1 /*
   2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_graphKit.cpp.incl"
  27 
  28 //----------------------------GraphKit-----------------------------------------
  29 // Main utility constructor.
  30 GraphKit::GraphKit(JVMState* jvms)
  31   : Phase(Phase::Parser),
  32     _env(C->env()),
  33     _gvn(*C->initial_gvn())
  34 {
  35   _exceptions = jvms->map()->next_exception();
  36   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  37   set_jvms(jvms);
  38 }
  39 
  40 // Private constructor for parser.
  41 GraphKit::GraphKit()
  42   : Phase(Phase::Parser),
  43     _env(C->env()),
  44     _gvn(*C->initial_gvn())
  45 {
  46   _exceptions = NULL;
  47   set_map(NULL);
  48   debug_only(_sp = -99);
  49   debug_only(set_bci(-99));
  50 }
  51 
  52 
  53 
  54 //---------------------------clean_stack---------------------------------------
  55 // Clear away rubbish from the stack area of the JVM state.
  56 // This destroys any arguments that may be waiting on the stack.
  57 void GraphKit::clean_stack(int from_sp) {
  58   SafePointNode* map      = this->map();
  59   JVMState*      jvms     = this->jvms();
  60   int            stk_size = jvms->stk_size();
  61   int            stkoff   = jvms->stkoff();
  62   Node*          top      = this->top();
  63   for (int i = from_sp; i < stk_size; i++) {
  64     if (map->in(stkoff + i) != top) {
  65       map->set_req(stkoff + i, top);
  66     }
  67   }
  68 }
  69 
  70 
  71 //--------------------------------sync_jvms-----------------------------------
  72 // Make sure our current jvms agrees with our parse state.
  73 JVMState* GraphKit::sync_jvms() const {
  74   JVMState* jvms = this->jvms();
  75   jvms->set_bci(bci());       // Record the new bci in the JVMState
  76   jvms->set_sp(sp());         // Record the new sp in the JVMState
  77   assert(jvms_in_sync(), "jvms is now in sync");
  78   return jvms;
  79 }
  80 
  81 #ifdef ASSERT
  82 bool GraphKit::jvms_in_sync() const {
  83   Parse* parse = is_Parse();
  84   if (parse == NULL) {
  85     if (bci() !=      jvms()->bci())          return false;
  86     if (sp()  != (int)jvms()->sp())           return false;
  87     return true;
  88   }
  89   if (jvms()->method() != parse->method())    return false;
  90   if (jvms()->bci()    != parse->bci())       return false;
  91   int jvms_sp = jvms()->sp();
  92   if (jvms_sp          != parse->sp())        return false;
  93   int jvms_depth = jvms()->depth();
  94   if (jvms_depth       != parse->depth())     return false;
  95   return true;
  96 }
  97 
  98 // Local helper checks for special internal merge points
  99 // used to accumulate and merge exception states.
 100 // They are marked by the region's in(0) edge being the map itself.
 101 // Such merge points must never "escape" into the parser at large,
 102 // until they have been handed to gvn.transform.
 103 static bool is_hidden_merge(Node* reg) {
 104   if (reg == NULL)  return false;
 105   if (reg->is_Phi()) {
 106     reg = reg->in(0);
 107     if (reg == NULL)  return false;
 108   }
 109   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 110 }
 111 
 112 void GraphKit::verify_map() const {
 113   if (map() == NULL)  return;  // null map is OK
 114   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 115   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 116   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 117 }
 118 
 119 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 120   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 121   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 122 }
 123 #endif
 124 
 125 //---------------------------stop_and_kill_map---------------------------------
 126 // Set _map to NULL, signalling a stop to further bytecode execution.
 127 // First smash the current map's control to a constant, to mark it dead.
 128 void GraphKit::stop_and_kill_map() {
 129   SafePointNode* dead_map = stop();
 130   if (dead_map != NULL) {
 131     dead_map->disconnect_inputs(NULL); // Mark the map as killed.
 132     assert(dead_map->is_killed(), "must be so marked");
 133   }
 134 }
 135 
 136 
 137 //--------------------------------stopped--------------------------------------
 138 // Tell if _map is NULL, or control is top.
 139 bool GraphKit::stopped() {
 140   if (map() == NULL)           return true;
 141   else if (control() == top()) return true;
 142   else                         return false;
 143 }
 144 
 145 
 146 //-----------------------------has_ex_handler----------------------------------
 147 // Tell if this method or any caller method has exception handlers.
 148 bool GraphKit::has_ex_handler() {
 149   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 150     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 151       return true;
 152     }
 153   }
 154   return false;
 155 }
 156 
 157 //------------------------------save_ex_oop------------------------------------
 158 // Save an exception without blowing stack contents or other JVM state.
 159 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 160   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 161   ex_map->add_req(ex_oop);
 162   debug_only(verify_exception_state(ex_map));
 163 }
 164 
 165 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 166   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 167   Node* ex_oop = ex_map->in(ex_map->req()-1);
 168   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 169   return ex_oop;
 170 }
 171 
 172 //-----------------------------saved_ex_oop------------------------------------
 173 // Recover a saved exception from its map.
 174 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 175   return common_saved_ex_oop(ex_map, false);
 176 }
 177 
 178 //--------------------------clear_saved_ex_oop---------------------------------
 179 // Erase a previously saved exception from its map.
 180 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 181   return common_saved_ex_oop(ex_map, true);
 182 }
 183 
 184 #ifdef ASSERT
 185 //---------------------------has_saved_ex_oop----------------------------------
 186 // Erase a previously saved exception from its map.
 187 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 188   return ex_map->req() == ex_map->jvms()->endoff()+1;
 189 }
 190 #endif
 191 
 192 //-------------------------make_exception_state--------------------------------
 193 // Turn the current JVM state into an exception state, appending the ex_oop.
 194 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 195   sync_jvms();
 196   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 197   set_saved_ex_oop(ex_map, ex_oop);
 198   return ex_map;
 199 }
 200 
 201 
 202 //--------------------------add_exception_state--------------------------------
 203 // Add an exception to my list of exceptions.
 204 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 205   if (ex_map == NULL || ex_map->control() == top()) {
 206     return;
 207   }
 208 #ifdef ASSERT
 209   verify_exception_state(ex_map);
 210   if (has_exceptions()) {
 211     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 212   }
 213 #endif
 214 
 215   // If there is already an exception of exactly this type, merge with it.
 216   // In particular, null-checks and other low-level exceptions common up here.
 217   Node*       ex_oop  = saved_ex_oop(ex_map);
 218   const Type* ex_type = _gvn.type(ex_oop);
 219   if (ex_oop == top()) {
 220     // No action needed.
 221     return;
 222   }
 223   assert(ex_type->isa_instptr(), "exception must be an instance");
 224   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 225     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 226     // We check sp also because call bytecodes can generate exceptions
 227     // both before and after arguments are popped!
 228     if (ex_type2 == ex_type
 229         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 230       combine_exception_states(ex_map, e2);
 231       return;
 232     }
 233   }
 234 
 235   // No pre-existing exception of the same type.  Chain it on the list.
 236   push_exception_state(ex_map);
 237 }
 238 
 239 //-----------------------add_exception_states_from-----------------------------
 240 void GraphKit::add_exception_states_from(JVMState* jvms) {
 241   SafePointNode* ex_map = jvms->map()->next_exception();
 242   if (ex_map != NULL) {
 243     jvms->map()->set_next_exception(NULL);
 244     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 245       next_map = ex_map->next_exception();
 246       ex_map->set_next_exception(NULL);
 247       add_exception_state(ex_map);
 248     }
 249   }
 250 }
 251 
 252 //-----------------------transfer_exceptions_into_jvms-------------------------
 253 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 254   if (map() == NULL) {
 255     // We need a JVMS to carry the exceptions, but the map has gone away.
 256     // Create a scratch JVMS, cloned from any of the exception states...
 257     if (has_exceptions()) {
 258       _map = _exceptions;
 259       _map = clone_map();
 260       _map->set_next_exception(NULL);
 261       clear_saved_ex_oop(_map);
 262       debug_only(verify_map());
 263     } else {
 264       // ...or created from scratch
 265       JVMState* jvms = new (C) JVMState(_method, NULL);
 266       jvms->set_bci(_bci);
 267       jvms->set_sp(_sp);
 268       jvms->set_map(new (C, TypeFunc::Parms) SafePointNode(TypeFunc::Parms, jvms));
 269       set_jvms(jvms);
 270       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 271       set_all_memory(top());
 272       while (map()->req() < jvms->endoff())  map()->add_req(top());
 273     }
 274     // (This is a kludge, in case you didn't notice.)
 275     set_control(top());
 276   }
 277   JVMState* jvms = sync_jvms();
 278   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 279   jvms->map()->set_next_exception(_exceptions);
 280   _exceptions = NULL;   // done with this set of exceptions
 281   return jvms;
 282 }
 283 
 284 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 285   assert(is_hidden_merge(dstphi), "must be a special merge node");
 286   assert(is_hidden_merge(srcphi), "must be a special merge node");
 287   uint limit = srcphi->req();
 288   for (uint i = PhiNode::Input; i < limit; i++) {
 289     dstphi->add_req(srcphi->in(i));
 290   }
 291 }
 292 static inline void add_one_req(Node* dstphi, Node* src) {
 293   assert(is_hidden_merge(dstphi), "must be a special merge node");
 294   assert(!is_hidden_merge(src), "must not be a special merge node");
 295   dstphi->add_req(src);
 296 }
 297 
 298 //-----------------------combine_exception_states------------------------------
 299 // This helper function combines exception states by building phis on a
 300 // specially marked state-merging region.  These regions and phis are
 301 // untransformed, and can build up gradually.  The region is marked by
 302 // having a control input of its exception map, rather than NULL.  Such
 303 // regions do not appear except in this function, and in use_exception_state.
 304 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 305   if (failing())  return;  // dying anyway...
 306   JVMState* ex_jvms = ex_map->_jvms;
 307   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 308   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 309   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 310   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 311   assert(ex_map->req() == phi_map->req(), "matching maps");
 312   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 313   Node*         hidden_merge_mark = root();
 314   Node*         region  = phi_map->control();
 315   MergeMemNode* phi_mem = phi_map->merged_memory();
 316   MergeMemNode* ex_mem  = ex_map->merged_memory();
 317   if (region->in(0) != hidden_merge_mark) {
 318     // The control input is not (yet) a specially-marked region in phi_map.
 319     // Make it so, and build some phis.
 320     region = new (C, 2) RegionNode(2);
 321     _gvn.set_type(region, Type::CONTROL);
 322     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 323     region->init_req(1, phi_map->control());
 324     phi_map->set_control(region);
 325     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 326     record_for_igvn(io_phi);
 327     _gvn.set_type(io_phi, Type::ABIO);
 328     phi_map->set_i_o(io_phi);
 329     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 330       Node* m = mms.memory();
 331       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 332       record_for_igvn(m_phi);
 333       _gvn.set_type(m_phi, Type::MEMORY);
 334       mms.set_memory(m_phi);
 335     }
 336   }
 337 
 338   // Either or both of phi_map and ex_map might already be converted into phis.
 339   Node* ex_control = ex_map->control();
 340   // if there is special marking on ex_map also, we add multiple edges from src
 341   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 342   // how wide was the destination phi_map, originally?
 343   uint orig_width = region->req();
 344 
 345   if (add_multiple) {
 346     add_n_reqs(region, ex_control);
 347     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 348   } else {
 349     // ex_map has no merges, so we just add single edges everywhere
 350     add_one_req(region, ex_control);
 351     add_one_req(phi_map->i_o(), ex_map->i_o());
 352   }
 353   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 354     if (mms.is_empty()) {
 355       // get a copy of the base memory, and patch some inputs into it
 356       const TypePtr* adr_type = mms.adr_type(C);
 357       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 358       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 359       mms.set_memory(phi);
 360       // Prepare to append interesting stuff onto the newly sliced phi:
 361       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 362     }
 363     // Append stuff from ex_map:
 364     if (add_multiple) {
 365       add_n_reqs(mms.memory(), mms.memory2());
 366     } else {
 367       add_one_req(mms.memory(), mms.memory2());
 368     }
 369   }
 370   uint limit = ex_map->req();
 371   for (uint i = TypeFunc::Parms; i < limit; i++) {
 372     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 373     if (i == tos)  i = ex_jvms->monoff();
 374     Node* src = ex_map->in(i);
 375     Node* dst = phi_map->in(i);
 376     if (src != dst) {
 377       PhiNode* phi;
 378       if (dst->in(0) != region) {
 379         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 380         record_for_igvn(phi);
 381         _gvn.set_type(phi, phi->type());
 382         phi_map->set_req(i, dst);
 383         // Prepare to append interesting stuff onto the new phi:
 384         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 385       } else {
 386         assert(dst->is_Phi(), "nobody else uses a hidden region");
 387         phi = (PhiNode*)dst;
 388       }
 389       if (add_multiple && src->in(0) == ex_control) {
 390         // Both are phis.
 391         add_n_reqs(dst, src);
 392       } else {
 393         while (dst->req() < region->req())  add_one_req(dst, src);
 394       }
 395       const Type* srctype = _gvn.type(src);
 396       if (phi->type() != srctype) {
 397         const Type* dsttype = phi->type()->meet(srctype);
 398         if (phi->type() != dsttype) {
 399           phi->set_type(dsttype);
 400           _gvn.set_type(phi, dsttype);
 401         }
 402       }
 403     }
 404   }
 405 }
 406 
 407 //--------------------------use_exception_state--------------------------------
 408 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 409   if (failing()) { stop(); return top(); }
 410   Node* region = phi_map->control();
 411   Node* hidden_merge_mark = root();
 412   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 413   Node* ex_oop = clear_saved_ex_oop(phi_map);
 414   if (region->in(0) == hidden_merge_mark) {
 415     // Special marking for internal ex-states.  Process the phis now.
 416     region->set_req(0, region);  // now it's an ordinary region
 417     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 418     // Note: Setting the jvms also sets the bci and sp.
 419     set_control(_gvn.transform(region));
 420     uint tos = jvms()->stkoff() + sp();
 421     for (uint i = 1; i < tos; i++) {
 422       Node* x = phi_map->in(i);
 423       if (x->in(0) == region) {
 424         assert(x->is_Phi(), "expected a special phi");
 425         phi_map->set_req(i, _gvn.transform(x));
 426       }
 427     }
 428     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 429       Node* x = mms.memory();
 430       if (x->in(0) == region) {
 431         assert(x->is_Phi(), "nobody else uses a hidden region");
 432         mms.set_memory(_gvn.transform(x));
 433       }
 434     }
 435     if (ex_oop->in(0) == region) {
 436       assert(ex_oop->is_Phi(), "expected a special phi");
 437       ex_oop = _gvn.transform(ex_oop);
 438     }
 439   } else {
 440     set_jvms(phi_map->jvms());
 441   }
 442 
 443   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 444   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 445   return ex_oop;
 446 }
 447 
 448 //---------------------------------java_bc-------------------------------------
 449 Bytecodes::Code GraphKit::java_bc() const {
 450   ciMethod* method = this->method();
 451   int       bci    = this->bci();
 452   if (method != NULL && bci != InvocationEntryBci)
 453     return method->java_code_at_bci(bci);
 454   else
 455     return Bytecodes::_illegal;
 456 }
 457 
 458 //------------------------------builtin_throw----------------------------------
 459 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 460   bool must_throw = true;
 461 
 462   if (env()->jvmti_can_post_exceptions()) {
 463         if (CheckExceptionEventsNeeded) {
 464           // if the exception capability is set, then we will generate a
 465           // runtime call to see if we actually need to report exception
 466           // events.  If we don't need to report exception events, we will
 467           // take the normal fast path provided by add_exception_events.
 468           // If exception event reporting is enabled, we will take the
 469           // uncommon_trap in the BuildCutout below.
 470           
 471           // call C++ runtime routine to determine whether we need to
 472           // report exception events
 473           Node* c = make_runtime_call(RC_LEAF, OptoRuntime::must_post_exception_events_Type(),
 474                                                                   CAST_FROM_FN_PTR(address, JvmtiExport::must_post_exception_events_jrt_leaf),
 475                                                                   "must_post_exception_events", NULL   //no memory effects
 476                 );
 477           
 478           Node* need_exc_bool = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
 479           
 480           // Test the result returned by the runtime call vs. 0
 481           Node* zero = _gvn.intcon(0);
 482           Node* chk = _gvn.transform( new (C, 3) CmpINode(need_exc_bool, zero) );
 483           BoolTest::mask btesteq = BoolTest::eq;
 484           Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, btesteq) );
 485           
 486           // Branch to slow_path if runtime call returned true
 487           { BuildCutout unless(this, tst, PROB_MAX);
 488                 // Do not try anything fancy if we're notifying the VM on every throw.
 489                 // Cf. case Bytecodes::_athrow in parse2.cpp.
 490                 uncommon_trap(reason, Deoptimization::Action_none,
 491                                           (ciKlass*)NULL, (char*)NULL, must_throw);
 492           }
 493           // here if the runtime call returned false
 494           // note we do not return here, but continue on with the normal codegen
 495         }
 496         else {
 497           //  CheckExceptionEventsNeeded is false
 498     // Do not try anything fancy if we're notifying the VM on every throw.
 499     // Cf. case Bytecodes::_athrow in parse2.cpp.
 500           uncommon_trap(reason, Deoptimization::Action_none,
 501                                         (ciKlass*)NULL, (char*)NULL, must_throw);
 502     return;
 503         }
 504   }
 505 
 506   // If this particular condition has not yet happened at this
 507   // bytecode, then use the uncommon trap mechanism, and allow for
 508   // a future recompilation if several traps occur here.
 509   // If the throw is hot, try to use a more complicated inline mechanism
 510   // which keeps execution inside the compiled code.
 511   bool treat_throw_as_hot = false;
 512   ciMethodData* md = method()->method_data();
 513 
 514   if (ProfileTraps) {
 515     if (too_many_traps(reason)) {
 516       treat_throw_as_hot = true;
 517     }
 518     // (If there is no MDO at all, assume it is early in
 519     // execution, and that any deopts are part of the
 520     // startup transient, and don't need to be remembered.)
 521 
 522     // Also, if there is a local exception handler, treat all throws
 523     // as hot if there has been at least one in this method.
 524     if (C->trap_count(reason) != 0
 525         && method()->method_data()->trap_count(reason) != 0
 526         && has_ex_handler()) {
 527         treat_throw_as_hot = true;
 528     }
 529   }
 530 
 531   // If this throw happens frequently, an uncommon trap might cause
 532   // a performance pothole.  If there is a local exception handler,
 533   // and if this particular bytecode appears to be deoptimizing often,
 534   // let us handle the throw inline, with a preconstructed instance.
 535   // Note:   If the deopt count has blown up, the uncommon trap
 536   // runtime is going to flush this nmethod, not matter what.
 537   if (treat_throw_as_hot
 538       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 539     // If the throw is local, we use a pre-existing instance and
 540     // punt on the backtrace.  This would lead to a missing backtrace
 541     // (a repeat of 4292742) if the backtrace object is ever asked
 542     // for its backtrace.
 543     // Fixing this remaining case of 4292742 requires some flavor of
 544     // escape analysis.  Leave that for the future.
 545     ciInstance* ex_obj = NULL;
 546     switch (reason) {
 547     case Deoptimization::Reason_null_check:
 548       ex_obj = env()->NullPointerException_instance();
 549       break;
 550     case Deoptimization::Reason_div0_check:
 551       ex_obj = env()->ArithmeticException_instance();
 552       break;
 553     case Deoptimization::Reason_range_check:
 554       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 555       break;
 556     case Deoptimization::Reason_class_check:
 557       if (java_bc() == Bytecodes::_aastore) {
 558         ex_obj = env()->ArrayStoreException_instance();
 559       } else {
 560         ex_obj = env()->ClassCastException_instance();
 561       }
 562       break;
 563     }
 564     if (failing()) { stop(); return; }  // exception allocation might fail
 565     if (ex_obj != NULL) {
 566       // Cheat with a preallocated exception object.
 567       if (C->log() != NULL)
 568         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 569                        Deoptimization::trap_reason_name(reason));
 570       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 571       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
 572 
 573       // Clear the detail message of the preallocated exception object.
 574       // Weblogic sometimes mutates the detail message of exceptions
 575       // using reflection.
 576       int offset = java_lang_Throwable::get_detailMessage_offset();
 577       const TypePtr* adr_typ = ex_con->add_offset(offset);
 578 
 579       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 580       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), ex_con, T_OBJECT);
 581 
 582       add_exception_state(make_exception_state(ex_node));
 583       return;
 584     }
 585   }
 586 
 587   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 588   // It won't be much cheaper than bailing to the interp., since we'll
 589   // have to pass up all the debug-info, and the runtime will have to
 590   // create the stack trace.
 591 
 592   // Usual case:  Bail to interpreter.
 593   // Reserve the right to recompile if we haven't seen anything yet.
 594 
 595   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 596   if (treat_throw_as_hot
 597       && (method()->method_data()->trap_recompiled_at(bci())
 598           || C->too_many_traps(reason))) {
 599     // We cannot afford to take more traps here.  Suffer in the interpreter.
 600     if (C->log() != NULL)
 601       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 602                      Deoptimization::trap_reason_name(reason),
 603                      C->trap_count(reason));
 604     action = Deoptimization::Action_none;
 605   }
 606 
 607   // "must_throw" prunes the JVM state to include only the stack, if there
 608   // are no local exception handlers.  This should cut down on register
 609   // allocation time and code size, by drastically reducing the number
 610   // of in-edges on the call to the uncommon trap.
 611 
 612   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 613 }
 614 
 615 
 616 //----------------------------PreserveJVMState---------------------------------
 617 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 618   debug_only(kit->verify_map());
 619   _kit    = kit;
 620   _map    = kit->map();   // preserve the map
 621   _sp     = kit->sp();
 622   kit->set_map(clone_map ? kit->clone_map() : NULL);
 623 #ifdef ASSERT
 624   _bci    = kit->bci();
 625   Parse* parser = kit->is_Parse();
 626   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 627   _block  = block;
 628 #endif
 629 }
 630 PreserveJVMState::~PreserveJVMState() {
 631   GraphKit* kit = _kit;
 632 #ifdef ASSERT
 633   assert(kit->bci() == _bci, "bci must not shift");
 634   Parse* parser = kit->is_Parse();
 635   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 636   assert(block == _block,    "block must not shift");
 637 #endif
 638   kit->set_map(_map);
 639   kit->set_sp(_sp);
 640 }
 641 
 642 
 643 //-----------------------------BuildCutout-------------------------------------
 644 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 645   : PreserveJVMState(kit)
 646 {
 647   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 648   SafePointNode* outer_map = _map;   // preserved map is caller's
 649   SafePointNode* inner_map = kit->map();
 650   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 651   outer_map->set_control(kit->gvn().transform( new (kit->C, 1) IfTrueNode(iff) ));
 652   inner_map->set_control(kit->gvn().transform( new (kit->C, 1) IfFalseNode(iff) ));
 653 }
 654 BuildCutout::~BuildCutout() {
 655   GraphKit* kit = _kit;
 656   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 657 }
 658 
 659 //---------------------------PreserveReexecuteState----------------------------
 660 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 661   assert(!kit->stopped(), "must call stopped() before");
 662   _kit    =    kit;
 663   _sp     =    kit->sp();
 664   _reexecute = kit->jvms()->_reexecute;
 665 }
 666 PreserveReexecuteState::~PreserveReexecuteState() {
 667   if (_kit->stopped()) return;
 668   _kit->jvms()->_reexecute = _reexecute;
 669   _kit->set_sp(_sp);
 670 }
 671 
 672 //------------------------------clone_map--------------------------------------
 673 // Implementation of PreserveJVMState
 674 //
 675 // Only clone_map(...) here. If this function is only used in the
 676 // PreserveJVMState class we may want to get rid of this extra
 677 // function eventually and do it all there.
 678 
 679 SafePointNode* GraphKit::clone_map() {
 680   if (map() == NULL)  return NULL;
 681 
 682   // Clone the memory edge first
 683   Node* mem = MergeMemNode::make(C, map()->memory());
 684   gvn().set_type_bottom(mem);
 685 
 686   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 687   JVMState* jvms = this->jvms();
 688   JVMState* clonejvms = jvms->clone_shallow(C);
 689   clonemap->set_memory(mem);
 690   clonemap->set_jvms(clonejvms);
 691   clonejvms->set_map(clonemap);
 692   record_for_igvn(clonemap);
 693   gvn().set_type_bottom(clonemap);
 694   return clonemap;
 695 }
 696 
 697 
 698 //-----------------------------set_map_clone-----------------------------------
 699 void GraphKit::set_map_clone(SafePointNode* m) {
 700   _map = m;
 701   _map = clone_map();
 702   _map->set_next_exception(NULL);
 703   debug_only(verify_map());
 704 }
 705 
 706 
 707 //----------------------------kill_dead_locals---------------------------------
 708 // Detect any locals which are known to be dead, and force them to top.
 709 void GraphKit::kill_dead_locals() {
 710   // Consult the liveness information for the locals.  If any
 711   // of them are unused, then they can be replaced by top().  This
 712   // should help register allocation time and cut down on the size
 713   // of the deoptimization information.
 714 
 715   // This call is made from many of the bytecode handling
 716   // subroutines called from the Big Switch in do_one_bytecode.
 717   // Every bytecode which might include a slow path is responsible
 718   // for killing its dead locals.  The more consistent we
 719   // are about killing deads, the fewer useless phis will be
 720   // constructed for them at various merge points.
 721 
 722   // bci can be -1 (InvocationEntryBci).  We return the entry
 723   // liveness for the method.
 724 
 725   if (method() == NULL || method()->code_size() == 0) {
 726     // We are building a graph for a call to a native method.
 727     // All locals are live.
 728     return;
 729   }
 730 
 731   ResourceMark rm;
 732 
 733   // Consult the liveness information for the locals.  If any
 734   // of them are unused, then they can be replaced by top().  This
 735   // should help register allocation time and cut down on the size
 736   // of the deoptimization information.
 737   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 738 
 739   int len = (int)live_locals.size();
 740   assert(len <= jvms()->loc_size(), "too many live locals");
 741   for (int local = 0; local < len; local++) {
 742     if (!live_locals.at(local)) {
 743       set_local(local, top());
 744     }
 745   }
 746 }
 747 
 748 #ifdef ASSERT
 749 //-------------------------dead_locals_are_killed------------------------------
 750 // Return true if all dead locals are set to top in the map.
 751 // Used to assert "clean" debug info at various points.
 752 bool GraphKit::dead_locals_are_killed() {
 753   if (method() == NULL || method()->code_size() == 0) {
 754     // No locals need to be dead, so all is as it should be.
 755     return true;
 756   }
 757 
 758   // Make sure somebody called kill_dead_locals upstream.
 759   ResourceMark rm;
 760   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 761     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 762     SafePointNode* map = jvms->map();
 763     ciMethod* method = jvms->method();
 764     int       bci    = jvms->bci();
 765     if (jvms == this->jvms()) {
 766       bci = this->bci();  // it might not yet be synched
 767     }
 768     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 769     int len = (int)live_locals.size();
 770     if (!live_locals.is_valid() || len == 0)
 771       // This method is trivial, or is poisoned by a breakpoint.
 772       return true;
 773     assert(len == jvms->loc_size(), "live map consistent with locals map");
 774     for (int local = 0; local < len; local++) {
 775       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 776         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 777           tty->print_cr("Zombie local %d: ", local);
 778           jvms->dump();
 779         }
 780         return false;
 781       }
 782     }
 783   }
 784   return true;
 785 }
 786 
 787 #endif //ASSERT
 788 
 789 // Helper function for enforcing certain bytecodes to reexecute if
 790 // deoptimization happens
 791 static bool should_reexecute_implied_by_bytecode(JVMState *jvms) {
 792   ciMethod* cur_method = jvms->method();
 793   int       cur_bci   = jvms->bci();
 794   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 795     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 796     return Interpreter::bytecode_should_reexecute(code);
 797   } else
 798     return false;
 799 }
 800 
 801 // Helper function for adding JVMState and debug information to node
 802 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 803   // Add the safepoint edges to the call (or other safepoint).
 804 
 805   // Make sure dead locals are set to top.  This
 806   // should help register allocation time and cut down on the size
 807   // of the deoptimization information.
 808   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 809 
 810   // Walk the inline list to fill in the correct set of JVMState's
 811   // Also fill in the associated edges for each JVMState.
 812 
 813   JVMState* youngest_jvms = sync_jvms();
 814 
 815   // Do we need debug info here?  If it is a SafePoint and this method
 816   // cannot de-opt, then we do NOT need any debug info.
 817   bool full_info = (C->deopt_happens() || call->Opcode() != Op_SafePoint);
 818 
 819   // If we are guaranteed to throw, we can prune everything but the
 820   // input to the current bytecode.
 821   bool can_prune_locals = false;
 822   uint stack_slots_not_pruned = 0;
 823   int inputs = 0, depth = 0;
 824   if (must_throw) {
 825     assert(method() == youngest_jvms->method(), "sanity");
 826     if (compute_stack_effects(inputs, depth)) {
 827       can_prune_locals = true;
 828       stack_slots_not_pruned = inputs;
 829     }
 830   }
 831 
 832   if (env()->jvmti_can_examine_or_deopt_anywhere()) {
 833     // At any safepoint, this method can get breakpointed, which would
 834     // then require an immediate deoptimization.
 835     full_info = true;
 836     can_prune_locals = false;  // do not prune locals
 837     stack_slots_not_pruned = 0;
 838   }
 839 
 840   // do not scribble on the input jvms
 841   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 842   call->set_jvms(out_jvms); // Start jvms list for call node
 843 
 844   // For a known set of bytecodes, the interpreter should reexecute them if
 845   // deoptimization happens. We set the reexecute state for them here
 846   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 847       should_reexecute_implied_by_bytecode(out_jvms)) {
 848     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 849   }
 850 
 851   // Presize the call:
 852   debug_only(uint non_debug_edges = call->req());
 853   call->add_req_batch(top(), youngest_jvms->debug_depth());
 854   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 855 
 856   // Set up edges so that the call looks like this:
 857   //  Call [state:] ctl io mem fptr retadr
 858   //       [parms:] parm0 ... parmN
 859   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 860   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 861   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 862   // Note that caller debug info precedes callee debug info.
 863 
 864   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 865   uint debug_ptr = call->req();
 866 
 867   // Loop over the map input edges associated with jvms, add them
 868   // to the call node, & reset all offsets to match call node array.
 869   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 870     uint debug_end   = debug_ptr;
 871     uint debug_start = debug_ptr - in_jvms->debug_size();
 872     debug_ptr = debug_start;  // back up the ptr
 873 
 874     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 875     uint j, k, l;
 876     SafePointNode* in_map = in_jvms->map();
 877     out_jvms->set_map(call);
 878 
 879     if (can_prune_locals) {
 880       assert(in_jvms->method() == out_jvms->method(), "sanity");
 881       // If the current throw can reach an exception handler in this JVMS,
 882       // then we must keep everything live that can reach that handler.
 883       // As a quick and dirty approximation, we look for any handlers at all.
 884       if (in_jvms->method()->has_exception_handlers()) {
 885         can_prune_locals = false;
 886       }
 887     }
 888 
 889     // Add the Locals
 890     k = in_jvms->locoff();
 891     l = in_jvms->loc_size();
 892     out_jvms->set_locoff(p);
 893     if (full_info && !can_prune_locals) {
 894       for (j = 0; j < l; j++)
 895         call->set_req(p++, in_map->in(k+j));
 896     } else {
 897       p += l;  // already set to top above by add_req_batch
 898     }
 899 
 900     // Add the Expression Stack
 901     k = in_jvms->stkoff();
 902     l = in_jvms->sp();
 903     out_jvms->set_stkoff(p);
 904     if (full_info && !can_prune_locals) {
 905       for (j = 0; j < l; j++)
 906         call->set_req(p++, in_map->in(k+j));
 907     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 908       // Divide stack into {S0,...,S1}, where S0 is set to top.
 909       uint s1 = stack_slots_not_pruned;
 910       stack_slots_not_pruned = 0;  // for next iteration
 911       if (s1 > l)  s1 = l;
 912       uint s0 = l - s1;
 913       p += s0;  // skip the tops preinstalled by add_req_batch
 914       for (j = s0; j < l; j++)
 915         call->set_req(p++, in_map->in(k+j));
 916     } else {
 917       p += l;  // already set to top above by add_req_batch
 918     }
 919 
 920     // Add the Monitors
 921     k = in_jvms->monoff();
 922     l = in_jvms->mon_size();
 923     out_jvms->set_monoff(p);
 924     for (j = 0; j < l; j++)
 925       call->set_req(p++, in_map->in(k+j));
 926 
 927     // Copy any scalar object fields.
 928     k = in_jvms->scloff();
 929     l = in_jvms->scl_size();
 930     out_jvms->set_scloff(p);
 931     for (j = 0; j < l; j++)
 932       call->set_req(p++, in_map->in(k+j));
 933 
 934     // Finish the new jvms.
 935     out_jvms->set_endoff(p);
 936 
 937     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 938     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 939     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 940     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 941     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 942     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 943 
 944     // Update the two tail pointers in parallel.
 945     out_jvms = out_jvms->caller();
 946     in_jvms  = in_jvms->caller();
 947   }
 948 
 949   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 950 
 951   // Test the correctness of JVMState::debug_xxx accessors:
 952   assert(call->jvms()->debug_start() == non_debug_edges, "");
 953   assert(call->jvms()->debug_end()   == call->req(), "");
 954   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 955 }
 956 
 957 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 958   Bytecodes::Code code = java_bc();
 959   if (code == Bytecodes::_wide) {
 960     code = method()->java_code_at_bci(bci() + 1);
 961   }
 962 
 963   BasicType rtype = T_ILLEGAL;
 964   int       rsize = 0;
 965 
 966   if (code != Bytecodes::_illegal) {
 967     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
 968     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
 969     if (rtype < T_CONFLICT)
 970       rsize = type2size[rtype];
 971   }
 972 
 973   switch (code) {
 974   case Bytecodes::_illegal:
 975     return false;
 976 
 977   case Bytecodes::_ldc:
 978   case Bytecodes::_ldc_w:
 979   case Bytecodes::_ldc2_w:
 980     inputs = 0;
 981     break;
 982 
 983   case Bytecodes::_dup:         inputs = 1;  break;
 984   case Bytecodes::_dup_x1:      inputs = 2;  break;
 985   case Bytecodes::_dup_x2:      inputs = 3;  break;
 986   case Bytecodes::_dup2:        inputs = 2;  break;
 987   case Bytecodes::_dup2_x1:     inputs = 3;  break;
 988   case Bytecodes::_dup2_x2:     inputs = 4;  break;
 989   case Bytecodes::_swap:        inputs = 2;  break;
 990   case Bytecodes::_arraylength: inputs = 1;  break;
 991 
 992   case Bytecodes::_getstatic:
 993   case Bytecodes::_putstatic:
 994   case Bytecodes::_getfield:
 995   case Bytecodes::_putfield:
 996     {
 997       bool is_get = (depth >= 0), is_static = (depth & 1);
 998       bool ignore;
 999       ciBytecodeStream iter(method());
1000       iter.reset_to_bci(bci());
1001       iter.next();
1002       ciField* field = iter.get_field(ignore);
1003       int      size  = field->type()->size();
1004       inputs  = (is_static ? 0 : 1);
1005       if (is_get) {
1006         depth = size - inputs;
1007       } else {
1008         inputs += size;        // putxxx pops the value from the stack
1009         depth = - inputs;
1010       }
1011     }
1012     break;
1013 
1014   case Bytecodes::_invokevirtual:
1015   case Bytecodes::_invokespecial:
1016   case Bytecodes::_invokestatic:
1017   case Bytecodes::_invokedynamic:
1018   case Bytecodes::_invokeinterface:
1019     {
1020       bool is_static = (depth == 0);
1021       bool ignore;
1022       ciBytecodeStream iter(method());
1023       iter.reset_to_bci(bci());
1024       iter.next();
1025       ciMethod* method = iter.get_method(ignore);
1026       inputs = method->arg_size_no_receiver();
1027       if (!is_static)  inputs += 1;
1028       int size = method->return_type()->size();
1029       depth = size - inputs;
1030     }
1031     break;
1032 
1033   case Bytecodes::_multianewarray:
1034     {
1035       ciBytecodeStream iter(method());
1036       iter.reset_to_bci(bci());
1037       iter.next();
1038       inputs = iter.get_dimensions();
1039       assert(rsize == 1, "");
1040       depth = rsize - inputs;
1041     }
1042     break;
1043 
1044   case Bytecodes::_ireturn:
1045   case Bytecodes::_lreturn:
1046   case Bytecodes::_freturn:
1047   case Bytecodes::_dreturn:
1048   case Bytecodes::_areturn:
1049     assert(rsize = -depth, "");
1050     inputs = rsize;
1051     break;
1052 
1053   case Bytecodes::_jsr:
1054   case Bytecodes::_jsr_w:
1055     inputs = 0;
1056     depth  = 1;                  // S.B. depth=1, not zero
1057     break;
1058 
1059   default:
1060     // bytecode produces a typed result
1061     inputs = rsize - depth;
1062     assert(inputs >= 0, "");
1063     break;
1064   }
1065 
1066 #ifdef ASSERT
1067   // spot check
1068   int outputs = depth + inputs;
1069   assert(outputs >= 0, "sanity");
1070   switch (code) {
1071   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1072   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1073   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1074   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1075   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1076   }
1077 #endif //ASSERT
1078 
1079   return true;
1080 }
1081 
1082 
1083 
1084 //------------------------------basic_plus_adr---------------------------------
1085 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1086   // short-circuit a common case
1087   if (offset == intcon(0))  return ptr;
1088   return _gvn.transform( new (C, 4) AddPNode(base, ptr, offset) );
1089 }
1090 
1091 Node* GraphKit::ConvI2L(Node* offset) {
1092   // short-circuit a common case
1093   jint offset_con = find_int_con(offset, Type::OffsetBot);
1094   if (offset_con != Type::OffsetBot) {
1095     return longcon((long) offset_con);
1096   }
1097   return _gvn.transform( new (C, 2) ConvI2LNode(offset));
1098 }
1099 Node* GraphKit::ConvL2I(Node* offset) {
1100   // short-circuit a common case
1101   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1102   if (offset_con != (jlong)Type::OffsetBot) {
1103     return intcon((int) offset_con);
1104   }
1105   return _gvn.transform( new (C, 2) ConvL2INode(offset));
1106 }
1107 
1108 //-------------------------load_object_klass-----------------------------------
1109 Node* GraphKit::load_object_klass(Node* obj) {
1110   // Special-case a fresh allocation to avoid building nodes:
1111   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1112   if (akls != NULL)  return akls;
1113   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1114   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1115 }
1116 
1117 //-------------------------load_array_length-----------------------------------
1118 Node* GraphKit::load_array_length(Node* array) {
1119   // Special-case a fresh allocation to avoid building nodes:
1120   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1121   Node *alen;
1122   if (alloc == NULL) {
1123     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1124     alen = _gvn.transform( new (C, 3) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1125   } else {
1126     alen = alloc->Ideal_length();
1127     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1128     if (ccast != alen) {
1129       alen = _gvn.transform(ccast);
1130     }
1131   }
1132   return alen;
1133 }
1134 
1135 //------------------------------do_null_check----------------------------------
1136 // Helper function to do a NULL pointer check.  Returned value is
1137 // the incoming address with NULL casted away.  You are allowed to use the
1138 // not-null value only if you are control dependent on the test.
1139 extern int explicit_null_checks_inserted,
1140            explicit_null_checks_elided;
1141 Node* GraphKit::null_check_common(Node* value, BasicType type,
1142                                   // optional arguments for variations:
1143                                   bool assert_null,
1144                                   Node* *null_control) {
1145   assert(!assert_null || null_control == NULL, "not both at once");
1146   if (stopped())  return top();
1147   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1148     // For some performance testing, we may wish to suppress null checking.
1149     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1150     return value;
1151   }
1152   explicit_null_checks_inserted++;
1153 
1154   // Construct NULL check
1155   Node *chk = NULL;
1156   switch(type) {
1157     case T_LONG   : chk = new (C, 3) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1158     case T_INT    : chk = new (C, 3) CmpINode( value, _gvn.intcon(0)); break;
1159     case T_ARRAY  : // fall through
1160       type = T_OBJECT;  // simplify further tests
1161     case T_OBJECT : {
1162       const Type *t = _gvn.type( value );
1163 
1164       const TypeOopPtr* tp = t->isa_oopptr();
1165       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1166           // Only for do_null_check, not any of its siblings:
1167           && !assert_null && null_control == NULL) {
1168         // Usually, any field access or invocation on an unloaded oop type
1169         // will simply fail to link, since the statically linked class is
1170         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1171         // the static class is loaded but the sharper oop type is not.
1172         // Rather than checking for this obscure case in lots of places,
1173         // we simply observe that a null check on an unloaded class
1174         // will always be followed by a nonsense operation, so we
1175         // can just issue the uncommon trap here.
1176         // Our access to the unloaded class will only be correct
1177         // after it has been loaded and initialized, which requires
1178         // a trip through the interpreter.
1179 #ifndef PRODUCT
1180         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1181 #endif
1182         uncommon_trap(Deoptimization::Reason_unloaded,
1183                       Deoptimization::Action_reinterpret,
1184                       tp->klass(), "!loaded");
1185         return top();
1186       }
1187 
1188       if (assert_null) {
1189         // See if the type is contained in NULL_PTR.
1190         // If so, then the value is already null.
1191         if (t->higher_equal(TypePtr::NULL_PTR)) {
1192           explicit_null_checks_elided++;
1193           return value;           // Elided null assert quickly!
1194         }
1195       } else {
1196         // See if mixing in the NULL pointer changes type.
1197         // If so, then the NULL pointer was not allowed in the original
1198         // type.  In other words, "value" was not-null.
1199         if (t->meet(TypePtr::NULL_PTR) != t) {
1200           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1201           explicit_null_checks_elided++;
1202           return value;           // Elided null check quickly!
1203         }
1204       }
1205       chk = new (C, 3) CmpPNode( value, null() );
1206       break;
1207     }
1208 
1209     default      : ShouldNotReachHere();
1210   }
1211   assert(chk != NULL, "sanity check");
1212   chk = _gvn.transform(chk);
1213 
1214   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1215   BoolNode *btst = new (C, 2) BoolNode( chk, btest);
1216   Node   *tst = _gvn.transform( btst );
1217 
1218   //-----------
1219   // if peephole optimizations occurred, a prior test existed.
1220   // If a prior test existed, maybe it dominates as we can avoid this test.
1221   if (tst != btst && type == T_OBJECT) {
1222     // At this point we want to scan up the CFG to see if we can
1223     // find an identical test (and so avoid this test altogether).
1224     Node *cfg = control();
1225     int depth = 0;
1226     while( depth < 16 ) {       // Limit search depth for speed
1227       if( cfg->Opcode() == Op_IfTrue &&
1228           cfg->in(0)->in(1) == tst ) {
1229         // Found prior test.  Use "cast_not_null" to construct an identical
1230         // CastPP (and hence hash to) as already exists for the prior test.
1231         // Return that casted value.
1232         if (assert_null) {
1233           replace_in_map(value, null());
1234           return null();  // do not issue the redundant test
1235         }
1236         Node *oldcontrol = control();
1237         set_control(cfg);
1238         Node *res = cast_not_null(value);
1239         set_control(oldcontrol);
1240         explicit_null_checks_elided++;
1241         return res;
1242       }
1243       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1244       if (cfg == NULL)  break;  // Quit at region nodes
1245       depth++;
1246     }
1247   }
1248 
1249   //-----------
1250   // Branch to failure if null
1251   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1252   Deoptimization::DeoptReason reason;
1253   if (assert_null)
1254     reason = Deoptimization::Reason_null_assert;
1255   else if (type == T_OBJECT)
1256     reason = Deoptimization::Reason_null_check;
1257   else
1258     reason = Deoptimization::Reason_div0_check;
1259 
1260   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1261   // ciMethodData::has_trap_at will return a conservative -1 if any
1262   // must-be-null assertion has failed.  This could cause performance
1263   // problems for a method after its first do_null_assert failure.
1264   // Consider using 'Reason_class_check' instead?
1265 
1266   // To cause an implicit null check, we set the not-null probability
1267   // to the maximum (PROB_MAX).  For an explicit check the probability
1268   // is set to a smaller value.
1269   if (null_control != NULL || too_many_traps(reason)) {
1270     // probability is less likely
1271     ok_prob =  PROB_LIKELY_MAG(3);
1272   } else if (!assert_null &&
1273              (ImplicitNullCheckThreshold > 0) &&
1274              method() != NULL &&
1275              (method()->method_data()->trap_count(reason)
1276               >= (uint)ImplicitNullCheckThreshold)) {
1277     ok_prob =  PROB_LIKELY_MAG(3);
1278   }
1279 
1280   if (null_control != NULL) {
1281     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1282     Node* null_true = _gvn.transform( new (C, 1) IfFalseNode(iff));
1283     set_control(      _gvn.transform( new (C, 1) IfTrueNode(iff)));
1284     if (null_true == top())
1285       explicit_null_checks_elided++;
1286     (*null_control) = null_true;
1287   } else {
1288     BuildCutout unless(this, tst, ok_prob);
1289     // Check for optimizer eliding test at parse time
1290     if (stopped()) {
1291       // Failure not possible; do not bother making uncommon trap.
1292       explicit_null_checks_elided++;
1293     } else if (assert_null) {
1294       uncommon_trap(reason,
1295                     Deoptimization::Action_make_not_entrant,
1296                     NULL, "assert_null");
1297     } else {
1298       replace_in_map(value, zerocon(type));
1299       builtin_throw(reason);
1300     }
1301   }
1302 
1303   // Must throw exception, fall-thru not possible?
1304   if (stopped()) {
1305     return top();               // No result
1306   }
1307 
1308   if (assert_null) {
1309     // Cast obj to null on this path.
1310     replace_in_map(value, zerocon(type));
1311     return zerocon(type);
1312   }
1313 
1314   // Cast obj to not-null on this path, if there is no null_control.
1315   // (If there is a null_control, a non-null value may come back to haunt us.)
1316   if (type == T_OBJECT) {
1317     Node* cast = cast_not_null(value, false);
1318     if (null_control == NULL || (*null_control) == top())
1319       replace_in_map(value, cast);
1320     value = cast;
1321   }
1322 
1323   return value;
1324 }
1325 
1326 
1327 //------------------------------cast_not_null----------------------------------
1328 // Cast obj to not-null on this path
1329 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1330   const Type *t = _gvn.type(obj);
1331   const Type *t_not_null = t->join(TypePtr::NOTNULL);
1332   // Object is already not-null?
1333   if( t == t_not_null ) return obj;
1334 
1335   Node *cast = new (C, 2) CastPPNode(obj,t_not_null);
1336   cast->init_req(0, control());
1337   cast = _gvn.transform( cast );
1338 
1339   // Scan for instances of 'obj' in the current JVM mapping.
1340   // These instances are known to be not-null after the test.
1341   if (do_replace_in_map)
1342     replace_in_map(obj, cast);
1343 
1344   return cast;                  // Return casted value
1345 }
1346 
1347 
1348 //--------------------------replace_in_map-------------------------------------
1349 void GraphKit::replace_in_map(Node* old, Node* neww) {
1350   this->map()->replace_edge(old, neww);
1351 
1352   // Note: This operation potentially replaces any edge
1353   // on the map.  This includes locals, stack, and monitors
1354   // of the current (innermost) JVM state.
1355 
1356   // We can consider replacing in caller maps.
1357   // The idea would be that an inlined function's null checks
1358   // can be shared with the entire inlining tree.
1359   // The expense of doing this is that the PreserveJVMState class
1360   // would have to preserve caller states too, with a deep copy.
1361 }
1362 
1363 
1364 
1365 //=============================================================================
1366 //--------------------------------memory---------------------------------------
1367 Node* GraphKit::memory(uint alias_idx) {
1368   MergeMemNode* mem = merged_memory();
1369   Node* p = mem->memory_at(alias_idx);
1370   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1371   return p;
1372 }
1373 
1374 //-----------------------------reset_memory------------------------------------
1375 Node* GraphKit::reset_memory() {
1376   Node* mem = map()->memory();
1377   // do not use this node for any more parsing!
1378   debug_only( map()->set_memory((Node*)NULL) );
1379   return _gvn.transform( mem );
1380 }
1381 
1382 //------------------------------set_all_memory---------------------------------
1383 void GraphKit::set_all_memory(Node* newmem) {
1384   Node* mergemem = MergeMemNode::make(C, newmem);
1385   gvn().set_type_bottom(mergemem);
1386   map()->set_memory(mergemem);
1387 }
1388 
1389 //------------------------------set_all_memory_call----------------------------
1390 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1391   Node* newmem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1392   set_all_memory(newmem);
1393 }
1394 
1395 //=============================================================================
1396 //
1397 // parser factory methods for MemNodes
1398 //
1399 // These are layered on top of the factory methods in LoadNode and StoreNode,
1400 // and integrate with the parser's memory state and _gvn engine.
1401 //
1402 
1403 // factory methods in "int adr_idx"
1404 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1405                           int adr_idx,
1406                           bool require_atomic_access) {
1407   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1408   const TypePtr* adr_type = NULL; // debug-mode-only argument
1409   debug_only(adr_type = C->get_adr_type(adr_idx));
1410   Node* mem = memory(adr_idx);
1411   Node* ld;
1412   if (require_atomic_access && bt == T_LONG) {
1413     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t);
1414   } else {
1415     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
1416   }
1417   return _gvn.transform(ld);
1418 }
1419 
1420 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1421                                 int adr_idx,
1422                                 bool require_atomic_access) {
1423   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1424   const TypePtr* adr_type = NULL;
1425   debug_only(adr_type = C->get_adr_type(adr_idx));
1426   Node *mem = memory(adr_idx);
1427   Node* st;
1428   if (require_atomic_access && bt == T_LONG) {
1429     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val);
1430   } else {
1431     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt);
1432   }
1433   st = _gvn.transform(st);
1434   set_memory(st, adr_idx);
1435   // Back-to-back stores can only remove intermediate store with DU info
1436   // so push on worklist for optimizer.
1437   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1438     record_for_igvn(st);
1439 
1440   return st;
1441 }
1442 
1443 
1444 void GraphKit::pre_barrier(Node* ctl,
1445                            Node* obj,
1446                            Node* adr,
1447                            uint  adr_idx,
1448                            Node* val,
1449                            const TypeOopPtr* val_type,
1450                            BasicType bt) {
1451   BarrierSet* bs = Universe::heap()->barrier_set();
1452   set_control(ctl);
1453   switch (bs->kind()) {
1454     case BarrierSet::G1SATBCT:
1455     case BarrierSet::G1SATBCTLogging:
1456       g1_write_barrier_pre(obj, adr, adr_idx, val, val_type, bt);
1457       break;
1458 
1459     case BarrierSet::CardTableModRef:
1460     case BarrierSet::CardTableExtension:
1461     case BarrierSet::ModRef:
1462       break;
1463 
1464     case BarrierSet::Other:
1465     default      :
1466       ShouldNotReachHere();
1467 
1468   }
1469 }
1470 
1471 void GraphKit::post_barrier(Node* ctl,
1472                             Node* store,
1473                             Node* obj,
1474                             Node* adr,
1475                             uint  adr_idx,
1476                             Node* val,
1477                             BasicType bt,
1478                             bool use_precise) {
1479   BarrierSet* bs = Universe::heap()->barrier_set();
1480   set_control(ctl);
1481   switch (bs->kind()) {
1482     case BarrierSet::G1SATBCT:
1483     case BarrierSet::G1SATBCTLogging:
1484       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1485       break;
1486 
1487     case BarrierSet::CardTableModRef:
1488     case BarrierSet::CardTableExtension:
1489       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1490       break;
1491 
1492     case BarrierSet::ModRef:
1493       break;
1494 
1495     case BarrierSet::Other:
1496     default      :
1497       ShouldNotReachHere();
1498 
1499   }
1500 }
1501 
1502 Node* GraphKit::store_oop(Node* ctl,
1503                           Node* obj,
1504                           Node* adr,
1505                           const TypePtr* adr_type,
1506                           Node* val,
1507                           const TypeOopPtr* val_type,
1508                           BasicType bt,
1509                           bool use_precise) {
1510 
1511   set_control(ctl);
1512   if (stopped()) return top(); // Dead path ?
1513 
1514   assert(bt == T_OBJECT, "sanity");
1515   assert(val != NULL, "not dead path");
1516   uint adr_idx = C->get_alias_index(adr_type);
1517   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1518 
1519   pre_barrier(control(), obj, adr, adr_idx, val, val_type, bt);
1520   Node* store = store_to_memory(control(), adr, val, bt, adr_idx);
1521   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1522   return store;
1523 }
1524 
1525 // Could be an array or object we don't know at compile time (unsafe ref.)
1526 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1527                              Node* obj,   // containing obj
1528                              Node* adr,  // actual adress to store val at
1529                              const TypePtr* adr_type,
1530                              Node* val,
1531                              BasicType bt) {
1532   Compile::AliasType* at = C->alias_type(adr_type);
1533   const TypeOopPtr* val_type = NULL;
1534   if (adr_type->isa_instptr()) {
1535     if (at->field() != NULL) {
1536       // known field.  This code is a copy of the do_put_xxx logic.
1537       ciField* field = at->field();
1538       if (!field->type()->is_loaded()) {
1539         val_type = TypeInstPtr::BOTTOM;
1540       } else {
1541         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1542       }
1543     }
1544   } else if (adr_type->isa_aryptr()) {
1545     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1546   }
1547   if (val_type == NULL) {
1548     val_type = TypeInstPtr::BOTTOM;
1549   }
1550   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true);
1551 }
1552 
1553 
1554 //-------------------------array_element_address-------------------------
1555 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1556                                       const TypeInt* sizetype) {
1557   uint shift  = exact_log2(type2aelembytes(elembt));
1558   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1559 
1560   // short-circuit a common case (saves lots of confusing waste motion)
1561   jint idx_con = find_int_con(idx, -1);
1562   if (idx_con >= 0) {
1563     intptr_t offset = header + ((intptr_t)idx_con << shift);
1564     return basic_plus_adr(ary, offset);
1565   }
1566 
1567   // must be correct type for alignment purposes
1568   Node* base  = basic_plus_adr(ary, header);
1569 #ifdef _LP64
1570   // The scaled index operand to AddP must be a clean 64-bit value.
1571   // Java allows a 32-bit int to be incremented to a negative
1572   // value, which appears in a 64-bit register as a large
1573   // positive number.  Using that large positive number as an
1574   // operand in pointer arithmetic has bad consequences.
1575   // On the other hand, 32-bit overflow is rare, and the possibility
1576   // can often be excluded, if we annotate the ConvI2L node with
1577   // a type assertion that its value is known to be a small positive
1578   // number.  (The prior range check has ensured this.)
1579   // This assertion is used by ConvI2LNode::Ideal.
1580   int index_max = max_jint - 1;  // array size is max_jint, index is one less
1581   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1582   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1583   idx = _gvn.transform( new (C, 2) ConvI2LNode(idx, lidxtype) );
1584 #endif
1585   Node* scale = _gvn.transform( new (C, 3) LShiftXNode(idx, intcon(shift)) );
1586   return basic_plus_adr(ary, base, scale);
1587 }
1588 
1589 //-------------------------load_array_element-------------------------
1590 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1591   const Type* elemtype = arytype->elem();
1592   BasicType elembt = elemtype->array_element_basic_type();
1593   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1594   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
1595   return ld;
1596 }
1597 
1598 //-------------------------set_arguments_for_java_call-------------------------
1599 // Arguments (pre-popped from the stack) are taken from the JVMS.
1600 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1601   // Add the call arguments:
1602   uint nargs = call->method()->arg_size();
1603   for (uint i = 0; i < nargs; i++) {
1604     Node* arg = argument(i);
1605     call->init_req(i + TypeFunc::Parms, arg);
1606   }
1607 }
1608 
1609 //---------------------------set_edges_for_java_call---------------------------
1610 // Connect a newly created call into the current JVMS.
1611 // A return value node (if any) is returned from set_edges_for_java_call.
1612 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1613 
1614   // Add the predefined inputs:
1615   call->init_req( TypeFunc::Control, control() );
1616   call->init_req( TypeFunc::I_O    , i_o() );
1617   call->init_req( TypeFunc::Memory , reset_memory() );
1618   call->init_req( TypeFunc::FramePtr, frameptr() );
1619   call->init_req( TypeFunc::ReturnAdr, top() );
1620 
1621   add_safepoint_edges(call, must_throw);
1622 
1623   Node* xcall = _gvn.transform(call);
1624 
1625   if (xcall == top()) {
1626     set_control(top());
1627     return;
1628   }
1629   assert(xcall == call, "call identity is stable");
1630 
1631   // Re-use the current map to produce the result.
1632 
1633   set_control(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Control)));
1634   set_i_o(    _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1635   set_all_memory_call(xcall, separate_io_proj);
1636 
1637   //return xcall;   // no need, caller already has it
1638 }
1639 
1640 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1641   if (stopped())  return top();  // maybe the call folded up?
1642 
1643   // Capture the return value, if any.
1644   Node* ret;
1645   if (call->method() == NULL ||
1646       call->method()->return_type()->basic_type() == T_VOID)
1647         ret = top();
1648   else  ret = _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
1649 
1650   // Note:  Since any out-of-line call can produce an exception,
1651   // we always insert an I_O projection from the call into the result.
1652 
1653   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1654 
1655   if (separate_io_proj) {
1656     // The caller requested separate projections be used by the fall
1657     // through and exceptional paths, so replace the projections for
1658     // the fall through path.
1659     set_i_o(_gvn.transform( new (C, 1) ProjNode(call, TypeFunc::I_O) ));
1660     set_all_memory(_gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) ));
1661   }
1662   return ret;
1663 }
1664 
1665 //--------------------set_predefined_input_for_runtime_call--------------------
1666 // Reading and setting the memory state is way conservative here.
1667 // The real problem is that I am not doing real Type analysis on memory,
1668 // so I cannot distinguish card mark stores from other stores.  Across a GC
1669 // point the Store Barrier and the card mark memory has to agree.  I cannot
1670 // have a card mark store and its barrier split across the GC point from
1671 // either above or below.  Here I get that to happen by reading ALL of memory.
1672 // A better answer would be to separate out card marks from other memory.
1673 // For now, return the input memory state, so that it can be reused
1674 // after the call, if this call has restricted memory effects.
1675 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1676   // Set fixed predefined input arguments
1677   Node* memory = reset_memory();
1678   call->init_req( TypeFunc::Control,   control()  );
1679   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1680   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1681   call->init_req( TypeFunc::FramePtr,  frameptr() );
1682   call->init_req( TypeFunc::ReturnAdr, top()      );
1683   return memory;
1684 }
1685 
1686 //-------------------set_predefined_output_for_runtime_call--------------------
1687 // Set control and memory (not i_o) from the call.
1688 // If keep_mem is not NULL, use it for the output state,
1689 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1690 // If hook_mem is NULL, this call produces no memory effects at all.
1691 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1692 // then only that memory slice is taken from the call.
1693 // In the last case, we must put an appropriate memory barrier before
1694 // the call, so as to create the correct anti-dependencies on loads
1695 // preceding the call.
1696 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1697                                                       Node* keep_mem,
1698                                                       const TypePtr* hook_mem) {
1699   // no i/o
1700   set_control(_gvn.transform( new (C, 1) ProjNode(call,TypeFunc::Control) ));
1701   if (keep_mem) {
1702     // First clone the existing memory state
1703     set_all_memory(keep_mem);
1704     if (hook_mem != NULL) {
1705       // Make memory for the call
1706       Node* mem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );
1707       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1708       // We also use hook_mem to extract specific effects from arraycopy stubs.
1709       set_memory(mem, hook_mem);
1710     }
1711     // ...else the call has NO memory effects.
1712 
1713     // Make sure the call advertises its memory effects precisely.
1714     // This lets us build accurate anti-dependences in gcm.cpp.
1715     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1716            "call node must be constructed correctly");
1717   } else {
1718     assert(hook_mem == NULL, "");
1719     // This is not a "slow path" call; all memory comes from the call.
1720     set_all_memory_call(call);
1721   }
1722 }
1723 
1724 
1725 // Replace the call with the current state of the kit.
1726 void GraphKit::replace_call(CallNode* call, Node* result) {
1727   JVMState* ejvms = NULL;
1728   if (has_exceptions()) {
1729     ejvms = transfer_exceptions_into_jvms();
1730   }
1731 
1732   SafePointNode* final_state = stop();
1733 
1734   // Find all the needed outputs of this call
1735   CallProjections callprojs;
1736   call->extract_projections(&callprojs, true);
1737 
1738   // Replace all the old call edges with the edges from the inlining result
1739   C->gvn_replace_by(callprojs.fallthrough_catchproj, final_state->in(TypeFunc::Control));
1740   C->gvn_replace_by(callprojs.fallthrough_memproj,   final_state->in(TypeFunc::Memory));
1741   C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_state->in(TypeFunc::I_O));
1742 
1743   // Replace the result with the new result if it exists and is used
1744   if (callprojs.resproj != NULL && result != NULL) {
1745     C->gvn_replace_by(callprojs.resproj, result);
1746   }
1747 
1748   if (ejvms == NULL) {
1749     // No exception edges to simply kill off those paths
1750     C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1751     C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1752     C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1753 
1754     // Replace the old exception object with top
1755     if (callprojs.exobj != NULL) {
1756       C->gvn_replace_by(callprojs.exobj, C->top());
1757     }
1758   } else {
1759     GraphKit ekit(ejvms);
1760 
1761     // Load my combined exception state into the kit, with all phis transformed:
1762     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1763 
1764     Node* ex_oop = ekit.use_exception_state(ex_map);
1765 
1766     C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1767     C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1768     C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1769 
1770     // Replace the old exception object with the newly created one
1771     if (callprojs.exobj != NULL) {
1772       C->gvn_replace_by(callprojs.exobj, ex_oop);
1773     }
1774   }
1775 
1776   // Disconnect the call from the graph
1777   call->disconnect_inputs(NULL);
1778   C->gvn_replace_by(call, C->top());
1779 }
1780 
1781 
1782 //------------------------------increment_counter------------------------------
1783 // for statistics: increment a VM counter by 1
1784 
1785 void GraphKit::increment_counter(address counter_addr) {
1786   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1787   increment_counter(adr1);
1788 }
1789 
1790 void GraphKit::increment_counter(Node* counter_addr) {
1791   int adr_type = Compile::AliasIdxRaw;
1792   Node* cnt  = make_load(NULL, counter_addr, TypeInt::INT, T_INT, adr_type);
1793   Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
1794   store_to_memory( NULL, counter_addr, incr, T_INT, adr_type );
1795 }
1796 
1797 
1798 //------------------------------uncommon_trap----------------------------------
1799 // Bail out to the interpreter in mid-method.  Implemented by calling the
1800 // uncommon_trap blob.  This helper function inserts a runtime call with the
1801 // right debug info.
1802 void GraphKit::uncommon_trap(int trap_request,
1803                              ciKlass* klass, const char* comment,
1804                              bool must_throw,
1805                              bool keep_exact_action) {
1806   if (failing())  stop();
1807   if (stopped())  return; // trap reachable?
1808 
1809   // Note:  If ProfileTraps is true, and if a deopt. actually
1810   // occurs here, the runtime will make sure an MDO exists.  There is
1811   // no need to call method()->build_method_data() at this point.
1812 
1813 #ifdef ASSERT
1814   if (!must_throw) {
1815     // Make sure the stack has at least enough depth to execute
1816     // the current bytecode.
1817     int inputs, ignore;
1818     if (compute_stack_effects(inputs, ignore)) {
1819       assert(sp() >= inputs, "must have enough JVMS stack to execute");
1820       // It is a frequent error in library_call.cpp to issue an
1821       // uncommon trap with the _sp value already popped.
1822     }
1823   }
1824 #endif
1825 
1826   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1827   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1828 
1829   switch (action) {
1830   case Deoptimization::Action_maybe_recompile:
1831   case Deoptimization::Action_reinterpret:
1832     // Temporary fix for 6529811 to allow virtual calls to be sure they
1833     // get the chance to go from mono->bi->mega
1834     if (!keep_exact_action &&
1835         Deoptimization::trap_request_index(trap_request) < 0 &&
1836         too_many_recompiles(reason)) {
1837       // This BCI is causing too many recompilations.
1838       action = Deoptimization::Action_none;
1839       trap_request = Deoptimization::make_trap_request(reason, action);
1840     } else {
1841       C->set_trap_can_recompile(true);
1842     }
1843     break;
1844   case Deoptimization::Action_make_not_entrant:
1845     C->set_trap_can_recompile(true);
1846     break;
1847 #ifdef ASSERT
1848   case Deoptimization::Action_none:
1849   case Deoptimization::Action_make_not_compilable:
1850     break;
1851   default:
1852     assert(false, "bad action");
1853 #endif
1854   }
1855 
1856   if (TraceOptoParse) {
1857     char buf[100];
1858     tty->print_cr("Uncommon trap %s at bci:%d",
1859                   Deoptimization::format_trap_request(buf, sizeof(buf),
1860                                                       trap_request), bci());
1861   }
1862 
1863   CompileLog* log = C->log();
1864   if (log != NULL) {
1865     int kid = (klass == NULL)? -1: log->identify(klass);
1866     log->begin_elem("uncommon_trap bci='%d'", bci());
1867     char buf[100];
1868     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
1869                                                           trap_request));
1870     if (kid >= 0)         log->print(" klass='%d'", kid);
1871     if (comment != NULL)  log->print(" comment='%s'", comment);
1872     log->end_elem();
1873   }
1874 
1875   // Make sure any guarding test views this path as very unlikely
1876   Node *i0 = control()->in(0);
1877   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
1878     IfNode *iff = i0->as_If();
1879     float f = iff->_prob;   // Get prob
1880     if (control()->Opcode() == Op_IfTrue) {
1881       if (f > PROB_UNLIKELY_MAG(4))
1882         iff->_prob = PROB_MIN;
1883     } else {
1884       if (f < PROB_LIKELY_MAG(4))
1885         iff->_prob = PROB_MAX;
1886     }
1887   }
1888 
1889   // Clear out dead values from the debug info.
1890   kill_dead_locals();
1891 
1892   // Now insert the uncommon trap subroutine call
1893   address call_addr = SharedRuntime::uncommon_trap_blob()->instructions_begin();
1894   const TypePtr* no_memory_effects = NULL;
1895   // Pass the index of the class to be loaded
1896   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
1897                                  (must_throw ? RC_MUST_THROW : 0),
1898                                  OptoRuntime::uncommon_trap_Type(),
1899                                  call_addr, "uncommon_trap", no_memory_effects,
1900                                  intcon(trap_request));
1901   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
1902          "must extract request correctly from the graph");
1903   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
1904 
1905   call->set_req(TypeFunc::ReturnAdr, returnadr());
1906   // The debug info is the only real input to this call.
1907 
1908   // Halt-and-catch fire here.  The above call should never return!
1909   HaltNode* halt = new(C, TypeFunc::Parms) HaltNode(control(), frameptr());
1910   _gvn.set_type_bottom(halt);
1911   root()->add_req(halt);
1912 
1913   stop_and_kill_map();
1914 }
1915 
1916 
1917 //--------------------------just_allocated_object------------------------------
1918 // Report the object that was just allocated.
1919 // It must be the case that there are no intervening safepoints.
1920 // We use this to determine if an object is so "fresh" that
1921 // it does not require card marks.
1922 Node* GraphKit::just_allocated_object(Node* current_control) {
1923   if (C->recent_alloc_ctl() == current_control)
1924     return C->recent_alloc_obj();
1925   return NULL;
1926 }
1927 
1928 
1929 void GraphKit::round_double_arguments(ciMethod* dest_method) {
1930   // (Note:  TypeFunc::make has a cache that makes this fast.)
1931   const TypeFunc* tf    = TypeFunc::make(dest_method);
1932   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
1933   for (int j = 0; j < nargs; j++) {
1934     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
1935     if( targ->basic_type() == T_DOUBLE ) {
1936       // If any parameters are doubles, they must be rounded before
1937       // the call, dstore_rounding does gvn.transform
1938       Node *arg = argument(j);
1939       arg = dstore_rounding(arg);
1940       set_argument(j, arg);
1941     }
1942   }
1943 }
1944 
1945 void GraphKit::round_double_result(ciMethod* dest_method) {
1946   // A non-strict method may return a double value which has an extended
1947   // exponent, but this must not be visible in a caller which is 'strict'
1948   // If a strict caller invokes a non-strict callee, round a double result
1949 
1950   BasicType result_type = dest_method->return_type()->basic_type();
1951   assert( method() != NULL, "must have caller context");
1952   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
1953     // Destination method's return value is on top of stack
1954     // dstore_rounding() does gvn.transform
1955     Node *result = pop_pair();
1956     result = dstore_rounding(result);
1957     push_pair(result);
1958   }
1959 }
1960 
1961 // rounding for strict float precision conformance
1962 Node* GraphKit::precision_rounding(Node* n) {
1963   return UseStrictFP && _method->flags().is_strict()
1964     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
1965     ? _gvn.transform( new (C, 2) RoundFloatNode(0, n) )
1966     : n;
1967 }
1968 
1969 // rounding for strict double precision conformance
1970 Node* GraphKit::dprecision_rounding(Node *n) {
1971   return UseStrictFP && _method->flags().is_strict()
1972     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
1973     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
1974     : n;
1975 }
1976 
1977 // rounding for non-strict double stores
1978 Node* GraphKit::dstore_rounding(Node* n) {
1979   return Matcher::strict_fp_requires_explicit_rounding
1980     && UseSSE <= 1
1981     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
1982     : n;
1983 }
1984 
1985 //=============================================================================
1986 // Generate a fast path/slow path idiom.  Graph looks like:
1987 // [foo] indicates that 'foo' is a parameter
1988 //
1989 //              [in]     NULL
1990 //                 \    /
1991 //                  CmpP
1992 //                  Bool ne
1993 //                   If
1994 //                  /  \
1995 //              True    False-<2>
1996 //              / |
1997 //             /  cast_not_null
1998 //           Load  |    |   ^
1999 //        [fast_test]   |   |
2000 // gvn to   opt_test    |   |
2001 //          /    \      |  <1>
2002 //      True     False  |
2003 //        |         \\  |
2004 //   [slow_call]     \[fast_result]
2005 //    Ctl   Val       \      \
2006 //     |               \      \
2007 //    Catch       <1>   \      \
2008 //   /    \        ^     \      \
2009 //  Ex    No_Ex    |      \      \
2010 //  |       \   \  |       \ <2>  \
2011 //  ...      \  [slow_res] |  |    \   [null_result]
2012 //            \         \--+--+---  |  |
2013 //             \           | /    \ | /
2014 //              --------Region     Phi
2015 //
2016 //=============================================================================
2017 // Code is structured as a series of driver functions all called 'do_XXX' that
2018 // call a set of helper functions.  Helper functions first, then drivers.
2019 
2020 //------------------------------null_check_oop---------------------------------
2021 // Null check oop.  Set null-path control into Region in slot 3.
2022 // Make a cast-not-nullness use the other not-null control.  Return cast.
2023 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2024                                bool never_see_null) {
2025   // Initial NULL check taken path
2026   (*null_control) = top();
2027   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
2028 
2029   // Generate uncommon_trap:
2030   if (never_see_null && (*null_control) != top()) {
2031     // If we see an unexpected null at a check-cast we record it and force a
2032     // recompile; the offending check-cast will be compiled to handle NULLs.
2033     // If we see more than one offending BCI, then all checkcasts in the
2034     // method will be compiled to handle NULLs.
2035     PreserveJVMState pjvms(this);
2036     set_control(*null_control);
2037     replace_in_map(value, null());
2038     uncommon_trap(Deoptimization::Reason_null_check,
2039                   Deoptimization::Action_make_not_entrant);
2040     (*null_control) = top();    // NULL path is dead
2041   }
2042 
2043   // Cast away null-ness on the result
2044   return cast;
2045 }
2046 
2047 //------------------------------opt_iff----------------------------------------
2048 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2049 // Return slow-path control.
2050 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2051   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2052 
2053   // Fast path taken; set region slot 2
2054   Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_iff) );
2055   region->init_req(2,fast_taken); // Capture fast-control
2056 
2057   // Fast path not-taken, i.e. slow path
2058   Node *slow_taken = _gvn.transform( new (C, 1) IfTrueNode(opt_iff) );
2059   return slow_taken;
2060 }
2061 
2062 //-----------------------------make_runtime_call-------------------------------
2063 Node* GraphKit::make_runtime_call(int flags,
2064                                   const TypeFunc* call_type, address call_addr,
2065                                   const char* call_name,
2066                                   const TypePtr* adr_type,
2067                                   // The following parms are all optional.
2068                                   // The first NULL ends the list.
2069                                   Node* parm0, Node* parm1,
2070                                   Node* parm2, Node* parm3,
2071                                   Node* parm4, Node* parm5,
2072                                   Node* parm6, Node* parm7) {
2073   // Slow-path call
2074   int size = call_type->domain()->cnt();
2075   bool is_leaf = !(flags & RC_NO_LEAF);
2076   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2077   if (call_name == NULL) {
2078     assert(!is_leaf, "must supply name for leaf");
2079     call_name = OptoRuntime::stub_name(call_addr);
2080   }
2081   CallNode* call;
2082   if (!is_leaf) {
2083     call = new(C, size) CallStaticJavaNode(call_type, call_addr, call_name,
2084                                            bci(), adr_type);
2085   } else if (flags & RC_NO_FP) {
2086     call = new(C, size) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2087   } else {
2088     call = new(C, size) CallLeafNode(call_type, call_addr, call_name, adr_type);
2089   }
2090 
2091   // The following is similar to set_edges_for_java_call,
2092   // except that the memory effects of the call are restricted to AliasIdxRaw.
2093 
2094   // Slow path call has no side-effects, uses few values
2095   bool wide_in  = !(flags & RC_NARROW_MEM);
2096   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2097 
2098   Node* prev_mem = NULL;
2099   if (wide_in) {
2100     prev_mem = set_predefined_input_for_runtime_call(call);
2101   } else {
2102     assert(!wide_out, "narrow in => narrow out");
2103     Node* narrow_mem = memory(adr_type);
2104     prev_mem = reset_memory();
2105     map()->set_memory(narrow_mem);
2106     set_predefined_input_for_runtime_call(call);
2107   }
2108 
2109   // Hook each parm in order.  Stop looking at the first NULL.
2110   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2111   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2112   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2113   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2114   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2115   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2116   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2117   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2118     /* close each nested if ===> */  } } } } } } } }
2119   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2120 
2121   if (!is_leaf) {
2122     // Non-leaves can block and take safepoints:
2123     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2124   }
2125   // Non-leaves can throw exceptions:
2126   if (has_io) {
2127     call->set_req(TypeFunc::I_O, i_o());
2128   }
2129 
2130   if (flags & RC_UNCOMMON) {
2131     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2132     // (An "if" probability corresponds roughly to an unconditional count.
2133     // Sort of.)
2134     call->set_cnt(PROB_UNLIKELY_MAG(4));
2135   }
2136 
2137   Node* c = _gvn.transform(call);
2138   assert(c == call, "cannot disappear");
2139 
2140   if (wide_out) {
2141     // Slow path call has full side-effects.
2142     set_predefined_output_for_runtime_call(call);
2143   } else {
2144     // Slow path call has few side-effects, and/or sets few values.
2145     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2146   }
2147 
2148   if (has_io) {
2149     set_i_o(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O)));
2150   }
2151   return call;
2152 
2153 }
2154 
2155 //------------------------------merge_memory-----------------------------------
2156 // Merge memory from one path into the current memory state.
2157 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2158   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2159     Node* old_slice = mms.force_memory();
2160     Node* new_slice = mms.memory2();
2161     if (old_slice != new_slice) {
2162       PhiNode* phi;
2163       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2164         phi = new_slice->as_Phi();
2165         #ifdef ASSERT
2166         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2167           old_slice = old_slice->in(new_path);
2168         // Caller is responsible for ensuring that any pre-existing
2169         // phis are already aware of old memory.
2170         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2171         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2172         #endif
2173         mms.set_memory(phi);
2174       } else {
2175         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2176         _gvn.set_type(phi, Type::MEMORY);
2177         phi->set_req(new_path, new_slice);
2178         mms.set_memory(_gvn.transform(phi));  // assume it is complete
2179       }
2180     }
2181   }
2182 }
2183 
2184 //------------------------------make_slow_call_ex------------------------------
2185 // Make the exception handler hookups for the slow call
2186 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2187   if (stopped())  return;
2188 
2189   // Make a catch node with just two handlers:  fall-through and catch-all
2190   Node* i_o  = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2191   Node* catc = _gvn.transform( new (C, 2) CatchNode(control(), i_o, 2) );
2192   Node* norm = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2193   Node* excp = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2194 
2195   { PreserveJVMState pjvms(this);
2196     set_control(excp);
2197     set_i_o(i_o);
2198 
2199     if (excp != top()) {
2200       // Create an exception state also.
2201       // Use an exact type if the caller has specified a specific exception.
2202       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2203       Node*       ex_oop  = new (C, 2) CreateExNode(ex_type, control(), i_o);
2204       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2205     }
2206   }
2207 
2208   // Get the no-exception control from the CatchNode.
2209   set_control(norm);
2210 }
2211 
2212 
2213 //-------------------------------gen_subtype_check-----------------------------
2214 // Generate a subtyping check.  Takes as input the subtype and supertype.
2215 // Returns 2 values: sets the default control() to the true path and returns
2216 // the false path.  Only reads invariant memory; sets no (visible) memory.
2217 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2218 // but that's not exposed to the optimizer.  This call also doesn't take in an
2219 // Object; if you wish to check an Object you need to load the Object's class
2220 // prior to coming here.
2221 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2222   // Fast check for identical types, perhaps identical constants.
2223   // The types can even be identical non-constants, in cases
2224   // involving Array.newInstance, Object.clone, etc.
2225   if (subklass == superklass)
2226     return top();             // false path is dead; no test needed.
2227 
2228   if (_gvn.type(superklass)->singleton()) {
2229     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2230     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2231 
2232     // In the common case of an exact superklass, try to fold up the
2233     // test before generating code.  You may ask, why not just generate
2234     // the code and then let it fold up?  The answer is that the generated
2235     // code will necessarily include null checks, which do not always
2236     // completely fold away.  If they are also needless, then they turn
2237     // into a performance loss.  Example:
2238     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2239     // Here, the type of 'fa' is often exact, so the store check
2240     // of fa[1]=x will fold up, without testing the nullness of x.
2241     switch (static_subtype_check(superk, subk)) {
2242     case SSC_always_false:
2243       {
2244         Node* always_fail = control();
2245         set_control(top());
2246         return always_fail;
2247       }
2248     case SSC_always_true:
2249       return top();
2250     case SSC_easy_test:
2251       {
2252         // Just do a direct pointer compare and be done.
2253         Node* cmp = _gvn.transform( new(C, 3) CmpPNode(subklass, superklass) );
2254         Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
2255         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2256         set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ) );
2257         return       _gvn.transform( new(C, 1) IfFalseNode(iff) );
2258       }
2259     case SSC_full_test:
2260       break;
2261     default:
2262       ShouldNotReachHere();
2263     }
2264   }
2265 
2266   // %%% Possible further optimization:  Even if the superklass is not exact,
2267   // if the subklass is the unique subtype of the superklass, the check
2268   // will always succeed.  We could leave a dependency behind to ensure this.
2269 
2270   // First load the super-klass's check-offset
2271   Node *p1 = basic_plus_adr( superklass, superklass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes() );
2272   Node *chk_off = _gvn.transform( new (C, 3) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
2273   int cacheoff_con = sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes();
2274   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2275 
2276   // Load from the sub-klass's super-class display list, or a 1-word cache of
2277   // the secondary superclass list, or a failing value with a sentinel offset
2278   // if the super-klass is an interface or exceptionally deep in the Java
2279   // hierarchy and we have to scan the secondary superclass list the hard way.
2280   // Worst-case type is a little odd: NULL is allowed as a result (usually
2281   // klass loads can never produce a NULL).
2282   Node *chk_off_X = ConvI2X(chk_off);
2283   Node *p2 = _gvn.transform( new (C, 4) AddPNode(subklass,subklass,chk_off_X) );
2284   // For some types like interfaces the following loadKlass is from a 1-word
2285   // cache which is mutable so can't use immutable memory.  Other
2286   // types load from the super-class display table which is immutable.
2287   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2288   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2289 
2290   // Compile speed common case: ARE a subtype and we canNOT fail
2291   if( superklass == nkls )
2292     return top();             // false path is dead; no test needed.
2293 
2294   // See if we get an immediate positive hit.  Happens roughly 83% of the
2295   // time.  Test to see if the value loaded just previously from the subklass
2296   // is exactly the superklass.
2297   Node *cmp1 = _gvn.transform( new (C, 3) CmpPNode( superklass, nkls ) );
2298   Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp1, BoolTest::eq ) );
2299   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2300   Node *iftrue1 = _gvn.transform( new (C, 1) IfTrueNode ( iff1 ) );
2301   set_control(    _gvn.transform( new (C, 1) IfFalseNode( iff1 ) ) );
2302 
2303   // Compile speed common case: Check for being deterministic right now.  If
2304   // chk_off is a constant and not equal to cacheoff then we are NOT a
2305   // subklass.  In this case we need exactly the 1 test above and we can
2306   // return those results immediately.
2307   if (!might_be_cache) {
2308     Node* not_subtype_ctrl = control();
2309     set_control(iftrue1); // We need exactly the 1 test above
2310     return not_subtype_ctrl;
2311   }
2312 
2313   // Gather the various success & failures here
2314   RegionNode *r_ok_subtype = new (C, 4) RegionNode(4);
2315   record_for_igvn(r_ok_subtype);
2316   RegionNode *r_not_subtype = new (C, 3) RegionNode(3);
2317   record_for_igvn(r_not_subtype);
2318 
2319   r_ok_subtype->init_req(1, iftrue1);
2320 
2321   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2322   // is roughly 63% of the remaining cases).  Test to see if the loaded
2323   // check-offset points into the subklass display list or the 1-element
2324   // cache.  If it points to the display (and NOT the cache) and the display
2325   // missed then it's not a subtype.
2326   Node *cacheoff = _gvn.intcon(cacheoff_con);
2327   Node *cmp2 = _gvn.transform( new (C, 3) CmpINode( chk_off, cacheoff ) );
2328   Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmp2, BoolTest::ne ) );
2329   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2330   r_not_subtype->init_req(1, _gvn.transform( new (C, 1) IfTrueNode (iff2) ) );
2331   set_control(                _gvn.transform( new (C, 1) IfFalseNode(iff2) ) );
2332 
2333   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2334   // No performance impact (too rare) but allows sharing of secondary arrays
2335   // which has some footprint reduction.
2336   Node *cmp3 = _gvn.transform( new (C, 3) CmpPNode( subklass, superklass ) );
2337   Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmp3, BoolTest::eq ) );
2338   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2339   r_ok_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode ( iff3 ) ) );
2340   set_control(               _gvn.transform( new (C, 1) IfFalseNode( iff3 ) ) );
2341 
2342   // -- Roads not taken here: --
2343   // We could also have chosen to perform the self-check at the beginning
2344   // of this code sequence, as the assembler does.  This would not pay off
2345   // the same way, since the optimizer, unlike the assembler, can perform
2346   // static type analysis to fold away many successful self-checks.
2347   // Non-foldable self checks work better here in second position, because
2348   // the initial primary superclass check subsumes a self-check for most
2349   // types.  An exception would be a secondary type like array-of-interface,
2350   // which does not appear in its own primary supertype display.
2351   // Finally, we could have chosen to move the self-check into the
2352   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2353   // dependent manner.  But it is worthwhile to have the check here,
2354   // where it can be perhaps be optimized.  The cost in code space is
2355   // small (register compare, branch).
2356 
2357   // Now do a linear scan of the secondary super-klass array.  Again, no real
2358   // performance impact (too rare) but it's gotta be done.
2359   // Since the code is rarely used, there is no penalty for moving it
2360   // out of line, and it can only improve I-cache density.
2361   // The decision to inline or out-of-line this final check is platform
2362   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2363   Node* psc = _gvn.transform(
2364     new (C, 3) PartialSubtypeCheckNode(control(), subklass, superklass) );
2365 
2366   Node *cmp4 = _gvn.transform( new (C, 3) CmpPNode( psc, null() ) );
2367   Node *bol4 = _gvn.transform( new (C, 2) BoolNode( cmp4, BoolTest::ne ) );
2368   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2369   r_not_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode (iff4) ) );
2370   r_ok_subtype ->init_req(3, _gvn.transform( new (C, 1) IfFalseNode(iff4) ) );
2371 
2372   // Return false path; set default control to true path.
2373   set_control( _gvn.transform(r_ok_subtype) );
2374   return _gvn.transform(r_not_subtype);
2375 }
2376 
2377 //----------------------------static_subtype_check-----------------------------
2378 // Shortcut important common cases when superklass is exact:
2379 // (0) superklass is java.lang.Object (can occur in reflective code)
2380 // (1) subklass is already limited to a subtype of superklass => always ok
2381 // (2) subklass does not overlap with superklass => always fail
2382 // (3) superklass has NO subtypes and we can check with a simple compare.
2383 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2384   if (StressReflectiveCode) {
2385     return SSC_full_test;       // Let caller generate the general case.
2386   }
2387 
2388   if (superk == env()->Object_klass()) {
2389     return SSC_always_true;     // (0) this test cannot fail
2390   }
2391 
2392   ciType* superelem = superk;
2393   if (superelem->is_array_klass())
2394     superelem = superelem->as_array_klass()->base_element_type();
2395 
2396   if (!subk->is_interface()) {  // cannot trust static interface types yet
2397     if (subk->is_subtype_of(superk)) {
2398       return SSC_always_true;   // (1) false path dead; no dynamic test needed
2399     }
2400     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2401         !superk->is_subtype_of(subk)) {
2402       return SSC_always_false;
2403     }
2404   }
2405 
2406   // If casting to an instance klass, it must have no subtypes
2407   if (superk->is_interface()) {
2408     // Cannot trust interfaces yet.
2409     // %%% S.B. superk->nof_implementors() == 1
2410   } else if (superelem->is_instance_klass()) {
2411     ciInstanceKlass* ik = superelem->as_instance_klass();
2412     if (!ik->has_subklass() && !ik->is_interface()) {
2413       if (!ik->is_final()) {
2414         // Add a dependency if there is a chance of a later subclass.
2415         C->dependencies()->assert_leaf_type(ik);
2416       }
2417       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2418     }
2419   } else {
2420     // A primitive array type has no subtypes.
2421     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2422   }
2423 
2424   return SSC_full_test;
2425 }
2426 
2427 // Profile-driven exact type check:
2428 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2429                                     float prob,
2430                                     Node* *casted_receiver) {
2431   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2432   Node* recv_klass = load_object_klass(receiver);
2433   Node* want_klass = makecon(tklass);
2434   Node* cmp = _gvn.transform( new(C, 3) CmpPNode(recv_klass, want_klass) );
2435   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
2436   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2437   set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ));
2438   Node* fail = _gvn.transform( new(C, 1) IfFalseNode(iff) );
2439 
2440   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2441   assert(recv_xtype->klass_is_exact(), "");
2442 
2443   // Subsume downstream occurrences of receiver with a cast to
2444   // recv_xtype, since now we know what the type will be.
2445   Node* cast = new(C, 2) CheckCastPPNode(control(), receiver, recv_xtype);
2446   (*casted_receiver) = _gvn.transform(cast);
2447   // (User must make the replace_in_map call.)
2448 
2449   return fail;
2450 }
2451 
2452 
2453 //-------------------------------gen_instanceof--------------------------------
2454 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2455 // and the reflective instance-of call.
2456 Node* GraphKit::gen_instanceof( Node *subobj, Node* superklass ) {
2457   C->set_has_split_ifs(true); // Has chance for split-if optimization
2458   assert( !stopped(), "dead parse path should be checked in callers" );
2459   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2460          "must check for not-null not-dead klass in callers");
2461 
2462   // Make the merge point
2463   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2464   RegionNode* region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2465   Node*       phi    = new(C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
2466   C->set_has_split_ifs(true); // Has chance for split-if optimization
2467 
2468   // Null check; get casted pointer; set region slot 3
2469   Node* null_ctl = top();
2470   Node* not_null_obj = null_check_oop(subobj, &null_ctl);
2471 
2472   // If not_null_obj is dead, only null-path is taken
2473   if (stopped()) {              // Doing instance-of on a NULL?
2474     set_control(null_ctl);
2475     return intcon(0);
2476   }
2477   region->init_req(_null_path, null_ctl);
2478   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2479 
2480   // Load the object's klass
2481   Node* obj_klass = load_object_klass(not_null_obj);
2482 
2483   // Generate the subtype check
2484   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2485 
2486   // Plug in the success path to the general merge in slot 1.
2487   region->init_req(_obj_path, control());
2488   phi   ->init_req(_obj_path, intcon(1));
2489 
2490   // Plug in the failing path to the general merge in slot 2.
2491   region->init_req(_fail_path, not_subtype_ctrl);
2492   phi   ->init_req(_fail_path, intcon(0));
2493 
2494   // Return final merged results
2495   set_control( _gvn.transform(region) );
2496   record_for_igvn(region);
2497   return _gvn.transform(phi);
2498 }
2499 
2500 //-------------------------------gen_checkcast---------------------------------
2501 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2502 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2503 // uncommon-trap paths work.  Adjust stack after this call.
2504 // If failure_control is supplied and not null, it is filled in with
2505 // the control edge for the cast failure.  Otherwise, an appropriate
2506 // uncommon trap or exception is thrown.
2507 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2508                               Node* *failure_control) {
2509   kill_dead_locals();           // Benefit all the uncommon traps
2510   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2511   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2512 
2513   // Fast cutout:  Check the case that the cast is vacuously true.
2514   // This detects the common cases where the test will short-circuit
2515   // away completely.  We do this before we perform the null check,
2516   // because if the test is going to turn into zero code, we don't
2517   // want a residual null check left around.  (Causes a slowdown,
2518   // for example, in some objArray manipulations, such as a[i]=a[j].)
2519   if (tk->singleton()) {
2520     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2521     if (objtp != NULL && objtp->klass() != NULL) {
2522       switch (static_subtype_check(tk->klass(), objtp->klass())) {
2523       case SSC_always_true:
2524         return obj;
2525       case SSC_always_false:
2526         // It needs a null check because a null will *pass* the cast check.
2527         // A non-null value will always produce an exception.
2528         return do_null_assert(obj, T_OBJECT);
2529       }
2530     }
2531   }
2532 
2533   ciProfileData* data = NULL;
2534   if (failure_control == NULL) {        // use MDO in regular case only
2535     assert(java_bc() == Bytecodes::_aastore ||
2536            java_bc() == Bytecodes::_checkcast,
2537            "interpreter profiles type checks only for these BCs");
2538     data = method()->method_data()->bci_to_data(bci());
2539   }
2540 
2541   // Make the merge point
2542   enum { _obj_path = 1, _null_path, PATH_LIMIT };
2543   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2544   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, toop);
2545   C->set_has_split_ifs(true); // Has chance for split-if optimization
2546 
2547   // Use null-cast information if it is available
2548   bool never_see_null = false;
2549   // If we see an unexpected null at a check-cast we record it and force a
2550   // recompile; the offending check-cast will be compiled to handle NULLs.
2551   // If we see several offending BCIs, then all checkcasts in the
2552   // method will be compiled to handle NULLs.
2553   if (UncommonNullCast            // Cutout for this technique
2554       && failure_control == NULL  // regular case
2555       && obj != null()            // And not the -Xcomp stupid case?
2556       && !too_many_traps(Deoptimization::Reason_null_check)) {
2557     // Finally, check the "null_seen" bit from the interpreter.
2558     if (data == NULL || !data->as_BitData()->null_seen()) {
2559       never_see_null = true;
2560     }
2561   }
2562 
2563   // Null check; get casted pointer; set region slot 3
2564   Node* null_ctl = top();
2565   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
2566 
2567   // If not_null_obj is dead, only null-path is taken
2568   if (stopped()) {              // Doing instance-of on a NULL?
2569     set_control(null_ctl);
2570     return null();
2571   }
2572   region->init_req(_null_path, null_ctl);
2573   phi   ->init_req(_null_path, null());  // Set null path value
2574 
2575   Node* cast_obj = NULL;        // the casted version of the object
2576 
2577   // If the profile has seen exactly one type, narrow to that type.
2578   // (The subsequent subtype check will always fold up.)
2579   if (UseTypeProfile && TypeProfileCasts && data != NULL &&
2580       // Counter has never been decremented (due to cast failure).
2581       // ...This is a reasonable thing to expect.  It is true of
2582       // all casts inserted by javac to implement generic types.
2583       data->as_CounterData()->count() >= 0 &&
2584       !too_many_traps(Deoptimization::Reason_class_check)) {
2585     // (No, this isn't a call, but it's enough like a virtual call
2586     // to use the same ciMethod accessor to get the profile info...)
2587     ciCallProfile profile = method()->call_profile_at_bci(bci());
2588     if (profile.count() >= 0 &&         // no cast failures here
2589         profile.has_receiver(0) &&
2590         profile.morphism() == 1) {
2591       ciKlass* exact_kls = profile.receiver(0);
2592       int ssc = static_subtype_check(tk->klass(), exact_kls);
2593       if (ssc == SSC_always_true) {
2594         // If we narrow the type to match what the type profile sees,
2595         // we can then remove the rest of the cast.
2596         // This is a win, even if the exact_kls is very specific,
2597         // because downstream operations, such as method calls,
2598         // will often benefit from the sharper type.
2599         Node* exact_obj = not_null_obj; // will get updated in place...
2600         Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2601                                               &exact_obj);
2602         { PreserveJVMState pjvms(this);
2603           set_control(slow_ctl);
2604           uncommon_trap(Deoptimization::Reason_class_check,
2605                         Deoptimization::Action_maybe_recompile);
2606         }
2607         if (failure_control != NULL) // failure is now impossible
2608           (*failure_control) = top();
2609         replace_in_map(not_null_obj, exact_obj);
2610         // adjust the type of the phi to the exact klass:
2611         phi->raise_bottom_type(_gvn.type(exact_obj)->meet(TypePtr::NULL_PTR));
2612         cast_obj = exact_obj;
2613       }
2614       // assert(cast_obj != NULL)... except maybe the profile lied to us.
2615     }
2616   }
2617 
2618   if (cast_obj == NULL) {
2619     // Load the object's klass
2620     Node* obj_klass = load_object_klass(not_null_obj);
2621 
2622     // Generate the subtype check
2623     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
2624 
2625     // Plug in success path into the merge
2626     cast_obj = _gvn.transform(new (C, 2) CheckCastPPNode(control(),
2627                                                          not_null_obj, toop));
2628     // Failure path ends in uncommon trap (or may be dead - failure impossible)
2629     if (failure_control == NULL) {
2630       if (not_subtype_ctrl != top()) { // If failure is possible
2631         PreserveJVMState pjvms(this);
2632         set_control(not_subtype_ctrl);
2633         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
2634       }
2635     } else {
2636       (*failure_control) = not_subtype_ctrl;
2637     }
2638   }
2639 
2640   region->init_req(_obj_path, control());
2641   phi   ->init_req(_obj_path, cast_obj);
2642 
2643   // A merge of NULL or Casted-NotNull obj
2644   Node* res = _gvn.transform(phi);
2645 
2646   // Note I do NOT always 'replace_in_map(obj,result)' here.
2647   //  if( tk->klass()->can_be_primary_super()  )
2648     // This means that if I successfully store an Object into an array-of-String
2649     // I 'forget' that the Object is really now known to be a String.  I have to
2650     // do this because we don't have true union types for interfaces - if I store
2651     // a Baz into an array-of-Interface and then tell the optimizer it's an
2652     // Interface, I forget that it's also a Baz and cannot do Baz-like field
2653     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
2654   //  replace_in_map( obj, res );
2655 
2656   // Return final merged results
2657   set_control( _gvn.transform(region) );
2658   record_for_igvn(region);
2659   return res;
2660 }
2661 
2662 //------------------------------next_monitor-----------------------------------
2663 // What number should be given to the next monitor?
2664 int GraphKit::next_monitor() {
2665   int current = jvms()->monitor_depth()* C->sync_stack_slots();
2666   int next = current + C->sync_stack_slots();
2667   // Keep the toplevel high water mark current:
2668   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
2669   return current;
2670 }
2671 
2672 //------------------------------insert_mem_bar---------------------------------
2673 // Memory barrier to avoid floating things around
2674 // The membar serves as a pinch point between both control and all memory slices.
2675 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
2676   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
2677   mb->init_req(TypeFunc::Control, control());
2678   mb->init_req(TypeFunc::Memory,  reset_memory());
2679   Node* membar = _gvn.transform(mb);
2680   set_control(_gvn.transform(new (C, 1) ProjNode(membar,TypeFunc::Control) ));
2681   set_all_memory_call(membar);
2682   return membar;
2683 }
2684 
2685 //-------------------------insert_mem_bar_volatile----------------------------
2686 // Memory barrier to avoid floating things around
2687 // The membar serves as a pinch point between both control and memory(alias_idx).
2688 // If you want to make a pinch point on all memory slices, do not use this
2689 // function (even with AliasIdxBot); use insert_mem_bar() instead.
2690 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
2691   // When Parse::do_put_xxx updates a volatile field, it appends a series
2692   // of MemBarVolatile nodes, one for *each* volatile field alias category.
2693   // The first membar is on the same memory slice as the field store opcode.
2694   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
2695   // All the other membars (for other volatile slices, including AliasIdxBot,
2696   // which stands for all unknown volatile slices) are control-dependent
2697   // on the first membar.  This prevents later volatile loads or stores
2698   // from sliding up past the just-emitted store.
2699 
2700   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
2701   mb->set_req(TypeFunc::Control,control());
2702   if (alias_idx == Compile::AliasIdxBot) {
2703     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
2704   } else {
2705     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
2706     mb->set_req(TypeFunc::Memory, memory(alias_idx));
2707   }
2708   Node* membar = _gvn.transform(mb);
2709   set_control(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Control)));
2710   if (alias_idx == Compile::AliasIdxBot) {
2711     merged_memory()->set_base_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)));
2712   } else {
2713     set_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)),alias_idx);
2714   }
2715   return membar;
2716 }
2717 
2718 //------------------------------shared_lock------------------------------------
2719 // Emit locking code.
2720 FastLockNode* GraphKit::shared_lock(Node* obj) {
2721   // bci is either a monitorenter bc or InvocationEntryBci
2722   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2723   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2724 
2725   if( !GenerateSynchronizationCode )
2726     return NULL;                // Not locking things?
2727   if (stopped())                // Dead monitor?
2728     return NULL;
2729 
2730   assert(dead_locals_are_killed(), "should kill locals before sync. point");
2731 
2732   // Box the stack location
2733   Node* box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
2734   Node* mem = reset_memory();
2735 
2736   FastLockNode * flock = _gvn.transform(new (C, 3) FastLockNode(0, obj, box) )->as_FastLock();
2737   if (PrintPreciseBiasedLockingStatistics) {
2738     // Create the counters for this fast lock.
2739     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
2740   }
2741   // Add monitor to debug info for the slow path.  If we block inside the
2742   // slow path and de-opt, we need the monitor hanging around
2743   map()->push_monitor( flock );
2744 
2745   const TypeFunc *tf = LockNode::lock_type();
2746   LockNode *lock = new (C, tf->domain()->cnt()) LockNode(C, tf);
2747 
2748   lock->init_req( TypeFunc::Control, control() );
2749   lock->init_req( TypeFunc::Memory , mem );
2750   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2751   lock->init_req( TypeFunc::FramePtr, frameptr() );
2752   lock->init_req( TypeFunc::ReturnAdr, top() );
2753 
2754   lock->init_req(TypeFunc::Parms + 0, obj);
2755   lock->init_req(TypeFunc::Parms + 1, box);
2756   lock->init_req(TypeFunc::Parms + 2, flock);
2757   add_safepoint_edges(lock);
2758 
2759   lock = _gvn.transform( lock )->as_Lock();
2760 
2761   // lock has no side-effects, sets few values
2762   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
2763 
2764   insert_mem_bar(Op_MemBarAcquire);
2765 
2766   // Add this to the worklist so that the lock can be eliminated
2767   record_for_igvn(lock);
2768 
2769 #ifndef PRODUCT
2770   if (PrintLockStatistics) {
2771     // Update the counter for this lock.  Don't bother using an atomic
2772     // operation since we don't require absolute accuracy.
2773     lock->create_lock_counter(map()->jvms());
2774     int adr_type = Compile::AliasIdxRaw;
2775     Node* counter_addr = makecon(TypeRawPtr::make(lock->counter()->addr()));
2776     Node* cnt  = make_load(NULL, counter_addr, TypeInt::INT, T_INT, adr_type);
2777     Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
2778     store_to_memory(control(), counter_addr, incr, T_INT, adr_type);
2779   }
2780 #endif
2781 
2782   return flock;
2783 }
2784 
2785 
2786 //------------------------------shared_unlock----------------------------------
2787 // Emit unlocking code.
2788 void GraphKit::shared_unlock(Node* box, Node* obj) {
2789   // bci is either a monitorenter bc or InvocationEntryBci
2790   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2791   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2792 
2793   if( !GenerateSynchronizationCode )
2794     return;
2795   if (stopped()) {               // Dead monitor?
2796     map()->pop_monitor();        // Kill monitor from debug info
2797     return;
2798   }
2799 
2800   // Memory barrier to avoid floating things down past the locked region
2801   insert_mem_bar(Op_MemBarRelease);
2802 
2803   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
2804   UnlockNode *unlock = new (C, tf->domain()->cnt()) UnlockNode(C, tf);
2805   uint raw_idx = Compile::AliasIdxRaw;
2806   unlock->init_req( TypeFunc::Control, control() );
2807   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
2808   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2809   unlock->init_req( TypeFunc::FramePtr, frameptr() );
2810   unlock->init_req( TypeFunc::ReturnAdr, top() );
2811 
2812   unlock->init_req(TypeFunc::Parms + 0, obj);
2813   unlock->init_req(TypeFunc::Parms + 1, box);
2814   unlock = _gvn.transform(unlock)->as_Unlock();
2815 
2816   Node* mem = reset_memory();
2817 
2818   // unlock has no side-effects, sets few values
2819   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
2820 
2821   // Kill monitor from debug info
2822   map()->pop_monitor( );
2823 }
2824 
2825 //-------------------------------get_layout_helper-----------------------------
2826 // If the given klass is a constant or known to be an array,
2827 // fetch the constant layout helper value into constant_value
2828 // and return (Node*)NULL.  Otherwise, load the non-constant
2829 // layout helper value, and return the node which represents it.
2830 // This two-faced routine is useful because allocation sites
2831 // almost always feature constant types.
2832 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
2833   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
2834   if (!StressReflectiveCode && inst_klass != NULL) {
2835     ciKlass* klass = inst_klass->klass();
2836     bool    xklass = inst_klass->klass_is_exact();
2837     if (xklass || klass->is_array_klass()) {
2838       jint lhelper = klass->layout_helper();
2839       if (lhelper != Klass::_lh_neutral_value) {
2840         constant_value = lhelper;
2841         return (Node*) NULL;
2842       }
2843     }
2844   }
2845   constant_value = Klass::_lh_neutral_value;  // put in a known value
2846   Node* lhp = basic_plus_adr(klass_node, klass_node, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc));
2847   return make_load(NULL, lhp, TypeInt::INT, T_INT);
2848 }
2849 
2850 // We just put in an allocate/initialize with a big raw-memory effect.
2851 // Hook selected additional alias categories on the initialization.
2852 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
2853                                 MergeMemNode* init_in_merge,
2854                                 Node* init_out_raw) {
2855   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
2856   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
2857 
2858   Node* prevmem = kit.memory(alias_idx);
2859   init_in_merge->set_memory_at(alias_idx, prevmem);
2860   kit.set_memory(init_out_raw, alias_idx);
2861 }
2862 
2863 //---------------------------set_output_for_allocation-------------------------
2864 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
2865                                           const TypeOopPtr* oop_type,
2866                                           bool raw_mem_only) {
2867   int rawidx = Compile::AliasIdxRaw;
2868   alloc->set_req( TypeFunc::FramePtr, frameptr() );
2869   add_safepoint_edges(alloc);
2870   Node* allocx = _gvn.transform(alloc);
2871   set_control( _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Control) ) );
2872   // create memory projection for i_o
2873   set_memory ( _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
2874   make_slow_call_ex(allocx, env()->OutOfMemoryError_klass(), true);
2875 
2876   // create a memory projection as for the normal control path
2877   Node* malloc = _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Memory));
2878   set_memory(malloc, rawidx);
2879 
2880   // a normal slow-call doesn't change i_o, but an allocation does
2881   // we create a separate i_o projection for the normal control path
2882   set_i_o(_gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::I_O, false) ) );
2883   Node* rawoop = _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Parms) );
2884 
2885   // put in an initialization barrier
2886   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
2887                                                  rawoop)->as_Initialize();
2888   assert(alloc->initialization() == init,  "2-way macro link must work");
2889   assert(init ->allocation()     == alloc, "2-way macro link must work");
2890   if (ReduceFieldZeroing && !raw_mem_only) {
2891     // Extract memory strands which may participate in the new object's
2892     // initialization, and source them from the new InitializeNode.
2893     // This will allow us to observe initializations when they occur,
2894     // and link them properly (as a group) to the InitializeNode.
2895     assert(init->in(InitializeNode::Memory) == malloc, "");
2896     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
2897     init->set_req(InitializeNode::Memory, minit_in);
2898     record_for_igvn(minit_in); // fold it up later, if possible
2899     Node* minit_out = memory(rawidx);
2900     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
2901     if (oop_type->isa_aryptr()) {
2902       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
2903       int            elemidx  = C->get_alias_index(telemref);
2904       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
2905     } else if (oop_type->isa_instptr()) {
2906       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
2907       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
2908         ciField* field = ik->nonstatic_field_at(i);
2909         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
2910           continue;  // do not bother to track really large numbers of fields
2911         // Find (or create) the alias category for this field:
2912         int fieldidx = C->alias_type(field)->index();
2913         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
2914       }
2915     }
2916   }
2917 
2918   // Cast raw oop to the real thing...
2919   Node* javaoop = new (C, 2) CheckCastPPNode(control(), rawoop, oop_type);
2920   javaoop = _gvn.transform(javaoop);
2921   C->set_recent_alloc(control(), javaoop);
2922   assert(just_allocated_object(control()) == javaoop, "just allocated");
2923 
2924 #ifdef ASSERT
2925   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
2926     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
2927            "Ideal_allocation works");
2928     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
2929            "Ideal_allocation works");
2930     if (alloc->is_AllocateArray()) {
2931       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
2932              "Ideal_allocation works");
2933       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
2934              "Ideal_allocation works");
2935     } else {
2936       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
2937     }
2938   }
2939 #endif //ASSERT
2940 
2941   return javaoop;
2942 }
2943 
2944 //---------------------------new_instance--------------------------------------
2945 // This routine takes a klass_node which may be constant (for a static type)
2946 // or may be non-constant (for reflective code).  It will work equally well
2947 // for either, and the graph will fold nicely if the optimizer later reduces
2948 // the type to a constant.
2949 // The optional arguments are for specialized use by intrinsics:
2950 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
2951 //  - If 'raw_mem_only', do not cast the result to an oop.
2952 //  - If 'return_size_val', report the the total object size to the caller.
2953 Node* GraphKit::new_instance(Node* klass_node,
2954                              Node* extra_slow_test,
2955                              bool raw_mem_only, // affect only raw memory
2956                              Node* *return_size_val) {
2957   // Compute size in doublewords
2958   // The size is always an integral number of doublewords, represented
2959   // as a positive bytewise size stored in the klass's layout_helper.
2960   // The layout_helper also encodes (in a low bit) the need for a slow path.
2961   jint  layout_con = Klass::_lh_neutral_value;
2962   Node* layout_val = get_layout_helper(klass_node, layout_con);
2963   int   layout_is_con = (layout_val == NULL);
2964 
2965   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
2966   // Generate the initial go-slow test.  It's either ALWAYS (return a
2967   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
2968   // case) a computed value derived from the layout_helper.
2969   Node* initial_slow_test = NULL;
2970   if (layout_is_con) {
2971     assert(!StressReflectiveCode, "stress mode does not use these paths");
2972     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
2973     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
2974 
2975   } else {   // reflective case
2976     // This reflective path is used by Unsafe.allocateInstance.
2977     // (It may be stress-tested by specifying StressReflectiveCode.)
2978     // Basically, we want to get into the VM is there's an illegal argument.
2979     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
2980     initial_slow_test = _gvn.transform( new (C, 3) AndINode(layout_val, bit) );
2981     if (extra_slow_test != intcon(0)) {
2982       initial_slow_test = _gvn.transform( new (C, 3) OrINode(initial_slow_test, extra_slow_test) );
2983     }
2984     // (Macro-expander will further convert this to a Bool, if necessary.)
2985   }
2986 
2987   // Find the size in bytes.  This is easy; it's the layout_helper.
2988   // The size value must be valid even if the slow path is taken.
2989   Node* size = NULL;
2990   if (layout_is_con) {
2991     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
2992   } else {   // reflective case
2993     // This reflective path is used by clone and Unsafe.allocateInstance.
2994     size = ConvI2X(layout_val);
2995 
2996     // Clear the low bits to extract layout_helper_size_in_bytes:
2997     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
2998     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
2999     size = _gvn.transform( new (C, 3) AndXNode(size, mask) );
3000   }
3001   if (return_size_val != NULL) {
3002     (*return_size_val) = size;
3003   }
3004 
3005   // This is a precise notnull oop of the klass.
3006   // (Actually, it need not be precise if this is a reflective allocation.)
3007   // It's what we cast the result to.
3008   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3009   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3010   const TypeOopPtr* oop_type = tklass->as_instance_type();
3011 
3012   // Now generate allocation code
3013 
3014   // The entire memory state is needed for slow path of the allocation
3015   // since GC and deoptimization can happened.
3016   Node *mem = reset_memory();
3017   set_all_memory(mem); // Create new memory state
3018 
3019   AllocateNode* alloc
3020     = new (C, AllocateNode::ParmLimit)
3021         AllocateNode(C, AllocateNode::alloc_type(),
3022                      control(), mem, i_o(),
3023                      size, klass_node,
3024                      initial_slow_test);
3025 
3026   return set_output_for_allocation(alloc, oop_type, raw_mem_only);
3027 }
3028 
3029 //-------------------------------new_array-------------------------------------
3030 // helper for both newarray and anewarray
3031 // The 'length' parameter is (obviously) the length of the array.
3032 // See comments on new_instance for the meaning of the other arguments.
3033 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3034                           Node* length,         // number of array elements
3035                           int   nargs,          // number of arguments to push back for uncommon trap
3036                           bool raw_mem_only,    // affect only raw memory
3037                           Node* *return_size_val) {
3038   jint  layout_con = Klass::_lh_neutral_value;
3039   Node* layout_val = get_layout_helper(klass_node, layout_con);
3040   int   layout_is_con = (layout_val == NULL);
3041 
3042   if (!layout_is_con && !StressReflectiveCode &&
3043       !too_many_traps(Deoptimization::Reason_class_check)) {
3044     // This is a reflective array creation site.
3045     // Optimistically assume that it is a subtype of Object[],
3046     // so that we can fold up all the address arithmetic.
3047     layout_con = Klass::array_layout_helper(T_OBJECT);
3048     Node* cmp_lh = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(layout_con)) );
3049     Node* bol_lh = _gvn.transform( new(C, 2) BoolNode(cmp_lh, BoolTest::eq) );
3050     { BuildCutout unless(this, bol_lh, PROB_MAX);
3051       _sp += nargs;
3052       uncommon_trap(Deoptimization::Reason_class_check,
3053                     Deoptimization::Action_maybe_recompile);
3054     }
3055     layout_val = NULL;
3056     layout_is_con = true;
3057   }
3058 
3059   // Generate the initial go-slow test.  Make sure we do not overflow
3060   // if length is huge (near 2Gig) or negative!  We do not need
3061   // exact double-words here, just a close approximation of needed
3062   // double-words.  We can't add any offset or rounding bits, lest we
3063   // take a size -1 of bytes and make it positive.  Use an unsigned
3064   // compare, so negative sizes look hugely positive.
3065   int fast_size_limit = FastAllocateSizeLimit;
3066   if (layout_is_con) {
3067     assert(!StressReflectiveCode, "stress mode does not use these paths");
3068     // Increase the size limit if we have exact knowledge of array type.
3069     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3070     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3071   }
3072 
3073   Node* initial_slow_cmp  = _gvn.transform( new (C, 3) CmpUNode( length, intcon( fast_size_limit ) ) );
3074   Node* initial_slow_test = _gvn.transform( new (C, 2) BoolNode( initial_slow_cmp, BoolTest::gt ) );
3075   if (initial_slow_test->is_Bool()) {
3076     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3077     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3078   }
3079 
3080   // --- Size Computation ---
3081   // array_size = round_to_heap(array_header + (length << elem_shift));
3082   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3083   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3084   // The rounding mask is strength-reduced, if possible.
3085   int round_mask = MinObjAlignmentInBytes - 1;
3086   Node* header_size = NULL;
3087   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3088   // (T_BYTE has the weakest alignment and size restrictions...)
3089   if (layout_is_con) {
3090     int       hsize  = Klass::layout_helper_header_size(layout_con);
3091     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3092     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3093     if ((round_mask & ~right_n_bits(eshift)) == 0)
3094       round_mask = 0;  // strength-reduce it if it goes away completely
3095     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3096     assert(header_size_min <= hsize, "generic minimum is smallest");
3097     header_size_min = hsize;
3098     header_size = intcon(hsize + round_mask);
3099   } else {
3100     Node* hss   = intcon(Klass::_lh_header_size_shift);
3101     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3102     Node* hsize = _gvn.transform( new(C, 3) URShiftINode(layout_val, hss) );
3103     hsize       = _gvn.transform( new(C, 3) AndINode(hsize, hsm) );
3104     Node* mask  = intcon(round_mask);
3105     header_size = _gvn.transform( new(C, 3) AddINode(hsize, mask) );
3106   }
3107 
3108   Node* elem_shift = NULL;
3109   if (layout_is_con) {
3110     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3111     if (eshift != 0)
3112       elem_shift = intcon(eshift);
3113   } else {
3114     // There is no need to mask or shift this value.
3115     // The semantics of LShiftINode include an implicit mask to 0x1F.
3116     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3117     elem_shift = layout_val;
3118   }
3119 
3120   // Transition to native address size for all offset calculations:
3121   Node* lengthx = ConvI2X(length);
3122   Node* headerx = ConvI2X(header_size);
3123 #ifdef _LP64
3124   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3125     if (tllen != NULL && tllen->_lo < 0) {
3126       // Add a manual constraint to a positive range.  Cf. array_element_address.
3127       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3128       if (size_max > tllen->_hi)  size_max = tllen->_hi;
3129       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3130       lengthx = _gvn.transform( new (C, 2) ConvI2LNode(length, tlcon));
3131     }
3132   }
3133 #endif
3134 
3135   // Combine header size (plus rounding) and body size.  Then round down.
3136   // This computation cannot overflow, because it is used only in two
3137   // places, one where the length is sharply limited, and the other
3138   // after a successful allocation.
3139   Node* abody = lengthx;
3140   if (elem_shift != NULL)
3141     abody     = _gvn.transform( new(C, 3) LShiftXNode(lengthx, elem_shift) );
3142   Node* size  = _gvn.transform( new(C, 3) AddXNode(headerx, abody) );
3143   if (round_mask != 0) {
3144     Node* mask = MakeConX(~round_mask);
3145     size       = _gvn.transform( new(C, 3) AndXNode(size, mask) );
3146   }
3147   // else if round_mask == 0, the size computation is self-rounding
3148 
3149   if (return_size_val != NULL) {
3150     // This is the size
3151     (*return_size_val) = size;
3152   }
3153 
3154   // Now generate allocation code
3155 
3156   // The entire memory state is needed for slow path of the allocation
3157   // since GC and deoptimization can happened.
3158   Node *mem = reset_memory();
3159   set_all_memory(mem); // Create new memory state
3160 
3161   // Create the AllocateArrayNode and its result projections
3162   AllocateArrayNode* alloc
3163     = new (C, AllocateArrayNode::ParmLimit)
3164         AllocateArrayNode(C, AllocateArrayNode::alloc_type(),
3165                           control(), mem, i_o(),
3166                           size, klass_node,
3167                           initial_slow_test,
3168                           length);
3169 
3170   // Cast to correct type.  Note that the klass_node may be constant or not,
3171   // and in the latter case the actual array type will be inexact also.
3172   // (This happens via a non-constant argument to inline_native_newArray.)
3173   // In any case, the value of klass_node provides the desired array type.
3174   const TypeInt* length_type = _gvn.find_int_type(length);
3175   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3176   if (ary_type->isa_aryptr() && length_type != NULL) {
3177     // Try to get a better type than POS for the size
3178     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3179   }
3180 
3181   Node* javaoop = set_output_for_allocation(alloc, ary_type, raw_mem_only);
3182 
3183   // Cast length on remaining path to be as narrow as possible
3184   if (map()->find_edge(length) >= 0) {
3185     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3186     if (ccast != length) {
3187       _gvn.set_type_bottom(ccast);
3188       record_for_igvn(ccast);
3189       replace_in_map(length, ccast);
3190     }
3191   }
3192 
3193   return javaoop;
3194 }
3195 
3196 // The following "Ideal_foo" functions are placed here because they recognize
3197 // the graph shapes created by the functions immediately above.
3198 
3199 //---------------------------Ideal_allocation----------------------------------
3200 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3201 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3202   if (ptr == NULL) {     // reduce dumb test in callers
3203     return NULL;
3204   }
3205   if (ptr->is_CheckCastPP()) {  // strip a raw-to-oop cast
3206     ptr = ptr->in(1);
3207     if (ptr == NULL)  return NULL;
3208   }
3209   if (ptr->is_Proj()) {
3210     Node* allo = ptr->in(0);
3211     if (allo != NULL && allo->is_Allocate()) {
3212       return allo->as_Allocate();
3213     }
3214   }
3215   // Report failure to match.
3216   return NULL;
3217 }
3218 
3219 // Fancy version which also strips off an offset (and reports it to caller).
3220 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3221                                              intptr_t& offset) {
3222   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3223   if (base == NULL)  return NULL;
3224   return Ideal_allocation(base, phase);
3225 }
3226 
3227 // Trace Initialize <- Proj[Parm] <- Allocate
3228 AllocateNode* InitializeNode::allocation() {
3229   Node* rawoop = in(InitializeNode::RawAddress);
3230   if (rawoop->is_Proj()) {
3231     Node* alloc = rawoop->in(0);
3232     if (alloc->is_Allocate()) {
3233       return alloc->as_Allocate();
3234     }
3235   }
3236   return NULL;
3237 }
3238 
3239 // Trace Allocate -> Proj[Parm] -> Initialize
3240 InitializeNode* AllocateNode::initialization() {
3241   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3242   if (rawoop == NULL)  return NULL;
3243   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3244     Node* init = rawoop->fast_out(i);
3245     if (init->is_Initialize()) {
3246       assert(init->as_Initialize()->allocation() == this, "2-way link");
3247       return init->as_Initialize();
3248     }
3249   }
3250   return NULL;
3251 }
3252 
3253 //----------------------------- store barriers ----------------------------
3254 #define __ ideal.
3255 
3256 void GraphKit::sync_kit(IdealKit& ideal) {
3257   // Final sync IdealKit and graphKit.
3258   __ drain_delay_transform();
3259   set_all_memory(__ merged_memory());
3260   set_control(__ ctrl());
3261 }
3262 
3263 // vanilla/CMS post barrier
3264 // Insert a write-barrier store.  This is to let generational GC work; we have
3265 // to flag all oop-stores before the next GC point.
3266 void GraphKit::write_barrier_post(Node* oop_store,
3267                                   Node* obj,
3268                                   Node* adr,
3269                                   uint  adr_idx,
3270                                   Node* val,
3271                                   bool use_precise) {
3272   // No store check needed if we're storing a NULL or an old object
3273   // (latter case is probably a string constant). The concurrent
3274   // mark sweep garbage collector, however, needs to have all nonNull
3275   // oop updates flagged via card-marks.
3276   if (val != NULL && val->is_Con()) {
3277     // must be either an oop or NULL
3278     const Type* t = val->bottom_type();
3279     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3280       // stores of null never (?) need barriers
3281       return;
3282     ciObject* con = t->is_oopptr()->const_oop();
3283     if (con != NULL
3284         && con->is_perm()
3285         && Universe::heap()->can_elide_permanent_oop_store_barriers())
3286       // no store barrier needed, because no old-to-new ref created
3287       return;
3288   }
3289 
3290   if (use_ReduceInitialCardMarks()
3291       && obj == just_allocated_object(control())) {
3292     // We can skip marks on a freshly-allocated object in Eden.
3293     // Keep this code in sync with maybe_defer_card_mark() in runtime.cpp.
3294     // That routine informs GC to take appropriate compensating steps
3295     // so as to make this card-mark elision safe.
3296     return;
3297   }
3298 
3299   if (!use_precise) {
3300     // All card marks for a (non-array) instance are in one place:
3301     adr = obj;
3302   }
3303   // (Else it's an array (or unknown), and we want more precise card marks.)
3304   assert(adr != NULL, "");
3305 
3306   IdealKit ideal(gvn(), control(), merged_memory(), true);
3307 
3308   // Convert the pointer to an int prior to doing math on it
3309   Node* cast = __ CastPX(__ ctrl(), adr);
3310 
3311   // Divide by card size
3312   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3313          "Only one we handle so far.");
3314   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3315 
3316   // Combine card table base and card offset
3317   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3318 
3319   // Get the alias_index for raw card-mark memory
3320   int adr_type = Compile::AliasIdxRaw;
3321   // Smash zero into card
3322   Node*   zero = __ ConI(0);
3323   BasicType bt = T_BYTE;
3324   if( !UseConcMarkSweepGC ) {
3325     __ store(__ ctrl(), card_adr, zero, bt, adr_type);
3326   } else {
3327     // Specialized path for CM store barrier
3328     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3329   }
3330 
3331   // Final sync IdealKit and GraphKit.
3332   sync_kit(ideal);
3333 }
3334 
3335 // G1 pre/post barriers
3336 void GraphKit::g1_write_barrier_pre(Node* obj,
3337                                     Node* adr,
3338                                     uint alias_idx,
3339                                     Node* val,
3340                                     const TypeOopPtr* val_type,
3341                                     BasicType bt) {
3342   IdealKit ideal(gvn(), control(), merged_memory(), true);
3343 
3344   Node* tls = __ thread(); // ThreadLocalStorage
3345 
3346   Node* no_ctrl = NULL;
3347   Node* no_base = __ top();
3348   Node* zero = __ ConI(0);
3349 
3350   float likely  = PROB_LIKELY(0.999);
3351   float unlikely  = PROB_UNLIKELY(0.999);
3352 
3353   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3354   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3355 
3356   // Offsets into the thread
3357   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3358                                           PtrQueue::byte_offset_of_active());
3359   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3360                                           PtrQueue::byte_offset_of_index());
3361   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3362                                           PtrQueue::byte_offset_of_buf());
3363   // Now the actual pointers into the thread
3364 
3365   // set_control( ctl);
3366 
3367   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3368   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3369   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3370 
3371   // Now some of the values
3372 
3373   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3374 
3375   // if (!marking)
3376   __ if_then(marking, BoolTest::ne, zero); {
3377     Node* index   = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
3378 
3379     const Type* t1 = adr->bottom_type();
3380     const Type* t2 = val->bottom_type();
3381 
3382     Node* orig = __ load(no_ctrl, adr, val_type, bt, alias_idx);
3383     // if (orig != NULL)
3384     __ if_then(orig, BoolTest::ne, null()); {
3385       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3386 
3387       // load original value
3388       // alias_idx correct??
3389 
3390       // is the queue for this thread full?
3391       __ if_then(index, BoolTest::ne, zero, likely); {
3392 
3393         // decrement the index
3394         Node* next_index = __ SubI(index,  __ ConI(sizeof(intptr_t)));
3395         Node* next_indexX = next_index;
3396 #ifdef _LP64
3397         // We could refine the type for what it's worth
3398         // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
3399         next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
3400 #endif
3401 
3402         // Now get the buffer location we will log the original value into and store it
3403         Node *log_addr = __ AddP(no_base, buffer, next_indexX);
3404         __ store(__ ctrl(), log_addr, orig, T_OBJECT, Compile::AliasIdxRaw);
3405 
3406         // update the index
3407         __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
3408 
3409       } __ else_(); {
3410 
3411         // logging buffer is full, call the runtime
3412         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3413         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", orig, tls);
3414       } __ end_if();  // (!index)
3415     } __ end_if();  // (orig != NULL)
3416   } __ end_if();  // (!marking)
3417 
3418   // Final sync IdealKit and GraphKit.
3419   sync_kit(ideal);
3420 }
3421 
3422 //
3423 // Update the card table and add card address to the queue
3424 //
3425 void GraphKit::g1_mark_card(IdealKit& ideal,
3426                             Node* card_adr,
3427                             Node* oop_store,
3428                             uint oop_alias_idx,
3429                             Node* index,
3430                             Node* index_adr,
3431                             Node* buffer,
3432                             const TypeFunc* tf) {
3433 
3434   Node* zero = __ ConI(0);
3435   Node* no_base = __ top();
3436   BasicType card_bt = T_BYTE;
3437   // Smash zero into card. MUST BE ORDERED WRT TO STORE
3438   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
3439 
3440   //  Now do the queue work
3441   __ if_then(index, BoolTest::ne, zero); {
3442 
3443     Node* next_index = __ SubI(index, __ ConI(sizeof(intptr_t)));
3444     Node* next_indexX = next_index;
3445 #ifdef _LP64
3446     // We could refine the type for what it's worth
3447     // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
3448     next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
3449 #endif // _LP64
3450     Node* log_addr = __ AddP(no_base, buffer, next_indexX);
3451 
3452     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw);
3453     __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
3454 
3455   } __ else_(); {
3456     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
3457   } __ end_if();
3458 
3459 }
3460 
3461 void GraphKit::g1_write_barrier_post(Node* oop_store,
3462                                      Node* obj,
3463                                      Node* adr,
3464                                      uint alias_idx,
3465                                      Node* val,
3466                                      BasicType bt,
3467                                      bool use_precise) {
3468   // If we are writing a NULL then we need no post barrier
3469 
3470   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
3471     // Must be NULL
3472     const Type* t = val->bottom_type();
3473     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
3474     // No post barrier if writing NULLx
3475     return;
3476   }
3477 
3478   if (!use_precise) {
3479     // All card marks for a (non-array) instance are in one place:
3480     adr = obj;
3481   }
3482   // (Else it's an array (or unknown), and we want more precise card marks.)
3483   assert(adr != NULL, "");
3484 
3485   IdealKit ideal(gvn(), control(), merged_memory(), true);
3486 
3487   Node* tls = __ thread(); // ThreadLocalStorage
3488 
3489   Node* no_ctrl = NULL;
3490   Node* no_base = __ top();
3491   float likely  = PROB_LIKELY(0.999);
3492   float unlikely  = PROB_UNLIKELY(0.999);
3493   Node* zero = __ ConI(0);
3494   Node* zeroX = __ ConX(0);
3495 
3496   // Get the alias_index for raw card-mark memory
3497   const TypePtr* card_type = TypeRawPtr::BOTTOM;
3498 
3499   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
3500 
3501   // Offsets into the thread
3502   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
3503                                      PtrQueue::byte_offset_of_index());
3504   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
3505                                      PtrQueue::byte_offset_of_buf());
3506 
3507   // Pointers into the thread
3508 
3509   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
3510   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
3511 
3512   // Now some values
3513 
3514   Node* index  = __ load(no_ctrl, index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
3515   Node* buffer = __ load(no_ctrl, buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3516 
3517 
3518   // Convert the store obj pointer to an int prior to doing math on it
3519   // Must use ctrl to prevent "integerized oop" existing across safepoint
3520   Node* cast =  __ CastPX(__ ctrl(), adr);
3521 
3522   // Divide pointer by card size
3523   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3524 
3525   // Combine card table base and card offset
3526   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
3527 
3528   // If we know the value being stored does it cross regions?
3529 
3530   if (val != NULL) {
3531     // Does the store cause us to cross regions?
3532 
3533     // Should be able to do an unsigned compare of region_size instead of
3534     // and extra shift. Do we have an unsigned compare??
3535     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
3536     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
3537 
3538     // if (xor_res == 0) same region so skip
3539     __ if_then(xor_res, BoolTest::ne, zeroX); {
3540 
3541       // No barrier if we are storing a NULL
3542       __ if_then(val, BoolTest::ne, null(), unlikely); {
3543 
3544         // Ok must mark the card if not already dirty
3545 
3546         // load the original value of the card
3547         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
3548 
3549         __ if_then(card_val, BoolTest::ne, zero); {
3550           g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
3551         } __ end_if();
3552       } __ end_if();
3553     } __ end_if();
3554   } else {
3555     // Object.clone() instrinsic uses this path.
3556     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
3557   }
3558 
3559   // Final sync IdealKit and GraphKit.
3560   sync_kit(ideal);
3561 }
3562 #undef __