1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # define __STDC_FORMAT_MACROS
  26 
  27 // no precompiled headers
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "jvm_linux.h"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_linux.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/timer.hpp"
  59 #include "services/attachListener.hpp"
  60 #include "services/runtimeService.hpp"
  61 #include "thread_linux.inline.hpp"
  62 #include "utilities/decoder.hpp"
  63 #include "utilities/defaultStream.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/growableArray.hpp"
  66 #include "utilities/vmError.hpp"
  67 #ifdef TARGET_ARCH_x86
  68 # include "assembler_x86.inline.hpp"
  69 # include "nativeInst_x86.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_sparc
  72 # include "assembler_sparc.inline.hpp"
  73 # include "nativeInst_sparc.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_zero
  76 # include "assembler_zero.inline.hpp"
  77 # include "nativeInst_zero.hpp"
  78 #endif
  79 #ifdef TARGET_ARCH_arm
  80 # include "assembler_arm.inline.hpp"
  81 # include "nativeInst_arm.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_ppc
  84 # include "assembler_ppc.inline.hpp"
  85 # include "nativeInst_ppc.hpp"
  86 #endif
  87 #ifdef COMPILER1
  88 #include "c1/c1_Runtime1.hpp"
  89 #endif
  90 #ifdef COMPILER2
  91 #include "opto/runtime.hpp"
  92 #endif
  93 
  94 // put OS-includes here
  95 # include <sys/types.h>
  96 # include <sys/mman.h>
  97 # include <sys/stat.h>
  98 # include <sys/select.h>
  99 # include <pthread.h>
 100 # include <signal.h>
 101 # include <errno.h>
 102 # include <dlfcn.h>
 103 # include <stdio.h>
 104 # include <unistd.h>
 105 # include <sys/resource.h>
 106 # include <pthread.h>
 107 # include <sys/stat.h>
 108 # include <sys/time.h>
 109 # include <sys/times.h>
 110 # include <sys/utsname.h>
 111 # include <sys/socket.h>
 112 # include <sys/wait.h>
 113 # include <pwd.h>
 114 # include <poll.h>
 115 # include <semaphore.h>
 116 # include <fcntl.h>
 117 # include <string.h>
 118 # include <syscall.h>
 119 # include <sys/sysinfo.h>
 120 # include <gnu/libc-version.h>
 121 # include <sys/ipc.h>
 122 # include <sys/shm.h>
 123 # include <link.h>
 124 # include <stdint.h>
 125 # include <inttypes.h>
 126 # include <sys/ioctl.h>
 127 
 128 #ifdef AMD64
 129 #include <asm/vsyscall.h>
 130 #endif
 131 
 132 #define MAX_PATH    (2 * K)
 133 
 134 // for timer info max values which include all bits
 135 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 136 #define SEC_IN_NANOSECS  1000000000LL
 137 
 138 #define LARGEPAGES_BIT (1 << 6)
 139 ////////////////////////////////////////////////////////////////////////////////
 140 // global variables
 141 julong os::Linux::_physical_memory = 0;
 142 
 143 address   os::Linux::_initial_thread_stack_bottom = NULL;
 144 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 145 
 146 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 147 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 148 Mutex* os::Linux::_createThread_lock = NULL;
 149 pthread_t os::Linux::_main_thread;
 150 int os::Linux::_page_size = -1;
 151 bool os::Linux::_is_floating_stack = false;
 152 bool os::Linux::_is_NPTL = false;
 153 bool os::Linux::_supports_fast_thread_cpu_time = false;
 154 const char * os::Linux::_glibc_version = NULL;
 155 const char * os::Linux::_libpthread_version = NULL;
 156 
 157 static jlong initial_time_count=0;
 158 
 159 static int clock_tics_per_sec = 100;
 160 
 161 // For diagnostics to print a message once. see run_periodic_checks
 162 static sigset_t check_signal_done;
 163 static bool check_signals = true;;
 164 
 165 static pid_t _initial_pid = 0;
 166 
 167 /* Signal number used to suspend/resume a thread */
 168 
 169 /* do not use any signal number less than SIGSEGV, see 4355769 */
 170 static int SR_signum = SIGUSR2;
 171 sigset_t SR_sigset;
 172 
 173 /* Used to protect dlsym() calls */
 174 static pthread_mutex_t dl_mutex;
 175 
 176 #ifdef JAVASE_EMBEDDED
 177 class MemNotifyThread: public Thread {
 178   friend class VMStructs;
 179  public:
 180   virtual void run();
 181 
 182  private:
 183   static MemNotifyThread* _memnotify_thread;
 184   int _fd;
 185 
 186  public:
 187 
 188   // Constructor
 189   MemNotifyThread(int fd);
 190 
 191   // Tester
 192   bool is_memnotify_thread() const { return true; }
 193 
 194   // Printing
 195   char* name() const { return (char*)"Linux MemNotify Thread"; }
 196 
 197   // Returns the single instance of the MemNotifyThread
 198   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 199 
 200   // Create and start the single instance of MemNotifyThread
 201   static void start();
 202 };
 203 #endif // JAVASE_EMBEDDED
 204 
 205 // utility functions
 206 
 207 static int SR_initialize();
 208 static int SR_finalize();
 209 
 210 julong os::available_memory() {
 211   return Linux::available_memory();
 212 }
 213 
 214 julong os::Linux::available_memory() {
 215   // values in struct sysinfo are "unsigned long"
 216   struct sysinfo si;
 217   sysinfo(&si);
 218 
 219   return (julong)si.freeram * si.mem_unit;
 220 }
 221 
 222 julong os::physical_memory() {
 223   return Linux::physical_memory();
 224 }
 225 
 226 julong os::allocatable_physical_memory(julong size) {
 227 #ifdef _LP64
 228   return size;
 229 #else
 230   julong result = MIN2(size, (julong)3800*M);
 231    if (!is_allocatable(result)) {
 232      // See comments under solaris for alignment considerations
 233      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 234      result =  MIN2(size, reasonable_size);
 235    }
 236    return result;
 237 #endif // _LP64
 238 }
 239 
 240 ////////////////////////////////////////////////////////////////////////////////
 241 // environment support
 242 
 243 bool os::getenv(const char* name, char* buf, int len) {
 244   const char* val = ::getenv(name);
 245   if (val != NULL && strlen(val) < (size_t)len) {
 246     strcpy(buf, val);
 247     return true;
 248   }
 249   if (len > 0) buf[0] = 0;  // return a null string
 250   return false;
 251 }
 252 
 253 
 254 // Return true if user is running as root.
 255 
 256 bool os::have_special_privileges() {
 257   static bool init = false;
 258   static bool privileges = false;
 259   if (!init) {
 260     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 261     init = true;
 262   }
 263   return privileges;
 264 }
 265 
 266 
 267 #ifndef SYS_gettid
 268 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 269 #ifdef __ia64__
 270 #define SYS_gettid 1105
 271 #elif __i386__
 272 #define SYS_gettid 224
 273 #elif __amd64__
 274 #define SYS_gettid 186
 275 #elif __sparc__
 276 #define SYS_gettid 143
 277 #else
 278 #error define gettid for the arch
 279 #endif
 280 #endif
 281 
 282 // Cpu architecture string
 283 #if   defined(ZERO)
 284 static char cpu_arch[] = ZERO_LIBARCH;
 285 #elif defined(IA64)
 286 static char cpu_arch[] = "ia64";
 287 #elif defined(IA32)
 288 static char cpu_arch[] = "i386";
 289 #elif defined(AMD64)
 290 static char cpu_arch[] = "amd64";
 291 #elif defined(ARM)
 292 static char cpu_arch[] = "arm";
 293 #elif defined(PPC)
 294 static char cpu_arch[] = "ppc";
 295 #elif defined(SPARC)
 296 #  ifdef _LP64
 297 static char cpu_arch[] = "sparcv9";
 298 #  else
 299 static char cpu_arch[] = "sparc";
 300 #  endif
 301 #else
 302 #error Add appropriate cpu_arch setting
 303 #endif
 304 
 305 
 306 // pid_t gettid()
 307 //
 308 // Returns the kernel thread id of the currently running thread. Kernel
 309 // thread id is used to access /proc.
 310 //
 311 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 312 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 313 //
 314 pid_t os::Linux::gettid() {
 315   int rslt = syscall(SYS_gettid);
 316   if (rslt == -1) {
 317      // old kernel, no NPTL support
 318      return getpid();
 319   } else {
 320      return (pid_t)rslt;
 321   }
 322 }
 323 
 324 // Most versions of linux have a bug where the number of processors are
 325 // determined by looking at the /proc file system.  In a chroot environment,
 326 // the system call returns 1.  This causes the VM to act as if it is
 327 // a single processor and elide locking (see is_MP() call).
 328 static bool unsafe_chroot_detected = false;
 329 static const char *unstable_chroot_error = "/proc file system not found.\n"
 330                      "Java may be unstable running multithreaded in a chroot "
 331                      "environment on Linux when /proc filesystem is not mounted.";
 332 
 333 void os::Linux::initialize_system_info() {
 334   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 335   if (processor_count() == 1) {
 336     pid_t pid = os::Linux::gettid();
 337     char fname[32];
 338     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 339     FILE *fp = fopen(fname, "r");
 340     if (fp == NULL) {
 341       unsafe_chroot_detected = true;
 342     } else {
 343       fclose(fp);
 344     }
 345   }
 346   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 347   assert(processor_count() > 0, "linux error");
 348 }
 349 
 350 void os::init_system_properties_values() {
 351 //  char arch[12];
 352 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 353 
 354   // The next steps are taken in the product version:
 355   //
 356   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
 357   // This library should be located at:
 358   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
 359   //
 360   // If "/jre/lib/" appears at the right place in the path, then we
 361   // assume libjvm[_g].so is installed in a JDK and we use this path.
 362   //
 363   // Otherwise exit with message: "Could not create the Java virtual machine."
 364   //
 365   // The following extra steps are taken in the debugging version:
 366   //
 367   // If "/jre/lib/" does NOT appear at the right place in the path
 368   // instead of exit check for $JAVA_HOME environment variable.
 369   //
 370   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 371   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
 372   // it looks like libjvm[_g].so is installed there
 373   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
 374   //
 375   // Otherwise exit.
 376   //
 377   // Important note: if the location of libjvm.so changes this
 378   // code needs to be changed accordingly.
 379 
 380   // The next few definitions allow the code to be verbatim:
 381 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
 382 #define getenv(n) ::getenv(n)
 383 
 384 /*
 385  * See ld(1):
 386  *      The linker uses the following search paths to locate required
 387  *      shared libraries:
 388  *        1: ...
 389  *        ...
 390  *        7: The default directories, normally /lib and /usr/lib.
 391  */
 392 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 393 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 394 #else
 395 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 396 #endif
 397 
 398 #define EXTENSIONS_DIR  "/lib/ext"
 399 #define ENDORSED_DIR    "/lib/endorsed"
 400 #define REG_DIR         "/usr/java/packages"
 401 
 402   {
 403     /* sysclasspath, java_home, dll_dir */
 404     {
 405         char *home_path;
 406         char *dll_path;
 407         char *pslash;
 408         char buf[MAXPATHLEN];
 409         os::jvm_path(buf, sizeof(buf));
 410 
 411         // Found the full path to libjvm.so.
 412         // Now cut the path to <java_home>/jre if we can.
 413         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 414         pslash = strrchr(buf, '/');
 415         if (pslash != NULL)
 416             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 417         dll_path = malloc(strlen(buf) + 1);
 418         if (dll_path == NULL)
 419             return;
 420         strcpy(dll_path, buf);
 421         Arguments::set_dll_dir(dll_path);
 422 
 423         if (pslash != NULL) {
 424             pslash = strrchr(buf, '/');
 425             if (pslash != NULL) {
 426                 *pslash = '\0';       /* get rid of /<arch> */
 427                 pslash = strrchr(buf, '/');
 428                 if (pslash != NULL)
 429                     *pslash = '\0';   /* get rid of /lib */
 430             }
 431         }
 432 
 433         home_path = malloc(strlen(buf) + 1);
 434         if (home_path == NULL)
 435             return;
 436         strcpy(home_path, buf);
 437         Arguments::set_java_home(home_path);
 438 
 439         if (!set_boot_path('/', ':'))
 440             return;
 441     }
 442 
 443     /*
 444      * Where to look for native libraries
 445      *
 446      * Note: Due to a legacy implementation, most of the library path
 447      * is set in the launcher.  This was to accomodate linking restrictions
 448      * on legacy Linux implementations (which are no longer supported).
 449      * Eventually, all the library path setting will be done here.
 450      *
 451      * However, to prevent the proliferation of improperly built native
 452      * libraries, the new path component /usr/java/packages is added here.
 453      * Eventually, all the library path setting will be done here.
 454      */
 455     {
 456         char *ld_library_path;
 457 
 458         /*
 459          * Construct the invariant part of ld_library_path. Note that the
 460          * space for the colon and the trailing null are provided by the
 461          * nulls included by the sizeof operator (so actually we allocate
 462          * a byte more than necessary).
 463          */
 464         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 465             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 466         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 467 
 468         /*
 469          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 470          * should always exist (until the legacy problem cited above is
 471          * addressed).
 472          */
 473         char *v = getenv("LD_LIBRARY_PATH");
 474         if (v != NULL) {
 475             char *t = ld_library_path;
 476             /* That's +1 for the colon and +1 for the trailing '\0' */
 477             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 478             sprintf(ld_library_path, "%s:%s", v, t);
 479         }
 480         Arguments::set_library_path(ld_library_path);
 481     }
 482 
 483     /*
 484      * Extensions directories.
 485      *
 486      * Note that the space for the colon and the trailing null are provided
 487      * by the nulls included by the sizeof operator (so actually one byte more
 488      * than necessary is allocated).
 489      */
 490     {
 491         char *buf = malloc(strlen(Arguments::get_java_home()) +
 492             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 493         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 494             Arguments::get_java_home());
 495         Arguments::set_ext_dirs(buf);
 496     }
 497 
 498     /* Endorsed standards default directory. */
 499     {
 500         char * buf;
 501         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 502         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 503         Arguments::set_endorsed_dirs(buf);
 504     }
 505   }
 506 
 507 #undef malloc
 508 #undef getenv
 509 #undef EXTENSIONS_DIR
 510 #undef ENDORSED_DIR
 511 
 512   // Done
 513   return;
 514 }
 515 
 516 ////////////////////////////////////////////////////////////////////////////////
 517 // breakpoint support
 518 
 519 void os::breakpoint() {
 520   BREAKPOINT;
 521 }
 522 
 523 extern "C" void breakpoint() {
 524   // use debugger to set breakpoint here
 525 }
 526 
 527 ////////////////////////////////////////////////////////////////////////////////
 528 // signal support
 529 
 530 debug_only(static bool signal_sets_initialized = false);
 531 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 532 
 533 bool os::Linux::is_sig_ignored(int sig) {
 534       struct sigaction oact;
 535       sigaction(sig, (struct sigaction*)NULL, &oact);
 536       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 537                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 538       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 539            return true;
 540       else
 541            return false;
 542 }
 543 
 544 void os::Linux::signal_sets_init() {
 545   // Should also have an assertion stating we are still single-threaded.
 546   assert(!signal_sets_initialized, "Already initialized");
 547   // Fill in signals that are necessarily unblocked for all threads in
 548   // the VM. Currently, we unblock the following signals:
 549   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 550   //                         by -Xrs (=ReduceSignalUsage));
 551   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 552   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 553   // the dispositions or masks wrt these signals.
 554   // Programs embedding the VM that want to use the above signals for their
 555   // own purposes must, at this time, use the "-Xrs" option to prevent
 556   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 557   // (See bug 4345157, and other related bugs).
 558   // In reality, though, unblocking these signals is really a nop, since
 559   // these signals are not blocked by default.
 560   sigemptyset(&unblocked_sigs);
 561   sigemptyset(&allowdebug_blocked_sigs);
 562   sigaddset(&unblocked_sigs, SIGILL);
 563   sigaddset(&unblocked_sigs, SIGSEGV);
 564   sigaddset(&unblocked_sigs, SIGBUS);
 565   sigaddset(&unblocked_sigs, SIGFPE);
 566   sigaddset(&unblocked_sigs, SR_signum);
 567 
 568   if (!ReduceSignalUsage) {
 569    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 570       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 571       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 572    }
 573    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 574       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 575       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 576    }
 577    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 578       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 579       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 580    }
 581   }
 582   // Fill in signals that are blocked by all but the VM thread.
 583   sigemptyset(&vm_sigs);
 584   if (!ReduceSignalUsage)
 585     sigaddset(&vm_sigs, BREAK_SIGNAL);
 586   debug_only(signal_sets_initialized = true);
 587 
 588 }
 589 
 590 // These are signals that are unblocked while a thread is running Java.
 591 // (For some reason, they get blocked by default.)
 592 sigset_t* os::Linux::unblocked_signals() {
 593   assert(signal_sets_initialized, "Not initialized");
 594   return &unblocked_sigs;
 595 }
 596 
 597 // These are the signals that are blocked while a (non-VM) thread is
 598 // running Java. Only the VM thread handles these signals.
 599 sigset_t* os::Linux::vm_signals() {
 600   assert(signal_sets_initialized, "Not initialized");
 601   return &vm_sigs;
 602 }
 603 
 604 // These are signals that are blocked during cond_wait to allow debugger in
 605 sigset_t* os::Linux::allowdebug_blocked_signals() {
 606   assert(signal_sets_initialized, "Not initialized");
 607   return &allowdebug_blocked_sigs;
 608 }
 609 
 610 void os::Linux::hotspot_sigmask(Thread* thread) {
 611 
 612   //Save caller's signal mask before setting VM signal mask
 613   sigset_t caller_sigmask;
 614   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 615 
 616   OSThread* osthread = thread->osthread();
 617   osthread->set_caller_sigmask(caller_sigmask);
 618 
 619   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 620 
 621   if (!ReduceSignalUsage) {
 622     if (thread->is_VM_thread()) {
 623       // Only the VM thread handles BREAK_SIGNAL ...
 624       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 625     } else {
 626       // ... all other threads block BREAK_SIGNAL
 627       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 628     }
 629   }
 630 }
 631 
 632 //////////////////////////////////////////////////////////////////////////////
 633 // detecting pthread library
 634 
 635 void os::Linux::libpthread_init() {
 636   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 637   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 638   // generic name for earlier versions.
 639   // Define macros here so we can build HotSpot on old systems.
 640 # ifndef _CS_GNU_LIBC_VERSION
 641 # define _CS_GNU_LIBC_VERSION 2
 642 # endif
 643 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 644 # define _CS_GNU_LIBPTHREAD_VERSION 3
 645 # endif
 646 
 647   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 648   if (n > 0) {
 649      char *str = (char *)malloc(n);
 650      confstr(_CS_GNU_LIBC_VERSION, str, n);
 651      os::Linux::set_glibc_version(str);
 652   } else {
 653      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 654      static char _gnu_libc_version[32];
 655      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 656               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 657      os::Linux::set_glibc_version(_gnu_libc_version);
 658   }
 659 
 660   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 661   if (n > 0) {
 662      char *str = (char *)malloc(n);
 663      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 664      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 665      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 666      // is the case. LinuxThreads has a hard limit on max number of threads.
 667      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 668      // On the other hand, NPTL does not have such a limit, sysconf()
 669      // will return -1 and errno is not changed. Check if it is really NPTL.
 670      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 671          strstr(str, "NPTL") &&
 672          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 673        free(str);
 674        os::Linux::set_libpthread_version("linuxthreads");
 675      } else {
 676        os::Linux::set_libpthread_version(str);
 677      }
 678   } else {
 679     // glibc before 2.3.2 only has LinuxThreads.
 680     os::Linux::set_libpthread_version("linuxthreads");
 681   }
 682 
 683   if (strstr(libpthread_version(), "NPTL")) {
 684      os::Linux::set_is_NPTL();
 685   } else {
 686      os::Linux::set_is_LinuxThreads();
 687   }
 688 
 689   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 690   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 691   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 692      os::Linux::set_is_floating_stack();
 693   }
 694 }
 695 
 696 /////////////////////////////////////////////////////////////////////////////
 697 // thread stack
 698 
 699 // Force Linux kernel to expand current thread stack. If "bottom" is close
 700 // to the stack guard, caller should block all signals.
 701 //
 702 // MAP_GROWSDOWN:
 703 //   A special mmap() flag that is used to implement thread stacks. It tells
 704 //   kernel that the memory region should extend downwards when needed. This
 705 //   allows early versions of LinuxThreads to only mmap the first few pages
 706 //   when creating a new thread. Linux kernel will automatically expand thread
 707 //   stack as needed (on page faults).
 708 //
 709 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 710 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 711 //   region, it's hard to tell if the fault is due to a legitimate stack
 712 //   access or because of reading/writing non-exist memory (e.g. buffer
 713 //   overrun). As a rule, if the fault happens below current stack pointer,
 714 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 715 //   application (see Linux kernel fault.c).
 716 //
 717 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 718 //   stack overflow detection.
 719 //
 720 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 721 //   not use this flag. However, the stack of initial thread is not created
 722 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 723 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 724 //   and then attach the thread to JVM.
 725 //
 726 // To get around the problem and allow stack banging on Linux, we need to
 727 // manually expand thread stack after receiving the SIGSEGV.
 728 //
 729 // There are two ways to expand thread stack to address "bottom", we used
 730 // both of them in JVM before 1.5:
 731 //   1. adjust stack pointer first so that it is below "bottom", and then
 732 //      touch "bottom"
 733 //   2. mmap() the page in question
 734 //
 735 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 736 // if current sp is already near the lower end of page 101, and we need to
 737 // call mmap() to map page 100, it is possible that part of the mmap() frame
 738 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 739 // That will destroy the mmap() frame and cause VM to crash.
 740 //
 741 // The following code works by adjusting sp first, then accessing the "bottom"
 742 // page to force a page fault. Linux kernel will then automatically expand the
 743 // stack mapping.
 744 //
 745 // _expand_stack_to() assumes its frame size is less than page size, which
 746 // should always be true if the function is not inlined.
 747 
 748 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 749 #define NOINLINE
 750 #else
 751 #define NOINLINE __attribute__ ((noinline))
 752 #endif
 753 
 754 static void _expand_stack_to(address bottom) NOINLINE;
 755 
 756 static void _expand_stack_to(address bottom) {
 757   address sp;
 758   size_t size;
 759   volatile char *p;
 760 
 761   // Adjust bottom to point to the largest address within the same page, it
 762   // gives us a one-page buffer if alloca() allocates slightly more memory.
 763   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 764   bottom += os::Linux::page_size() - 1;
 765 
 766   // sp might be slightly above current stack pointer; if that's the case, we
 767   // will alloca() a little more space than necessary, which is OK. Don't use
 768   // os::current_stack_pointer(), as its result can be slightly below current
 769   // stack pointer, causing us to not alloca enough to reach "bottom".
 770   sp = (address)&sp;
 771 
 772   if (sp > bottom) {
 773     size = sp - bottom;
 774     p = (volatile char *)alloca(size);
 775     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 776     p[0] = '\0';
 777   }
 778 }
 779 
 780 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 781   assert(t!=NULL, "just checking");
 782   assert(t->osthread()->expanding_stack(), "expand should be set");
 783   assert(t->stack_base() != NULL, "stack_base was not initialized");
 784 
 785   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 786     sigset_t mask_all, old_sigset;
 787     sigfillset(&mask_all);
 788     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 789     _expand_stack_to(addr);
 790     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 791     return true;
 792   }
 793   return false;
 794 }
 795 
 796 //////////////////////////////////////////////////////////////////////////////
 797 // create new thread
 798 
 799 static address highest_vm_reserved_address();
 800 
 801 // check if it's safe to start a new thread
 802 static bool _thread_safety_check(Thread* thread) {
 803   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 804     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 805     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 806     //   allocated (MAP_FIXED) from high address space. Every thread stack
 807     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 808     //   it to other values if they rebuild LinuxThreads).
 809     //
 810     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 811     // the memory region has already been mmap'ed. That means if we have too
 812     // many threads and/or very large heap, eventually thread stack will
 813     // collide with heap.
 814     //
 815     // Here we try to prevent heap/stack collision by comparing current
 816     // stack bottom with the highest address that has been mmap'ed by JVM
 817     // plus a safety margin for memory maps created by native code.
 818     //
 819     // This feature can be disabled by setting ThreadSafetyMargin to 0
 820     //
 821     if (ThreadSafetyMargin > 0) {
 822       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 823 
 824       // not safe if our stack extends below the safety margin
 825       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 826     } else {
 827       return true;
 828     }
 829   } else {
 830     // Floating stack LinuxThreads or NPTL:
 831     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 832     //   there's not enough space left, pthread_create() will fail. If we come
 833     //   here, that means enough space has been reserved for stack.
 834     return true;
 835   }
 836 }
 837 
 838 // Thread start routine for all newly created threads
 839 static void *java_start(Thread *thread) {
 840   // Try to randomize the cache line index of hot stack frames.
 841   // This helps when threads of the same stack traces evict each other's
 842   // cache lines. The threads can be either from the same JVM instance, or
 843   // from different JVM instances. The benefit is especially true for
 844   // processors with hyperthreading technology.
 845   static int counter = 0;
 846   int pid = os::current_process_id();
 847   alloca(((pid ^ counter++) & 7) * 128);
 848 
 849   ThreadLocalStorage::set_thread(thread);
 850 
 851   OSThread* osthread = thread->osthread();
 852   Monitor* sync = osthread->startThread_lock();
 853 
 854   // non floating stack LinuxThreads needs extra check, see above
 855   if (!_thread_safety_check(thread)) {
 856     // notify parent thread
 857     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 858     osthread->set_state(ZOMBIE);
 859     sync->notify_all();
 860     return NULL;
 861   }
 862 
 863   // thread_id is kernel thread id (similar to Solaris LWP id)
 864   osthread->set_thread_id(os::Linux::gettid());
 865 
 866   if (UseNUMA) {
 867     int lgrp_id = os::numa_get_group_id();
 868     if (lgrp_id != -1) {
 869       thread->set_lgrp_id(lgrp_id);
 870     }
 871   }
 872   // initialize signal mask for this thread
 873   os::Linux::hotspot_sigmask(thread);
 874 
 875   // initialize floating point control register
 876   os::Linux::init_thread_fpu_state();
 877 
 878   // handshaking with parent thread
 879   {
 880     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 881 
 882     // notify parent thread
 883     osthread->set_state(INITIALIZED);
 884     sync->notify_all();
 885 
 886     // wait until os::start_thread()
 887     while (osthread->get_state() == INITIALIZED) {
 888       sync->wait(Mutex::_no_safepoint_check_flag);
 889     }
 890   }
 891 
 892   // call one more level start routine
 893   thread->run();
 894 
 895   return 0;
 896 }
 897 
 898 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 899   assert(thread->osthread() == NULL, "caller responsible");
 900 
 901   // Allocate the OSThread object
 902   OSThread* osthread = new OSThread(NULL, NULL);
 903   if (osthread == NULL) {
 904     return false;
 905   }
 906 
 907   // set the correct thread state
 908   osthread->set_thread_type(thr_type);
 909 
 910   // Initial state is ALLOCATED but not INITIALIZED
 911   osthread->set_state(ALLOCATED);
 912 
 913   thread->set_osthread(osthread);
 914 
 915   // init thread attributes
 916   pthread_attr_t attr;
 917   pthread_attr_init(&attr);
 918   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 919 
 920   // stack size
 921   if (os::Linux::supports_variable_stack_size()) {
 922     // calculate stack size if it's not specified by caller
 923     if (stack_size == 0) {
 924       stack_size = os::Linux::default_stack_size(thr_type);
 925 
 926       switch (thr_type) {
 927       case os::java_thread:
 928         // Java threads use ThreadStackSize which default value can be
 929         // changed with the flag -Xss
 930         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 931         stack_size = JavaThread::stack_size_at_create();
 932         break;
 933       case os::compiler_thread:
 934         if (CompilerThreadStackSize > 0) {
 935           stack_size = (size_t)(CompilerThreadStackSize * K);
 936           break;
 937         } // else fall through:
 938           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 939       case os::vm_thread:
 940       case os::pgc_thread:
 941       case os::cgc_thread:
 942       case os::watcher_thread:
 943         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 944         break;
 945       }
 946     }
 947 
 948     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 949     pthread_attr_setstacksize(&attr, stack_size);
 950   } else {
 951     // let pthread_create() pick the default value.
 952   }
 953 
 954   // glibc guard page
 955   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 956 
 957   ThreadState state;
 958 
 959   {
 960     // Serialize thread creation if we are running with fixed stack LinuxThreads
 961     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 962     if (lock) {
 963       os::Linux::createThread_lock()->lock_without_safepoint_check();
 964     }
 965 
 966     pthread_t tid;
 967     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 968 
 969     pthread_attr_destroy(&attr);
 970 
 971     if (ret != 0) {
 972       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 973         perror("pthread_create()");
 974       }
 975       // Need to clean up stuff we've allocated so far
 976       thread->set_osthread(NULL);
 977       delete osthread;
 978       if (lock) os::Linux::createThread_lock()->unlock();
 979       return false;
 980     }
 981 
 982     // Store pthread info into the OSThread
 983     osthread->set_pthread_id(tid);
 984 
 985     // Wait until child thread is either initialized or aborted
 986     {
 987       Monitor* sync_with_child = osthread->startThread_lock();
 988       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 989       while ((state = osthread->get_state()) == ALLOCATED) {
 990         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 991       }
 992     }
 993 
 994     if (lock) {
 995       os::Linux::createThread_lock()->unlock();
 996     }
 997   }
 998 
 999   // Aborted due to thread limit being reached
1000   if (state == ZOMBIE) {
1001       thread->set_osthread(NULL);
1002       delete osthread;
1003       return false;
1004   }
1005 
1006   // The thread is returned suspended (in state INITIALIZED),
1007   // and is started higher up in the call chain
1008   assert(state == INITIALIZED, "race condition");
1009   return true;
1010 }
1011 
1012 /////////////////////////////////////////////////////////////////////////////
1013 // attach existing thread
1014 
1015 // bootstrap the main thread
1016 bool os::create_main_thread(JavaThread* thread) {
1017   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
1018   return create_attached_thread(thread);
1019 }
1020 
1021 bool os::create_attached_thread(JavaThread* thread) {
1022 #ifdef ASSERT
1023     thread->verify_not_published();
1024 #endif
1025 
1026   // Allocate the OSThread object
1027   OSThread* osthread = new OSThread(NULL, NULL);
1028 
1029   if (osthread == NULL) {
1030     return false;
1031   }
1032 
1033   // Store pthread info into the OSThread
1034   osthread->set_thread_id(os::Linux::gettid());
1035   osthread->set_pthread_id(::pthread_self());
1036 
1037   // initialize floating point control register
1038   os::Linux::init_thread_fpu_state();
1039 
1040   // Initial thread state is RUNNABLE
1041   osthread->set_state(RUNNABLE);
1042 
1043   thread->set_osthread(osthread);
1044 
1045   if (UseNUMA) {
1046     int lgrp_id = os::numa_get_group_id();
1047     if (lgrp_id != -1) {
1048       thread->set_lgrp_id(lgrp_id);
1049     }
1050   }
1051 
1052   if (os::Linux::is_initial_thread()) {
1053     // If current thread is initial thread, its stack is mapped on demand,
1054     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1055     // the entire stack region to avoid SEGV in stack banging.
1056     // It is also useful to get around the heap-stack-gap problem on SuSE
1057     // kernel (see 4821821 for details). We first expand stack to the top
1058     // of yellow zone, then enable stack yellow zone (order is significant,
1059     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1060     // is no gap between the last two virtual memory regions.
1061 
1062     JavaThread *jt = (JavaThread *)thread;
1063     address addr = jt->stack_yellow_zone_base();
1064     assert(addr != NULL, "initialization problem?");
1065     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1066 
1067     osthread->set_expanding_stack();
1068     os::Linux::manually_expand_stack(jt, addr);
1069     osthread->clear_expanding_stack();
1070   }
1071 
1072   // initialize signal mask for this thread
1073   // and save the caller's signal mask
1074   os::Linux::hotspot_sigmask(thread);
1075 
1076   return true;
1077 }
1078 
1079 void os::pd_start_thread(Thread* thread) {
1080   OSThread * osthread = thread->osthread();
1081   assert(osthread->get_state() != INITIALIZED, "just checking");
1082   Monitor* sync_with_child = osthread->startThread_lock();
1083   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1084   sync_with_child->notify();
1085 }
1086 
1087 // Free Linux resources related to the OSThread
1088 void os::free_thread(OSThread* osthread) {
1089   assert(osthread != NULL, "osthread not set");
1090 
1091   if (Thread::current()->osthread() == osthread) {
1092     // Restore caller's signal mask
1093     sigset_t sigmask = osthread->caller_sigmask();
1094     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1095    }
1096 
1097   delete osthread;
1098 }
1099 
1100 //////////////////////////////////////////////////////////////////////////////
1101 // thread local storage
1102 
1103 int os::allocate_thread_local_storage() {
1104   pthread_key_t key;
1105   int rslt = pthread_key_create(&key, NULL);
1106   assert(rslt == 0, "cannot allocate thread local storage");
1107   return (int)key;
1108 }
1109 
1110 // Note: This is currently not used by VM, as we don't destroy TLS key
1111 // on VM exit.
1112 void os::free_thread_local_storage(int index) {
1113   int rslt = pthread_key_delete((pthread_key_t)index);
1114   assert(rslt == 0, "invalid index");
1115 }
1116 
1117 void os::thread_local_storage_at_put(int index, void* value) {
1118   int rslt = pthread_setspecific((pthread_key_t)index, value);
1119   assert(rslt == 0, "pthread_setspecific failed");
1120 }
1121 
1122 extern "C" Thread* get_thread() {
1123   return ThreadLocalStorage::thread();
1124 }
1125 
1126 //////////////////////////////////////////////////////////////////////////////
1127 // initial thread
1128 
1129 // Check if current thread is the initial thread, similar to Solaris thr_main.
1130 bool os::Linux::is_initial_thread(void) {
1131   char dummy;
1132   // If called before init complete, thread stack bottom will be null.
1133   // Can be called if fatal error occurs before initialization.
1134   if (initial_thread_stack_bottom() == NULL) return false;
1135   assert(initial_thread_stack_bottom() != NULL &&
1136          initial_thread_stack_size()   != 0,
1137          "os::init did not locate initial thread's stack region");
1138   if ((address)&dummy >= initial_thread_stack_bottom() &&
1139       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1140        return true;
1141   else return false;
1142 }
1143 
1144 // Find the virtual memory area that contains addr
1145 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1146   FILE *fp = fopen("/proc/self/maps", "r");
1147   if (fp) {
1148     address low, high;
1149     while (!feof(fp)) {
1150       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1151         if (low <= addr && addr < high) {
1152            if (vma_low)  *vma_low  = low;
1153            if (vma_high) *vma_high = high;
1154            fclose (fp);
1155            return true;
1156         }
1157       }
1158       for (;;) {
1159         int ch = fgetc(fp);
1160         if (ch == EOF || ch == (int)'\n') break;
1161       }
1162     }
1163     fclose(fp);
1164   }
1165   return false;
1166 }
1167 
1168 // Locate initial thread stack. This special handling of initial thread stack
1169 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1170 // bogus value for initial thread.
1171 void os::Linux::capture_initial_stack(size_t max_size) {
1172   // stack size is the easy part, get it from RLIMIT_STACK
1173   size_t stack_size;
1174   struct rlimit rlim;
1175   getrlimit(RLIMIT_STACK, &rlim);
1176   stack_size = rlim.rlim_cur;
1177 
1178   // 6308388: a bug in ld.so will relocate its own .data section to the
1179   //   lower end of primordial stack; reduce ulimit -s value a little bit
1180   //   so we won't install guard page on ld.so's data section.
1181   stack_size -= 2 * page_size();
1182 
1183   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1184   //   7.1, in both cases we will get 2G in return value.
1185   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1186   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1187   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1188   //   in case other parts in glibc still assumes 2M max stack size.
1189   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1190 #ifndef IA64
1191   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1192 #else
1193   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1194   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1195 #endif
1196 
1197   // Try to figure out where the stack base (top) is. This is harder.
1198   //
1199   // When an application is started, glibc saves the initial stack pointer in
1200   // a global variable "__libc_stack_end", which is then used by system
1201   // libraries. __libc_stack_end should be pretty close to stack top. The
1202   // variable is available since the very early days. However, because it is
1203   // a private interface, it could disappear in the future.
1204   //
1205   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1206   // to __libc_stack_end, it is very close to stack top, but isn't the real
1207   // stack top. Note that /proc may not exist if VM is running as a chroot
1208   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1209   // /proc/<pid>/stat could change in the future (though unlikely).
1210   //
1211   // We try __libc_stack_end first. If that doesn't work, look for
1212   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1213   // as a hint, which should work well in most cases.
1214 
1215   uintptr_t stack_start;
1216 
1217   // try __libc_stack_end first
1218   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1219   if (p && *p) {
1220     stack_start = *p;
1221   } else {
1222     // see if we can get the start_stack field from /proc/self/stat
1223     FILE *fp;
1224     int pid;
1225     char state;
1226     int ppid;
1227     int pgrp;
1228     int session;
1229     int nr;
1230     int tpgrp;
1231     unsigned long flags;
1232     unsigned long minflt;
1233     unsigned long cminflt;
1234     unsigned long majflt;
1235     unsigned long cmajflt;
1236     unsigned long utime;
1237     unsigned long stime;
1238     long cutime;
1239     long cstime;
1240     long prio;
1241     long nice;
1242     long junk;
1243     long it_real;
1244     uintptr_t start;
1245     uintptr_t vsize;
1246     intptr_t rss;
1247     uintptr_t rsslim;
1248     uintptr_t scodes;
1249     uintptr_t ecode;
1250     int i;
1251 
1252     // Figure what the primordial thread stack base is. Code is inspired
1253     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1254     // followed by command name surrounded by parentheses, state, etc.
1255     char stat[2048];
1256     int statlen;
1257 
1258     fp = fopen("/proc/self/stat", "r");
1259     if (fp) {
1260       statlen = fread(stat, 1, 2047, fp);
1261       stat[statlen] = '\0';
1262       fclose(fp);
1263 
1264       // Skip pid and the command string. Note that we could be dealing with
1265       // weird command names, e.g. user could decide to rename java launcher
1266       // to "java 1.4.2 :)", then the stat file would look like
1267       //                1234 (java 1.4.2 :)) R ... ...
1268       // We don't really need to know the command string, just find the last
1269       // occurrence of ")" and then start parsing from there. See bug 4726580.
1270       char * s = strrchr(stat, ')');
1271 
1272       i = 0;
1273       if (s) {
1274         // Skip blank chars
1275         do s++; while (isspace(*s));
1276 
1277 #define _UFM UINTX_FORMAT
1278 #define _DFM INTX_FORMAT
1279 
1280         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1281         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1282         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1283              &state,          /* 3  %c  */
1284              &ppid,           /* 4  %d  */
1285              &pgrp,           /* 5  %d  */
1286              &session,        /* 6  %d  */
1287              &nr,             /* 7  %d  */
1288              &tpgrp,          /* 8  %d  */
1289              &flags,          /* 9  %lu  */
1290              &minflt,         /* 10 %lu  */
1291              &cminflt,        /* 11 %lu  */
1292              &majflt,         /* 12 %lu  */
1293              &cmajflt,        /* 13 %lu  */
1294              &utime,          /* 14 %lu  */
1295              &stime,          /* 15 %lu  */
1296              &cutime,         /* 16 %ld  */
1297              &cstime,         /* 17 %ld  */
1298              &prio,           /* 18 %ld  */
1299              &nice,           /* 19 %ld  */
1300              &junk,           /* 20 %ld  */
1301              &it_real,        /* 21 %ld  */
1302              &start,          /* 22 UINTX_FORMAT */
1303              &vsize,          /* 23 UINTX_FORMAT */
1304              &rss,            /* 24 INTX_FORMAT  */
1305              &rsslim,         /* 25 UINTX_FORMAT */
1306              &scodes,         /* 26 UINTX_FORMAT */
1307              &ecode,          /* 27 UINTX_FORMAT */
1308              &stack_start);   /* 28 UINTX_FORMAT */
1309       }
1310 
1311 #undef _UFM
1312 #undef _DFM
1313 
1314       if (i != 28 - 2) {
1315          assert(false, "Bad conversion from /proc/self/stat");
1316          // product mode - assume we are the initial thread, good luck in the
1317          // embedded case.
1318          warning("Can't detect initial thread stack location - bad conversion");
1319          stack_start = (uintptr_t) &rlim;
1320       }
1321     } else {
1322       // For some reason we can't open /proc/self/stat (for example, running on
1323       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1324       // most cases, so don't abort:
1325       warning("Can't detect initial thread stack location - no /proc/self/stat");
1326       stack_start = (uintptr_t) &rlim;
1327     }
1328   }
1329 
1330   // Now we have a pointer (stack_start) very close to the stack top, the
1331   // next thing to do is to figure out the exact location of stack top. We
1332   // can find out the virtual memory area that contains stack_start by
1333   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1334   // and its upper limit is the real stack top. (again, this would fail if
1335   // running inside chroot, because /proc may not exist.)
1336 
1337   uintptr_t stack_top;
1338   address low, high;
1339   if (find_vma((address)stack_start, &low, &high)) {
1340     // success, "high" is the true stack top. (ignore "low", because initial
1341     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1342     stack_top = (uintptr_t)high;
1343   } else {
1344     // failed, likely because /proc/self/maps does not exist
1345     warning("Can't detect initial thread stack location - find_vma failed");
1346     // best effort: stack_start is normally within a few pages below the real
1347     // stack top, use it as stack top, and reduce stack size so we won't put
1348     // guard page outside stack.
1349     stack_top = stack_start;
1350     stack_size -= 16 * page_size();
1351   }
1352 
1353   // stack_top could be partially down the page so align it
1354   stack_top = align_size_up(stack_top, page_size());
1355 
1356   if (max_size && stack_size > max_size) {
1357      _initial_thread_stack_size = max_size;
1358   } else {
1359      _initial_thread_stack_size = stack_size;
1360   }
1361 
1362   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1363   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1364 }
1365 
1366 ////////////////////////////////////////////////////////////////////////////////
1367 // time support
1368 
1369 // Time since start-up in seconds to a fine granularity.
1370 // Used by VMSelfDestructTimer and the MemProfiler.
1371 double os::elapsedTime() {
1372 
1373   return (double)(os::elapsed_counter()) * 0.000001;
1374 }
1375 
1376 jlong os::elapsed_counter() {
1377   timeval time;
1378   int status = gettimeofday(&time, NULL);
1379   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1380 }
1381 
1382 jlong os::elapsed_frequency() {
1383   return (1000 * 1000);
1384 }
1385 
1386 // For now, we say that linux does not support vtime.  I have no idea
1387 // whether it can actually be made to (DLD, 9/13/05).
1388 
1389 bool os::supports_vtime() { return false; }
1390 bool os::enable_vtime()   { return false; }
1391 bool os::vtime_enabled()  { return false; }
1392 double os::elapsedVTime() {
1393   // better than nothing, but not much
1394   return elapsedTime();
1395 }
1396 
1397 jlong os::javaTimeMillis() {
1398   timeval time;
1399   int status = gettimeofday(&time, NULL);
1400   assert(status != -1, "linux error");
1401   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1402 }
1403 
1404 #ifndef CLOCK_MONOTONIC
1405 #define CLOCK_MONOTONIC (1)
1406 #endif
1407 
1408 void os::Linux::clock_init() {
1409   // we do dlopen's in this particular order due to bug in linux
1410   // dynamical loader (see 6348968) leading to crash on exit
1411   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1412   if (handle == NULL) {
1413     handle = dlopen("librt.so", RTLD_LAZY);
1414   }
1415 
1416   if (handle) {
1417     int (*clock_getres_func)(clockid_t, struct timespec*) =
1418            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1419     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1420            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1421     if (clock_getres_func && clock_gettime_func) {
1422       // See if monotonic clock is supported by the kernel. Note that some
1423       // early implementations simply return kernel jiffies (updated every
1424       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1425       // for nano time (though the monotonic property is still nice to have).
1426       // It's fixed in newer kernels, however clock_getres() still returns
1427       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1428       // resolution for now. Hopefully as people move to new kernels, this
1429       // won't be a problem.
1430       struct timespec res;
1431       struct timespec tp;
1432       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1433           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1434         // yes, monotonic clock is supported
1435         _clock_gettime = clock_gettime_func;
1436       } else {
1437         // close librt if there is no monotonic clock
1438         dlclose(handle);
1439       }
1440     }
1441   }
1442 }
1443 
1444 #ifndef SYS_clock_getres
1445 
1446 #if defined(IA32) || defined(AMD64)
1447 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1448 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1449 #else
1450 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1451 #define sys_clock_getres(x,y)  -1
1452 #endif
1453 
1454 #else
1455 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1456 #endif
1457 
1458 void os::Linux::fast_thread_clock_init() {
1459   if (!UseLinuxPosixThreadCPUClocks) {
1460     return;
1461   }
1462   clockid_t clockid;
1463   struct timespec tp;
1464   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1465       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1466 
1467   // Switch to using fast clocks for thread cpu time if
1468   // the sys_clock_getres() returns 0 error code.
1469   // Note, that some kernels may support the current thread
1470   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1471   // returned by the pthread_getcpuclockid().
1472   // If the fast Posix clocks are supported then the sys_clock_getres()
1473   // must return at least tp.tv_sec == 0 which means a resolution
1474   // better than 1 sec. This is extra check for reliability.
1475 
1476   if(pthread_getcpuclockid_func &&
1477      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1478      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1479 
1480     _supports_fast_thread_cpu_time = true;
1481     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1482   }
1483 }
1484 
1485 jlong os::javaTimeNanos() {
1486   if (Linux::supports_monotonic_clock()) {
1487     struct timespec tp;
1488     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1489     assert(status == 0, "gettime error");
1490     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1491     return result;
1492   } else {
1493     timeval time;
1494     int status = gettimeofday(&time, NULL);
1495     assert(status != -1, "linux error");
1496     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1497     return 1000 * usecs;
1498   }
1499 }
1500 
1501 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1502   if (Linux::supports_monotonic_clock()) {
1503     info_ptr->max_value = ALL_64_BITS;
1504 
1505     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1506     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1507     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1508   } else {
1509     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1510     info_ptr->max_value = ALL_64_BITS;
1511 
1512     // gettimeofday is a real time clock so it skips
1513     info_ptr->may_skip_backward = true;
1514     info_ptr->may_skip_forward = true;
1515   }
1516 
1517   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1518 }
1519 
1520 // Return the real, user, and system times in seconds from an
1521 // arbitrary fixed point in the past.
1522 bool os::getTimesSecs(double* process_real_time,
1523                       double* process_user_time,
1524                       double* process_system_time) {
1525   struct tms ticks;
1526   clock_t real_ticks = times(&ticks);
1527 
1528   if (real_ticks == (clock_t) (-1)) {
1529     return false;
1530   } else {
1531     double ticks_per_second = (double) clock_tics_per_sec;
1532     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1533     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1534     *process_real_time = ((double) real_ticks) / ticks_per_second;
1535 
1536     return true;
1537   }
1538 }
1539 
1540 
1541 char * os::local_time_string(char *buf, size_t buflen) {
1542   struct tm t;
1543   time_t long_time;
1544   time(&long_time);
1545   localtime_r(&long_time, &t);
1546   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1547                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1548                t.tm_hour, t.tm_min, t.tm_sec);
1549   return buf;
1550 }
1551 
1552 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1553   return localtime_r(clock, res);
1554 }
1555 
1556 ////////////////////////////////////////////////////////////////////////////////
1557 // runtime exit support
1558 
1559 // Note: os::shutdown() might be called very early during initialization, or
1560 // called from signal handler. Before adding something to os::shutdown(), make
1561 // sure it is async-safe and can handle partially initialized VM.
1562 void os::shutdown() {
1563 
1564   // allow PerfMemory to attempt cleanup of any persistent resources
1565   perfMemory_exit();
1566 
1567   // needs to remove object in file system
1568   AttachListener::abort();
1569 
1570   // flush buffered output, finish log files
1571   ostream_abort();
1572 
1573   // Check for abort hook
1574   abort_hook_t abort_hook = Arguments::abort_hook();
1575   if (abort_hook != NULL) {
1576     abort_hook();
1577   }
1578 
1579 }
1580 
1581 // Note: os::abort() might be called very early during initialization, or
1582 // called from signal handler. Before adding something to os::abort(), make
1583 // sure it is async-safe and can handle partially initialized VM.
1584 void os::abort(bool dump_core) {
1585   os::shutdown();
1586   if (dump_core) {
1587 #ifndef PRODUCT
1588     fdStream out(defaultStream::output_fd());
1589     out.print_raw("Current thread is ");
1590     char buf[16];
1591     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1592     out.print_raw_cr(buf);
1593     out.print_raw_cr("Dumping core ...");
1594 #endif
1595     ::abort(); // dump core
1596   }
1597 
1598   ::exit(1);
1599 }
1600 
1601 // Die immediately, no exit hook, no abort hook, no cleanup.
1602 void os::die() {
1603   // _exit() on LinuxThreads only kills current thread
1604   ::abort();
1605 }
1606 
1607 // unused on linux for now.
1608 void os::set_error_file(const char *logfile) {}
1609 
1610 
1611 // This method is a copy of JDK's sysGetLastErrorString
1612 // from src/solaris/hpi/src/system_md.c
1613 
1614 size_t os::lasterror(char *buf, size_t len) {
1615 
1616   if (errno == 0)  return 0;
1617 
1618   const char *s = ::strerror(errno);
1619   size_t n = ::strlen(s);
1620   if (n >= len) {
1621     n = len - 1;
1622   }
1623   ::strncpy(buf, s, n);
1624   buf[n] = '\0';
1625   return n;
1626 }
1627 
1628 intx os::current_thread_id() { return (intx)pthread_self(); }
1629 int os::current_process_id() {
1630 
1631   // Under the old linux thread library, linux gives each thread
1632   // its own process id. Because of this each thread will return
1633   // a different pid if this method were to return the result
1634   // of getpid(2). Linux provides no api that returns the pid
1635   // of the launcher thread for the vm. This implementation
1636   // returns a unique pid, the pid of the launcher thread
1637   // that starts the vm 'process'.
1638 
1639   // Under the NPTL, getpid() returns the same pid as the
1640   // launcher thread rather than a unique pid per thread.
1641   // Use gettid() if you want the old pre NPTL behaviour.
1642 
1643   // if you are looking for the result of a call to getpid() that
1644   // returns a unique pid for the calling thread, then look at the
1645   // OSThread::thread_id() method in osThread_linux.hpp file
1646 
1647   return (int)(_initial_pid ? _initial_pid : getpid());
1648 }
1649 
1650 // DLL functions
1651 
1652 const char* os::dll_file_extension() { return ".so"; }
1653 
1654 // This must be hard coded because it's the system's temporary
1655 // directory not the java application's temp directory, ala java.io.tmpdir.
1656 const char* os::get_temp_directory() { return "/tmp"; }
1657 
1658 static bool file_exists(const char* filename) {
1659   struct stat statbuf;
1660   if (filename == NULL || strlen(filename) == 0) {
1661     return false;
1662   }
1663   return os::stat(filename, &statbuf) == 0;
1664 }
1665 
1666 void os::dll_build_name(char* buffer, size_t buflen,
1667                         const char* pname, const char* fname) {
1668   // Copied from libhpi
1669   const size_t pnamelen = pname ? strlen(pname) : 0;
1670 
1671   // Quietly truncate on buffer overflow.  Should be an error.
1672   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1673       *buffer = '\0';
1674       return;
1675   }
1676 
1677   if (pnamelen == 0) {
1678     snprintf(buffer, buflen, "lib%s.so", fname);
1679   } else if (strchr(pname, *os::path_separator()) != NULL) {
1680     int n;
1681     char** pelements = split_path(pname, &n);
1682     for (int i = 0 ; i < n ; i++) {
1683       // Really shouldn't be NULL, but check can't hurt
1684       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1685         continue; // skip the empty path values
1686       }
1687       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1688       if (file_exists(buffer)) {
1689         break;
1690       }
1691     }
1692     // release the storage
1693     for (int i = 0 ; i < n ; i++) {
1694       if (pelements[i] != NULL) {
1695         FREE_C_HEAP_ARRAY(char, pelements[i]);
1696       }
1697     }
1698     if (pelements != NULL) {
1699       FREE_C_HEAP_ARRAY(char*, pelements);
1700     }
1701   } else {
1702     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1703   }
1704 }
1705 
1706 const char* os::get_current_directory(char *buf, int buflen) {
1707   return getcwd(buf, buflen);
1708 }
1709 
1710 // check if addr is inside libjvm[_g].so
1711 bool os::address_is_in_vm(address addr) {
1712   static address libjvm_base_addr;
1713   Dl_info dlinfo;
1714 
1715   if (libjvm_base_addr == NULL) {
1716     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1717     libjvm_base_addr = (address)dlinfo.dli_fbase;
1718     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1719   }
1720 
1721   if (dladdr((void *)addr, &dlinfo)) {
1722     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1723   }
1724 
1725   return false;
1726 }
1727 
1728 bool os::dll_address_to_function_name(address addr, char *buf,
1729                                       int buflen, int *offset) {
1730   Dl_info dlinfo;
1731 
1732   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1733     if (buf != NULL) {
1734       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1735         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1736       }
1737     }
1738     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1739     return true;
1740   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1741     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1742        dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
1743        return true;
1744     }
1745   }
1746 
1747   if (buf != NULL) buf[0] = '\0';
1748   if (offset != NULL) *offset = -1;
1749   return false;
1750 }
1751 
1752 struct _address_to_library_name {
1753   address addr;          // input : memory address
1754   size_t  buflen;        //         size of fname
1755   char*   fname;         // output: library name
1756   address base;          //         library base addr
1757 };
1758 
1759 static int address_to_library_name_callback(struct dl_phdr_info *info,
1760                                             size_t size, void *data) {
1761   int i;
1762   bool found = false;
1763   address libbase = NULL;
1764   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1765 
1766   // iterate through all loadable segments
1767   for (i = 0; i < info->dlpi_phnum; i++) {
1768     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1769     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1770       // base address of a library is the lowest address of its loaded
1771       // segments.
1772       if (libbase == NULL || libbase > segbase) {
1773         libbase = segbase;
1774       }
1775       // see if 'addr' is within current segment
1776       if (segbase <= d->addr &&
1777           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1778         found = true;
1779       }
1780     }
1781   }
1782 
1783   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1784   // so dll_address_to_library_name() can fall through to use dladdr() which
1785   // can figure out executable name from argv[0].
1786   if (found && info->dlpi_name && info->dlpi_name[0]) {
1787     d->base = libbase;
1788     if (d->fname) {
1789       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1790     }
1791     return 1;
1792   }
1793   return 0;
1794 }
1795 
1796 bool os::dll_address_to_library_name(address addr, char* buf,
1797                                      int buflen, int* offset) {
1798   Dl_info dlinfo;
1799   struct _address_to_library_name data;
1800 
1801   // There is a bug in old glibc dladdr() implementation that it could resolve
1802   // to wrong library name if the .so file has a base address != NULL. Here
1803   // we iterate through the program headers of all loaded libraries to find
1804   // out which library 'addr' really belongs to. This workaround can be
1805   // removed once the minimum requirement for glibc is moved to 2.3.x.
1806   data.addr = addr;
1807   data.fname = buf;
1808   data.buflen = buflen;
1809   data.base = NULL;
1810   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1811 
1812   if (rslt) {
1813      // buf already contains library name
1814      if (offset) *offset = addr - data.base;
1815      return true;
1816   } else if (dladdr((void*)addr, &dlinfo)){
1817      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1818      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1819      return true;
1820   } else {
1821      if (buf) buf[0] = '\0';
1822      if (offset) *offset = -1;
1823      return false;
1824   }
1825 }
1826 
1827   // Loads .dll/.so and
1828   // in case of error it checks if .dll/.so was built for the
1829   // same architecture as Hotspot is running on
1830 
1831 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1832 {
1833   void * result= ::dlopen(filename, RTLD_LAZY);
1834   if (result != NULL) {
1835     // Successful loading
1836     return result;
1837   }
1838 
1839   Elf32_Ehdr elf_head;
1840 
1841   // Read system error message into ebuf
1842   // It may or may not be overwritten below
1843   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1844   ebuf[ebuflen-1]='\0';
1845   int diag_msg_max_length=ebuflen-strlen(ebuf);
1846   char* diag_msg_buf=ebuf+strlen(ebuf);
1847 
1848   if (diag_msg_max_length==0) {
1849     // No more space in ebuf for additional diagnostics message
1850     return NULL;
1851   }
1852 
1853 
1854   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1855 
1856   if (file_descriptor < 0) {
1857     // Can't open library, report dlerror() message
1858     return NULL;
1859   }
1860 
1861   bool failed_to_read_elf_head=
1862     (sizeof(elf_head)!=
1863         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1864 
1865   ::close(file_descriptor);
1866   if (failed_to_read_elf_head) {
1867     // file i/o error - report dlerror() msg
1868     return NULL;
1869   }
1870 
1871   typedef struct {
1872     Elf32_Half  code;         // Actual value as defined in elf.h
1873     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1874     char        elf_class;    // 32 or 64 bit
1875     char        endianess;    // MSB or LSB
1876     char*       name;         // String representation
1877   } arch_t;
1878 
1879   #ifndef EM_486
1880   #define EM_486          6               /* Intel 80486 */
1881   #endif
1882 
1883   static const arch_t arch_array[]={
1884     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1885     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1886     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1887     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1888     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1889     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1890     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1891     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1892     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1893     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1894     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1895     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1896     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1897     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1898     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1899     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1900   };
1901 
1902   #if  (defined IA32)
1903     static  Elf32_Half running_arch_code=EM_386;
1904   #elif   (defined AMD64)
1905     static  Elf32_Half running_arch_code=EM_X86_64;
1906   #elif  (defined IA64)
1907     static  Elf32_Half running_arch_code=EM_IA_64;
1908   #elif  (defined __sparc) && (defined _LP64)
1909     static  Elf32_Half running_arch_code=EM_SPARCV9;
1910   #elif  (defined __sparc) && (!defined _LP64)
1911     static  Elf32_Half running_arch_code=EM_SPARC;
1912   #elif  (defined __powerpc64__)
1913     static  Elf32_Half running_arch_code=EM_PPC64;
1914   #elif  (defined __powerpc__)
1915     static  Elf32_Half running_arch_code=EM_PPC;
1916   #elif  (defined ARM)
1917     static  Elf32_Half running_arch_code=EM_ARM;
1918   #elif  (defined S390)
1919     static  Elf32_Half running_arch_code=EM_S390;
1920   #elif  (defined ALPHA)
1921     static  Elf32_Half running_arch_code=EM_ALPHA;
1922   #elif  (defined MIPSEL)
1923     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1924   #elif  (defined PARISC)
1925     static  Elf32_Half running_arch_code=EM_PARISC;
1926   #elif  (defined MIPS)
1927     static  Elf32_Half running_arch_code=EM_MIPS;
1928   #elif  (defined M68K)
1929     static  Elf32_Half running_arch_code=EM_68K;
1930   #else
1931     #error Method os::dll_load requires that one of following is defined:\
1932          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1933   #endif
1934 
1935   // Identify compatability class for VM's architecture and library's architecture
1936   // Obtain string descriptions for architectures
1937 
1938   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1939   int running_arch_index=-1;
1940 
1941   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1942     if (running_arch_code == arch_array[i].code) {
1943       running_arch_index    = i;
1944     }
1945     if (lib_arch.code == arch_array[i].code) {
1946       lib_arch.compat_class = arch_array[i].compat_class;
1947       lib_arch.name         = arch_array[i].name;
1948     }
1949   }
1950 
1951   assert(running_arch_index != -1,
1952     "Didn't find running architecture code (running_arch_code) in arch_array");
1953   if (running_arch_index == -1) {
1954     // Even though running architecture detection failed
1955     // we may still continue with reporting dlerror() message
1956     return NULL;
1957   }
1958 
1959   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1960     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1961     return NULL;
1962   }
1963 
1964 #ifndef S390
1965   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1966     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1967     return NULL;
1968   }
1969 #endif // !S390
1970 
1971   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1972     if ( lib_arch.name!=NULL ) {
1973       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1974         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1975         lib_arch.name, arch_array[running_arch_index].name);
1976     } else {
1977       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1978       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1979         lib_arch.code,
1980         arch_array[running_arch_index].name);
1981     }
1982   }
1983 
1984   return NULL;
1985 }
1986 
1987 /*
1988  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1989  * chances are you might want to run the generated bits against glibc-2.0
1990  * libdl.so, so always use locking for any version of glibc.
1991  */
1992 void* os::dll_lookup(void* handle, const char* name) {
1993   pthread_mutex_lock(&dl_mutex);
1994   void* res = dlsym(handle, name);
1995   pthread_mutex_unlock(&dl_mutex);
1996   return res;
1997 }
1998 
1999 
2000 static bool _print_ascii_file(const char* filename, outputStream* st) {
2001   int fd = ::open(filename, O_RDONLY);
2002   if (fd == -1) {
2003      return false;
2004   }
2005 
2006   char buf[32];
2007   int bytes;
2008   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2009     st->print_raw(buf, bytes);
2010   }
2011 
2012   ::close(fd);
2013 
2014   return true;
2015 }
2016 
2017 void os::print_dll_info(outputStream *st) {
2018    st->print_cr("Dynamic libraries:");
2019 
2020    char fname[32];
2021    pid_t pid = os::Linux::gettid();
2022 
2023    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2024 
2025    if (!_print_ascii_file(fname, st)) {
2026      st->print("Can not get library information for pid = %d\n", pid);
2027    }
2028 }
2029 
2030 
2031 void os::print_os_info(outputStream* st) {
2032   st->print("OS:");
2033 
2034   // Try to identify popular distros.
2035   // Most Linux distributions have /etc/XXX-release file, which contains
2036   // the OS version string. Some have more than one /etc/XXX-release file
2037   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2038   // so the order is important.
2039   if (!_print_ascii_file("/etc/mandrake-release", st) &&
2040       !_print_ascii_file("/etc/sun-release", st) &&
2041       !_print_ascii_file("/etc/redhat-release", st) &&
2042       !_print_ascii_file("/etc/SuSE-release", st) &&
2043       !_print_ascii_file("/etc/turbolinux-release", st) &&
2044       !_print_ascii_file("/etc/gentoo-release", st) &&
2045       !_print_ascii_file("/etc/debian_version", st) &&
2046       !_print_ascii_file("/etc/ltib-release", st) &&
2047       !_print_ascii_file("/etc/angstrom-version", st)) {
2048       st->print("Linux");
2049   }
2050   st->cr();
2051 
2052   // kernel
2053   st->print("uname:");
2054   struct utsname name;
2055   uname(&name);
2056   st->print(name.sysname); st->print(" ");
2057   st->print(name.release); st->print(" ");
2058   st->print(name.version); st->print(" ");
2059   st->print(name.machine);
2060   st->cr();
2061 
2062   // Print warning if unsafe chroot environment detected
2063   if (unsafe_chroot_detected) {
2064     st->print("WARNING!! ");
2065     st->print_cr(unstable_chroot_error);
2066   }
2067 
2068   // libc, pthread
2069   st->print("libc:");
2070   st->print(os::Linux::glibc_version()); st->print(" ");
2071   st->print(os::Linux::libpthread_version()); st->print(" ");
2072   if (os::Linux::is_LinuxThreads()) {
2073      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2074   }
2075   st->cr();
2076 
2077   // rlimit
2078   st->print("rlimit:");
2079   struct rlimit rlim;
2080 
2081   st->print(" STACK ");
2082   getrlimit(RLIMIT_STACK, &rlim);
2083   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2084   else st->print("%uk", rlim.rlim_cur >> 10);
2085 
2086   st->print(", CORE ");
2087   getrlimit(RLIMIT_CORE, &rlim);
2088   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2089   else st->print("%uk", rlim.rlim_cur >> 10);
2090 
2091   st->print(", NPROC ");
2092   getrlimit(RLIMIT_NPROC, &rlim);
2093   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2094   else st->print("%d", rlim.rlim_cur);
2095 
2096   st->print(", NOFILE ");
2097   getrlimit(RLIMIT_NOFILE, &rlim);
2098   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2099   else st->print("%d", rlim.rlim_cur);
2100 
2101   st->print(", AS ");
2102   getrlimit(RLIMIT_AS, &rlim);
2103   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2104   else st->print("%uk", rlim.rlim_cur >> 10);
2105   st->cr();
2106 
2107   // load average
2108   st->print("load average:");
2109   double loadavg[3];
2110   os::loadavg(loadavg, 3);
2111   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2112   st->cr();
2113 
2114   // meminfo
2115   st->print("\n/proc/meminfo:\n");
2116   _print_ascii_file("/proc/meminfo", st);
2117   st->cr();
2118 }
2119 
2120 void os::pd_print_cpu_info(outputStream* st) {
2121   st->print("\n/proc/cpuinfo:\n");
2122   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2123     st->print("  <Not Available>");
2124   }
2125   st->cr();
2126 }
2127 
2128 void os::print_memory_info(outputStream* st) {
2129 
2130   st->print("Memory:");
2131   st->print(" %dk page", os::vm_page_size()>>10);
2132 
2133   // values in struct sysinfo are "unsigned long"
2134   struct sysinfo si;
2135   sysinfo(&si);
2136 
2137   st->print(", physical " UINT64_FORMAT "k",
2138             os::physical_memory() >> 10);
2139   st->print("(" UINT64_FORMAT "k free)",
2140             os::available_memory() >> 10);
2141   st->print(", swap " UINT64_FORMAT "k",
2142             ((jlong)si.totalswap * si.mem_unit) >> 10);
2143   st->print("(" UINT64_FORMAT "k free)",
2144             ((jlong)si.freeswap * si.mem_unit) >> 10);
2145   st->cr();
2146 }
2147 
2148 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2149 // but they're the same for all the linux arch that we support
2150 // and they're the same for solaris but there's no common place to put this.
2151 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2152                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2153                           "ILL_COPROC", "ILL_BADSTK" };
2154 
2155 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2156                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2157                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2158 
2159 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2160 
2161 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2162 
2163 void os::print_siginfo(outputStream* st, void* siginfo) {
2164   st->print("siginfo:");
2165 
2166   const int buflen = 100;
2167   char buf[buflen];
2168   siginfo_t *si = (siginfo_t*)siginfo;
2169   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2170   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2171     st->print("si_errno=%s", buf);
2172   } else {
2173     st->print("si_errno=%d", si->si_errno);
2174   }
2175   const int c = si->si_code;
2176   assert(c > 0, "unexpected si_code");
2177   switch (si->si_signo) {
2178   case SIGILL:
2179     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2180     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2181     break;
2182   case SIGFPE:
2183     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2184     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2185     break;
2186   case SIGSEGV:
2187     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2188     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2189     break;
2190   case SIGBUS:
2191     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2192     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2193     break;
2194   default:
2195     st->print(", si_code=%d", si->si_code);
2196     // no si_addr
2197   }
2198 
2199   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2200       UseSharedSpaces) {
2201     FileMapInfo* mapinfo = FileMapInfo::current_info();
2202     if (mapinfo->is_in_shared_space(si->si_addr)) {
2203       st->print("\n\nError accessing class data sharing archive."   \
2204                 " Mapped file inaccessible during execution, "      \
2205                 " possible disk/network problem.");
2206     }
2207   }
2208   st->cr();
2209 }
2210 
2211 
2212 static void print_signal_handler(outputStream* st, int sig,
2213                                  char* buf, size_t buflen);
2214 
2215 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2216   st->print_cr("Signal Handlers:");
2217   print_signal_handler(st, SIGSEGV, buf, buflen);
2218   print_signal_handler(st, SIGBUS , buf, buflen);
2219   print_signal_handler(st, SIGFPE , buf, buflen);
2220   print_signal_handler(st, SIGPIPE, buf, buflen);
2221   print_signal_handler(st, SIGXFSZ, buf, buflen);
2222   print_signal_handler(st, SIGILL , buf, buflen);
2223   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2224   print_signal_handler(st, SR_signum, buf, buflen);
2225   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2226   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2227   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2228   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2229 }
2230 
2231 static char saved_jvm_path[MAXPATHLEN] = {0};
2232 
2233 // Find the full path to the current module, libjvm.so or libjvm_g.so
2234 void os::jvm_path(char *buf, jint buflen) {
2235   // Error checking.
2236   if (buflen < MAXPATHLEN) {
2237     assert(false, "must use a large-enough buffer");
2238     buf[0] = '\0';
2239     return;
2240   }
2241   // Lazy resolve the path to current module.
2242   if (saved_jvm_path[0] != 0) {
2243     strcpy(buf, saved_jvm_path);
2244     return;
2245   }
2246 
2247   char dli_fname[MAXPATHLEN];
2248   bool ret = dll_address_to_library_name(
2249                 CAST_FROM_FN_PTR(address, os::jvm_path),
2250                 dli_fname, sizeof(dli_fname), NULL);
2251   assert(ret != 0, "cannot locate libjvm");
2252   char *rp = realpath(dli_fname, buf);
2253   if (rp == NULL)
2254     return;
2255 
2256   if (Arguments::created_by_gamma_launcher()) {
2257     // Support for the gamma launcher.  Typical value for buf is
2258     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2259     // the right place in the string, then assume we are installed in a JDK and
2260     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2261     // up the path so it looks like libjvm.so is installed there (append a
2262     // fake suffix hotspot/libjvm.so).
2263     const char *p = buf + strlen(buf) - 1;
2264     for (int count = 0; p > buf && count < 5; ++count) {
2265       for (--p; p > buf && *p != '/'; --p)
2266         /* empty */ ;
2267     }
2268 
2269     if (strncmp(p, "/jre/lib/", 9) != 0) {
2270       // Look for JAVA_HOME in the environment.
2271       char* java_home_var = ::getenv("JAVA_HOME");
2272       if (java_home_var != NULL && java_home_var[0] != 0) {
2273         char* jrelib_p;
2274         int len;
2275 
2276         // Check the current module name "libjvm.so" or "libjvm_g.so".
2277         p = strrchr(buf, '/');
2278         assert(strstr(p, "/libjvm") == p, "invalid library name");
2279         p = strstr(p, "_g") ? "_g" : "";
2280 
2281         rp = realpath(java_home_var, buf);
2282         if (rp == NULL)
2283           return;
2284 
2285         // determine if this is a legacy image or modules image
2286         // modules image doesn't have "jre" subdirectory
2287         len = strlen(buf);
2288         jrelib_p = buf + len;
2289         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2290         if (0 != access(buf, F_OK)) {
2291           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2292         }
2293 
2294         if (0 == access(buf, F_OK)) {
2295           // Use current module name "libjvm[_g].so" instead of
2296           // "libjvm"debug_only("_g")".so" since for fastdebug version
2297           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2298           len = strlen(buf);
2299           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2300         } else {
2301           // Go back to path of .so
2302           rp = realpath(dli_fname, buf);
2303           if (rp == NULL)
2304             return;
2305         }
2306       }
2307     }
2308   }
2309 
2310   strcpy(saved_jvm_path, buf);
2311 }
2312 
2313 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2314   // no prefix required, not even "_"
2315 }
2316 
2317 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2318   // no suffix required
2319 }
2320 
2321 ////////////////////////////////////////////////////////////////////////////////
2322 // sun.misc.Signal support
2323 
2324 static volatile jint sigint_count = 0;
2325 
2326 static void
2327 UserHandler(int sig, void *siginfo, void *context) {
2328   // 4511530 - sem_post is serialized and handled by the manager thread. When
2329   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2330   // don't want to flood the manager thread with sem_post requests.
2331   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2332       return;
2333 
2334   // Ctrl-C is pressed during error reporting, likely because the error
2335   // handler fails to abort. Let VM die immediately.
2336   if (sig == SIGINT && is_error_reported()) {
2337      os::die();
2338   }
2339 
2340   os::signal_notify(sig);
2341 }
2342 
2343 void* os::user_handler() {
2344   return CAST_FROM_FN_PTR(void*, UserHandler);
2345 }
2346 
2347 extern "C" {
2348   typedef void (*sa_handler_t)(int);
2349   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2350 }
2351 
2352 void* os::signal(int signal_number, void* handler) {
2353   struct sigaction sigAct, oldSigAct;
2354 
2355   sigfillset(&(sigAct.sa_mask));
2356   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2357   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2358 
2359   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2360     // -1 means registration failed
2361     return (void *)-1;
2362   }
2363 
2364   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2365 }
2366 
2367 void os::signal_raise(int signal_number) {
2368   ::raise(signal_number);
2369 }
2370 
2371 /*
2372  * The following code is moved from os.cpp for making this
2373  * code platform specific, which it is by its very nature.
2374  */
2375 
2376 // Will be modified when max signal is changed to be dynamic
2377 int os::sigexitnum_pd() {
2378   return NSIG;
2379 }
2380 
2381 // a counter for each possible signal value
2382 static volatile jint pending_signals[NSIG+1] = { 0 };
2383 
2384 // Linux(POSIX) specific hand shaking semaphore.
2385 static sem_t sig_sem;
2386 
2387 void os::signal_init_pd() {
2388   // Initialize signal structures
2389   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2390 
2391   // Initialize signal semaphore
2392   ::sem_init(&sig_sem, 0, 0);
2393 }
2394 
2395 void os::signal_notify(int sig) {
2396   Atomic::inc(&pending_signals[sig]);
2397   ::sem_post(&sig_sem);
2398 }
2399 
2400 static int check_pending_signals(bool wait) {
2401   Atomic::store(0, &sigint_count);
2402   for (;;) {
2403     for (int i = 0; i < NSIG + 1; i++) {
2404       jint n = pending_signals[i];
2405       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2406         return i;
2407       }
2408     }
2409     if (!wait) {
2410       return -1;
2411     }
2412     JavaThread *thread = JavaThread::current();
2413     ThreadBlockInVM tbivm(thread);
2414 
2415     bool threadIsSuspended;
2416     do {
2417       thread->set_suspend_equivalent();
2418       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2419       ::sem_wait(&sig_sem);
2420 
2421       // were we externally suspended while we were waiting?
2422       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2423       if (threadIsSuspended) {
2424         //
2425         // The semaphore has been incremented, but while we were waiting
2426         // another thread suspended us. We don't want to continue running
2427         // while suspended because that would surprise the thread that
2428         // suspended us.
2429         //
2430         ::sem_post(&sig_sem);
2431 
2432         thread->java_suspend_self();
2433       }
2434     } while (threadIsSuspended);
2435   }
2436 }
2437 
2438 int os::signal_lookup() {
2439   return check_pending_signals(false);
2440 }
2441 
2442 int os::signal_wait() {
2443   return check_pending_signals(true);
2444 }
2445 
2446 ////////////////////////////////////////////////////////////////////////////////
2447 // Virtual Memory
2448 
2449 int os::vm_page_size() {
2450   // Seems redundant as all get out
2451   assert(os::Linux::page_size() != -1, "must call os::init");
2452   return os::Linux::page_size();
2453 }
2454 
2455 // Solaris allocates memory by pages.
2456 int os::vm_allocation_granularity() {
2457   assert(os::Linux::page_size() != -1, "must call os::init");
2458   return os::Linux::page_size();
2459 }
2460 
2461 // Rationale behind this function:
2462 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2463 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2464 //  samples for JITted code. Here we create private executable mapping over the code cache
2465 //  and then we can use standard (well, almost, as mapping can change) way to provide
2466 //  info for the reporting script by storing timestamp and location of symbol
2467 void linux_wrap_code(char* base, size_t size) {
2468   static volatile jint cnt = 0;
2469 
2470   if (!UseOprofile) {
2471     return;
2472   }
2473 
2474   char buf[PATH_MAX+1];
2475   int num = Atomic::add(1, &cnt);
2476 
2477   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2478            os::get_temp_directory(), os::current_process_id(), num);
2479   unlink(buf);
2480 
2481   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2482 
2483   if (fd != -1) {
2484     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2485     if (rv != (off_t)-1) {
2486       if (::write(fd, "", 1) == 1) {
2487         mmap(base, size,
2488              PROT_READ|PROT_WRITE|PROT_EXEC,
2489              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2490       }
2491     }
2492     ::close(fd);
2493     unlink(buf);
2494   }
2495 }
2496 
2497 // NOTE: Linux kernel does not really reserve the pages for us.
2498 //       All it does is to check if there are enough free pages
2499 //       left at the time of mmap(). This could be a potential
2500 //       problem.
2501 bool os::commit_memory(char* addr, size_t size, bool exec) {
2502   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2503   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2504                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2505   if (UseNUMAInterleaving && (res != (uintptr_t) MAP_FAILED)) {
2506     numa_make_global(addr, size);
2507   }
2508   return res != (uintptr_t) MAP_FAILED;
2509 }
2510 
2511 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2512 #ifndef MAP_HUGETLB
2513 #define MAP_HUGETLB 0x40000
2514 #endif
2515 
2516 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2517 #ifndef MADV_HUGEPAGE
2518 #define MADV_HUGEPAGE 14
2519 #endif
2520 
2521 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2522                        bool exec) {
2523   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2524     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2525     uintptr_t res =
2526       (uintptr_t) ::mmap(addr, size, prot,
2527                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2528                          -1, 0);
2529     if (UseNUMAInterleaving && (res != (uintptr_t) MAP_FAILED)) {
2530       numa_make_global(addr, size);
2531     }
2532     return res != (uintptr_t) MAP_FAILED;
2533   }
2534 
2535   return commit_memory(addr, size, exec);
2536 }
2537 
2538 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2539   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2540     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2541     // be supported or the memory may already be backed by huge pages.
2542     ::madvise(addr, bytes, MADV_HUGEPAGE);
2543   }
2544 }
2545 
2546 void os::free_memory(char *addr, size_t bytes) {
2547   commit_memory(addr, bytes, false);
2548 }
2549 
2550 void os::numa_make_global(char *addr, size_t bytes) {
2551   Linux::numa_interleave_memory(addr, bytes);
2552 }
2553 
2554 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2555   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2556 }
2557 
2558 bool os::numa_topology_changed()   { return false; }
2559 
2560 size_t os::numa_get_groups_num() {
2561   int max_node = Linux::numa_max_node();
2562   return max_node > 0 ? max_node + 1 : 1;
2563 }
2564 
2565 int os::numa_get_group_id() {
2566   int cpu_id = Linux::sched_getcpu();
2567   if (cpu_id != -1) {
2568     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2569     if (lgrp_id != -1) {
2570       return lgrp_id;
2571     }
2572   }
2573   return 0;
2574 }
2575 
2576 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2577   for (size_t i = 0; i < size; i++) {
2578     ids[i] = i;
2579   }
2580   return size;
2581 }
2582 
2583 bool os::get_page_info(char *start, page_info* info) {
2584   return false;
2585 }
2586 
2587 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2588   return end;
2589 }
2590 
2591 
2592 int os::Linux::sched_getcpu_syscall(void) {
2593   unsigned int cpu;
2594   int retval = -1;
2595 
2596 #if defined(IA32)
2597   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2598 #elif defined(AMD64)
2599   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2600   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2601   retval = vgetcpu(&cpu, NULL, NULL);
2602 #endif
2603 
2604   return (retval == -1) ? retval : cpu;
2605 }
2606 
2607 // Something to do with the numa-aware allocator needs these symbols
2608 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2609 extern "C" JNIEXPORT void numa_error(char *where) { }
2610 extern "C" JNIEXPORT int fork1() { return fork(); }
2611 
2612 
2613 // If we are running with libnuma version > 2, then we should
2614 // be trying to use symbols with versions 1.1
2615 // If we are running with earlier version, which did not have symbol versions,
2616 // we should use the base version.
2617 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2618   void *f = dlvsym(handle, name, "libnuma_1.1");
2619   if (f == NULL) {
2620     f = dlsym(handle, name);
2621   }
2622   return f;
2623 }
2624 
2625 bool os::Linux::libnuma_init() {
2626   // sched_getcpu() should be in libc.
2627   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2628                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2629 
2630   // If it's not, try a direct syscall.
2631   if (sched_getcpu() == -1)
2632     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2633 
2634   if (sched_getcpu() != -1) { // Does it work?
2635     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2636     if (handle != NULL) {
2637       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2638                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2639       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2640                                        libnuma_dlsym(handle, "numa_max_node")));
2641       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2642                                         libnuma_dlsym(handle, "numa_available")));
2643       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2644                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2645       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2646                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2647 
2648 
2649       if (numa_available() != -1) {
2650         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2651         // Create a cpu -> node mapping
2652         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2653         rebuild_cpu_to_node_map();
2654         return true;
2655       }
2656     }
2657   }
2658   return false;
2659 }
2660 
2661 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2662 // The table is later used in get_node_by_cpu().
2663 void os::Linux::rebuild_cpu_to_node_map() {
2664   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2665                               // in libnuma (possible values are starting from 16,
2666                               // and continuing up with every other power of 2, but less
2667                               // than the maximum number of CPUs supported by kernel), and
2668                               // is a subject to change (in libnuma version 2 the requirements
2669                               // are more reasonable) we'll just hardcode the number they use
2670                               // in the library.
2671   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2672 
2673   size_t cpu_num = os::active_processor_count();
2674   size_t cpu_map_size = NCPUS / BitsPerCLong;
2675   size_t cpu_map_valid_size =
2676     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2677 
2678   cpu_to_node()->clear();
2679   cpu_to_node()->at_grow(cpu_num - 1);
2680   size_t node_num = numa_get_groups_num();
2681 
2682   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2683   for (size_t i = 0; i < node_num; i++) {
2684     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2685       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2686         if (cpu_map[j] != 0) {
2687           for (size_t k = 0; k < BitsPerCLong; k++) {
2688             if (cpu_map[j] & (1UL << k)) {
2689               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2690             }
2691           }
2692         }
2693       }
2694     }
2695   }
2696   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2697 }
2698 
2699 int os::Linux::get_node_by_cpu(int cpu_id) {
2700   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2701     return cpu_to_node()->at(cpu_id);
2702   }
2703   return -1;
2704 }
2705 
2706 GrowableArray<int>* os::Linux::_cpu_to_node;
2707 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2708 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2709 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2710 os::Linux::numa_available_func_t os::Linux::_numa_available;
2711 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2712 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2713 unsigned long* os::Linux::_numa_all_nodes;
2714 
2715 bool os::uncommit_memory(char* addr, size_t size) {
2716   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2717                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2718   return res  != (uintptr_t) MAP_FAILED;
2719 }
2720 
2721 // Linux uses a growable mapping for the stack, and if the mapping for
2722 // the stack guard pages is not removed when we detach a thread the
2723 // stack cannot grow beyond the pages where the stack guard was
2724 // mapped.  If at some point later in the process the stack expands to
2725 // that point, the Linux kernel cannot expand the stack any further
2726 // because the guard pages are in the way, and a segfault occurs.
2727 //
2728 // However, it's essential not to split the stack region by unmapping
2729 // a region (leaving a hole) that's already part of the stack mapping,
2730 // so if the stack mapping has already grown beyond the guard pages at
2731 // the time we create them, we have to truncate the stack mapping.
2732 // So, we need to know the extent of the stack mapping when
2733 // create_stack_guard_pages() is called.
2734 
2735 // Find the bounds of the stack mapping.  Return true for success.
2736 //
2737 // We only need this for stacks that are growable: at the time of
2738 // writing thread stacks don't use growable mappings (i.e. those
2739 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2740 // only applies to the main thread.
2741 
2742 static
2743 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2744 
2745   char buf[128];
2746   int fd, sz;
2747 
2748   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2749     return false;
2750   }
2751 
2752   const char kw[] = "[stack]";
2753   const int kwlen = sizeof(kw)-1;
2754 
2755   // Address part of /proc/self/maps couldn't be more than 128 bytes
2756   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2757      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2758         // Extract addresses
2759         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2760            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2761            if (sp >= *bottom && sp <= *top) {
2762               ::close(fd);
2763               return true;
2764            }
2765         }
2766      }
2767   }
2768 
2769  ::close(fd);
2770   return false;
2771 }
2772 
2773 
2774 // If the (growable) stack mapping already extends beyond the point
2775 // where we're going to put our guard pages, truncate the mapping at
2776 // that point by munmap()ping it.  This ensures that when we later
2777 // munmap() the guard pages we don't leave a hole in the stack
2778 // mapping. This only affects the main/initial thread, but guard
2779 // against future OS changes
2780 bool os::create_stack_guard_pages(char* addr, size_t size) {
2781   uintptr_t stack_extent, stack_base;
2782   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2783   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2784       assert(os::Linux::is_initial_thread(),
2785            "growable stack in non-initial thread");
2786     if (stack_extent < (uintptr_t)addr)
2787       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2788   }
2789 
2790   return os::commit_memory(addr, size);
2791 }
2792 
2793 // If this is a growable mapping, remove the guard pages entirely by
2794 // munmap()ping them.  If not, just call uncommit_memory(). This only
2795 // affects the main/initial thread, but guard against future OS changes
2796 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2797   uintptr_t stack_extent, stack_base;
2798   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2799   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2800       assert(os::Linux::is_initial_thread(),
2801            "growable stack in non-initial thread");
2802 
2803     return ::munmap(addr, size) == 0;
2804   }
2805 
2806   return os::uncommit_memory(addr, size);
2807 }
2808 
2809 static address _highest_vm_reserved_address = NULL;
2810 
2811 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2812 // at 'requested_addr'. If there are existing memory mappings at the same
2813 // location, however, they will be overwritten. If 'fixed' is false,
2814 // 'requested_addr' is only treated as a hint, the return value may or
2815 // may not start from the requested address. Unlike Linux mmap(), this
2816 // function returns NULL to indicate failure.
2817 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2818   char * addr;
2819   int flags;
2820 
2821   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2822   if (fixed) {
2823     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2824     flags |= MAP_FIXED;
2825   }
2826 
2827   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2828   // to PROT_EXEC if executable when we commit the page.
2829   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2830                        flags, -1, 0);
2831 
2832   if (addr != MAP_FAILED) {
2833     // anon_mmap() should only get called during VM initialization,
2834     // don't need lock (actually we can skip locking even it can be called
2835     // from multiple threads, because _highest_vm_reserved_address is just a
2836     // hint about the upper limit of non-stack memory regions.)
2837     if ((address)addr + bytes > _highest_vm_reserved_address) {
2838       _highest_vm_reserved_address = (address)addr + bytes;
2839     }
2840   }
2841 
2842   return addr == MAP_FAILED ? NULL : addr;
2843 }
2844 
2845 // Don't update _highest_vm_reserved_address, because there might be memory
2846 // regions above addr + size. If so, releasing a memory region only creates
2847 // a hole in the address space, it doesn't help prevent heap-stack collision.
2848 //
2849 static int anon_munmap(char * addr, size_t size) {
2850   return ::munmap(addr, size) == 0;
2851 }
2852 
2853 char* os::reserve_memory(size_t bytes, char* requested_addr,
2854                          size_t alignment_hint) {
2855   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2856 }
2857 
2858 bool os::release_memory(char* addr, size_t size) {
2859   return anon_munmap(addr, size);
2860 }
2861 
2862 static address highest_vm_reserved_address() {
2863   return _highest_vm_reserved_address;
2864 }
2865 
2866 static bool linux_mprotect(char* addr, size_t size, int prot) {
2867   // Linux wants the mprotect address argument to be page aligned.
2868   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2869 
2870   // According to SUSv3, mprotect() should only be used with mappings
2871   // established by mmap(), and mmap() always maps whole pages. Unaligned
2872   // 'addr' likely indicates problem in the VM (e.g. trying to change
2873   // protection of malloc'ed or statically allocated memory). Check the
2874   // caller if you hit this assert.
2875   assert(addr == bottom, "sanity check");
2876 
2877   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2878   return ::mprotect(bottom, size, prot) == 0;
2879 }
2880 
2881 // Set protections specified
2882 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2883                         bool is_committed) {
2884   unsigned int p = 0;
2885   switch (prot) {
2886   case MEM_PROT_NONE: p = PROT_NONE; break;
2887   case MEM_PROT_READ: p = PROT_READ; break;
2888   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2889   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2890   default:
2891     ShouldNotReachHere();
2892   }
2893   // is_committed is unused.
2894   return linux_mprotect(addr, bytes, p);
2895 }
2896 
2897 bool os::guard_memory(char* addr, size_t size) {
2898   return linux_mprotect(addr, size, PROT_NONE);
2899 }
2900 
2901 bool os::unguard_memory(char* addr, size_t size) {
2902   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2903 }
2904 
2905 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2906   bool result = false;
2907   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2908                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2909                   -1, 0);
2910 
2911   if (p != (void *) -1) {
2912     // We don't know if this really is a huge page or not.
2913     FILE *fp = fopen("/proc/self/maps", "r");
2914     if (fp) {
2915       while (!feof(fp)) {
2916         char chars[257];
2917         long x = 0;
2918         if (fgets(chars, sizeof(chars), fp)) {
2919           if (sscanf(chars, "%lx-%*x", &x) == 1
2920               && x == (long)p) {
2921             if (strstr (chars, "hugepage")) {
2922               result = true;
2923               break;
2924             }
2925           }
2926         }
2927       }
2928       fclose(fp);
2929     }
2930     munmap (p, page_size);
2931     if (result)
2932       return true;
2933   }
2934 
2935   if (warn) {
2936     warning("HugeTLBFS is not supported by the operating system.");
2937   }
2938 
2939   return result;
2940 }
2941 
2942 /*
2943 * Set the coredump_filter bits to include largepages in core dump (bit 6)
2944 *
2945 * From the coredump_filter documentation:
2946 *
2947 * - (bit 0) anonymous private memory
2948 * - (bit 1) anonymous shared memory
2949 * - (bit 2) file-backed private memory
2950 * - (bit 3) file-backed shared memory
2951 * - (bit 4) ELF header pages in file-backed private memory areas (it is
2952 *           effective only if the bit 2 is cleared)
2953 * - (bit 5) hugetlb private memory
2954 * - (bit 6) hugetlb shared memory
2955 */
2956 static void set_coredump_filter(void) {
2957   FILE *f;
2958   long cdm;
2959 
2960   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2961     return;
2962   }
2963 
2964   if (fscanf(f, "%lx", &cdm) != 1) {
2965     fclose(f);
2966     return;
2967   }
2968 
2969   rewind(f);
2970 
2971   if ((cdm & LARGEPAGES_BIT) == 0) {
2972     cdm |= LARGEPAGES_BIT;
2973     fprintf(f, "%#lx", cdm);
2974   }
2975 
2976   fclose(f);
2977 }
2978 
2979 // Large page support
2980 
2981 static size_t _large_page_size = 0;
2982 
2983 void os::large_page_init() {
2984   if (!UseLargePages) {
2985     UseHugeTLBFS = false;
2986     UseSHM = false;
2987     return;
2988   }
2989 
2990   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2991     // If UseLargePages is specified on the command line try both methods,
2992     // if it's default, then try only HugeTLBFS.
2993     if (FLAG_IS_DEFAULT(UseLargePages)) {
2994       UseHugeTLBFS = true;
2995     } else {
2996       UseHugeTLBFS = UseSHM = true;
2997     }
2998   }
2999 
3000   if (LargePageSizeInBytes) {
3001     _large_page_size = LargePageSizeInBytes;
3002   } else {
3003     // large_page_size on Linux is used to round up heap size. x86 uses either
3004     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3005     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3006     // page as large as 256M.
3007     //
3008     // Here we try to figure out page size by parsing /proc/meminfo and looking
3009     // for a line with the following format:
3010     //    Hugepagesize:     2048 kB
3011     //
3012     // If we can't determine the value (e.g. /proc is not mounted, or the text
3013     // format has been changed), we'll use the largest page size supported by
3014     // the processor.
3015 
3016 #ifndef ZERO
3017     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3018                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3019 #endif // ZERO
3020 
3021     FILE *fp = fopen("/proc/meminfo", "r");
3022     if (fp) {
3023       while (!feof(fp)) {
3024         int x = 0;
3025         char buf[16];
3026         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3027           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3028             _large_page_size = x * K;
3029             break;
3030           }
3031         } else {
3032           // skip to next line
3033           for (;;) {
3034             int ch = fgetc(fp);
3035             if (ch == EOF || ch == (int)'\n') break;
3036           }
3037         }
3038       }
3039       fclose(fp);
3040     }
3041   }
3042 
3043   // print a warning if any large page related flag is specified on command line
3044   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3045 
3046   const size_t default_page_size = (size_t)Linux::page_size();
3047   if (_large_page_size > default_page_size) {
3048     _page_sizes[0] = _large_page_size;
3049     _page_sizes[1] = default_page_size;
3050     _page_sizes[2] = 0;
3051   }
3052   UseHugeTLBFS = UseHugeTLBFS &&
3053                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3054 
3055   if (UseHugeTLBFS)
3056     UseSHM = false;
3057 
3058   UseLargePages = UseHugeTLBFS || UseSHM;
3059 
3060   set_coredump_filter();
3061 }
3062 
3063 #ifndef SHM_HUGETLB
3064 #define SHM_HUGETLB 04000
3065 #endif
3066 
3067 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3068   // "exec" is passed in but not used.  Creating the shared image for
3069   // the code cache doesn't have an SHM_X executable permission to check.
3070   assert(UseLargePages && UseSHM, "only for SHM large pages");
3071 
3072   key_t key = IPC_PRIVATE;
3073   char *addr;
3074 
3075   bool warn_on_failure = UseLargePages &&
3076                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3077                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3078                         );
3079   char msg[128];
3080 
3081   // Create a large shared memory region to attach to based on size.
3082   // Currently, size is the total size of the heap
3083   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3084   if (shmid == -1) {
3085      // Possible reasons for shmget failure:
3086      // 1. shmmax is too small for Java heap.
3087      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3088      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3089      // 2. not enough large page memory.
3090      //    > check available large pages: cat /proc/meminfo
3091      //    > increase amount of large pages:
3092      //          echo new_value > /proc/sys/vm/nr_hugepages
3093      //      Note 1: different Linux may use different name for this property,
3094      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3095      //      Note 2: it's possible there's enough physical memory available but
3096      //            they are so fragmented after a long run that they can't
3097      //            coalesce into large pages. Try to reserve large pages when
3098      //            the system is still "fresh".
3099      if (warn_on_failure) {
3100        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3101        warning(msg);
3102      }
3103      return NULL;
3104   }
3105 
3106   // attach to the region
3107   addr = (char*)shmat(shmid, req_addr, 0);
3108   int err = errno;
3109 
3110   // Remove shmid. If shmat() is successful, the actual shared memory segment
3111   // will be deleted when it's detached by shmdt() or when the process
3112   // terminates. If shmat() is not successful this will remove the shared
3113   // segment immediately.
3114   shmctl(shmid, IPC_RMID, NULL);
3115 
3116   if ((intptr_t)addr == -1) {
3117      if (warn_on_failure) {
3118        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3119        warning(msg);
3120      }
3121      return NULL;
3122   }
3123 
3124   if (UseNUMAInterleaving) {
3125     numa_make_global(addr, bytes);
3126   }
3127 
3128   return addr;
3129 }
3130 
3131 bool os::release_memory_special(char* base, size_t bytes) {
3132   // detaching the SHM segment will also delete it, see reserve_memory_special()
3133   int rslt = shmdt(base);
3134   return rslt == 0;
3135 }
3136 
3137 size_t os::large_page_size() {
3138   return _large_page_size;
3139 }
3140 
3141 // HugeTLBFS allows application to commit large page memory on demand;
3142 // with SysV SHM the entire memory region must be allocated as shared
3143 // memory.
3144 bool os::can_commit_large_page_memory() {
3145   return UseHugeTLBFS;
3146 }
3147 
3148 bool os::can_execute_large_page_memory() {
3149   return UseHugeTLBFS;
3150 }
3151 
3152 // Reserve memory at an arbitrary address, only if that area is
3153 // available (and not reserved for something else).
3154 
3155 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3156   const int max_tries = 10;
3157   char* base[max_tries];
3158   size_t size[max_tries];
3159   const size_t gap = 0x000000;
3160 
3161   // Assert only that the size is a multiple of the page size, since
3162   // that's all that mmap requires, and since that's all we really know
3163   // about at this low abstraction level.  If we need higher alignment,
3164   // we can either pass an alignment to this method or verify alignment
3165   // in one of the methods further up the call chain.  See bug 5044738.
3166   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3167 
3168   // Repeatedly allocate blocks until the block is allocated at the
3169   // right spot. Give up after max_tries. Note that reserve_memory() will
3170   // automatically update _highest_vm_reserved_address if the call is
3171   // successful. The variable tracks the highest memory address every reserved
3172   // by JVM. It is used to detect heap-stack collision if running with
3173   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3174   // space than needed, it could confuse the collision detecting code. To
3175   // solve the problem, save current _highest_vm_reserved_address and
3176   // calculate the correct value before return.
3177   address old_highest = _highest_vm_reserved_address;
3178 
3179   // Linux mmap allows caller to pass an address as hint; give it a try first,
3180   // if kernel honors the hint then we can return immediately.
3181   char * addr = anon_mmap(requested_addr, bytes, false);
3182   if (addr == requested_addr) {
3183      return requested_addr;
3184   }
3185 
3186   if (addr != NULL) {
3187      // mmap() is successful but it fails to reserve at the requested address
3188      anon_munmap(addr, bytes);
3189   }
3190 
3191   int i;
3192   for (i = 0; i < max_tries; ++i) {
3193     base[i] = reserve_memory(bytes);
3194 
3195     if (base[i] != NULL) {
3196       // Is this the block we wanted?
3197       if (base[i] == requested_addr) {
3198         size[i] = bytes;
3199         break;
3200       }
3201 
3202       // Does this overlap the block we wanted? Give back the overlapped
3203       // parts and try again.
3204 
3205       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3206       if (top_overlap >= 0 && top_overlap < bytes) {
3207         unmap_memory(base[i], top_overlap);
3208         base[i] += top_overlap;
3209         size[i] = bytes - top_overlap;
3210       } else {
3211         size_t bottom_overlap = base[i] + bytes - requested_addr;
3212         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3213           unmap_memory(requested_addr, bottom_overlap);
3214           size[i] = bytes - bottom_overlap;
3215         } else {
3216           size[i] = bytes;
3217         }
3218       }
3219     }
3220   }
3221 
3222   // Give back the unused reserved pieces.
3223 
3224   for (int j = 0; j < i; ++j) {
3225     if (base[j] != NULL) {
3226       unmap_memory(base[j], size[j]);
3227     }
3228   }
3229 
3230   if (i < max_tries) {
3231     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3232     return requested_addr;
3233   } else {
3234     _highest_vm_reserved_address = old_highest;
3235     return NULL;
3236   }
3237 }
3238 
3239 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3240   return ::read(fd, buf, nBytes);
3241 }
3242 
3243 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3244 // Solaris uses poll(), linux uses park().
3245 // Poll() is likely a better choice, assuming that Thread.interrupt()
3246 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3247 // SIGSEGV, see 4355769.
3248 
3249 const int NANOSECS_PER_MILLISECS = 1000000;
3250 
3251 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3252   assert(thread == Thread::current(),  "thread consistency check");
3253 
3254   ParkEvent * const slp = thread->_SleepEvent ;
3255   slp->reset() ;
3256   OrderAccess::fence() ;
3257 
3258   if (interruptible) {
3259     jlong prevtime = javaTimeNanos();
3260 
3261     for (;;) {
3262       if (os::is_interrupted(thread, true)) {
3263         return OS_INTRPT;
3264       }
3265 
3266       jlong newtime = javaTimeNanos();
3267 
3268       if (newtime - prevtime < 0) {
3269         // time moving backwards, should only happen if no monotonic clock
3270         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3271         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3272       } else {
3273         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3274       }
3275 
3276       if(millis <= 0) {
3277         return OS_OK;
3278       }
3279 
3280       prevtime = newtime;
3281 
3282       {
3283         assert(thread->is_Java_thread(), "sanity check");
3284         JavaThread *jt = (JavaThread *) thread;
3285         ThreadBlockInVM tbivm(jt);
3286         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3287 
3288         jt->set_suspend_equivalent();
3289         // cleared by handle_special_suspend_equivalent_condition() or
3290         // java_suspend_self() via check_and_wait_while_suspended()
3291 
3292         slp->park(millis);
3293 
3294         // were we externally suspended while we were waiting?
3295         jt->check_and_wait_while_suspended();
3296       }
3297     }
3298   } else {
3299     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3300     jlong prevtime = javaTimeNanos();
3301 
3302     for (;;) {
3303       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3304       // the 1st iteration ...
3305       jlong newtime = javaTimeNanos();
3306 
3307       if (newtime - prevtime < 0) {
3308         // time moving backwards, should only happen if no monotonic clock
3309         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3310         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3311       } else {
3312         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3313       }
3314 
3315       if(millis <= 0) break ;
3316 
3317       prevtime = newtime;
3318       slp->park(millis);
3319     }
3320     return OS_OK ;
3321   }
3322 }
3323 
3324 int os::naked_sleep() {
3325   // %% make the sleep time an integer flag. for now use 1 millisec.
3326   return os::sleep(Thread::current(), 1, false);
3327 }
3328 
3329 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3330 void os::infinite_sleep() {
3331   while (true) {    // sleep forever ...
3332     ::sleep(100);   // ... 100 seconds at a time
3333   }
3334 }
3335 
3336 // Used to convert frequent JVM_Yield() to nops
3337 bool os::dont_yield() {
3338   return DontYieldALot;
3339 }
3340 
3341 void os::yield() {
3342   sched_yield();
3343 }
3344 
3345 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3346 
3347 void os::yield_all(int attempts) {
3348   // Yields to all threads, including threads with lower priorities
3349   // Threads on Linux are all with same priority. The Solaris style
3350   // os::yield_all() with nanosleep(1ms) is not necessary.
3351   sched_yield();
3352 }
3353 
3354 // Called from the tight loops to possibly influence time-sharing heuristics
3355 void os::loop_breaker(int attempts) {
3356   os::yield_all(attempts);
3357 }
3358 
3359 ////////////////////////////////////////////////////////////////////////////////
3360 // thread priority support
3361 
3362 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3363 // only supports dynamic priority, static priority must be zero. For real-time
3364 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3365 // However, for large multi-threaded applications, SCHED_RR is not only slower
3366 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3367 // of 5 runs - Sep 2005).
3368 //
3369 // The following code actually changes the niceness of kernel-thread/LWP. It
3370 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3371 // not the entire user process, and user level threads are 1:1 mapped to kernel
3372 // threads. It has always been the case, but could change in the future. For
3373 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3374 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3375 
3376 int os::java_to_os_priority[MaxPriority + 1] = {
3377   19,              // 0 Entry should never be used
3378 
3379    4,              // 1 MinPriority
3380    3,              // 2
3381    2,              // 3
3382 
3383    1,              // 4
3384    0,              // 5 NormPriority
3385   -1,              // 6
3386 
3387   -2,              // 7
3388   -3,              // 8
3389   -4,              // 9 NearMaxPriority
3390 
3391   -5               // 10 MaxPriority
3392 };
3393 
3394 static int prio_init() {
3395   if (ThreadPriorityPolicy == 1) {
3396     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3397     // if effective uid is not root. Perhaps, a more elegant way of doing
3398     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3399     if (geteuid() != 0) {
3400       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3401         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3402       }
3403       ThreadPriorityPolicy = 0;
3404     }
3405   }
3406   return 0;
3407 }
3408 
3409 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3410   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3411 
3412   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3413   return (ret == 0) ? OS_OK : OS_ERR;
3414 }
3415 
3416 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3417   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3418     *priority_ptr = java_to_os_priority[NormPriority];
3419     return OS_OK;
3420   }
3421 
3422   errno = 0;
3423   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3424   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3425 }
3426 
3427 // Hint to the underlying OS that a task switch would not be good.
3428 // Void return because it's a hint and can fail.
3429 void os::hint_no_preempt() {}
3430 
3431 ////////////////////////////////////////////////////////////////////////////////
3432 // suspend/resume support
3433 
3434 //  the low-level signal-based suspend/resume support is a remnant from the
3435 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3436 //  within hotspot. Now there is a single use-case for this:
3437 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3438 //      that runs in the watcher thread.
3439 //  The remaining code is greatly simplified from the more general suspension
3440 //  code that used to be used.
3441 //
3442 //  The protocol is quite simple:
3443 //  - suspend:
3444 //      - sends a signal to the target thread
3445 //      - polls the suspend state of the osthread using a yield loop
3446 //      - target thread signal handler (SR_handler) sets suspend state
3447 //        and blocks in sigsuspend until continued
3448 //  - resume:
3449 //      - sets target osthread state to continue
3450 //      - sends signal to end the sigsuspend loop in the SR_handler
3451 //
3452 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3453 //
3454 
3455 static void resume_clear_context(OSThread *osthread) {
3456   osthread->set_ucontext(NULL);
3457   osthread->set_siginfo(NULL);
3458 
3459   // notify the suspend action is completed, we have now resumed
3460   osthread->sr.clear_suspended();
3461 }
3462 
3463 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3464   osthread->set_ucontext(context);
3465   osthread->set_siginfo(siginfo);
3466 }
3467 
3468 //
3469 // Handler function invoked when a thread's execution is suspended or
3470 // resumed. We have to be careful that only async-safe functions are
3471 // called here (Note: most pthread functions are not async safe and
3472 // should be avoided.)
3473 //
3474 // Note: sigwait() is a more natural fit than sigsuspend() from an
3475 // interface point of view, but sigwait() prevents the signal hander
3476 // from being run. libpthread would get very confused by not having
3477 // its signal handlers run and prevents sigwait()'s use with the
3478 // mutex granting granting signal.
3479 //
3480 // Currently only ever called on the VMThread
3481 //
3482 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3483   // Save and restore errno to avoid confusing native code with EINTR
3484   // after sigsuspend.
3485   int old_errno = errno;
3486 
3487   Thread* thread = Thread::current();
3488   OSThread* osthread = thread->osthread();
3489   assert(thread->is_VM_thread(), "Must be VMThread");
3490   // read current suspend action
3491   int action = osthread->sr.suspend_action();
3492   if (action == SR_SUSPEND) {
3493     suspend_save_context(osthread, siginfo, context);
3494 
3495     // Notify the suspend action is about to be completed. do_suspend()
3496     // waits until SR_SUSPENDED is set and then returns. We will wait
3497     // here for a resume signal and that completes the suspend-other
3498     // action. do_suspend/do_resume is always called as a pair from
3499     // the same thread - so there are no races
3500 
3501     // notify the caller
3502     osthread->sr.set_suspended();
3503 
3504     sigset_t suspend_set;  // signals for sigsuspend()
3505 
3506     // get current set of blocked signals and unblock resume signal
3507     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3508     sigdelset(&suspend_set, SR_signum);
3509 
3510     // wait here until we are resumed
3511     do {
3512       sigsuspend(&suspend_set);
3513       // ignore all returns until we get a resume signal
3514     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3515 
3516     resume_clear_context(osthread);
3517 
3518   } else {
3519     assert(action == SR_CONTINUE, "unexpected sr action");
3520     // nothing special to do - just leave the handler
3521   }
3522 
3523   errno = old_errno;
3524 }
3525 
3526 
3527 static int SR_initialize() {
3528   struct sigaction act;
3529   char *s;
3530   /* Get signal number to use for suspend/resume */
3531   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3532     int sig = ::strtol(s, 0, 10);
3533     if (sig > 0 || sig < _NSIG) {
3534         SR_signum = sig;
3535     }
3536   }
3537 
3538   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3539         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3540 
3541   sigemptyset(&SR_sigset);
3542   sigaddset(&SR_sigset, SR_signum);
3543 
3544   /* Set up signal handler for suspend/resume */
3545   act.sa_flags = SA_RESTART|SA_SIGINFO;
3546   act.sa_handler = (void (*)(int)) SR_handler;
3547 
3548   // SR_signum is blocked by default.
3549   // 4528190 - We also need to block pthread restart signal (32 on all
3550   // supported Linux platforms). Note that LinuxThreads need to block
3551   // this signal for all threads to work properly. So we don't have
3552   // to use hard-coded signal number when setting up the mask.
3553   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3554 
3555   if (sigaction(SR_signum, &act, 0) == -1) {
3556     return -1;
3557   }
3558 
3559   // Save signal flag
3560   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3561   return 0;
3562 }
3563 
3564 static int SR_finalize() {
3565   return 0;
3566 }
3567 
3568 
3569 // returns true on success and false on error - really an error is fatal
3570 // but this seems the normal response to library errors
3571 static bool do_suspend(OSThread* osthread) {
3572   // mark as suspended and send signal
3573   osthread->sr.set_suspend_action(SR_SUSPEND);
3574   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3575   assert_status(status == 0, status, "pthread_kill");
3576 
3577   // check status and wait until notified of suspension
3578   if (status == 0) {
3579     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3580       os::yield_all(i);
3581     }
3582     osthread->sr.set_suspend_action(SR_NONE);
3583     return true;
3584   }
3585   else {
3586     osthread->sr.set_suspend_action(SR_NONE);
3587     return false;
3588   }
3589 }
3590 
3591 static void do_resume(OSThread* osthread) {
3592   assert(osthread->sr.is_suspended(), "thread should be suspended");
3593   osthread->sr.set_suspend_action(SR_CONTINUE);
3594 
3595   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3596   assert_status(status == 0, status, "pthread_kill");
3597   // check status and wait unit notified of resumption
3598   if (status == 0) {
3599     for (int i = 0; osthread->sr.is_suspended(); i++) {
3600       os::yield_all(i);
3601     }
3602   }
3603   osthread->sr.set_suspend_action(SR_NONE);
3604 }
3605 
3606 ////////////////////////////////////////////////////////////////////////////////
3607 // interrupt support
3608 
3609 void os::interrupt(Thread* thread) {
3610   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3611     "possibility of dangling Thread pointer");
3612 
3613   OSThread* osthread = thread->osthread();
3614 
3615   if (!osthread->interrupted()) {
3616     osthread->set_interrupted(true);
3617     // More than one thread can get here with the same value of osthread,
3618     // resulting in multiple notifications.  We do, however, want the store
3619     // to interrupted() to be visible to other threads before we execute unpark().
3620     OrderAccess::fence();
3621     ParkEvent * const slp = thread->_SleepEvent ;
3622     if (slp != NULL) slp->unpark() ;
3623   }
3624 
3625   // For JSR166. Unpark even if interrupt status already was set
3626   if (thread->is_Java_thread())
3627     ((JavaThread*)thread)->parker()->unpark();
3628 
3629   ParkEvent * ev = thread->_ParkEvent ;
3630   if (ev != NULL) ev->unpark() ;
3631 
3632 }
3633 
3634 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3635   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3636     "possibility of dangling Thread pointer");
3637 
3638   OSThread* osthread = thread->osthread();
3639 
3640   bool interrupted = osthread->interrupted();
3641 
3642   if (interrupted && clear_interrupted) {
3643     osthread->set_interrupted(false);
3644     // consider thread->_SleepEvent->reset() ... optional optimization
3645   }
3646 
3647   return interrupted;
3648 }
3649 
3650 ///////////////////////////////////////////////////////////////////////////////////
3651 // signal handling (except suspend/resume)
3652 
3653 // This routine may be used by user applications as a "hook" to catch signals.
3654 // The user-defined signal handler must pass unrecognized signals to this
3655 // routine, and if it returns true (non-zero), then the signal handler must
3656 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3657 // routine will never retun false (zero), but instead will execute a VM panic
3658 // routine kill the process.
3659 //
3660 // If this routine returns false, it is OK to call it again.  This allows
3661 // the user-defined signal handler to perform checks either before or after
3662 // the VM performs its own checks.  Naturally, the user code would be making
3663 // a serious error if it tried to handle an exception (such as a null check
3664 // or breakpoint) that the VM was generating for its own correct operation.
3665 //
3666 // This routine may recognize any of the following kinds of signals:
3667 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3668 // It should be consulted by handlers for any of those signals.
3669 //
3670 // The caller of this routine must pass in the three arguments supplied
3671 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3672 // field of the structure passed to sigaction().  This routine assumes that
3673 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3674 //
3675 // Note that the VM will print warnings if it detects conflicting signal
3676 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3677 //
3678 extern "C" JNIEXPORT int
3679 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3680                         void* ucontext, int abort_if_unrecognized);
3681 
3682 void signalHandler(int sig, siginfo_t* info, void* uc) {
3683   assert(info != NULL && uc != NULL, "it must be old kernel");
3684   JVM_handle_linux_signal(sig, info, uc, true);
3685 }
3686 
3687 
3688 // This boolean allows users to forward their own non-matching signals
3689 // to JVM_handle_linux_signal, harmlessly.
3690 bool os::Linux::signal_handlers_are_installed = false;
3691 
3692 // For signal-chaining
3693 struct sigaction os::Linux::sigact[MAXSIGNUM];
3694 unsigned int os::Linux::sigs = 0;
3695 bool os::Linux::libjsig_is_loaded = false;
3696 typedef struct sigaction *(*get_signal_t)(int);
3697 get_signal_t os::Linux::get_signal_action = NULL;
3698 
3699 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3700   struct sigaction *actp = NULL;
3701 
3702   if (libjsig_is_loaded) {
3703     // Retrieve the old signal handler from libjsig
3704     actp = (*get_signal_action)(sig);
3705   }
3706   if (actp == NULL) {
3707     // Retrieve the preinstalled signal handler from jvm
3708     actp = get_preinstalled_handler(sig);
3709   }
3710 
3711   return actp;
3712 }
3713 
3714 static bool call_chained_handler(struct sigaction *actp, int sig,
3715                                  siginfo_t *siginfo, void *context) {
3716   // Call the old signal handler
3717   if (actp->sa_handler == SIG_DFL) {
3718     // It's more reasonable to let jvm treat it as an unexpected exception
3719     // instead of taking the default action.
3720     return false;
3721   } else if (actp->sa_handler != SIG_IGN) {
3722     if ((actp->sa_flags & SA_NODEFER) == 0) {
3723       // automaticlly block the signal
3724       sigaddset(&(actp->sa_mask), sig);
3725     }
3726 
3727     sa_handler_t hand;
3728     sa_sigaction_t sa;
3729     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3730     // retrieve the chained handler
3731     if (siginfo_flag_set) {
3732       sa = actp->sa_sigaction;
3733     } else {
3734       hand = actp->sa_handler;
3735     }
3736 
3737     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3738       actp->sa_handler = SIG_DFL;
3739     }
3740 
3741     // try to honor the signal mask
3742     sigset_t oset;
3743     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3744 
3745     // call into the chained handler
3746     if (siginfo_flag_set) {
3747       (*sa)(sig, siginfo, context);
3748     } else {
3749       (*hand)(sig);
3750     }
3751 
3752     // restore the signal mask
3753     pthread_sigmask(SIG_SETMASK, &oset, 0);
3754   }
3755   // Tell jvm's signal handler the signal is taken care of.
3756   return true;
3757 }
3758 
3759 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3760   bool chained = false;
3761   // signal-chaining
3762   if (UseSignalChaining) {
3763     struct sigaction *actp = get_chained_signal_action(sig);
3764     if (actp != NULL) {
3765       chained = call_chained_handler(actp, sig, siginfo, context);
3766     }
3767   }
3768   return chained;
3769 }
3770 
3771 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3772   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3773     return &sigact[sig];
3774   }
3775   return NULL;
3776 }
3777 
3778 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3779   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3780   sigact[sig] = oldAct;
3781   sigs |= (unsigned int)1 << sig;
3782 }
3783 
3784 // for diagnostic
3785 int os::Linux::sigflags[MAXSIGNUM];
3786 
3787 int os::Linux::get_our_sigflags(int sig) {
3788   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3789   return sigflags[sig];
3790 }
3791 
3792 void os::Linux::set_our_sigflags(int sig, int flags) {
3793   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3794   sigflags[sig] = flags;
3795 }
3796 
3797 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3798   // Check for overwrite.
3799   struct sigaction oldAct;
3800   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3801 
3802   void* oldhand = oldAct.sa_sigaction
3803                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3804                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3805   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3806       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3807       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3808     if (AllowUserSignalHandlers || !set_installed) {
3809       // Do not overwrite; user takes responsibility to forward to us.
3810       return;
3811     } else if (UseSignalChaining) {
3812       // save the old handler in jvm
3813       save_preinstalled_handler(sig, oldAct);
3814       // libjsig also interposes the sigaction() call below and saves the
3815       // old sigaction on it own.
3816     } else {
3817       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3818                     "%#lx for signal %d.", (long)oldhand, sig));
3819     }
3820   }
3821 
3822   struct sigaction sigAct;
3823   sigfillset(&(sigAct.sa_mask));
3824   sigAct.sa_handler = SIG_DFL;
3825   if (!set_installed) {
3826     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3827   } else {
3828     sigAct.sa_sigaction = signalHandler;
3829     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3830   }
3831   // Save flags, which are set by ours
3832   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3833   sigflags[sig] = sigAct.sa_flags;
3834 
3835   int ret = sigaction(sig, &sigAct, &oldAct);
3836   assert(ret == 0, "check");
3837 
3838   void* oldhand2  = oldAct.sa_sigaction
3839                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3840                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3841   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3842 }
3843 
3844 // install signal handlers for signals that HotSpot needs to
3845 // handle in order to support Java-level exception handling.
3846 
3847 void os::Linux::install_signal_handlers() {
3848   if (!signal_handlers_are_installed) {
3849     signal_handlers_are_installed = true;
3850 
3851     // signal-chaining
3852     typedef void (*signal_setting_t)();
3853     signal_setting_t begin_signal_setting = NULL;
3854     signal_setting_t end_signal_setting = NULL;
3855     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3856                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3857     if (begin_signal_setting != NULL) {
3858       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3859                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3860       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3861                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3862       libjsig_is_loaded = true;
3863       assert(UseSignalChaining, "should enable signal-chaining");
3864     }
3865     if (libjsig_is_loaded) {
3866       // Tell libjsig jvm is setting signal handlers
3867       (*begin_signal_setting)();
3868     }
3869 
3870     set_signal_handler(SIGSEGV, true);
3871     set_signal_handler(SIGPIPE, true);
3872     set_signal_handler(SIGBUS, true);
3873     set_signal_handler(SIGILL, true);
3874     set_signal_handler(SIGFPE, true);
3875     set_signal_handler(SIGXFSZ, true);
3876 
3877     if (libjsig_is_loaded) {
3878       // Tell libjsig jvm finishes setting signal handlers
3879       (*end_signal_setting)();
3880     }
3881 
3882     // We don't activate signal checker if libjsig is in place, we trust ourselves
3883     // and if UserSignalHandler is installed all bets are off
3884     if (CheckJNICalls) {
3885       if (libjsig_is_loaded) {
3886         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3887         check_signals = false;
3888       }
3889       if (AllowUserSignalHandlers) {
3890         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3891         check_signals = false;
3892       }
3893     }
3894   }
3895 }
3896 
3897 // This is the fastest way to get thread cpu time on Linux.
3898 // Returns cpu time (user+sys) for any thread, not only for current.
3899 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3900 // It might work on 2.6.10+ with a special kernel/glibc patch.
3901 // For reference, please, see IEEE Std 1003.1-2004:
3902 //   http://www.unix.org/single_unix_specification
3903 
3904 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3905   struct timespec tp;
3906   int rc = os::Linux::clock_gettime(clockid, &tp);
3907   assert(rc == 0, "clock_gettime is expected to return 0 code");
3908 
3909   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3910 }
3911 
3912 /////
3913 // glibc on Linux platform uses non-documented flag
3914 // to indicate, that some special sort of signal
3915 // trampoline is used.
3916 // We will never set this flag, and we should
3917 // ignore this flag in our diagnostic
3918 #ifdef SIGNIFICANT_SIGNAL_MASK
3919 #undef SIGNIFICANT_SIGNAL_MASK
3920 #endif
3921 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3922 
3923 static const char* get_signal_handler_name(address handler,
3924                                            char* buf, int buflen) {
3925   int offset;
3926   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3927   if (found) {
3928     // skip directory names
3929     const char *p1, *p2;
3930     p1 = buf;
3931     size_t len = strlen(os::file_separator());
3932     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3933     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3934   } else {
3935     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3936   }
3937   return buf;
3938 }
3939 
3940 static void print_signal_handler(outputStream* st, int sig,
3941                                  char* buf, size_t buflen) {
3942   struct sigaction sa;
3943 
3944   sigaction(sig, NULL, &sa);
3945 
3946   // See comment for SIGNIFICANT_SIGNAL_MASK define
3947   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3948 
3949   st->print("%s: ", os::exception_name(sig, buf, buflen));
3950 
3951   address handler = (sa.sa_flags & SA_SIGINFO)
3952     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3953     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3954 
3955   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3956     st->print("SIG_DFL");
3957   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3958     st->print("SIG_IGN");
3959   } else {
3960     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3961   }
3962 
3963   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3964 
3965   address rh = VMError::get_resetted_sighandler(sig);
3966   // May be, handler was resetted by VMError?
3967   if(rh != NULL) {
3968     handler = rh;
3969     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3970   }
3971 
3972   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3973 
3974   // Check: is it our handler?
3975   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3976      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3977     // It is our signal handler
3978     // check for flags, reset system-used one!
3979     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3980       st->print(
3981                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3982                 os::Linux::get_our_sigflags(sig));
3983     }
3984   }
3985   st->cr();
3986 }
3987 
3988 
3989 #define DO_SIGNAL_CHECK(sig) \
3990   if (!sigismember(&check_signal_done, sig)) \
3991     os::Linux::check_signal_handler(sig)
3992 
3993 // This method is a periodic task to check for misbehaving JNI applications
3994 // under CheckJNI, we can add any periodic checks here
3995 
3996 void os::run_periodic_checks() {
3997 
3998   if (check_signals == false) return;
3999 
4000   // SEGV and BUS if overridden could potentially prevent
4001   // generation of hs*.log in the event of a crash, debugging
4002   // such a case can be very challenging, so we absolutely
4003   // check the following for a good measure:
4004   DO_SIGNAL_CHECK(SIGSEGV);
4005   DO_SIGNAL_CHECK(SIGILL);
4006   DO_SIGNAL_CHECK(SIGFPE);
4007   DO_SIGNAL_CHECK(SIGBUS);
4008   DO_SIGNAL_CHECK(SIGPIPE);
4009   DO_SIGNAL_CHECK(SIGXFSZ);
4010 
4011 
4012   // ReduceSignalUsage allows the user to override these handlers
4013   // see comments at the very top and jvm_solaris.h
4014   if (!ReduceSignalUsage) {
4015     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4016     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4017     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4018     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4019   }
4020 
4021   DO_SIGNAL_CHECK(SR_signum);
4022   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4023 }
4024 
4025 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4026 
4027 static os_sigaction_t os_sigaction = NULL;
4028 
4029 void os::Linux::check_signal_handler(int sig) {
4030   char buf[O_BUFLEN];
4031   address jvmHandler = NULL;
4032 
4033 
4034   struct sigaction act;
4035   if (os_sigaction == NULL) {
4036     // only trust the default sigaction, in case it has been interposed
4037     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4038     if (os_sigaction == NULL) return;
4039   }
4040 
4041   os_sigaction(sig, (struct sigaction*)NULL, &act);
4042 
4043 
4044   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4045 
4046   address thisHandler = (act.sa_flags & SA_SIGINFO)
4047     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4048     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4049 
4050 
4051   switch(sig) {
4052   case SIGSEGV:
4053   case SIGBUS:
4054   case SIGFPE:
4055   case SIGPIPE:
4056   case SIGILL:
4057   case SIGXFSZ:
4058     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4059     break;
4060 
4061   case SHUTDOWN1_SIGNAL:
4062   case SHUTDOWN2_SIGNAL:
4063   case SHUTDOWN3_SIGNAL:
4064   case BREAK_SIGNAL:
4065     jvmHandler = (address)user_handler();
4066     break;
4067 
4068   case INTERRUPT_SIGNAL:
4069     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4070     break;
4071 
4072   default:
4073     if (sig == SR_signum) {
4074       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4075     } else {
4076       return;
4077     }
4078     break;
4079   }
4080 
4081   if (thisHandler != jvmHandler) {
4082     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4083     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4084     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4085     // No need to check this sig any longer
4086     sigaddset(&check_signal_done, sig);
4087   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4088     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4089     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4090     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4091     // No need to check this sig any longer
4092     sigaddset(&check_signal_done, sig);
4093   }
4094 
4095   // Dump all the signal
4096   if (sigismember(&check_signal_done, sig)) {
4097     print_signal_handlers(tty, buf, O_BUFLEN);
4098   }
4099 }
4100 
4101 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4102 
4103 extern bool signal_name(int signo, char* buf, size_t len);
4104 
4105 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4106   if (0 < exception_code && exception_code <= SIGRTMAX) {
4107     // signal
4108     if (!signal_name(exception_code, buf, size)) {
4109       jio_snprintf(buf, size, "SIG%d", exception_code);
4110     }
4111     return buf;
4112   } else {
4113     return NULL;
4114   }
4115 }
4116 
4117 // this is called _before_ the most of global arguments have been parsed
4118 void os::init(void) {
4119   char dummy;   /* used to get a guess on initial stack address */
4120 //  first_hrtime = gethrtime();
4121 
4122   // With LinuxThreads the JavaMain thread pid (primordial thread)
4123   // is different than the pid of the java launcher thread.
4124   // So, on Linux, the launcher thread pid is passed to the VM
4125   // via the sun.java.launcher.pid property.
4126   // Use this property instead of getpid() if it was correctly passed.
4127   // See bug 6351349.
4128   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4129 
4130   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4131 
4132   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4133 
4134   init_random(1234567);
4135 
4136   ThreadCritical::initialize();
4137 
4138   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4139   if (Linux::page_size() == -1) {
4140     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4141                   strerror(errno)));
4142   }
4143   init_page_sizes((size_t) Linux::page_size());
4144 
4145   Linux::initialize_system_info();
4146 
4147   // main_thread points to the aboriginal thread
4148   Linux::_main_thread = pthread_self();
4149 
4150   Linux::clock_init();
4151   initial_time_count = os::elapsed_counter();
4152   pthread_mutex_init(&dl_mutex, NULL);
4153 }
4154 
4155 // To install functions for atexit system call
4156 extern "C" {
4157   static void perfMemory_exit_helper() {
4158     perfMemory_exit();
4159   }
4160 }
4161 
4162 // this is called _after_ the global arguments have been parsed
4163 jint os::init_2(void)
4164 {
4165   Linux::fast_thread_clock_init();
4166 
4167   // Allocate a single page and mark it as readable for safepoint polling
4168   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4169   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4170 
4171   os::set_polling_page( polling_page );
4172 
4173 #ifndef PRODUCT
4174   if(Verbose && PrintMiscellaneous)
4175     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4176 #endif
4177 
4178   if (!UseMembar) {
4179     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4180     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4181     os::set_memory_serialize_page( mem_serialize_page );
4182 
4183 #ifndef PRODUCT
4184     if(Verbose && PrintMiscellaneous)
4185       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4186 #endif
4187   }
4188 
4189   os::large_page_init();
4190 
4191   // initialize suspend/resume support - must do this before signal_sets_init()
4192   if (SR_initialize() != 0) {
4193     perror("SR_initialize failed");
4194     return JNI_ERR;
4195   }
4196 
4197   Linux::signal_sets_init();
4198   Linux::install_signal_handlers();
4199 
4200   // Check minimum allowable stack size for thread creation and to initialize
4201   // the java system classes, including StackOverflowError - depends on page
4202   // size.  Add a page for compiler2 recursion in main thread.
4203   // Add in 2*BytesPerWord times page size to account for VM stack during
4204   // class initialization depending on 32 or 64 bit VM.
4205   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4206             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4207                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4208 
4209   size_t threadStackSizeInBytes = ThreadStackSize * K;
4210   if (threadStackSizeInBytes != 0 &&
4211       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4212         tty->print_cr("\nThe stack size specified is too small, "
4213                       "Specify at least %dk",
4214                       os::Linux::min_stack_allowed/ K);
4215         return JNI_ERR;
4216   }
4217 
4218   // Make the stack size a multiple of the page size so that
4219   // the yellow/red zones can be guarded.
4220   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4221         vm_page_size()));
4222 
4223   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4224 
4225   Linux::libpthread_init();
4226   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4227      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4228           Linux::glibc_version(), Linux::libpthread_version(),
4229           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4230   }
4231 
4232   if (UseNUMA) {
4233     if (!Linux::libnuma_init()) {
4234       UseNUMA = false;
4235     } else {
4236       if ((Linux::numa_max_node() < 1)) {
4237         // There's only one node(they start from 0), disable NUMA.
4238         UseNUMA = false;
4239       }
4240     }
4241     // With SHM large pages we cannot uncommit a page, so there's not way
4242     // we can make the adaptive lgrp chunk resizing work. If the user specified
4243     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4244     // disable adaptive resizing.
4245     if (UseNUMA && UseLargePages && UseSHM) {
4246       if (!FLAG_IS_DEFAULT(UseNUMA)) {
4247         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4248           UseLargePages = false;
4249         } else {
4250           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4251           UseAdaptiveSizePolicy = false;
4252           UseAdaptiveNUMAChunkSizing = false;
4253         }
4254       } else {
4255         UseNUMA = false;
4256       }
4257     }
4258     if (!UseNUMA && ForceNUMA) {
4259       UseNUMA = true;
4260     }
4261   }
4262 
4263   if (MaxFDLimit) {
4264     // set the number of file descriptors to max. print out error
4265     // if getrlimit/setrlimit fails but continue regardless.
4266     struct rlimit nbr_files;
4267     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4268     if (status != 0) {
4269       if (PrintMiscellaneous && (Verbose || WizardMode))
4270         perror("os::init_2 getrlimit failed");
4271     } else {
4272       nbr_files.rlim_cur = nbr_files.rlim_max;
4273       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4274       if (status != 0) {
4275         if (PrintMiscellaneous && (Verbose || WizardMode))
4276           perror("os::init_2 setrlimit failed");
4277       }
4278     }
4279   }
4280 
4281   // Initialize lock used to serialize thread creation (see os::create_thread)
4282   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4283 
4284   // at-exit methods are called in the reverse order of their registration.
4285   // atexit functions are called on return from main or as a result of a
4286   // call to exit(3C). There can be only 32 of these functions registered
4287   // and atexit() does not set errno.
4288 
4289   if (PerfAllowAtExitRegistration) {
4290     // only register atexit functions if PerfAllowAtExitRegistration is set.
4291     // atexit functions can be delayed until process exit time, which
4292     // can be problematic for embedded VM situations. Embedded VMs should
4293     // call DestroyJavaVM() to assure that VM resources are released.
4294 
4295     // note: perfMemory_exit_helper atexit function may be removed in
4296     // the future if the appropriate cleanup code can be added to the
4297     // VM_Exit VMOperation's doit method.
4298     if (atexit(perfMemory_exit_helper) != 0) {
4299       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4300     }
4301   }
4302 
4303   // initialize thread priority policy
4304   prio_init();
4305 
4306   return JNI_OK;
4307 }
4308 
4309 // this is called at the end of vm_initialization
4310 void os::init_3(void)
4311 {
4312 #ifdef JAVASE_EMBEDDED
4313   // Start the MemNotifyThread
4314   if (LowMemoryProtection) {
4315     MemNotifyThread::start();
4316   }
4317   return;
4318 #endif
4319 }
4320 
4321 // Mark the polling page as unreadable
4322 void os::make_polling_page_unreadable(void) {
4323   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4324     fatal("Could not disable polling page");
4325 };
4326 
4327 // Mark the polling page as readable
4328 void os::make_polling_page_readable(void) {
4329   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4330     fatal("Could not enable polling page");
4331   }
4332 };
4333 
4334 int os::active_processor_count() {
4335   // Linux doesn't yet have a (official) notion of processor sets,
4336   // so just return the number of online processors.
4337   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4338   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4339   return online_cpus;
4340 }
4341 
4342 bool os::distribute_processes(uint length, uint* distribution) {
4343   // Not yet implemented.
4344   return false;
4345 }
4346 
4347 bool os::bind_to_processor(uint processor_id) {
4348   // Not yet implemented.
4349   return false;
4350 }
4351 
4352 ///
4353 
4354 // Suspends the target using the signal mechanism and then grabs the PC before
4355 // resuming the target. Used by the flat-profiler only
4356 ExtendedPC os::get_thread_pc(Thread* thread) {
4357   // Make sure that it is called by the watcher for the VMThread
4358   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4359   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4360 
4361   ExtendedPC epc;
4362 
4363   OSThread* osthread = thread->osthread();
4364   if (do_suspend(osthread)) {
4365     if (osthread->ucontext() != NULL) {
4366       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4367     } else {
4368       // NULL context is unexpected, double-check this is the VMThread
4369       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4370     }
4371     do_resume(osthread);
4372   }
4373   // failure means pthread_kill failed for some reason - arguably this is
4374   // a fatal problem, but such problems are ignored elsewhere
4375 
4376   return epc;
4377 }
4378 
4379 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4380 {
4381    if (is_NPTL()) {
4382       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4383    } else {
4384 #ifndef IA64
4385       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4386       // word back to default 64bit precision if condvar is signaled. Java
4387       // wants 53bit precision.  Save and restore current value.
4388       int fpu = get_fpu_control_word();
4389 #endif // IA64
4390       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4391 #ifndef IA64
4392       set_fpu_control_word(fpu);
4393 #endif // IA64
4394       return status;
4395    }
4396 }
4397 
4398 ////////////////////////////////////////////////////////////////////////////////
4399 // debug support
4400 
4401 static address same_page(address x, address y) {
4402   int page_bits = -os::vm_page_size();
4403   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4404     return x;
4405   else if (x > y)
4406     return (address)(intptr_t(y) | ~page_bits) + 1;
4407   else
4408     return (address)(intptr_t(y) & page_bits);
4409 }
4410 
4411 bool os::find(address addr, outputStream* st) {
4412   Dl_info dlinfo;
4413   memset(&dlinfo, 0, sizeof(dlinfo));
4414   if (dladdr(addr, &dlinfo)) {
4415     st->print(PTR_FORMAT ": ", addr);
4416     if (dlinfo.dli_sname != NULL) {
4417       st->print("%s+%#x", dlinfo.dli_sname,
4418                  addr - (intptr_t)dlinfo.dli_saddr);
4419     } else if (dlinfo.dli_fname) {
4420       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4421     } else {
4422       st->print("<absolute address>");
4423     }
4424     if (dlinfo.dli_fname) {
4425       st->print(" in %s", dlinfo.dli_fname);
4426     }
4427     if (dlinfo.dli_fbase) {
4428       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4429     }
4430     st->cr();
4431 
4432     if (Verbose) {
4433       // decode some bytes around the PC
4434       address begin = same_page(addr-40, addr);
4435       address end   = same_page(addr+40, addr);
4436       address       lowest = (address) dlinfo.dli_sname;
4437       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4438       if (begin < lowest)  begin = lowest;
4439       Dl_info dlinfo2;
4440       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4441           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4442         end = (address) dlinfo2.dli_saddr;
4443       Disassembler::decode(begin, end, st);
4444     }
4445     return true;
4446   }
4447   return false;
4448 }
4449 
4450 ////////////////////////////////////////////////////////////////////////////////
4451 // misc
4452 
4453 // This does not do anything on Linux. This is basically a hook for being
4454 // able to use structured exception handling (thread-local exception filters)
4455 // on, e.g., Win32.
4456 void
4457 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4458                          JavaCallArguments* args, Thread* thread) {
4459   f(value, method, args, thread);
4460 }
4461 
4462 void os::print_statistics() {
4463 }
4464 
4465 int os::message_box(const char* title, const char* message) {
4466   int i;
4467   fdStream err(defaultStream::error_fd());
4468   for (i = 0; i < 78; i++) err.print_raw("=");
4469   err.cr();
4470   err.print_raw_cr(title);
4471   for (i = 0; i < 78; i++) err.print_raw("-");
4472   err.cr();
4473   err.print_raw_cr(message);
4474   for (i = 0; i < 78; i++) err.print_raw("=");
4475   err.cr();
4476 
4477   char buf[16];
4478   // Prevent process from exiting upon "read error" without consuming all CPU
4479   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4480 
4481   return buf[0] == 'y' || buf[0] == 'Y';
4482 }
4483 
4484 int os::stat(const char *path, struct stat *sbuf) {
4485   char pathbuf[MAX_PATH];
4486   if (strlen(path) > MAX_PATH - 1) {
4487     errno = ENAMETOOLONG;
4488     return -1;
4489   }
4490   os::native_path(strcpy(pathbuf, path));
4491   return ::stat(pathbuf, sbuf);
4492 }
4493 
4494 bool os::check_heap(bool force) {
4495   return true;
4496 }
4497 
4498 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4499   return ::vsnprintf(buf, count, format, args);
4500 }
4501 
4502 // Is a (classpath) directory empty?
4503 bool os::dir_is_empty(const char* path) {
4504   DIR *dir = NULL;
4505   struct dirent *ptr;
4506 
4507   dir = opendir(path);
4508   if (dir == NULL) return true;
4509 
4510   /* Scan the directory */
4511   bool result = true;
4512   char buf[sizeof(struct dirent) + MAX_PATH];
4513   while (result && (ptr = ::readdir(dir)) != NULL) {
4514     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4515       result = false;
4516     }
4517   }
4518   closedir(dir);
4519   return result;
4520 }
4521 
4522 // This code originates from JDK's sysOpen and open64_w
4523 // from src/solaris/hpi/src/system_md.c
4524 
4525 #ifndef O_DELETE
4526 #define O_DELETE 0x10000
4527 #endif
4528 
4529 // Open a file. Unlink the file immediately after open returns
4530 // if the specified oflag has the O_DELETE flag set.
4531 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4532 
4533 int os::open(const char *path, int oflag, int mode) {
4534 
4535   if (strlen(path) > MAX_PATH - 1) {
4536     errno = ENAMETOOLONG;
4537     return -1;
4538   }
4539   int fd;
4540   int o_delete = (oflag & O_DELETE);
4541   oflag = oflag & ~O_DELETE;
4542 
4543   fd = ::open64(path, oflag, mode);
4544   if (fd == -1) return -1;
4545 
4546   //If the open succeeded, the file might still be a directory
4547   {
4548     struct stat64 buf64;
4549     int ret = ::fstat64(fd, &buf64);
4550     int st_mode = buf64.st_mode;
4551 
4552     if (ret != -1) {
4553       if ((st_mode & S_IFMT) == S_IFDIR) {
4554         errno = EISDIR;
4555         ::close(fd);
4556         return -1;
4557       }
4558     } else {
4559       ::close(fd);
4560       return -1;
4561     }
4562   }
4563 
4564     /*
4565      * All file descriptors that are opened in the JVM and not
4566      * specifically destined for a subprocess should have the
4567      * close-on-exec flag set.  If we don't set it, then careless 3rd
4568      * party native code might fork and exec without closing all
4569      * appropriate file descriptors (e.g. as we do in closeDescriptors in
4570      * UNIXProcess.c), and this in turn might:
4571      *
4572      * - cause end-of-file to fail to be detected on some file
4573      *   descriptors, resulting in mysterious hangs, or
4574      *
4575      * - might cause an fopen in the subprocess to fail on a system
4576      *   suffering from bug 1085341.
4577      *
4578      * (Yes, the default setting of the close-on-exec flag is a Unix
4579      * design flaw)
4580      *
4581      * See:
4582      * 1085341: 32-bit stdio routines should support file descriptors >255
4583      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4584      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4585      */
4586 #ifdef FD_CLOEXEC
4587     {
4588         int flags = ::fcntl(fd, F_GETFD);
4589         if (flags != -1)
4590             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4591     }
4592 #endif
4593 
4594   if (o_delete != 0) {
4595     ::unlink(path);
4596   }
4597   return fd;
4598 }
4599 
4600 
4601 // create binary file, rewriting existing file if required
4602 int os::create_binary_file(const char* path, bool rewrite_existing) {
4603   int oflags = O_WRONLY | O_CREAT;
4604   if (!rewrite_existing) {
4605     oflags |= O_EXCL;
4606   }
4607   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4608 }
4609 
4610 // return current position of file pointer
4611 jlong os::current_file_offset(int fd) {
4612   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4613 }
4614 
4615 // move file pointer to the specified offset
4616 jlong os::seek_to_file_offset(int fd, jlong offset) {
4617   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4618 }
4619 
4620 // This code originates from JDK's sysAvailable
4621 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4622 
4623 int os::available(int fd, jlong *bytes) {
4624   jlong cur, end;
4625   int mode;
4626   struct stat64 buf64;
4627 
4628   if (::fstat64(fd, &buf64) >= 0) {
4629     mode = buf64.st_mode;
4630     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4631       /*
4632       * XXX: is the following call interruptible? If so, this might
4633       * need to go through the INTERRUPT_IO() wrapper as for other
4634       * blocking, interruptible calls in this file.
4635       */
4636       int n;
4637       if (::ioctl(fd, FIONREAD, &n) >= 0) {
4638         *bytes = n;
4639         return 1;
4640       }
4641     }
4642   }
4643   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4644     return 0;
4645   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4646     return 0;
4647   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4648     return 0;
4649   }
4650   *bytes = end - cur;
4651   return 1;
4652 }
4653 
4654 int os::socket_available(int fd, jint *pbytes) {
4655   // Linux doc says EINTR not returned, unlike Solaris
4656   int ret = ::ioctl(fd, FIONREAD, pbytes);
4657 
4658   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4659   // is expected to return 0 on failure and 1 on success to the jdk.
4660   return (ret < 0) ? 0 : 1;
4661 }
4662 
4663 // Map a block of memory.
4664 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4665                      char *addr, size_t bytes, bool read_only,
4666                      bool allow_exec) {
4667   int prot;
4668   int flags;
4669 
4670   if (read_only) {
4671     prot = PROT_READ;
4672     flags = MAP_SHARED;
4673   } else {
4674     prot = PROT_READ | PROT_WRITE;
4675     flags = MAP_PRIVATE;
4676   }
4677 
4678   if (allow_exec) {
4679     prot |= PROT_EXEC;
4680   }
4681 
4682   if (addr != NULL) {
4683     flags |= MAP_FIXED;
4684   }
4685 
4686   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4687                                      fd, file_offset);
4688   if (mapped_address == MAP_FAILED) {
4689     return NULL;
4690   }
4691   return mapped_address;
4692 }
4693 
4694 
4695 // Remap a block of memory.
4696 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4697                        char *addr, size_t bytes, bool read_only,
4698                        bool allow_exec) {
4699   // same as map_memory() on this OS
4700   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4701                         allow_exec);
4702 }
4703 
4704 
4705 // Unmap a block of memory.
4706 bool os::unmap_memory(char* addr, size_t bytes) {
4707   return munmap(addr, bytes) == 0;
4708 }
4709 
4710 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4711 
4712 static clockid_t thread_cpu_clockid(Thread* thread) {
4713   pthread_t tid = thread->osthread()->pthread_id();
4714   clockid_t clockid;
4715 
4716   // Get thread clockid
4717   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4718   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4719   return clockid;
4720 }
4721 
4722 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4723 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4724 // of a thread.
4725 //
4726 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4727 // the fast estimate available on the platform.
4728 
4729 jlong os::current_thread_cpu_time() {
4730   if (os::Linux::supports_fast_thread_cpu_time()) {
4731     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4732   } else {
4733     // return user + sys since the cost is the same
4734     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4735   }
4736 }
4737 
4738 jlong os::thread_cpu_time(Thread* thread) {
4739   // consistent with what current_thread_cpu_time() returns
4740   if (os::Linux::supports_fast_thread_cpu_time()) {
4741     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4742   } else {
4743     return slow_thread_cpu_time(thread, true /* user + sys */);
4744   }
4745 }
4746 
4747 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4748   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4749     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4750   } else {
4751     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4752   }
4753 }
4754 
4755 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4756   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4757     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4758   } else {
4759     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4760   }
4761 }
4762 
4763 //
4764 //  -1 on error.
4765 //
4766 
4767 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4768   static bool proc_pid_cpu_avail = true;
4769   static bool proc_task_unchecked = true;
4770   static const char *proc_stat_path = "/proc/%d/stat";
4771   pid_t  tid = thread->osthread()->thread_id();
4772   int i;
4773   char *s;
4774   char stat[2048];
4775   int statlen;
4776   char proc_name[64];
4777   int count;
4778   long sys_time, user_time;
4779   char string[64];
4780   char cdummy;
4781   int idummy;
4782   long ldummy;
4783   FILE *fp;
4784 
4785   // We first try accessing /proc/<pid>/cpu since this is faster to
4786   // process.  If this file is not present (linux kernels 2.5 and above)
4787   // then we open /proc/<pid>/stat.
4788   if ( proc_pid_cpu_avail ) {
4789     sprintf(proc_name, "/proc/%d/cpu", tid);
4790     fp =  fopen(proc_name, "r");
4791     if ( fp != NULL ) {
4792       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4793       fclose(fp);
4794       if ( count != 3 ) return -1;
4795 
4796       if (user_sys_cpu_time) {
4797         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4798       } else {
4799         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4800       }
4801     }
4802     else proc_pid_cpu_avail = false;
4803   }
4804 
4805   // The /proc/<tid>/stat aggregates per-process usage on
4806   // new Linux kernels 2.6+ where NPTL is supported.
4807   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4808   // See bug 6328462.
4809   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4810   // and possibly in some other cases, so we check its availability.
4811   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4812     // This is executed only once
4813     proc_task_unchecked = false;
4814     fp = fopen("/proc/self/task", "r");
4815     if (fp != NULL) {
4816       proc_stat_path = "/proc/self/task/%d/stat";
4817       fclose(fp);
4818     }
4819   }
4820 
4821   sprintf(proc_name, proc_stat_path, tid);
4822   fp = fopen(proc_name, "r");
4823   if ( fp == NULL ) return -1;
4824   statlen = fread(stat, 1, 2047, fp);
4825   stat[statlen] = '\0';
4826   fclose(fp);
4827 
4828   // Skip pid and the command string. Note that we could be dealing with
4829   // weird command names, e.g. user could decide to rename java launcher
4830   // to "java 1.4.2 :)", then the stat file would look like
4831   //                1234 (java 1.4.2 :)) R ... ...
4832   // We don't really need to know the command string, just find the last
4833   // occurrence of ")" and then start parsing from there. See bug 4726580.
4834   s = strrchr(stat, ')');
4835   i = 0;
4836   if (s == NULL ) return -1;
4837 
4838   // Skip blank chars
4839   do s++; while (isspace(*s));
4840 
4841   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4842                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4843                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4844                  &user_time, &sys_time);
4845   if ( count != 13 ) return -1;
4846   if (user_sys_cpu_time) {
4847     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4848   } else {
4849     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4850   }
4851 }
4852 
4853 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4854   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4855   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4856   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4857   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4858 }
4859 
4860 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4861   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4862   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4863   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4864   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4865 }
4866 
4867 bool os::is_thread_cpu_time_supported() {
4868   return true;
4869 }
4870 
4871 // System loadavg support.  Returns -1 if load average cannot be obtained.
4872 // Linux doesn't yet have a (official) notion of processor sets,
4873 // so just return the system wide load average.
4874 int os::loadavg(double loadavg[], int nelem) {
4875   return ::getloadavg(loadavg, nelem);
4876 }
4877 
4878 void os::pause() {
4879   char filename[MAX_PATH];
4880   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4881     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4882   } else {
4883     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4884   }
4885 
4886   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4887   if (fd != -1) {
4888     struct stat buf;
4889     ::close(fd);
4890     while (::stat(filename, &buf) == 0) {
4891       (void)::poll(NULL, 0, 100);
4892     }
4893   } else {
4894     jio_fprintf(stderr,
4895       "Could not open pause file '%s', continuing immediately.\n", filename);
4896   }
4897 }
4898 
4899 
4900 // Refer to the comments in os_solaris.cpp park-unpark.
4901 //
4902 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4903 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4904 // For specifics regarding the bug see GLIBC BUGID 261237 :
4905 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4906 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4907 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4908 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4909 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4910 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4911 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4912 // of libpthread avoids the problem, but isn't practical.
4913 //
4914 // Possible remedies:
4915 //
4916 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4917 //      This is palliative and probabilistic, however.  If the thread is preempted
4918 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4919 //      than the minimum period may have passed, and the abstime may be stale (in the
4920 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4921 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4922 //
4923 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4924 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4925 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4926 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4927 //      thread.
4928 //
4929 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4930 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4931 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4932 //      This also works well.  In fact it avoids kernel-level scalability impediments
4933 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4934 //      timers in a graceful fashion.
4935 //
4936 // 4.   When the abstime value is in the past it appears that control returns
4937 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4938 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4939 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4940 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4941 //      It may be possible to avoid reinitialization by checking the return
4942 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4943 //      condvar we must establish the invariant that cond_signal() is only called
4944 //      within critical sections protected by the adjunct mutex.  This prevents
4945 //      cond_signal() from "seeing" a condvar that's in the midst of being
4946 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4947 //      desirable signal-after-unlock optimization that avoids futile context switching.
4948 //
4949 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4950 //      structure when a condvar is used or initialized.  cond_destroy()  would
4951 //      release the helper structure.  Our reinitialize-after-timedwait fix
4952 //      put excessive stress on malloc/free and locks protecting the c-heap.
4953 //
4954 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4955 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4956 // and only enabling the work-around for vulnerable environments.
4957 
4958 // utility to compute the abstime argument to timedwait:
4959 // millis is the relative timeout time
4960 // abstime will be the absolute timeout time
4961 // TODO: replace compute_abstime() with unpackTime()
4962 
4963 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4964   if (millis < 0)  millis = 0;
4965   struct timeval now;
4966   int status = gettimeofday(&now, NULL);
4967   assert(status == 0, "gettimeofday");
4968   jlong seconds = millis / 1000;
4969   millis %= 1000;
4970   if (seconds > 50000000) { // see man cond_timedwait(3T)
4971     seconds = 50000000;
4972   }
4973   abstime->tv_sec = now.tv_sec  + seconds;
4974   long       usec = now.tv_usec + millis * 1000;
4975   if (usec >= 1000000) {
4976     abstime->tv_sec += 1;
4977     usec -= 1000000;
4978   }
4979   abstime->tv_nsec = usec * 1000;
4980   return abstime;
4981 }
4982 
4983 
4984 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4985 // Conceptually TryPark() should be equivalent to park(0).
4986 
4987 int os::PlatformEvent::TryPark() {
4988   for (;;) {
4989     const int v = _Event ;
4990     guarantee ((v == 0) || (v == 1), "invariant") ;
4991     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4992   }
4993 }
4994 
4995 void os::PlatformEvent::park() {       // AKA "down()"
4996   // Invariant: Only the thread associated with the Event/PlatformEvent
4997   // may call park().
4998   // TODO: assert that _Assoc != NULL or _Assoc == Self
4999   int v ;
5000   for (;;) {
5001       v = _Event ;
5002       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5003   }
5004   guarantee (v >= 0, "invariant") ;
5005   if (v == 0) {
5006      // Do this the hard way by blocking ...
5007      int status = pthread_mutex_lock(_mutex);
5008      assert_status(status == 0, status, "mutex_lock");
5009      guarantee (_nParked == 0, "invariant") ;
5010      ++ _nParked ;
5011      while (_Event < 0) {
5012         status = pthread_cond_wait(_cond, _mutex);
5013         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5014         // Treat this the same as if the wait was interrupted
5015         if (status == ETIME) { status = EINTR; }
5016         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5017      }
5018      -- _nParked ;
5019 
5020     // In theory we could move the ST of 0 into _Event past the unlock(),
5021     // but then we'd need a MEMBAR after the ST.
5022     _Event = 0 ;
5023      status = pthread_mutex_unlock(_mutex);
5024      assert_status(status == 0, status, "mutex_unlock");
5025   }
5026   guarantee (_Event >= 0, "invariant") ;
5027 }
5028 
5029 int os::PlatformEvent::park(jlong millis) {
5030   guarantee (_nParked == 0, "invariant") ;
5031 
5032   int v ;
5033   for (;;) {
5034       v = _Event ;
5035       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5036   }
5037   guarantee (v >= 0, "invariant") ;
5038   if (v != 0) return OS_OK ;
5039 
5040   // We do this the hard way, by blocking the thread.
5041   // Consider enforcing a minimum timeout value.
5042   struct timespec abst;
5043   compute_abstime(&abst, millis);
5044 
5045   int ret = OS_TIMEOUT;
5046   int status = pthread_mutex_lock(_mutex);
5047   assert_status(status == 0, status, "mutex_lock");
5048   guarantee (_nParked == 0, "invariant") ;
5049   ++_nParked ;
5050 
5051   // Object.wait(timo) will return because of
5052   // (a) notification
5053   // (b) timeout
5054   // (c) thread.interrupt
5055   //
5056   // Thread.interrupt and object.notify{All} both call Event::set.
5057   // That is, we treat thread.interrupt as a special case of notification.
5058   // The underlying Solaris implementation, cond_timedwait, admits
5059   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5060   // JVM from making those visible to Java code.  As such, we must
5061   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5062   //
5063   // TODO: properly differentiate simultaneous notify+interrupt.
5064   // In that case, we should propagate the notify to another waiter.
5065 
5066   while (_Event < 0) {
5067     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5068     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5069       pthread_cond_destroy (_cond);
5070       pthread_cond_init (_cond, NULL) ;
5071     }
5072     assert_status(status == 0 || status == EINTR ||
5073                   status == ETIME || status == ETIMEDOUT,
5074                   status, "cond_timedwait");
5075     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5076     if (status == ETIME || status == ETIMEDOUT) break ;
5077     // We consume and ignore EINTR and spurious wakeups.
5078   }
5079   --_nParked ;
5080   if (_Event >= 0) {
5081      ret = OS_OK;
5082   }
5083   _Event = 0 ;
5084   status = pthread_mutex_unlock(_mutex);
5085   assert_status(status == 0, status, "mutex_unlock");
5086   assert (_nParked == 0, "invariant") ;
5087   return ret;
5088 }
5089 
5090 void os::PlatformEvent::unpark() {
5091   int v, AnyWaiters ;
5092   for (;;) {
5093       v = _Event ;
5094       if (v > 0) {
5095          // The LD of _Event could have reordered or be satisfied
5096          // by a read-aside from this processor's write buffer.
5097          // To avoid problems execute a barrier and then
5098          // ratify the value.
5099          OrderAccess::fence() ;
5100          if (_Event == v) return ;
5101          continue ;
5102       }
5103       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5104   }
5105   if (v < 0) {
5106      // Wait for the thread associated with the event to vacate
5107      int status = pthread_mutex_lock(_mutex);
5108      assert_status(status == 0, status, "mutex_lock");
5109      AnyWaiters = _nParked ;
5110      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5111      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5112         AnyWaiters = 0 ;
5113         pthread_cond_signal (_cond);
5114      }
5115      status = pthread_mutex_unlock(_mutex);
5116      assert_status(status == 0, status, "mutex_unlock");
5117      if (AnyWaiters != 0) {
5118         status = pthread_cond_signal(_cond);
5119         assert_status(status == 0, status, "cond_signal");
5120      }
5121   }
5122 
5123   // Note that we signal() _after dropping the lock for "immortal" Events.
5124   // This is safe and avoids a common class of  futile wakeups.  In rare
5125   // circumstances this can cause a thread to return prematurely from
5126   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5127   // simply re-test the condition and re-park itself.
5128 }
5129 
5130 
5131 // JSR166
5132 // -------------------------------------------------------
5133 
5134 /*
5135  * The solaris and linux implementations of park/unpark are fairly
5136  * conservative for now, but can be improved. They currently use a
5137  * mutex/condvar pair, plus a a count.
5138  * Park decrements count if > 0, else does a condvar wait.  Unpark
5139  * sets count to 1 and signals condvar.  Only one thread ever waits
5140  * on the condvar. Contention seen when trying to park implies that someone
5141  * is unparking you, so don't wait. And spurious returns are fine, so there
5142  * is no need to track notifications.
5143  */
5144 
5145 
5146 #define NANOSECS_PER_SEC 1000000000
5147 #define NANOSECS_PER_MILLISEC 1000000
5148 #define MAX_SECS 100000000
5149 /*
5150  * This code is common to linux and solaris and will be moved to a
5151  * common place in dolphin.
5152  *
5153  * The passed in time value is either a relative time in nanoseconds
5154  * or an absolute time in milliseconds. Either way it has to be unpacked
5155  * into suitable seconds and nanoseconds components and stored in the
5156  * given timespec structure.
5157  * Given time is a 64-bit value and the time_t used in the timespec is only
5158  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5159  * overflow if times way in the future are given. Further on Solaris versions
5160  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5161  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5162  * As it will be 28 years before "now + 100000000" will overflow we can
5163  * ignore overflow and just impose a hard-limit on seconds using the value
5164  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5165  * years from "now".
5166  */
5167 
5168 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5169   assert (time > 0, "convertTime");
5170 
5171   struct timeval now;
5172   int status = gettimeofday(&now, NULL);
5173   assert(status == 0, "gettimeofday");
5174 
5175   time_t max_secs = now.tv_sec + MAX_SECS;
5176 
5177   if (isAbsolute) {
5178     jlong secs = time / 1000;
5179     if (secs > max_secs) {
5180       absTime->tv_sec = max_secs;
5181     }
5182     else {
5183       absTime->tv_sec = secs;
5184     }
5185     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5186   }
5187   else {
5188     jlong secs = time / NANOSECS_PER_SEC;
5189     if (secs >= MAX_SECS) {
5190       absTime->tv_sec = max_secs;
5191       absTime->tv_nsec = 0;
5192     }
5193     else {
5194       absTime->tv_sec = now.tv_sec + secs;
5195       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5196       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5197         absTime->tv_nsec -= NANOSECS_PER_SEC;
5198         ++absTime->tv_sec; // note: this must be <= max_secs
5199       }
5200     }
5201   }
5202   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5203   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5204   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5205   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5206 }
5207 
5208 void Parker::park(bool isAbsolute, jlong time) {
5209   // Optional fast-path check:
5210   // Return immediately if a permit is available.
5211   if (_counter > 0) {
5212       _counter = 0 ;
5213       OrderAccess::fence();
5214       return ;
5215   }
5216 
5217   Thread* thread = Thread::current();
5218   assert(thread->is_Java_thread(), "Must be JavaThread");
5219   JavaThread *jt = (JavaThread *)thread;
5220 
5221   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5222   // Check interrupt before trying to wait
5223   if (Thread::is_interrupted(thread, false)) {
5224     return;
5225   }
5226 
5227   // Next, demultiplex/decode time arguments
5228   timespec absTime;
5229   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5230     return;
5231   }
5232   if (time > 0) {
5233     unpackTime(&absTime, isAbsolute, time);
5234   }
5235 
5236 
5237   // Enter safepoint region
5238   // Beware of deadlocks such as 6317397.
5239   // The per-thread Parker:: mutex is a classic leaf-lock.
5240   // In particular a thread must never block on the Threads_lock while
5241   // holding the Parker:: mutex.  If safepoints are pending both the
5242   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5243   ThreadBlockInVM tbivm(jt);
5244 
5245   // Don't wait if cannot get lock since interference arises from
5246   // unblocking.  Also. check interrupt before trying wait
5247   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5248     return;
5249   }
5250 
5251   int status ;
5252   if (_counter > 0)  { // no wait needed
5253     _counter = 0;
5254     status = pthread_mutex_unlock(_mutex);
5255     assert (status == 0, "invariant") ;
5256     OrderAccess::fence();
5257     return;
5258   }
5259 
5260 #ifdef ASSERT
5261   // Don't catch signals while blocked; let the running threads have the signals.
5262   // (This allows a debugger to break into the running thread.)
5263   sigset_t oldsigs;
5264   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5265   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5266 #endif
5267 
5268   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5269   jt->set_suspend_equivalent();
5270   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5271 
5272   if (time == 0) {
5273     status = pthread_cond_wait (_cond, _mutex) ;
5274   } else {
5275     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5276     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5277       pthread_cond_destroy (_cond) ;
5278       pthread_cond_init    (_cond, NULL);
5279     }
5280   }
5281   assert_status(status == 0 || status == EINTR ||
5282                 status == ETIME || status == ETIMEDOUT,
5283                 status, "cond_timedwait");
5284 
5285 #ifdef ASSERT
5286   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5287 #endif
5288 
5289   _counter = 0 ;
5290   status = pthread_mutex_unlock(_mutex) ;
5291   assert_status(status == 0, status, "invariant") ;
5292   // If externally suspended while waiting, re-suspend
5293   if (jt->handle_special_suspend_equivalent_condition()) {
5294     jt->java_suspend_self();
5295   }
5296 
5297   OrderAccess::fence();
5298 }
5299 
5300 void Parker::unpark() {
5301   int s, status ;
5302   status = pthread_mutex_lock(_mutex);
5303   assert (status == 0, "invariant") ;
5304   s = _counter;
5305   _counter = 1;
5306   if (s < 1) {
5307      if (WorkAroundNPTLTimedWaitHang) {
5308         status = pthread_cond_signal (_cond) ;
5309         assert (status == 0, "invariant") ;
5310         status = pthread_mutex_unlock(_mutex);
5311         assert (status == 0, "invariant") ;
5312      } else {
5313         status = pthread_mutex_unlock(_mutex);
5314         assert (status == 0, "invariant") ;
5315         status = pthread_cond_signal (_cond) ;
5316         assert (status == 0, "invariant") ;
5317      }
5318   } else {
5319     pthread_mutex_unlock(_mutex);
5320     assert (status == 0, "invariant") ;
5321   }
5322 }
5323 
5324 
5325 extern char** environ;
5326 
5327 #ifndef __NR_fork
5328 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5329 #endif
5330 
5331 #ifndef __NR_execve
5332 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5333 #endif
5334 
5335 // Run the specified command in a separate process. Return its exit value,
5336 // or -1 on failure (e.g. can't fork a new process).
5337 // Unlike system(), this function can be called from signal handler. It
5338 // doesn't block SIGINT et al.
5339 int os::fork_and_exec(char* cmd) {
5340   const char * argv[4] = {"sh", "-c", cmd, NULL};
5341 
5342   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5343   // pthread_atfork handlers and reset pthread library. All we need is a
5344   // separate process to execve. Make a direct syscall to fork process.
5345   // On IA64 there's no fork syscall, we have to use fork() and hope for
5346   // the best...
5347   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5348               IA64_ONLY(fork();)
5349 
5350   if (pid < 0) {
5351     // fork failed
5352     return -1;
5353 
5354   } else if (pid == 0) {
5355     // child process
5356 
5357     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5358     // first to kill every thread on the thread list. Because this list is
5359     // not reset by fork() (see notes above), execve() will instead kill
5360     // every thread in the parent process. We know this is the only thread
5361     // in the new process, so make a system call directly.
5362     // IA64 should use normal execve() from glibc to match the glibc fork()
5363     // above.
5364     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5365     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5366 
5367     // execve failed
5368     _exit(-1);
5369 
5370   } else  {
5371     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5372     // care about the actual exit code, for now.
5373 
5374     int status;
5375 
5376     // Wait for the child process to exit.  This returns immediately if
5377     // the child has already exited. */
5378     while (waitpid(pid, &status, 0) < 0) {
5379         switch (errno) {
5380         case ECHILD: return 0;
5381         case EINTR: break;
5382         default: return -1;
5383         }
5384     }
5385 
5386     if (WIFEXITED(status)) {
5387        // The child exited normally; get its exit code.
5388        return WEXITSTATUS(status);
5389     } else if (WIFSIGNALED(status)) {
5390        // The child exited because of a signal
5391        // The best value to return is 0x80 + signal number,
5392        // because that is what all Unix shells do, and because
5393        // it allows callers to distinguish between process exit and
5394        // process death by signal.
5395        return 0x80 + WTERMSIG(status);
5396     } else {
5397        // Unknown exit code; pass it through
5398        return status;
5399     }
5400   }
5401 }
5402 
5403 // is_headless_jre()
5404 //
5405 // Test for the existence of libmawt in motif21 or xawt directories
5406 // in order to report if we are running in a headless jre
5407 //
5408 bool os::is_headless_jre() {
5409     struct stat statbuf;
5410     char buf[MAXPATHLEN];
5411     char libmawtpath[MAXPATHLEN];
5412     const char *xawtstr  = "/xawt/libmawt.so";
5413     const char *motifstr = "/motif21/libmawt.so";
5414     char *p;
5415 
5416     // Get path to libjvm.so
5417     os::jvm_path(buf, sizeof(buf));
5418 
5419     // Get rid of libjvm.so
5420     p = strrchr(buf, '/');
5421     if (p == NULL) return false;
5422     else *p = '\0';
5423 
5424     // Get rid of client or server
5425     p = strrchr(buf, '/');
5426     if (p == NULL) return false;
5427     else *p = '\0';
5428 
5429     // check xawt/libmawt.so
5430     strcpy(libmawtpath, buf);
5431     strcat(libmawtpath, xawtstr);
5432     if (::stat(libmawtpath, &statbuf) == 0) return false;
5433 
5434     // check motif21/libmawt.so
5435     strcpy(libmawtpath, buf);
5436     strcat(libmawtpath, motifstr);
5437     if (::stat(libmawtpath, &statbuf) == 0) return false;
5438 
5439     return true;
5440 }
5441 
5442 
5443 #ifdef JAVASE_EMBEDDED
5444 //
5445 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5446 //
5447 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5448 
5449 // ctor
5450 //
5451 MemNotifyThread::MemNotifyThread(int fd): Thread() {
5452   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5453   _fd = fd;
5454 
5455   if (os::create_thread(this, os::os_thread)) {
5456     _memnotify_thread = this;
5457     os::set_priority(this, NearMaxPriority);
5458     os::start_thread(this);
5459   }
5460 }
5461 
5462 // Where all the work gets done
5463 //
5464 void MemNotifyThread::run() {
5465   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5466 
5467   // Set up the select arguments
5468   fd_set rfds;
5469   if (_fd != -1) {
5470     FD_ZERO(&rfds);
5471     FD_SET(_fd, &rfds);
5472   }
5473 
5474   // Now wait for the mem_notify device to wake up
5475   while (1) {
5476     // Wait for the mem_notify device to signal us..
5477     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5478     if (rc == -1) {
5479       perror("select!\n");
5480       break;
5481     } else if (rc) {
5482       //ssize_t free_before = os::available_memory();
5483       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5484 
5485       // The kernel is telling us there is not much memory left...
5486       // try to do something about that
5487 
5488       // If we are not already in a GC, try one.
5489       if (!Universe::heap()->is_gc_active()) {
5490         Universe::heap()->collect(GCCause::_allocation_failure);
5491 
5492         //ssize_t free_after = os::available_memory();
5493         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5494         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5495       }
5496       // We might want to do something like the following if we find the GC's are not helping...
5497       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5498     }
5499   }
5500 }
5501 
5502 //
5503 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5504 //
5505 void MemNotifyThread::start() {
5506   int    fd;
5507   fd = open ("/dev/mem_notify", O_RDONLY, 0);
5508   if (fd < 0) {
5509       return;
5510   }
5511 
5512   if (memnotify_thread() == NULL) {
5513     new MemNotifyThread(fd);
5514   }
5515 }
5516 #endif // JAVASE_EMBEDDED