1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1IHOPControl.hpp"
  33 #include "gc/g1/g1GCPhaseTimes.hpp"
  34 #include "gc/g1/g1YoungGenSizer.hpp"
  35 #include "gc/g1/heapRegion.inline.hpp"
  36 #include "gc/g1/heapRegionRemSet.hpp"
  37 #include "gc/shared/gcPolicyCounters.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/mutexLocker.hpp"
  41 #include "utilities/debug.hpp"
  42 #include "utilities/pair.hpp"
  43 
  44 // Different defaults for different number of GC threads
  45 // They were chosen by running GCOld and SPECjbb on debris with different
  46 //   numbers of GC threads and choosing them based on the results
  47 
  48 // all the same
  49 static double rs_length_diff_defaults[] = {
  50   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  51 };
  52 
  53 static double cost_per_card_ms_defaults[] = {
  54   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  55 };
  56 
  57 // all the same
  58 static double young_cards_per_entry_ratio_defaults[] = {
  59   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  60 };
  61 
  62 static double cost_per_entry_ms_defaults[] = {
  63   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  64 };
  65 
  66 static double cost_per_byte_ms_defaults[] = {
  67   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  68 };
  69 
  70 // these should be pretty consistent
  71 static double constant_other_time_ms_defaults[] = {
  72   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  73 };
  74 
  75 
  76 static double young_other_cost_per_region_ms_defaults[] = {
  77   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  78 };
  79 
  80 static double non_young_other_cost_per_region_ms_defaults[] = {
  81   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  82 };
  83 
  84 G1CollectorPolicy::G1CollectorPolicy() :
  85   _predictor(G1ConfidencePercent / 100.0),
  86 
  87   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  88 
  89   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  91 
  92   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  93   _prev_collection_pause_end_ms(0.0),
  94   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 105   _non_young_other_cost_per_region_ms_seq(
 106                                          new TruncatedSeq(TruncatedSeqLength)),
 107 
 108   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 109   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 110 
 111   _pause_time_target_ms((double) MaxGCPauseMillis),
 112 
 113   _recent_prev_end_times_for_all_gcs_sec(
 114                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 115 
 116   _recent_avg_pause_time_ratio(0.0),
 117   _rs_lengths_prediction(0),
 118   _max_survivor_regions(0),
 119 
 120   // add here any more surv rate groups
 121   _survivors_age_table(true),
 122 
 123   _gc_overhead_perc(0.0),
 124 
 125   _bytes_allocated_in_old_since_last_gc(0),
 126   _ihop_control(NULL),
 127   _initial_mark_to_mixed() {
 128 
 129   // SurvRateGroups below must be initialized after the predictor because they
 130   // indirectly use it through this object passed to their constructor.
 131   _short_lived_surv_rate_group =
 132     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 133   _survivor_surv_rate_group =
 134     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 135 
 136   // Set up the region size and associated fields. Given that the
 137   // policy is created before the heap, we have to set this up here,
 138   // so it's done as soon as possible.
 139 
 140   // It would have been natural to pass initial_heap_byte_size() and
 141   // max_heap_byte_size() to setup_heap_region_size() but those have
 142   // not been set up at this point since they should be aligned with
 143   // the region size. So, there is a circular dependency here. We base
 144   // the region size on the heap size, but the heap size should be
 145   // aligned with the region size. To get around this we use the
 146   // unaligned values for the heap.
 147   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 148   HeapRegionRemSet::setup_remset_size();
 149 
 150   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 151   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 152   clear_ratio_check_data();
 153 
 154   _phase_times = new G1GCPhaseTimes(ParallelGCThreads);
 155 
 156   int index = MIN2(ParallelGCThreads - 1, 7u);
 157 
 158   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 159   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 160   _cost_scan_hcc_seq->add(0.0);
 161   _young_cards_per_entry_ratio_seq->add(
 162                                   young_cards_per_entry_ratio_defaults[index]);
 163   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 164   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 165   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 166   _young_other_cost_per_region_ms_seq->add(
 167                                young_other_cost_per_region_ms_defaults[index]);
 168   _non_young_other_cost_per_region_ms_seq->add(
 169                            non_young_other_cost_per_region_ms_defaults[index]);
 170 
 171   // Below, we might need to calculate the pause time target based on
 172   // the pause interval. When we do so we are going to give G1 maximum
 173   // flexibility and allow it to do pauses when it needs to. So, we'll
 174   // arrange that the pause interval to be pause time target + 1 to
 175   // ensure that a) the pause time target is maximized with respect to
 176   // the pause interval and b) we maintain the invariant that pause
 177   // time target < pause interval. If the user does not want this
 178   // maximum flexibility, they will have to set the pause interval
 179   // explicitly.
 180 
 181   // First make sure that, if either parameter is set, its value is
 182   // reasonable.
 183   guarantee(MaxGCPauseMillis >= 1, "Range checking for MaxGCPauseMillis should guarantee that value is >= 1");
 184 
 185   // Then, if the pause time target parameter was not set, set it to
 186   // the default value.
 187   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 188     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 189       // The default pause time target in G1 is 200ms
 190       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 191     } else {
 192       // We do not allow the pause interval to be set without the
 193       // pause time target
 194       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 195                                     "without setting MaxGCPauseMillis");
 196     }
 197   }
 198 
 199   // Then, if the interval parameter was not set, set it according to
 200   // the pause time target (this will also deal with the case when the
 201   // pause time target is the default value).
 202   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 203     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 204   }
 205   guarantee(GCPauseIntervalMillis >= 1, "Constraint for GCPauseIntervalMillis should guarantee that value is >= 1");
 206   guarantee(GCPauseIntervalMillis > MaxGCPauseMillis, "Constraint for GCPauseIntervalMillis should guarantee that GCPauseIntervalMillis > MaxGCPauseMillis");
 207 
 208   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 209   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 210   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 211 
 212   // start conservatively (around 50ms is about right)
 213   _concurrent_mark_remark_times_ms->add(0.05);
 214   _concurrent_mark_cleanup_times_ms->add(0.20);
 215   _tenuring_threshold = MaxTenuringThreshold;
 216 
 217   assert(GCTimeRatio > 0,
 218          "we should have set it to a default value set_g1_gc_flags() "
 219          "if a user set it to 0");
 220   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 221 
 222   guarantee(G1ReservePercent <= 50, "Range checking should not allow values over 50.");
 223   _reserve_factor = (double) G1ReservePercent / 100.0;
 224   // This will be set when the heap is expanded
 225   // for the first time during initialization.
 226   _reserve_regions = 0;
 227 
 228   _ihop_control = create_ihop_control();
 229 }
 230 
 231 G1CollectorPolicy::~G1CollectorPolicy() {
 232   delete _ihop_control;
 233 }
 234 
 235 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 236   return _predictor.get_new_prediction(seq);
 237 }
 238 
 239 size_t G1CollectorPolicy::get_new_size_prediction(TruncatedSeq const* seq) const {
 240   return (size_t)get_new_prediction(seq);
 241 }
 242 
 243 void G1CollectorPolicy::initialize_alignments() {
 244   _space_alignment = HeapRegion::GrainBytes;
 245   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 246   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 247   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 248 }
 249 
 250 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 251 
 252 void G1CollectorPolicy::post_heap_initialize() {
 253   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 254   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 255   if (max_young_size != MaxNewSize) {
 256     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 257   }
 258 }
 259 
 260 void G1CollectorPolicy::initialize_flags() {
 261   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 262     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 263   }
 264 
 265   guarantee(SurvivorRatio >= 1, "Range checking for SurvivorRatio should guarantee that value is >= 1");
 266 
 267   CollectorPolicy::initialize_flags();
 268   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 269 }
 270 
 271 
 272 void G1CollectorPolicy::init() {
 273   // Set aside an initial future to_space.
 274   _g1 = G1CollectedHeap::heap();
 275   _collection_set = _g1->collection_set();
 276   _collection_set->set_policy(this);
 277 
 278   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 279 
 280   initialize_gc_policy_counters();
 281 
 282   if (adaptive_young_list_length()) {
 283     _young_list_fixed_length = 0;
 284   } else {
 285     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 286   }
 287   _free_regions_at_end_of_collection = _g1->num_free_regions();
 288 
 289   update_young_list_max_and_target_length();
 290   // We may immediately start allocating regions and placing them on the
 291   // collection set list. Initialize the per-collection set info
 292   _collection_set->start_incremental_building();
 293 }
 294 
 295 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 296   phase_times()->note_gc_start(num_active_workers);
 297 }
 298 
 299 // Create the jstat counters for the policy.
 300 void G1CollectorPolicy::initialize_gc_policy_counters() {
 301   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 302 }
 303 
 304 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 305                                          double base_time_ms,
 306                                          uint base_free_regions,
 307                                          double target_pause_time_ms) const {
 308   if (young_length >= base_free_regions) {
 309     // end condition 1: not enough space for the young regions
 310     return false;
 311   }
 312 
 313   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 314   size_t bytes_to_copy =
 315                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 316   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 317   double young_other_time_ms = predict_young_other_time_ms(young_length);
 318   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 319   if (pause_time_ms > target_pause_time_ms) {
 320     // end condition 2: prediction is over the target pause time
 321     return false;
 322   }
 323 
 324   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 325 
 326   // When copying, we will likely need more bytes free than is live in the region.
 327   // Add some safety margin to factor in the confidence of our guess, and the
 328   // natural expected waste.
 329   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 330   // of the calculation: the lower the confidence, the more headroom.
 331   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 332   // copying due to anticipated waste in the PLABs.
 333   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 334   size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 335 
 336   if (expected_bytes_to_copy > free_bytes) {
 337     // end condition 3: out-of-space
 338     return false;
 339   }
 340 
 341   // success!
 342   return true;
 343 }
 344 
 345 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 346   // re-calculate the necessary reserve
 347   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 348   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 349   // smaller than 1.0) we'll get 1.
 350   _reserve_regions = (uint) ceil(reserve_regions_d);
 351 
 352   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 353 
 354   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 355 }
 356 
 357 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 358                                                        uint base_min_length) const {
 359   uint desired_min_length = 0;
 360   if (adaptive_young_list_length()) {
 361     if (_alloc_rate_ms_seq->num() > 3) {
 362       double now_sec = os::elapsedTime();
 363       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 364       double alloc_rate_ms = predict_alloc_rate_ms();
 365       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 366     } else {
 367       // otherwise we don't have enough info to make the prediction
 368     }
 369   }
 370   desired_min_length += base_min_length;
 371   // make sure we don't go below any user-defined minimum bound
 372   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 373 }
 374 
 375 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 376   // Here, we might want to also take into account any additional
 377   // constraints (i.e., user-defined minimum bound). Currently, we
 378   // effectively don't set this bound.
 379   return _young_gen_sizer->max_desired_young_length();
 380 }
 381 
 382 uint G1CollectorPolicy::update_young_list_max_and_target_length() {
 383   return update_young_list_max_and_target_length(predict_rs_lengths());
 384 }
 385 
 386 uint G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 387   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 388   update_max_gc_locker_expansion();
 389   return unbounded_target_length;
 390 }
 391 
 392 uint G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 393   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 394   _young_list_target_length = young_lengths.first;
 395   return young_lengths.second;
 396 }
 397 
 398 G1CollectorPolicy::YoungTargetLengths G1CollectorPolicy::young_list_target_lengths(size_t rs_lengths) const {
 399   YoungTargetLengths result;
 400 
 401   // Calculate the absolute and desired min bounds first.
 402 
 403   // This is how many young regions we already have (currently: the survivors).
 404   const uint base_min_length = _g1->young_list()->survivor_length();
 405   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 406   // This is the absolute minimum young length. Ensure that we
 407   // will at least have one eden region available for allocation.
 408   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 409   // If we shrank the young list target it should not shrink below the current size.
 410   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 411   // Calculate the absolute and desired max bounds.
 412 
 413   uint desired_max_length = calculate_young_list_desired_max_length();
 414 
 415   uint young_list_target_length = 0;
 416   if (adaptive_young_list_length()) {
 417     if (collector_state()->gcs_are_young()) {
 418       young_list_target_length =
 419                         calculate_young_list_target_length(rs_lengths,
 420                                                            base_min_length,
 421                                                            desired_min_length,
 422                                                            desired_max_length);
 423     } else {
 424       // Don't calculate anything and let the code below bound it to
 425       // the desired_min_length, i.e., do the next GC as soon as
 426       // possible to maximize how many old regions we can add to it.
 427     }
 428   } else {
 429     // The user asked for a fixed young gen so we'll fix the young gen
 430     // whether the next GC is young or mixed.
 431     young_list_target_length = _young_list_fixed_length;
 432   }
 433 
 434   result.second = young_list_target_length;
 435 
 436   // We will try our best not to "eat" into the reserve.
 437   uint absolute_max_length = 0;
 438   if (_free_regions_at_end_of_collection > _reserve_regions) {
 439     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 440   }
 441   if (desired_max_length > absolute_max_length) {
 442     desired_max_length = absolute_max_length;
 443   }
 444 
 445   // Make sure we don't go over the desired max length, nor under the
 446   // desired min length. In case they clash, desired_min_length wins
 447   // which is why that test is second.
 448   if (young_list_target_length > desired_max_length) {
 449     young_list_target_length = desired_max_length;
 450   }
 451   if (young_list_target_length < desired_min_length) {
 452     young_list_target_length = desired_min_length;
 453   }
 454 
 455   assert(young_list_target_length > base_min_length,
 456          "we should be able to allocate at least one eden region");
 457   assert(young_list_target_length >= absolute_min_length, "post-condition");
 458 
 459   result.first = young_list_target_length;
 460   return result;
 461 }
 462 
 463 uint
 464 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 465                                                      uint base_min_length,
 466                                                      uint desired_min_length,
 467                                                      uint desired_max_length) const {
 468   assert(adaptive_young_list_length(), "pre-condition");
 469   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 470 
 471   // In case some edge-condition makes the desired max length too small...
 472   if (desired_max_length <= desired_min_length) {
 473     return desired_min_length;
 474   }
 475 
 476   // We'll adjust min_young_length and max_young_length not to include
 477   // the already allocated young regions (i.e., so they reflect the
 478   // min and max eden regions we'll allocate). The base_min_length
 479   // will be reflected in the predictions by the
 480   // survivor_regions_evac_time prediction.
 481   assert(desired_min_length > base_min_length, "invariant");
 482   uint min_young_length = desired_min_length - base_min_length;
 483   assert(desired_max_length > base_min_length, "invariant");
 484   uint max_young_length = desired_max_length - base_min_length;
 485 
 486   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 487   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 488   size_t pending_cards = get_new_size_prediction(_pending_cards_seq);
 489   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 490   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 491   double base_time_ms =
 492     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 493     survivor_regions_evac_time;
 494   uint available_free_regions = _free_regions_at_end_of_collection;
 495   uint base_free_regions = 0;
 496   if (available_free_regions > _reserve_regions) {
 497     base_free_regions = available_free_regions - _reserve_regions;
 498   }
 499 
 500   // Here, we will make sure that the shortest young length that
 501   // makes sense fits within the target pause time.
 502 
 503   if (predict_will_fit(min_young_length, base_time_ms,
 504                        base_free_regions, target_pause_time_ms)) {
 505     // The shortest young length will fit into the target pause time;
 506     // we'll now check whether the absolute maximum number of young
 507     // regions will fit in the target pause time. If not, we'll do
 508     // a binary search between min_young_length and max_young_length.
 509     if (predict_will_fit(max_young_length, base_time_ms,
 510                          base_free_regions, target_pause_time_ms)) {
 511       // The maximum young length will fit into the target pause time.
 512       // We are done so set min young length to the maximum length (as
 513       // the result is assumed to be returned in min_young_length).
 514       min_young_length = max_young_length;
 515     } else {
 516       // The maximum possible number of young regions will not fit within
 517       // the target pause time so we'll search for the optimal
 518       // length. The loop invariants are:
 519       //
 520       // min_young_length < max_young_length
 521       // min_young_length is known to fit into the target pause time
 522       // max_young_length is known not to fit into the target pause time
 523       //
 524       // Going into the loop we know the above hold as we've just
 525       // checked them. Every time around the loop we check whether
 526       // the middle value between min_young_length and
 527       // max_young_length fits into the target pause time. If it
 528       // does, it becomes the new min. If it doesn't, it becomes
 529       // the new max. This way we maintain the loop invariants.
 530 
 531       assert(min_young_length < max_young_length, "invariant");
 532       uint diff = (max_young_length - min_young_length) / 2;
 533       while (diff > 0) {
 534         uint young_length = min_young_length + diff;
 535         if (predict_will_fit(young_length, base_time_ms,
 536                              base_free_regions, target_pause_time_ms)) {
 537           min_young_length = young_length;
 538         } else {
 539           max_young_length = young_length;
 540         }
 541         assert(min_young_length <  max_young_length, "invariant");
 542         diff = (max_young_length - min_young_length) / 2;
 543       }
 544       // The results is min_young_length which, according to the
 545       // loop invariants, should fit within the target pause time.
 546 
 547       // These are the post-conditions of the binary search above:
 548       assert(min_young_length < max_young_length,
 549              "otherwise we should have discovered that max_young_length "
 550              "fits into the pause target and not done the binary search");
 551       assert(predict_will_fit(min_young_length, base_time_ms,
 552                               base_free_regions, target_pause_time_ms),
 553              "min_young_length, the result of the binary search, should "
 554              "fit into the pause target");
 555       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 556                                base_free_regions, target_pause_time_ms),
 557              "min_young_length, the result of the binary search, should be "
 558              "optimal, so no larger length should fit into the pause target");
 559     }
 560   } else {
 561     // Even the minimum length doesn't fit into the pause time
 562     // target, return it as the result nevertheless.
 563   }
 564   return base_min_length + min_young_length;
 565 }
 566 
 567 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 568   double survivor_regions_evac_time = 0.0;
 569   for (HeapRegion * r = _g1->young_list()->first_survivor_region();
 570        r != NULL && r != _g1->young_list()->last_survivor_region()->get_next_young_region();
 571        r = r->get_next_young_region()) {
 572     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 573   }
 574   return survivor_regions_evac_time;
 575 }
 576 
 577 void G1CollectorPolicy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
 578   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 579 
 580   if (rs_lengths > _rs_lengths_prediction) {
 581     // add 10% to avoid having to recalculate often
 582     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 583     update_rs_lengths_prediction(rs_lengths_prediction);
 584 
 585     update_young_list_max_and_target_length(rs_lengths_prediction);
 586   }
 587 }
 588 
 589 void G1CollectorPolicy::update_rs_lengths_prediction() {
 590   update_rs_lengths_prediction(predict_rs_lengths());
 591 }
 592 
 593 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 594   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 595     _rs_lengths_prediction = prediction;
 596   }
 597 }
 598 
 599 #ifndef PRODUCT
 600 bool G1CollectorPolicy::verify_young_ages() {
 601   HeapRegion* head = _g1->young_list()->first_region();
 602   return
 603     verify_young_ages(head, _short_lived_surv_rate_group);
 604   // also call verify_young_ages on any additional surv rate groups
 605 }
 606 
 607 bool
 608 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 609                                      SurvRateGroup *surv_rate_group) {
 610   guarantee( surv_rate_group != NULL, "pre-condition" );
 611 
 612   const char* name = surv_rate_group->name();
 613   bool ret = true;
 614   int prev_age = -1;
 615 
 616   for (HeapRegion* curr = head;
 617        curr != NULL;
 618        curr = curr->get_next_young_region()) {
 619     SurvRateGroup* group = curr->surv_rate_group();
 620     if (group == NULL && !curr->is_survivor()) {
 621       log_error(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 622       ret = false;
 623     }
 624 
 625     if (surv_rate_group == group) {
 626       int age = curr->age_in_surv_rate_group();
 627 
 628       if (age < 0) {
 629         log_error(gc, verify)("## %s: encountered negative age", name);
 630         ret = false;
 631       }
 632 
 633       if (age <= prev_age) {
 634         log_error(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 635         ret = false;
 636       }
 637       prev_age = age;
 638     }
 639   }
 640 
 641   return ret;
 642 }
 643 #endif // PRODUCT
 644 
 645 void G1CollectorPolicy::record_full_collection_start() {
 646   _full_collection_start_sec = os::elapsedTime();
 647   // Release the future to-space so that it is available for compaction into.
 648   collector_state()->set_full_collection(true);
 649 }
 650 
 651 void G1CollectorPolicy::record_full_collection_end() {
 652   // Consider this like a collection pause for the purposes of allocation
 653   // since last pause.
 654   double end_sec = os::elapsedTime();
 655   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 656   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 657 
 658   update_recent_gc_times(end_sec, full_gc_time_ms);
 659 
 660   collector_state()->set_full_collection(false);
 661 
 662   // "Nuke" the heuristics that control the young/mixed GC
 663   // transitions and make sure we start with young GCs after the Full GC.
 664   collector_state()->set_gcs_are_young(true);
 665   collector_state()->set_last_young_gc(false);
 666   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 667   collector_state()->set_during_initial_mark_pause(false);
 668   collector_state()->set_in_marking_window(false);
 669   collector_state()->set_in_marking_window_im(false);
 670 
 671   _short_lived_surv_rate_group->start_adding_regions();
 672   // also call this on any additional surv rate groups
 673 
 674   _free_regions_at_end_of_collection = _g1->num_free_regions();
 675   // Reset survivors SurvRateGroup.
 676   _survivor_surv_rate_group->reset();
 677   update_young_list_max_and_target_length();
 678   update_rs_lengths_prediction();
 679   cset_chooser()->clear();
 680 
 681   _bytes_allocated_in_old_since_last_gc = 0;
 682 
 683   record_pause(FullGC, _full_collection_start_sec, end_sec);
 684 }
 685 
 686 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 687   // We only need to do this here as the policy will only be applied
 688   // to the GC we're about to start. so, no point is calculating this
 689   // every time we calculate / recalculate the target young length.
 690   update_survivors_policy();
 691 
 692   assert(_g1->used() == _g1->recalculate_used(),
 693          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 694          _g1->used(), _g1->recalculate_used());
 695 
 696   phase_times()->record_cur_collection_start_sec(start_time_sec);
 697   _pending_cards = _g1->pending_card_num();
 698 
 699   _collection_set->reset_bytes_used_before();
 700   _bytes_copied_during_gc = 0;
 701 
 702   collector_state()->set_last_gc_was_young(false);
 703 
 704   // do that for any other surv rate groups
 705   _short_lived_surv_rate_group->stop_adding_regions();
 706   _survivors_age_table.clear();
 707 
 708   assert( verify_young_ages(), "region age verification" );
 709 }
 710 
 711 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 712                                                    mark_init_elapsed_time_ms) {
 713   collector_state()->set_during_marking(true);
 714   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 715   collector_state()->set_during_initial_mark_pause(false);
 716 }
 717 
 718 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 719   _mark_remark_start_sec = os::elapsedTime();
 720   collector_state()->set_during_marking(false);
 721 }
 722 
 723 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 724   double end_time_sec = os::elapsedTime();
 725   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 726   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 727   _prev_collection_pause_end_ms += elapsed_time_ms;
 728 
 729   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 730 }
 731 
 732 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 733   _mark_cleanup_start_sec = os::elapsedTime();
 734 }
 735 
 736 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 737   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 738                                                               "skip last young-only gc");
 739   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 740   // We skip the marking phase.
 741   if (!should_continue_with_reclaim) {
 742     abort_time_to_mixed_tracking();
 743   }
 744   collector_state()->set_in_marking_window(false);
 745 }
 746 
 747 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 748   return phase_times()->average_time_ms(phase);
 749 }
 750 
 751 double G1CollectorPolicy::young_other_time_ms() const {
 752   return phase_times()->young_cset_choice_time_ms() +
 753          phase_times()->young_free_cset_time_ms();
 754 }
 755 
 756 double G1CollectorPolicy::non_young_other_time_ms() const {
 757   return phase_times()->non_young_cset_choice_time_ms() +
 758          phase_times()->non_young_free_cset_time_ms();
 759 
 760 }
 761 
 762 double G1CollectorPolicy::other_time_ms(double pause_time_ms) const {
 763   return pause_time_ms -
 764          average_time_ms(G1GCPhaseTimes::UpdateRS) -
 765          average_time_ms(G1GCPhaseTimes::ScanRS) -
 766          average_time_ms(G1GCPhaseTimes::ObjCopy) -
 767          average_time_ms(G1GCPhaseTimes::Termination);
 768 }
 769 
 770 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 771   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 772 }
 773 
 774 CollectionSetChooser* G1CollectorPolicy::cset_chooser() const {
 775   return _collection_set->cset_chooser();
 776 }
 777 
 778 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 779   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 780 }
 781 
 782 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 783   if (about_to_start_mixed_phase()) {
 784     return false;
 785   }
 786 
 787   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 788 
 789   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 790   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 791   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 792 
 793   bool result = false;
 794   if (marking_request_bytes > marking_initiating_used_threshold) {
 795     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 796     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 797                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 798                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 799   }
 800 
 801   return result;
 802 }
 803 
 804 // Anything below that is considered to be zero
 805 #define MIN_TIMER_GRANULARITY 0.0000001
 806 
 807 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 808   double end_time_sec = os::elapsedTime();
 809 
 810   size_t cur_used_bytes = _g1->used();
 811   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 812   bool last_pause_included_initial_mark = false;
 813   bool update_stats = !_g1->evacuation_failed();
 814 
 815   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 816 
 817   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 818 
 819   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 820   if (last_pause_included_initial_mark) {
 821     record_concurrent_mark_init_end(0.0);
 822   } else {
 823     maybe_start_marking();
 824   }
 825 
 826   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 827   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 828     // This usually happens due to the timer not having the required
 829     // granularity. Some Linuxes are the usual culprits.
 830     // We'll just set it to something (arbitrarily) small.
 831     app_time_ms = 1.0;
 832   }
 833 
 834   if (update_stats) {
 835     // We maintain the invariant that all objects allocated by mutator
 836     // threads will be allocated out of eden regions. So, we can use
 837     // the eden region number allocated since the previous GC to
 838     // calculate the application's allocate rate. The only exception
 839     // to that is humongous objects that are allocated separately. But
 840     // given that humongous object allocations do not really affect
 841     // either the pause's duration nor when the next pause will take
 842     // place we can safely ignore them here.
 843     uint regions_allocated = _collection_set->eden_region_length();
 844     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 845     _alloc_rate_ms_seq->add(alloc_rate_ms);
 846 
 847     double interval_ms =
 848       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 849     update_recent_gc_times(end_time_sec, pause_time_ms);
 850     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 851     if (recent_avg_pause_time_ratio() < 0.0 ||
 852         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 853       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
 854       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
 855       if (_recent_avg_pause_time_ratio < 0.0) {
 856         _recent_avg_pause_time_ratio = 0.0;
 857       } else {
 858         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
 859         _recent_avg_pause_time_ratio = 1.0;
 860       }
 861     }
 862 
 863     // Compute the ratio of just this last pause time to the entire time range stored
 864     // in the vectors. Comparing this pause to the entire range, rather than only the
 865     // most recent interval, has the effect of smoothing over a possible transient 'burst'
 866     // of more frequent pauses that don't really reflect a change in heap occupancy.
 867     // This reduces the likelihood of a needless heap expansion being triggered.
 868     _last_pause_time_ratio =
 869       (pause_time_ms * _recent_prev_end_times_for_all_gcs_sec->num()) / interval_ms;
 870   }
 871 
 872   bool new_in_marking_window = collector_state()->in_marking_window();
 873   bool new_in_marking_window_im = false;
 874   if (last_pause_included_initial_mark) {
 875     new_in_marking_window = true;
 876     new_in_marking_window_im = true;
 877   }
 878 
 879   if (collector_state()->last_young_gc()) {
 880     // This is supposed to to be the "last young GC" before we start
 881     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
 882     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
 883 
 884     if (next_gc_should_be_mixed("start mixed GCs",
 885                                 "do not start mixed GCs")) {
 886       collector_state()->set_gcs_are_young(false);
 887     } else {
 888       // We aborted the mixed GC phase early.
 889       abort_time_to_mixed_tracking();
 890     }
 891 
 892     collector_state()->set_last_young_gc(false);
 893   }
 894 
 895   if (!collector_state()->last_gc_was_young()) {
 896     // This is a mixed GC. Here we decide whether to continue doing
 897     // mixed GCs or not.
 898     if (!next_gc_should_be_mixed("continue mixed GCs",
 899                                  "do not continue mixed GCs")) {
 900       collector_state()->set_gcs_are_young(true);
 901 
 902       maybe_start_marking();
 903     }
 904   }
 905 
 906   _short_lived_surv_rate_group->start_adding_regions();
 907   // Do that for any other surv rate groups
 908 
 909   double scan_hcc_time_ms = ConcurrentG1Refine::hot_card_cache_enabled() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
 910 
 911   if (update_stats) {
 912     double cost_per_card_ms = 0.0;
 913     if (_pending_cards > 0) {
 914       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
 915       _cost_per_card_ms_seq->add(cost_per_card_ms);
 916     }
 917     _cost_scan_hcc_seq->add(scan_hcc_time_ms);
 918 
 919     double cost_per_entry_ms = 0.0;
 920     if (cards_scanned > 10) {
 921       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
 922       if (collector_state()->last_gc_was_young()) {
 923         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
 924       } else {
 925         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
 926       }
 927     }
 928 
 929     if (_max_rs_lengths > 0) {
 930       double cards_per_entry_ratio =
 931         (double) cards_scanned / (double) _max_rs_lengths;
 932       if (collector_state()->last_gc_was_young()) {
 933         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
 934       } else {
 935         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
 936       }
 937     }
 938 
 939     // This is defensive. For a while _max_rs_lengths could get
 940     // smaller than _recorded_rs_lengths which was causing
 941     // rs_length_diff to get very large and mess up the RSet length
 942     // predictions. The reason was unsafe concurrent updates to the
 943     // _inc_cset_recorded_rs_lengths field which the code below guards
 944     // against (see CR 7118202). This bug has now been fixed (see CR
 945     // 7119027). However, I'm still worried that
 946     // _inc_cset_recorded_rs_lengths might still end up somewhat
 947     // inaccurate. The concurrent refinement thread calculates an
 948     // RSet's length concurrently with other CR threads updating it
 949     // which might cause it to calculate the length incorrectly (if,
 950     // say, it's in mid-coarsening). So I'll leave in the defensive
 951     // conditional below just in case.
 952     size_t rs_length_diff = 0;
 953     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
 954     if (_max_rs_lengths > recorded_rs_lengths) {
 955       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
 956     }
 957     _rs_length_diff_seq->add((double) rs_length_diff);
 958 
 959     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
 960     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
 961     double cost_per_byte_ms = 0.0;
 962 
 963     if (copied_bytes > 0) {
 964       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
 965       if (collector_state()->in_marking_window()) {
 966         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
 967       } else {
 968         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
 969       }
 970     }
 971 
 972     if (_collection_set->young_region_length() > 0) {
 973       _young_other_cost_per_region_ms_seq->add(young_other_time_ms() /
 974                                                _collection_set->young_region_length());
 975     }
 976 
 977     if (_collection_set->old_region_length() > 0) {
 978       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms() /
 979                                                    _collection_set->old_region_length());
 980     }
 981 
 982     _constant_other_time_ms_seq->add(constant_other_time_ms(pause_time_ms));
 983 
 984     _pending_cards_seq->add((double) _pending_cards);
 985     _rs_lengths_seq->add((double) _max_rs_lengths);
 986   }
 987 
 988   collector_state()->set_in_marking_window(new_in_marking_window);
 989   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
 990   _free_regions_at_end_of_collection = _g1->num_free_regions();
 991   // IHOP control wants to know the expected young gen length if it were not
 992   // restrained by the heap reserve. Using the actual length would make the
 993   // prediction too small and the limit the young gen every time we get to the
 994   // predicted target occupancy.
 995   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 996   update_rs_lengths_prediction();
 997 
 998   update_ihop_prediction(app_time_ms / 1000.0,
 999                          _bytes_allocated_in_old_since_last_gc,
1000                          last_unrestrained_young_length * HeapRegion::GrainBytes);
1001   _bytes_allocated_in_old_since_last_gc = 0;
1002 
1003   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
1004 
1005   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1006   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1007 
1008   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1009     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
1010                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
1011                                 update_rs_time_goal_ms, scan_hcc_time_ms);
1012 
1013     update_rs_time_goal_ms = 0;
1014   } else {
1015     update_rs_time_goal_ms -= scan_hcc_time_ms;
1016   }
1017   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1018                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1019                                update_rs_time_goal_ms);
1020 
1021   cset_chooser()->verify();
1022 }
1023 
1024 G1IHOPControl* G1CollectorPolicy::create_ihop_control() const {
1025   if (G1UseAdaptiveIHOP) {
1026     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
1027                                      &_predictor,
1028                                      G1ReservePercent,
1029                                      G1HeapWastePercent);
1030   } else {
1031     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
1032   }
1033 }
1034 
1035 void G1CollectorPolicy::update_ihop_prediction(double mutator_time_s,
1036                                                size_t mutator_alloc_bytes,
1037                                                size_t young_gen_size) {
1038   // Always try to update IHOP prediction. Even evacuation failures give information
1039   // about e.g. whether to start IHOP earlier next time.
1040 
1041   // Avoid using really small application times that might create samples with
1042   // very high or very low values. They may be caused by e.g. back-to-back gcs.
1043   double const min_valid_time = 1e-6;
1044 
1045   bool report = false;
1046 
1047   double marking_to_mixed_time = -1.0;
1048   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
1049     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
1050     assert(marking_to_mixed_time > 0.0,
1051            "Initial mark to mixed time must be larger than zero but is %.3f",
1052            marking_to_mixed_time);
1053     if (marking_to_mixed_time > min_valid_time) {
1054       _ihop_control->update_marking_length(marking_to_mixed_time);
1055       report = true;
1056     }
1057   }
1058 
1059   // As an approximation for the young gc promotion rates during marking we use
1060   // all of them. In many applications there are only a few if any young gcs during
1061   // marking, which makes any prediction useless. This increases the accuracy of the
1062   // prediction.
1063   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
1064     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
1065     report = true;
1066   }
1067 
1068   if (report) {
1069     report_ihop_statistics();
1070   }
1071 }
1072 
1073 void G1CollectorPolicy::report_ihop_statistics() {
1074   _ihop_control->print();
1075 }
1076 
1077 void G1CollectorPolicy::print_phases() {
1078   phase_times()->print();
1079 }
1080 
1081 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1082                                                      double update_rs_processed_buffers,
1083                                                      double goal_ms) {
1084   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1085   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1086 
1087   if (G1UseAdaptiveConcRefinement) {
1088     const int k_gy = 3, k_gr = 6;
1089     const double inc_k = 1.1, dec_k = 0.9;
1090 
1091     size_t g = cg1r->green_zone();
1092     if (update_rs_time > goal_ms) {
1093       g = (size_t)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1094     } else {
1095       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1096         g = (size_t)MAX2(g * inc_k, g + 1.0);
1097       }
1098     }
1099     // Change the refinement threads params
1100     cg1r->set_green_zone(g);
1101     cg1r->set_yellow_zone(g * k_gy);
1102     cg1r->set_red_zone(g * k_gr);
1103     cg1r->reinitialize_threads();
1104 
1105     size_t processing_threshold_delta = MAX2<size_t>(cg1r->green_zone() * _predictor.sigma(), 1);
1106     size_t processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1107                                     cg1r->yellow_zone());
1108     // Change the barrier params
1109     dcqs.set_process_completed_threshold((int)processing_threshold);
1110     dcqs.set_max_completed_queue((int)cg1r->red_zone());
1111   }
1112 
1113   size_t curr_queue_size = dcqs.completed_buffers_num();
1114   if (curr_queue_size >= cg1r->yellow_zone()) {
1115     dcqs.set_completed_queue_padding(curr_queue_size);
1116   } else {
1117     dcqs.set_completed_queue_padding(0);
1118   }
1119   dcqs.notify_if_necessary();
1120 }
1121 
1122 size_t G1CollectorPolicy::predict_rs_lengths() const {
1123   return get_new_size_prediction(_rs_lengths_seq);
1124 }
1125 
1126 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1127   return get_new_size_prediction(_rs_length_diff_seq);
1128 }
1129 
1130 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1131   return get_new_prediction(_alloc_rate_ms_seq);
1132 }
1133 
1134 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1135   return get_new_prediction(_cost_per_card_ms_seq);
1136 }
1137 
1138 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1139   return get_new_prediction(_cost_scan_hcc_seq);
1140 }
1141 
1142 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1143   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1144 }
1145 
1146 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1147   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1148 }
1149 
1150 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1151   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1152     return predict_young_cards_per_entry_ratio();
1153   } else {
1154     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1155   }
1156 }
1157 
1158 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1159   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1160 }
1161 
1162 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1163   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1164 }
1165 
1166 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1167   if (collector_state()->gcs_are_young()) {
1168     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1169   } else {
1170     return predict_mixed_rs_scan_time_ms(card_num);
1171   }
1172 }
1173 
1174 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1175   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1176     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1177   } else {
1178     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1179   }
1180 }
1181 
1182 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1183   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1184     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1185   } else {
1186     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1187   }
1188 }
1189 
1190 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1191   if (collector_state()->during_concurrent_mark()) {
1192     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1193   } else {
1194     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1195   }
1196 }
1197 
1198 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1199   return get_new_prediction(_constant_other_time_ms_seq);
1200 }
1201 
1202 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1203   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1204 }
1205 
1206 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1207   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1208 }
1209 
1210 double G1CollectorPolicy::predict_remark_time_ms() const {
1211   return get_new_prediction(_concurrent_mark_remark_times_ms);
1212 }
1213 
1214 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1215   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1216 }
1217 
1218 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1219   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1220   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1221   double pred = get_new_prediction(seq);
1222   if (pred > 1.0) {
1223     pred = 1.0;
1224   }
1225   return pred;
1226 }
1227 
1228 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1229   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1230 }
1231 
1232 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1233   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1234 }
1235 
1236 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1237                                                        size_t scanned_cards) const {
1238   return
1239     predict_rs_update_time_ms(pending_cards) +
1240     predict_rs_scan_time_ms(scanned_cards) +
1241     predict_constant_other_time_ms();
1242 }
1243 
1244 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1245   size_t rs_length = predict_rs_lengths() + predict_rs_length_diff();
1246   size_t card_num;
1247   if (collector_state()->gcs_are_young()) {
1248     card_num = predict_young_card_num(rs_length);
1249   } else {
1250     card_num = predict_non_young_card_num(rs_length);
1251   }
1252   return predict_base_elapsed_time_ms(pending_cards, card_num);
1253 }
1254 
1255 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1256   size_t bytes_to_copy;
1257   if (hr->is_marked())
1258     bytes_to_copy = hr->max_live_bytes();
1259   else {
1260     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1261     int age = hr->age_in_surv_rate_group();
1262     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1263     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1264   }
1265   return bytes_to_copy;
1266 }
1267 
1268 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1269                                                          bool for_young_gc) const {
1270   size_t rs_length = hr->rem_set()->occupied();
1271   size_t card_num;
1272 
1273   // Predicting the number of cards is based on which type of GC
1274   // we're predicting for.
1275   if (for_young_gc) {
1276     card_num = predict_young_card_num(rs_length);
1277   } else {
1278     card_num = predict_non_young_card_num(rs_length);
1279   }
1280   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1281 
1282   double region_elapsed_time_ms =
1283     predict_rs_scan_time_ms(card_num) +
1284     predict_object_copy_time_ms(bytes_to_copy);
1285 
1286   // The prediction of the "other" time for this region is based
1287   // upon the region type and NOT the GC type.
1288   if (hr->is_young()) {
1289     region_elapsed_time_ms += predict_young_other_time_ms(1);
1290   } else {
1291     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1292   }
1293   return region_elapsed_time_ms;
1294 }
1295 
1296 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1297                                                double elapsed_ms) {
1298   _recent_gc_times_ms->add(elapsed_ms);
1299   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1300   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1301 }
1302 
1303 void G1CollectorPolicy::clear_ratio_check_data() {
1304   _ratio_over_threshold_count = 0;
1305   _ratio_over_threshold_sum = 0.0;
1306   _pauses_since_start = 0;
1307 }
1308 
1309 size_t G1CollectorPolicy::expansion_amount() {
1310   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1311   double last_gc_overhead = _last_pause_time_ratio * 100.0;
1312   double threshold = _gc_overhead_perc;
1313   size_t expand_bytes = 0;
1314 
1315   // If the heap is at less than half its maximum size, scale the threshold down,
1316   // to a limit of 1. Thus the smaller the heap is, the more likely it is to expand,
1317   // though the scaling code will likely keep the increase small.
1318   if (_g1->capacity() <= _g1->max_capacity() / 2) {
1319     threshold *= (double)_g1->capacity() / (double)(_g1->max_capacity() / 2);
1320     threshold = MAX2(threshold, 1.0);
1321   }
1322 
1323   // If the last GC time ratio is over the threshold, increment the count of
1324   // times it has been exceeded, and add this ratio to the sum of exceeded
1325   // ratios.
1326   if (last_gc_overhead > threshold) {
1327     _ratio_over_threshold_count++;
1328     _ratio_over_threshold_sum += last_gc_overhead;
1329   }
1330 
1331   // Check if we've had enough GC time ratio checks that were over the
1332   // threshold to trigger an expansion. We'll also expand if we've
1333   // reached the end of the history buffer and the average of all entries
1334   // is still over the threshold. This indicates a smaller number of GCs were
1335   // long enough to make the average exceed the threshold.
1336   bool filled_history_buffer = _pauses_since_start == NumPrevPausesForHeuristics;
1337   if ((_ratio_over_threshold_count == MinOverThresholdForGrowth) ||
1338       (filled_history_buffer && (recent_gc_overhead > threshold))) {
1339     size_t min_expand_bytes = HeapRegion::GrainBytes;
1340     size_t reserved_bytes = _g1->max_capacity();
1341     size_t committed_bytes = _g1->capacity();
1342     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1343     size_t expand_bytes_via_pct =
1344       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1345     double scale_factor = 1.0;
1346 
1347     // If the current size is less than 1/4 of the Initial heap size, expand
1348     // by half of the delta between the current and Initial sizes. IE, grow
1349     // back quickly.
1350     //
1351     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
1352     // the available expansion space, whichever is smaller, as the base
1353     // expansion size. Then possibly scale this size according to how much the
1354     // threshold has (on average) been exceeded by. If the delta is small
1355     // (less than the StartScaleDownAt value), scale the size down linearly, but
1356     // not by less than MinScaleDownFactor. If the delta is large (greater than
1357     // the StartScaleUpAt value), scale up, but adding no more than MaxScaleUpFactor
1358     // times the base size. The scaling will be linear in the range from
1359     // StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
1360     // ScaleUpRange sets the rate of scaling up.
1361     if (committed_bytes < InitialHeapSize / 4) {
1362       expand_bytes = (InitialHeapSize - committed_bytes) / 2;
1363     } else {
1364       double const MinScaleDownFactor = 0.2;
1365       double const MaxScaleUpFactor = 2;
1366       double const StartScaleDownAt = _gc_overhead_perc;
1367       double const StartScaleUpAt = _gc_overhead_perc * 1.5;
1368       double const ScaleUpRange = _gc_overhead_perc * 2.0;
1369 
1370       double ratio_delta;
1371       if (filled_history_buffer) {
1372         ratio_delta = recent_gc_overhead - threshold;
1373       } else {
1374         ratio_delta = (_ratio_over_threshold_sum/_ratio_over_threshold_count) - threshold;
1375       }
1376 
1377       expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1378       if (ratio_delta < StartScaleDownAt) {
1379         scale_factor = ratio_delta / StartScaleDownAt;
1380         scale_factor = MAX2(scale_factor, MinScaleDownFactor);
1381       } else if (ratio_delta > StartScaleUpAt) {
1382         scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
1383         scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
1384       }
1385     }
1386 
1387     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1388                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B base expansion amount and scale: " SIZE_FORMAT "B (%1.2f%%)",
1389                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes, scale_factor * 100);
1390 
1391     expand_bytes = static_cast<size_t>(expand_bytes * scale_factor);
1392 
1393     // Ensure the expansion size is at least the minimum growth amount
1394     // and at most the remaining uncommitted byte size.
1395     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1396     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1397 
1398     clear_ratio_check_data();
1399   } else {
1400     // An expansion was not triggered. If we've started counting, increment
1401     // the number of checks we've made in the current window.  If we've
1402     // reached the end of the window without resizing, clear the counters to
1403     // start again the next time we see a ratio above the threshold.
1404     if (_ratio_over_threshold_count > 0) {
1405       _pauses_since_start++;
1406       if (_pauses_since_start > NumPrevPausesForHeuristics) {
1407         clear_ratio_check_data();
1408       }
1409     }
1410   }
1411 
1412   return expand_bytes;
1413 }
1414 
1415 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1416 #ifndef PRODUCT
1417   _short_lived_surv_rate_group->print_surv_rate_summary();
1418   // add this call for any other surv rate groups
1419 #endif // PRODUCT
1420 }
1421 
1422 bool G1CollectorPolicy::is_young_list_full() const {
1423   uint young_list_length = _g1->young_list()->length();
1424   uint young_list_target_length = _young_list_target_length;
1425   return young_list_length >= young_list_target_length;
1426 }
1427 
1428 bool G1CollectorPolicy::can_expand_young_list() const {
1429   uint young_list_length = _g1->young_list()->length();
1430   uint young_list_max_length = _young_list_max_length;
1431   return young_list_length < young_list_max_length;
1432 }
1433 
1434 bool G1CollectorPolicy::adaptive_young_list_length() const {
1435   return _young_gen_sizer->adaptive_young_list_length();
1436 }
1437 
1438 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1439   uint expansion_region_num = 0;
1440   if (GCLockerEdenExpansionPercent > 0) {
1441     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1442     double expansion_region_num_d = perc * (double) _young_list_target_length;
1443     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1444     // less than 1.0) we'll get 1.
1445     expansion_region_num = (uint) ceil(expansion_region_num_d);
1446   } else {
1447     assert(expansion_region_num == 0, "sanity");
1448   }
1449   _young_list_max_length = _young_list_target_length + expansion_region_num;
1450   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1451 }
1452 
1453 // Calculates survivor space parameters.
1454 void G1CollectorPolicy::update_survivors_policy() {
1455   double max_survivor_regions_d =
1456                  (double) _young_list_target_length / (double) SurvivorRatio;
1457   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1458   // smaller than 1.0) we'll get 1.
1459   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1460 
1461   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1462         HeapRegion::GrainWords * _max_survivor_regions, counters());
1463 }
1464 
1465 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1466   // We actually check whether we are marking here and not if we are in a
1467   // reclamation phase. This means that we will schedule a concurrent mark
1468   // even while we are still in the process of reclaiming memory.
1469   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1470   if (!during_cycle) {
1471     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1472     collector_state()->set_initiate_conc_mark_if_possible(true);
1473     return true;
1474   } else {
1475     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1476     return false;
1477   }
1478 }
1479 
1480 void G1CollectorPolicy::initiate_conc_mark() {
1481   collector_state()->set_during_initial_mark_pause(true);
1482   collector_state()->set_initiate_conc_mark_if_possible(false);
1483 }
1484 
1485 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1486   // We are about to decide on whether this pause will be an
1487   // initial-mark pause.
1488 
1489   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1490   // will set it here if we have to. However, it should be cleared by
1491   // the end of the pause (it's only set for the duration of an
1492   // initial-mark pause).
1493   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1494 
1495   if (collector_state()->initiate_conc_mark_if_possible()) {
1496     // We had noticed on a previous pause that the heap occupancy has
1497     // gone over the initiating threshold and we should start a
1498     // concurrent marking cycle. So we might initiate one.
1499 
1500     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1501       // Initiate a new initial mark if there is no marking or reclamation going on.
1502       initiate_conc_mark();
1503       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1504     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
1505       // Initiate a user requested initial mark. An initial mark must be young only
1506       // GC, so the collector state must be updated to reflect this.
1507       collector_state()->set_gcs_are_young(true);
1508       collector_state()->set_last_young_gc(false);
1509 
1510       abort_time_to_mixed_tracking();
1511       initiate_conc_mark();
1512       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1513     } else {
1514       // The concurrent marking thread is still finishing up the
1515       // previous cycle. If we start one right now the two cycles
1516       // overlap. In particular, the concurrent marking thread might
1517       // be in the process of clearing the next marking bitmap (which
1518       // we will use for the next cycle if we start one). Starting a
1519       // cycle now will be bad given that parts of the marking
1520       // information might get cleared by the marking thread. And we
1521       // cannot wait for the marking thread to finish the cycle as it
1522       // periodically yields while clearing the next marking bitmap
1523       // and, if it's in a yield point, it's waiting for us to
1524       // finish. So, at this point we will not start a cycle and we'll
1525       // let the concurrent marking thread complete the last one.
1526       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1527     }
1528   }
1529 }
1530 
1531 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1532   G1CollectedHeap* _g1h;
1533   CSetChooserParUpdater _cset_updater;
1534 
1535 public:
1536   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1537                            uint chunk_size) :
1538     _g1h(G1CollectedHeap::heap()),
1539     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1540 
1541   bool doHeapRegion(HeapRegion* r) {
1542     // Do we have any marking information for this region?
1543     if (r->is_marked()) {
1544       // We will skip any region that's currently used as an old GC
1545       // alloc region (we should not consider those for collection
1546       // before we fill them up).
1547       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1548         _cset_updater.add_region(r);
1549       }
1550     }
1551     return false;
1552   }
1553 };
1554 
1555 class ParKnownGarbageTask: public AbstractGangTask {
1556   CollectionSetChooser* _hrSorted;
1557   uint _chunk_size;
1558   G1CollectedHeap* _g1;
1559   HeapRegionClaimer _hrclaimer;
1560 
1561 public:
1562   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1563       AbstractGangTask("ParKnownGarbageTask"),
1564       _hrSorted(hrSorted), _chunk_size(chunk_size),
1565       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1566 
1567   void work(uint worker_id) {
1568     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1569     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1570   }
1571 };
1572 
1573 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1574   assert(n_workers > 0, "Active gc workers should be greater than 0");
1575   const uint overpartition_factor = 4;
1576   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1577   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1578 }
1579 
1580 void G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1581   cset_chooser()->clear();
1582 
1583   WorkGang* workers = _g1->workers();
1584   uint n_workers = workers->active_workers();
1585 
1586   uint n_regions = _g1->num_regions();
1587   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1588   cset_chooser()->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1589   ParKnownGarbageTask par_known_garbage_task(cset_chooser(), chunk_size, n_workers);
1590   workers->run_task(&par_known_garbage_task);
1591 
1592   cset_chooser()->sort_regions();
1593 
1594   double end_sec = os::elapsedTime();
1595   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1596   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1597   _prev_collection_pause_end_ms += elapsed_time_ms;
1598 
1599   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1600 }
1601 
1602 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1603   // Returns the given amount of reclaimable bytes (that represents
1604   // the amount of reclaimable space still to be collected) as a
1605   // percentage of the current heap capacity.
1606   size_t capacity_bytes = _g1->capacity();
1607   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1608 }
1609 
1610 void G1CollectorPolicy::maybe_start_marking() {
1611   if (need_to_start_conc_mark("end of GC")) {
1612     // Note: this might have already been set, if during the last
1613     // pause we decided to start a cycle but at the beginning of
1614     // this pause we decided to postpone it. That's OK.
1615     collector_state()->set_initiate_conc_mark_if_possible(true);
1616   }
1617 }
1618 
1619 G1CollectorPolicy::PauseKind G1CollectorPolicy::young_gc_pause_kind() const {
1620   assert(!collector_state()->full_collection(), "must be");
1621   if (collector_state()->during_initial_mark_pause()) {
1622     assert(collector_state()->last_gc_was_young(), "must be");
1623     assert(!collector_state()->last_young_gc(), "must be");
1624     return InitialMarkGC;
1625   } else if (collector_state()->last_young_gc()) {
1626     assert(!collector_state()->during_initial_mark_pause(), "must be");
1627     assert(collector_state()->last_gc_was_young(), "must be");
1628     return LastYoungGC;
1629   } else if (!collector_state()->last_gc_was_young()) {
1630     assert(!collector_state()->during_initial_mark_pause(), "must be");
1631     assert(!collector_state()->last_young_gc(), "must be");
1632     return MixedGC;
1633   } else {
1634     assert(collector_state()->last_gc_was_young(), "must be");
1635     assert(!collector_state()->during_initial_mark_pause(), "must be");
1636     assert(!collector_state()->last_young_gc(), "must be");
1637     return YoungOnlyGC;
1638   }
1639 }
1640 
1641 void G1CollectorPolicy::record_pause(PauseKind kind, double start, double end) {
1642   // Manage the MMU tracker. For some reason it ignores Full GCs.
1643   if (kind != FullGC) {
1644     _mmu_tracker->add_pause(start, end);
1645   }
1646   // Manage the mutator time tracking from initial mark to first mixed gc.
1647   switch (kind) {
1648     case FullGC:
1649       abort_time_to_mixed_tracking();
1650       break;
1651     case Cleanup:
1652     case Remark:
1653     case YoungOnlyGC:
1654     case LastYoungGC:
1655       _initial_mark_to_mixed.add_pause(end - start);
1656       break;
1657     case InitialMarkGC:
1658       _initial_mark_to_mixed.record_initial_mark_end(end);
1659       break;
1660     case MixedGC:
1661       _initial_mark_to_mixed.record_mixed_gc_start(start);
1662       break;
1663     default:
1664       ShouldNotReachHere();
1665   }
1666 }
1667 
1668 void G1CollectorPolicy::abort_time_to_mixed_tracking() {
1669   _initial_mark_to_mixed.reset();
1670 }
1671 
1672 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1673                                                 const char* false_action_str) const {
1674   if (cset_chooser()->is_empty()) {
1675     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1676     return false;
1677   }
1678 
1679   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1680   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1681   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1682   double threshold = (double) G1HeapWastePercent;
1683   if (reclaimable_perc <= threshold) {
1684     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1685                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1686     return false;
1687   }
1688   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1689                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1690   return true;
1691 }
1692 
1693 uint G1CollectorPolicy::calc_min_old_cset_length() const {
1694   // The min old CSet region bound is based on the maximum desired
1695   // number of mixed GCs after a cycle. I.e., even if some old regions
1696   // look expensive, we should add them to the CSet anyway to make
1697   // sure we go through the available old regions in no more than the
1698   // maximum desired number of mixed GCs.
1699   //
1700   // The calculation is based on the number of marked regions we added
1701   // to the CSet chooser in the first place, not how many remain, so
1702   // that the result is the same during all mixed GCs that follow a cycle.
1703 
1704   const size_t region_num = (size_t) cset_chooser()->length();
1705   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1706   size_t result = region_num / gc_num;
1707   // emulate ceiling
1708   if (result * gc_num < region_num) {
1709     result += 1;
1710   }
1711   return (uint) result;
1712 }
1713 
1714 uint G1CollectorPolicy::calc_max_old_cset_length() const {
1715   // The max old CSet region bound is based on the threshold expressed
1716   // as a percentage of the heap size. I.e., it should bound the
1717   // number of old regions added to the CSet irrespective of how many
1718   // of them are available.
1719 
1720   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1721   const size_t region_num = g1h->num_regions();
1722   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1723   size_t result = region_num * perc / 100;
1724   // emulate ceiling
1725   if (100 * result < region_num * perc) {
1726     result += 1;
1727   }
1728   return (uint) result;
1729 }
1730 
1731 void G1CollectorPolicy::finalize_collection_set(double target_pause_time_ms) {
1732   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms);
1733   _collection_set->finalize_old_part(time_remaining_ms);
1734 }
1735