-enable reference discovery for the CM ref processor.
1583       // That will be done at the start of the next marking cycle.
1584       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1585       ref_processor_cm()->verify_no_references_recorded();
1586 
1587       reset_gc_time_stamp();
1588       // Since everything potentially moved, we will clear all remembered
1589       // sets, and clear all cards.  Later we will rebuild remembered
1590       // sets. We will also reset the GC time stamps of the regions.
1591       clear_rsets_post_compaction();
1592       check_gc_time_stamps();
1593 
1594       // Resize the heap if necessary.
1595       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1596 
1597       if (_hr_printer.is_active()) {
1598         // We should do this after we potentially resize the heap so
1599         // that all the COMMIT / UNCOMMIT events are generated before
1600         // the end GC event.
1601 
1602         print_hrm_post_compaction();
1603         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1604       }
1605 
1606       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1607       if (hot_card_cache->use_cache()) {
1608         hot_card_cache->reset_card_counts();
1609         hot_card_cache->reset_hot_cache();
1610       }
1611 
1612       // Rebuild remembered sets of all regions.
1613       uint n_workers =
1614         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1615                                                 workers()->active_workers(),
1616                                                 Threads::number_of_non_daemon_threads());
1617       workers()->set_active_workers(n_workers);
1618 
1619       ParRebuildRSTask rebuild_rs_task(this);
1620       workers()->run_task(&rebuild_rs_task);
1621 
1622       // Rebuild the strong code root lists for each region
1623       rebuild_strong_code_roots();
1624 
1625       if (true) { // FIXME
1626         MetaspaceGC::compute_new_size();
1627       }
1628 
1629 #ifdef TRACESPINNING
1630       ParallelTaskTerminator::print_termination_counts();
1631 #endif
1632 
1633       // Discard all rset updates
1634       JavaThread::dirty_card_queue_set().abandon_logs();
1635       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1636 
1637       _young_list->reset_sampled_info();
1638       // At this point there should be no regions in the
1639       // entire heap tagged as young.
1640       assert(check_young_list_empty(true /* check_heap */),
1641              "young list should be empty at this point");
1642 
1643       // Update the number of full collections that have been completed.
1644       increment_old_marking_cycles_completed(false /* concurrent */);
1645 
1646       _hrm.verify_optional();
1647       verify_region_sets_optional();
1648 
1649       verify_after_gc();
1650 
1651       // Clear the previous marking bitmap, if needed for bitmap verification.
1652       // Note we cannot do this when we clear the next marking bitmap in
1653       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1654       // objects marked during a full GC against the previous bitmap.
1655       // But we need to clear it before calling check_bitmaps below since
1656       // the full GC has compacted objects and updated TAMS but not updated
1657       // the prev bitmap.
1658       if (G1VerifyBitmaps) {
1659         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1660       }
1661       check_bitmaps("Full GC End");
1662 
1663       // Start a new incremental collection set for the next pause
1664       assert(g1_policy()->collection_set() == NULL, "must be");
1665       g1_policy()->start_incremental_cset_building();
1666 
1667       clear_cset_fast_test();
1668 
1669       _allocator->init_mutator_alloc_region();
1670 
1671       g1_policy()->record_full_collection_end();
1672 
1673       if (G1Log::fine()) {
1674         g1_policy()->print_heap_transition();
1675       }
1676 
1677       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1678       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1679       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1680       // before any GC notifications are raised.
1681       g1mm()->update_sizes();
1682 
1683       gc_epilogue(true);
1684     }
1685 
1686     if (G1Log::finer()) {
1687       g1_policy()->print_detailed_heap_transition(true /* full */);
1688     }
1689 
1690     print_heap_after_gc();
1691     trace_heap_after_gc(gc_tracer);
1692 
1693     post_full_gc_dump(gc_timer);
1694 
1695     gc_timer->register_gc_end();
1696     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1697   }
1698 
1699   return true;
1700 }
1701 
1702 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1703   // do_collection() will return whether it succeeded in performing
1704   // the GC. Currently, there is no facility on the
1705   // do_full_collection() API to notify the caller than the collection
1706   // did not succeed (e.g., because it was locked out by the GC
1707   // locker). So, right now, we'll ignore the return value.
1708   bool dummy = do_collection(true,                /* explicit_gc */
1709                              clear_all_soft_refs,
1710                              0                    /* word_size */);
1711 }
1712 
1713 // This code is mostly copied from TenuredGeneration.
1714 void
1715 G1CollectedHeap::
1716 resize_if_necessary_after_full_collection(size_t word_size) {
1717   // Include the current allocation, if any, and bytes that will be
1718   // pre-allocated to support collections, as "used".
1719   const size_t used_after_gc = used();
1720   const size_t capacity_after_gc = capacity();
1721   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1722 
1723   // This is enforced in arguments.cpp.
1724   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1725          "otherwise the code below doesn't make sense");
1726 
1727   // We don't have floating point command-line arguments
1728   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1729   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1730   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1731   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1732 
1733   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1734   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1735 
1736   // We have to be careful here as these two calculations can overflow
1737   // 32-bit size_t's.
1738   double used_after_gc_d = (double) used_after_gc;
1739   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1740   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1741 
1742   // Let's make sure that they are both under the max heap size, which
1743   // by default will make them fit into a size_t.
1744   double desired_capacity_upper_bound = (double) max_heap_size;
1745   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1746                                     desired_capacity_upper_bound);
1747   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1748                                     desired_capacity_upper_bound);
1749 
1750   // We can now safely turn them into size_t's.
1751   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1752   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1753 
1754   // This assert only makes sense here, before we adjust them
1755   // with respect to the min and max heap size.
1756   assert(minimum_desired_capacity <= maximum_desired_capacity,
1757          err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
1758                  "maximum_desired_capacity = " SIZE_FORMAT,
1759                  minimum_desired_capacity, maximum_desired_capacity));
1760 
1761   // Should not be greater than the heap max size. No need to adjust
1762   // it with respect to the heap min size as it's a lower bound (i.e.,
1763   // we'll try to make the capacity larger than it, not smaller).
1764   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1765   // Should not be less than the heap min size. No need to adjust it
1766   // with respect to the heap max size as it's an upper bound (i.e.,
1767   // we'll try to make the capacity smaller than it, not greater).
1768   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1769 
1770   if (capacity_after_gc < minimum_desired_capacity) {
1771     // Don't expand unless it's significant
1772     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1773     ergo_verbose4(ErgoHeapSizing,
1774                   "attempt heap expansion",
1775                   ergo_format_reason("capacity lower than "
1776                                      "min desired capacity after Full GC")
1777                   ergo_format_byte("capacity")
1778                   ergo_format_byte("occupancy")
1779                   ergo_format_byte_perc("min desired capacity"),
1780                   capacity_after_gc, used_after_gc,
1781                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1782     expand(expand_bytes);
1783 
1784     // No expansion, now see if we want to shrink
1785   } else if (capacity_after_gc > maximum_desired_capacity) {
1786     // Capacity too large, compute shrinking size
1787     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1788     ergo_verbose4(ErgoHeapSizing,
1789                   "attempt heap shrinking",
1790                   ergo_format_reason("capacity higher than "
1791                                      "max desired capacity after Full GC")
1792                   ergo_format_byte("capacity")
1793                   ergo_format_byte("occupancy")
1794                   ergo_format_byte_perc("max desired capacity"),
1795                   capacity_after_gc, used_after_gc,
1796                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1797     shrink(shrink_bytes);
1798   }
1799 }
1800 
1801 
1802 HeapWord*
1803 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1804                                            AllocationContext_t context,
1805                                            bool* succeeded) {
1806   assert_at_safepoint(true /* should_be_vm_thread */);
1807 
1808   *succeeded = true;
1809   // Let's attempt the allocation first.
1810   HeapWord* result =
1811     attempt_allocation_at_safepoint(word_size,
1812                                     context,
1813                                     false /* expect_null_mutator_alloc_region */);
1814   if (result != NULL) {
1815     assert(*succeeded, "sanity");
1816     return result;
1817   }
1818 
1819   // In a G1 heap, we're supposed to keep allocation from failing by
1820   // incremental pauses.  Therefore, at least for now, we'll favor
1821   // expansion over collection.  (This might change in the future if we can
1822   // do something smarter than full collection to satisfy a failed alloc.)
1823   result = expand_and_allocate(word_size, context);
1824   if (result != NULL) {
1825     assert(*succeeded, "sanity");
1826     return result;
1827   }
1828 
1829   // Expansion didn't work, we'll try to do a Full GC.
1830   bool gc_succeeded = do_collection(false, /* explicit_gc */
1831                                     false, /* clear_all_soft_refs */
1832                                     word_size);
1833   if (!gc_succeeded) {
1834     *succeeded = false;
1835     return NULL;
1836   }
1837 
1838   // Retry the allocation
1839   result = attempt_allocation_at_safepoint(word_size,
1840                                            context,
1841                                            true /* expect_null_mutator_alloc_region */);
1842   if (result != NULL) {
1843     assert(*succeeded, "sanity");
1844     return result;
1845   }
1846 
1847   // Then, try a Full GC that will collect all soft references.
1848   gc_succeeded = do_collection(false, /* explicit_gc */
1849                                true,  /* clear_all_soft_refs */
1850                                word_size);
1851   if (!gc_succeeded) {
1852     *succeeded = false;
1853     return NULL;
1854   }
1855 
1856   // Retry the allocation once more
1857   result = attempt_allocation_at_safepoint(word_size,
1858                                            context,
1859                                            true /* expect_null_mutator_alloc_region */);
1860   if (result != NULL) {
1861     assert(*succeeded, "sanity");
1862     return result;
1863   }
1864 
1865   assert(!collector_policy()->should_clear_all_soft_refs(),
1866          "Flag should have been handled and cleared prior to this point");
1867 
1868   // What else?  We might try synchronous finalization later.  If the total
1869   // space available is large enough for the allocation, then a more
1870   // complete compaction phase than we've tried so far might be
1871   // appropriate.
1872   assert(*succeeded, "sanity");
1873   return NULL;
1874 }
1875 
1876 // Attempting to expand the heap sufficiently
1877 // to support an allocation of the given "word_size".  If
1878 // successful, perform the allocation and return the address of the
1879 // allocated block, or else "NULL".
1880 
1881 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1882   assert_at_safepoint(true /* should_be_vm_thread */);
1883 
1884   verify_region_sets_optional();
1885 
1886   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1887   ergo_verbose1(ErgoHeapSizing,
1888                 "attempt heap expansion",
1889                 ergo_format_reason("allocation request failed")
1890                 ergo_format_byte("allocation request"),
1891                 word_size * HeapWordSize);
1892   if (expand(expand_bytes)) {
1893     _hrm.verify_optional();
1894     verify_region_sets_optional();
1895     return attempt_allocation_at_safepoint(word_size,
1896                                            context,
1897                                            false /* expect_null_mutator_alloc_region */);
1898   }
1899   return NULL;
1900 }
1901 
1902 bool G1CollectedHeap::expand(size_t expand_bytes) {
1903   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1904   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1905                                        HeapRegion::GrainBytes);
1906   ergo_verbose2(ErgoHeapSizing,
1907                 "expand the heap",
1908                 ergo_format_byte("requested expansion amount")
1909                 ergo_format_byte("attempted expansion amount"),
1910                 expand_bytes, aligned_expand_bytes);
1911 
1912   if (is_maximal_no_gc()) {
1913     ergo_verbose0(ErgoHeapSizing,
1914                       "did not expand the heap",
1915                       ergo_format_reason("heap already fully expanded"));
1916     return false;
1917   }
1918 
1919   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1920   assert(regions_to_expand > 0, "Must expand by at least one region");
1921 
1922   uint expanded_by = _hrm.expand_by(regions_to_expand);
1923 
1924   if (expanded_by > 0) {
1925     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1926     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1927     g1_policy()->record_new_heap_size(num_regions());
1928   } else {
1929     ergo_verbose0(ErgoHeapSizing,
1930                   "did not expand the heap",
1931                   ergo_format_reason("heap expansion operation failed"));
1932     // The expansion of the virtual storage space was unsuccessful.
1933     // Let's see if it was because we ran out of swap.
1934     if (G1ExitOnExpansionFailure &&
1935         _hrm.available() >= regions_to_expand) {
1936       // We had head room...
1937       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1938     }
1939   }
1940   return regions_to_expand > 0;
1941 }
1942 
1943 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1944   size_t aligned_shrink_bytes =
1945     ReservedSpace::page_align_size_down(shrink_bytes);
1946   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1947                                          HeapRegion::GrainBytes);
1948   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1949 
1950   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1951   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1952 
1953   ergo_verbose3(ErgoHeapSizing,
1954                 "shrink the heap",
1955                 ergo_format_byte("requested shrinking amount")
1956                 ergo_format_byte("aligned shrinking amount")
1957                 ergo_format_byte("attempted shrinking amount"),
1958                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1959   if (num_regions_removed > 0) {
1960     g1_policy()->record_new_heap_size(num_regions());
1961   } else {
1962     ergo_verbose0(ErgoHeapSizing,
1963                   "did not shrink the heap",
1964                   ergo_format_reason("heap shrinking operation failed"));
1965   }
1966 }
1967 
1968 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1969   verify_region_sets_optional();
1970 
1971   // We should only reach here at the end of a Full GC which means we
1972   // should not not be holding to any GC alloc regions. The method
1973   // below will make sure of that and do any remaining clean up.
1974   _allocator->abandon_gc_alloc_regions();
1975 
1976   // Instead of tearing down / rebuilding the free lists here, we
1977   // could instead use the remove_all_pending() method on free_list to
1978   // remove only the ones that we need to remove.
1979   tear_down_region_sets(true /* free_list_only */);
1980   shrink_helper(shrink_bytes);
1981   rebuild_region_sets(true /* free_list_only */);
1982 
1983   _hrm.verify_optional();
1984   verify_region_sets_optional();
1985 }
1986 
1987 // Public methods.
1988 
1989 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1990 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1991 #endif // _MSC_VER
1992 
1993 
1994 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1995   CollectedHeap(),
1996   _g1_policy(policy_),
1997   _dirty_card_queue_set(false),
1998   _into_cset_dirty_card_queue_set(false),
1999   _is_alive_closure_cm(this),
2000   _is_alive_closure_stw(this),
2001   _ref_processor_cm(NULL),
2002   _ref_processor_stw(NULL),
2003   _bot_shared(NULL),
2004   _cg1r(NULL),
2005   _g1mm(NULL),
2006   _refine_cte_cl(NULL),
2007   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
2008   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
2009   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
2010   _humongous_reclaim_candidates(),
2011   _has_humongous_reclaim_candidates(false),
2012   _archive_allocator(NULL),
2013   _free_regions_coming(false),
2014   _young_list(new YoungList(this)),
2015   _gc_time_stamp(0),
2016   _summary_bytes_used(0),
2017   _survivor_plab_stats(YoungPLABSize, PLABWeight),
2018   _old_plab_stats(OldPLABSize, PLABWeight),
2019   _expand_heap_after_alloc_failure(true),
2020   _surviving_young_words(NULL),
2021   _old_marking_cycles_started(0),
2022   _old_marking_cycles_completed(0),
2023   _heap_summary_sent(false),
2024   _in_cset_fast_test(),
2025   _dirty_cards_region_list(NULL),
2026   _worker_cset_start_region(NULL),
2027   _worker_cset_start_region_time_stamp(NULL),
2028   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
2029   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
2030   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
2031   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
2032 
2033   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
2034                           /* are_GC_task_threads */true,
2035                           /* are_ConcurrentGC_threads */false);
2036   _workers->initialize_workers();
2037 
2038   _allocator = G1Allocator::create_allocator(this);
2039   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
2040 
2041   // Override the default _filler_array_max_size so that no humongous filler
2042   // objects are created.
2043   _filler_array_max_size = _humongous_object_threshold_in_words;
2044 
2045   uint n_queues = ParallelGCThreads;
2046   _task_queues = new RefToScanQueueSet(n_queues);
2047 
2048   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
2049   assert(n_rem_sets > 0, "Invariant.");
2050 
2051   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
2052   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
2053   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
2054 
2055   for (uint i = 0; i < n_queues; i++) {
2056     RefToScanQueue* q = new RefToScanQueue();
2057     q->initialize();
2058     _task_queues->register_queue(i, q);
2059     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
2060   }
2061   clear_cset_start_regions();
2062 
2063   // Initialize the G1EvacuationFailureALot counters and flags.
2064   NOT_PRODUCT(reset_evacuation_should_fail();)
2065 
2066   guarantee(_task_queues != NULL, "task_queues allocation failure.");
2067 }
2068 
2069 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
2070                                                                  size_t size,
2071                                                                  size_t translation_factor) {
2072   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
2073   // Allocate a new reserved space, preferring to use large pages.
2074   ReservedSpace rs(size, preferred_page_size);
2075   G1RegionToSpaceMapper* result  =
2076     G1RegionToSpaceMapper::create_mapper(rs,
2077                                          size,
2078                                          rs.alignment(),
2079                                          HeapRegion::GrainBytes,
2080                                          translation_factor,
2081                                          mtGC);
2082   if (TracePageSizes) {
2083     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
2084                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2085   }
2086   return result;
2087 }
2088 
2089 jint G1CollectedHeap::initialize() {
2090   CollectedHeap::pre_initialize();
2091   os::enable_vtime();
2092 
2093   G1Log::init();
2094 
2095   // Necessary to satisfy locking discipline assertions.
2096 
2097   MutexLocker x(Heap_lock);
2098 
2099   // We have to initialize the printer before committing the heap, as
2100   // it will be used then.
2101   _hr_printer.set_active(G1PrintHeapRegions);
2102 
2103   // While there are no constraints in the GC code that HeapWordSize
2104   // be any particular value, there are multiple other areas in the
2105   // system which believe this to be true (e.g. oop->object_size in some
2106   // cases incorrectly returns the size in wordSize units rather than
2107   // HeapWordSize).
2108   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2109 
2110   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2111   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2112   size_t heap_alignment = collector_policy()->heap_alignment();
2113 
2114   // Ensure that the sizes are properly aligned.
2115   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2116   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2117   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2118 
2119   _refine_cte_cl = new RefineCardTableEntryClosure();
2120 
2121   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2122 
2123   // Reserve the maximum.
2124 
2125   // When compressed oops are enabled, the preferred heap base
2126   // is calculated by subtracting the requested size from the
2127   // 32Gb boundary and using the result as the base address for
2128   // heap reservation. If the requested size is not aligned to
2129   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2130   // into the ReservedHeapSpace constructor) then the actual
2131   // base of the reserved heap may end up differing from the
2132   // address that was requested (i.e. the preferred heap base).
2133   // If this happens then we could end up using a non-optimal
2134   // compressed oops mode.
2135 
2136   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2137                                                  heap_alignment);
2138 
2139   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2140 
2141   // Create the barrier set for the entire reserved region.
2142   G1SATBCardTableLoggingModRefBS* bs
2143     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2144   bs->initialize();
2145   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2146   set_barrier_set(bs);
2147 
2148   // Also create a G1 rem set.
2149   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2150 
2151   // Carve out the G1 part of the heap.
2152 
2153   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2154   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2155   G1RegionToSpaceMapper* heap_storage =
2156     G1RegionToSpaceMapper::create_mapper(g1_rs,
2157                                          g1_rs.size(),
2158                                          page_size,
2159                                          HeapRegion::GrainBytes,
2160                                          1,
2161                                          mtJavaHeap);
2162   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2163                        max_byte_size, page_size,
2164                        heap_rs.base(),
2165                        heap_rs.size());
2166   heap_storage->set_mapping_changed_listener(&_listener);
2167 
2168   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2169   G1RegionToSpaceMapper* bot_storage =
2170     create_aux_memory_mapper("Block offset table",
2171                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2172                              G1BlockOffsetSharedArray::heap_map_factor());
2173 
2174   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2175   G1RegionToSpaceMapper* cardtable_storage =
2176     create_aux_memory_mapper("Card table",
2177                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2178                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2179 
2180   G1RegionToSpaceMapper* card_counts_storage =
2181     create_aux_memory_mapper("Card counts table",
2182                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2183                              G1CardCounts::heap_map_factor());
2184 
2185   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2186   G1RegionToSpaceMapper* prev_bitmap_storage =
2187     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2188   G1RegionToSpaceMapper* next_bitmap_storage =
2189     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2190 
2191   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2192   g1_barrier_set()->initialize(cardtable_storage);
2193    // Do later initialization work for concurrent refinement.
2194   _cg1r->init(card_counts_storage);
2195 
2196   // 6843694 - ensure that the maximum region index can fit
2197   // in the remembered set structures.
2198   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2199   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2200 
2201   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2202   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2203   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2204             "too many cards per region");
2205 
2206   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2207 
2208   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2209 
2210   {
2211     HeapWord* start = _hrm.reserved().start();
2212     HeapWord* end = _hrm.reserved().end();
2213     size_t granularity = HeapRegion::GrainBytes;
2214 
2215     _in_cset_fast_test.initialize(start, end, granularity);
2216     _humongous_reclaim_candidates.initialize(start, end, granularity);
2217   }
2218 
2219   // Create the ConcurrentMark data structure and thread.
2220   // (Must do this late, so that "max_regions" is defined.)
2221   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2222   if (_cm == NULL || !_cm->completed_initialization()) {
2223     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2224     return JNI_ENOMEM;
2225   }
2226   _cmThread = _cm->cmThread();
2227 
2228   // Initialize the from_card cache structure of HeapRegionRemSet.
2229   HeapRegionRemSet::init_heap(max_regions());
2230 
2231   // Now expand into the initial heap size.
2232   if (!expand(init_byte_size)) {
2233     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2234     return JNI_ENOMEM;
2235   }
2236 
2237   // Perform any initialization actions delegated to the policy.
2238   g1_policy()->init();
2239 
2240   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2241                                                SATB_Q_FL_lock,
2242                                                G1SATBProcessCompletedThreshold,
2243                                                Shared_SATB_Q_lock);
2244 
2245   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2246                                                 DirtyCardQ_CBL_mon,
2247                                                 DirtyCardQ_FL_lock,
2248                                                 concurrent_g1_refine()->yellow_zone(),
2249                                                 concurrent_g1_refine()->red_zone(),
2250                                                 Shared_DirtyCardQ_lock);
2251 
2252   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2253                                     DirtyCardQ_CBL_mon,
2254                                     DirtyCardQ_FL_lock,
2255                                     -1, // never trigger processing
2256                                     -1, // no limit on length
2257                                     Shared_DirtyCardQ_lock,
2258                                     &JavaThread::dirty_card_queue_set());
2259 
2260   // Initialize the card queue set used to hold cards containing
2261   // references into the collection set.
2262   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2263                                              DirtyCardQ_CBL_mon,
2264                                              DirtyCardQ_FL_lock,
2265                                              -1, // never trigger processing
2266                                              -1, // no limit on length
2267                                              Shared_DirtyCardQ_lock,
2268                                              &JavaThread::dirty_card_queue_set());
2269 
2270   // Here we allocate the dummy HeapRegion that is required by the
2271   // G1AllocRegion class.
2272   HeapRegion* dummy_region = _hrm.get_dummy_region();
2273 
2274   // We'll re-use the same region whether the alloc region will
2275   // require BOT updates or not and, if it doesn't, then a non-young
2276   // region will complain that it cannot support allocations without
2277   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2278   dummy_region->set_eden();
2279   // Make sure it's full.
2280   dummy_region->set_top(dummy_region->end());
2281   G1AllocRegion::setup(this, dummy_region);
2282 
2283   _allocator->init_mutator_alloc_region();
2284 
2285   // Do create of the monitoring and management support so that
2286   // values in the heap have been properly initialized.
2287   _g1mm = new G1MonitoringSupport(this);
2288 
2289   G1StringDedup::initialize();
2290 
2291   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2292   for (uint i = 0; i < ParallelGCThreads; i++) {
2293     new (&_preserved_objs[i]) OopAndMarkOopStack();
2294   }
2295 
2296   return JNI_OK;
2297 }
2298 
2299 void G1CollectedHeap::stop() {
2300   // Stop all concurrent threads. We do this to make sure these threads
2301   // do not continue to execute and access resources (e.g. gclog_or_tty)
2302   // that are destroyed during shutdown.
2303   _cg1r->stop();
2304   _cmThread->stop();
2305   if (G1StringDedup::is_enabled()) {
2306     G1StringDedup::stop();
2307   }
2308 }
2309 
2310 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2311   return HeapRegion::max_region_size();
2312 }
2313 
2314 void G1CollectedHeap::post_initialize() {
2315   CollectedHeap::post_initialize();
2316   ref_processing_init();
2317 }
2318 
2319 void G1CollectedHeap::ref_processing_init() {
2320   // Reference processing in G1 currently works as follows:
2321   //
2322   // * There are two reference processor instances. One is
2323   //   used to record and process discovered references
2324   //   during concurrent marking; the other is used to
2325   //   record and process references during STW pauses
2326   //   (both full and incremental).
2327   // * Both ref processors need to 'span' the entire heap as
2328   //   the regions in the collection set may be dotted around.
2329   //
2330   // * For the concurrent marking ref processor:
2331   //   * Reference discovery is enabled at initial marking.
2332   //   * Reference discovery is disabled and the discovered
2333   //     references processed etc during remarking.
2334   //   * Reference discovery is MT (see below).
2335   //   * Reference discovery requires a barrier (see below).
2336   //   * Reference processing may or may not be MT
2337   //     (depending on the value of ParallelRefProcEnabled
2338   //     and ParallelGCThreads).
2339   //   * A full GC disables reference discovery by the CM
2340   //     ref processor and abandons any entries on it's
2341   //     discovered lists.
2342   //
2343   // * For the STW processor:
2344   //   * Non MT discovery is enabled at the start of a full GC.
2345   //   * Processing and enqueueing during a full GC is non-MT.
2346   //   * During a full GC, references are processed after marking.
2347   //
2348   //   * Discovery (may or may not be MT) is enabled at the start
2349   //     of an incremental evacuation pause.
2350   //   * References are processed near the end of a STW evacuation pause.
2351   //   * For both types of GC:
2352   //     * Discovery is atomic - i.e. not concurrent.
2353   //     * Reference discovery will not need a barrier.
2354 
2355   MemRegion mr = reserved_region();
2356 
2357   // Concurrent Mark ref processor
2358   _ref_processor_cm =
2359     new ReferenceProcessor(mr,    // span
2360                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2361                                 // mt processing
2362                            ParallelGCThreads,
2363                                 // degree of mt processing
2364                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2365                                 // mt discovery
2366                            MAX2(ParallelGCThreads, ConcGCThreads),
2367                                 // degree of mt discovery
2368                            false,
2369                                 // Reference discovery is not atomic
2370                            &_is_alive_closure_cm);
2371                                 // is alive closure
2372                                 // (for efficiency/performance)
2373 
2374   // STW ref processor
2375   _ref_processor_stw =
2376     new ReferenceProcessor(mr,    // span
2377                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2378                                 // mt processing
2379                            ParallelGCThreads,
2380                                 // degree of mt processing
2381                            (ParallelGCThreads > 1),
2382                                 // mt discovery
2383                            ParallelGCThreads,
2384                                 // degree of mt discovery
2385                            true,
2386                                 // Reference discovery is atomic
2387                            &_is_alive_closure_stw);
2388                                 // is alive closure
2389                                 // (for efficiency/performance)
2390 }
2391 
2392 size_t G1CollectedHeap::capacity() const {
2393   return _hrm.length() * HeapRegion::GrainBytes;
2394 }
2395 
2396 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2397   assert(!hr->is_continues_humongous(), "pre-condition");
2398   hr->reset_gc_time_stamp();
2399   if (hr->is_starts_humongous()) {
2400     uint first_index = hr->hrm_index() + 1;
2401     uint last_index = hr->last_hc_index();
2402     for (uint i = first_index; i < last_index; i += 1) {
2403       HeapRegion* chr = region_at(i);
2404       assert(chr->is_continues_humongous(), "sanity");
2405       chr->reset_gc_time_stamp();
2406     }
2407   }
2408 }
2409 
2410 #ifndef PRODUCT
2411 
2412 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2413 private:
2414   unsigned _gc_time_stamp;
2415   bool _failures;
2416 
2417 public:
2418   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2419     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2420 
2421   virtual bool doHeapRegion(HeapRegion* hr) {
2422     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2423     if (_gc_time_stamp != region_gc_time_stamp) {
2424       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2425                              "expected %d", HR_FORMAT_PARAMS(hr),
2426                              region_gc_time_stamp, _gc_time_stamp);
2427       _failures = true;
2428     }
2429     return false;
2430   }
2431 
2432   bool failures() { return _failures; }
2433 };
2434 
2435 void G1CollectedHeap::check_gc_time_stamps() {
2436   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2437   heap_region_iterate(&cl);
2438   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2439 }
2440 #endif // PRODUCT
2441 
2442 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2443                                                  DirtyCardQueue* into_cset_dcq,
2444                                                  bool concurrent,
2445                                                  uint worker_i) {
2446   // Clean cards in the hot card cache
2447   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2448   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2449 
2450   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2451   size_t n_completed_buffers = 0;
2452   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2453     n_completed_buffers++;
2454   }
2455   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2456   dcqs.clear_n_completed_buffers();
2457   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2458 }
2459 
2460 // Computes the sum of the storage used by the various regions.
2461 size_t G1CollectedHeap::used() const {
2462   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2463   if (_archive_allocator != NULL) {
2464     result += _archive_allocator->used();
2465   }
2466   return result;
2467 }
2468 
2469 size_t G1CollectedHeap::used_unlocked() const {
2470   return _summary_bytes_used;
2471 }
2472 
2473 class SumUsedClosure: public HeapRegionClosure {
2474   size_t _used;
2475 public:
2476   SumUsedClosure() : _used(0) {}
2477   bool doHeapRegion(HeapRegion* r) {
2478     if (!r->is_continues_humongous()) {
2479       _used += r->used();
2480     }
2481     return false;
2482   }
2483   size_t result() { return _used; }
2484 };
2485 
2486 size_t G1CollectedHeap::recalculate_used() const {
2487   double recalculate_used_start = os::elapsedTime();
2488 
2489   SumUsedClosure blk;
2490   heap_region_iterate(&blk);
2491 
2492   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2493   return blk.result();
2494 }
2495 
2496 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2497   switch (cause) {
2498     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2499     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2500     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2501     case GCCause::_g1_humongous_allocation: return true;
2502     case GCCause::_update_allocation_context_stats_inc: return true;
2503     case GCCause::_wb_conc_mark:            return true;
2504     default:                                return false;
2505   }
2506 }
2507 
2508 #ifndef PRODUCT
2509 void G1CollectedHeap::allocate_dummy_regions() {
2510   // Let's fill up most of the region
2511   size_t word_size = HeapRegion::GrainWords - 1024;
2512   // And as a result the region we'll allocate will be humongous.
2513   guarantee(is_humongous(word_size), "sanity");
2514 
2515   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2516     // Let's use the existing mechanism for the allocation
2517     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2518                                                  AllocationContext::system());
2519     if (dummy_obj != NULL) {
2520       MemRegion mr(dummy_obj, word_size);
2521       CollectedHeap::fill_with_object(mr);
2522     } else {
2523       // If we can't allocate once, we probably cannot allocate
2524       // again. Let's get out of the loop.
2525       break;
2526     }
2527   }
2528 }
2529 #endif // !PRODUCT
2530 
2531 void G1CollectedHeap::increment_old_marking_cycles_started() {
2532   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2533     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2534     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2535     _old_marking_cycles_started, _old_marking_cycles_completed));
2536 
2537   _old_marking_cycles_started++;
2538 }
2539 
2540 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2541   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2542 
2543   // We assume that if concurrent == true, then the caller is a
2544   // concurrent thread that was joined the Suspendible Thread
2545   // Set. If there's ever a cheap way to check this, we should add an
2546   // assert here.
2547 
2548   // Given that this method is called at the end of a Full GC or of a
2549   // concurrent cycle, and those can be nested (i.e., a Full GC can
2550   // interrupt a concurrent cycle), the number of full collections
2551   // completed should be either one (in the case where there was no
2552   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2553   // behind the number of full collections started.
2554 
2555   // This is the case for the inner caller, i.e. a Full GC.
2556   assert(concurrent ||
2557          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2558          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2559          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2560                  "is inconsistent with _old_marking_cycles_completed = %u",
2561                  _old_marking_cycles_started, _old_marking_cycles_completed));
2562 
2563   // This is the case for the outer caller, i.e. the concurrent cycle.
2564   assert(!concurrent ||
2565          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2566          err_msg("for outer caller (concurrent cycle): "
2567                  "_old_marking_cycles_started = %u "
2568                  "is inconsistent with _old_marking_cycles_completed = %u",
2569                  _old_marking_cycles_started, _old_marking_cycles_completed));
2570 
2571   _old_marking_cycles_completed += 1;
2572 
2573   // We need to clear the "in_progress" flag in the CM thread before
2574   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2575   // is set) so that if a waiter requests another System.gc() it doesn't
2576   // incorrectly see that a marking cycle is still in progress.
2577   if (concurrent) {
2578     _cmThread->set_idle();
2579   }
2580 
2581   // This notify_all() will ensure that a thread that called
2582   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2583   // and it's waiting for a full GC to finish will be woken up. It is
2584   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2585   FullGCCount_lock->notify_all();
2586 }
2587 
2588 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2589   collector_state()->set_concurrent_cycle_started(true);
2590   _gc_timer_cm->register_gc_start(start_time);
2591 
2592   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2593   trace_heap_before_gc(_gc_tracer_cm);
2594 }
2595 
2596 void G1CollectedHeap::register_concurrent_cycle_end() {
2597   if (collector_state()->concurrent_cycle_started()) {
2598     if (_cm->has_aborted()) {
2599       _gc_tracer_cm->report_concurrent_mode_failure();
2600     }
2601 
2602     _gc_timer_cm->register_gc_end();
2603     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2604 
2605     // Clear state variables to prepare for the next concurrent cycle.
2606      collector_state()->set_concurrent_cycle_started(false);
2607     _heap_summary_sent = false;
2608   }
2609 }
2610 
2611 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2612   if (collector_state()->concurrent_cycle_started()) {
2613     // This function can be called when:
2614     //  the cleanup pause is run
2615     //  the concurrent cycle is aborted before the cleanup pause.
2616     //  the concurrent cycle is aborted after the cleanup pause,
2617     //   but before the concurrent cycle end has been registered.
2618     // Make sure that we only send the heap information once.
2619     if (!_heap_summary_sent) {
2620       trace_heap_after_gc(_gc_tracer_cm);
2621       _heap_summary_sent = true;
2622     }
2623   }
2624 }
2625 
2626 void G1CollectedHeap::collect(GCCause::Cause cause) {
2627   assert_heap_not_locked();
2628 
2629   uint gc_count_before;
2630   uint old_marking_count_before;
2631   uint full_gc_count_before;
2632   bool retry_gc;
2633 
2634   do {
2635     retry_gc = false;
2636 
2637     {
2638       MutexLocker ml(Heap_lock);
2639 
2640       // Read the GC count while holding the Heap_lock
2641       gc_count_before = total_collections();
2642       full_gc_count_before = total_full_collections();
2643       old_marking_count_before = _old_marking_cycles_started;
2644     }
2645 
2646     if (should_do_concurrent_full_gc(cause)) {
2647       // Schedule an initial-mark evacuation pause that will start a
2648       // concurrent cycle. We're setting word_size to 0 which means that
2649       // we are not requesting a post-GC allocation.
2650       VM_G1IncCollectionPause op(gc_count_before,
2651                                  0,     /* word_size */
2652                                  true,  /* should_initiate_conc_mark */
2653                                  g1_policy()->max_pause_time_ms(),
2654                                  cause);
2655       op.set_allocation_context(AllocationContext::current());
2656 
2657       VMThread::execute(&op);
2658       if (!op.pause_succeeded()) {
2659         if (old_marking_count_before == _old_marking_cycles_started) {
2660           retry_gc = op.should_retry_gc();
2661         } else {
2662           // A Full GC happened while we were trying to schedule the
2663           // initial-mark GC. No point in starting a new cycle given
2664           // that the whole heap was collected anyway.
2665         }
2666 
2667         if (retry_gc) {
2668           if (GC_locker::is_active_and_needs_gc()) {
2669             GC_locker::stall_until_clear();
2670           }
2671         }
2672       }
2673     } else {
2674       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2675           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2676 
2677         // Schedule a standard evacuation pause. We're setting word_size
2678         // to 0 which means that we are not requesting a post-GC allocation.
2679         VM_G1IncCollectionPause op(gc_count_before,
2680                                    0,     /* word_size */
2681                                    false, /* should_initiate_conc_mark */
2682                                    g1_policy()->max_pause_time_ms(),
2683                                    cause);
2684         VMThread::execute(&op);
2685       } else {
2686         // Schedule a Full GC.
2687         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2688         VMThread::execute(&op);
2689       }
2690     }
2691   } while (retry_gc);
2692 }
2693 
2694 bool G1CollectedHeap::is_in(const void* p) const {
2695   if (_hrm.reserved().contains(p)) {
2696     // Given that we know that p is in the reserved space,
2697     // heap_region_containing_raw() should successfully
2698     // return the containing region.
2699     HeapRegion* hr = heap_region_containing_raw(p);
2700     return hr->is_in(p);
2701   } else {
2702     return false;
2703   }
2704 }
2705 
2706 #ifdef ASSERT
2707 bool G1CollectedHeap::is_in_exact(const void* p) const {
2708   bool contains = reserved_region().contains(p);
2709   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2710   if (contains && available) {
2711     return true;
2712   } else {
2713     return false;
2714   }
2715 }
2716 #endif
2717 
2718 bool G1CollectedHeap::obj_in_cs(oop obj) {
2719   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2720   return r != NULL && r->in_collection_set();
2721 }
2722 
2723 // Iteration functions.
2724 
2725 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2726 
2727 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2728   ExtendedOopClosure* _cl;
2729 public:
2730   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2731   bool doHeapRegion(HeapRegion* r) {
2732     if (!r->is_continues_humongous()) {
2733       r->oop_iterate(_cl);
2734     }
2735     return false;
2736   }
2737 };
2738 
2739 // Iterates an ObjectClosure over all objects within a HeapRegion.
2740 
2741 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2742   ObjectClosure* _cl;
2743 public:
2744   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2745   bool doHeapRegion(HeapRegion* r) {
2746     if (!r->is_continues_humongous()) {
2747       r->object_iterate(_cl);
2748     }
2749     return false;
2750   }
2751 };
2752 
2753 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2754   IterateObjectClosureRegionClosure blk(cl);
2755   heap_region_iterate(&blk);
2756 }
2757 
2758 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2759   _hrm.iterate(cl);
2760 }
2761 
2762 void
2763 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2764                                          uint worker_id,
2765                                          HeapRegionClaimer *hrclaimer,
2766                                          bool concurrent) const {
2767   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2768 }
2769 
2770 // Clear the cached CSet starting regions and (more importantly)
2771 // the time stamps. Called when we reset the GC time stamp.
2772 void G1CollectedHeap::clear_cset_start_regions() {
2773   assert(_worker_cset_start_region != NULL, "sanity");
2774   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2775 
2776   for (uint i = 0; i < ParallelGCThreads; i++) {
2777     _worker_cset_start_region[i] = NULL;
2778     _worker_cset_start_region_time_stamp[i] = 0;
2779   }
2780 }
2781 
2782 // Given the id of a worker, obtain or calculate a suitable
2783 // starting region for iterating over the current collection set.
2784 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2785   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2786 
2787   HeapRegion* result = NULL;
2788   unsigned gc_time_stamp = get_gc_time_stamp();
2789 
2790   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2791     // Cached starting region for current worker was set
2792     // during the current pause - so it's valid.
2793     // Note: the cached starting heap region may be NULL
2794     // (when the collection set is empty).
2795     result = _worker_cset_start_region[worker_i];
2796     assert(result == NULL || result->in_collection_set(), "sanity");
2797     return result;
2798   }
2799 
2800   // The cached entry was not valid so let's calculate
2801   // a suitable starting heap region for this worker.
2802 
2803   // We want the parallel threads to start their collection
2804   // set iteration at different collection set regions to
2805   // avoid contention.
2806   // If we have:
2807   //          n collection set regions
2808   //          p threads
2809   // Then thread t will start at region floor ((t * n) / p)
2810 
2811   result = g1_policy()->collection_set();
2812   uint cs_size = g1_policy()->cset_region_length();
2813   uint active_workers = workers()->active_workers();
2814 
2815   uint end_ind   = (cs_size * worker_i) / active_workers;
2816   uint start_ind = 0;
2817 
2818   if (worker_i > 0 &&
2819       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2820     // Previous workers starting region is valid
2821     // so let's iterate from there
2822     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2823     result = _worker_cset_start_region[worker_i - 1];
2824   }
2825 
2826   for (uint i = start_ind; i < end_ind; i++) {
2827     result = result->next_in_collection_set();
2828   }
2829 
2830   // Note: the calculated starting heap region may be NULL
2831   // (when the collection set is empty).
2832   assert(result == NULL || result->in_collection_set(), "sanity");
2833   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2834          "should be updated only once per pause");
2835   _worker_cset_start_region[worker_i] = result;
2836   OrderAccess::storestore();
2837   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2838   return result;
2839 }
2840 
2841 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2842   HeapRegion* r = g1_policy()->collection_set();
2843   while (r != NULL) {
2844     HeapRegion* next = r->next_in_collection_set();
2845     if (cl->doHeapRegion(r)) {
2846       cl->incomplete();
2847       return;
2848     }
2849     r = next;
2850   }
2851 }
2852 
2853 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2854                                                   HeapRegionClosure *cl) {
2855   if (r == NULL) {
2856     // The CSet is empty so there's nothing to do.
2857     return;
2858   }
2859 
2860   assert(r->in_collection_set(),
2861          "Start region must be a member of the collection set.");
2862   HeapRegion* cur = r;
2863   while (cur != NULL) {
2864     HeapRegion* next = cur->next_in_collection_set();
2865     if (cl->doHeapRegion(cur) && false) {
2866       cl->incomplete();
2867       return;
2868     }
2869     cur = next;
2870   }
2871   cur = g1_policy()->collection_set();
2872   while (cur != r) {
2873     HeapRegion* next = cur->next_in_collection_set();
2874     if (cl->doHeapRegion(cur) && false) {
2875       cl->incomplete();
2876       return;
2877     }
2878     cur = next;
2879   }
2880 }
2881 
2882 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2883   HeapRegion* result = _hrm.next_region_in_heap(from);
2884   while (result != NULL && result->is_pinned()) {
2885     result = _hrm.next_region_in_heap(result);
2886   }
2887   return result;
2888 }
2889 
2890 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2891   HeapRegion* hr = heap_region_containing(addr);
2892   return hr->block_start(addr);
2893 }
2894 
2895 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2896   HeapRegion* hr = heap_region_containing(addr);
2897   return hr->block_size(addr);
2898 }
2899 
2900 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2901   HeapRegion* hr = heap_region_containing(addr);
2902   return hr->block_is_obj(addr);
2903 }
2904 
2905 bool G1CollectedHeap::supports_tlab_allocation() const {
2906   return true;
2907 }
2908 
2909 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2910   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2911 }
2912 
2913 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2914   return young_list()->eden_used_bytes();
2915 }
2916 
2917 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2918 // must be smaller than the humongous object limit.
2919 size_t G1CollectedHeap::max_tlab_size() const {
2920   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2921 }
2922 
2923 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2924   AllocationContext_t context = AllocationContext::current();
2925   return _allocator->unsafe_max_tlab_alloc(context);
2926 }
2927 
2928 size_t G1CollectedHeap::max_capacity() const {
2929   return _hrm.reserved().byte_size();
2930 }
2931 
2932 jlong G1CollectedHeap::millis_since_last_gc() {
2933   // assert(false, "NYI");
2934   return 0;
2935 }
2936 
2937 void G1CollectedHeap::prepare_for_verify() {
2938   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2939     ensure_parsability(false);
2940   }
2941   g1_rem_set()->prepare_for_verify();
2942 }
2943 
2944 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2945                                               VerifyOption vo) {
2946   switch (vo) {
2947   case VerifyOption_G1UsePrevMarking:
2948     return hr->obj_allocated_since_prev_marking(obj);
2949   case VerifyOption_G1UseNextMarking:
2950     return hr->obj_allocated_since_next_marking(obj);
2951   case VerifyOption_G1UseMarkWord:
2952     return false;
2953   default:
2954     ShouldNotReachHere();
2955   }
2956   return false; // keep some compilers happy
2957 }
2958 
2959 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2960   switch (vo) {
2961   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2962   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2963   case VerifyOption_G1UseMarkWord:    return NULL;
2964   default:                            ShouldNotReachHere();
2965   }
2966   return NULL; // keep some compilers happy
2967 }
2968 
2969 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2970   switch (vo) {
2971   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2972   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2973   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2974   default:                            ShouldNotReachHere();
2975   }
2976   return false; // keep some compilers happy
2977 }
2978 
2979 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2980   switch (vo) {
2981   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2982   case VerifyOption_G1UseNextMarking: return "NTAMS";
2983   case VerifyOption_G1UseMarkWord:    return "NONE";
2984   default:                            ShouldNotReachHere();
2985   }
2986   return NULL; // keep some compilers happy
2987 }
2988 
2989 class VerifyRootsClosure: public OopClosure {
2990 private:
2991   G1CollectedHeap* _g1h;
2992   VerifyOption     _vo;
2993   bool             _failures;
2994 public:
2995   // _vo == UsePrevMarking -> use "prev" marking information,
2996   // _vo == UseNextMarking -> use "next" marking information,
2997   // _vo == UseMarkWord    -> use mark word from object header.
2998   VerifyRootsClosure(VerifyOption vo) :
2999     _g1h(G1CollectedHeap::heap()),
3000     _vo(vo),
3001     _failures(false) { }
3002 
3003   bool failures() { return _failures; }
3004 
3005   template <class T> void do_oop_nv(T* p) {
3006     T heap_oop = oopDesc::load_heap_oop(p);
3007     if (!oopDesc::is_null(heap_oop)) {
3008       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3009       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3010         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
3011                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
3012         if (_vo == VerifyOption_G1UseMarkWord) {
3013           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
3014         }
3015         obj->print_on(gclog_or_tty);
3016         _failures = true;
3017       }
3018     }
3019   }
3020 
3021   void do_oop(oop* p)       { do_oop_nv(p); }
3022   void do_oop(narrowOop* p) { do_oop_nv(p); }
3023 };
3024 
3025 class G1VerifyCodeRootOopClosure: public OopClosure {
3026   G1CollectedHeap* _g1h;
3027   OopClosure* _root_cl;
3028   nmethod* _nm;
3029   VerifyOption _vo;
3030   bool _failures;
3031 
3032   template <class T> void do_oop_work(T* p) {
3033     // First verify that this root is live
3034     _root_cl->do_oop(p);
3035 
3036     if (!G1VerifyHeapRegionCodeRoots) {
3037       // We're not verifying the code roots attached to heap region.
3038       return;
3039     }
3040 
3041     // Don't check the code roots during marking verification in a full GC
3042     if (_vo == VerifyOption_G1UseMarkWord) {
3043       return;
3044     }
3045 
3046     // Now verify that the current nmethod (which contains p) is
3047     // in the code root list of the heap region containing the
3048     // object referenced by p.
3049 
3050     T heap_oop = oopDesc::load_heap_oop(p);
3051     if (!oopDesc::is_null(heap_oop)) {
3052       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3053 
3054       // Now fetch the region containing the object
3055       HeapRegion* hr = _g1h->heap_region_containing(obj);
3056       HeapRegionRemSet* hrrs = hr->rem_set();
3057       // Verify that the strong code root list for this region
3058       // contains the nmethod
3059       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3060         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
3061                                "from nmethod " PTR_FORMAT " not in strong "
3062                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
3063                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
3064         _failures = true;
3065       }
3066     }
3067   }
3068 
3069 public:
3070   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3071     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3072 
3073   void do_oop(oop* p) { do_oop_work(p); }
3074   void do_oop(narrowOop* p) { do_oop_work(p); }
3075 
3076   void set_nmethod(nmethod* nm) { _nm = nm; }
3077   bool failures() { return _failures; }
3078 };
3079 
3080 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3081   G1VerifyCodeRootOopClosure* _oop_cl;
3082 
3083 public:
3084   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3085     _oop_cl(oop_cl) {}
3086 
3087   void do_code_blob(CodeBlob* cb) {
3088     nmethod* nm = cb->as_nmethod_or_null();
3089     if (nm != NULL) {
3090       _oop_cl->set_nmethod(nm);
3091       nm->oops_do(_oop_cl);
3092     }
3093   }
3094 };
3095 
3096 class YoungRefCounterClosure : public OopClosure {
3097   G1CollectedHeap* _g1h;
3098   int              _count;
3099  public:
3100   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3101   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3102   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3103 
3104   int count() { return _count; }
3105   void reset_count() { _count = 0; };
3106 };
3107 
3108 class VerifyKlassClosure: public KlassClosure {
3109   YoungRefCounterClosure _young_ref_counter_closure;
3110   OopClosure *_oop_closure;
3111  public:
3112   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3113   void do_klass(Klass* k) {
3114     k->oops_do(_oop_closure);
3115 
3116     _young_ref_counter_closure.reset_count();
3117     k->oops_do(&_young_ref_counter_closure);
3118     if (_young_ref_counter_closure.count() > 0) {
3119       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3120     }
3121   }
3122 };
3123 
3124 class VerifyLivenessOopClosure: public OopClosure {
3125   G1CollectedHeap* _g1h;
3126   VerifyOption _vo;
3127 public:
3128   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3129     _g1h(g1h), _vo(vo)
3130   { }
3131   void do_oop(narrowOop *p) { do_oop_work(p); }
3132   void do_oop(      oop *p) { do_oop_work(p); }
3133 
3134   template <class T> void do_oop_work(T *p) {
3135     oop obj = oopDesc::load_decode_heap_oop(p);
3136     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3137               "Dead object referenced by a not dead object");
3138   }
3139 };
3140 
3141 class VerifyObjsInRegionClosure: public ObjectClosure {
3142 private:
3143   G1CollectedHeap* _g1h;
3144   size_t _live_bytes;
3145   HeapRegion *_hr;
3146   VerifyOption _vo;
3147 public:
3148   // _vo == UsePrevMarking -> use "prev" marking information,
3149   // _vo == UseNextMarking -> use "next" marking information,
3150   // _vo == UseMarkWord    -> use mark word from object header.
3151   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3152     : _live_bytes(0), _hr(hr), _vo(vo) {
3153     _g1h = G1CollectedHeap::heap();
3154   }
3155   void do_object(oop o) {
3156     VerifyLivenessOopClosure isLive(_g1h, _vo);
3157     assert(o != NULL, "Huh?");
3158     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3159       // If the object is alive according to the mark word,
3160       // then verify that the marking information agrees.
3161       // Note we can't verify the contra-positive of the
3162       // above: if the object is dead (according to the mark
3163       // word), it may not be marked, or may have been marked
3164       // but has since became dead, or may have been allocated
3165       // since the last marking.
3166       if (_vo == VerifyOption_G1UseMarkWord) {
3167         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3168       }
3169 
3170       o->oop_iterate_no_header(&isLive);
3171       if (!_hr->obj_allocated_since_prev_marking(o)) {
3172         size_t obj_size = o->size();    // Make sure we don't overflow
3173         _live_bytes += (obj_size * HeapWordSize);
3174       }
3175     }
3176   }
3177   size_t live_bytes() { return _live_bytes; }
3178 };
3179 
3180 class VerifyArchiveOopClosure: public OopClosure {
3181 public:
3182   VerifyArchiveOopClosure(HeapRegion *hr) { }
3183   void do_oop(narrowOop *p) { do_oop_work(p); }
3184   void do_oop(      oop *p) { do_oop_work(p); }
3185 
3186   template <class T> void do_oop_work(T *p) {
3187     oop obj = oopDesc::load_decode_heap_oop(p);
3188     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3189               err_msg("Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3190                       p2i(p), p2i(obj)));
3191   }
3192 };
3193 
3194 class VerifyArchiveRegionClosure: public ObjectClosure {
3195 public:
3196   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3197   // Verify that all object pointers are to archive regions.
3198   void do_object(oop o) {
3199     VerifyArchiveOopClosure checkOop(NULL);
3200     assert(o != NULL, "Should not be here for NULL oops");
3201     o->oop_iterate_no_header(&checkOop);
3202   }
3203 };
3204 
3205 class VerifyRegionClosure: public HeapRegionClosure {
3206 private:
3207   bool             _par;
3208   VerifyOption     _vo;
3209   bool             _failures;
3210 public:
3211   // _vo == UsePrevMarking -> use "prev" marking information,
3212   // _vo == UseNextMarking -> use "next" marking information,
3213   // _vo == UseMarkWord    -> use mark word from object header.
3214   VerifyRegionClosure(bool par, VerifyOption vo)
3215     : _par(par),
3216       _vo(vo),
3217       _failures(false) {}
3218 
3219   bool failures() {
3220     return _failures;
3221   }
3222 
3223   bool doHeapRegion(HeapRegion* r) {
3224     // For archive regions, verify there are no heap pointers to
3225     // non-pinned regions. For all others, verify liveness info.
3226     if (r->is_archive()) {
3227       VerifyArchiveRegionClosure verify_oop_pointers(r);
3228       r->object_iterate(&verify_oop_pointers);
3229       return true;
3230     }
3231     if (!r->is_continues_humongous()) {
3232       bool failures = false;
3233       r->verify(_vo, &failures);
3234       if (failures) {
3235         _failures = true;
3236       } else {
3237         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3238         r->object_iterate(&not_dead_yet_cl);
3239         if (_vo != VerifyOption_G1UseNextMarking) {
3240           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3241             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3242                                    "max_live_bytes " SIZE_FORMAT " "
3243                                    "< calculated " SIZE_FORMAT,
3244                                    p2i(r->bottom()), p2i(r->end()),
3245                                    r->max_live_bytes(),
3246                                  not_dead_yet_cl.live_bytes());
3247             _failures = true;
3248           }
3249         } else {
3250           // When vo == UseNextMarking we cannot currently do a sanity
3251           // check on the live bytes as the calculation has not been
3252           // finalized yet.
3253         }
3254       }
3255     }
3256     return false; // stop the region iteration if we hit a failure
3257   }
3258 };
3259 
3260 // This is the task used for parallel verification of the heap regions
3261 
3262 class G1ParVerifyTask: public AbstractGangTask {
3263 private:
3264   G1CollectedHeap*  _g1h;
3265   VerifyOption      _vo;
3266   bool              _failures;
3267   HeapRegionClaimer _hrclaimer;
3268 
3269 public:
3270   // _vo == UsePrevMarking -> use "prev" marking information,
3271   // _vo == UseNextMarking -> use "next" marking information,
3272   // _vo == UseMarkWord    -> use mark word from object header.
3273   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3274       AbstractGangTask("Parallel verify task"),
3275       _g1h(g1h),
3276       _vo(vo),
3277       _failures(false),
3278       _hrclaimer(g1h->workers()->active_workers()) {}
3279 
3280   bool failures() {
3281     return _failures;
3282   }
3283 
3284   void work(uint worker_id) {
3285     HandleMark hm;
3286     VerifyRegionClosure blk(true, _vo);
3287     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3288     if (blk.failures()) {
3289       _failures = true;
3290     }
3291   }
3292 };
3293 
3294 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3295   if (SafepointSynchronize::is_at_safepoint()) {
3296     assert(Thread::current()->is_VM_thread(),
3297            "Expected to be executed serially by the VM thread at this point");
3298 
3299     if (!silent) { gclog_or_tty->print("Roots "); }
3300     VerifyRootsClosure rootsCl(vo);
3301     VerifyKlassClosure klassCl(this, &rootsCl);
3302     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3303 
3304     // We apply the relevant closures to all the oops in the
3305     // system dictionary, class loader data graph, the string table
3306     // and the nmethods in the code cache.
3307     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3308     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3309 
3310     {
3311       G1RootProcessor root_processor(this, 1);
3312       root_processor.process_all_roots(&rootsCl,
3313                                        &cldCl,
3314                                        &blobsCl);
3315     }
3316 
3317     bool failures = rootsCl.failures() || codeRootsCl.failures();
3318 
3319     if (vo != VerifyOption_G1UseMarkWord) {
3320       // If we're verifying during a full GC then the region sets
3321       // will have been torn down at the start of the GC. Therefore
3322       // verifying the region sets will fail. So we only verify
3323       // the region sets when not in a full GC.
3324       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3325       verify_region_sets();
3326     }
3327 
3328     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3329     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3330 
3331       G1ParVerifyTask task(this, vo);
3332       workers()->run_task(&task);
3333       if (task.failures()) {
3334         failures = true;
3335       }
3336 
3337     } else {
3338       VerifyRegionClosure blk(false, vo);
3339       heap_region_iterate(&blk);
3340       if (blk.failures()) {
3341         failures = true;
3342       }
3343     }
3344 
3345     if (G1StringDedup::is_enabled()) {
3346       if (!silent) gclog_or_tty->print("StrDedup ");
3347       G1StringDedup::verify();
3348     }
3349 
3350     if (failures) {
3351       gclog_or_tty->print_cr("Heap:");
3352       // It helps to have the per-region information in the output to
3353       // help us track down what went wrong. This is why we call
3354       // print_extended_on() instead of print_on().
3355       print_extended_on(gclog_or_tty);
3356       gclog_or_tty->cr();
3357       gclog_or_tty->flush();
3358     }
3359     guarantee(!failures, "there should not have been any failures");
3360   } else {
3361     if (!silent) {
3362       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3363       if (G1StringDedup::is_enabled()) {
3364         gclog_or_tty->print(", StrDedup");
3365       }
3366       gclog_or_tty->print(") ");
3367     }
3368   }
3369 }
3370 
3371 void G1CollectedHeap::verify(bool silent) {
3372   verify(silent, VerifyOption_G1UsePrevMarking);
3373 }
3374 
3375 double G1CollectedHeap::verify(bool guard, const char* msg) {
3376   double verify_time_ms = 0.0;
3377 
3378   if (guard && total_collections() >= VerifyGCStartAt) {
3379     double verify_start = os::elapsedTime();
3380     HandleMark hm;  // Discard invalid handles created during verification
3381     prepare_for_verify();
3382     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3383     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3384   }
3385 
3386   return verify_time_ms;
3387 }
3388 
3389 void G1CollectedHeap::verify_before_gc() {
3390   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3391   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3392 }
3393 
3394 void G1CollectedHeap::verify_after_gc() {
3395   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3396   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3397 }
3398 
3399 class PrintRegionClosure: public HeapRegionClosure {
3400   outputStream* _st;
3401 public:
3402   PrintRegionClosure(outputStream* st) : _st(st) {}
3403   bool doHeapRegion(HeapRegion* r) {
3404     r->print_on(_st);
3405     return false;
3406   }
3407 };
3408 
3409 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3410                                        const HeapRegion* hr,
3411                                        const VerifyOption vo) const {
3412   switch (vo) {
3413   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3414   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3415   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3416   default:                            ShouldNotReachHere();
3417   }
3418   return false; // keep some compilers happy
3419 }
3420 
3421 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3422                                        const VerifyOption vo) const {
3423   switch (vo) {
3424   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3425   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3426   case VerifyOption_G1UseMarkWord: {
3427     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3428     return !obj->is_gc_marked() && !hr->is_archive();
3429   }
3430   default:                            ShouldNotReachHere();
3431   }
3432   return false; // keep some compilers happy
3433 }
3434 
3435 void G1CollectedHeap::print_on(outputStream* st) const {
3436   st->print(" %-20s", "garbage-first heap");
3437   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3438             capacity()/K, used_unlocked()/K);
3439   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3440             p2i(_hrm.reserved().start()),
3441             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3442             p2i(_hrm.reserved().end()));
3443   st->cr();
3444   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3445   uint young_regions = _young_list->length();
3446   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3447             (size_t) young_regions * HeapRegion::GrainBytes / K);
3448   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3449   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3450             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3451   st->cr();
3452   MetaspaceAux::print_on(st);
3453 }
3454 
3455 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3456   print_on(st);
3457 
3458   // Print the per-region information.
3459   st->cr();
3460   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3461                "HS=humongous(starts), HC=humongous(continues), "
3462                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3463                "PTAMS=previous top-at-mark-start, "
3464                "NTAMS=next top-at-mark-start)");
3465   PrintRegionClosure blk(st);
3466   heap_region_iterate(&blk);
3467 }
3468 
3469 void G1CollectedHeap::print_on_error(outputStream* st) const {
3470   this->CollectedHeap::print_on_error(st);
3471 
3472   if (_cm != NULL) {
3473     st->cr();
3474     _cm->print_on_error(st);
3475   }
3476 }
3477 
3478 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3479   workers()->print_worker_threads_on(st);
3480   _cmThread->print_on(st);
3481   st->cr();
3482   _cm->print_worker_threads_on(st);
3483   _cg1r->print_worker_threads_on(st);
3484   if (G1StringDedup::is_enabled()) {
3485     G1StringDedup::print_worker_threads_on(st);
3486   }
3487 }
3488 
3489 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3490   workers()->threads_do(tc);
3491   tc->do_thread(_cmThread);
3492   _cg1r->threads_do(tc);
3493   if (G1StringDedup::is_enabled()) {
3494     G1StringDedup::threads_do(tc);
3495   }
3496 }
3497 
3498 void G1CollectedHeap::print_tracing_info() const {
3499   // We'll overload this to mean "trace GC pause statistics."
3500   if (TraceYoungGenTime || TraceOldGenTime) {
3501     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3502     // to that.
3503     g1_policy()->print_tracing_info();
3504   }
3505   if (G1SummarizeRSetStats) {
3506     g1_rem_set()->print_summary_info();
3507   }
3508   if (G1SummarizeConcMark) {
3509     concurrent_mark()->print_summary_info();
3510   }
3511   g1_policy()->print_yg_surv_rate_info();
3512 }
3513 
3514 #ifndef PRODUCT
3515 // Helpful for debugging RSet issues.
3516 
3517 class PrintRSetsClosure : public HeapRegionClosure {
3518 private:
3519   const char* _msg;
3520   size_t _occupied_sum;
3521 
3522 public:
3523   bool doHeapRegion(HeapRegion* r) {
3524     HeapRegionRemSet* hrrs = r->rem_set();
3525     size_t occupied = hrrs->occupied();
3526     _occupied_sum += occupied;
3527 
3528     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3529                            HR_FORMAT_PARAMS(r));
3530     if (occupied == 0) {
3531       gclog_or_tty->print_cr("  RSet is empty");
3532     } else {
3533       hrrs->print();
3534     }
3535     gclog_or_tty->print_cr("----------");
3536     return false;
3537   }
3538 
3539   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3540     gclog_or_tty->cr();
3541     gclog_or_tty->print_cr("========================================");
3542     gclog_or_tty->print_cr("%s", msg);
3543     gclog_or_tty->cr();
3544   }
3545 
3546   ~PrintRSetsClosure() {
3547     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3548     gclog_or_tty->print_cr("========================================");
3549     gclog_or_tty->cr();
3550   }
3551 };
3552 
3553 void G1CollectedHeap::print_cset_rsets() {
3554   PrintRSetsClosure cl("Printing CSet RSets");
3555   collection_set_iterate(&cl);
3556 }
3557 
3558 void G1CollectedHeap::print_all_rsets() {
3559   PrintRSetsClosure cl("Printing All RSets");;
3560   heap_region_iterate(&cl);
3561 }
3562 #endif // PRODUCT
3563 
3564 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3565   YoungList* young_list = heap()->young_list();
3566 
3567   size_t eden_used_bytes = young_list->eden_used_bytes();
3568   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3569 
3570   size_t eden_capacity_bytes =
3571     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3572 
3573   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3574   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3575 }
3576 
3577 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3578   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3579   gc_tracer->report_gc_heap_summary(when, heap_summary);
3580 
3581   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3582   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3583 }
3584 
3585 
3586 G1CollectedHeap* G1CollectedHeap::heap() {
3587   CollectedHeap* heap = Universe::heap();
3588   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3589   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3590   return (G1CollectedHeap*)heap;
3591 }
3592 
3593 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3594   // always_do_update_barrier = false;
3595   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3596   // Fill TLAB's and such
3597   accumulate_statistics_all_tlabs();
3598   ensure_parsability(true);
3599 
3600   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3601       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3602     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3603   }
3604 }
3605 
3606 void G1CollectedHeap::gc_epilogue(bool full) {
3607 
3608   if (G1SummarizeRSetStats &&
3609       (G1SummarizeRSetStatsPeriod > 0) &&
3610       // we are at the end of the GC. Total collections has already been increased.
3611       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3612     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3613   }
3614 
3615   // FIXME: what is this about?
3616   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3617   // is set.
3618   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3619                         "derived pointer present"));
3620   // always_do_update_barrier = true;
3621 
3622   resize_all_tlabs();
3623   allocation_context_stats().update(full);
3624 
3625   // We have just completed a GC. Update the soft reference
3626   // policy with the new heap occupancy
3627   Universe::update_heap_info_at_gc();
3628 }
3629 
3630 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3631                                                uint gc_count_before,
3632                                                bool* succeeded,
3633                                                GCCause::Cause gc_cause) {
3634   assert_heap_not_locked_and_not_at_safepoint();
3635   g1_policy()->record_stop_world_start();
3636   VM_G1IncCollectionPause op(gc_count_before,
3637                              word_size,
3638                              false, /* should_initiate_conc_mark */
3639                              g1_policy()->max_pause_time_ms(),
3640                              gc_cause);
3641 
3642   op.set_allocation_context(AllocationContext::current());
3643   VMThread::execute(&op);
3644 
3645   HeapWord* result = op.result();
3646   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3647   assert(result == NULL || ret_succeeded,
3648          "the result should be NULL if the VM did not succeed");
3649   *succeeded = ret_succeeded;
3650 
3651   assert_heap_not_locked();
3652   return result;
3653 }
3654 
3655 void
3656 G1CollectedHeap::doConcurrentMark() {
3657   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3658   if (!_cmThread->in_progress()) {
3659     _cmThread->set_started();
3660     CGC_lock->notify();
3661   }
3662 }
3663 
3664 size_t G1CollectedHeap::pending_card_num() {
3665   size_t extra_cards = 0;
3666   JavaThread *curr = Threads::first();
3667   while (curr != NULL) {
3668     DirtyCardQueue& dcq = curr->dirty_card_queue();
3669     extra_cards += dcq.size();
3670     curr = curr->next();
3671   }
3672   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3673   size_t buffer_size = dcqs.buffer_size();
3674   size_t buffer_num = dcqs.completed_buffers_num();
3675 
3676   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3677   // in bytes - not the number of 'entries'. We need to convert
3678   // into a number of cards.
3679   return (buffer_size * buffer_num + extra_cards) / oopSize;
3680 }
3681 
3682 size_t G1CollectedHeap::cards_scanned() {
3683   return g1_rem_set()->cardsScanned();
3684 }
3685 
3686 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3687  private:
3688   size_t _total_humongous;
3689   size_t _candidate_humongous;
3690 
3691   DirtyCardQueue _dcq;
3692 
3693   // We don't nominate objects with many remembered set entries, on
3694   // the assumption that such objects are likely still live.
3695   bool is_remset_small(HeapRegion* region) const {
3696     HeapRegionRemSet* const rset = region->rem_set();
3697     return G1EagerReclaimHumongousObjectsWithStaleRefs
3698       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3699       : rset->is_empty();
3700   }
3701 
3702   bool is_typeArray_region(HeapRegion* region) const {
3703     return oop(region->bottom())->is_typeArray();
3704   }
3705 
3706   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3707     assert(region->is_starts_humongous(), "Must start a humongous object");
3708 
3709     // Candidate selection must satisfy the following constraints
3710     // while concurrent marking is in progress:
3711     //
3712     // * In order to maintain SATB invariants, an object must not be
3713     // reclaimed if it was allocated before the start of marking and
3714     // has not had its references scanned.  Such an object must have
3715     // its references (including type metadata) scanned to ensure no
3716     // live objects are missed by the marking process.  Objects
3717     // allocated after the start of concurrent marking don't need to
3718     // be scanned.
3719     //
3720     // * An object must not be reclaimed if it is on the concurrent
3721     // mark stack.  Objects allocated after the start of concurrent
3722     // marking are never pushed on the mark stack.
3723     //
3724     // Nominating only objects allocated after the start of concurrent
3725     // marking is sufficient to meet both constraints.  This may miss
3726     // some objects that satisfy the constraints, but the marking data
3727     // structures don't support efficiently performing the needed
3728     // additional tests or scrubbing of the mark stack.
3729     //
3730     // However, we presently only nominate is_typeArray() objects.
3731     // A humongous object containing references induces remembered
3732     // set entries on other regions.  In order to reclaim such an
3733     // object, those remembered sets would need to be cleaned up.
3734     //
3735     // We also treat is_typeArray() objects specially, allowing them
3736     // to be reclaimed even if allocated before the start of
3737     // concurrent mark.  For this we rely on mark stack insertion to
3738     // exclude is_typeArray() objects, preventing reclaiming an object
3739     // that is in the mark stack.  We also rely on the metadata for
3740     // such objects to be built-in and so ensured to be kept live.
3741     // Frequent allocation and drop of large binary blobs is an
3742     // important use case for eager reclaim, and this special handling
3743     // may reduce needed headroom.
3744 
3745     return is_typeArray_region(region) && is_remset_small(region);
3746   }
3747 
3748  public:
3749   RegisterHumongousWithInCSetFastTestClosure()
3750   : _total_humongous(0),
3751     _candidate_humongous(0),
3752     _dcq(&JavaThread::dirty_card_queue_set()) {
3753   }
3754 
3755   virtual bool doHeapRegion(HeapRegion* r) {
3756     if (!r->is_starts_humongous()) {
3757       return false;
3758     }
3759     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3760 
3761     bool is_candidate = humongous_region_is_candidate(g1h, r);
3762     uint rindex = r->hrm_index();
3763     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3764     if (is_candidate) {
3765       _candidate_humongous++;
3766       g1h->register_humongous_region_with_cset(rindex);
3767       // Is_candidate already filters out humongous object with large remembered sets.
3768       // If we have a humongous object with a few remembered sets, we simply flush these
3769       // remembered set entries into the DCQS. That will result in automatic
3770       // re-evaluation of their remembered set entries during the following evacuation
3771       // phase.
3772       if (!r->rem_set()->is_empty()) {
3773         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3774                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3775         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3776         HeapRegionRemSetIterator hrrs(r->rem_set());
3777         size_t card_index;
3778         while (hrrs.has_next(card_index)) {
3779           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3780           // The remembered set might contain references to already freed
3781           // regions. Filter out such entries to avoid failing card table
3782           // verification.
3783           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3784             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3785               *card_ptr = CardTableModRefBS::dirty_card_val();
3786               _dcq.enqueue(card_ptr);
3787             }
3788           }
3789         }
3790         r->rem_set()->clear_locked();
3791       }
3792       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3793     }
3794     _total_humongous++;
3795 
3796     return false;
3797   }
3798 
3799   size_t total_humongous() const { return _total_humongous; }
3800   size_t candidate_humongous() const { return _candidate_humongous; }
3801 
3802   void flush_rem_set_entries() { _dcq.flush(); }
3803 };
3804 
3805 void G1CollectedHeap::register_humongous_regions_with_cset() {
3806   if (!G1EagerReclaimHumongousObjects) {
3807     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3808     return;
3809   }
3810   double time = os::elapsed_counter();
3811 
3812   // Collect reclaim candidate information and register candidates with cset.
3813   RegisterHumongousWithInCSetFastTestClosure cl;
3814   heap_region_iterate(&cl);
3815 
3816   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3817   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3818                                                                   cl.total_humongous(),
3819                                                                   cl.candidate_humongous());
3820   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3821 
3822   // Finally flush all remembered set entries to re-check into the global DCQS.
3823   cl.flush_rem_set_entries();
3824 }
3825 
3826 void
3827 G1CollectedHeap::setup_surviving_young_words() {
3828   assert(_surviving_young_words == NULL, "pre-condition");
3829   uint array_length = g1_policy()->young_cset_region_length();
3830   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3831   if (_surviving_young_words == NULL) {
3832     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3833                           "Not enough space for young surv words summary.");
3834   }
3835   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3836 #ifdef ASSERT
3837   for (uint i = 0;  i < array_length; ++i) {
3838     assert( _surviving_young_words[i] == 0, "memset above" );
3839   }
3840 #endif // !ASSERT
3841 }
3842 
3843 void
3844 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3845   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3846   uint array_length = g1_policy()->young_cset_region_length();
3847   for (uint i = 0; i < array_length; ++i) {
3848     _surviving_young_words[i] += surv_young_words[i];
3849   }
3850 }
3851 
3852 void
3853 G1CollectedHeap::cleanup_surviving_young_words() {
3854   guarantee( _surviving_young_words != NULL, "pre-condition" );
3855   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3856   _surviving_young_words = NULL;
3857 }
3858 
3859 #ifdef ASSERT
3860 class VerifyCSetClosure: public HeapRegionClosure {
3861 public:
3862   bool doHeapRegion(HeapRegion* hr) {
3863     // Here we check that the CSet region's RSet is ready for parallel
3864     // iteration. The fields that we'll verify are only manipulated
3865     // when the region is part of a CSet and is collected. Afterwards,
3866     // we reset these fields when we clear the region's RSet (when the
3867     // region is freed) so they are ready when the region is
3868     // re-allocated. The only exception to this is if there's an
3869     // evacuation failure and instead of freeing the region we leave
3870     // it in the heap. In that case, we reset these fields during
3871     // evacuation failure handling.
3872     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3873 
3874     // Here's a good place to add any other checks we'd like to
3875     // perform on CSet regions.
3876     return false;
3877   }
3878 };
3879 #endif // ASSERT
3880 
3881 uint G1CollectedHeap::num_task_queues() const {
3882   return _task_queues->size();
3883 }
3884 
3885 #if TASKQUEUE_STATS
3886 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3887   st->print_raw_cr("GC Task Stats");
3888   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3889   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3890 }
3891 
3892 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3893   print_taskqueue_stats_hdr(st);
3894 
3895   TaskQueueStats totals;
3896   const uint n = num_task_queues();
3897   for (uint i = 0; i < n; ++i) {
3898     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3899     totals += task_queue(i)->stats;
3900   }
3901   st->print_raw("tot "); totals.print(st); st->cr();
3902 
3903   DEBUG_ONLY(totals.verify());
3904 }
3905 
3906 void G1CollectedHeap::reset_taskqueue_stats() {
3907   const uint n = num_task_queues();
3908   for (uint i = 0; i < n; ++i) {
3909     task_queue(i)->stats.reset();
3910   }
3911 }
3912 #endif // TASKQUEUE_STATS
3913 
3914 void G1CollectedHeap::log_gc_header() {
3915   if (!G1Log::fine()) {
3916     return;
3917   }
3918 
3919   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3920 
3921   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3922     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3923     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3924 
3925   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3926 }
3927 
3928 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3929   if (!G1Log::fine()) {
3930     return;
3931   }
3932 
3933   if (G1Log::finer()) {
3934     if (evacuation_failed()) {
3935       gclog_or_tty->print(" (to-space exhausted)");
3936     }
3937     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3938     g1_policy()->phase_times()->note_gc_end();
3939     g1_policy()->phase_times()->print(pause_time_sec);
3940     g1_policy()->print_detailed_heap_transition();
3941   } else {
3942     if (evacuation_failed()) {
3943       gclog_or_tty->print("--");
3944     }
3945     g1_policy()->print_heap_transition();
3946     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3947   }
3948   gclog_or_tty->flush();
3949 }
3950 
3951 void G1CollectedHeap::wait_for_root_region_scanning() {
3952   double scan_wait_start = os::elapsedTime();
3953   // We have to wait until the CM threads finish scanning the
3954   // root regions as it's the only way to ensure that all the
3955   // objects on them have been correctly scanned before we start
3956   // moving them during the GC.
3957   bool waited = _cm->root_regions()->wait_until_scan_finished();
3958   double wait_time_ms = 0.0;
3959   if (waited) {
3960     double scan_wait_end = os::elapsedTime();
3961     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3962   }
3963   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3964 }
3965 
3966 bool
3967 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3968   assert_at_safepoint(true /* should_be_vm_thread */);
3969   guarantee(!is_gc_active(), "collection is not reentrant");
3970 
3971   if (GC_locker::check_active_before_gc()) {
3972     return false;
3973   }
3974 
3975   _gc_timer_stw->register_gc_start();
3976 
3977   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3978 
3979   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3980   ResourceMark rm;
3981 
3982   wait_for_root_region_scanning();
3983 
3984   G1Log::update_level();
3985   print_heap_before_gc();
3986   trace_heap_before_gc(_gc_tracer_stw);
3987 
3988   verify_region_sets_optional();
3989   verify_dirty_young_regions();
3990 
3991   // This call will decide whether this pause is an initial-mark
3992   // pause. If it is, during_initial_mark_pause() will return true
3993   // for the duration of this pause.
3994   g1_policy()->decide_on_conc_mark_initiation();
3995 
3996   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3997   assert(!collector_state()->during_initial_mark_pause() ||
3998           collector_state()->gcs_are_young(), "sanity");
3999 
4000   // We also do not allow mixed GCs during marking.
4001   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
4002 
4003   // Record whether this pause is an initial mark. When the current
4004   // thread has completed its logging output and it's safe to signal
4005   // the CM thread, the flag's value in the policy has been reset.
4006   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
4007 
4008   // Inner scope for scope based logging, timers, and stats collection
4009   {
4010     EvacuationInfo evacuation_info;
4011 
4012     if (collector_state()->during_initial_mark_pause()) {
4013       // We are about to start a marking cycle, so we increment the
4014       // full collection counter.
4015       increment_old_marking_cycles_started();
4016       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
4017     }
4018 
4019     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
4020 
4021     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
4022 
4023     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
4024                                                                   workers()->active_workers(),
4025                                                                   Threads::number_of_non_daemon_threads());
4026     workers()->set_active_workers(active_workers);
4027 
4028     double pause_start_sec = os::elapsedTime();
4029     g1_policy()->phase_times()->note_gc_start(active_workers, collector_state()->mark_in_progress());
4030     log_gc_header();
4031 
4032     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
4033     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
4034 
4035     // If the secondary_free_list is not empty, append it to the
4036     // free_list. No need to wait for the cleanup operation to finish;
4037     // the region allocation code will check the secondary_free_list
4038     // and wait if necessary. If the G1StressConcRegionFreeing flag is
4039     // set, skip this step so that the region allocation code has to
4040     // get entries from the secondary_free_list.
4041     if (!G1StressConcRegionFreeing) {
4042       append_secondary_free_list_if_not_empty_with_lock();
4043     }
4044 
4045     assert(check_young_list_well_formed(), "young list should be well formed");
4046 
4047     // Don't dynamically change the number of GC threads this early.  A value of
4048     // 0 is used to indicate serial work.  When parallel work is done,
4049     // it will be set.
4050 
4051     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
4052       IsGCActiveMark x;
4053 
4054       gc_prologue(false);
4055       increment_total_collections(false /* full gc */);
4056       increment_gc_time_stamp();
4057 
4058       verify_before_gc();
4059 
4060       check_bitmaps("GC Start");
4061 
4062       COMPILER2_PRESENT(DerivedPointerTable::clear());
4063 
4064       // Please see comment in g1CollectedHeap.hpp and
4065       // G1CollectedHeap::ref_processing_init() to see how
4066       // reference processing currently works in G1.
4067 
4068       // Enable discovery in the STW reference processor
4069       ref_processor_stw()->enable_discovery();
4070 
4071       {
4072         // We want to temporarily turn off discovery by the
4073         // CM ref processor, if necessary, and turn it back on
4074         // on again later if we do. Using a scoped
4075         // NoRefDiscovery object will do this.
4076         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4077 
4078         // Forget the current alloc region (we might even choose it to be part
4079         // of the collection set!).
4080         _allocator->release_mutator_alloc_region();
4081 
4082         // We should call this after we retire the mutator alloc
4083         // region(s) so that all the ALLOC / RETIRE events are generated
4084         // before the start GC event.
4085         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4086 
4087         // This timing is only used by the ergonomics to handle our pause target.
4088         // It is unclear why this should not include the full pause. We will
4089         // investigate this in CR 7178365.
4090         //
4091         // Preserving the old comment here if that helps the investigation:
4092         //
4093         // The elapsed time induced by the start time below deliberately elides
4094         // the possible verification above.
4095         double sample_start_time_sec = os::elapsedTime();
4096 
4097 #if YOUNG_LIST_VERBOSE
4098         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4099         _young_list->print();
4100         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4101 #endif // YOUNG_LIST_VERBOSE
4102 
4103         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4104 
4105 #if YOUNG_LIST_VERBOSE
4106         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4107         _young_list->print();
4108 #endif // YOUNG_LIST_VERBOSE
4109 
4110         if (collector_state()->during_initial_mark_pause()) {
4111           concurrent_mark()->checkpointRootsInitialPre();
4112         }
4113 
4114 #if YOUNG_LIST_VERBOSE
4115         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4116         _young_list->print();
4117         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4118 #endif // YOUNG_LIST_VERBOSE
4119 
4120         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4121 
4122         register_humongous_regions_with_cset();
4123 
4124         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4125 
4126         _cm->note_start_of_gc();
4127         // We call this after finalize_cset() to
4128         // ensure that the CSet has been finalized.
4129         _cm->verify_no_cset_oops();
4130 
4131         if (_hr_printer.is_active()) {
4132           HeapRegion* hr = g1_policy()->collection_set();
4133           while (hr != NULL) {
4134             _hr_printer.cset(hr);
4135             hr = hr->next_in_collection_set();
4136           }
4137         }
4138 
4139 #ifdef ASSERT
4140         VerifyCSetClosure cl;
4141         collection_set_iterate(&cl);
4142 #endif // ASSERT
4143 
4144         setup_surviving_young_words();
4145 
4146         // Initialize the GC alloc regions.
4147         _allocator->init_gc_alloc_regions(evacuation_info);
4148 
4149         // Actually do the work...
4150         evacuate_collection_set(evacuation_info);
4151 
4152         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4153 
4154         eagerly_reclaim_humongous_regions();
4155 
4156         g1_policy()->clear_collection_set();
4157 
4158         cleanup_surviving_young_words();
4159 
4160         // Start a new incremental collection set for the next pause.
4161         g1_policy()->start_incremental_cset_building();
4162 
4163         clear_cset_fast_test();
4164 
4165         _young_list->reset_sampled_info();
4166 
4167         // Don't check the whole heap at this point as the
4168         // GC alloc regions from this pause have been tagged
4169         // as survivors and moved on to the survivor list.
4170         // Survivor regions will fail the !is_young() check.
4171         assert(check_young_list_empty(false /* check_heap */),
4172           "young list should be empty");
4173 
4174 #if YOUNG_LIST_VERBOSE
4175         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4176         _young_list->print();
4177 #endif // YOUNG_LIST_VERBOSE
4178 
4179         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4180                                              _young_list->first_survivor_region(),
4181                                              _young_list->last_survivor_region());
4182 
4183         _young_list->reset_auxilary_lists();
4184 
4185         if (evacuation_failed()) {
4186           set_used(recalculate_used());
4187           if (_archive_allocator != NULL) {
4188             _archive_allocator->clear_used();
4189           }
4190           for (uint i = 0; i < ParallelGCThreads; i++) {
4191             if (_evacuation_failed_info_array[i].has_failed()) {
4192               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4193             }
4194           }
4195         } else {
4196           // The "used" of the the collection set have already been subtracted
4197           // when they were freed.  Add in the bytes evacuated.
4198           increase_used(g1_policy()->bytes_copied_during_gc());
4199         }
4200 
4201         if (collector_state()->during_initial_mark_pause()) {
4202           // We have to do this before we notify the CM threads that
4203           // they can start working to make sure that all the
4204           // appropriate initialization is done on the CM object.
4205           concurrent_mark()->checkpointRootsInitialPost();
4206           collector_state()->set_mark_in_progress(true);
4207           // Note that we don't actually trigger the CM thread at
4208           // this point. We do that later when we're sure that
4209           // the current thread has completed its logging output.
4210         }
4211 
4212         allocate_dummy_regions();
4213 
4214 #if YOUNG_LIST_VERBOSE
4215         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4216         _young_list->print();
4217         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4218 #endif // YOUNG_LIST_VERBOSE
4219 
4220         _allocator->init_mutator_alloc_region();
4221 
4222         {
4223           size_t expand_bytes = g1_policy()->expansion_amount();
4224           if (expand_bytes > 0) {
4225             size_t bytes_before = capacity();
4226             // No need for an ergo verbose message here,
4227             // expansion_amount() does this when it returns a value > 0.
4228             if (!expand(expand_bytes)) {
4229               // We failed to expand the heap. Cannot do anything about it.
4230             }
4231           }
4232         }
4233 
4234         // We redo the verification but now wrt to the new CSet which
4235         // has just got initialized after the previous CSet was freed.
4236         _cm->verify_no_cset_oops();
4237         _cm->note_end_of_gc();
4238 
4239         // This timing is only used by the ergonomics to handle our pause target.
4240         // It is unclear why this should not include the full pause. We will
4241         // investigate this in CR 7178365.
4242         double sample_end_time_sec = os::elapsedTime();
4243         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4244         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4245 
4246         MemoryService::track_memory_usage();
4247 
4248         // In prepare_for_verify() below we'll need to scan the deferred
4249         // update buffers to bring the RSets up-to-date if
4250         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4251         // the update buffers we'll probably need to scan cards on the
4252         // regions we just allocated to (i.e., the GC alloc
4253         // regions). However, during the last GC we called
4254         // set_saved_mark() on all the GC alloc regions, so card
4255         // scanning might skip the [saved_mark_word()...top()] area of
4256         // those regions (i.e., the area we allocated objects into
4257         // during the last GC). But it shouldn't. Given that
4258         // saved_mark_word() is conditional on whether the GC time stamp
4259         // on the region is current or not, by incrementing the GC time
4260         // stamp here we invalidate all the GC time stamps on all the
4261         // regions and saved_mark_word() will simply return top() for
4262         // all the regions. This is a nicer way of ensuring this rather
4263         // than iterating over the regions and fixing them. In fact, the
4264         // GC time stamp increment here also ensures that
4265         // saved_mark_word() will return top() between pauses, i.e.,
4266         // during concurrent refinement. So we don't need the
4267         // is_gc_active() check to decided which top to use when
4268         // scanning cards (see CR 7039627).
4269         increment_gc_time_stamp();
4270 
4271         verify_after_gc();
4272         check_bitmaps("GC End");
4273 
4274         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4275         ref_processor_stw()->verify_no_references_recorded();
4276 
4277         // CM reference discovery will be re-enabled if necessary.
4278       }
4279 
4280       // We should do this after we potentially expand the heap so
4281       // that all the COMMIT events are generated before the end GC
4282       // event, and after we retire the GC alloc regions so that all
4283       // RETIRE events are generated before the end GC event.
4284       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4285 
4286 #ifdef TRACESPINNING
4287       ParallelTaskTerminator::print_termination_counts();
4288 #endif
4289 
4290       gc_epilogue(false);
4291     }
4292 
4293     // Print the remainder of the GC log output.
4294     log_gc_footer(os::elapsedTime() - pause_start_sec);
4295 
4296     // It is not yet to safe to tell the concurrent mark to
4297     // start as we have some optional output below. We don't want the
4298     // output from the concurrent mark thread interfering with this
4299     // logging output either.
4300 
4301     _hrm.verify_optional();
4302     verify_region_sets_optional();
4303 
4304     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4305     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4306 
4307     print_heap_after_gc();
4308     trace_heap_after_gc(_gc_tracer_stw);
4309 
4310     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4311     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4312     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4313     // before any GC notifications are raised.
4314     g1mm()->update_sizes();
4315 
4316     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4317     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4318     _gc_timer_stw->register_gc_end();
4319     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4320   }
4321   // It should now be safe to tell the concurrent mark thread to start
4322   // without its logging output interfering with the logging output
4323   // that came from the pause.
4324 
4325   if (should_start_conc_mark) {
4326     // CAUTION: after the doConcurrentMark() call below,
4327     // the concurrent marking thread(s) could be running
4328     // concurrently with us. Make sure that anything after
4329     // this point does not assume that we are the only GC thread
4330     // running. Note: of course, the actual marking work will
4331     // not start until the safepoint itself is released in
4332     // SuspendibleThreadSet::desynchronize().
4333     doConcurrentMark();
4334   }
4335 
4336   return true;
4337 }
4338 
4339 void G1CollectedHeap::remove_self_forwarding_pointers() {
4340   double remove_self_forwards_start = os::elapsedTime();
4341 
4342   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4343   workers()->run_task(&rsfp_task);
4344 
4345   // Now restore saved marks, if any.
4346   for (uint i = 0; i < ParallelGCThreads; i++) {
4347     OopAndMarkOopStack& cur = _preserved_objs[i];
4348     while (!cur.is_empty()) {
4349       OopAndMarkOop elem = cur.pop();
4350       elem.set_mark();
4351     }
4352     cur.clear(true);
4353   }
4354 
4355   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4356 }
4357 
4358 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4359   if (!_evacuation_failed) {
4360     _evacuation_failed = true;
4361   }
4362 
4363   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4364 
4365   // We want to call the "for_promotion_failure" version only in the
4366   // case of a promotion failure.
4367   if (m->must_be_preserved_for_promotion_failure(obj)) {
4368     OopAndMarkOop elem(obj, m);
4369     _preserved_objs[worker_id].push(elem);
4370   }
4371 }
4372 
4373 void G1ParCopyHelper::mark_object(oop obj) {
4374   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4375 
4376   // We know that the object is not moving so it's safe to read its size.
4377   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4378 }
4379 
4380 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4381   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4382   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4383   assert(from_obj != to_obj, "should not be self-forwarded");
4384 
4385   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4386   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4387 
4388   // The object might be in the process of being copied by another
4389   // worker so we cannot trust that its to-space image is
4390   // well-formed. So we have to read its size from its from-space
4391   // image which we know should not be changing.
4392   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4393 }
4394 
4395 template <class T>
4396 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4397   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4398     _scanned_klass->record_modified_oops();
4399   }
4400 }
4401 
4402 template <G1Barrier barrier, G1Mark do_mark_object>
4403 template <class T>
4404 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4405   T heap_oop = oopDesc::load_heap_oop(p);
4406 
4407   if (oopDesc::is_null(heap_oop)) {
4408     return;
4409   }
4410 
4411   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4412 
4413   assert(_worker_id == _par_scan_state->worker_id(), "sanity");
4414 
4415   const InCSetState state = _g1->in_cset_state(obj);
4416   if (state.is_in_cset()) {
4417     oop forwardee;
4418     markOop m = obj->mark();
4419     if (m->is_marked()) {
4420       forwardee = (oop) m->decode_pointer();
4421     } else {
4422       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4423     }
4424     assert(forwardee != NULL, "forwardee should not be NULL");
4425     oopDesc::encode_store_heap_oop(p, forwardee);
4426     if (do_mark_object != G1MarkNone && forwardee != obj) {
4427       // If the object is self-forwarded we don't need to explicitly
4428       // mark it, the evacuation failure protocol will do so.
4429       mark_forwarded_object(obj, forwardee);
4430     }
4431 
4432     if (barrier == G1BarrierKlass) {
4433       do_klass_barrier(p, forwardee);
4434     }
4435   } else {
4436     if (state.is_humongous()) {
4437       _g1->set_humongous_is_live(obj);
4438     }
4439     // The object is not in collection set. If we're a root scanning
4440     // closure during an initial mark pause then attempt to mark the object.
4441     if (do_mark_object == G1MarkFromRoot) {
4442       mark_object(obj);
4443     }
4444   }
4445 }
4446 
4447 class G1ParEvacuateFollowersClosure : public VoidClosure {
4448 protected:
4449   G1CollectedHeap*              _g1h;
4450   G1ParScanThreadState*         _par_scan_state;
4451   RefToScanQueueSet*            _queues;
4452   ParallelTaskTerminator*       _terminator;
4453 
4454   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4455   RefToScanQueueSet*      queues()         { return _queues; }
4456   ParallelTaskTerminator* terminator()     { return _terminator; }
4457 
4458 public:
4459   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4460                                 G1ParScanThreadState* par_scan_state,
4461                                 RefToScanQueueSet* queues,
4462                                 ParallelTaskTerminator* terminator)
4463     : _g1h(g1h), _par_scan_state(par_scan_state),
4464       _queues(queues), _terminator(terminator) {}
4465 
4466   void do_void();
4467 
4468 private:
4469   inline bool offer_termination();
4470 };
4471 
4472 bool G1ParEvacuateFollowersClosure::offer_termination() {
4473   G1ParScanThreadState* const pss = par_scan_state();
4474   pss->start_term_time();
4475   const bool res = terminator()->offer_termination();
4476   pss->end_term_time();
4477   return res;
4478 }
4479 
4480 void G1ParEvacuateFollowersClosure::do_void() {
4481   G1ParScanThreadState* const pss = par_scan_state();
4482   pss->trim_queue();
4483   do {
4484     pss->steal_and_trim_queue(queues());
4485   } while (!offer_termination());
4486 }
4487 
4488 class G1KlassScanClosure : public KlassClosure {
4489  G1ParCopyHelper* _closure;
4490  bool             _process_only_dirty;
4491  int              _count;
4492  public:
4493   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4494       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4495   void do_klass(Klass* klass) {
4496     // If the klass has not been dirtied we know that there's
4497     // no references into  the young gen and we can skip it.
4498    if (!_process_only_dirty || klass->has_modified_oops()) {
4499       // Clean the klass since we're going to scavenge all the metadata.
4500       klass->clear_modified_oops();
4501 
4502       // Tell the closure that this klass is the Klass to scavenge
4503       // and is the one to dirty if oops are left pointing into the young gen.
4504       _closure->set_scanned_klass(klass);
4505 
4506       klass->oops_do(_closure);
4507 
4508       _closure->set_scanned_klass(NULL);
4509     }
4510     _count++;
4511   }
4512 };
4513 
4514 class G1ParTask : public AbstractGangTask {
4515 protected:
4516   G1CollectedHeap*       _g1h;
4517   RefToScanQueueSet      *_queues;
4518   G1RootProcessor*       _root_processor;
4519   ParallelTaskTerminator _terminator;
4520   uint _n_workers;
4521 
4522 public:
4523   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4524     : AbstractGangTask("G1 collection"),
4525       _g1h(g1h),
4526       _queues(task_queues),
4527       _root_processor(root_processor),
4528       _terminator(n_workers, _queues),
4529       _n_workers(n_workers)
4530   {}
4531 
4532   RefToScanQueueSet* queues() { return _queues; }
4533 
4534   RefToScanQueue *work_queue(int i) {
4535     return queues()->queue(i);
4536   }
4537 
4538   ParallelTaskTerminator* terminator() { return &_terminator; }
4539 
4540   // Helps out with CLD processing.
4541   //
4542   // During InitialMark we need to:
4543   // 1) Scavenge all CLDs for the young GC.
4544   // 2) Mark all objects directly reachable from strong CLDs.
4545   template <G1Mark do_mark_object>
4546   class G1CLDClosure : public CLDClosure {
4547     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4548     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4549     G1KlassScanClosure                                _klass_in_cld_closure;
4550     bool                                              _claim;
4551 
4552    public:
4553     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4554                  bool only_young, bool claim)
4555         : _oop_closure(oop_closure),
4556           _oop_in_klass_closure(oop_closure->g1(),
4557                                 oop_closure->pss(),
4558                                 oop_closure->rp()),
4559           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4560           _claim(claim) {
4561 
4562     }
4563 
4564     void do_cld(ClassLoaderData* cld) {
4565       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4566     }
4567   };
4568 
4569   void work(uint worker_id) {
4570     if (worker_id >= _n_workers) return;  // no work needed this round
4571 
4572     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4573 
4574     {
4575       ResourceMark rm;
4576       HandleMark   hm;
4577 
4578       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4579 
4580       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4581 
4582       bool only_young = _g1h->collector_state()->gcs_are_young();
4583 
4584       // Non-IM young GC.
4585       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4586       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4587                                                                                only_young, // Only process dirty klasses.
4588                                                                                false);     // No need to claim CLDs.
4589       // IM young GC.
4590       //    Strong roots closures.
4591       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4592       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4593                                                                                false, // Process all klasses.
4594                                                                                true); // Need to claim CLDs.
4595       //    Weak roots closures.
4596       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4597       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4598                                                                                     false, // Process all klasses.
4599                                                                                     true); // Need to claim CLDs.
4600 
4601       OopClosure* strong_root_cl;
4602       OopClosure* weak_root_cl;
4603       CLDClosure* strong_cld_cl;
4604       CLDClosure* weak_cld_cl;
4605 
4606       bool trace_metadata = false;
4607 
4608       if (_g1h->collector_state()->during_initial_mark_pause()) {
4609         // We also need to mark copied objects.
4610         strong_root_cl = &scan_mark_root_cl;
4611         strong_cld_cl  = &scan_mark_cld_cl;
4612         if (ClassUnloadingWithConcurrentMark) {
4613           weak_root_cl = &scan_mark_weak_root_cl;
4614           weak_cld_cl  = &scan_mark_weak_cld_cl;
4615           trace_metadata = true;
4616         } else {
4617           weak_root_cl = &scan_mark_root_cl;
4618           weak_cld_cl  = &scan_mark_cld_cl;
4619         }
4620       } else {
4621         strong_root_cl = &scan_only_root_cl;
4622         weak_root_cl   = &scan_only_root_cl;
4623         strong_cld_cl  = &scan_only_cld_cl;
4624         weak_cld_cl    = &scan_only_cld_cl;
4625       }
4626 
4627       pss.start_strong_roots();
4628 
4629       _root_processor->evacuate_roots(strong_root_cl,
4630                                       weak_root_cl,
4631                                       strong_cld_cl,
4632                                       weak_cld_cl,
4633                                       trace_metadata,
4634                                       worker_id);
4635 
4636       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4637       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4638                                             weak_root_cl,
4639                                             worker_id);
4640       pss.end_strong_roots();
4641 
4642       {
4643         double start = os::elapsedTime();
4644         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4645         evac.do_void();
4646         double elapsed_sec = os::elapsedTime() - start;
4647         double term_sec = pss.term_time();
4648         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4649         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4650         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4651       }
4652       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4653       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4654 
4655       if (PrintTerminationStats) {
4656         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4657         pss.print_termination_stats();
4658       }
4659 
4660       assert(pss.queue_is_empty(), "should be empty");
4661 
4662       // Close the inner scope so that the ResourceMark and HandleMark
4663       // destructors are executed here and are included as part of the
4664       // "GC Worker Time".
4665     }
4666     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4667   }
4668 };
4669 
4670 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4671 private:
4672   BoolObjectClosure* _is_alive;
4673   int _initial_string_table_size;
4674   int _initial_symbol_table_size;
4675 
4676   bool  _process_strings;
4677   int _strings_processed;
4678   int _strings_removed;
4679 
4680   bool  _process_symbols;
4681   int _symbols_processed;
4682   int _symbols_removed;
4683 
4684 public:
4685   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4686     AbstractGangTask("String/Symbol Unlinking"),
4687     _is_alive(is_alive),
4688     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4689     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4690 
4691     _initial_string_table_size = StringTable::the_table()->table_size();
4692     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4693     if (process_strings) {
4694       StringTable::clear_parallel_claimed_index();
4695     }
4696     if (process_symbols) {
4697       SymbolTable::clear_parallel_claimed_index();
4698     }
4699   }
4700 
4701   ~G1StringSymbolTableUnlinkTask() {
4702     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4703               err_msg("claim value %d after unlink less than initial string table size %d",
4704                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4705     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4706               err_msg("claim value %d after unlink less than initial symbol table size %d",
4707                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4708 
4709     if (G1TraceStringSymbolTableScrubbing) {
4710       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4711                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4712                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4713                              strings_processed(), strings_removed(),
4714                              symbols_processed(), symbols_removed());
4715     }
4716   }
4717 
4718   void work(uint worker_id) {
4719     int strings_processed = 0;
4720     int strings_removed = 0;
4721     int symbols_processed = 0;
4722     int symbols_removed = 0;
4723     if (_process_strings) {
4724       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4725       Atomic::add(strings_processed, &_strings_processed);
4726       Atomic::add(strings_removed, &_strings_removed);
4727     }
4728     if (_process_symbols) {
4729       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4730       Atomic::add(symbols_processed, &_symbols_processed);
4731       Atomic::add(symbols_removed, &_symbols_removed);
4732     }
4733   }
4734 
4735   size_t strings_processed() const { return (size_t)_strings_processed; }
4736   size_t strings_removed()   const { return (size_t)_strings_removed; }
4737 
4738   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4739   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4740 };
4741 
4742 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4743 private:
4744   static Monitor* _lock;
4745 
4746   BoolObjectClosure* const _is_alive;
4747   const bool               _unloading_occurred;
4748   const uint               _num_workers;
4749 
4750   // Variables used to claim nmethods.
4751   nmethod* _first_nmethod;
4752   volatile nmethod* _claimed_nmethod;
4753 
4754   // The list of nmethods that need to be processed by the second pass.
4755   volatile nmethod* _postponed_list;
4756   volatile uint     _num_entered_barrier;
4757 
4758  public:
4759   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4760       _is_alive(is_alive),
4761       _unloading_occurred(unloading_occurred),
4762       _num_workers(num_workers),
4763       _first_nmethod(NULL),
4764       _claimed_nmethod(NULL),
4765       _postponed_list(NULL),
4766       _num_entered_barrier(0)
4767   {
4768     nmethod::increase_unloading_clock();
4769     // Get first alive nmethod
4770     NMethodIterator iter = NMethodIterator();
4771     if(iter.next_alive()) {
4772       _first_nmethod = iter.method();
4773     }
4774     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4775   }
4776 
4777   ~G1CodeCacheUnloadingTask() {
4778     CodeCache::verify_clean_inline_caches();
4779 
4780     CodeCache::set_needs_cache_clean(false);
4781     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4782 
4783     CodeCache::verify_icholder_relocations();
4784   }
4785 
4786  private:
4787   void add_to_postponed_list(nmethod* nm) {
4788       nmethod* old;
4789       do {
4790         old = (nmethod*)_postponed_list;
4791         nm->set_unloading_next(old);
4792       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4793   }
4794 
4795   void clean_nmethod(nmethod* nm) {
4796     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4797 
4798     if (postponed) {
4799       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4800       add_to_postponed_list(nm);
4801     }
4802 
4803     // Mark that this thread has been cleaned/unloaded.
4804     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4805     nm->set_unloading_clock(nmethod::global_unloading_clock());
4806   }
4807 
4808   void clean_nmethod_postponed(nmethod* nm) {
4809     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4810   }
4811 
4812   static const int MaxClaimNmethods = 16;
4813 
4814   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4815     nmethod* first;
4816     NMethodIterator last;
4817 
4818     do {
4819       *num_claimed_nmethods = 0;
4820 
4821       first = (nmethod*)_claimed_nmethod;
4822       last = NMethodIterator(first);
4823 
4824       if (first != NULL) {
4825 
4826         for (int i = 0; i < MaxClaimNmethods; i++) {
4827           if (!last.next_alive()) {
4828             break;
4829           }
4830           claimed_nmethods[i] = last.method();
4831           (*num_claimed_nmethods)++;
4832         }
4833       }
4834 
4835     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4836   }
4837 
4838   nmethod* claim_postponed_nmethod() {
4839     nmethod* claim;
4840     nmethod* next;
4841 
4842     do {
4843       claim = (nmethod*)_postponed_list;
4844       if (claim == NULL) {
4845         return NULL;
4846       }
4847 
4848       next = claim->unloading_next();
4849 
4850     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4851 
4852     return claim;
4853   }
4854 
4855  public:
4856   // Mark that we're done with the first pass of nmethod cleaning.
4857   void barrier_mark(uint worker_id) {
4858     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4859     _num_entered_barrier++;
4860     if (_num_entered_barrier == _num_workers) {
4861       ml.notify_all();
4862     }
4863   }
4864 
4865   // See if we have to wait for the other workers to
4866   // finish their first-pass nmethod cleaning work.
4867   void barrier_wait(uint worker_id) {
4868     if (_num_entered_barrier < _num_workers) {
4869       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4870       while (_num_entered_barrier < _num_workers) {
4871           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4872       }
4873     }
4874   }
4875 
4876   // Cleaning and unloading of nmethods. Some work has to be postponed
4877   // to the second pass, when we know which nmethods survive.
4878   void work_first_pass(uint worker_id) {
4879     // The first nmethods is claimed by the first worker.
4880     if (worker_id == 0 && _first_nmethod != NULL) {
4881       clean_nmethod(_first_nmethod);
4882       _first_nmethod = NULL;
4883     }
4884 
4885     int num_claimed_nmethods;
4886     nmethod* claimed_nmethods[MaxClaimNmethods];
4887 
4888     while (true) {
4889       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4890 
4891       if (num_claimed_nmethods == 0) {
4892         break;
4893       }
4894 
4895       for (int i = 0; i < num_claimed_nmethods; i++) {
4896         clean_nmethod(claimed_nmethods[i]);
4897       }
4898     }
4899   }
4900 
4901   void work_second_pass(uint worker_id) {
4902     nmethod* nm;
4903     // Take care of postponed nmethods.
4904     while ((nm = claim_postponed_nmethod()) != NULL) {
4905       clean_nmethod_postponed(nm);
4906     }
4907   }
4908 };
4909 
4910 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4911 
4912 class G1KlassCleaningTask : public StackObj {
4913   BoolObjectClosure*                      _is_alive;
4914   volatile jint                           _clean_klass_tree_claimed;
4915   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4916 
4917  public:
4918   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4919       _is_alive(is_alive),
4920       _clean_klass_tree_claimed(0),
4921       _klass_iterator() {
4922   }
4923 
4924  private:
4925   bool claim_clean_klass_tree_task() {
4926     if (_clean_klass_tree_claimed) {
4927       return false;
4928     }
4929 
4930     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4931   }
4932 
4933   InstanceKlass* claim_next_klass() {
4934     Klass* klass;
4935     do {
4936       klass =_klass_iterator.next_klass();
4937     } while (klass != NULL && !klass->oop_is_instance());
4938 
4939     return (InstanceKlass*)klass;
4940   }
4941 
4942 public:
4943 
4944   void clean_klass(InstanceKlass* ik) {
4945     ik->clean_implementors_list(_is_alive);
4946     ik->clean_method_data(_is_alive);
4947 
4948     // G1 specific cleanup work that has
4949     // been moved here to be done in parallel.
4950     ik->clean_dependent_nmethods();
4951   }
4952 
4953   void work() {
4954     ResourceMark rm;
4955 
4956     // One worker will clean the subklass/sibling klass tree.
4957     if (claim_clean_klass_tree_task()) {
4958       Klass::clean_subklass_tree(_is_alive);
4959     }
4960 
4961     // All workers will help cleaning the classes,
4962     InstanceKlass* klass;
4963     while ((klass = claim_next_klass()) != NULL) {
4964       clean_klass(klass);
4965     }
4966   }
4967 };
4968 
4969 // To minimize the remark pause times, the tasks below are done in parallel.
4970 class G1ParallelCleaningTask : public AbstractGangTask {
4971 private:
4972   G1StringSymbolTableUnlinkTask _string_symbol_task;
4973   G1CodeCacheUnloadingTask      _code_cache_task;
4974   G1KlassCleaningTask           _klass_cleaning_task;
4975 
4976 public:
4977   // The constructor is run in the VMThread.
4978   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4979       AbstractGangTask("Parallel Cleaning"),
4980       _string_symbol_task(is_alive, process_strings, process_symbols),
4981       _code_cache_task(num_workers, is_alive, unloading_occurred),
4982       _klass_cleaning_task(is_alive) {
4983   }
4984 
4985   // The parallel work done by all worker threads.
4986   void work(uint worker_id) {
4987     // Do first pass of code cache cleaning.
4988     _code_cache_task.work_first_pass(worker_id);
4989 
4990     // Let the threads mark that the first pass is done.
4991     _code_cache_task.barrier_mark(worker_id);
4992 
4993     // Clean the Strings and Symbols.
4994     _string_symbol_task.work(worker_id);
4995 
4996     // Wait for all workers to finish the first code cache cleaning pass.
4997     _code_cache_task.barrier_wait(worker_id);
4998 
4999     // Do the second code cache cleaning work, which realize on
5000     // the liveness information gathered during the first pass.
5001     _code_cache_task.work_second_pass(worker_id);
5002 
5003     // Clean all klasses that were not unloaded.
5004     _klass_cleaning_task.work();
5005   }
5006 };
5007 
5008 
5009 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5010                                         bool process_strings,
5011                                         bool process_symbols,
5012                                         bool class_unloading_occurred) {
5013   uint n_workers = workers()->active_workers();
5014 
5015   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5016                                         n_workers, class_unloading_occurred);
5017   workers()->run_task(&g1_unlink_task);
5018 }
5019 
5020 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5021                                                      bool process_strings, bool process_symbols) {
5022   {
5023     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5024     workers()->run_task(&g1_unlink_task);
5025   }
5026 
5027   if (G1StringDedup::is_enabled()) {
5028     G1StringDedup::unlink(is_alive);
5029   }
5030 }
5031 
5032 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5033  private:
5034   DirtyCardQueueSet* _queue;
5035  public:
5036   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5037 
5038   virtual void work(uint worker_id) {
5039     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5040     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5041 
5042     RedirtyLoggedCardTableEntryClosure cl;
5043     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5044 
5045     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5046   }
5047 };
5048 
5049 void G1CollectedHeap::redirty_logged_cards() {
5050   double redirty_logged_cards_start = os::elapsedTime();
5051 
5052   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5053   dirty_card_queue_set().reset_for_par_iteration();
5054   workers()->run_task(&redirty_task);
5055 
5056   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5057   dcq.merge_bufferlists(&dirty_card_queue_set());
5058   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5059 
5060   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5061 }
5062 
5063 // Weak Reference Processing support
5064 
5065 // An always "is_alive" closure that is used to preserve referents.
5066 // If the object is non-null then it's alive.  Used in the preservation
5067 // of referent objects that are pointed to by reference objects
5068 // discovered by the CM ref processor.
5069 class G1AlwaysAliveClosure: public BoolObjectClosure {
5070   G1CollectedHeap* _g1;
5071 public:
5072   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5073   bool do_object_b(oop p) {
5074     if (p != NULL) {
5075       return true;
5076     }
5077     return false;
5078   }
5079 };
5080 
5081 bool G1STWIsAliveClosure::do_object_b(oop p) {
5082   // An object is reachable if it is outside the collection set,
5083   // or is inside and copied.
5084   return !_g1->is_in_cset(p) || p->is_forwarded();
5085 }
5086 
5087 // Non Copying Keep Alive closure
5088 class G1KeepAliveClosure: public OopClosure {
5089   G1CollectedHeap* _g1;
5090 public:
5091   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5092   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5093   void do_oop(oop* p) {
5094     oop obj = *p;
5095     assert(obj != NULL, "the caller should have filtered out NULL values");
5096 
5097     const InCSetState cset_state = _g1->in_cset_state(obj);
5098     if (!cset_state.is_in_cset_or_humongous()) {
5099       return;
5100     }
5101     if (cset_state.is_in_cset()) {
5102       assert( obj->is_forwarded(), "invariant" );
5103       *p = obj->forwardee();
5104     } else {
5105       assert(!obj->is_forwarded(), "invariant" );
5106       assert(cset_state.is_humongous(),
5107              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5108       _g1->set_humongous_is_live(obj);
5109     }
5110   }
5111 };
5112 
5113 // Copying Keep Alive closure - can be called from both
5114 // serial and parallel code as long as different worker
5115 // threads utilize different G1ParScanThreadState instances
5116 // and different queues.
5117 
5118 class G1CopyingKeepAliveClosure: public OopClosure {
5119   G1CollectedHeap*         _g1h;
5120   OopClosure*              _copy_non_heap_obj_cl;
5121   G1ParScanThreadState*    _par_scan_state;
5122 
5123 public:
5124   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5125                             OopClosure* non_heap_obj_cl,
5126                             G1ParScanThreadState* pss):
5127     _g1h(g1h),
5128     _copy_non_heap_obj_cl(non_heap_obj_cl),
5129     _par_scan_state(pss)
5130   {}
5131 
5132   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5133   virtual void do_oop(      oop* p) { do_oop_work(p); }
5134 
5135   template <class T> void do_oop_work(T* p) {
5136     oop obj = oopDesc::load_decode_heap_oop(p);
5137 
5138     if (_g1h->is_in_cset_or_humongous(obj)) {
5139       // If the referent object has been forwarded (either copied
5140       // to a new location or to itself in the event of an
5141       // evacuation failure) then we need to update the reference
5142       // field and, if both reference and referent are in the G1
5143       // heap, update the RSet for the referent.
5144       //
5145       // If the referent has not been forwarded then we have to keep
5146       // it alive by policy. Therefore we have copy the referent.
5147       //
5148       // If the reference field is in the G1 heap then we can push
5149       // on the PSS queue. When the queue is drained (after each
5150       // phase of reference processing) the object and it's followers
5151       // will be copied, the reference field set to point to the
5152       // new location, and the RSet updated. Otherwise we need to
5153       // use the the non-heap or metadata closures directly to copy
5154       // the referent object and update the pointer, while avoiding
5155       // updating the RSet.
5156 
5157       if (_g1h->is_in_g1_reserved(p)) {
5158         _par_scan_state->push_on_queue(p);
5159       } else {
5160         assert(!Metaspace::contains((const void*)p),
5161                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5162         _copy_non_heap_obj_cl->do_oop(p);
5163       }
5164     }
5165   }
5166 };
5167 
5168 // Serial drain queue closure. Called as the 'complete_gc'
5169 // closure for each discovered list in some of the
5170 // reference processing phases.
5171 
5172 class G1STWDrainQueueClosure: public VoidClosure {
5173 protected:
5174   G1CollectedHeap* _g1h;
5175   G1ParScanThreadState* _par_scan_state;
5176 
5177   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5178 
5179 public:
5180   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5181     _g1h(g1h),
5182     _par_scan_state(pss)
5183   { }
5184 
5185   void do_void() {
5186     G1ParScanThreadState* const pss = par_scan_state();
5187     pss->trim_queue();
5188   }
5189 };
5190 
5191 // Parallel Reference Processing closures
5192 
5193 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5194 // processing during G1 evacuation pauses.
5195 
5196 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5197 private:
5198   G1CollectedHeap*   _g1h;
5199   RefToScanQueueSet* _queues;
5200   FlexibleWorkGang*  _workers;
5201   uint               _active_workers;
5202 
5203 public:
5204   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5205                            FlexibleWorkGang* workers,
5206                            RefToScanQueueSet *task_queues,
5207                            uint n_workers) :
5208     _g1h(g1h),
5209     _queues(task_queues),
5210     _workers(workers),
5211     _active_workers(n_workers)
5212   {
5213     assert(n_workers > 0, "shouldn't call this otherwise");
5214   }
5215 
5216   // Executes the given task using concurrent marking worker threads.
5217   virtual void execute(ProcessTask& task);
5218   virtual void execute(EnqueueTask& task);
5219 };
5220 
5221 // Gang task for possibly parallel reference processing
5222 
5223 class G1STWRefProcTaskProxy: public AbstractGangTask {
5224   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5225   ProcessTask&     _proc_task;
5226   G1CollectedHeap* _g1h;
5227   RefToScanQueueSet *_task_queues;
5228   ParallelTaskTerminator* _terminator;
5229 
5230 public:
5231   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5232                      G1CollectedHeap* g1h,
5233                      RefToScanQueueSet *task_queues,
5234                      ParallelTaskTerminator* terminator) :
5235     AbstractGangTask("Process reference objects in parallel"),
5236     _proc_task(proc_task),
5237     _g1h(g1h),
5238     _task_queues(task_queues),
5239     _terminator(terminator)
5240   {}
5241 
5242   virtual void work(uint worker_id) {
5243     // The reference processing task executed by a single worker.
5244     ResourceMark rm;
5245     HandleMark   hm;
5246 
5247     G1STWIsAliveClosure is_alive(_g1h);
5248 
5249     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5250 
5251     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5252 
5253     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5254 
5255     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5256 
5257     if (_g1h->collector_state()->during_initial_mark_pause()) {
5258       // We also need to mark copied objects.
5259       copy_non_heap_cl = &copy_mark_non_heap_cl;
5260     }
5261 
5262     // Keep alive closure.
5263     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5264 
5265     // Complete GC closure
5266     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5267 
5268     // Call the reference processing task's work routine.
5269     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5270 
5271     // Note we cannot assert that the refs array is empty here as not all
5272     // of the processing tasks (specifically phase2 - pp2_work) execute
5273     // the complete_gc closure (which ordinarily would drain the queue) so
5274     // the queue may not be empty.
5275   }
5276 };
5277 
5278 // Driver routine for parallel reference processing.
5279 // Creates an instance of the ref processing gang
5280 // task and has the worker threads execute it.
5281 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5282   assert(_workers != NULL, "Need parallel worker threads.");
5283 
5284   ParallelTaskTerminator terminator(_active_workers, _queues);
5285   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5286 
5287   _workers->run_task(&proc_task_proxy);
5288 }
5289 
5290 // Gang task for parallel reference enqueueing.
5291 
5292 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5293   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5294   EnqueueTask& _enq_task;
5295 
5296 public:
5297   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5298     AbstractGangTask("Enqueue reference objects in parallel"),
5299     _enq_task(enq_task)
5300   { }
5301 
5302   virtual void work(uint worker_id) {
5303     _enq_task.work(worker_id);
5304   }
5305 };
5306 
5307 // Driver routine for parallel reference enqueueing.
5308 // Creates an instance of the ref enqueueing gang
5309 // task and has the worker threads execute it.
5310 
5311 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5312   assert(_workers != NULL, "Need parallel worker threads.");
5313 
5314   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5315 
5316   _workers->run_task(&enq_task_proxy);
5317 }
5318 
5319 // End of weak reference support closures
5320 
5321 // Abstract task used to preserve (i.e. copy) any referent objects
5322 // that are in the collection set and are pointed to by reference
5323 // objects discovered by the CM ref processor.
5324 
5325 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5326 protected:
5327   G1CollectedHeap* _g1h;
5328   RefToScanQueueSet      *_queues;
5329   ParallelTaskTerminator _terminator;
5330   uint _n_workers;
5331 
5332 public:
5333   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5334     AbstractGangTask("ParPreserveCMReferents"),
5335     _g1h(g1h),
5336     _queues(task_queues),
5337     _terminator(workers, _queues),
5338     _n_workers(workers)
5339   { }
5340 
5341   void work(uint worker_id) {
5342     ResourceMark rm;
5343     HandleMark   hm;
5344 
5345     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5346     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5347 
5348     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5349 
5350     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5351 
5352     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5353 
5354     if (_g1h->collector_state()->during_initial_mark_pause()) {
5355       // We also need to mark copied objects.
5356       copy_non_heap_cl = &copy_mark_non_heap_cl;
5357     }
5358 
5359     // Is alive closure
5360     G1AlwaysAliveClosure always_alive(_g1h);
5361 
5362     // Copying keep alive closure. Applied to referent objects that need
5363     // to be copied.
5364     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5365 
5366     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5367 
5368     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5369     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5370 
5371     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5372     // So this must be true - but assert just in case someone decides to
5373     // change the worker ids.
5374     assert(worker_id < limit, "sanity");
5375     assert(!rp->discovery_is_atomic(), "check this code");
5376 
5377     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5378     for (uint idx = worker_id; idx < limit; idx += stride) {
5379       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5380 
5381       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5382       while (iter.has_next()) {
5383         // Since discovery is not atomic for the CM ref processor, we
5384         // can see some null referent objects.
5385         iter.load_ptrs(DEBUG_ONLY(true));
5386         oop ref = iter.obj();
5387 
5388         // This will filter nulls.
5389         if (iter.is_referent_alive()) {
5390           iter.make_referent_alive();
5391         }
5392         iter.move_to_next();
5393       }
5394     }
5395 
5396     // Drain the queue - which may cause stealing
5397     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5398     drain_queue.do_void();
5399     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5400     assert(pss.queue_is_empty(), "should be");
5401   }
5402 };
5403 
5404 // Weak Reference processing during an evacuation pause (part 1).
5405 void G1CollectedHeap::process_discovered_references() {
5406   double ref_proc_start = os::elapsedTime();
5407 
5408   ReferenceProcessor* rp = _ref_processor_stw;
5409   assert(rp->discovery_enabled(), "should have been enabled");
5410 
5411   // Any reference objects, in the collection set, that were 'discovered'
5412   // by the CM ref processor should have already been copied (either by
5413   // applying the external root copy closure to the discovered lists, or
5414   // by following an RSet entry).
5415   //
5416   // But some of the referents, that are in the collection set, that these
5417   // reference objects point to may not have been copied: the STW ref
5418   // processor would have seen that the reference object had already
5419   // been 'discovered' and would have skipped discovering the reference,
5420   // but would not have treated the reference object as a regular oop.
5421   // As a result the copy closure would not have been applied to the
5422   // referent object.
5423   //
5424   // We need to explicitly copy these referent objects - the references
5425   // will be processed at the end of remarking.
5426   //
5427   // We also need to do this copying before we process the reference
5428   // objects discovered by the STW ref processor in case one of these
5429   // referents points to another object which is also referenced by an
5430   // object discovered by the STW ref processor.
5431 
5432   uint no_of_gc_workers = workers()->active_workers();
5433 
5434   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5435                                                  no_of_gc_workers,
5436                                                  _task_queues);
5437 
5438   workers()->run_task(&keep_cm_referents);
5439 
5440   // Closure to test whether a referent is alive.
5441   G1STWIsAliveClosure is_alive(this);
5442 
5443   // Even when parallel reference processing is enabled, the processing
5444   // of JNI refs is serial and performed serially by the current thread
5445   // rather than by a worker. The following PSS will be used for processing
5446   // JNI refs.
5447 
5448   // Use only a single queue for this PSS.
5449   G1ParScanThreadState            pss(this, 0, NULL);
5450   assert(pss.queue_is_empty(), "pre-condition");
5451 
5452   // We do not embed a reference processor in the copying/scanning
5453   // closures while we're actually processing the discovered
5454   // reference objects.
5455 
5456   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5457 
5458   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5459 
5460   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5461 
5462   if (collector_state()->during_initial_mark_pause()) {
5463     // We also need to mark copied objects.
5464     copy_non_heap_cl = &copy_mark_non_heap_cl;
5465   }
5466 
5467   // Keep alive closure.
5468   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5469 
5470   // Serial Complete GC closure
5471   G1STWDrainQueueClosure drain_queue(this, &pss);
5472 
5473   // Setup the soft refs policy...
5474   rp->setup_policy(false);
5475 
5476   ReferenceProcessorStats stats;
5477   if (!rp->processing_is_mt()) {
5478     // Serial reference processing...
5479     stats = rp->process_discovered_references(&is_alive,
5480                                               &keep_alive,
5481                                               &drain_queue,
5482                                               NULL,
5483                                               _gc_timer_stw,
5484                                               _gc_tracer_stw->gc_id());
5485   } else {
5486     // Parallel reference processing
5487     assert(rp->num_q() == no_of_gc_workers, "sanity");
5488     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5489 
5490     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5491     stats = rp->process_discovered_references(&is_alive,
5492                                               &keep_alive,
5493                                               &drain_queue,
5494                                               &par_task_executor,
5495                                               _gc_timer_stw,
5496                                               _gc_tracer_stw->gc_id());
5497   }
5498 
5499   _gc_tracer_stw->report_gc_reference_stats(stats);
5500 
5501   // We have completed copying any necessary live referent objects.
5502   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5503 
5504   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5505   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5506 }
5507 
5508 // Weak Reference processing during an evacuation pause (part 2).
5509 void G1CollectedHeap::enqueue_discovered_references() {
5510   double ref_enq_start = os::elapsedTime();
5511 
5512   ReferenceProcessor* rp = _ref_processor_stw;
5513   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5514 
5515   // Now enqueue any remaining on the discovered lists on to
5516   // the pending list.
5517   if (!rp->processing_is_mt()) {
5518     // Serial reference processing...
5519     rp->enqueue_discovered_references();
5520   } else {
5521     // Parallel reference enqueueing
5522 
5523     uint n_workers = workers()->active_workers();
5524 
5525     assert(rp->num_q() == n_workers, "sanity");
5526     assert(n_workers <= rp->max_num_q(), "sanity");
5527 
5528     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, n_workers);
5529     rp->enqueue_discovered_references(&par_task_executor);
5530   }
5531 
5532   rp->verify_no_references_recorded();
5533   assert(!rp->discovery_enabled(), "should have been disabled");
5534 
5535   // FIXME
5536   // CM's reference processing also cleans up the string and symbol tables.
5537   // Should we do that here also? We could, but it is a serial operation
5538   // and could significantly increase the pause time.
5539 
5540   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5541   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5542 }
5543 
5544 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5545   _expand_heap_after_alloc_failure = true;
5546   _evacuation_failed = false;
5547 
5548   // Should G1EvacuationFailureALot be in effect for this GC?
5549   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5550 
5551   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5552 
5553   // Disable the hot card cache.
5554   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5555   hot_card_cache->reset_hot_cache_claimed_index();
5556   hot_card_cache->set_use_cache(false);
5557 
5558   const uint n_workers = workers()->active_workers();
5559 
5560   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5561   double start_par_time_sec = os::elapsedTime();
5562   double end_par_time_sec;
5563 
5564   {
5565     G1RootProcessor root_processor(this, n_workers);
5566     G1ParTask g1_par_task(this, _task_queues, &root_processor, n_workers);
5567     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5568     if (collector_state()->during_initial_mark_pause()) {
5569       ClassLoaderDataGraph::clear_claimed_marks();
5570     }
5571 
5572     // The individual threads will set their evac-failure closures.
5573     if (PrintTerminationStats) {
5574       G1ParScanThreadState::print_termination_stats_hdr();
5575     }
5576 
5577     workers()->run_task(&g1_par_task);
5578     end_par_time_sec = os::elapsedTime();
5579 
5580     // Closing the inner scope will execute the destructor
5581     // for the G1RootProcessor object. We record the current
5582     // elapsed time before closing the scope so that time
5583     // taken for the destructor is NOT included in the
5584     // reported parallel time.
5585   }
5586 
5587   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5588 
5589   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5590   phase_times->record_par_time(par_time_ms);
5591 
5592   double code_root_fixup_time_ms =
5593         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5594   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5595 
5596   // Process any discovered reference objects - we have
5597   // to do this _before_ we retire the GC alloc regions
5598   // as we may have to copy some 'reachable' referent
5599   // objects (and their reachable sub-graphs) that were
5600   // not copied during the pause.
5601   process_discovered_references();
5602 
5603   if (G1StringDedup::is_enabled()) {
5604     double fixup_start = os::elapsedTime();
5605 
5606     G1STWIsAliveClosure is_alive(this);
5607     G1KeepAliveClosure keep_alive(this);
5608     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5609 
5610     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5611     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5612   }
5613 
5614   _allocator->release_gc_alloc_regions(evacuation_info);
5615   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5616 
5617   // Reset and re-enable the hot card cache.
5618   // Note the counts for the cards in the regions in the
5619   // collection set are reset when the collection set is freed.
5620   hot_card_cache->reset_hot_cache();
5621   hot_card_cache->set_use_cache(true);
5622 
5623   purge_code_root_memory();
5624 
5625   if (evacuation_failed()) {
5626     remove_self_forwarding_pointers();
5627 
5628     // Reset the G1EvacuationFailureALot counters and flags
5629     // Note: the values are reset only when an actual
5630     // evacuation failure occurs.
5631     NOT_PRODUCT(reset_evacuation_should_fail();)
5632   }
5633 
5634   // Enqueue any remaining references remaining on the STW
5635   // reference processor's discovered lists. We need to do
5636   // this after the card table is cleaned (and verified) as
5637   // the act of enqueueing entries on to the pending list
5638   // will log these updates (and dirty their associated
5639   // cards). We need these updates logged to update any
5640   // RSets.
5641   enqueue_discovered_references();
5642 
5643   redirty_logged_cards();
5644   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5645 }
5646 
5647 void G1CollectedHeap::free_region(HeapRegion* hr,
5648                                   FreeRegionList* free_list,
5649                                   bool par,
5650                                   bool locked) {
5651   assert(!hr->is_free(), "the region should not be free");
5652   assert(!hr->is_empty(), "the region should not be empty");
5653   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5654   assert(free_list != NULL, "pre-condition");
5655 
5656   if (G1VerifyBitmaps) {
5657     MemRegion mr(hr->bottom(), hr->end());
5658     concurrent_mark()->clearRangePrevBitmap(mr);
5659   }
5660 
5661   // Clear the card counts for this region.
5662   // Note: we only need to do this if the region is not young
5663   // (since we don't refine cards in young regions).
5664   if (!hr->is_young()) {
5665     _cg1r->hot_card_cache()->reset_card_counts(hr);
5666   }
5667   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5668   free_list->add_ordered(hr);
5669 }
5670 
5671 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5672                                      FreeRegionList* free_list,
5673                                      bool par) {
5674   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5675   assert(free_list != NULL, "pre-condition");
5676 
5677   size_t hr_capacity = hr->capacity();
5678   // We need to read this before we make the region non-humongous,
5679   // otherwise the information will be gone.
5680   uint last_index = hr->last_hc_index();
5681   hr->clear_humongous();
5682   free_region(hr, free_list, par);
5683 
5684   uint i = hr->hrm_index() + 1;
5685   while (i < last_index) {
5686     HeapRegion* curr_hr = region_at(i);
5687     assert(curr_hr->is_continues_humongous(), "invariant");
5688     curr_hr->clear_humongous();
5689     free_region(curr_hr, free_list, par);
5690     i += 1;
5691   }
5692 }
5693 
5694 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5695                                        const HeapRegionSetCount& humongous_regions_removed) {
5696   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5697     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5698     _old_set.bulk_remove(old_regions_removed);
5699     _humongous_set.bulk_remove(humongous_regions_removed);
5700   }
5701 
5702 }
5703 
5704 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5705   assert(list != NULL, "list can't be null");
5706   if (!list->is_empty()) {
5707     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5708     _hrm.insert_list_into_free_list(list);
5709   }
5710 }
5711 
5712 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5713   decrease_used(bytes);
5714 }
5715 
5716 class G1ParCleanupCTTask : public AbstractGangTask {
5717   G1SATBCardTableModRefBS* _ct_bs;
5718   G1CollectedHeap* _g1h;
5719   HeapRegion* volatile _su_head;
5720 public:
5721   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5722                      G1CollectedHeap* g1h) :
5723     AbstractGangTask("G1 Par Cleanup CT Task"),
5724     _ct_bs(ct_bs), _g1h(g1h) { }
5725 
5726   void work(uint worker_id) {
5727     HeapRegion* r;
5728     while (r = _g1h->pop_dirty_cards_region()) {
5729       clear_cards(r);
5730     }
5731   }
5732 
5733   void clear_cards(HeapRegion* r) {
5734     // Cards of the survivors should have already been dirtied.
5735     if (!r->is_survivor()) {
5736       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5737     }
5738   }
5739 };
5740 
5741 #ifndef PRODUCT
5742 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5743   G1CollectedHeap* _g1h;
5744   G1SATBCardTableModRefBS* _ct_bs;
5745 public:
5746   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5747     : _g1h(g1h), _ct_bs(ct_bs) { }
5748   virtual bool doHeapRegion(HeapRegion* r) {
5749     if (r->is_survivor()) {
5750       _g1h->verify_dirty_region(r);
5751     } else {
5752       _g1h->verify_not_dirty_region(r);
5753     }
5754     return false;
5755   }
5756 };
5757 
5758 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5759   // All of the region should be clean.
5760   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5761   MemRegion mr(hr->bottom(), hr->end());
5762   ct_bs->verify_not_dirty_region(mr);
5763 }
5764 
5765 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5766   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5767   // dirty allocated blocks as they allocate them. The thread that
5768   // retires each region and replaces it with a new one will do a
5769   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5770   // not dirty that area (one less thing to have to do while holding
5771   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5772   // is dirty.
5773   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5774   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5775   if (hr->is_young()) {
5776     ct_bs->verify_g1_young_region(mr);
5777   } else {
5778     ct_bs->verify_dirty_region(mr);
5779   }
5780 }
5781 
5782 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5783   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5784   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5785     verify_dirty_region(hr);
5786   }
5787 }
5788 
5789 void G1CollectedHeap::verify_dirty_young_regions() {
5790   verify_dirty_young_list(_young_list->first_region());
5791 }
5792 
5793 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5794                                                HeapWord* tams, HeapWord* end) {
5795   guarantee(tams <= end,
5796             err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)));
5797   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5798   if (result < end) {
5799     gclog_or_tty->cr();
5800     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5801                            bitmap_name, p2i(result));
5802     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5803                            bitmap_name, p2i(tams), p2i(end));
5804     return false;
5805   }
5806   return true;
5807 }
5808 
5809 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5810   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5811   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5812 
5813   HeapWord* bottom = hr->bottom();
5814   HeapWord* ptams  = hr->prev_top_at_mark_start();
5815   HeapWord* ntams  = hr->next_top_at_mark_start();
5816   HeapWord* end    = hr->end();
5817 
5818   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5819 
5820   bool res_n = true;
5821   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5822   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5823   // if we happen to be in that state.
5824   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5825     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5826   }
5827   if (!res_p || !res_n) {
5828     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5829                            HR_FORMAT_PARAMS(hr));
5830     gclog_or_tty->print_cr("#### Caller: %s", caller);
5831     return false;
5832   }
5833   return true;
5834 }
5835 
5836 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5837   if (!G1VerifyBitmaps) return;
5838 
5839   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5840 }
5841 
5842 class G1VerifyBitmapClosure : public HeapRegionClosure {
5843 private:
5844   const char* _caller;
5845   G1CollectedHeap* _g1h;
5846   bool _failures;
5847 
5848 public:
5849   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5850     _caller(caller), _g1h(g1h), _failures(false) { }
5851 
5852   bool failures() { return _failures; }
5853 
5854   virtual bool doHeapRegion(HeapRegion* hr) {
5855     if (hr->is_continues_humongous()) return false;
5856 
5857     bool result = _g1h->verify_bitmaps(_caller, hr);
5858     if (!result) {
5859       _failures = true;
5860     }
5861     return false;
5862   }
5863 };
5864 
5865 void G1CollectedHeap::check_bitmaps(const char* caller) {
5866   if (!G1VerifyBitmaps) return;
5867 
5868   G1VerifyBitmapClosure cl(caller, this);
5869   heap_region_iterate(&cl);
5870   guarantee(!cl.failures(), "bitmap verification");
5871 }
5872 
5873 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5874  private:
5875   bool _failures;
5876  public:
5877   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5878 
5879   virtual bool doHeapRegion(HeapRegion* hr) {
5880     uint i = hr->hrm_index();
5881     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5882     if (hr->is_humongous()) {
5883       if (hr->in_collection_set()) {
5884         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5885         _failures = true;
5886         return true;
5887       }
5888       if (cset_state.is_in_cset()) {
5889         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5890         _failures = true;
5891         return true;
5892       }
5893       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5894         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5895         _failures = true;
5896         return true;
5897       }
5898     } else {
5899       if (cset_state.is_humongous()) {
5900         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5901         _failures = true;
5902         return true;
5903       }
5904       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5905         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5906                                hr->in_collection_set(), cset_state.value(), i);
5907         _failures = true;
5908         return true;
5909       }
5910       if (cset_state.is_in_cset()) {
5911         if (hr->is_young() != (cset_state.is_young())) {
5912           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5913                                  hr->is_young(), cset_state.value(), i);
5914           _failures = true;
5915           return true;
5916         }
5917         if (hr->is_old() != (cset_state.is_old())) {
5918           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5919                                  hr->is_old(), cset_state.value(), i);
5920           _failures = true;
5921           return true;
5922         }
5923       }
5924     }
5925     return false;
5926   }
5927 
5928   bool failures() const { return _failures; }
5929 };
5930 
5931 bool G1CollectedHeap::check_cset_fast_test() {
5932   G1CheckCSetFastTableClosure cl;
5933   _hrm.iterate(&cl);
5934   return !cl.failures();
5935 }
5936 #endif // PRODUCT
5937 
5938 void G1CollectedHeap::cleanUpCardTable() {
5939   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5940   double start = os::elapsedTime();
5941 
5942   {
5943     // Iterate over the dirty cards region list.
5944     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5945 
5946     workers()->run_task(&cleanup_task);
5947 #ifndef PRODUCT
5948     if (G1VerifyCTCleanup || VerifyAfterGC) {
5949       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5950       heap_region_iterate(&cleanup_verifier);
5951     }
5952 #endif
5953   }
5954 
5955   double elapsed = os::elapsedTime() - start;
5956   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5957 }
5958 
5959 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5960   size_t pre_used = 0;
5961   FreeRegionList local_free_list("Local List for CSet Freeing");
5962 
5963   double young_time_ms     = 0.0;
5964   double non_young_time_ms = 0.0;
5965 
5966   // Since the collection set is a superset of the the young list,
5967   // all we need to do to clear the young list is clear its
5968   // head and length, and unlink any young regions in the code below
5969   _young_list->clear();
5970 
5971   G1CollectorPolicy* policy = g1_policy();
5972 
5973   double start_sec = os::elapsedTime();
5974   bool non_young = true;
5975 
5976   HeapRegion* cur = cs_head;
5977   int age_bound = -1;
5978   size_t rs_lengths = 0;
5979 
5980   while (cur != NULL) {
5981     assert(!is_on_master_free_list(cur), "sanity");
5982     if (non_young) {
5983       if (cur->is_young()) {
5984         double end_sec = os::elapsedTime();
5985         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5986         non_young_time_ms += elapsed_ms;
5987 
5988         start_sec = os::elapsedTime();
5989         non_young = false;
5990       }
5991     } else {
5992       if (!cur->is_young()) {
5993         double end_sec = os::elapsedTime();
5994         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5995         young_time_ms += elapsed_ms;
5996 
5997         start_sec = os::elapsedTime();
5998         non_young = true;
5999       }
6000     }
6001 
6002     rs_lengths += cur->rem_set()->occupied_locked();
6003 
6004     HeapRegion* next = cur->next_in_collection_set();
6005     assert(cur->in_collection_set(), "bad CS");
6006     cur->set_next_in_collection_set(NULL);
6007     clear_in_cset(cur);
6008 
6009     if (cur->is_young()) {
6010       int index = cur->young_index_in_cset();
6011       assert(index != -1, "invariant");
6012       assert((uint) index < policy->young_cset_region_length(), "invariant");
6013       size_t words_survived = _surviving_young_words[index];
6014       cur->record_surv_words_in_group(words_survived);
6015 
6016       // At this point the we have 'popped' cur from the collection set
6017       // (linked via next_in_collection_set()) but it is still in the
6018       // young list (linked via next_young_region()). Clear the
6019       // _next_young_region field.
6020       cur->set_next_young_region(NULL);
6021     } else {
6022       int index = cur->young_index_in_cset();
6023       assert(index == -1, "invariant");
6024     }
6025 
6026     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6027             (!cur->is_young() && cur->young_index_in_cset() == -1),
6028             "invariant" );
6029 
6030     if (!cur->evacuation_failed()) {
6031       MemRegion used_mr = cur->used_region();
6032 
6033       // And the region is empty.
6034       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6035       pre_used += cur->used();
6036       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6037     } else {
6038       cur->uninstall_surv_rate_group();
6039       if (cur->is_young()) {
6040         cur->set_young_index_in_cset(-1);
6041       }
6042       cur->set_evacuation_failed(false);
6043       // The region is now considered to be old.
6044       cur->set_old();
6045       _old_set.add(cur);
6046       evacuation_info.increment_collectionset_used_after(cur->used());
6047     }
6048     cur = next;
6049   }
6050 
6051   evacuation_info.set_regions_freed(local_free_list.length());
6052   policy->record_max_rs_lengths(rs_lengths);
6053   policy->cset_regions_freed();
6054 
6055   double end_sec = os::elapsedTime();
6056   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6057 
6058   if (non_young) {
6059     non_young_time_ms += elapsed_ms;
6060   } else {
6061     young_time_ms += elapsed_ms;
6062   }
6063 
6064   prepend_to_freelist(&local_free_list);
6065   decrement_summary_bytes(pre_used);
6066   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6067   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6068 }
6069 
6070 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6071  private:
6072   FreeRegionList* _free_region_list;
6073   HeapRegionSet* _proxy_set;
6074   HeapRegionSetCount _humongous_regions_removed;
6075   size_t _freed_bytes;
6076  public:
6077 
6078   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6079     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6080   }
6081 
6082   virtual bool doHeapRegion(HeapRegion* r) {
6083     if (!r->is_starts_humongous()) {
6084       return false;
6085     }
6086 
6087     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6088 
6089     oop obj = (oop)r->bottom();
6090     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6091 
6092     // The following checks whether the humongous object is live are sufficient.
6093     // The main additional check (in addition to having a reference from the roots
6094     // or the young gen) is whether the humongous object has a remembered set entry.
6095     //
6096     // A humongous object cannot be live if there is no remembered set for it
6097     // because:
6098     // - there can be no references from within humongous starts regions referencing
6099     // the object because we never allocate other objects into them.
6100     // (I.e. there are no intra-region references that may be missed by the
6101     // remembered set)
6102     // - as soon there is a remembered set entry to the humongous starts region
6103     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6104     // until the end of a concurrent mark.
6105     //
6106     // It is not required to check whether the object has been found dead by marking
6107     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6108     // all objects allocated during that time are considered live.
6109     // SATB marking is even more conservative than the remembered set.
6110     // So if at this point in the collection there is no remembered set entry,
6111     // nobody has a reference to it.
6112     // At the start of collection we flush all refinement logs, and remembered sets
6113     // are completely up-to-date wrt to references to the humongous object.
6114     //
6115     // Other implementation considerations:
6116     // - never consider object arrays at this time because they would pose
6117     // considerable effort for cleaning up the the remembered sets. This is
6118     // required because stale remembered sets might reference locations that
6119     // are currently allocated into.
6120     uint region_idx = r->hrm_index();
6121     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6122         !r->rem_set()->is_empty()) {
6123 
6124       if (G1TraceEagerReclaimHumongousObjects) {
6125         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6126                                region_idx,
6127                                (size_t)obj->size() * HeapWordSize,
6128                                p2i(r->bottom()),
6129                                r->region_num(),
6130                                r->rem_set()->occupied(),
6131                                r->rem_set()->strong_code_roots_list_length(),
6132                                next_bitmap->isMarked(r->bottom()),
6133                                g1h->is_humongous_reclaim_candidate(region_idx),
6134                                obj->is_typeArray()
6135                               );
6136       }
6137 
6138       return false;
6139     }
6140 
6141     guarantee(obj->is_typeArray(),
6142               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6143                       PTR_FORMAT " is not.",
6144                       p2i(r->bottom())));
6145 
6146     if (G1TraceEagerReclaimHumongousObjects) {
6147       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6148                              region_idx,
6149                              (size_t)obj->size() * HeapWordSize,
6150                              p2i(r->bottom()),
6151                              r->region_num(),
6152                              r->rem_set()->occupied(),
6153                              r->rem_set()->strong_code_roots_list_length(),
6154                              next_bitmap->isMarked(r->bottom()),
6155                              g1h->is_humongous_reclaim_candidate(region_idx),
6156                              obj->is_typeArray()
6157                             );
6158     }
6159     // Need to clear mark bit of the humongous object if already set.
6160     if (next_bitmap->isMarked(r->bottom())) {
6161       next_bitmap->clear(r->bottom());
6162     }
6163     _freed_bytes += r->used();
6164     r->set_containing_set(NULL);
6165     _humongous_regions_removed.increment(1u, r->capacity());
6166     g1h->free_humongous_region(r, _free_region_list, false);
6167 
6168     return false;
6169   }
6170 
6171   HeapRegionSetCount& humongous_free_count() {
6172     return _humongous_regions_removed;
6173   }
6174 
6175   size_t bytes_freed() const {
6176     return _freed_bytes;
6177   }
6178 
6179   size_t humongous_reclaimed() const {
6180     return _humongous_regions_removed.length();
6181   }
6182 };
6183 
6184 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6185   assert_at_safepoint(true);
6186 
6187   if (!G1EagerReclaimHumongousObjects ||
6188       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6189     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6190     return;
6191   }
6192 
6193   double start_time = os::elapsedTime();
6194 
6195   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6196 
6197   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6198   heap_region_iterate(&cl);
6199 
6200   HeapRegionSetCount empty_set;
6201   remove_from_old_sets(empty_set, cl.humongous_free_count());
6202 
6203   G1HRPrinter* hrp = hr_printer();
6204   if (hrp->is_active()) {
6205     FreeRegionListIterator iter(&local_cleanup_list);
6206     while (iter.more_available()) {
6207       HeapRegion* hr = iter.get_next();
6208       hrp->cleanup(hr);
6209     }
6210   }
6211 
6212   prepend_to_freelist(&local_cleanup_list);
6213   decrement_summary_bytes(cl.bytes_freed());
6214 
6215   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6216                                                                     cl.humongous_reclaimed());
6217 }
6218 
6219 // This routine is similar to the above but does not record
6220 // any policy statistics or update free lists; we are abandoning
6221 // the current incremental collection set in preparation of a
6222 // full collection. After the full GC we will start to build up
6223 // the incremental collection set again.
6224 // This is only called when we're doing a full collection
6225 // and is immediately followed by the tearing down of the young list.
6226 
6227 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6228   HeapRegion* cur = cs_head;
6229 
6230   while (cur != NULL) {
6231     HeapRegion* next = cur->next_in_collection_set();
6232     assert(cur->in_collection_set(), "bad CS");
6233     cur->set_next_in_collection_set(NULL);
6234     clear_in_cset(cur);
6235     cur->set_young_index_in_cset(-1);
6236     cur = next;
6237   }
6238 }
6239 
6240 void G1CollectedHeap::set_free_regions_coming() {
6241   if (G1ConcRegionFreeingVerbose) {
6242     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6243                            "setting free regions coming");
6244   }
6245 
6246   assert(!free_regions_coming(), "pre-condition");
6247   _free_regions_coming = true;
6248 }
6249 
6250 void G1CollectedHeap::reset_free_regions_coming() {
6251   assert(free_regions_coming(), "pre-condition");
6252 
6253   {
6254     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6255     _free_regions_coming = false;
6256     SecondaryFreeList_lock->notify_all();
6257   }
6258 
6259   if (G1ConcRegionFreeingVerbose) {
6260     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6261                            "reset free regions coming");
6262   }
6263 }
6264 
6265 void G1CollectedHeap::wait_while_free_regions_coming() {
6266   // Most of the time we won't have to wait, so let's do a quick test
6267   // first before we take the lock.
6268   if (!free_regions_coming()) {
6269     return;
6270   }
6271 
6272   if (G1ConcRegionFreeingVerbose) {
6273     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6274                            "waiting for free regions");
6275   }
6276 
6277   {
6278     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6279     while (free_regions_coming()) {
6280       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6281     }
6282   }
6283 
6284   if (G1ConcRegionFreeingVerbose) {
6285     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6286                            "done waiting for free regions");
6287   }
6288 }
6289 
6290 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6291   _young_list->push_region(hr);
6292 }
6293 
6294 class NoYoungRegionsClosure: public HeapRegionClosure {
6295 private:
6296   bool _success;
6297 public:
6298   NoYoungRegionsClosure() : _success(true) { }
6299   bool doHeapRegion(HeapRegion* r) {
6300     if (r->is_young()) {
6301       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
6302                              p2i(r->bottom()), p2i(r->end()));
6303       _success = false;
6304     }
6305     return false;
6306   }
6307   bool success() { return _success; }
6308 };
6309 
6310 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6311   bool ret = _young_list->check_list_empty(check_sample);
6312 
6313   if (check_heap) {
6314     NoYoungRegionsClosure closure;
6315     heap_region_iterate(&closure);
6316     ret = ret && closure.success();
6317   }
6318 
6319   return ret;
6320 }
6321 
6322 class TearDownRegionSetsClosure : public HeapRegionClosure {
6323 private:
6324   HeapRegionSet *_old_set;
6325 
6326 public:
6327   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6328 
6329   bool doHeapRegion(HeapRegion* r) {
6330     if (r->is_old()) {
6331       _old_set->remove(r);
6332     } else {
6333       // We ignore free regions, we'll empty the free list afterwards.
6334       // We ignore young regions, we'll empty the young list afterwards.
6335       // We ignore humongous regions, we're not tearing down the
6336       // humongous regions set.
6337       assert(r->is_free() || r->is_young() || r->is_humongous(),
6338              "it cannot be another type");
6339     }
6340     return false;
6341   }
6342 
6343   ~TearDownRegionSetsClosure() {
6344     assert(_old_set->is_empty(), "post-condition");
6345   }
6346 };
6347 
6348 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6349   assert_at_safepoint(true /* should_be_vm_thread */);
6350 
6351   if (!free_list_only) {
6352     TearDownRegionSetsClosure cl(&_old_set);
6353     heap_region_iterate(&cl);
6354 
6355     // Note that emptying the _young_list is postponed and instead done as
6356     // the first step when rebuilding the regions sets again. The reason for
6357     // this is that during a full GC string deduplication needs to know if
6358     // a collected region was young or old when the full GC was initiated.
6359   }
6360   _hrm.remove_all_free_regions();
6361 }
6362 
6363 void G1CollectedHeap::increase_used(size_t bytes) {
6364   _summary_bytes_used += bytes;
6365 }
6366 
6367 void G1CollectedHeap::decrease_used(size_t bytes) {
6368   assert(_summary_bytes_used >= bytes,
6369          err_msg("invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
6370                  _summary_bytes_used, bytes));
6371   _summary_bytes_used -= bytes;
6372 }
6373 
6374 void G1CollectedHeap::set_used(size_t bytes) {
6375   _summary_bytes_used = bytes;
6376 }
6377 
6378 class RebuildRegionSetsClosure : public HeapRegionClosure {
6379 private:
6380   bool            _free_list_only;
6381   HeapRegionSet*   _old_set;
6382   HeapRegionManager*   _hrm;
6383   size_t          _total_used;
6384 
6385 public:
6386   RebuildRegionSetsClosure(bool free_list_only,
6387                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6388     _free_list_only(free_list_only),
6389     _old_set(old_set), _hrm(hrm), _total_used(0) {
6390     assert(_hrm->num_free_regions() == 0, "pre-condition");
6391     if (!free_list_only) {
6392       assert(_old_set->is_empty(), "pre-condition");
6393     }
6394   }
6395 
6396   bool doHeapRegion(HeapRegion* r) {
6397     if (r->is_continues_humongous()) {
6398       return false;
6399     }
6400 
6401     if (r->is_empty()) {
6402       // Add free regions to the free list
6403       r->set_free();
6404       r->set_allocation_context(AllocationContext::system());
6405       _hrm->insert_into_free_list(r);
6406     } else if (!_free_list_only) {
6407       assert(!r->is_young(), "we should not come across young regions");
6408 
6409       if (r->is_humongous()) {
6410         // We ignore humongous regions. We left the humongous set unchanged.
6411       } else {
6412         // Objects that were compacted would have ended up on regions
6413         // that were previously old or free.  Archive regions (which are
6414         // old) will not have been touched.
6415         assert(r->is_free() || r->is_old(), "invariant");
6416         // We now consider them old, so register as such. Leave
6417         // archive regions set that way, however, while still adding
6418         // them to the old set.
6419         if (!r->is_archive()) {
6420           r->set_old();
6421         }
6422         _old_set->add(r);
6423       }
6424       _total_used += r->used();
6425     }
6426 
6427     return false;
6428   }
6429 
6430   size_t total_used() {
6431     return _total_used;
6432   }
6433 };
6434 
6435 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6436   assert_at_safepoint(true /* should_be_vm_thread */);
6437 
6438   if (!free_list_only) {
6439     _young_list->empty_list();
6440   }
6441 
6442   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6443   heap_region_iterate(&cl);
6444 
6445   if (!free_list_only) {
6446     set_used(cl.total_used());
6447     if (_archive_allocator != NULL) {
6448       _archive_allocator->clear_used();
6449     }
6450   }
6451   assert(used_unlocked() == recalculate_used(),
6452          err_msg("inconsistent used_unlocked(), "
6453                  "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6454                  used_unlocked(), recalculate_used()));
6455 }
6456 
6457 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6458   _refine_cte_cl->set_concurrent(concurrent);
6459 }
6460 
6461 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6462   HeapRegion* hr = heap_region_containing(p);
6463   return hr->is_in(p);
6464 }
6465 
6466 // Methods for the mutator alloc region
6467 
6468 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6469                                                       bool force) {
6470   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6471   assert(!force || g1_policy()->can_expand_young_list(),
6472          "if force is true we should be able to expand the young list");
6473   bool young_list_full = g1_policy()->is_young_list_full();
6474   if (force || !young_list_full) {
6475     HeapRegion* new_alloc_region = new_region(word_size,
6476                                               false /* is_old */,
6477                                               false /* do_expand */);
6478     if (new_alloc_region != NULL) {
6479       set_region_short_lived_locked(new_alloc_region);
6480       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6481       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6482       return new_alloc_region;
6483     }
6484   }
6485   return NULL;
6486 }
6487 
6488 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6489                                                   size_t allocated_bytes) {
6490   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6491   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6492 
6493   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6494   increase_used(allocated_bytes);
6495   _hr_printer.retire(alloc_region);
6496   // We update the eden sizes here, when the region is retired,
6497   // instead of when it's allocated, since this is the point that its
6498   // used space has been recored in _summary_bytes_used.
6499   g1mm()->update_eden_size();
6500 }
6501 
6502 // Methods for the GC alloc regions
6503 
6504 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6505                                                  uint count,
6506                                                  InCSetState dest) {
6507   assert(FreeList_lock->owned_by_self(), "pre-condition");
6508 
6509   if (count < g1_policy()->max_regions(dest)) {
6510     const bool is_survivor = (dest.is_young());
6511     HeapRegion* new_alloc_region = new_region(word_size,
6512                                               !is_survivor,
6513                                               true /* do_expand */);
6514     if (new_alloc_region != NULL) {
6515       // We really only need to do this for old regions given that we
6516       // should never scan survivors. But it doesn't hurt to do it
6517       // for survivors too.
6518       new_alloc_region->record_timestamp();
6519       if (is_survivor) {
6520         new_alloc_region->set_survivor();
6521         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6522         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6523       } else {
6524         new_alloc_region->set_old();
6525         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6526         check_bitmaps("Old Region Allocation", new_alloc_region);
6527       }
6528       bool during_im = collector_state()->during_initial_mark_pause();
6529       new_alloc_region->note_start_of_copying(during_im);
6530       return new_alloc_region;
6531     }
6532   }
6533   return NULL;
6534 }
6535 
6536 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6537                                              size_t allocated_bytes,
6538                                              InCSetState dest) {
6539   bool during_im = collector_state()->during_initial_mark_pause();
6540   alloc_region->note_end_of_copying(during_im);
6541   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6542   if (dest.is_young()) {
6543     young_list()->add_survivor_region(alloc_region);
6544   } else {
6545     _old_set.add(alloc_region);
6546   }
6547   _hr_printer.retire(alloc_region);
6548 }
6549 
6550 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6551   bool expanded = false;
6552   uint index = _hrm.find_highest_free(&expanded);
6553 
6554   if (index != G1_NO_HRM_INDEX) {
6555     if (expanded) {
6556       ergo_verbose1(ErgoHeapSizing,
6557                     "attempt heap expansion",
6558                     ergo_format_reason("requested address range outside heap bounds")
6559                     ergo_format_byte("region size"),
6560                     HeapRegion::GrainWords * HeapWordSize);
6561     }
6562     _hrm.allocate_free_regions_starting_at(index, 1);
6563     return region_at(index);
6564   }
6565   return NULL;
6566 }
6567 
6568 // Heap region set verification
6569 
6570 class VerifyRegionListsClosure : public HeapRegionClosure {
6571 private:
6572   HeapRegionSet*   _old_set;
6573   HeapRegionSet*   _humongous_set;
6574   HeapRegionManager*   _hrm;
6575 
6576 public:
6577   HeapRegionSetCount _old_count;
6578   HeapRegionSetCount _humongous_count;
6579   HeapRegionSetCount _free_count;
6580 
6581   VerifyRegionListsClosure(HeapRegionSet* old_set,
6582                            HeapRegionSet* humongous_set,
6583                            HeapRegionManager* hrm) :
6584     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6585     _old_count(), _humongous_count(), _free_count(){ }
6586 
6587   bool doHeapRegion(HeapRegion* hr) {
6588     if (hr->is_continues_humongous()) {
6589       return false;
6590     }
6591 
6592     if (hr->is_young()) {
6593       // TODO
6594     } else if (hr->is_starts_humongous()) {
6595       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6596       _humongous_count.increment(1u, hr->capacity());
6597     } else if (hr->is_empty()) {
6598       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6599       _free_count.increment(1u, hr->capacity());
6600     } else if (hr->is_old()) {
6601       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6602       _old_count.increment(1u, hr->capacity());
6603     } else {
6604       // There are no other valid region types. Check for one invalid
6605       // one we can identify: pinned without old or humongous set.
6606       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6607       ShouldNotReachHere();
6608     }
6609     return false;
6610   }
6611 
6612   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6613     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6614     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6615         old_set->total_capacity_bytes(), _old_count.capacity()));
6616 
6617     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6618     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6619         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6620 
6621     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6622     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6623         free_list->total_capacity_bytes(), _free_count.capacity()));
6624   }
6625 };
6626 
6627 void G1CollectedHeap::verify_region_sets() {
6628   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6629 
6630   // First, check the explicit lists.
6631   _hrm.verify();
6632   {
6633     // Given that a concurrent operation might be adding regions to
6634     // the secondary free list we have to take the lock before
6635     // verifying it.
6636     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6637     _secondary_free_list.verify_list();
6638   }
6639 
6640   // If a concurrent region freeing operation is in progress it will
6641   // be difficult to correctly attributed any free regions we come
6642   // across to the correct free list given that they might belong to
6643   // one of several (free_list, secondary_free_list, any local lists,
6644   // etc.). So, if that's the case we will skip the rest of the
6645   // verification operation. Alternatively, waiting for the concurrent
6646   // operation to complete will have a non-trivial effect on the GC's
6647   // operation (no concurrent operation will last longer than the
6648   // interval between two calls to verification) and it might hide
6649   // any issues that we would like to catch during testing.
6650   if (free_regions_coming()) {
6651     return;
6652   }
6653 
6654   // Make sure we append the secondary_free_list on the free_list so
6655   // that all free regions we will come across can be safely
6656   // attributed to the free_list.
6657   append_secondary_free_list_if_not_empty_with_lock();
6658 
6659   // Finally, make sure that the region accounting in the lists is
6660   // consistent with what we see in the heap.
6661 
6662   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6663   heap_region_iterate(&cl);
6664   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6665 }
6666 
6667 // Optimized nmethod scanning
6668 
6669 class RegisterNMethodOopClosure: public OopClosure {
6670   G1CollectedHeap* _g1h;
6671   nmethod* _nm;
6672 
6673   template <class T> void do_oop_work(T* p) {
6674     T heap_oop = oopDesc::load_heap_oop(p);
6675     if (!oopDesc::is_null(heap_oop)) {
6676       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6677       HeapRegion* hr = _g1h->heap_region_containing(obj);
6678       assert(!hr->is_continues_humongous(),
6679              err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6680                      " starting at " HR_FORMAT,
6681                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6682 
6683       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6684       hr->add_strong_code_root_locked(_nm);
6685     }
6686   }
6687 
6688 public:
6689   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6690     _g1h(g1h), _nm(nm) {}
6691 
6692   void do_oop(oop* p)       { do_oop_work(p); }
6693   void do_oop(narrowOop* p) { do_oop_work(p); }
6694 };
6695 
6696 class UnregisterNMethodOopClosure: public OopClosure {
6697   G1CollectedHeap* _g1h;
6698   nmethod* _nm;
6699 
6700   template <class T> void do_oop_work(T* p) {
6701     T heap_oop = oopDesc::load_heap_oop(p);
6702     if (!oopDesc::is_null(heap_oop)) {
6703       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6704       HeapRegion* hr = _g1h->heap_region_containing(obj);
6705       assert(!hr->is_continues_humongous(),
6706              err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6707                      " starting at " HR_FORMAT,
6708                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6709 
6710       hr->remove_strong_code_root(_nm);
6711     }
6712   }
6713 
6714 public:
6715   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6716     _g1h(g1h), _nm(nm) {}
6717 
6718   void do_oop(oop* p)       { do_oop_work(p); }
6719   void do_oop(narrowOop* p) { do_oop_work(p); }
6720 };
6721 
6722 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6723   CollectedHeap::register_nmethod(nm);
6724 
6725   guarantee(nm != NULL, "sanity");
6726   RegisterNMethodOopClosure reg_cl(this, nm);
6727   nm->oops_do(&reg_cl);
6728 }
6729 
6730 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6731   CollectedHeap::unregister_nmethod(nm);
6732 
6733   guarantee(nm != NULL, "sanity");
6734   UnregisterNMethodOopClosure reg_cl(this, nm);
6735   nm->oops_do(&reg_cl, true);
6736 }
6737 
6738 void G1CollectedHeap::purge_code_root_memory() {
6739   double purge_start = os::elapsedTime();
6740   G1CodeRootSet::purge();
6741   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6742   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6743 }
6744 
6745 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6746   G1CollectedHeap* _g1h;
6747 
6748 public:
6749   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6750     _g1h(g1h) {}
6751 
6752   void do_code_blob(CodeBlob* cb) {
6753     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6754     if (nm == NULL) {
6755       return;
6756     }
6757 
6758     if (ScavengeRootsInCode) {
6759       _g1h->register_nmethod(nm);
6760     }
6761   }
6762 };
6763 
6764 void G1CollectedHeap::rebuild_strong_code_roots() {
6765   RebuildStrongCodeRootClosure blob_cl(this);
6766   CodeCache::blobs_do(&blob_cl);
6767 }