1 /*
   2  * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
  27 
  28 #define __ _masm->
  29 
  30 
  31 //------------------------------------------------------------
  32 
  33 
  34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  35   if (opr->is_constant()) {
  36     LIR_Const* constant = opr->as_constant_ptr();
  37     switch (constant->type()) {
  38       case T_INT: {
  39         jint value = constant->as_jint();
  40         return Assembler::is_simm13(value);
  41       }
  42 
  43       default:
  44         return false;
  45     }
  46   }
  47   return false;
  48 }
  49 
  50 
  51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  52   switch (op->code()) {
  53     case lir_null_check:
  54     return true;
  55 
  56 
  57     case lir_add:
  58     case lir_ushr:
  59     case lir_shr:
  60     case lir_shl:
  61       // integer shifts and adds are always one instruction
  62       return op->result_opr()->is_single_cpu();
  63 
  64 
  65     case lir_move: {
  66       LIR_Op1* op1 = op->as_Op1();
  67       LIR_Opr src = op1->in_opr();
  68       LIR_Opr dst = op1->result_opr();
  69 
  70       if (src == dst) {
  71         NEEDS_CLEANUP;
  72         // this works around a problem where moves with the same src and dst
  73         // end up in the delay slot and then the assembler swallows the mov
  74         // since it has no effect and then it complains because the delay slot
  75         // is empty.  returning false stops the optimizer from putting this in
  76         // the delay slot
  77         return false;
  78       }
  79 
  80       // don't put moves involving oops into the delay slot since the VerifyOops code
  81       // will make it much larger than a single instruction.
  82       if (VerifyOops) {
  83         return false;
  84       }
  85 
  86       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
  87           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
  88         return false;
  89       }
  90 
  91       if (dst->is_register()) {
  92         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
  93           return !PatchALot;
  94         } else if (src->is_single_stack()) {
  95           return true;
  96         }
  97       }
  98 
  99       if (src->is_register()) {
 100         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 101           return !PatchALot;
 102         } else if (dst->is_single_stack()) {
 103           return true;
 104         }
 105       }
 106 
 107       if (dst->is_register() &&
 108           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 109            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 110         return true;
 111       }
 112 
 113       return false;
 114     }
 115 
 116     default:
 117       return false;
 118   }
 119   ShouldNotReachHere();
 120 }
 121 
 122 
 123 LIR_Opr LIR_Assembler::receiverOpr() {
 124   return FrameMap::O0_oop_opr;
 125 }
 126 
 127 
 128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
 129   return FrameMap::I0_oop_opr;
 130 }
 131 
 132 
 133 LIR_Opr LIR_Assembler::osrBufferPointer() {
 134   return FrameMap::I0_opr;
 135 }
 136 
 137 
 138 int LIR_Assembler::initial_frame_size_in_bytes() {
 139   return in_bytes(frame_map()->framesize_in_bytes());
 140 }
 141 
 142 
 143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 144 // we fetch the class of the receiver (O0) and compare it with the cached class.
 145 // If they do not match we jump to slow case.
 146 int LIR_Assembler::check_icache() {
 147   int offset = __ offset();
 148   __ inline_cache_check(O0, G5_inline_cache_reg);
 149   return offset;
 150 }
 151 
 152 
 153 void LIR_Assembler::osr_entry() {
 154   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 155   //
 156   //   1. Create a new compiled activation.
 157   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 158   //      at the osr_bci; it is not initialized.
 159   //   3. Jump to the continuation address in compiled code to resume execution.
 160 
 161   // OSR entry point
 162   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 163   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 164   ValueStack* entry_state = osr_entry->end()->state();
 165   int number_of_locks = entry_state->locks_size();
 166 
 167   // Create a frame for the compiled activation.
 168   __ build_frame(initial_frame_size_in_bytes());
 169 
 170   // OSR buffer is
 171   //
 172   // locals[nlocals-1..0]
 173   // monitors[number_of_locks-1..0]
 174   //
 175   // locals is a direct copy of the interpreter frame so in the osr buffer
 176   // so first slot in the local array is the last local from the interpreter
 177   // and last slot is local[0] (receiver) from the interpreter
 178   //
 179   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 180   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 181   // in the interpreter frame (the method lock if a sync method)
 182 
 183   // Initialize monitors in the compiled activation.
 184   //   I0: pointer to osr buffer
 185   //
 186   // All other registers are dead at this point and the locals will be
 187   // copied into place by code emitted in the IR.
 188 
 189   Register OSR_buf = osrBufferPointer()->as_register();
 190   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 191     int monitor_offset = BytesPerWord * method()->max_locals() +
 192       (2 * BytesPerWord) * (number_of_locks - 1);
 193     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 194     // the OSR buffer using 2 word entries: first the lock and then
 195     // the oop.
 196     for (int i = 0; i < number_of_locks; i++) {
 197       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 198 #ifdef ASSERT
 199       // verify the interpreter's monitor has a non-null object
 200       {
 201         Label L;
 202         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 203         __ cmp(G0, O7);
 204         __ br(Assembler::notEqual, false, Assembler::pt, L);
 205         __ delayed()->nop();
 206         __ stop("locked object is NULL");
 207         __ bind(L);
 208       }
 209 #endif // ASSERT
 210       // Copy the lock field into the compiled activation.
 211       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 212       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 213       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 214       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 215     }
 216   }
 217 }
 218 
 219 
 220 // Optimized Library calls
 221 // This is the fast version of java.lang.String.compare; it has not
 222 // OSR-entry and therefore, we generate a slow version for OSR's
 223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
 224   Register str0 = left->as_register();
 225   Register str1 = right->as_register();
 226 
 227   Label Ldone;
 228 
 229   Register result = dst->as_register();
 230   {
 231     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
 232     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
 233     // Also, get string0.count-string1.count in o7 and get the condition code set
 234     // Note: some instructions have been hoisted for better instruction scheduling
 235 
 236     Register tmp0 = L0;
 237     Register tmp1 = L1;
 238     Register tmp2 = L2;
 239 
 240     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
 241     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
 242     int  count_offset = java_lang_String:: count_offset_in_bytes();
 243 
 244     __ ld_ptr(str0, value_offset, tmp0);
 245     __ ld(str0, offset_offset, tmp2);
 246     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
 247     __ ld(str0, count_offset, str0);
 248     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 249 
 250     // str1 may be null
 251     add_debug_info_for_null_check_here(info);
 252 
 253     __ ld_ptr(str1, value_offset, tmp1);
 254     __ add(tmp0, tmp2, tmp0);
 255 
 256     __ ld(str1, offset_offset, tmp2);
 257     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
 258     __ ld(str1, count_offset, str1);
 259     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 260     __ subcc(str0, str1, O7);
 261     __ add(tmp1, tmp2, tmp1);
 262   }
 263 
 264   {
 265     // Compute the minimum of the string lengths, scale it and store it in limit
 266     Register count0 = I0;
 267     Register count1 = I1;
 268     Register limit  = L3;
 269 
 270     Label Lskip;
 271     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
 272     __ br(Assembler::greater, true, Assembler::pt, Lskip);
 273     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
 274     __ bind(Lskip);
 275 
 276     // If either string is empty (or both of them) the result is the difference in lengths
 277     __ cmp(limit, 0);
 278     __ br(Assembler::equal, true, Assembler::pn, Ldone);
 279     __ delayed()->mov(O7, result);  // result is difference in lengths
 280   }
 281 
 282   {
 283     // Neither string is empty
 284     Label Lloop;
 285 
 286     Register base0 = L0;
 287     Register base1 = L1;
 288     Register chr0  = I0;
 289     Register chr1  = I1;
 290     Register limit = L3;
 291 
 292     // Shift base0 and base1 to the end of the arrays, negate limit
 293     __ add(base0, limit, base0);
 294     __ add(base1, limit, base1);
 295     __ neg(limit);  // limit = -min{string0.count, strin1.count}
 296 
 297     __ lduh(base0, limit, chr0);
 298     __ bind(Lloop);
 299     __ lduh(base1, limit, chr1);
 300     __ subcc(chr0, chr1, chr0);
 301     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
 302     assert(chr0 == result, "result must be pre-placed");
 303     __ delayed()->inccc(limit, sizeof(jchar));
 304     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
 305     __ delayed()->lduh(base0, limit, chr0);
 306   }
 307 
 308   // If strings are equal up to min length, return the length difference.
 309   __ mov(O7, result);
 310 
 311   // Otherwise, return the difference between the first mismatched chars.
 312   __ bind(Ldone);
 313 }
 314 
 315 
 316 // --------------------------------------------------------------------------------------------
 317 
 318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 319   if (!GenerateSynchronizationCode) return;
 320 
 321   Register obj_reg = obj_opr->as_register();
 322   Register lock_reg = lock_opr->as_register();
 323 
 324   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 325   Register reg = mon_addr.base();
 326   int offset = mon_addr.disp();
 327   // compute pointer to BasicLock
 328   if (mon_addr.is_simm13()) {
 329     __ add(reg, offset, lock_reg);
 330   }
 331   else {
 332     __ set(offset, lock_reg);
 333     __ add(reg, lock_reg, lock_reg);
 334   }
 335   // unlock object
 336   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 337   // _slow_case_stubs->append(slow_case);
 338   // temporary fix: must be created after exceptionhandler, therefore as call stub
 339   _slow_case_stubs->append(slow_case);
 340   if (UseFastLocking) {
 341     // try inlined fast unlocking first, revert to slow locking if it fails
 342     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 343     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 344     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 345   } else {
 346     // always do slow unlocking
 347     // note: the slow unlocking code could be inlined here, however if we use
 348     //       slow unlocking, speed doesn't matter anyway and this solution is
 349     //       simpler and requires less duplicated code - additionally, the
 350     //       slow unlocking code is the same in either case which simplifies
 351     //       debugging
 352     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 353     __ delayed()->nop();
 354   }
 355   // done
 356   __ bind(*slow_case->continuation());
 357 }
 358 
 359 
 360 void LIR_Assembler::emit_exception_handler() {
 361   // if the last instruction is a call (typically to do a throw which
 362   // is coming at the end after block reordering) the return address
 363   // must still point into the code area in order to avoid assertion
 364   // failures when searching for the corresponding bci => add a nop
 365   // (was bug 5/14/1999 - gri)
 366   __ nop();
 367 
 368   // generate code for exception handler
 369   ciMethod* method = compilation()->method();
 370 
 371   address handler_base = __ start_a_stub(exception_handler_size);
 372 
 373   if (handler_base == NULL) {
 374     // not enough space left for the handler
 375     bailout("exception handler overflow");
 376     return;
 377   }
 378 #ifdef ASSERT
 379   int offset = code_offset();
 380 #endif // ASSERT
 381   compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
 382 
 383 
 384   if (compilation()->has_exception_handlers() || compilation()->env()->jvmti_can_post_on_exceptions()) {
 385     __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
 386     __ delayed()->nop();
 387   }
 388 
 389   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
 390   __ delayed()->nop();
 391   debug_only(__ stop("should have gone to the caller");)
 392   assert(code_offset() - offset <= exception_handler_size, "overflow");
 393 
 394   __ end_a_stub();
 395 }
 396 
 397 void LIR_Assembler::emit_deopt_handler() {
 398   // if the last instruction is a call (typically to do a throw which
 399   // is coming at the end after block reordering) the return address
 400   // must still point into the code area in order to avoid assertion
 401   // failures when searching for the corresponding bci => add a nop
 402   // (was bug 5/14/1999 - gri)
 403   __ nop();
 404 
 405   // generate code for deopt handler
 406   ciMethod* method = compilation()->method();
 407   address handler_base = __ start_a_stub(deopt_handler_size);
 408   if (handler_base == NULL) {
 409     // not enough space left for the handler
 410     bailout("deopt handler overflow");
 411     return;
 412   }
 413 #ifdef ASSERT
 414   int offset = code_offset();
 415 #endif // ASSERT
 416   compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
 417 
 418   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 419 
 420   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 421   __ delayed()->nop();
 422 
 423   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 424 
 425   debug_only(__ stop("should have gone to the caller");)
 426 
 427   __ end_a_stub();
 428 }
 429 
 430 
 431 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 432   if (o == NULL) {
 433     __ set(NULL_WORD, reg);
 434   } else {
 435     int oop_index = __ oop_recorder()->find_index(o);
 436     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 437     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 438   }
 439 }
 440 
 441 
 442 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 443   // Allocate a new index in oop table to hold the oop once it's been patched
 444   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
 445   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
 446 
 447   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 448   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 449   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 450   // NULL will be dynamically patched later and the patched value may be large.  We must
 451   // therefore generate the sethi/add as a placeholders
 452   __ patchable_set(addrlit, reg);
 453 
 454   patching_epilog(patch, lir_patch_normal, reg, info);
 455 }
 456 
 457 
 458 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 459   Register Rdividend = op->in_opr1()->as_register();
 460   Register Rdivisor  = noreg;
 461   Register Rscratch  = op->in_opr3()->as_register();
 462   Register Rresult   = op->result_opr()->as_register();
 463   int divisor = -1;
 464 
 465   if (op->in_opr2()->is_register()) {
 466     Rdivisor = op->in_opr2()->as_register();
 467   } else {
 468     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 469     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 470   }
 471 
 472   assert(Rdividend != Rscratch, "");
 473   assert(Rdivisor  != Rscratch, "");
 474   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 475 
 476   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 477     // convert division by a power of two into some shifts and logical operations
 478     if (op->code() == lir_idiv) {
 479       if (divisor == 2) {
 480         __ srl(Rdividend, 31, Rscratch);
 481       } else {
 482         __ sra(Rdividend, 31, Rscratch);
 483         __ and3(Rscratch, divisor - 1, Rscratch);
 484       }
 485       __ add(Rdividend, Rscratch, Rscratch);
 486       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 487       return;
 488     } else {
 489       if (divisor == 2) {
 490         __ srl(Rdividend, 31, Rscratch);
 491       } else {
 492         __ sra(Rdividend, 31, Rscratch);
 493         __ and3(Rscratch, divisor - 1,Rscratch);
 494       }
 495       __ add(Rdividend, Rscratch, Rscratch);
 496       __ andn(Rscratch, divisor - 1,Rscratch);
 497       __ sub(Rdividend, Rscratch, Rresult);
 498       return;
 499     }
 500   }
 501 
 502   __ sra(Rdividend, 31, Rscratch);
 503   __ wry(Rscratch);
 504   if (!VM_Version::v9_instructions_work()) {
 505     // v9 doesn't require these nops
 506     __ nop();
 507     __ nop();
 508     __ nop();
 509     __ nop();
 510   }
 511 
 512   add_debug_info_for_div0_here(op->info());
 513 
 514   if (Rdivisor != noreg) {
 515     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 516   } else {
 517     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 518     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 519   }
 520 
 521   Label skip;
 522   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 523   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 524   __ bind(skip);
 525 
 526   if (op->code() == lir_irem) {
 527     if (Rdivisor != noreg) {
 528       __ smul(Rscratch, Rdivisor, Rscratch);
 529     } else {
 530       __ smul(Rscratch, divisor, Rscratch);
 531     }
 532     __ sub(Rdividend, Rscratch, Rresult);
 533   }
 534 }
 535 
 536 
 537 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 538 #ifdef ASSERT
 539   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 540   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 541   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 542 #endif
 543   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 544 
 545   if (op->cond() == lir_cond_always) {
 546     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 547   } else if (op->code() == lir_cond_float_branch) {
 548     assert(op->ublock() != NULL, "must have unordered successor");
 549     bool is_unordered = (op->ublock() == op->block());
 550     Assembler::Condition acond;
 551     switch (op->cond()) {
 552       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 553       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 554       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 555       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 556       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 557       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 558       default :                         ShouldNotReachHere();
 559     };
 560 
 561     if (!VM_Version::v9_instructions_work()) {
 562       __ nop();
 563     }
 564     __ fb( acond, false, Assembler::pn, *(op->label()));
 565   } else {
 566     assert (op->code() == lir_branch, "just checking");
 567 
 568     Assembler::Condition acond;
 569     switch (op->cond()) {
 570       case lir_cond_equal:        acond = Assembler::equal;                break;
 571       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 572       case lir_cond_less:         acond = Assembler::less;                 break;
 573       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 574       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 575       case lir_cond_greater:      acond = Assembler::greater;              break;
 576       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 577       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 578       default:                         ShouldNotReachHere();
 579     };
 580 
 581     // sparc has different condition codes for testing 32-bit
 582     // vs. 64-bit values.  We could always test xcc is we could
 583     // guarantee that 32-bit loads always sign extended but that isn't
 584     // true and since sign extension isn't free, it would impose a
 585     // slight cost.
 586 #ifdef _LP64
 587     if  (op->type() == T_INT) {
 588       __ br(acond, false, Assembler::pn, *(op->label()));
 589     } else
 590 #endif
 591       __ brx(acond, false, Assembler::pn, *(op->label()));
 592   }
 593   // The peephole pass fills the delay slot
 594 }
 595 
 596 
 597 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 598   Bytecodes::Code code = op->bytecode();
 599   LIR_Opr dst = op->result_opr();
 600 
 601   switch(code) {
 602     case Bytecodes::_i2l: {
 603       Register rlo  = dst->as_register_lo();
 604       Register rhi  = dst->as_register_hi();
 605       Register rval = op->in_opr()->as_register();
 606 #ifdef _LP64
 607       __ sra(rval, 0, rlo);
 608 #else
 609       __ mov(rval, rlo);
 610       __ sra(rval, BitsPerInt-1, rhi);
 611 #endif
 612       break;
 613     }
 614     case Bytecodes::_i2d:
 615     case Bytecodes::_i2f: {
 616       bool is_double = (code == Bytecodes::_i2d);
 617       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 618       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 619       FloatRegister rsrc = op->in_opr()->as_float_reg();
 620       if (rsrc != rdst) {
 621         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 622       }
 623       __ fitof(w, rdst, rdst);
 624       break;
 625     }
 626     case Bytecodes::_f2i:{
 627       FloatRegister rsrc = op->in_opr()->as_float_reg();
 628       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 629       Label L;
 630       // result must be 0 if value is NaN; test by comparing value to itself
 631       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 632       if (!VM_Version::v9_instructions_work()) {
 633         __ nop();
 634       }
 635       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 636       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 637       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 638       // move integer result from float register to int register
 639       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 640       __ bind (L);
 641       break;
 642     }
 643     case Bytecodes::_l2i: {
 644       Register rlo  = op->in_opr()->as_register_lo();
 645       Register rhi  = op->in_opr()->as_register_hi();
 646       Register rdst = dst->as_register();
 647 #ifdef _LP64
 648       __ sra(rlo, 0, rdst);
 649 #else
 650       __ mov(rlo, rdst);
 651 #endif
 652       break;
 653     }
 654     case Bytecodes::_d2f:
 655     case Bytecodes::_f2d: {
 656       bool is_double = (code == Bytecodes::_f2d);
 657       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 658       LIR_Opr val = op->in_opr();
 659       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 660       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 661       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 662       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 663       __ ftof(vw, dw, rval, rdst);
 664       break;
 665     }
 666     case Bytecodes::_i2s:
 667     case Bytecodes::_i2b: {
 668       Register rval = op->in_opr()->as_register();
 669       Register rdst = dst->as_register();
 670       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 671       __ sll (rval, shift, rdst);
 672       __ sra (rdst, shift, rdst);
 673       break;
 674     }
 675     case Bytecodes::_i2c: {
 676       Register rval = op->in_opr()->as_register();
 677       Register rdst = dst->as_register();
 678       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 679       __ sll (rval, shift, rdst);
 680       __ srl (rdst, shift, rdst);
 681       break;
 682     }
 683 
 684     default: ShouldNotReachHere();
 685   }
 686 }
 687 
 688 
 689 void LIR_Assembler::align_call(LIR_Code) {
 690   // do nothing since all instructions are word aligned on sparc
 691 }
 692 
 693 
 694 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
 695   __ call(entry, rtype);
 696   // the peephole pass fills the delay slot
 697 }
 698 
 699 
 700 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
 701   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
 702   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
 703   __ relocate(rspec);
 704   __ call(entry, relocInfo::none);
 705   // the peephole pass fills the delay slot
 706 }
 707 
 708 
 709 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
 710   add_debug_info_for_null_check_here(info);
 711   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
 712   if (__ is_simm13(vtable_offset) ) {
 713     __ ld_ptr(G3_scratch, vtable_offset, G5_method);
 714   } else {
 715     // This will generate 2 instructions
 716     __ set(vtable_offset, G5_method);
 717     // ld_ptr, set_hi, set
 718     __ ld_ptr(G3_scratch, G5_method, G5_method);
 719   }
 720   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
 721   __ callr(G3_scratch, G0);
 722   // the peephole pass fills the delay slot
 723 }
 724 
 725 
 726 // load with 32-bit displacement
 727 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
 728   int load_offset = code_offset();
 729   if (Assembler::is_simm13(disp)) {
 730     if (info != NULL) add_debug_info_for_null_check_here(info);
 731     switch(ld_type) {
 732       case T_BOOLEAN: // fall through
 733       case T_BYTE  : __ ldsb(s, disp, d); break;
 734       case T_CHAR  : __ lduh(s, disp, d); break;
 735       case T_SHORT : __ ldsh(s, disp, d); break;
 736       case T_INT   : __ ld(s, disp, d); break;
 737       case T_ADDRESS:// fall through
 738       case T_ARRAY : // fall through
 739       case T_OBJECT: __ ld_ptr(s, disp, d); break;
 740       default      : ShouldNotReachHere();
 741     }
 742   } else {
 743     __ set(disp, O7);
 744     if (info != NULL) add_debug_info_for_null_check_here(info);
 745     load_offset = code_offset();
 746     switch(ld_type) {
 747       case T_BOOLEAN: // fall through
 748       case T_BYTE  : __ ldsb(s, O7, d); break;
 749       case T_CHAR  : __ lduh(s, O7, d); break;
 750       case T_SHORT : __ ldsh(s, O7, d); break;
 751       case T_INT   : __ ld(s, O7, d); break;
 752       case T_ADDRESS:// fall through
 753       case T_ARRAY : // fall through
 754       case T_OBJECT: __ ld_ptr(s, O7, d); break;
 755       default      : ShouldNotReachHere();
 756     }
 757   }
 758   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
 759   return load_offset;
 760 }
 761 
 762 
 763 // store with 32-bit displacement
 764 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
 765   if (Assembler::is_simm13(offset)) {
 766     if (info != NULL)  add_debug_info_for_null_check_here(info);
 767     switch (type) {
 768       case T_BOOLEAN: // fall through
 769       case T_BYTE  : __ stb(value, base, offset); break;
 770       case T_CHAR  : __ sth(value, base, offset); break;
 771       case T_SHORT : __ sth(value, base, offset); break;
 772       case T_INT   : __ stw(value, base, offset); break;
 773       case T_ADDRESS:// fall through
 774       case T_ARRAY : // fall through
 775       case T_OBJECT: __ st_ptr(value, base, offset); break;
 776       default      : ShouldNotReachHere();
 777     }
 778   } else {
 779     __ set(offset, O7);
 780     if (info != NULL) add_debug_info_for_null_check_here(info);
 781     switch (type) {
 782       case T_BOOLEAN: // fall through
 783       case T_BYTE  : __ stb(value, base, O7); break;
 784       case T_CHAR  : __ sth(value, base, O7); break;
 785       case T_SHORT : __ sth(value, base, O7); break;
 786       case T_INT   : __ stw(value, base, O7); break;
 787       case T_ADDRESS:// fall through
 788       case T_ARRAY : //fall through
 789       case T_OBJECT: __ st_ptr(value, base, O7); break;
 790       default      : ShouldNotReachHere();
 791     }
 792   }
 793   // Note: Do the store before verification as the code might be patched!
 794   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
 795 }
 796 
 797 
 798 // load float with 32-bit displacement
 799 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
 800   FloatRegisterImpl::Width w;
 801   switch(ld_type) {
 802     case T_FLOAT : w = FloatRegisterImpl::S; break;
 803     case T_DOUBLE: w = FloatRegisterImpl::D; break;
 804     default      : ShouldNotReachHere();
 805   }
 806 
 807   if (Assembler::is_simm13(disp)) {
 808     if (info != NULL) add_debug_info_for_null_check_here(info);
 809     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
 810       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
 811       __ ldf(FloatRegisterImpl::S, s, disp               , d);
 812     } else {
 813       __ ldf(w, s, disp, d);
 814     }
 815   } else {
 816     __ set(disp, O7);
 817     if (info != NULL) add_debug_info_for_null_check_here(info);
 818     __ ldf(w, s, O7, d);
 819   }
 820 }
 821 
 822 
 823 // store float with 32-bit displacement
 824 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
 825   FloatRegisterImpl::Width w;
 826   switch(type) {
 827     case T_FLOAT : w = FloatRegisterImpl::S; break;
 828     case T_DOUBLE: w = FloatRegisterImpl::D; break;
 829     default      : ShouldNotReachHere();
 830   }
 831 
 832   if (Assembler::is_simm13(offset)) {
 833     if (info != NULL) add_debug_info_for_null_check_here(info);
 834     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
 835       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
 836       __ stf(FloatRegisterImpl::S, value             , base, offset);
 837     } else {
 838       __ stf(w, value, base, offset);
 839     }
 840   } else {
 841     __ set(offset, O7);
 842     if (info != NULL) add_debug_info_for_null_check_here(info);
 843     __ stf(w, value, O7, base);
 844   }
 845 }
 846 
 847 
 848 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
 849   int store_offset;
 850   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 851     assert(!unaligned, "can't handle this");
 852     // for offsets larger than a simm13 we setup the offset in O7
 853     __ set(offset, O7);
 854     store_offset = store(from_reg, base, O7, type);
 855   } else {
 856     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
 857     store_offset = code_offset();
 858     switch (type) {
 859       case T_BOOLEAN: // fall through
 860       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 861       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 862       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 863       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 864       case T_LONG  :
 865 #ifdef _LP64
 866         if (unaligned || PatchALot) {
 867           __ srax(from_reg->as_register_lo(), 32, O7);
 868           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 869           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
 870         } else {
 871           __ stx(from_reg->as_register_lo(), base, offset);
 872         }
 873 #else
 874         assert(Assembler::is_simm13(offset + 4), "must be");
 875         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 876         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
 877 #endif
 878         break;
 879       case T_ADDRESS:// fall through
 880       case T_ARRAY : // fall through
 881       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
 882       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 883       case T_DOUBLE:
 884         {
 885           FloatRegister reg = from_reg->as_double_reg();
 886           // split unaligned stores
 887           if (unaligned || PatchALot) {
 888             assert(Assembler::is_simm13(offset + 4), "must be");
 889             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 890             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 891           } else {
 892             __ stf(FloatRegisterImpl::D, reg, base, offset);
 893           }
 894           break;
 895         }
 896       default      : ShouldNotReachHere();
 897     }
 898   }
 899   return store_offset;
 900 }
 901 
 902 
 903 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
 904   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
 905   int store_offset = code_offset();
 906   switch (type) {
 907     case T_BOOLEAN: // fall through
 908     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 909     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 910     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 911     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 912     case T_LONG  :
 913 #ifdef _LP64
 914       __ stx(from_reg->as_register_lo(), base, disp);
 915 #else
 916       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
 917       __ std(from_reg->as_register_hi(), base, disp);
 918 #endif
 919       break;
 920     case T_ADDRESS:// fall through
 921     case T_ARRAY : // fall through
 922     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
 923     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 924     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 925     default      : ShouldNotReachHere();
 926   }
 927   return store_offset;
 928 }
 929 
 930 
 931 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
 932   int load_offset;
 933   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 934     assert(base != O7, "destroying register");
 935     assert(!unaligned, "can't handle this");
 936     // for offsets larger than a simm13 we setup the offset in O7
 937     __ set(offset, O7);
 938     load_offset = load(base, O7, to_reg, type);
 939   } else {
 940     load_offset = code_offset();
 941     switch(type) {
 942       case T_BOOLEAN: // fall through
 943       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 944       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 945       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 946       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 947       case T_LONG  :
 948         if (!unaligned) {
 949 #ifdef _LP64
 950           __ ldx(base, offset, to_reg->as_register_lo());
 951 #else
 952           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
 953                  "must be sequential");
 954           __ ldd(base, offset, to_reg->as_register_hi());
 955 #endif
 956         } else {
 957 #ifdef _LP64
 958           assert(base != to_reg->as_register_lo(), "can't handle this");
 959           assert(O7 != to_reg->as_register_lo(), "can't handle this");
 960           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
 961           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
 962           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
 963           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
 964 #else
 965           if (base == to_reg->as_register_lo()) {
 966             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 967             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 968           } else {
 969             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 970             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 971           }
 972 #endif
 973         }
 974         break;
 975       case T_ADDRESS:// fall through
 976       case T_ARRAY : // fall through
 977       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
 978       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
 979       case T_DOUBLE:
 980         {
 981           FloatRegister reg = to_reg->as_double_reg();
 982           // split unaligned loads
 983           if (unaligned || PatchALot) {
 984             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
 985             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
 986           } else {
 987             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
 988           }
 989           break;
 990         }
 991       default      : ShouldNotReachHere();
 992     }
 993     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
 994   }
 995   return load_offset;
 996 }
 997 
 998 
 999 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
1000   int load_offset = code_offset();
1001   switch(type) {
1002     case T_BOOLEAN: // fall through
1003     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
1004     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
1005     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
1006     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
1007     case T_ADDRESS:// fall through
1008     case T_ARRAY : // fall through
1009     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
1010     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1011     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1012     case T_LONG  :
1013 #ifdef _LP64
1014       __ ldx(base, disp, to_reg->as_register_lo());
1015 #else
1016       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1017              "must be sequential");
1018       __ ldd(base, disp, to_reg->as_register_hi());
1019 #endif
1020       break;
1021     default      : ShouldNotReachHere();
1022   }
1023   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
1024   return load_offset;
1025 }
1026 
1027 
1028 // load/store with an Address
1029 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
1030   load(a.base(), a.disp() + offset, d, ld_type, info);
1031 }
1032 
1033 
1034 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1035   store(value, dest.base(), dest.disp() + offset, type, info);
1036 }
1037 
1038 
1039 // loadf/storef with an Address
1040 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
1041   load(a.base(), a.disp() + offset, d, ld_type, info);
1042 }
1043 
1044 
1045 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1046   store(value, dest.base(), dest.disp() + offset, type, info);
1047 }
1048 
1049 
1050 // load/store with an Address
1051 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
1052   load(as_Address(a), d, ld_type, info);
1053 }
1054 
1055 
1056 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1057   store(value, as_Address(dest), type, info);
1058 }
1059 
1060 
1061 // loadf/storef with an Address
1062 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
1063   load(as_Address(a), d, ld_type, info);
1064 }
1065 
1066 
1067 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1068   store(value, as_Address(dest), type, info);
1069 }
1070 
1071 
1072 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1073   LIR_Const* c = src->as_constant_ptr();
1074   switch (c->type()) {
1075     case T_INT:
1076     case T_FLOAT: {
1077       Register src_reg = O7;
1078       int value = c->as_jint_bits();
1079       if (value == 0) {
1080         src_reg = G0;
1081       } else {
1082         __ set(value, O7);
1083       }
1084       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1085       __ stw(src_reg, addr.base(), addr.disp());
1086       break;
1087     }
1088     case T_OBJECT: {
1089       Register src_reg = O7;
1090       jobject2reg(c->as_jobject(), src_reg);
1091       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1092       __ st_ptr(src_reg, addr.base(), addr.disp());
1093       break;
1094     }
1095     case T_LONG:
1096     case T_DOUBLE: {
1097       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1098 
1099       Register tmp = O7;
1100       int value_lo = c->as_jint_lo_bits();
1101       if (value_lo == 0) {
1102         tmp = G0;
1103       } else {
1104         __ set(value_lo, O7);
1105       }
1106       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1107       int value_hi = c->as_jint_hi_bits();
1108       if (value_hi == 0) {
1109         tmp = G0;
1110       } else {
1111         __ set(value_hi, O7);
1112       }
1113       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1114       break;
1115     }
1116     default:
1117       Unimplemented();
1118   }
1119 }
1120 
1121 
1122 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
1123   LIR_Const* c = src->as_constant_ptr();
1124   LIR_Address* addr     = dest->as_address_ptr();
1125   Register base = addr->base()->as_pointer_register();
1126 
1127   if (info != NULL) {
1128     add_debug_info_for_null_check_here(info);
1129   }
1130   switch (c->type()) {
1131     case T_INT:
1132     case T_FLOAT: {
1133       LIR_Opr tmp = FrameMap::O7_opr;
1134       int value = c->as_jint_bits();
1135       if (value == 0) {
1136         tmp = FrameMap::G0_opr;
1137       } else if (Assembler::is_simm13(value)) {
1138         __ set(value, O7);
1139       }
1140       if (addr->index()->is_valid()) {
1141         assert(addr->disp() == 0, "must be zero");
1142         store(tmp, base, addr->index()->as_pointer_register(), type);
1143       } else {
1144         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1145         store(tmp, base, addr->disp(), type);
1146       }
1147       break;
1148     }
1149     case T_LONG:
1150     case T_DOUBLE: {
1151       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1152       assert(Assembler::is_simm13(addr->disp()) &&
1153              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1154 
1155       Register tmp = O7;
1156       int value_lo = c->as_jint_lo_bits();
1157       if (value_lo == 0) {
1158         tmp = G0;
1159       } else {
1160         __ set(value_lo, O7);
1161       }
1162       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
1163       int value_hi = c->as_jint_hi_bits();
1164       if (value_hi == 0) {
1165         tmp = G0;
1166       } else {
1167         __ set(value_hi, O7);
1168       }
1169       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
1170       break;
1171     }
1172     case T_OBJECT: {
1173       jobject obj = c->as_jobject();
1174       LIR_Opr tmp;
1175       if (obj == NULL) {
1176         tmp = FrameMap::G0_opr;
1177       } else {
1178         tmp = FrameMap::O7_opr;
1179         jobject2reg(c->as_jobject(), O7);
1180       }
1181       // handle either reg+reg or reg+disp address
1182       if (addr->index()->is_valid()) {
1183         assert(addr->disp() == 0, "must be zero");
1184         store(tmp, base, addr->index()->as_pointer_register(), type);
1185       } else {
1186         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1187         store(tmp, base, addr->disp(), type);
1188       }
1189 
1190       break;
1191     }
1192     default:
1193       Unimplemented();
1194   }
1195 }
1196 
1197 
1198 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1199   LIR_Const* c = src->as_constant_ptr();
1200   LIR_Opr to_reg = dest;
1201 
1202   switch (c->type()) {
1203     case T_INT:
1204       {
1205         jint con = c->as_jint();
1206         if (to_reg->is_single_cpu()) {
1207           assert(patch_code == lir_patch_none, "no patching handled here");
1208           __ set(con, to_reg->as_register());
1209         } else {
1210           ShouldNotReachHere();
1211           assert(to_reg->is_single_fpu(), "wrong register kind");
1212 
1213           __ set(con, O7);
1214           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1215           __ st(O7, temp_slot);
1216           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1217         }
1218       }
1219       break;
1220 
1221     case T_LONG:
1222       {
1223         jlong con = c->as_jlong();
1224 
1225         if (to_reg->is_double_cpu()) {
1226 #ifdef _LP64
1227           __ set(con,  to_reg->as_register_lo());
1228 #else
1229           __ set(low(con),  to_reg->as_register_lo());
1230           __ set(high(con), to_reg->as_register_hi());
1231 #endif
1232 #ifdef _LP64
1233         } else if (to_reg->is_single_cpu()) {
1234           __ set(con, to_reg->as_register());
1235 #endif
1236         } else {
1237           ShouldNotReachHere();
1238           assert(to_reg->is_double_fpu(), "wrong register kind");
1239           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1240           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1241           __ set(low(con),  O7);
1242           __ st(O7, temp_slot_lo);
1243           __ set(high(con), O7);
1244           __ st(O7, temp_slot_hi);
1245           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1246         }
1247       }
1248       break;
1249 
1250     case T_OBJECT:
1251       {
1252         if (patch_code == lir_patch_none) {
1253           jobject2reg(c->as_jobject(), to_reg->as_register());
1254         } else {
1255           jobject2reg_with_patching(to_reg->as_register(), info);
1256         }
1257       }
1258       break;
1259 
1260     case T_FLOAT:
1261       {
1262         address const_addr = __ float_constant(c->as_jfloat());
1263         if (const_addr == NULL) {
1264           bailout("const section overflow");
1265           break;
1266         }
1267         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1268         AddressLiteral const_addrlit(const_addr, rspec);
1269         if (to_reg->is_single_fpu()) {
1270           __ patchable_sethi(const_addrlit, O7);
1271           __ relocate(rspec);
1272           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1273 
1274         } else {
1275           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1276 
1277           __ set(const_addrlit, O7);
1278           load(O7, 0, to_reg->as_register(), T_INT);
1279         }
1280       }
1281       break;
1282 
1283     case T_DOUBLE:
1284       {
1285         address const_addr = __ double_constant(c->as_jdouble());
1286         if (const_addr == NULL) {
1287           bailout("const section overflow");
1288           break;
1289         }
1290         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1291 
1292         if (to_reg->is_double_fpu()) {
1293           AddressLiteral const_addrlit(const_addr, rspec);
1294           __ patchable_sethi(const_addrlit, O7);
1295           __ relocate(rspec);
1296           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1297         } else {
1298           assert(to_reg->is_double_cpu(), "Must be a long register.");
1299 #ifdef _LP64
1300           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1301 #else
1302           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1303           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1304 #endif
1305         }
1306 
1307       }
1308       break;
1309 
1310     default:
1311       ShouldNotReachHere();
1312   }
1313 }
1314 
1315 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1316   Register reg = addr->base()->as_register();
1317   return Address(reg, addr->disp());
1318 }
1319 
1320 
1321 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1322   switch (type) {
1323     case T_INT:
1324     case T_FLOAT: {
1325       Register tmp = O7;
1326       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1327       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1328       __ lduw(from.base(), from.disp(), tmp);
1329       __ stw(tmp, to.base(), to.disp());
1330       break;
1331     }
1332     case T_OBJECT: {
1333       Register tmp = O7;
1334       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1335       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1336       __ ld_ptr(from.base(), from.disp(), tmp);
1337       __ st_ptr(tmp, to.base(), to.disp());
1338       break;
1339     }
1340     case T_LONG:
1341     case T_DOUBLE: {
1342       Register tmp = O7;
1343       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1344       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1345       __ lduw(from.base(), from.disp(), tmp);
1346       __ stw(tmp, to.base(), to.disp());
1347       __ lduw(from.base(), from.disp() + 4, tmp);
1348       __ stw(tmp, to.base(), to.disp() + 4);
1349       break;
1350     }
1351 
1352     default:
1353       ShouldNotReachHere();
1354   }
1355 }
1356 
1357 
1358 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1359   Address base = as_Address(addr);
1360   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1361 }
1362 
1363 
1364 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1365   Address base = as_Address(addr);
1366   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1367 }
1368 
1369 
1370 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1371                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
1372 
1373   LIR_Address* addr = src_opr->as_address_ptr();
1374   LIR_Opr to_reg = dest;
1375 
1376   Register src = addr->base()->as_pointer_register();
1377   Register disp_reg = noreg;
1378   int disp_value = addr->disp();
1379   bool needs_patching = (patch_code != lir_patch_none);
1380 
1381   if (addr->base()->type() == T_OBJECT) {
1382     __ verify_oop(src);
1383   }
1384 
1385   PatchingStub* patch = NULL;
1386   if (needs_patching) {
1387     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1388     assert(!to_reg->is_double_cpu() ||
1389            patch_code == lir_patch_none ||
1390            patch_code == lir_patch_normal, "patching doesn't match register");
1391   }
1392 
1393   if (addr->index()->is_illegal()) {
1394     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1395       if (needs_patching) {
1396         __ patchable_set(0, O7);
1397       } else {
1398         __ set(disp_value, O7);
1399       }
1400       disp_reg = O7;
1401     }
1402   } else if (unaligned || PatchALot) {
1403     __ add(src, addr->index()->as_register(), O7);
1404     src = O7;
1405   } else {
1406     disp_reg = addr->index()->as_pointer_register();
1407     assert(disp_value == 0, "can't handle 3 operand addresses");
1408   }
1409 
1410   // remember the offset of the load.  The patching_epilog must be done
1411   // before the call to add_debug_info, otherwise the PcDescs don't get
1412   // entered in increasing order.
1413   int offset = code_offset();
1414 
1415   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1416   if (disp_reg == noreg) {
1417     offset = load(src, disp_value, to_reg, type, unaligned);
1418   } else {
1419     assert(!unaligned, "can't handle this");
1420     offset = load(src, disp_reg, to_reg, type);
1421   }
1422 
1423   if (patch != NULL) {
1424     patching_epilog(patch, patch_code, src, info);
1425   }
1426 
1427   if (info != NULL) add_debug_info_for_null_check(offset, info);
1428 }
1429 
1430 
1431 void LIR_Assembler::prefetchr(LIR_Opr src) {
1432   LIR_Address* addr = src->as_address_ptr();
1433   Address from_addr = as_Address(addr);
1434 
1435   if (VM_Version::has_v9()) {
1436     __ prefetch(from_addr, Assembler::severalReads);
1437   }
1438 }
1439 
1440 
1441 void LIR_Assembler::prefetchw(LIR_Opr src) {
1442   LIR_Address* addr = src->as_address_ptr();
1443   Address from_addr = as_Address(addr);
1444 
1445   if (VM_Version::has_v9()) {
1446     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1447   }
1448 }
1449 
1450 
1451 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1452   Address addr;
1453   if (src->is_single_word()) {
1454     addr = frame_map()->address_for_slot(src->single_stack_ix());
1455   } else if (src->is_double_word())  {
1456     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1457   }
1458 
1459   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1460   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
1461 }
1462 
1463 
1464 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1465   Address addr;
1466   if (dest->is_single_word()) {
1467     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1468   } else if (dest->is_double_word())  {
1469     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1470   }
1471   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1472   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
1473 }
1474 
1475 
1476 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1477   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1478     if (from_reg->is_double_fpu()) {
1479       // double to double moves
1480       assert(to_reg->is_double_fpu(), "should match");
1481       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1482     } else {
1483       // float to float moves
1484       assert(to_reg->is_single_fpu(), "should match");
1485       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1486     }
1487   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1488     if (from_reg->is_double_cpu()) {
1489 #ifdef _LP64
1490       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1491 #else
1492       assert(to_reg->is_double_cpu() &&
1493              from_reg->as_register_hi() != to_reg->as_register_lo() &&
1494              from_reg->as_register_lo() != to_reg->as_register_hi(),
1495              "should both be long and not overlap");
1496       // long to long moves
1497       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1498       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1499 #endif
1500 #ifdef _LP64
1501     } else if (to_reg->is_double_cpu()) {
1502       // int to int moves
1503       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1504 #endif
1505     } else {
1506       // int to int moves
1507       __ mov(from_reg->as_register(), to_reg->as_register());
1508     }
1509   } else {
1510     ShouldNotReachHere();
1511   }
1512   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1513     __ verify_oop(to_reg->as_register());
1514   }
1515 }
1516 
1517 
1518 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1519                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1520                             bool unaligned) {
1521   LIR_Address* addr = dest->as_address_ptr();
1522 
1523   Register src = addr->base()->as_pointer_register();
1524   Register disp_reg = noreg;
1525   int disp_value = addr->disp();
1526   bool needs_patching = (patch_code != lir_patch_none);
1527 
1528   if (addr->base()->is_oop_register()) {
1529     __ verify_oop(src);
1530   }
1531 
1532   PatchingStub* patch = NULL;
1533   if (needs_patching) {
1534     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1535     assert(!from_reg->is_double_cpu() ||
1536            patch_code == lir_patch_none ||
1537            patch_code == lir_patch_normal, "patching doesn't match register");
1538   }
1539 
1540   if (addr->index()->is_illegal()) {
1541     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1542       if (needs_patching) {
1543         __ patchable_set(0, O7);
1544       } else {
1545         __ set(disp_value, O7);
1546       }
1547       disp_reg = O7;
1548     }
1549   } else if (unaligned || PatchALot) {
1550     __ add(src, addr->index()->as_register(), O7);
1551     src = O7;
1552   } else {
1553     disp_reg = addr->index()->as_pointer_register();
1554     assert(disp_value == 0, "can't handle 3 operand addresses");
1555   }
1556 
1557   // remember the offset of the store.  The patching_epilog must be done
1558   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1559   // entered in increasing order.
1560   int offset;
1561 
1562   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1563   if (disp_reg == noreg) {
1564     offset = store(from_reg, src, disp_value, type, unaligned);
1565   } else {
1566     assert(!unaligned, "can't handle this");
1567     offset = store(from_reg, src, disp_reg, type);
1568   }
1569 
1570   if (patch != NULL) {
1571     patching_epilog(patch, patch_code, src, info);
1572   }
1573 
1574   if (info != NULL) add_debug_info_for_null_check(offset, info);
1575 }
1576 
1577 
1578 void LIR_Assembler::return_op(LIR_Opr result) {
1579   // the poll may need a register so just pick one that isn't the return register
1580 #ifdef TIERED
1581   if (result->type_field() == LIR_OprDesc::long_type) {
1582     // Must move the result to G1
1583     // Must leave proper result in O0,O1 and G1 (TIERED only)
1584     __ sllx(I0, 32, G1);          // Shift bits into high G1
1585     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1586     __ or3 (I1, G1, G1);          // OR 64 bits into G1
1587   }
1588 #endif // TIERED
1589   __ set((intptr_t)os::get_polling_page(), L0);
1590   __ relocate(relocInfo::poll_return_type);
1591   __ ld_ptr(L0, 0, G0);
1592   __ ret();
1593   __ delayed()->restore();
1594 }
1595 
1596 
1597 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1598   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1599   if (info != NULL) {
1600     add_debug_info_for_branch(info);
1601   } else {
1602     __ relocate(relocInfo::poll_type);
1603   }
1604 
1605   int offset = __ offset();
1606   __ ld_ptr(tmp->as_register(), 0, G0);
1607 
1608   return offset;
1609 }
1610 
1611 
1612 void LIR_Assembler::emit_static_call_stub() {
1613   address call_pc = __ pc();
1614   address stub = __ start_a_stub(call_stub_size);
1615   if (stub == NULL) {
1616     bailout("static call stub overflow");
1617     return;
1618   }
1619 
1620   int start = __ offset();
1621   __ relocate(static_stub_Relocation::spec(call_pc));
1622 
1623   __ set_oop(NULL, G5);
1624   // must be set to -1 at code generation time
1625   AddressLiteral addrlit(-1);
1626   __ jump_to(addrlit, G3);
1627   __ delayed()->nop();
1628 
1629   assert(__ offset() - start <= call_stub_size, "stub too big");
1630   __ end_a_stub();
1631 }
1632 
1633 
1634 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1635   if (opr1->is_single_fpu()) {
1636     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1637   } else if (opr1->is_double_fpu()) {
1638     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1639   } else if (opr1->is_single_cpu()) {
1640     if (opr2->is_constant()) {
1641       switch (opr2->as_constant_ptr()->type()) {
1642         case T_INT:
1643           { jint con = opr2->as_constant_ptr()->as_jint();
1644             if (Assembler::is_simm13(con)) {
1645               __ cmp(opr1->as_register(), con);
1646             } else {
1647               __ set(con, O7);
1648               __ cmp(opr1->as_register(), O7);
1649             }
1650           }
1651           break;
1652 
1653         case T_OBJECT:
1654           // there are only equal/notequal comparisions on objects
1655           { jobject con = opr2->as_constant_ptr()->as_jobject();
1656             if (con == NULL) {
1657               __ cmp(opr1->as_register(), 0);
1658             } else {
1659               jobject2reg(con, O7);
1660               __ cmp(opr1->as_register(), O7);
1661             }
1662           }
1663           break;
1664 
1665         default:
1666           ShouldNotReachHere();
1667           break;
1668       }
1669     } else {
1670       if (opr2->is_address()) {
1671         LIR_Address * addr = opr2->as_address_ptr();
1672         BasicType type = addr->type();
1673         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1674         else                    __ ld(as_Address(addr), O7);
1675         __ cmp(opr1->as_register(), O7);
1676       } else {
1677         __ cmp(opr1->as_register(), opr2->as_register());
1678       }
1679     }
1680   } else if (opr1->is_double_cpu()) {
1681     Register xlo = opr1->as_register_lo();
1682     Register xhi = opr1->as_register_hi();
1683     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1684       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1685 #ifdef _LP64
1686       __ orcc(xhi, G0, G0);
1687 #else
1688       __ orcc(xhi, xlo, G0);
1689 #endif
1690     } else if (opr2->is_register()) {
1691       Register ylo = opr2->as_register_lo();
1692       Register yhi = opr2->as_register_hi();
1693 #ifdef _LP64
1694       __ cmp(xlo, ylo);
1695 #else
1696       __ subcc(xlo, ylo, xlo);
1697       __ subccc(xhi, yhi, xhi);
1698       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1699         __ orcc(xhi, xlo, G0);
1700       }
1701 #endif
1702     } else {
1703       ShouldNotReachHere();
1704     }
1705   } else if (opr1->is_address()) {
1706     LIR_Address * addr = opr1->as_address_ptr();
1707     BasicType type = addr->type();
1708     assert (opr2->is_constant(), "Checking");
1709     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1710     else                    __ ld(as_Address(addr), O7);
1711     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1712   } else {
1713     ShouldNotReachHere();
1714   }
1715 }
1716 
1717 
1718 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1719   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1720     bool is_unordered_less = (code == lir_ucmp_fd2i);
1721     if (left->is_single_fpu()) {
1722       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1723     } else if (left->is_double_fpu()) {
1724       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1725     } else {
1726       ShouldNotReachHere();
1727     }
1728   } else if (code == lir_cmp_l2i) {
1729     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1730             right->as_register_hi(), right->as_register_lo(),
1731             dst->as_register());
1732   } else {
1733     ShouldNotReachHere();
1734   }
1735 }
1736 
1737 
1738 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1739 
1740   Assembler::Condition acond;
1741   switch (condition) {
1742     case lir_cond_equal:        acond = Assembler::equal;        break;
1743     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1744     case lir_cond_less:         acond = Assembler::less;         break;
1745     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1746     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1747     case lir_cond_greater:      acond = Assembler::greater;      break;
1748     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1749     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1750     default:                         ShouldNotReachHere();
1751   };
1752 
1753   if (opr1->is_constant() && opr1->type() == T_INT) {
1754     Register dest = result->as_register();
1755     // load up first part of constant before branch
1756     // and do the rest in the delay slot.
1757     if (!Assembler::is_simm13(opr1->as_jint())) {
1758       __ sethi(opr1->as_jint(), dest);
1759     }
1760   } else if (opr1->is_constant()) {
1761     const2reg(opr1, result, lir_patch_none, NULL);
1762   } else if (opr1->is_register()) {
1763     reg2reg(opr1, result);
1764   } else if (opr1->is_stack()) {
1765     stack2reg(opr1, result, result->type());
1766   } else {
1767     ShouldNotReachHere();
1768   }
1769   Label skip;
1770   __ br(acond, false, Assembler::pt, skip);
1771   if (opr1->is_constant() && opr1->type() == T_INT) {
1772     Register dest = result->as_register();
1773     if (Assembler::is_simm13(opr1->as_jint())) {
1774       __ delayed()->or3(G0, opr1->as_jint(), dest);
1775     } else {
1776       // the sethi has been done above, so just put in the low 10 bits
1777       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1778     }
1779   } else {
1780     // can't do anything useful in the delay slot
1781     __ delayed()->nop();
1782   }
1783   if (opr2->is_constant()) {
1784     const2reg(opr2, result, lir_patch_none, NULL);
1785   } else if (opr2->is_register()) {
1786     reg2reg(opr2, result);
1787   } else if (opr2->is_stack()) {
1788     stack2reg(opr2, result, result->type());
1789   } else {
1790     ShouldNotReachHere();
1791   }
1792   __ bind(skip);
1793 }
1794 
1795 
1796 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1797   assert(info == NULL, "unused on this code path");
1798   assert(left->is_register(), "wrong items state");
1799   assert(dest->is_register(), "wrong items state");
1800 
1801   if (right->is_register()) {
1802     if (dest->is_float_kind()) {
1803 
1804       FloatRegister lreg, rreg, res;
1805       FloatRegisterImpl::Width w;
1806       if (right->is_single_fpu()) {
1807         w = FloatRegisterImpl::S;
1808         lreg = left->as_float_reg();
1809         rreg = right->as_float_reg();
1810         res  = dest->as_float_reg();
1811       } else {
1812         w = FloatRegisterImpl::D;
1813         lreg = left->as_double_reg();
1814         rreg = right->as_double_reg();
1815         res  = dest->as_double_reg();
1816       }
1817 
1818       switch (code) {
1819         case lir_add: __ fadd(w, lreg, rreg, res); break;
1820         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1821         case lir_mul: // fall through
1822         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1823         case lir_div: // fall through
1824         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1825         default: ShouldNotReachHere();
1826       }
1827 
1828     } else if (dest->is_double_cpu()) {
1829 #ifdef _LP64
1830       Register dst_lo = dest->as_register_lo();
1831       Register op1_lo = left->as_pointer_register();
1832       Register op2_lo = right->as_pointer_register();
1833 
1834       switch (code) {
1835         case lir_add:
1836           __ add(op1_lo, op2_lo, dst_lo);
1837           break;
1838 
1839         case lir_sub:
1840           __ sub(op1_lo, op2_lo, dst_lo);
1841           break;
1842 
1843         default: ShouldNotReachHere();
1844       }
1845 #else
1846       Register op1_lo = left->as_register_lo();
1847       Register op1_hi = left->as_register_hi();
1848       Register op2_lo = right->as_register_lo();
1849       Register op2_hi = right->as_register_hi();
1850       Register dst_lo = dest->as_register_lo();
1851       Register dst_hi = dest->as_register_hi();
1852 
1853       switch (code) {
1854         case lir_add:
1855           __ addcc(op1_lo, op2_lo, dst_lo);
1856           __ addc (op1_hi, op2_hi, dst_hi);
1857           break;
1858 
1859         case lir_sub:
1860           __ subcc(op1_lo, op2_lo, dst_lo);
1861           __ subc (op1_hi, op2_hi, dst_hi);
1862           break;
1863 
1864         default: ShouldNotReachHere();
1865       }
1866 #endif
1867     } else {
1868       assert (right->is_single_cpu(), "Just Checking");
1869 
1870       Register lreg = left->as_register();
1871       Register res  = dest->as_register();
1872       Register rreg = right->as_register();
1873       switch (code) {
1874         case lir_add:  __ add  (lreg, rreg, res); break;
1875         case lir_sub:  __ sub  (lreg, rreg, res); break;
1876         case lir_mul:  __ mult (lreg, rreg, res); break;
1877         default: ShouldNotReachHere();
1878       }
1879     }
1880   } else {
1881     assert (right->is_constant(), "must be constant");
1882 
1883     if (dest->is_single_cpu()) {
1884       Register lreg = left->as_register();
1885       Register res  = dest->as_register();
1886       int    simm13 = right->as_constant_ptr()->as_jint();
1887 
1888       switch (code) {
1889         case lir_add:  __ add  (lreg, simm13, res); break;
1890         case lir_sub:  __ sub  (lreg, simm13, res); break;
1891         case lir_mul:  __ mult (lreg, simm13, res); break;
1892         default: ShouldNotReachHere();
1893       }
1894     } else {
1895       Register lreg = left->as_pointer_register();
1896       Register res  = dest->as_register_lo();
1897       long con = right->as_constant_ptr()->as_jlong();
1898       assert(Assembler::is_simm13(con), "must be simm13");
1899 
1900       switch (code) {
1901         case lir_add:  __ add  (lreg, (int)con, res); break;
1902         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1903         case lir_mul:  __ mult (lreg, (int)con, res); break;
1904         default: ShouldNotReachHere();
1905       }
1906     }
1907   }
1908 }
1909 
1910 
1911 void LIR_Assembler::fpop() {
1912   // do nothing
1913 }
1914 
1915 
1916 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1917   switch (code) {
1918     case lir_sin:
1919     case lir_tan:
1920     case lir_cos: {
1921       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1922       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1923       break;
1924     }
1925     case lir_sqrt: {
1926       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1927       FloatRegister src_reg = value->as_double_reg();
1928       FloatRegister dst_reg = dest->as_double_reg();
1929       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1930       break;
1931     }
1932     case lir_abs: {
1933       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1934       FloatRegister src_reg = value->as_double_reg();
1935       FloatRegister dst_reg = dest->as_double_reg();
1936       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1937       break;
1938     }
1939     default: {
1940       ShouldNotReachHere();
1941       break;
1942     }
1943   }
1944 }
1945 
1946 
1947 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1948   if (right->is_constant()) {
1949     if (dest->is_single_cpu()) {
1950       int simm13 = right->as_constant_ptr()->as_jint();
1951       switch (code) {
1952         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1953         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1954         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1955         default: ShouldNotReachHere();
1956       }
1957     } else {
1958       long c = right->as_constant_ptr()->as_jlong();
1959       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1960       int simm13 = (int)c;
1961       switch (code) {
1962         case lir_logic_and:
1963 #ifndef _LP64
1964           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
1965 #endif
1966           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1967           break;
1968 
1969         case lir_logic_or:
1970 #ifndef _LP64
1971           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
1972 #endif
1973           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1974           break;
1975 
1976         case lir_logic_xor:
1977 #ifndef _LP64
1978           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
1979 #endif
1980           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1981           break;
1982 
1983         default: ShouldNotReachHere();
1984       }
1985     }
1986   } else {
1987     assert(right->is_register(), "right should be in register");
1988 
1989     if (dest->is_single_cpu()) {
1990       switch (code) {
1991         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1992         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1993         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1994         default: ShouldNotReachHere();
1995       }
1996     } else {
1997 #ifdef _LP64
1998       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1999                                                                         left->as_register_lo();
2000       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
2001                                                                           right->as_register_lo();
2002 
2003       switch (code) {
2004         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
2005         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
2006         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
2007         default: ShouldNotReachHere();
2008       }
2009 #else
2010       switch (code) {
2011         case lir_logic_and:
2012           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2013           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2014           break;
2015 
2016         case lir_logic_or:
2017           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2018           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2019           break;
2020 
2021         case lir_logic_xor:
2022           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2023           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2024           break;
2025 
2026         default: ShouldNotReachHere();
2027       }
2028 #endif
2029     }
2030   }
2031 }
2032 
2033 
2034 int LIR_Assembler::shift_amount(BasicType t) {
2035   int elem_size = type2aelembytes(t);
2036   switch (elem_size) {
2037     case 1 : return 0;
2038     case 2 : return 1;
2039     case 4 : return 2;
2040     case 8 : return 3;
2041   }
2042   ShouldNotReachHere();
2043   return -1;
2044 }
2045 
2046 
2047 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
2048   assert(exceptionOop->as_register() == Oexception, "should match");
2049   assert(unwind || exceptionPC->as_register() == Oissuing_pc, "should match");
2050 
2051   info->add_register_oop(exceptionOop);
2052 
2053   if (unwind) {
2054     __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
2055     __ delayed()->nop();
2056   } else {
2057     // reuse the debug info from the safepoint poll for the throw op itself
2058     address pc_for_athrow  = __ pc();
2059     int pc_for_athrow_offset = __ offset();
2060     RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2061     __ set(pc_for_athrow, Oissuing_pc, rspec);
2062     add_call_info(pc_for_athrow_offset, info); // for exception handler
2063 
2064     __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2065     __ delayed()->nop();
2066   }
2067 }
2068 
2069 
2070 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2071   Register src = op->src()->as_register();
2072   Register dst = op->dst()->as_register();
2073   Register src_pos = op->src_pos()->as_register();
2074   Register dst_pos = op->dst_pos()->as_register();
2075   Register length  = op->length()->as_register();
2076   Register tmp = op->tmp()->as_register();
2077   Register tmp2 = O7;
2078 
2079   int flags = op->flags();
2080   ciArrayKlass* default_type = op->expected_type();
2081   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2082   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2083 
2084   // set up the arraycopy stub information
2085   ArrayCopyStub* stub = op->stub();
2086 
2087   // always do stub if no type information is available.  it's ok if
2088   // the known type isn't loaded since the code sanity checks
2089   // in debug mode and the type isn't required when we know the exact type
2090   // also check that the type is an array type.
2091   // We also, for now, always call the stub if the barrier set requires a
2092   // write_ref_pre barrier (which the stub does, but none of the optimized
2093   // cases currently does).
2094   if (op->expected_type() == NULL ||
2095       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
2096     __ mov(src,     O0);
2097     __ mov(src_pos, O1);
2098     __ mov(dst,     O2);
2099     __ mov(dst_pos, O3);
2100     __ mov(length,  O4);
2101     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2102 
2103     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
2104     __ delayed()->nop();
2105     __ bind(*stub->continuation());
2106     return;
2107   }
2108 
2109   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2110 
2111   // make sure src and dst are non-null and load array length
2112   if (flags & LIR_OpArrayCopy::src_null_check) {
2113     __ tst(src);
2114     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2115     __ delayed()->nop();
2116   }
2117 
2118   if (flags & LIR_OpArrayCopy::dst_null_check) {
2119     __ tst(dst);
2120     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2121     __ delayed()->nop();
2122   }
2123 
2124   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2125     // test src_pos register
2126     __ tst(src_pos);
2127     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2128     __ delayed()->nop();
2129   }
2130 
2131   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2132     // test dst_pos register
2133     __ tst(dst_pos);
2134     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2135     __ delayed()->nop();
2136   }
2137 
2138   if (flags & LIR_OpArrayCopy::length_positive_check) {
2139     // make sure length isn't negative
2140     __ tst(length);
2141     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2142     __ delayed()->nop();
2143   }
2144 
2145   if (flags & LIR_OpArrayCopy::src_range_check) {
2146     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2147     __ add(length, src_pos, tmp);
2148     __ cmp(tmp2, tmp);
2149     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2150     __ delayed()->nop();
2151   }
2152 
2153   if (flags & LIR_OpArrayCopy::dst_range_check) {
2154     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2155     __ add(length, dst_pos, tmp);
2156     __ cmp(tmp2, tmp);
2157     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2158     __ delayed()->nop();
2159   }
2160 
2161   if (flags & LIR_OpArrayCopy::type_check) {
2162     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2163     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2164     __ cmp(tmp, tmp2);
2165     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2166     __ delayed()->nop();
2167   }
2168 
2169 #ifdef ASSERT
2170   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2171     // Sanity check the known type with the incoming class.  For the
2172     // primitive case the types must match exactly with src.klass and
2173     // dst.klass each exactly matching the default type.  For the
2174     // object array case, if no type check is needed then either the
2175     // dst type is exactly the expected type and the src type is a
2176     // subtype which we can't check or src is the same array as dst
2177     // but not necessarily exactly of type default_type.
2178     Label known_ok, halt;
2179     jobject2reg(op->expected_type()->constant_encoding(), tmp);
2180     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2181     if (basic_type != T_OBJECT) {
2182       __ cmp(tmp, tmp2);
2183       __ br(Assembler::notEqual, false, Assembler::pn, halt);
2184       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2185       __ cmp(tmp, tmp2);
2186       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2187       __ delayed()->nop();
2188     } else {
2189       __ cmp(tmp, tmp2);
2190       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2191       __ delayed()->cmp(src, dst);
2192       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2193       __ delayed()->nop();
2194     }
2195     __ bind(halt);
2196     __ stop("incorrect type information in arraycopy");
2197     __ bind(known_ok);
2198   }
2199 #endif
2200 
2201   int shift = shift_amount(basic_type);
2202 
2203   Register src_ptr = O0;
2204   Register dst_ptr = O1;
2205   Register len     = O2;
2206 
2207   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2208   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
2209   if (shift == 0) {
2210     __ add(src_ptr, src_pos, src_ptr);
2211   } else {
2212     __ sll(src_pos, shift, tmp);
2213     __ add(src_ptr, tmp, src_ptr);
2214   }
2215 
2216   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2217   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
2218   if (shift == 0) {
2219     __ add(dst_ptr, dst_pos, dst_ptr);
2220   } else {
2221     __ sll(dst_pos, shift, tmp);
2222     __ add(dst_ptr, tmp, dst_ptr);
2223   }
2224 
2225   if (basic_type != T_OBJECT) {
2226     if (shift == 0) {
2227       __ mov(length, len);
2228     } else {
2229       __ sll(length, shift, len);
2230     }
2231     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
2232   } else {
2233     // oop_arraycopy takes a length in number of elements, so don't scale it.
2234     __ mov(length, len);
2235     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
2236   }
2237 
2238   __ bind(*stub->continuation());
2239 }
2240 
2241 
2242 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2243   if (dest->is_single_cpu()) {
2244 #ifdef _LP64
2245     if (left->type() == T_OBJECT) {
2246       switch (code) {
2247         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2248         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2249         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2250         default: ShouldNotReachHere();
2251       }
2252     } else
2253 #endif
2254       switch (code) {
2255         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2256         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2257         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2258         default: ShouldNotReachHere();
2259       }
2260   } else {
2261 #ifdef _LP64
2262     switch (code) {
2263       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2264       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2265       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2266       default: ShouldNotReachHere();
2267     }
2268 #else
2269     switch (code) {
2270       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2271       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2272       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2273       default: ShouldNotReachHere();
2274     }
2275 #endif
2276   }
2277 }
2278 
2279 
2280 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2281 #ifdef _LP64
2282   if (left->type() == T_OBJECT) {
2283     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2284     Register l = left->as_register();
2285     Register d = dest->as_register_lo();
2286     switch (code) {
2287       case lir_shl:  __ sllx  (l, count, d); break;
2288       case lir_shr:  __ srax  (l, count, d); break;
2289       case lir_ushr: __ srlx  (l, count, d); break;
2290       default: ShouldNotReachHere();
2291     }
2292     return;
2293   }
2294 #endif
2295 
2296   if (dest->is_single_cpu()) {
2297     count = count & 0x1F; // Java spec
2298     switch (code) {
2299       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2300       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2301       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2302       default: ShouldNotReachHere();
2303     }
2304   } else if (dest->is_double_cpu()) {
2305     count = count & 63; // Java spec
2306     switch (code) {
2307       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2308       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2309       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2310       default: ShouldNotReachHere();
2311     }
2312   } else {
2313     ShouldNotReachHere();
2314   }
2315 }
2316 
2317 
2318 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2319   assert(op->tmp1()->as_register()  == G1 &&
2320          op->tmp2()->as_register()  == G3 &&
2321          op->tmp3()->as_register()  == G4 &&
2322          op->obj()->as_register()   == O0 &&
2323          op->klass()->as_register() == G5, "must be");
2324   if (op->init_check()) {
2325     __ ld(op->klass()->as_register(),
2326           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
2327           op->tmp1()->as_register());
2328     add_debug_info_for_null_check_here(op->stub()->info());
2329     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2330     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2331     __ delayed()->nop();
2332   }
2333   __ allocate_object(op->obj()->as_register(),
2334                      op->tmp1()->as_register(),
2335                      op->tmp2()->as_register(),
2336                      op->tmp3()->as_register(),
2337                      op->header_size(),
2338                      op->object_size(),
2339                      op->klass()->as_register(),
2340                      *op->stub()->entry());
2341   __ bind(*op->stub()->continuation());
2342   __ verify_oop(op->obj()->as_register());
2343 }
2344 
2345 
2346 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2347   assert(op->tmp1()->as_register()  == G1 &&
2348          op->tmp2()->as_register()  == G3 &&
2349          op->tmp3()->as_register()  == G4 &&
2350          op->tmp4()->as_register()  == O1 &&
2351          op->klass()->as_register() == G5, "must be");
2352   if (UseSlowPath ||
2353       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2354       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2355     __ br(Assembler::always, false, Assembler::pn, *op->stub()->entry());
2356     __ delayed()->nop();
2357   } else {
2358     __ allocate_array(op->obj()->as_register(),
2359                       op->len()->as_register(),
2360                       op->tmp1()->as_register(),
2361                       op->tmp2()->as_register(),
2362                       op->tmp3()->as_register(),
2363                       arrayOopDesc::header_size(op->type()),
2364                       type2aelembytes(op->type()),
2365                       op->klass()->as_register(),
2366                       *op->stub()->entry());
2367   }
2368   __ bind(*op->stub()->continuation());
2369 }
2370 
2371 
2372 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2373   LIR_Code code = op->code();
2374   if (code == lir_store_check) {
2375     Register value = op->object()->as_register();
2376     Register array = op->array()->as_register();
2377     Register k_RInfo = op->tmp1()->as_register();
2378     Register klass_RInfo = op->tmp2()->as_register();
2379     Register Rtmp1 = op->tmp3()->as_register();
2380 
2381     __ verify_oop(value);
2382 
2383     CodeStub* stub = op->stub();
2384     Label done;
2385     __ cmp(value, 0);
2386     __ br(Assembler::equal, false, Assembler::pn, done);
2387     __ delayed()->nop();
2388     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
2389     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2390 
2391     // get instance klass
2392     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
2393     // perform the fast part of the checking logic
2394     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
2395 
2396     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2397     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2398     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2399     __ delayed()->nop();
2400     __ cmp(G3, 0);
2401     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2402     __ delayed()->nop();
2403     __ bind(done);
2404   } else if (op->code() == lir_checkcast) {
2405     // we always need a stub for the failure case.
2406     CodeStub* stub = op->stub();
2407     Register obj = op->object()->as_register();
2408     Register k_RInfo = op->tmp1()->as_register();
2409     Register klass_RInfo = op->tmp2()->as_register();
2410     Register dst = op->result_opr()->as_register();
2411     Register Rtmp1 = op->tmp3()->as_register();
2412     ciKlass* k = op->klass();
2413 
2414     if (obj == k_RInfo) {
2415       k_RInfo = klass_RInfo;
2416       klass_RInfo = obj;
2417     }
2418     if (op->profiled_method() != NULL) {
2419       ciMethod* method = op->profiled_method();
2420       int bci          = op->profiled_bci();
2421 
2422       // We need two temporaries to perform this operation on SPARC,
2423       // so to keep things simple we perform a redundant test here
2424       Label profile_done;
2425       __ cmp(obj, 0);
2426       __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
2427       __ delayed()->nop();
2428       // Object is null; update methodDataOop
2429       ciMethodData* md = method->method_data();
2430       if (md == NULL) {
2431         bailout("out of memory building methodDataOop");
2432         return;
2433       }
2434       ciProfileData* data = md->bci_to_data(bci);
2435       assert(data != NULL,       "need data for checkcast");
2436       assert(data->is_BitData(), "need BitData for checkcast");
2437       Register mdo      = k_RInfo;
2438       Register data_val = Rtmp1;
2439       jobject2reg(md->constant_encoding(), mdo);
2440 
2441       int mdo_offset_bias = 0;
2442       if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2443         // The offset is large so bias the mdo by the base of the slot so
2444         // that the ld can use simm13s to reference the slots of the data
2445         mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2446         __ set(mdo_offset_bias, data_val);
2447         __ add(mdo, data_val, mdo);
2448       }
2449 
2450 
2451       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2452       __ ldub(flags_addr, data_val);
2453       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2454       __ stb(data_val, flags_addr);
2455       __ bind(profile_done);
2456     }
2457 
2458     Label done;
2459     // patching may screw with our temporaries on sparc,
2460     // so let's do it before loading the class
2461     if (k->is_loaded()) {
2462       jobject2reg(k->constant_encoding(), k_RInfo);
2463     } else {
2464       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2465     }
2466     assert(obj != k_RInfo, "must be different");
2467     __ cmp(obj, 0);
2468     __ br(Assembler::equal, false, Assembler::pn, done);
2469     __ delayed()->nop();
2470 
2471     // get object class
2472     // not a safepoint as obj null check happens earlier
2473     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2474     if (op->fast_check()) {
2475       assert_different_registers(klass_RInfo, k_RInfo);
2476       __ cmp(k_RInfo, klass_RInfo);
2477       __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2478       __ delayed()->nop();
2479       __ bind(done);
2480     } else {
2481       bool need_slow_path = true;
2482       if (k->is_loaded()) {
2483         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2484           need_slow_path = false;
2485         // perform the fast part of the checking logic
2486         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2487                                          (need_slow_path ? &done : NULL),
2488                                          stub->entry(), NULL,
2489                                          RegisterOrConstant(k->super_check_offset()));
2490       } else {
2491         // perform the fast part of the checking logic
2492         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
2493                                          &done, stub->entry(), NULL);
2494       }
2495       if (need_slow_path) {
2496         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2497         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2498         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2499         __ delayed()->nop();
2500         __ cmp(G3, 0);
2501         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2502         __ delayed()->nop();
2503       }
2504       __ bind(done);
2505     }
2506     __ mov(obj, dst);
2507   } else if (code == lir_instanceof) {
2508     Register obj = op->object()->as_register();
2509     Register k_RInfo = op->tmp1()->as_register();
2510     Register klass_RInfo = op->tmp2()->as_register();
2511     Register dst = op->result_opr()->as_register();
2512     Register Rtmp1 = op->tmp3()->as_register();
2513     ciKlass* k = op->klass();
2514 
2515     Label done;
2516     if (obj == k_RInfo) {
2517       k_RInfo = klass_RInfo;
2518       klass_RInfo = obj;
2519     }
2520     // patching may screw with our temporaries on sparc,
2521     // so let's do it before loading the class
2522     if (k->is_loaded()) {
2523       jobject2reg(k->constant_encoding(), k_RInfo);
2524     } else {
2525       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2526     }
2527     assert(obj != k_RInfo, "must be different");
2528     __ cmp(obj, 0);
2529     __ br(Assembler::equal, true, Assembler::pn, done);
2530     __ delayed()->set(0, dst);
2531 
2532     // get object class
2533     // not a safepoint as obj null check happens earlier
2534     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2535     if (op->fast_check()) {
2536       __ cmp(k_RInfo, klass_RInfo);
2537       __ br(Assembler::equal, true, Assembler::pt, done);
2538       __ delayed()->set(1, dst);
2539       __ set(0, dst);
2540       __ bind(done);
2541     } else {
2542       bool need_slow_path = true;
2543       if (k->is_loaded()) {
2544         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2545           need_slow_path = false;
2546         // perform the fast part of the checking logic
2547         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
2548                                          (need_slow_path ? &done : NULL),
2549                                          (need_slow_path ? &done : NULL), NULL,
2550                                          RegisterOrConstant(k->super_check_offset()),
2551                                          dst);
2552       } else {
2553         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
2554         // perform the fast part of the checking logic
2555         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
2556                                          &done, &done, NULL,
2557                                          RegisterOrConstant(-1),
2558                                          dst);
2559       }
2560       if (need_slow_path) {
2561         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2562         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2563         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2564         __ delayed()->nop();
2565         __ mov(G3, dst);
2566       }
2567       __ bind(done);
2568     }
2569   } else {
2570     ShouldNotReachHere();
2571   }
2572 
2573 }
2574 
2575 
2576 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2577   if (op->code() == lir_cas_long) {
2578     assert(VM_Version::supports_cx8(), "wrong machine");
2579     Register addr = op->addr()->as_pointer_register();
2580     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2581     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2582     Register new_value_lo = op->new_value()->as_register_lo();
2583     Register new_value_hi = op->new_value()->as_register_hi();
2584     Register t1 = op->tmp1()->as_register();
2585     Register t2 = op->tmp2()->as_register();
2586 #ifdef _LP64
2587     __ mov(cmp_value_lo, t1);
2588     __ mov(new_value_lo, t2);
2589 #else
2590     // move high and low halves of long values into single registers
2591     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2592     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2593     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2594     __ sllx(new_value_hi, 32, t2);
2595     __ srl(new_value_lo, 0, new_value_lo);
2596     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2597 #endif
2598     // perform the compare and swap operation
2599     __ casx(addr, t1, t2);
2600     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2601     // overwritten with the original value in "addr" and will be equal to t1.
2602     __ cmp(t1, t2);
2603 
2604   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2605     Register addr = op->addr()->as_pointer_register();
2606     Register cmp_value = op->cmp_value()->as_register();
2607     Register new_value = op->new_value()->as_register();
2608     Register t1 = op->tmp1()->as_register();
2609     Register t2 = op->tmp2()->as_register();
2610     __ mov(cmp_value, t1);
2611     __ mov(new_value, t2);
2612 #ifdef _LP64
2613     if (op->code() == lir_cas_obj) {
2614       __ casx(addr, t1, t2);
2615     } else
2616 #endif
2617       {
2618         __ cas(addr, t1, t2);
2619       }
2620     __ cmp(t1, t2);
2621   } else {
2622     Unimplemented();
2623   }
2624 }
2625 
2626 void LIR_Assembler::set_24bit_FPU() {
2627   Unimplemented();
2628 }
2629 
2630 
2631 void LIR_Assembler::reset_FPU() {
2632   Unimplemented();
2633 }
2634 
2635 
2636 void LIR_Assembler::breakpoint() {
2637   __ breakpoint_trap();
2638 }
2639 
2640 
2641 void LIR_Assembler::push(LIR_Opr opr) {
2642   Unimplemented();
2643 }
2644 
2645 
2646 void LIR_Assembler::pop(LIR_Opr opr) {
2647   Unimplemented();
2648 }
2649 
2650 
2651 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2652   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2653   Register dst = dst_opr->as_register();
2654   Register reg = mon_addr.base();
2655   int offset = mon_addr.disp();
2656   // compute pointer to BasicLock
2657   if (mon_addr.is_simm13()) {
2658     __ add(reg, offset, dst);
2659   } else {
2660     __ set(offset, dst);
2661     __ add(dst, reg, dst);
2662   }
2663 }
2664 
2665 
2666 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2667   Register obj = op->obj_opr()->as_register();
2668   Register hdr = op->hdr_opr()->as_register();
2669   Register lock = op->lock_opr()->as_register();
2670 
2671   // obj may not be an oop
2672   if (op->code() == lir_lock) {
2673     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2674     if (UseFastLocking) {
2675       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2676       // add debug info for NullPointerException only if one is possible
2677       if (op->info() != NULL) {
2678         add_debug_info_for_null_check_here(op->info());
2679       }
2680       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2681     } else {
2682       // always do slow locking
2683       // note: the slow locking code could be inlined here, however if we use
2684       //       slow locking, speed doesn't matter anyway and this solution is
2685       //       simpler and requires less duplicated code - additionally, the
2686       //       slow locking code is the same in either case which simplifies
2687       //       debugging
2688       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2689       __ delayed()->nop();
2690     }
2691   } else {
2692     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2693     if (UseFastLocking) {
2694       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2695       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2696     } else {
2697       // always do slow unlocking
2698       // note: the slow unlocking code could be inlined here, however if we use
2699       //       slow unlocking, speed doesn't matter anyway and this solution is
2700       //       simpler and requires less duplicated code - additionally, the
2701       //       slow unlocking code is the same in either case which simplifies
2702       //       debugging
2703       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2704       __ delayed()->nop();
2705     }
2706   }
2707   __ bind(*op->stub()->continuation());
2708 }
2709 
2710 
2711 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2712   ciMethod* method = op->profiled_method();
2713   int bci          = op->profiled_bci();
2714 
2715   // Update counter for all call types
2716   ciMethodData* md = method->method_data();
2717   if (md == NULL) {
2718     bailout("out of memory building methodDataOop");
2719     return;
2720   }
2721   ciProfileData* data = md->bci_to_data(bci);
2722   assert(data->is_CounterData(), "need CounterData for calls");
2723   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2724   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2725   Register mdo  = op->mdo()->as_register();
2726   Register tmp1 = op->tmp1()->as_register();
2727   jobject2reg(md->constant_encoding(), mdo);
2728   int mdo_offset_bias = 0;
2729   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2730                             data->size_in_bytes())) {
2731     // The offset is large so bias the mdo by the base of the slot so
2732     // that the ld can use simm13s to reference the slots of the data
2733     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2734     __ set(mdo_offset_bias, O7);
2735     __ add(mdo, O7, mdo);
2736   }
2737 
2738   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2739   __ lduw(counter_addr, tmp1);
2740   __ add(tmp1, DataLayout::counter_increment, tmp1);
2741   __ stw(tmp1, counter_addr);
2742   Bytecodes::Code bc = method->java_code_at_bci(bci);
2743   // Perform additional virtual call profiling for invokevirtual and
2744   // invokeinterface bytecodes
2745   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2746       Tier1ProfileVirtualCalls) {
2747     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2748     Register recv = op->recv()->as_register();
2749     assert_different_registers(mdo, tmp1, recv);
2750     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2751     ciKlass* known_klass = op->known_holder();
2752     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
2753       // We know the type that will be seen at this call site; we can
2754       // statically update the methodDataOop rather than needing to do
2755       // dynamic tests on the receiver type
2756 
2757       // NOTE: we should probably put a lock around this search to
2758       // avoid collisions by concurrent compilations
2759       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2760       uint i;
2761       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2762         ciKlass* receiver = vc_data->receiver(i);
2763         if (known_klass->equals(receiver)) {
2764           Address data_addr(mdo, md->byte_offset_of_slot(data,
2765                                                          VirtualCallData::receiver_count_offset(i)) -
2766                             mdo_offset_bias);
2767           __ lduw(data_addr, tmp1);
2768           __ add(tmp1, DataLayout::counter_increment, tmp1);
2769           __ stw(tmp1, data_addr);
2770           return;
2771         }
2772       }
2773 
2774       // Receiver type not found in profile data; select an empty slot
2775 
2776       // Note that this is less efficient than it should be because it
2777       // always does a write to the receiver part of the
2778       // VirtualCallData rather than just the first time
2779       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2780         ciKlass* receiver = vc_data->receiver(i);
2781         if (receiver == NULL) {
2782           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2783                             mdo_offset_bias);
2784           jobject2reg(known_klass->constant_encoding(), tmp1);
2785           __ st_ptr(tmp1, recv_addr);
2786           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2787                             mdo_offset_bias);
2788           __ lduw(data_addr, tmp1);
2789           __ add(tmp1, DataLayout::counter_increment, tmp1);
2790           __ stw(tmp1, data_addr);
2791           return;
2792         }
2793       }
2794     } else {
2795       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2796       Label update_done;
2797       uint i;
2798       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2799         Label next_test;
2800         // See if the receiver is receiver[n].
2801         Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2802                               mdo_offset_bias);
2803         __ ld_ptr(receiver_addr, tmp1);
2804         __ verify_oop(tmp1);
2805         __ cmp(recv, tmp1);
2806         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2807         __ delayed()->nop();
2808         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2809                           mdo_offset_bias);
2810         __ lduw(data_addr, tmp1);
2811         __ add(tmp1, DataLayout::counter_increment, tmp1);
2812         __ stw(tmp1, data_addr);
2813         __ br(Assembler::always, false, Assembler::pt, update_done);
2814         __ delayed()->nop();
2815         __ bind(next_test);
2816       }
2817 
2818       // Didn't find receiver; find next empty slot and fill it in
2819       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2820         Label next_test;
2821         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2822                           mdo_offset_bias);
2823         load(recv_addr, tmp1, T_OBJECT);
2824         __ tst(tmp1);
2825         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2826         __ delayed()->nop();
2827         __ st_ptr(recv, recv_addr);
2828         __ set(DataLayout::counter_increment, tmp1);
2829         __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2830                   mdo_offset_bias);
2831         if (i < (VirtualCallData::row_limit() - 1)) {
2832           __ br(Assembler::always, false, Assembler::pt, update_done);
2833           __ delayed()->nop();
2834         }
2835         __ bind(next_test);
2836       }
2837 
2838       __ bind(update_done);
2839     }
2840   }
2841 }
2842 
2843 
2844 void LIR_Assembler::align_backward_branch_target() {
2845   __ align(16);
2846 }
2847 
2848 
2849 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2850   // make sure we are expecting a delay
2851   // this has the side effect of clearing the delay state
2852   // so we can use _masm instead of _masm->delayed() to do the
2853   // code generation.
2854   __ delayed();
2855 
2856   // make sure we only emit one instruction
2857   int offset = code_offset();
2858   op->delay_op()->emit_code(this);
2859 #ifdef ASSERT
2860   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
2861     op->delay_op()->print();
2862   }
2863   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
2864          "only one instruction can go in a delay slot");
2865 #endif
2866 
2867   // we may also be emitting the call info for the instruction
2868   // which we are the delay slot of.
2869   CodeEmitInfo * call_info = op->call_info();
2870   if (call_info) {
2871     add_call_info(code_offset(), call_info);
2872   }
2873 
2874   if (VerifyStackAtCalls) {
2875     _masm->sub(FP, SP, O7);
2876     _masm->cmp(O7, initial_frame_size_in_bytes());
2877     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
2878   }
2879 }
2880 
2881 
2882 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
2883   assert(left->is_register(), "can only handle registers");
2884 
2885   if (left->is_single_cpu()) {
2886     __ neg(left->as_register(), dest->as_register());
2887   } else if (left->is_single_fpu()) {
2888     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
2889   } else if (left->is_double_fpu()) {
2890     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
2891   } else {
2892     assert (left->is_double_cpu(), "Must be a long");
2893     Register Rlow = left->as_register_lo();
2894     Register Rhi = left->as_register_hi();
2895 #ifdef _LP64
2896     __ sub(G0, Rlow, dest->as_register_lo());
2897 #else
2898     __ subcc(G0, Rlow, dest->as_register_lo());
2899     __ subc (G0, Rhi,  dest->as_register_hi());
2900 #endif
2901   }
2902 }
2903 
2904 
2905 void LIR_Assembler::fxch(int i) {
2906   Unimplemented();
2907 }
2908 
2909 void LIR_Assembler::fld(int i) {
2910   Unimplemented();
2911 }
2912 
2913 void LIR_Assembler::ffree(int i) {
2914   Unimplemented();
2915 }
2916 
2917 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2918                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2919 
2920   // if tmp is invalid, then the function being called doesn't destroy the thread
2921   if (tmp->is_valid()) {
2922     __ save_thread(tmp->as_register());
2923   }
2924   __ call(dest, relocInfo::runtime_call_type);
2925   __ delayed()->nop();
2926   if (info != NULL) {
2927     add_call_info_here(info);
2928   }
2929   if (tmp->is_valid()) {
2930     __ restore_thread(tmp->as_register());
2931   }
2932 
2933 #ifdef ASSERT
2934   __ verify_thread();
2935 #endif // ASSERT
2936 }
2937 
2938 
2939 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2940 #ifdef _LP64
2941   ShouldNotReachHere();
2942 #endif
2943 
2944   NEEDS_CLEANUP;
2945   if (type == T_LONG) {
2946     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
2947 
2948     // (extended to allow indexed as well as constant displaced for JSR-166)
2949     Register idx = noreg; // contains either constant offset or index
2950 
2951     int disp = mem_addr->disp();
2952     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
2953       if (!Assembler::is_simm13(disp)) {
2954         idx = O7;
2955         __ set(disp, idx);
2956       }
2957     } else {
2958       assert(disp == 0, "not both indexed and disp");
2959       idx = mem_addr->index()->as_register();
2960     }
2961 
2962     int null_check_offset = -1;
2963 
2964     Register base = mem_addr->base()->as_register();
2965     if (src->is_register() && dest->is_address()) {
2966       // G4 is high half, G5 is low half
2967       if (VM_Version::v9_instructions_work()) {
2968         // clear the top bits of G5, and scale up G4
2969         __ srl (src->as_register_lo(),  0, G5);
2970         __ sllx(src->as_register_hi(), 32, G4);
2971         // combine the two halves into the 64 bits of G4
2972         __ or3(G4, G5, G4);
2973         null_check_offset = __ offset();
2974         if (idx == noreg) {
2975           __ stx(G4, base, disp);
2976         } else {
2977           __ stx(G4, base, idx);
2978         }
2979       } else {
2980         __ mov (src->as_register_hi(), G4);
2981         __ mov (src->as_register_lo(), G5);
2982         null_check_offset = __ offset();
2983         if (idx == noreg) {
2984           __ std(G4, base, disp);
2985         } else {
2986           __ std(G4, base, idx);
2987         }
2988       }
2989     } else if (src->is_address() && dest->is_register()) {
2990       null_check_offset = __ offset();
2991       if (VM_Version::v9_instructions_work()) {
2992         if (idx == noreg) {
2993           __ ldx(base, disp, G5);
2994         } else {
2995           __ ldx(base, idx, G5);
2996         }
2997         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
2998         __ mov (G5, dest->as_register_lo());     // copy low half into lo
2999       } else {
3000         if (idx == noreg) {
3001           __ ldd(base, disp, G4);
3002         } else {
3003           __ ldd(base, idx, G4);
3004         }
3005         // G4 is high half, G5 is low half
3006         __ mov (G4, dest->as_register_hi());
3007         __ mov (G5, dest->as_register_lo());
3008       }
3009     } else {
3010       Unimplemented();
3011     }
3012     if (info != NULL) {
3013       add_debug_info_for_null_check(null_check_offset, info);
3014     }
3015 
3016   } else {
3017     // use normal move for all other volatiles since they don't need
3018     // special handling to remain atomic.
3019     move_op(src, dest, type, lir_patch_none, info, false, false);
3020   }
3021 }
3022 
3023 void LIR_Assembler::membar() {
3024   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3025   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3026 }
3027 
3028 void LIR_Assembler::membar_acquire() {
3029   // no-op on TSO
3030 }
3031 
3032 void LIR_Assembler::membar_release() {
3033   // no-op on TSO
3034 }
3035 
3036 // Macro to Pack two sequential registers containing 32 bit values
3037 // into a single 64 bit register.
3038 // rs and rs->successor() are packed into rd
3039 // rd and rs may be the same register.
3040 // Note: rs and rs->successor() are destroyed.
3041 void LIR_Assembler::pack64( Register rs, Register rd ) {
3042   __ sllx(rs, 32, rs);
3043   __ srl(rs->successor(), 0, rs->successor());
3044   __ or3(rs, rs->successor(), rd);
3045 }
3046 
3047 // Macro to unpack a 64 bit value in a register into
3048 // two sequential registers.
3049 // rd is unpacked into rd and rd->successor()
3050 void LIR_Assembler::unpack64( Register rd ) {
3051   __ mov(rd, rd->successor());
3052   __ srax(rd, 32, rd);
3053   __ sra(rd->successor(), 0, rd->successor());
3054 }
3055 
3056 
3057 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3058   LIR_Address* addr = addr_opr->as_address_ptr();
3059   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3060   __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
3061 }
3062 
3063 
3064 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3065   assert(result_reg->is_register(), "check");
3066   __ mov(G2_thread, result_reg->as_register());
3067 }
3068 
3069 
3070 void LIR_Assembler::peephole(LIR_List* lir) {
3071   LIR_OpList* inst = lir->instructions_list();
3072   for (int i = 0; i < inst->length(); i++) {
3073     LIR_Op* op = inst->at(i);
3074     switch (op->code()) {
3075       case lir_cond_float_branch:
3076       case lir_branch: {
3077         LIR_OpBranch* branch = op->as_OpBranch();
3078         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3079         LIR_Op* delay_op = NULL;
3080         // we'd like to be able to pull following instructions into
3081         // this slot but we don't know enough to do it safely yet so
3082         // only optimize block to block control flow.
3083         if (LIRFillDelaySlots && branch->block()) {
3084           LIR_Op* prev = inst->at(i - 1);
3085           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3086             // swap previous instruction into delay slot
3087             inst->at_put(i - 1, op);
3088             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3089 #ifndef PRODUCT
3090             if (LIRTracePeephole) {
3091               tty->print_cr("delayed");
3092               inst->at(i - 1)->print();
3093               inst->at(i)->print();
3094             }
3095 #endif
3096             continue;
3097           }
3098         }
3099 
3100         if (!delay_op) {
3101           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3102         }
3103         inst->insert_before(i + 1, delay_op);
3104         break;
3105       }
3106       case lir_static_call:
3107       case lir_virtual_call:
3108       case lir_icvirtual_call:
3109       case lir_optvirtual_call: {
3110         LIR_Op* delay_op = NULL;
3111         LIR_Op* prev = inst->at(i - 1);
3112         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3113             (op->code() != lir_virtual_call ||
3114              !prev->result_opr()->is_single_cpu() ||
3115              prev->result_opr()->as_register() != O0) &&
3116             LIR_Assembler::is_single_instruction(prev)) {
3117           // Only moves without info can be put into the delay slot.
3118           // Also don't allow the setup of the receiver in the delay
3119           // slot for vtable calls.
3120           inst->at_put(i - 1, op);
3121           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3122 #ifndef PRODUCT
3123           if (LIRTracePeephole) {
3124             tty->print_cr("delayed");
3125             inst->at(i - 1)->print();
3126             inst->at(i)->print();
3127           }
3128 #endif
3129           continue;
3130         }
3131 
3132         if (!delay_op) {
3133           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3134           inst->insert_before(i + 1, delay_op);
3135         }
3136         break;
3137       }
3138     }
3139   }
3140 }
3141 
3142 
3143 
3144 
3145 #undef __