1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/concurrentMark.hpp"
  29 #include "gc/g1/evacuationInfo.hpp"
  30 #include "gc/g1/g1AllocationContext.hpp"
  31 #include "gc/g1/g1Allocator.hpp"
  32 #include "gc/g1/g1BiasedArray.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1HRPrinter.hpp"
  35 #include "gc/g1/g1InCSetState.hpp"
  36 #include "gc/g1/g1MonitoringSupport.hpp"
  37 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc/g1/g1YCTypes.hpp"
  39 #include "gc/g1/hSpaceCounters.hpp"
  40 #include "gc/g1/heapRegionManager.hpp"
  41 #include "gc/g1/heapRegionSet.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "memory/memRegion.hpp"
  45 #include "utilities/stack.hpp"
  46 
  47 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  48 // It uses the "Garbage First" heap organization and algorithm, which
  49 // may combine concurrent marking with parallel, incremental compaction of
  50 // heap subsets that will yield large amounts of garbage.
  51 
  52 // Forward declarations
  53 class HeapRegion;
  54 class HRRSCleanupTask;
  55 class GenerationSpec;
  56 class OopsInHeapRegionClosure;
  57 class G1KlassScanClosure;
  58 class G1ParScanThreadState;
  59 class ObjectClosure;
  60 class SpaceClosure;
  61 class CompactibleSpaceClosure;
  62 class Space;
  63 class G1CollectorPolicy;
  64 class GenRemSet;
  65 class G1RemSet;
  66 class HeapRegionRemSetIterator;
  67 class ConcurrentMark;
  68 class ConcurrentMarkThread;
  69 class ConcurrentG1Refine;
  70 class ConcurrentGCTimer;
  71 class GenerationCounters;
  72 class STWGCTimer;
  73 class G1NewTracer;
  74 class G1OldTracer;
  75 class EvacuationFailedInfo;
  76 class nmethod;
  77 class Ticks;
  78 class FlexibleWorkGang;
  79 
  80 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  81 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  82 
  83 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  84 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  85 
  86 class YoungList : public CHeapObj<mtGC> {
  87 private:
  88   G1CollectedHeap* _g1h;
  89 
  90   HeapRegion* _head;
  91 
  92   HeapRegion* _survivor_head;
  93   HeapRegion* _survivor_tail;
  94 
  95   HeapRegion* _curr;
  96 
  97   uint        _length;
  98   uint        _survivor_length;
  99 
 100   size_t      _last_sampled_rs_lengths;
 101   size_t      _sampled_rs_lengths;
 102 
 103   void         empty_list(HeapRegion* list);
 104 
 105 public:
 106   YoungList(G1CollectedHeap* g1h);
 107 
 108   void         push_region(HeapRegion* hr);
 109   void         add_survivor_region(HeapRegion* hr);
 110 
 111   void         empty_list();
 112   bool         is_empty() { return _length == 0; }
 113   uint         length() { return _length; }
 114   uint         eden_length() { return length() - survivor_length(); }
 115   uint         survivor_length() { return _survivor_length; }
 116 
 117   // Currently we do not keep track of the used byte sum for the
 118   // young list and the survivors and it'd be quite a lot of work to
 119   // do so. When we'll eventually replace the young list with
 120   // instances of HeapRegionLinkedList we'll get that for free. So,
 121   // we'll report the more accurate information then.
 122   size_t       eden_used_bytes() {
 123     assert(length() >= survivor_length(), "invariant");
 124     return (size_t) eden_length() * HeapRegion::GrainBytes;
 125   }
 126   size_t       survivor_used_bytes() {
 127     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 128   }
 129 
 130   void rs_length_sampling_init();
 131   bool rs_length_sampling_more();
 132   void rs_length_sampling_next();
 133 
 134   void reset_sampled_info() {
 135     _last_sampled_rs_lengths =   0;
 136   }
 137   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 138 
 139   // for development purposes
 140   void reset_auxilary_lists();
 141   void clear() { _head = NULL; _length = 0; }
 142 
 143   void clear_survivors() {
 144     _survivor_head    = NULL;
 145     _survivor_tail    = NULL;
 146     _survivor_length  = 0;
 147   }
 148 
 149   HeapRegion* first_region() { return _head; }
 150   HeapRegion* first_survivor_region() { return _survivor_head; }
 151   HeapRegion* last_survivor_region() { return _survivor_tail; }
 152 
 153   // debugging
 154   bool          check_list_well_formed();
 155   bool          check_list_empty(bool check_sample = true);
 156   void          print();
 157 };
 158 
 159 // The G1 STW is alive closure.
 160 // An instance is embedded into the G1CH and used as the
 161 // (optional) _is_alive_non_header closure in the STW
 162 // reference processor. It is also extensively used during
 163 // reference processing during STW evacuation pauses.
 164 class G1STWIsAliveClosure: public BoolObjectClosure {
 165   G1CollectedHeap* _g1;
 166 public:
 167   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 168   bool do_object_b(oop p);
 169 };
 170 
 171 class RefineCardTableEntryClosure;
 172 
 173 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 174  private:
 175   void reset_from_card_cache(uint start_idx, size_t num_regions);
 176  public:
 177   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 178 };
 179 
 180 class G1CollectedHeap : public CollectedHeap {
 181   friend class VM_CollectForMetadataAllocation;
 182   friend class VM_G1CollectForAllocation;
 183   friend class VM_G1CollectFull;
 184   friend class VM_G1IncCollectionPause;
 185   friend class VMStructs;
 186   friend class MutatorAllocRegion;
 187   friend class SurvivorGCAllocRegion;
 188   friend class OldGCAllocRegion;
 189 
 190   // Closures used in implementation.
 191   friend class G1ParScanThreadState;
 192   friend class G1ParTask;
 193   friend class G1PLABAllocator;
 194   friend class G1PrepareCompactClosure;
 195 
 196   // Other related classes.
 197   friend class HeapRegionClaimer;
 198 
 199   // Testing classes.
 200   friend class G1CheckCSetFastTableClosure;
 201 
 202 private:
 203   FlexibleWorkGang* _workers;
 204 
 205   static size_t _humongous_object_threshold_in_words;
 206 
 207   // The secondary free list which contains regions that have been
 208   // freed up during the cleanup process. This will be appended to
 209   // the master free list when appropriate.
 210   FreeRegionList _secondary_free_list;
 211 
 212   // It keeps track of the old regions.
 213   HeapRegionSet _old_set;
 214 
 215   // It keeps track of the humongous regions.
 216   HeapRegionSet _humongous_set;
 217 
 218   void eagerly_reclaim_humongous_regions();
 219 
 220   // The number of regions we could create by expansion.
 221   uint _expansion_regions;
 222 
 223   // The block offset table for the G1 heap.
 224   G1BlockOffsetSharedArray* _bot_shared;
 225 
 226   // Tears down the region sets / lists so that they are empty and the
 227   // regions on the heap do not belong to a region set / list. The
 228   // only exception is the humongous set which we leave unaltered. If
 229   // free_list_only is true, it will only tear down the master free
 230   // list. It is called before a Full GC (free_list_only == false) or
 231   // before heap shrinking (free_list_only == true).
 232   void tear_down_region_sets(bool free_list_only);
 233 
 234   // Rebuilds the region sets / lists so that they are repopulated to
 235   // reflect the contents of the heap. The only exception is the
 236   // humongous set which was not torn down in the first place. If
 237   // free_list_only is true, it will only rebuild the master free
 238   // list. It is called after a Full GC (free_list_only == false) or
 239   // after heap shrinking (free_list_only == true).
 240   void rebuild_region_sets(bool free_list_only);
 241 
 242   // Callback for region mapping changed events.
 243   G1RegionMappingChangedListener _listener;
 244 
 245   // The sequence of all heap regions in the heap.
 246   HeapRegionManager _hrm;
 247 
 248   // Handles non-humongous allocations in the G1CollectedHeap.
 249   G1Allocator* _allocator;
 250 
 251   // Outside of GC pauses, the number of bytes used in all regions other
 252   // than the current allocation region(s).
 253   size_t _summary_bytes_used;
 254 
 255   void increase_used(size_t bytes);
 256   void decrease_used(size_t bytes);
 257 
 258   void set_used(size_t bytes);
 259 
 260   // Class that handles archive allocation ranges.
 261   G1ArchiveAllocator* _archive_allocator;
 262 
 263   // Statistics for each allocation context
 264   AllocationContextStats _allocation_context_stats;
 265 
 266   // PLAB sizing policy for survivors.
 267   PLABStats _survivor_plab_stats;
 268 
 269   // PLAB sizing policy for tenured objects.
 270   PLABStats _old_plab_stats;
 271 
 272   // It specifies whether we should attempt to expand the heap after a
 273   // region allocation failure. If heap expansion fails we set this to
 274   // false so that we don't re-attempt the heap expansion (it's likely
 275   // that subsequent expansion attempts will also fail if one fails).
 276   // Currently, it is only consulted during GC and it's reset at the
 277   // start of each GC.
 278   bool _expand_heap_after_alloc_failure;
 279 
 280   // Helper for monitoring and management support.
 281   G1MonitoringSupport* _g1mm;
 282 
 283   // Records whether the region at the given index is (still) a
 284   // candidate for eager reclaim.  Only valid for humongous start
 285   // regions; other regions have unspecified values.  Humongous start
 286   // regions are initialized at start of collection pause, with
 287   // candidates removed from the set as they are found reachable from
 288   // roots or the young generation.
 289   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 290    protected:
 291     bool default_value() const { return false; }
 292    public:
 293     void clear() { G1BiasedMappedArray<bool>::clear(); }
 294     void set_candidate(uint region, bool value) {
 295       set_by_index(region, value);
 296     }
 297     bool is_candidate(uint region) {
 298       return get_by_index(region);
 299     }
 300   };
 301 
 302   HumongousReclaimCandidates _humongous_reclaim_candidates;
 303   // Stores whether during humongous object registration we found candidate regions.
 304   // If not, we can skip a few steps.
 305   bool _has_humongous_reclaim_candidates;
 306 
 307   volatile unsigned _gc_time_stamp;
 308 
 309   size_t* _surviving_young_words;
 310 
 311   G1HRPrinter _hr_printer;
 312 
 313   void setup_surviving_young_words();
 314   void update_surviving_young_words(size_t* surv_young_words);
 315   void cleanup_surviving_young_words();
 316 
 317   // It decides whether an explicit GC should start a concurrent cycle
 318   // instead of doing a STW GC. Currently, a concurrent cycle is
 319   // explicitly started if:
 320   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 321   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 322   // (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 323   // (d) cause == _g1_humongous_allocation
 324   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 325 
 326   // indicates whether we are in young or mixed GC mode
 327   G1CollectorState _collector_state;
 328 
 329   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 330   // concurrent cycles) we have started.
 331   volatile uint _old_marking_cycles_started;
 332 
 333   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 334   // concurrent cycles) we have completed.
 335   volatile uint _old_marking_cycles_completed;
 336 
 337   bool _heap_summary_sent;
 338 
 339   // This is a non-product method that is helpful for testing. It is
 340   // called at the end of a GC and artificially expands the heap by
 341   // allocating a number of dead regions. This way we can induce very
 342   // frequent marking cycles and stress the cleanup / concurrent
 343   // cleanup code more (as all the regions that will be allocated by
 344   // this method will be found dead by the marking cycle).
 345   void allocate_dummy_regions() PRODUCT_RETURN;
 346 
 347   // Clear RSets after a compaction. It also resets the GC time stamps.
 348   void clear_rsets_post_compaction();
 349 
 350   // If the HR printer is active, dump the state of the regions in the
 351   // heap after a compaction.
 352   void print_hrm_post_compaction();
 353 
 354   // Create a memory mapper for auxiliary data structures of the given size and
 355   // translation factor.
 356   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 357                                                          size_t size,
 358                                                          size_t translation_factor);
 359 
 360   double verify(bool guard, const char* msg);
 361   void verify_before_gc();
 362   void verify_after_gc();
 363 
 364   void log_gc_header();
 365   void log_gc_footer(double pause_time_sec);
 366 
 367   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 368 
 369   // These are macros so that, if the assert fires, we get the correct
 370   // line number, file, etc.
 371 
 372 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 373   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 374           (_extra_message_),                                                  \
 375           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 376           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 377           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 378 
 379 #define assert_heap_locked()                                                  \
 380   do {                                                                        \
 381     assert(Heap_lock->owned_by_self(),                                        \
 382            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 383   } while (0)
 384 
 385 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 386   do {                                                                        \
 387     assert(Heap_lock->owned_by_self() ||                                      \
 388            (SafepointSynchronize::is_at_safepoint() &&                        \
 389              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 390            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 391                                         "should be at a safepoint"));         \
 392   } while (0)
 393 
 394 #define assert_heap_locked_and_not_at_safepoint()                             \
 395   do {                                                                        \
 396     assert(Heap_lock->owned_by_self() &&                                      \
 397                                     !SafepointSynchronize::is_at_safepoint(), \
 398           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 399                                        "should not be at a safepoint"));      \
 400   } while (0)
 401 
 402 #define assert_heap_not_locked()                                              \
 403   do {                                                                        \
 404     assert(!Heap_lock->owned_by_self(),                                       \
 405         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 406   } while (0)
 407 
 408 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 409   do {                                                                        \
 410     assert(!Heap_lock->owned_by_self() &&                                     \
 411                                     !SafepointSynchronize::is_at_safepoint(), \
 412       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 413                                    "should not be at a safepoint"));          \
 414   } while (0)
 415 
 416 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 417   do {                                                                        \
 418     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 419               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 420            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 421   } while (0)
 422 
 423 #define assert_not_at_safepoint()                                             \
 424   do {                                                                        \
 425     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 426            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 427   } while (0)
 428 
 429 protected:
 430 
 431   // The young region list.
 432   YoungList*  _young_list;
 433 
 434   // The current policy object for the collector.
 435   G1CollectorPolicy* _g1_policy;
 436 
 437   // This is the second level of trying to allocate a new region. If
 438   // new_region() didn't find a region on the free_list, this call will
 439   // check whether there's anything available on the
 440   // secondary_free_list and/or wait for more regions to appear on
 441   // that list, if _free_regions_coming is set.
 442   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 443 
 444   // Try to allocate a single non-humongous HeapRegion sufficient for
 445   // an allocation of the given word_size. If do_expand is true,
 446   // attempt to expand the heap if necessary to satisfy the allocation
 447   // request. If the region is to be used as an old region or for a
 448   // humongous object, set is_old to true. If not, to false.
 449   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 450 
 451   // Initialize a contiguous set of free regions of length num_regions
 452   // and starting at index first so that they appear as a single
 453   // humongous region.
 454   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 455                                                       uint num_regions,
 456                                                       size_t word_size,
 457                                                       AllocationContext_t context);
 458 
 459   // Attempt to allocate a humongous object of the given size. Return
 460   // NULL if unsuccessful.
 461   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 462 
 463   // The following two methods, allocate_new_tlab() and
 464   // mem_allocate(), are the two main entry points from the runtime
 465   // into the G1's allocation routines. They have the following
 466   // assumptions:
 467   //
 468   // * They should both be called outside safepoints.
 469   //
 470   // * They should both be called without holding the Heap_lock.
 471   //
 472   // * All allocation requests for new TLABs should go to
 473   //   allocate_new_tlab().
 474   //
 475   // * All non-TLAB allocation requests should go to mem_allocate().
 476   //
 477   // * If either call cannot satisfy the allocation request using the
 478   //   current allocating region, they will try to get a new one. If
 479   //   this fails, they will attempt to do an evacuation pause and
 480   //   retry the allocation.
 481   //
 482   // * If all allocation attempts fail, even after trying to schedule
 483   //   an evacuation pause, allocate_new_tlab() will return NULL,
 484   //   whereas mem_allocate() will attempt a heap expansion and/or
 485   //   schedule a Full GC.
 486   //
 487   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 488   //   should never be called with word_size being humongous. All
 489   //   humongous allocation requests should go to mem_allocate() which
 490   //   will satisfy them with a special path.
 491 
 492   virtual HeapWord* allocate_new_tlab(size_t word_size);
 493 
 494   virtual HeapWord* mem_allocate(size_t word_size,
 495                                  bool*  gc_overhead_limit_was_exceeded);
 496 
 497   // The following three methods take a gc_count_before_ret
 498   // parameter which is used to return the GC count if the method
 499   // returns NULL. Given that we are required to read the GC count
 500   // while holding the Heap_lock, and these paths will take the
 501   // Heap_lock at some point, it's easier to get them to read the GC
 502   // count while holding the Heap_lock before they return NULL instead
 503   // of the caller (namely: mem_allocate()) having to also take the
 504   // Heap_lock just to read the GC count.
 505 
 506   // First-level mutator allocation attempt: try to allocate out of
 507   // the mutator alloc region without taking the Heap_lock. This
 508   // should only be used for non-humongous allocations.
 509   inline HeapWord* attempt_allocation(size_t word_size,
 510                                       uint* gc_count_before_ret,
 511                                       uint* gclocker_retry_count_ret);
 512 
 513   // Second-level mutator allocation attempt: take the Heap_lock and
 514   // retry the allocation attempt, potentially scheduling a GC
 515   // pause. This should only be used for non-humongous allocations.
 516   HeapWord* attempt_allocation_slow(size_t word_size,
 517                                     AllocationContext_t context,
 518                                     uint* gc_count_before_ret,
 519                                     uint* gclocker_retry_count_ret);
 520 
 521   // Takes the Heap_lock and attempts a humongous allocation. It can
 522   // potentially schedule a GC pause.
 523   HeapWord* attempt_allocation_humongous(size_t word_size,
 524                                          uint* gc_count_before_ret,
 525                                          uint* gclocker_retry_count_ret);
 526 
 527   // Allocation attempt that should be called during safepoints (e.g.,
 528   // at the end of a successful GC). expect_null_mutator_alloc_region
 529   // specifies whether the mutator alloc region is expected to be NULL
 530   // or not.
 531   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 532                                             AllocationContext_t context,
 533                                             bool expect_null_mutator_alloc_region);
 534 
 535   // These methods are the "callbacks" from the G1AllocRegion class.
 536 
 537   // For mutator alloc regions.
 538   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 539   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 540                                    size_t allocated_bytes);
 541 
 542   // For GC alloc regions.
 543   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 544                                   InCSetState dest);
 545   void retire_gc_alloc_region(HeapRegion* alloc_region,
 546                               size_t allocated_bytes, InCSetState dest);
 547 
 548   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 549   //   inspection request and should collect the entire heap
 550   // - if clear_all_soft_refs is true, all soft references should be
 551   //   cleared during the GC
 552   // - if explicit_gc is false, word_size describes the allocation that
 553   //   the GC should attempt (at least) to satisfy
 554   // - it returns false if it is unable to do the collection due to the
 555   //   GC locker being active, true otherwise
 556   bool do_collection(bool explicit_gc,
 557                      bool clear_all_soft_refs,
 558                      size_t word_size);
 559 
 560   // Callback from VM_G1CollectFull operation.
 561   // Perform a full collection.
 562   virtual void do_full_collection(bool clear_all_soft_refs);
 563 
 564   // Resize the heap if necessary after a full collection.  If this is
 565   // after a collect-for allocation, "word_size" is the allocation size,
 566   // and will be considered part of the used portion of the heap.
 567   void resize_if_necessary_after_full_collection(size_t word_size);
 568 
 569   // Callback from VM_G1CollectForAllocation operation.
 570   // This function does everything necessary/possible to satisfy a
 571   // failed allocation request (including collection, expansion, etc.)
 572   HeapWord* satisfy_failed_allocation(size_t word_size,
 573                                       AllocationContext_t context,
 574                                       bool* succeeded);
 575 
 576   // Attempting to expand the heap sufficiently
 577   // to support an allocation of the given "word_size".  If
 578   // successful, perform the allocation and return the address of the
 579   // allocated block, or else "NULL".
 580   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 581 
 582   // Process any reference objects discovered during
 583   // an incremental evacuation pause.
 584   void process_discovered_references();
 585 
 586   // Enqueue any remaining discovered references
 587   // after processing.
 588   void enqueue_discovered_references();
 589 
 590 public:
 591   FlexibleWorkGang* workers() const { return _workers; }
 592 
 593   G1Allocator* allocator() {
 594     return _allocator;
 595   }
 596 
 597   G1MonitoringSupport* g1mm() {
 598     assert(_g1mm != NULL, "should have been initialized");
 599     return _g1mm;
 600   }
 601 
 602   // Expand the garbage-first heap by at least the given size (in bytes!).
 603   // Returns true if the heap was expanded by the requested amount;
 604   // false otherwise.
 605   // (Rounds up to a HeapRegion boundary.)
 606   bool expand(size_t expand_bytes);
 607 
 608   // Returns the PLAB statistics for a given destination.
 609   inline PLABStats* alloc_buffer_stats(InCSetState dest);
 610 
 611   // Determines PLAB size for a given destination.
 612   inline size_t desired_plab_sz(InCSetState dest);
 613 
 614   inline AllocationContextStats& allocation_context_stats();
 615 
 616   // Do anything common to GC's.
 617   void gc_prologue(bool full);
 618   void gc_epilogue(bool full);
 619 
 620   // Modify the reclaim candidate set and test for presence.
 621   // These are only valid for starts_humongous regions.
 622   inline void set_humongous_reclaim_candidate(uint region, bool value);
 623   inline bool is_humongous_reclaim_candidate(uint region);
 624 
 625   // Remove from the reclaim candidate set.  Also remove from the
 626   // collection set so that later encounters avoid the slow path.
 627   inline void set_humongous_is_live(oop obj);
 628 
 629   // Register the given region to be part of the collection set.
 630   inline void register_humongous_region_with_cset(uint index);
 631   // Register regions with humongous objects (actually on the start region) in
 632   // the in_cset_fast_test table.
 633   void register_humongous_regions_with_cset();
 634   // We register a region with the fast "in collection set" test. We
 635   // simply set to true the array slot corresponding to this region.
 636   void register_young_region_with_cset(HeapRegion* r) {
 637     _in_cset_fast_test.set_in_young(r->hrm_index());
 638   }
 639   void register_old_region_with_cset(HeapRegion* r) {
 640     _in_cset_fast_test.set_in_old(r->hrm_index());
 641   }
 642   void clear_in_cset(const HeapRegion* hr) {
 643     _in_cset_fast_test.clear(hr);
 644   }
 645 
 646   void clear_cset_fast_test() {
 647     _in_cset_fast_test.clear();
 648   }
 649 
 650   // This is called at the start of either a concurrent cycle or a Full
 651   // GC to update the number of old marking cycles started.
 652   void increment_old_marking_cycles_started();
 653 
 654   // This is called at the end of either a concurrent cycle or a Full
 655   // GC to update the number of old marking cycles completed. Those two
 656   // can happen in a nested fashion, i.e., we start a concurrent
 657   // cycle, a Full GC happens half-way through it which ends first,
 658   // and then the cycle notices that a Full GC happened and ends
 659   // too. The concurrent parameter is a boolean to help us do a bit
 660   // tighter consistency checking in the method. If concurrent is
 661   // false, the caller is the inner caller in the nesting (i.e., the
 662   // Full GC). If concurrent is true, the caller is the outer caller
 663   // in this nesting (i.e., the concurrent cycle). Further nesting is
 664   // not currently supported. The end of this call also notifies
 665   // the FullGCCount_lock in case a Java thread is waiting for a full
 666   // GC to happen (e.g., it called System.gc() with
 667   // +ExplicitGCInvokesConcurrent).
 668   void increment_old_marking_cycles_completed(bool concurrent);
 669 
 670   uint old_marking_cycles_completed() {
 671     return _old_marking_cycles_completed;
 672   }
 673 
 674   void register_concurrent_cycle_start(const Ticks& start_time);
 675   void register_concurrent_cycle_end();
 676   void trace_heap_after_concurrent_cycle();
 677 
 678   G1HRPrinter* hr_printer() { return &_hr_printer; }
 679 
 680   // Allocates a new heap region instance.
 681   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 682 
 683   // Allocate the highest free region in the reserved heap. This will commit
 684   // regions as necessary.
 685   HeapRegion* alloc_highest_free_region();
 686 
 687   // Frees a non-humongous region by initializing its contents and
 688   // adding it to the free list that's passed as a parameter (this is
 689   // usually a local list which will be appended to the master free
 690   // list later). The used bytes of freed regions are accumulated in
 691   // pre_used. If par is true, the region's RSet will not be freed
 692   // up. The assumption is that this will be done later.
 693   // The locked parameter indicates if the caller has already taken
 694   // care of proper synchronization. This may allow some optimizations.
 695   void free_region(HeapRegion* hr,
 696                    FreeRegionList* free_list,
 697                    bool par,
 698                    bool locked = false);
 699 
 700   // It dirties the cards that cover the block so that the post
 701   // write barrier never queues anything when updating objects on this
 702   // block. It is assumed (and in fact we assert) that the block
 703   // belongs to a young region.
 704   inline void dirty_young_block(HeapWord* start, size_t word_size);
 705 
 706   // Frees a humongous region by collapsing it into individual regions
 707   // and calling free_region() for each of them. The freed regions
 708   // will be added to the free list that's passed as a parameter (this
 709   // is usually a local list which will be appended to the master free
 710   // list later). The used bytes of freed regions are accumulated in
 711   // pre_used. If par is true, the region's RSet will not be freed
 712   // up. The assumption is that this will be done later.
 713   void free_humongous_region(HeapRegion* hr,
 714                              FreeRegionList* free_list,
 715                              bool par);
 716 
 717   // Facility for allocating in 'archive' regions in high heap memory and
 718   // recording the allocated ranges. These should all be called from the
 719   // VM thread at safepoints, without the heap lock held. They can be used
 720   // to create and archive a set of heap regions which can be mapped at the
 721   // same fixed addresses in a subsequent JVM invocation.
 722   void begin_archive_alloc_range();
 723 
 724   // Check if the requested size would be too large for an archive allocation.
 725   bool is_archive_alloc_too_large(size_t word_size);
 726 
 727   // Allocate memory of the requested size from the archive region. This will
 728   // return NULL if the size is too large or if no memory is available. It
 729   // does not trigger a garbage collection.
 730   HeapWord* archive_mem_allocate(size_t word_size);
 731 
 732   // Optionally aligns the end address and returns the allocated ranges in
 733   // an array of MemRegions in order of ascending addresses.
 734   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 735                                size_t end_alignment_in_bytes = 0);
 736 
 737   // Facility for allocating a fixed range within the heap and marking
 738   // the containing regions as 'archive'. For use at JVM init time, when the
 739   // caller may mmap archived heap data at the specified range(s).
 740   // Verify that the MemRegions specified in the argument array are within the
 741   // reserved heap.
 742   bool check_archive_addresses(MemRegion* range, size_t count);
 743 
 744   // Commit the appropriate G1 regions containing the specified MemRegions
 745   // and mark them as 'archive' regions. The regions in the array must be
 746   // non-overlapping and in order of ascending address.
 747   bool alloc_archive_regions(MemRegion* range, size_t count);
 748 
 749   // Insert any required filler objects in the G1 regions around the specified
 750   // ranges to make the regions parseable. This must be called after
 751   // alloc_archive_regions, and after class loading has occurred.
 752   void fill_archive_regions(MemRegion* range, size_t count);
 753 
 754   // For each of the specified MemRegions, free the containing G1 regions 
 755   // which had been allocated by alloc_archive_regions. This should be called
 756   // rather than fill_archive_regions at JVM init time if the archive file 
 757   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 758   void free_archive_regions(MemRegion* range, size_t count);
 759 
 760 protected:
 761 
 762   // Shrink the garbage-first heap by at most the given size (in bytes!).
 763   // (Rounds down to a HeapRegion boundary.)
 764   virtual void shrink(size_t expand_bytes);
 765   void shrink_helper(size_t expand_bytes);
 766 
 767   #if TASKQUEUE_STATS
 768   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 769   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 770   void reset_taskqueue_stats();
 771   #endif // TASKQUEUE_STATS
 772 
 773   // Schedule the VM operation that will do an evacuation pause to
 774   // satisfy an allocation request of word_size. *succeeded will
 775   // return whether the VM operation was successful (it did do an
 776   // evacuation pause) or not (another thread beat us to it or the GC
 777   // locker was active). Given that we should not be holding the
 778   // Heap_lock when we enter this method, we will pass the
 779   // gc_count_before (i.e., total_collections()) as a parameter since
 780   // it has to be read while holding the Heap_lock. Currently, both
 781   // methods that call do_collection_pause() release the Heap_lock
 782   // before the call, so it's easy to read gc_count_before just before.
 783   HeapWord* do_collection_pause(size_t         word_size,
 784                                 uint           gc_count_before,
 785                                 bool*          succeeded,
 786                                 GCCause::Cause gc_cause);
 787 
 788   void wait_for_root_region_scanning();
 789 
 790   // The guts of the incremental collection pause, executed by the vm
 791   // thread. It returns false if it is unable to do the collection due
 792   // to the GC locker being active, true otherwise
 793   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 794 
 795   // Actually do the work of evacuating the collection set.
 796   void evacuate_collection_set(EvacuationInfo& evacuation_info);
 797 
 798   // The g1 remembered set of the heap.
 799   G1RemSet* _g1_rem_set;
 800 
 801   // A set of cards that cover the objects for which the Rsets should be updated
 802   // concurrently after the collection.
 803   DirtyCardQueueSet _dirty_card_queue_set;
 804 
 805   // The closure used to refine a single card.
 806   RefineCardTableEntryClosure* _refine_cte_cl;
 807 
 808   // A DirtyCardQueueSet that is used to hold cards that contain
 809   // references into the current collection set. This is used to
 810   // update the remembered sets of the regions in the collection
 811   // set in the event of an evacuation failure.
 812   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 813 
 814   // After a collection pause, make the regions in the CS into free
 815   // regions.
 816   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
 817 
 818   // Abandon the current collection set without recording policy
 819   // statistics or updating free lists.
 820   void abandon_collection_set(HeapRegion* cs_head);
 821 
 822   // The concurrent marker (and the thread it runs in.)
 823   ConcurrentMark* _cm;
 824   ConcurrentMarkThread* _cmThread;
 825 
 826   // The concurrent refiner.
 827   ConcurrentG1Refine* _cg1r;
 828 
 829   // The parallel task queues
 830   RefToScanQueueSet *_task_queues;
 831 
 832   // True iff a evacuation has failed in the current collection.
 833   bool _evacuation_failed;
 834 
 835   EvacuationFailedInfo* _evacuation_failed_info_array;
 836 
 837   // Failed evacuations cause some logical from-space objects to have
 838   // forwarding pointers to themselves.  Reset them.
 839   void remove_self_forwarding_pointers();
 840 
 841   struct OopAndMarkOop {
 842    private:
 843     oop _o;
 844     markOop _m;
 845    public:
 846     OopAndMarkOop(oop obj, markOop m) : _o(obj), _m(m) {
 847     }
 848 
 849     void set_mark() {
 850       _o->set_mark(_m);
 851     }
 852   };
 853 
 854   typedef Stack<OopAndMarkOop,mtGC> OopAndMarkOopStack;
 855   // Stores marks with the corresponding oop that we need to preserve during evacuation
 856   // failure.
 857   OopAndMarkOopStack*  _preserved_objs;
 858 
 859   // Preserve the mark of "obj", if necessary, in preparation for its mark
 860   // word being overwritten with a self-forwarding-pointer.
 861   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 862 
 863 #ifndef PRODUCT
 864   // Support for forcing evacuation failures. Analogous to
 865   // PromotionFailureALot for the other collectors.
 866 
 867   // Records whether G1EvacuationFailureALot should be in effect
 868   // for the current GC
 869   bool _evacuation_failure_alot_for_current_gc;
 870 
 871   // Used to record the GC number for interval checking when
 872   // determining whether G1EvaucationFailureALot is in effect
 873   // for the current GC.
 874   size_t _evacuation_failure_alot_gc_number;
 875 
 876   // Count of the number of evacuations between failures.
 877   volatile size_t _evacuation_failure_alot_count;
 878 
 879   // Set whether G1EvacuationFailureALot should be in effect
 880   // for the current GC (based upon the type of GC and which
 881   // command line flags are set);
 882   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 883                                                   bool during_initial_mark,
 884                                                   bool during_marking);
 885 
 886   inline void set_evacuation_failure_alot_for_current_gc();
 887 
 888   // Return true if it's time to cause an evacuation failure.
 889   inline bool evacuation_should_fail();
 890 
 891   // Reset the G1EvacuationFailureALot counters.  Should be called at
 892   // the end of an evacuation pause in which an evacuation failure occurred.
 893   inline void reset_evacuation_should_fail();
 894 #endif // !PRODUCT
 895 
 896   // ("Weak") Reference processing support.
 897   //
 898   // G1 has 2 instances of the reference processor class. One
 899   // (_ref_processor_cm) handles reference object discovery
 900   // and subsequent processing during concurrent marking cycles.
 901   //
 902   // The other (_ref_processor_stw) handles reference object
 903   // discovery and processing during full GCs and incremental
 904   // evacuation pauses.
 905   //
 906   // During an incremental pause, reference discovery will be
 907   // temporarily disabled for _ref_processor_cm and will be
 908   // enabled for _ref_processor_stw. At the end of the evacuation
 909   // pause references discovered by _ref_processor_stw will be
 910   // processed and discovery will be disabled. The previous
 911   // setting for reference object discovery for _ref_processor_cm
 912   // will be re-instated.
 913   //
 914   // At the start of marking:
 915   //  * Discovery by the CM ref processor is verified to be inactive
 916   //    and it's discovered lists are empty.
 917   //  * Discovery by the CM ref processor is then enabled.
 918   //
 919   // At the end of marking:
 920   //  * Any references on the CM ref processor's discovered
 921   //    lists are processed (possibly MT).
 922   //
 923   // At the start of full GC we:
 924   //  * Disable discovery by the CM ref processor and
 925   //    empty CM ref processor's discovered lists
 926   //    (without processing any entries).
 927   //  * Verify that the STW ref processor is inactive and it's
 928   //    discovered lists are empty.
 929   //  * Temporarily set STW ref processor discovery as single threaded.
 930   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 931   //    field.
 932   //  * Finally enable discovery by the STW ref processor.
 933   //
 934   // The STW ref processor is used to record any discovered
 935   // references during the full GC.
 936   //
 937   // At the end of a full GC we:
 938   //  * Enqueue any reference objects discovered by the STW ref processor
 939   //    that have non-live referents. This has the side-effect of
 940   //    making the STW ref processor inactive by disabling discovery.
 941   //  * Verify that the CM ref processor is still inactive
 942   //    and no references have been placed on it's discovered
 943   //    lists (also checked as a precondition during initial marking).
 944 
 945   // The (stw) reference processor...
 946   ReferenceProcessor* _ref_processor_stw;
 947 
 948   STWGCTimer* _gc_timer_stw;
 949   ConcurrentGCTimer* _gc_timer_cm;
 950 
 951   G1OldTracer* _gc_tracer_cm;
 952   G1NewTracer* _gc_tracer_stw;
 953 
 954   // During reference object discovery, the _is_alive_non_header
 955   // closure (if non-null) is applied to the referent object to
 956   // determine whether the referent is live. If so then the
 957   // reference object does not need to be 'discovered' and can
 958   // be treated as a regular oop. This has the benefit of reducing
 959   // the number of 'discovered' reference objects that need to
 960   // be processed.
 961   //
 962   // Instance of the is_alive closure for embedding into the
 963   // STW reference processor as the _is_alive_non_header field.
 964   // Supplying a value for the _is_alive_non_header field is
 965   // optional but doing so prevents unnecessary additions to
 966   // the discovered lists during reference discovery.
 967   G1STWIsAliveClosure _is_alive_closure_stw;
 968 
 969   // The (concurrent marking) reference processor...
 970   ReferenceProcessor* _ref_processor_cm;
 971 
 972   // Instance of the concurrent mark is_alive closure for embedding
 973   // into the Concurrent Marking reference processor as the
 974   // _is_alive_non_header field. Supplying a value for the
 975   // _is_alive_non_header field is optional but doing so prevents
 976   // unnecessary additions to the discovered lists during reference
 977   // discovery.
 978   G1CMIsAliveClosure _is_alive_closure_cm;
 979 
 980   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
 981   HeapRegion** _worker_cset_start_region;
 982 
 983   // Time stamp to validate the regions recorded in the cache
 984   // used by G1CollectedHeap::start_cset_region_for_worker().
 985   // The heap region entry for a given worker is valid iff
 986   // the associated time stamp value matches the current value
 987   // of G1CollectedHeap::_gc_time_stamp.
 988   uint* _worker_cset_start_region_time_stamp;
 989 
 990   volatile bool _free_regions_coming;
 991 
 992 public:
 993 
 994   void set_refine_cte_cl_concurrency(bool concurrent);
 995 
 996   RefToScanQueue *task_queue(uint i) const;
 997 
 998   uint num_task_queues() const;
 999 
1000   // A set of cards where updates happened during the GC
1001   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1002 
1003   // A DirtyCardQueueSet that is used to hold cards that contain
1004   // references into the current collection set. This is used to
1005   // update the remembered sets of the regions in the collection
1006   // set in the event of an evacuation failure.
1007   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1008         { return _into_cset_dirty_card_queue_set; }
1009 
1010   // Create a G1CollectedHeap with the specified policy.
1011   // Must call the initialize method afterwards.
1012   // May not return if something goes wrong.
1013   G1CollectedHeap(G1CollectorPolicy* policy);
1014 
1015   // Initialize the G1CollectedHeap to have the initial and
1016   // maximum sizes and remembered and barrier sets
1017   // specified by the policy object.
1018   jint initialize();
1019 
1020   virtual void stop();
1021 
1022   // Return the (conservative) maximum heap alignment for any G1 heap
1023   static size_t conservative_max_heap_alignment();
1024 
1025   // Does operations required after initialization has been done.
1026   void post_initialize();
1027 
1028   // Initialize weak reference processing.
1029   void ref_processing_init();
1030 
1031   virtual Name kind() const {
1032     return CollectedHeap::G1CollectedHeap;
1033   }
1034 
1035   G1CollectorState* collector_state() { return &_collector_state; }
1036 
1037   // The current policy object for the collector.
1038   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1039 
1040   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1041 
1042   // Adaptive size policy.  No such thing for g1.
1043   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1044 
1045   // The rem set and barrier set.
1046   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1047 
1048   unsigned get_gc_time_stamp() {
1049     return _gc_time_stamp;
1050   }
1051 
1052   inline void reset_gc_time_stamp();
1053 
1054   void check_gc_time_stamps() PRODUCT_RETURN;
1055 
1056   inline void increment_gc_time_stamp();
1057 
1058   // Reset the given region's GC timestamp. If it's starts humongous,
1059   // also reset the GC timestamp of its corresponding
1060   // continues humongous regions too.
1061   void reset_gc_time_stamps(HeapRegion* hr);
1062 
1063   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1064                                   DirtyCardQueue* into_cset_dcq,
1065                                   bool concurrent, uint worker_i);
1066 
1067   // The shared block offset table array.
1068   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1069 
1070   // Reference Processing accessors
1071 
1072   // The STW reference processor....
1073   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1074 
1075   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1076 
1077   // The Concurrent Marking reference processor...
1078   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1079 
1080   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1081   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1082 
1083   virtual size_t capacity() const;
1084   virtual size_t used() const;
1085   // This should be called when we're not holding the heap lock. The
1086   // result might be a bit inaccurate.
1087   size_t used_unlocked() const;
1088   size_t recalculate_used() const;
1089 
1090   // These virtual functions do the actual allocation.
1091   // Some heaps may offer a contiguous region for shared non-blocking
1092   // allocation, via inlined code (by exporting the address of the top and
1093   // end fields defining the extent of the contiguous allocation region.)
1094   // But G1CollectedHeap doesn't yet support this.
1095 
1096   virtual bool is_maximal_no_gc() const {
1097     return _hrm.available() == 0;
1098   }
1099 
1100   // The current number of regions in the heap.
1101   uint num_regions() const { return _hrm.length(); }
1102 
1103   // The max number of regions in the heap.
1104   uint max_regions() const { return _hrm.max_length(); }
1105 
1106   // The number of regions that are completely free.
1107   uint num_free_regions() const { return _hrm.num_free_regions(); }
1108 
1109   MemoryUsage get_auxiliary_data_memory_usage() const {
1110     return _hrm.get_auxiliary_data_memory_usage();
1111   }
1112 
1113   // The number of regions that are not completely free.
1114   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1115 
1116   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1117   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1118   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1119   void verify_dirty_young_regions() PRODUCT_RETURN;
1120 
1121 #ifndef PRODUCT
1122   // Make sure that the given bitmap has no marked objects in the
1123   // range [from,limit). If it does, print an error message and return
1124   // false. Otherwise, just return true. bitmap_name should be "prev"
1125   // or "next".
1126   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
1127                                 HeapWord* from, HeapWord* limit);
1128 
1129   // Verify that the prev / next bitmap range [tams,end) for the given
1130   // region has no marks. Return true if all is well, false if errors
1131   // are detected.
1132   bool verify_bitmaps(const char* caller, HeapRegion* hr);
1133 #endif // PRODUCT
1134 
1135   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
1136   // the given region do not have any spurious marks. If errors are
1137   // detected, print appropriate error messages and crash.
1138   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
1139 
1140   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
1141   // have any spurious marks. If errors are detected, print
1142   // appropriate error messages and crash.
1143   void check_bitmaps(const char* caller) PRODUCT_RETURN;
1144 
1145   // Do sanity check on the contents of the in-cset fast test table.
1146   bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
1147 
1148   // verify_region_sets() performs verification over the region
1149   // lists. It will be compiled in the product code to be used when
1150   // necessary (i.e., during heap verification).
1151   void verify_region_sets();
1152 
1153   // verify_region_sets_optional() is planted in the code for
1154   // list verification in non-product builds (and it can be enabled in
1155   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1156 #if HEAP_REGION_SET_FORCE_VERIFY
1157   void verify_region_sets_optional() {
1158     verify_region_sets();
1159   }
1160 #else // HEAP_REGION_SET_FORCE_VERIFY
1161   void verify_region_sets_optional() { }
1162 #endif // HEAP_REGION_SET_FORCE_VERIFY
1163 
1164 #ifdef ASSERT
1165   bool is_on_master_free_list(HeapRegion* hr) {
1166     return _hrm.is_free(hr);
1167   }
1168 #endif // ASSERT
1169 
1170   // Wrapper for the region list operations that can be called from
1171   // methods outside this class.
1172 
1173   void secondary_free_list_add(FreeRegionList* list) {
1174     _secondary_free_list.add_ordered(list);
1175   }
1176 
1177   void append_secondary_free_list() {
1178     _hrm.insert_list_into_free_list(&_secondary_free_list);
1179   }
1180 
1181   void append_secondary_free_list_if_not_empty_with_lock() {
1182     // If the secondary free list looks empty there's no reason to
1183     // take the lock and then try to append it.
1184     if (!_secondary_free_list.is_empty()) {
1185       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1186       append_secondary_free_list();
1187     }
1188   }
1189 
1190   inline void old_set_add(HeapRegion* hr);
1191   inline void old_set_remove(HeapRegion* hr);
1192 
1193   size_t non_young_capacity_bytes() {
1194     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1195   }
1196 
1197   void set_free_regions_coming();
1198   void reset_free_regions_coming();
1199   bool free_regions_coming() { return _free_regions_coming; }
1200   void wait_while_free_regions_coming();
1201 
1202   // Determine whether the given region is one that we are using as an
1203   // old GC alloc region.
1204   bool is_old_gc_alloc_region(HeapRegion* hr) {
1205     return _allocator->is_retained_old_region(hr);
1206   }
1207 
1208   // Perform a collection of the heap; intended for use in implementing
1209   // "System.gc".  This probably implies as full a collection as the
1210   // "CollectedHeap" supports.
1211   virtual void collect(GCCause::Cause cause);
1212 
1213   // The same as above but assume that the caller holds the Heap_lock.
1214   void collect_locked(GCCause::Cause cause);
1215 
1216   virtual bool copy_allocation_context_stats(const jint* contexts,
1217                                              jlong* totals,
1218                                              jbyte* accuracy,
1219                                              jint len);
1220 
1221   // True iff an evacuation has failed in the most-recent collection.
1222   bool evacuation_failed() { return _evacuation_failed; }
1223 
1224   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1225   void prepend_to_freelist(FreeRegionList* list);
1226   void decrement_summary_bytes(size_t bytes);
1227 
1228   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1229   virtual bool is_in(const void* p) const;
1230 #ifdef ASSERT
1231   // Returns whether p is in one of the available areas of the heap. Slow but
1232   // extensive version.
1233   bool is_in_exact(const void* p) const;
1234 #endif
1235 
1236   // Return "TRUE" iff the given object address is within the collection
1237   // set. Slow implementation.
1238   bool obj_in_cs(oop obj);
1239 
1240   inline bool is_in_cset(const HeapRegion *hr);
1241   inline bool is_in_cset(oop obj);
1242 
1243   inline bool is_in_cset_or_humongous(const oop obj);
1244 
1245  private:
1246   // This array is used for a quick test on whether a reference points into
1247   // the collection set or not. Each of the array's elements denotes whether the
1248   // corresponding region is in the collection set or not.
1249   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1250 
1251  public:
1252 
1253   inline InCSetState in_cset_state(const oop obj);
1254 
1255   // Return "TRUE" iff the given object address is in the reserved
1256   // region of g1.
1257   bool is_in_g1_reserved(const void* p) const {
1258     return _hrm.reserved().contains(p);
1259   }
1260 
1261   // Returns a MemRegion that corresponds to the space that has been
1262   // reserved for the heap
1263   MemRegion g1_reserved() const {
1264     return _hrm.reserved();
1265   }
1266 
1267   virtual bool is_in_closed_subset(const void* p) const;
1268 
1269   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1270     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1271   }
1272 
1273   // This resets the card table to all zeros.  It is used after
1274   // a collection pause which used the card table to claim cards.
1275   void cleanUpCardTable();
1276 
1277   // Iteration functions.
1278 
1279   // Iterate over all objects, calling "cl.do_object" on each.
1280   virtual void object_iterate(ObjectClosure* cl);
1281 
1282   virtual void safe_object_iterate(ObjectClosure* cl) {
1283     object_iterate(cl);
1284   }
1285 
1286   // Iterate over heap regions, in address order, terminating the
1287   // iteration early if the "doHeapRegion" method returns "true".
1288   void heap_region_iterate(HeapRegionClosure* blk) const;
1289 
1290   // Return the region with the given index. It assumes the index is valid.
1291   inline HeapRegion* region_at(uint index) const;
1292 
1293   // Calculate the region index of the given address. Given address must be
1294   // within the heap.
1295   inline uint addr_to_region(HeapWord* addr) const;
1296 
1297   inline HeapWord* bottom_addr_for_region(uint index) const;
1298 
1299   // Iterate over the heap regions in parallel. Assumes that this will be called
1300   // in parallel by ParallelGCThreads worker threads with distinct worker ids
1301   // in the range [0..max(ParallelGCThreads-1, 1)]. Applies "blk->doHeapRegion"
1302   // to each of the regions, by attempting to claim the region using the
1303   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1304   // region. The concurrent argument should be set to true if iteration is
1305   // performed concurrently, during which no assumptions are made for consistent
1306   // attributes of the heap regions (as they might be modified while iterating).
1307   void heap_region_par_iterate(HeapRegionClosure* cl,
1308                                uint worker_id,
1309                                HeapRegionClaimer* hrclaimer,
1310                                bool concurrent = false) const;
1311 
1312   // Clear the cached cset start regions and (more importantly)
1313   // the time stamps. Called when we reset the GC time stamp.
1314   void clear_cset_start_regions();
1315 
1316   // Given the id of a worker, obtain or calculate a suitable
1317   // starting region for iterating over the current collection set.
1318   HeapRegion* start_cset_region_for_worker(uint worker_i);
1319 
1320   // Iterate over the regions (if any) in the current collection set.
1321   void collection_set_iterate(HeapRegionClosure* blk);
1322 
1323   // As above but starting from region r
1324   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1325 
1326   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1327 
1328   // Returns the HeapRegion that contains addr. addr must not be NULL.
1329   template <class T>
1330   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1331 
1332   // Returns the HeapRegion that contains addr. addr must not be NULL.
1333   // If addr is within a humongous continues region, it returns its humongous start region.
1334   template <class T>
1335   inline HeapRegion* heap_region_containing(const T addr) const;
1336 
1337   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1338   // each address in the (reserved) heap is a member of exactly
1339   // one block.  The defining characteristic of a block is that it is
1340   // possible to find its size, and thus to progress forward to the next
1341   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1342   // represent Java objects, or they might be free blocks in a
1343   // free-list-based heap (or subheap), as long as the two kinds are
1344   // distinguishable and the size of each is determinable.
1345 
1346   // Returns the address of the start of the "block" that contains the
1347   // address "addr".  We say "blocks" instead of "object" since some heaps
1348   // may not pack objects densely; a chunk may either be an object or a
1349   // non-object.
1350   virtual HeapWord* block_start(const void* addr) const;
1351 
1352   // Requires "addr" to be the start of a chunk, and returns its size.
1353   // "addr + size" is required to be the start of a new chunk, or the end
1354   // of the active area of the heap.
1355   virtual size_t block_size(const HeapWord* addr) const;
1356 
1357   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1358   // the block is an object.
1359   virtual bool block_is_obj(const HeapWord* addr) const;
1360 
1361   // Section on thread-local allocation buffers (TLABs)
1362   // See CollectedHeap for semantics.
1363 
1364   bool supports_tlab_allocation() const;
1365   size_t tlab_capacity(Thread* ignored) const;
1366   size_t tlab_used(Thread* ignored) const;
1367   size_t max_tlab_size() const;
1368   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1369 
1370   // Can a compiler initialize a new object without store barriers?
1371   // This permission only extends from the creation of a new object
1372   // via a TLAB up to the first subsequent safepoint. If such permission
1373   // is granted for this heap type, the compiler promises to call
1374   // defer_store_barrier() below on any slow path allocation of
1375   // a new object for which such initializing store barriers will
1376   // have been elided. G1, like CMS, allows this, but should be
1377   // ready to provide a compensating write barrier as necessary
1378   // if that storage came out of a non-young region. The efficiency
1379   // of this implementation depends crucially on being able to
1380   // answer very efficiently in constant time whether a piece of
1381   // storage in the heap comes from a young region or not.
1382   // See ReduceInitialCardMarks.
1383   virtual bool can_elide_tlab_store_barriers() const {
1384     return true;
1385   }
1386 
1387   virtual bool card_mark_must_follow_store() const {
1388     return true;
1389   }
1390 
1391   inline bool is_in_young(const oop obj);
1392 
1393   virtual bool is_scavengable(const void* addr);
1394 
1395   // We don't need barriers for initializing stores to objects
1396   // in the young gen: for the SATB pre-barrier, there is no
1397   // pre-value that needs to be remembered; for the remembered-set
1398   // update logging post-barrier, we don't maintain remembered set
1399   // information for young gen objects.
1400   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1401 
1402   // Returns "true" iff the given word_size is "very large".
1403   static bool is_humongous(size_t word_size) {
1404     // Note this has to be strictly greater-than as the TLABs
1405     // are capped at the humongous threshold and we want to
1406     // ensure that we don't try to allocate a TLAB as
1407     // humongous and that we don't allocate a humongous
1408     // object in a TLAB.
1409     return word_size > _humongous_object_threshold_in_words;
1410   }
1411 
1412   // Returns the humongous threshold for a specific region size
1413   static size_t humongous_threshold_for(size_t region_size) {
1414     return (region_size / 2);
1415   }
1416 
1417   // Update mod union table with the set of dirty cards.
1418   void updateModUnion();
1419 
1420   // Set the mod union bits corresponding to the given memRegion.  Note
1421   // that this is always a safe operation, since it doesn't clear any
1422   // bits.
1423   void markModUnionRange(MemRegion mr);
1424 
1425   // Print the maximum heap capacity.
1426   virtual size_t max_capacity() const;
1427 
1428   virtual jlong millis_since_last_gc();
1429 
1430 
1431   // Convenience function to be used in situations where the heap type can be
1432   // asserted to be this type.
1433   static G1CollectedHeap* heap();
1434 
1435   void set_region_short_lived_locked(HeapRegion* hr);
1436   // add appropriate methods for any other surv rate groups
1437 
1438   YoungList* young_list() const { return _young_list; }
1439 
1440   // debugging
1441   bool check_young_list_well_formed() {
1442     return _young_list->check_list_well_formed();
1443   }
1444 
1445   bool check_young_list_empty(bool check_heap,
1446                               bool check_sample = true);
1447 
1448   // *** Stuff related to concurrent marking.  It's not clear to me that so
1449   // many of these need to be public.
1450 
1451   // The functions below are helper functions that a subclass of
1452   // "CollectedHeap" can use in the implementation of its virtual
1453   // functions.
1454   // This performs a concurrent marking of the live objects in a
1455   // bitmap off to the side.
1456   void doConcurrentMark();
1457 
1458   bool isMarkedPrev(oop obj) const;
1459   bool isMarkedNext(oop obj) const;
1460 
1461   // Determine if an object is dead, given the object and also
1462   // the region to which the object belongs. An object is dead
1463   // iff a) it was not allocated since the last mark, b) it
1464   // is not marked, and c) it is not in an archive region.
1465   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1466     return
1467       !hr->obj_allocated_since_prev_marking(obj) &&
1468       !isMarkedPrev(obj) &&
1469       !hr->is_archive();
1470   }
1471 
1472   // This function returns true when an object has been
1473   // around since the previous marking and hasn't yet
1474   // been marked during this marking, and is not in an archive region.
1475   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1476     return
1477       !hr->obj_allocated_since_next_marking(obj) &&
1478       !isMarkedNext(obj) &&
1479       !hr->is_archive();
1480   }
1481 
1482   // Determine if an object is dead, given only the object itself.
1483   // This will find the region to which the object belongs and
1484   // then call the region version of the same function.
1485 
1486   // Added if it is NULL it isn't dead.
1487 
1488   inline bool is_obj_dead(const oop obj) const;
1489 
1490   inline bool is_obj_ill(const oop obj) const;
1491 
1492   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1493   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1494   bool is_marked(oop obj, VerifyOption vo);
1495   const char* top_at_mark_start_str(VerifyOption vo);
1496 
1497   ConcurrentMark* concurrent_mark() const { return _cm; }
1498 
1499   // Refinement
1500 
1501   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1502 
1503   // The dirty cards region list is used to record a subset of regions
1504   // whose cards need clearing. The list if populated during the
1505   // remembered set scanning and drained during the card table
1506   // cleanup. Although the methods are reentrant, population/draining
1507   // phases must not overlap. For synchronization purposes the last
1508   // element on the list points to itself.
1509   HeapRegion* _dirty_cards_region_list;
1510   void push_dirty_cards_region(HeapRegion* hr);
1511   HeapRegion* pop_dirty_cards_region();
1512 
1513   // Optimized nmethod scanning support routines
1514 
1515   // Register the given nmethod with the G1 heap.
1516   virtual void register_nmethod(nmethod* nm);
1517 
1518   // Unregister the given nmethod from the G1 heap.
1519   virtual void unregister_nmethod(nmethod* nm);
1520 
1521   // Free up superfluous code root memory.
1522   void purge_code_root_memory();
1523 
1524   // Rebuild the strong code root lists for each region
1525   // after a full GC.
1526   void rebuild_strong_code_roots();
1527 
1528   // Delete entries for dead interned string and clean up unreferenced symbols
1529   // in symbol table, possibly in parallel.
1530   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1531 
1532   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1533   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1534 
1535   // Redirty logged cards in the refinement queue.
1536   void redirty_logged_cards();
1537   // Verification
1538 
1539   // Perform any cleanup actions necessary before allowing a verification.
1540   virtual void prepare_for_verify();
1541 
1542   // Perform verification.
1543 
1544   // vo == UsePrevMarking  -> use "prev" marking information,
1545   // vo == UseNextMarking -> use "next" marking information
1546   // vo == UseMarkWord    -> use the mark word in the object header
1547   //
1548   // NOTE: Only the "prev" marking information is guaranteed to be
1549   // consistent most of the time, so most calls to this should use
1550   // vo == UsePrevMarking.
1551   // Currently, there is only one case where this is called with
1552   // vo == UseNextMarking, which is to verify the "next" marking
1553   // information at the end of remark.
1554   // Currently there is only one place where this is called with
1555   // vo == UseMarkWord, which is to verify the marking during a
1556   // full GC.
1557   void verify(bool silent, VerifyOption vo);
1558 
1559   // Override; it uses the "prev" marking information
1560   virtual void verify(bool silent);
1561 
1562   // The methods below are here for convenience and dispatch the
1563   // appropriate method depending on value of the given VerifyOption
1564   // parameter. The values for that parameter, and their meanings,
1565   // are the same as those above.
1566 
1567   bool is_obj_dead_cond(const oop obj,
1568                         const HeapRegion* hr,
1569                         const VerifyOption vo) const;
1570 
1571   bool is_obj_dead_cond(const oop obj,
1572                         const VerifyOption vo) const;
1573 
1574   G1HeapSummary create_g1_heap_summary();
1575 
1576   // Printing
1577 
1578   virtual void print_on(outputStream* st) const;
1579   virtual void print_extended_on(outputStream* st) const;
1580   virtual void print_on_error(outputStream* st) const;
1581 
1582   virtual void print_gc_threads_on(outputStream* st) const;
1583   virtual void gc_threads_do(ThreadClosure* tc) const;
1584 
1585   // Override
1586   void print_tracing_info() const;
1587 
1588   // The following two methods are helpful for debugging RSet issues.
1589   void print_cset_rsets() PRODUCT_RETURN;
1590   void print_all_rsets() PRODUCT_RETURN;
1591 
1592 public:
1593   size_t pending_card_num();
1594   size_t cards_scanned();
1595 
1596 protected:
1597   size_t _max_heap_capacity;
1598 };
1599 
1600 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP