1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #ifdef GRAAL
  33 #include "graal/graalCompiler.hpp"
  34 #include "graal/graalRuntime.hpp"
  35 #endif
  36 #include "interpreter/interpreter.hpp"
  37 #include "interpreter/linkResolver.hpp"
  38 #include "interpreter/oopMapCache.hpp"
  39 #include "jvmtifiles/jvmtiEnv.hpp"
  40 #include "memory/gcLocker.inline.hpp"
  41 #include "memory/metaspaceShared.hpp"
  42 #include "memory/oopFactory.hpp"
  43 #include "memory/universe.inline.hpp"
  44 #include "oops/instanceKlass.hpp"
  45 #include "oops/objArrayOop.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "oops/symbol.hpp"
  48 #include "prims/jvm_misc.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/jvmtiThreadState.hpp"
  51 #include "prims/privilegedStack.hpp"
  52 #include "runtime/arguments.hpp"
  53 #include "runtime/biasedLocking.hpp"
  54 #include "runtime/deoptimization.hpp"
  55 #include "runtime/fprofiler.hpp"
  56 #include "runtime/frame.inline.hpp"
  57 #include "runtime/gpu.hpp"
  58 #ifdef GRAAL
  59 # include "hsail/vm/gpu_hsail.hpp"
  60 #endif
  61 #include "runtime/init.hpp"
  62 #include "runtime/interfaceSupport.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/jniPeriodicChecker.hpp"
  66 #include "runtime/memprofiler.hpp"
  67 #include "runtime/mutexLocker.hpp"
  68 #include "runtime/objectMonitor.hpp"
  69 #include "runtime/osThread.hpp"
  70 #include "runtime/safepoint.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/statSampler.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/task.hpp"
  75 #include "runtime/thread.inline.hpp"
  76 #include "runtime/threadCritical.hpp"
  77 #include "runtime/threadLocalStorage.hpp"
  78 #include "runtime/vframe.hpp"
  79 #include "runtime/vframeArray.hpp"
  80 #include "runtime/vframe_hp.hpp"
  81 #include "runtime/vmThread.hpp"
  82 #include "runtime/vm_operations.hpp"
  83 #include "services/attachListener.hpp"
  84 #include "services/management.hpp"
  85 #include "services/memTracker.hpp"
  86 #include "services/threadService.hpp"
  87 #include "trace/tracing.hpp"
  88 #include "trace/traceMacros.hpp"
  89 #include "utilities/defaultStream.hpp"
  90 #include "utilities/dtrace.hpp"
  91 #include "utilities/events.hpp"
  92 #include "utilities/preserveException.hpp"
  93 #include "utilities/macros.hpp"
  94 #ifdef TARGET_OS_FAMILY_linux
  95 # include "os_linux.inline.hpp"
  96 #endif
  97 #ifdef TARGET_OS_FAMILY_solaris
  98 # include "os_solaris.inline.hpp"
  99 #endif
 100 #ifdef TARGET_OS_FAMILY_windows
 101 # include "os_windows.inline.hpp"
 102 #endif
 103 #ifdef TARGET_OS_FAMILY_bsd
 104 # include "os_bsd.inline.hpp"
 105 #endif
 106 #if INCLUDE_ALL_GCS
 107 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 108 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 109 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 110 #endif // INCLUDE_ALL_GCS
 111 #ifdef COMPILER1
 112 #include "c1/c1_Compiler.hpp"
 113 #endif
 114 #ifdef COMPILER2
 115 #include "opto/c2compiler.hpp"
 116 #include "opto/idealGraphPrinter.hpp"
 117 #endif
 118 
 119 #ifdef DTRACE_ENABLED
 120 
 121 // Only bother with this argument setup if dtrace is available
 122 
 123 #ifndef USDT2
 124 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 125 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 126 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 127   intptr_t, intptr_t, bool);
 128 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 129   intptr_t, intptr_t, bool);
 130 
 131 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 132   {                                                                        \
 133     ResourceMark rm(this);                                                 \
 134     int len = 0;                                                           \
 135     const char* name = (javathread)->get_thread_name();                    \
 136     len = strlen(name);                                                    \
 137     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 138       name, len,                                                           \
 139       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 140       (javathread)->osthread()->thread_id(),                               \
 141       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 142   }
 143 
 144 #else /* USDT2 */
 145 
 146 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 147 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 148 
 149 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 150   {                                                                        \
 151     ResourceMark rm(this);                                                 \
 152     int len = 0;                                                           \
 153     const char* name = (javathread)->get_thread_name();                    \
 154     len = strlen(name);                                                    \
 155     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 156       (char *) name, len,                                                           \
 157       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 158       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 159       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 160   }
 161 
 162 #endif /* USDT2 */
 163 
 164 #else //  ndef DTRACE_ENABLED
 165 
 166 #define DTRACE_THREAD_PROBE(probe, javathread)
 167 
 168 #endif // ndef DTRACE_ENABLED
 169 
 170 
 171 // Class hierarchy
 172 // - Thread
 173 //   - VMThread
 174 //   - WatcherThread
 175 //   - ConcurrentMarkSweepThread
 176 //   - JavaThread
 177 //     - CompilerThread
 178 
 179 // ======= Thread ========
 180 // Support for forcing alignment of thread objects for biased locking
 181 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 182   if (UseBiasedLocking) {
 183     const int alignment = markOopDesc::biased_lock_alignment;
 184     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 185     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 186                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 187                                               AllocFailStrategy::RETURN_NULL);
 188     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 189     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 190            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 191            "JavaThread alignment code overflowed allocated storage");
 192     if (TraceBiasedLocking) {
 193       if (aligned_addr != real_malloc_addr)
 194         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 195                       real_malloc_addr, aligned_addr);
 196     }
 197     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 198     return aligned_addr;
 199   } else {
 200     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 201                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 202   }
 203 }
 204 
 205 void Thread::operator delete(void* p) {
 206   if (UseBiasedLocking) {
 207     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 208     FreeHeap(real_malloc_addr, mtThread);
 209   } else {
 210     FreeHeap(p, mtThread);
 211   }
 212 }
 213 
 214 
 215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 216 // JavaThread
 217 
 218 
 219 Thread::Thread() {
 220   // stack and get_thread
 221   set_stack_base(NULL);
 222   set_stack_size(0);
 223   set_self_raw_id(0);
 224   set_lgrp_id(-1);
 225 
 226   // allocated data structures
 227   set_osthread(NULL);
 228   set_resource_area(new (mtThread)ResourceArea());
 229   DEBUG_ONLY(_current_resource_mark = NULL;)
 230   set_handle_area(new (mtThread) HandleArea(NULL));
 231   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 232   set_active_handles(NULL);
 233   set_free_handle_block(NULL);
 234   set_last_handle_mark(NULL);
 235 
 236   // This initial value ==> never claimed.
 237   _oops_do_parity = 0;
 238 
 239   // the handle mark links itself to last_handle_mark
 240   new HandleMark(this);
 241 
 242   // plain initialization
 243   debug_only(_owned_locks = NULL;)
 244   debug_only(_allow_allocation_count = 0;)
 245   NOT_PRODUCT(_allow_safepoint_count = 0;)
 246   NOT_PRODUCT(_skip_gcalot = false;)
 247   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 248   _jvmti_env_iteration_count = 0;
 249   set_allocated_bytes(0);
 250   _vm_operation_started_count = 0;
 251   _vm_operation_completed_count = 0;
 252   _current_pending_monitor = NULL;
 253   _current_pending_monitor_is_from_java = true;
 254   _current_waiting_monitor = NULL;
 255   _num_nested_signal = 0;
 256   omFreeList = NULL ;
 257   omFreeCount = 0 ;
 258   omFreeProvision = 32 ;
 259   omInUseList = NULL ;
 260   omInUseCount = 0 ;
 261 
 262 #ifdef ASSERT
 263   _visited_for_critical_count = false;
 264 #endif
 265 
 266   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 267   _suspend_flags = 0;
 268 
 269   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 270   _hashStateX = os::random() ;
 271   _hashStateY = 842502087 ;
 272   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 273   _hashStateW = 273326509 ;
 274 
 275   _OnTrap   = 0 ;
 276   _schedctl = NULL ;
 277   _Stalled  = 0 ;
 278   _TypeTag  = 0x2BAD ;
 279 
 280   // Many of the following fields are effectively final - immutable
 281   // Note that nascent threads can't use the Native Monitor-Mutex
 282   // construct until the _MutexEvent is initialized ...
 283   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 284   // we might instead use a stack of ParkEvents that we could provision on-demand.
 285   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 286   // and ::Release()
 287   _ParkEvent   = ParkEvent::Allocate (this) ;
 288   _SleepEvent  = ParkEvent::Allocate (this) ;
 289   _MutexEvent  = ParkEvent::Allocate (this) ;
 290   _MuxEvent    = ParkEvent::Allocate (this) ;
 291 
 292 #ifdef CHECK_UNHANDLED_OOPS
 293   if (CheckUnhandledOops) {
 294     _unhandled_oops = new UnhandledOops(this);
 295   }
 296 #endif // CHECK_UNHANDLED_OOPS
 297 #ifdef ASSERT
 298   if (UseBiasedLocking) {
 299     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 300     assert(this == _real_malloc_address ||
 301            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 302            "bug in forced alignment of thread objects");
 303   }
 304 #endif /* ASSERT */
 305 }
 306 
 307 void Thread::initialize_thread_local_storage() {
 308   // Note: Make sure this method only calls
 309   // non-blocking operations. Otherwise, it might not work
 310   // with the thread-startup/safepoint interaction.
 311 
 312   // During Java thread startup, safepoint code should allow this
 313   // method to complete because it may need to allocate memory to
 314   // store information for the new thread.
 315 
 316   // initialize structure dependent on thread local storage
 317   ThreadLocalStorage::set_thread(this);
 318 }
 319 
 320 void Thread::record_stack_base_and_size() {
 321   set_stack_base(os::current_stack_base());
 322   set_stack_size(os::current_stack_size());
 323   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 324   // in initialize_thread(). Without the adjustment, stack size is
 325   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 326   // So far, only Solaris has real implementation of initialize_thread().
 327   //
 328   // set up any platform-specific state.
 329   os::initialize_thread(this);
 330 
 331 #if INCLUDE_NMT
 332   // record thread's native stack, stack grows downward
 333   address stack_low_addr = stack_base() - stack_size();
 334   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
 335       CURRENT_PC);
 336 #endif // INCLUDE_NMT
 337 }
 338 
 339 
 340 Thread::~Thread() {
 341   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 342   ObjectSynchronizer::omFlush (this) ;
 343 
 344   EVENT_THREAD_DESTRUCT(this);
 345 
 346   // stack_base can be NULL if the thread is never started or exited before
 347   // record_stack_base_and_size called. Although, we would like to ensure
 348   // that all started threads do call record_stack_base_and_size(), there is
 349   // not proper way to enforce that.
 350 #if INCLUDE_NMT
 351   if (_stack_base != NULL) {
 352     address low_stack_addr = stack_base() - stack_size();
 353     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 354 #ifdef ASSERT
 355     set_stack_base(NULL);
 356 #endif
 357   }
 358 #endif // INCLUDE_NMT
 359 
 360   // deallocate data structures
 361   delete resource_area();
 362   // since the handle marks are using the handle area, we have to deallocated the root
 363   // handle mark before deallocating the thread's handle area,
 364   assert(last_handle_mark() != NULL, "check we have an element");
 365   delete last_handle_mark();
 366   assert(last_handle_mark() == NULL, "check we have reached the end");
 367 
 368   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 369   // We NULL out the fields for good hygiene.
 370   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 371   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 372   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 373   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 374 
 375   delete handle_area();
 376   delete metadata_handles();
 377 
 378   // osthread() can be NULL, if creation of thread failed.
 379   if (osthread() != NULL) os::free_thread(osthread());
 380 
 381   delete _SR_lock;
 382 
 383   // clear thread local storage if the Thread is deleting itself
 384   if (this == Thread::current()) {
 385     ThreadLocalStorage::set_thread(NULL);
 386   } else {
 387     // In the case where we're not the current thread, invalidate all the
 388     // caches in case some code tries to get the current thread or the
 389     // thread that was destroyed, and gets stale information.
 390     ThreadLocalStorage::invalidate_all();
 391   }
 392   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 393 }
 394 
 395 // NOTE: dummy function for assertion purpose.
 396 void Thread::run() {
 397   ShouldNotReachHere();
 398 }
 399 
 400 #ifdef ASSERT
 401 // Private method to check for dangling thread pointer
 402 void check_for_dangling_thread_pointer(Thread *thread) {
 403  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 404          "possibility of dangling Thread pointer");
 405 }
 406 #endif
 407 
 408 
 409 #ifndef PRODUCT
 410 // Tracing method for basic thread operations
 411 void Thread::trace(const char* msg, const Thread* const thread) {
 412   if (!TraceThreadEvents) return;
 413   ResourceMark rm;
 414   ThreadCritical tc;
 415   const char *name = "non-Java thread";
 416   int prio = -1;
 417   if (thread->is_Java_thread()
 418       && !thread->is_Compiler_thread()) {
 419     // The Threads_lock must be held to get information about
 420     // this thread but may not be in some situations when
 421     // tracing  thread events.
 422     bool release_Threads_lock = false;
 423     if (!Threads_lock->owned_by_self()) {
 424       Threads_lock->lock();
 425       release_Threads_lock = true;
 426     }
 427     JavaThread* jt = (JavaThread *)thread;
 428     name = (char *)jt->get_thread_name();
 429     oop thread_oop = jt->threadObj();
 430     if (thread_oop != NULL) {
 431       prio = java_lang_Thread::priority(thread_oop);
 432     }
 433     if (release_Threads_lock) {
 434       Threads_lock->unlock();
 435     }
 436   }
 437   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 438 }
 439 #endif
 440 
 441 
 442 ThreadPriority Thread::get_priority(const Thread* const thread) {
 443   trace("get priority", thread);
 444   ThreadPriority priority;
 445   // Can return an error!
 446   (void)os::get_priority(thread, priority);
 447   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 448   return priority;
 449 }
 450 
 451 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 452   trace("set priority", thread);
 453   debug_only(check_for_dangling_thread_pointer(thread);)
 454   // Can return an error!
 455   (void)os::set_priority(thread, priority);
 456 }
 457 
 458 
 459 void Thread::start(Thread* thread) {
 460   trace("start", thread);
 461   // Start is different from resume in that its safety is guaranteed by context or
 462   // being called from a Java method synchronized on the Thread object.
 463   if (!DisableStartThread) {
 464     if (thread->is_Java_thread()) {
 465       // Initialize the thread state to RUNNABLE before starting this thread.
 466       // Can not set it after the thread started because we do not know the
 467       // exact thread state at that time. It could be in MONITOR_WAIT or
 468       // in SLEEPING or some other state.
 469       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 470                                           java_lang_Thread::RUNNABLE);
 471     }
 472     os::start_thread(thread);
 473   }
 474 }
 475 
 476 // Enqueue a VM_Operation to do the job for us - sometime later
 477 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 478   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 479   VMThread::execute(vm_stop);
 480 }
 481 
 482 
 483 //
 484 // Check if an external suspend request has completed (or has been
 485 // cancelled). Returns true if the thread is externally suspended and
 486 // false otherwise.
 487 //
 488 // The bits parameter returns information about the code path through
 489 // the routine. Useful for debugging:
 490 //
 491 // set in is_ext_suspend_completed():
 492 // 0x00000001 - routine was entered
 493 // 0x00000010 - routine return false at end
 494 // 0x00000100 - thread exited (return false)
 495 // 0x00000200 - suspend request cancelled (return false)
 496 // 0x00000400 - thread suspended (return true)
 497 // 0x00001000 - thread is in a suspend equivalent state (return true)
 498 // 0x00002000 - thread is native and walkable (return true)
 499 // 0x00004000 - thread is native_trans and walkable (needed retry)
 500 //
 501 // set in wait_for_ext_suspend_completion():
 502 // 0x00010000 - routine was entered
 503 // 0x00020000 - suspend request cancelled before loop (return false)
 504 // 0x00040000 - thread suspended before loop (return true)
 505 // 0x00080000 - suspend request cancelled in loop (return false)
 506 // 0x00100000 - thread suspended in loop (return true)
 507 // 0x00200000 - suspend not completed during retry loop (return false)
 508 //
 509 
 510 // Helper class for tracing suspend wait debug bits.
 511 //
 512 // 0x00000100 indicates that the target thread exited before it could
 513 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 514 // 0x00080000 each indicate a cancelled suspend request so they don't
 515 // count as wait failures either.
 516 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 517 
 518 class TraceSuspendDebugBits : public StackObj {
 519  private:
 520   JavaThread * jt;
 521   bool         is_wait;
 522   bool         called_by_wait;  // meaningful when !is_wait
 523   uint32_t *   bits;
 524 
 525  public:
 526   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 527                         uint32_t *_bits) {
 528     jt             = _jt;
 529     is_wait        = _is_wait;
 530     called_by_wait = _called_by_wait;
 531     bits           = _bits;
 532   }
 533 
 534   ~TraceSuspendDebugBits() {
 535     if (!is_wait) {
 536 #if 1
 537       // By default, don't trace bits for is_ext_suspend_completed() calls.
 538       // That trace is very chatty.
 539       return;
 540 #else
 541       if (!called_by_wait) {
 542         // If tracing for is_ext_suspend_completed() is enabled, then only
 543         // trace calls to it from wait_for_ext_suspend_completion()
 544         return;
 545       }
 546 #endif
 547     }
 548 
 549     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 550       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 551         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 552         ResourceMark rm;
 553 
 554         tty->print_cr(
 555             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 556             jt->get_thread_name(), *bits);
 557 
 558         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 559       }
 560     }
 561   }
 562 };
 563 #undef DEBUG_FALSE_BITS
 564 
 565 
 566 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 567   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 568 
 569   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 570   bool do_trans_retry;           // flag to force the retry
 571 
 572   *bits |= 0x00000001;
 573 
 574   do {
 575     do_trans_retry = false;
 576 
 577     if (is_exiting()) {
 578       // Thread is in the process of exiting. This is always checked
 579       // first to reduce the risk of dereferencing a freed JavaThread.
 580       *bits |= 0x00000100;
 581       return false;
 582     }
 583 
 584     if (!is_external_suspend()) {
 585       // Suspend request is cancelled. This is always checked before
 586       // is_ext_suspended() to reduce the risk of a rogue resume
 587       // confusing the thread that made the suspend request.
 588       *bits |= 0x00000200;
 589       return false;
 590     }
 591 
 592     if (is_ext_suspended()) {
 593       // thread is suspended
 594       *bits |= 0x00000400;
 595       return true;
 596     }
 597 
 598     // Now that we no longer do hard suspends of threads running
 599     // native code, the target thread can be changing thread state
 600     // while we are in this routine:
 601     //
 602     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 603     //
 604     // We save a copy of the thread state as observed at this moment
 605     // and make our decision about suspend completeness based on the
 606     // copy. This closes the race where the thread state is seen as
 607     // _thread_in_native_trans in the if-thread_blocked check, but is
 608     // seen as _thread_blocked in if-thread_in_native_trans check.
 609     JavaThreadState save_state = thread_state();
 610 
 611     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 612       // If the thread's state is _thread_blocked and this blocking
 613       // condition is known to be equivalent to a suspend, then we can
 614       // consider the thread to be externally suspended. This means that
 615       // the code that sets _thread_blocked has been modified to do
 616       // self-suspension if the blocking condition releases. We also
 617       // used to check for CONDVAR_WAIT here, but that is now covered by
 618       // the _thread_blocked with self-suspension check.
 619       //
 620       // Return true since we wouldn't be here unless there was still an
 621       // external suspend request.
 622       *bits |= 0x00001000;
 623       return true;
 624     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 625       // Threads running native code will self-suspend on native==>VM/Java
 626       // transitions. If its stack is walkable (should always be the case
 627       // unless this function is called before the actual java_suspend()
 628       // call), then the wait is done.
 629       *bits |= 0x00002000;
 630       return true;
 631     } else if (!called_by_wait && !did_trans_retry &&
 632                save_state == _thread_in_native_trans &&
 633                frame_anchor()->walkable()) {
 634       // The thread is transitioning from thread_in_native to another
 635       // thread state. check_safepoint_and_suspend_for_native_trans()
 636       // will force the thread to self-suspend. If it hasn't gotten
 637       // there yet we may have caught the thread in-between the native
 638       // code check above and the self-suspend. Lucky us. If we were
 639       // called by wait_for_ext_suspend_completion(), then it
 640       // will be doing the retries so we don't have to.
 641       //
 642       // Since we use the saved thread state in the if-statement above,
 643       // there is a chance that the thread has already transitioned to
 644       // _thread_blocked by the time we get here. In that case, we will
 645       // make a single unnecessary pass through the logic below. This
 646       // doesn't hurt anything since we still do the trans retry.
 647 
 648       *bits |= 0x00004000;
 649 
 650       // Once the thread leaves thread_in_native_trans for another
 651       // thread state, we break out of this retry loop. We shouldn't
 652       // need this flag to prevent us from getting back here, but
 653       // sometimes paranoia is good.
 654       did_trans_retry = true;
 655 
 656       // We wait for the thread to transition to a more usable state.
 657       for (int i = 1; i <= SuspendRetryCount; i++) {
 658         // We used to do an "os::yield_all(i)" call here with the intention
 659         // that yielding would increase on each retry. However, the parameter
 660         // is ignored on Linux which means the yield didn't scale up. Waiting
 661         // on the SR_lock below provides a much more predictable scale up for
 662         // the delay. It also provides a simple/direct point to check for any
 663         // safepoint requests from the VMThread
 664 
 665         // temporarily drops SR_lock while doing wait with safepoint check
 666         // (if we're a JavaThread - the WatcherThread can also call this)
 667         // and increase delay with each retry
 668         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 669 
 670         // check the actual thread state instead of what we saved above
 671         if (thread_state() != _thread_in_native_trans) {
 672           // the thread has transitioned to another thread state so
 673           // try all the checks (except this one) one more time.
 674           do_trans_retry = true;
 675           break;
 676         }
 677       } // end retry loop
 678 
 679 
 680     }
 681   } while (do_trans_retry);
 682 
 683   *bits |= 0x00000010;
 684   return false;
 685 }
 686 
 687 //
 688 // Wait for an external suspend request to complete (or be cancelled).
 689 // Returns true if the thread is externally suspended and false otherwise.
 690 //
 691 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 692        uint32_t *bits) {
 693   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 694                              false /* !called_by_wait */, bits);
 695 
 696   // local flag copies to minimize SR_lock hold time
 697   bool is_suspended;
 698   bool pending;
 699   uint32_t reset_bits;
 700 
 701   // set a marker so is_ext_suspend_completed() knows we are the caller
 702   *bits |= 0x00010000;
 703 
 704   // We use reset_bits to reinitialize the bits value at the top of
 705   // each retry loop. This allows the caller to make use of any
 706   // unused bits for their own marking purposes.
 707   reset_bits = *bits;
 708 
 709   {
 710     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 711     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 712                                             delay, bits);
 713     pending = is_external_suspend();
 714   }
 715   // must release SR_lock to allow suspension to complete
 716 
 717   if (!pending) {
 718     // A cancelled suspend request is the only false return from
 719     // is_ext_suspend_completed() that keeps us from entering the
 720     // retry loop.
 721     *bits |= 0x00020000;
 722     return false;
 723   }
 724 
 725   if (is_suspended) {
 726     *bits |= 0x00040000;
 727     return true;
 728   }
 729 
 730   for (int i = 1; i <= retries; i++) {
 731     *bits = reset_bits;  // reinit to only track last retry
 732 
 733     // We used to do an "os::yield_all(i)" call here with the intention
 734     // that yielding would increase on each retry. However, the parameter
 735     // is ignored on Linux which means the yield didn't scale up. Waiting
 736     // on the SR_lock below provides a much more predictable scale up for
 737     // the delay. It also provides a simple/direct point to check for any
 738     // safepoint requests from the VMThread
 739 
 740     {
 741       MutexLocker ml(SR_lock());
 742       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 743       // can also call this)  and increase delay with each retry
 744       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 745 
 746       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 747                                               delay, bits);
 748 
 749       // It is possible for the external suspend request to be cancelled
 750       // (by a resume) before the actual suspend operation is completed.
 751       // Refresh our local copy to see if we still need to wait.
 752       pending = is_external_suspend();
 753     }
 754 
 755     if (!pending) {
 756       // A cancelled suspend request is the only false return from
 757       // is_ext_suspend_completed() that keeps us from staying in the
 758       // retry loop.
 759       *bits |= 0x00080000;
 760       return false;
 761     }
 762 
 763     if (is_suspended) {
 764       *bits |= 0x00100000;
 765       return true;
 766     }
 767   } // end retry loop
 768 
 769   // thread did not suspend after all our retries
 770   *bits |= 0x00200000;
 771   return false;
 772 }
 773 
 774 #ifndef PRODUCT
 775 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 776 
 777   // This should not need to be atomic as the only way for simultaneous
 778   // updates is via interrupts. Even then this should be rare or non-existant
 779   // and we don't care that much anyway.
 780 
 781   int index = _jmp_ring_index;
 782   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 783   _jmp_ring[index]._target = (intptr_t) target;
 784   _jmp_ring[index]._instruction = (intptr_t) instr;
 785   _jmp_ring[index]._file = file;
 786   _jmp_ring[index]._line = line;
 787 }
 788 #endif /* PRODUCT */
 789 
 790 // Called by flat profiler
 791 // Callers have already called wait_for_ext_suspend_completion
 792 // The assertion for that is currently too complex to put here:
 793 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 794   bool gotframe = false;
 795   // self suspension saves needed state.
 796   if (has_last_Java_frame() && _anchor.walkable()) {
 797      *_fr = pd_last_frame();
 798      gotframe = true;
 799   }
 800   return gotframe;
 801 }
 802 
 803 void Thread::interrupt(Thread* thread) {
 804   trace("interrupt", thread);
 805   debug_only(check_for_dangling_thread_pointer(thread);)
 806   os::interrupt(thread);
 807 }
 808 
 809 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 810   trace("is_interrupted", thread);
 811   debug_only(check_for_dangling_thread_pointer(thread);)
 812   // Note:  If clear_interrupted==false, this simply fetches and
 813   // returns the value of the field osthread()->interrupted().
 814   return os::is_interrupted(thread, clear_interrupted);
 815 }
 816 
 817 
 818 // GC Support
 819 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 820   jint thread_parity = _oops_do_parity;
 821   if (thread_parity != strong_roots_parity) {
 822     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 823     if (res == thread_parity) {
 824       return true;
 825     } else {
 826       guarantee(res == strong_roots_parity, "Or else what?");
 827       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 828          "Should only fail when parallel.");
 829       return false;
 830     }
 831   }
 832   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 833          "Should only fail when parallel.");
 834   return false;
 835 }
 836 
 837 void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
 838   active_handles()->oops_do(f);
 839   // Do oop for ThreadShadow
 840   f->do_oop((oop*)&_pending_exception);
 841 #ifdef GRAAL
 842   f->do_oop((oop*)&_pending_failed_speculation);
 843 #endif
 844   handle_area()->oops_do(f);
 845 }
 846 
 847 void Thread::nmethods_do(CodeBlobClosure* cf) {
 848   // no nmethods in a generic thread...
 849 }
 850 
 851 void Thread::metadata_do(void f(Metadata*)) {
 852   if (metadata_handles() != NULL) {
 853     for (int i = 0; i< metadata_handles()->length(); i++) {
 854       f(metadata_handles()->at(i));
 855     }
 856   }
 857 }
 858 
 859 void Thread::print_on(outputStream* st) const {
 860   // get_priority assumes osthread initialized
 861   if (osthread() != NULL) {
 862     int os_prio;
 863     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 864       st->print("os_prio=%d ", os_prio);
 865     }
 866     st->print("tid=" INTPTR_FORMAT " ", this);
 867     osthread()->print_on(st);
 868   }
 869   debug_only(if (WizardMode) print_owned_locks_on(st);)
 870 }
 871 
 872 // Thread::print_on_error() is called by fatal error handler. Don't use
 873 // any lock or allocate memory.
 874 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 875   if      (is_VM_thread())                  st->print("VMThread");
 876   else if (is_Compiler_thread())            st->print("CompilerThread");
 877   else if (is_Java_thread())                st->print("JavaThread");
 878   else if (is_GC_task_thread())             st->print("GCTaskThread");
 879   else if (is_Watcher_thread())             st->print("WatcherThread");
 880   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 881   else st->print("Thread");
 882 
 883   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 884             _stack_base - _stack_size, _stack_base);
 885 
 886   if (osthread()) {
 887     st->print(" [id=%d]", osthread()->thread_id());
 888   }
 889 }
 890 
 891 #ifdef ASSERT
 892 void Thread::print_owned_locks_on(outputStream* st) const {
 893   Monitor *cur = _owned_locks;
 894   if (cur == NULL) {
 895     st->print(" (no locks) ");
 896   } else {
 897     st->print_cr(" Locks owned:");
 898     while(cur) {
 899       cur->print_on(st);
 900       cur = cur->next();
 901     }
 902   }
 903 }
 904 
 905 static int ref_use_count  = 0;
 906 
 907 bool Thread::owns_locks_but_compiled_lock() const {
 908   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 909     if (cur != Compile_lock) return true;
 910   }
 911   return false;
 912 }
 913 
 914 
 915 #endif
 916 
 917 #ifndef PRODUCT
 918 
 919 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 920 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 921 // no threads which allow_vm_block's are held
 922 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 923     // Check if current thread is allowed to block at a safepoint
 924     if (!(_allow_safepoint_count == 0))
 925       fatal("Possible safepoint reached by thread that does not allow it");
 926     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 927       fatal("LEAF method calling lock?");
 928     }
 929 
 930 #ifdef ASSERT
 931     if (potential_vm_operation && is_Java_thread()
 932         && !Universe::is_bootstrapping()) {
 933       // Make sure we do not hold any locks that the VM thread also uses.
 934       // This could potentially lead to deadlocks
 935       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 936         // Threads_lock is special, since the safepoint synchronization will not start before this is
 937         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 938         // since it is used to transfer control between JavaThreads and the VMThread
 939         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 940         if ( (cur->allow_vm_block() &&
 941               cur != Threads_lock &&
 942               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 943               cur != VMOperationRequest_lock &&
 944               cur != VMOperationQueue_lock) ||
 945               cur->rank() == Mutex::special) {
 946           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 947         }
 948       }
 949     }
 950 
 951     if (GCALotAtAllSafepoints) {
 952       // We could enter a safepoint here and thus have a gc
 953       InterfaceSupport::check_gc_alot();
 954     }
 955 #endif
 956 }
 957 #endif
 958 
 959 bool Thread::is_in_stack(address adr) const {
 960   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 961   address end = os::current_stack_pointer();
 962   // Allow non Java threads to call this without stack_base
 963   if (_stack_base == NULL) return true;
 964   if (stack_base() >= adr && adr >= end) return true;
 965 
 966   return false;
 967 }
 968 
 969 
 970 bool Thread::is_in_usable_stack(address adr) const {
 971   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 972   size_t usable_stack_size = _stack_size - stack_guard_size;
 973 
 974   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 975 }
 976 
 977 
 978 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 979 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 980 // used for compilation in the future. If that change is made, the need for these methods
 981 // should be revisited, and they should be removed if possible.
 982 
 983 bool Thread::is_lock_owned(address adr) const {
 984   return on_local_stack(adr);
 985 }
 986 
 987 bool Thread::set_as_starting_thread() {
 988  // NOTE: this must be called inside the main thread.
 989   return os::create_main_thread((JavaThread*)this);
 990 }
 991 
 992 static void initialize_class(Symbol* class_name, TRAPS) {
 993   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 994   InstanceKlass::cast(klass)->initialize(CHECK);
 995 }
 996 
 997 
 998 // Creates the initial ThreadGroup
 999 static Handle create_initial_thread_group(TRAPS) {
1000   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1001   instanceKlassHandle klass (THREAD, k);
1002 
1003   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
1004   {
1005     JavaValue result(T_VOID);
1006     JavaCalls::call_special(&result,
1007                             system_instance,
1008                             klass,
1009                             vmSymbols::object_initializer_name(),
1010                             vmSymbols::void_method_signature(),
1011                             CHECK_NH);
1012   }
1013   Universe::set_system_thread_group(system_instance());
1014 
1015   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1016   {
1017     JavaValue result(T_VOID);
1018     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1019     JavaCalls::call_special(&result,
1020                             main_instance,
1021                             klass,
1022                             vmSymbols::object_initializer_name(),
1023                             vmSymbols::threadgroup_string_void_signature(),
1024                             system_instance,
1025                             string,
1026                             CHECK_NH);
1027   }
1028   return main_instance;
1029 }
1030 
1031 // Creates the initial Thread
1032 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1033   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1034   instanceKlassHandle klass (THREAD, k);
1035   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1036 
1037   java_lang_Thread::set_thread(thread_oop(), thread);
1038   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1039   thread->set_threadObj(thread_oop());
1040 
1041   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1042 
1043   JavaValue result(T_VOID);
1044   JavaCalls::call_special(&result, thread_oop,
1045                                    klass,
1046                                    vmSymbols::object_initializer_name(),
1047                                    vmSymbols::threadgroup_string_void_signature(),
1048                                    thread_group,
1049                                    string,
1050                                    CHECK_NULL);
1051   return thread_oop();
1052 }
1053 
1054 static void call_initializeSystemClass(TRAPS) {
1055   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1056   instanceKlassHandle klass (THREAD, k);
1057 
1058   JavaValue result(T_VOID);
1059   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1060                                          vmSymbols::void_method_signature(), CHECK);
1061 }
1062 
1063 char java_runtime_name[128] = "";
1064 char java_runtime_version[128] = "";
1065 
1066 // extract the JRE name from sun.misc.Version.java_runtime_name
1067 static const char* get_java_runtime_name(TRAPS) {
1068   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1069                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1070   fieldDescriptor fd;
1071   bool found = k != NULL &&
1072                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1073                                                         vmSymbols::string_signature(), &fd);
1074   if (found) {
1075     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1076     if (name_oop == NULL)
1077       return NULL;
1078     const char* name = java_lang_String::as_utf8_string(name_oop,
1079                                                         java_runtime_name,
1080                                                         sizeof(java_runtime_name));
1081     return name;
1082   } else {
1083     return NULL;
1084   }
1085 }
1086 
1087 // extract the JRE version from sun.misc.Version.java_runtime_version
1088 static const char* get_java_runtime_version(TRAPS) {
1089   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1090                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1091   fieldDescriptor fd;
1092   bool found = k != NULL &&
1093                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1094                                                         vmSymbols::string_signature(), &fd);
1095   if (found) {
1096     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1097     if (name_oop == NULL)
1098       return NULL;
1099     const char* name = java_lang_String::as_utf8_string(name_oop,
1100                                                         java_runtime_version,
1101                                                         sizeof(java_runtime_version));
1102     return name;
1103   } else {
1104     return NULL;
1105   }
1106 }
1107 
1108 // General purpose hook into Java code, run once when the VM is initialized.
1109 // The Java library method itself may be changed independently from the VM.
1110 static void call_postVMInitHook(TRAPS) {
1111   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1112   instanceKlassHandle klass (THREAD, k);
1113   if (klass.not_null()) {
1114     JavaValue result(T_VOID);
1115     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1116                                            vmSymbols::void_method_signature(),
1117                                            CHECK);
1118   }
1119 }
1120 
1121 static void reset_vm_info_property(TRAPS) {
1122   // the vm info string
1123   ResourceMark rm(THREAD);
1124   const char *vm_info = VM_Version::vm_info_string();
1125 
1126   // java.lang.System class
1127   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1128   instanceKlassHandle klass (THREAD, k);
1129 
1130   // setProperty arguments
1131   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1132   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1133 
1134   // return value
1135   JavaValue r(T_OBJECT);
1136 
1137   // public static String setProperty(String key, String value);
1138   JavaCalls::call_static(&r,
1139                          klass,
1140                          vmSymbols::setProperty_name(),
1141                          vmSymbols::string_string_string_signature(),
1142                          key_str,
1143                          value_str,
1144                          CHECK);
1145 }
1146 
1147 
1148 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1149   assert(thread_group.not_null(), "thread group should be specified");
1150   assert(threadObj() == NULL, "should only create Java thread object once");
1151 
1152   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1153   instanceKlassHandle klass (THREAD, k);
1154   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1155 
1156   java_lang_Thread::set_thread(thread_oop(), this);
1157   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1158   set_threadObj(thread_oop());
1159 
1160   JavaValue result(T_VOID);
1161   if (thread_name != NULL) {
1162     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1163     // Thread gets assigned specified name and null target
1164     JavaCalls::call_special(&result,
1165                             thread_oop,
1166                             klass,
1167                             vmSymbols::object_initializer_name(),
1168                             vmSymbols::threadgroup_string_void_signature(),
1169                             thread_group, // Argument 1
1170                             name,         // Argument 2
1171                             THREAD);
1172   } else {
1173     // Thread gets assigned name "Thread-nnn" and null target
1174     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1175     JavaCalls::call_special(&result,
1176                             thread_oop,
1177                             klass,
1178                             vmSymbols::object_initializer_name(),
1179                             vmSymbols::threadgroup_runnable_void_signature(),
1180                             thread_group, // Argument 1
1181                             Handle(),     // Argument 2
1182                             THREAD);
1183   }
1184 
1185 
1186   if (daemon) {
1187       java_lang_Thread::set_daemon(thread_oop());
1188   }
1189 
1190   if (HAS_PENDING_EXCEPTION) {
1191     return;
1192   }
1193 
1194   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1195   Handle threadObj(this, this->threadObj());
1196 
1197   JavaCalls::call_special(&result,
1198                          thread_group,
1199                          group,
1200                          vmSymbols::add_method_name(),
1201                          vmSymbols::thread_void_signature(),
1202                          threadObj,          // Arg 1
1203                          THREAD);
1204 
1205 
1206 }
1207 
1208 // NamedThread --  non-JavaThread subclasses with multiple
1209 // uniquely named instances should derive from this.
1210 NamedThread::NamedThread() : Thread() {
1211   _name = NULL;
1212   _processed_thread = NULL;
1213 }
1214 
1215 NamedThread::~NamedThread() {
1216   if (_name != NULL) {
1217     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1218     _name = NULL;
1219   }
1220 }
1221 
1222 void NamedThread::set_name(const char* format, ...) {
1223   guarantee(_name == NULL, "Only get to set name once.");
1224   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1225   guarantee(_name != NULL, "alloc failure");
1226   va_list ap;
1227   va_start(ap, format);
1228   jio_vsnprintf(_name, max_name_len, format, ap);
1229   va_end(ap);
1230 }
1231 
1232 // ======= WatcherThread ========
1233 
1234 // The watcher thread exists to simulate timer interrupts.  It should
1235 // be replaced by an abstraction over whatever native support for
1236 // timer interrupts exists on the platform.
1237 
1238 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1239 bool WatcherThread::_startable = false;
1240 volatile bool  WatcherThread::_should_terminate = false;
1241 
1242 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1243   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1244   if (os::create_thread(this, os::watcher_thread)) {
1245     _watcher_thread = this;
1246 
1247     // Set the watcher thread to the highest OS priority which should not be
1248     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1249     // is created. The only normal thread using this priority is the reference
1250     // handler thread, which runs for very short intervals only.
1251     // If the VMThread's priority is not lower than the WatcherThread profiling
1252     // will be inaccurate.
1253     os::set_priority(this, MaxPriority);
1254     if (!DisableStartThread) {
1255       os::start_thread(this);
1256     }
1257   }
1258 }
1259 
1260 int WatcherThread::sleep() const {
1261   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1262 
1263   // remaining will be zero if there are no tasks,
1264   // causing the WatcherThread to sleep until a task is
1265   // enrolled
1266   int remaining = PeriodicTask::time_to_wait();
1267   int time_slept = 0;
1268 
1269   // we expect this to timeout - we only ever get unparked when
1270   // we should terminate or when a new task has been enrolled
1271   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1272 
1273   jlong time_before_loop = os::javaTimeNanos();
1274 
1275   for (;;) {
1276     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1277     jlong now = os::javaTimeNanos();
1278 
1279     if (remaining == 0) {
1280         // if we didn't have any tasks we could have waited for a long time
1281         // consider the time_slept zero and reset time_before_loop
1282         time_slept = 0;
1283         time_before_loop = now;
1284     } else {
1285         // need to recalulate since we might have new tasks in _tasks
1286         time_slept = (int) ((now - time_before_loop) / 1000000);
1287     }
1288 
1289     // Change to task list or spurious wakeup of some kind
1290     if (timedout || _should_terminate) {
1291         break;
1292     }
1293 
1294     remaining = PeriodicTask::time_to_wait();
1295     if (remaining == 0) {
1296         // Last task was just disenrolled so loop around and wait until
1297         // another task gets enrolled
1298         continue;
1299     }
1300 
1301     remaining -= time_slept;
1302     if (remaining <= 0)
1303       break;
1304   }
1305 
1306   return time_slept;
1307 }
1308 
1309 void WatcherThread::run() {
1310   assert(this == watcher_thread(), "just checking");
1311 
1312   this->record_stack_base_and_size();
1313   this->initialize_thread_local_storage();
1314   this->set_active_handles(JNIHandleBlock::allocate_block());
1315   while(!_should_terminate) {
1316     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1317     assert(watcher_thread() == this,  "thread consistency check");
1318 
1319     // Calculate how long it'll be until the next PeriodicTask work
1320     // should be done, and sleep that amount of time.
1321     int time_waited = sleep();
1322 
1323     if (is_error_reported()) {
1324       // A fatal error has happened, the error handler(VMError::report_and_die)
1325       // should abort JVM after creating an error log file. However in some
1326       // rare cases, the error handler itself might deadlock. Here we try to
1327       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1328       //
1329       // This code is in WatcherThread because WatcherThread wakes up
1330       // periodically so the fatal error handler doesn't need to do anything;
1331       // also because the WatcherThread is less likely to crash than other
1332       // threads.
1333 
1334       for (;;) {
1335         if (!ShowMessageBoxOnError
1336          && (OnError == NULL || OnError[0] == '\0')
1337          && Arguments::abort_hook() == NULL) {
1338              os::sleep(this, 2 * 60 * 1000, false);
1339              fdStream err(defaultStream::output_fd());
1340              err.print_raw_cr("# [ timer expired, abort... ]");
1341              // skip atexit/vm_exit/vm_abort hooks
1342              os::die();
1343         }
1344 
1345         // Wake up 5 seconds later, the fatal handler may reset OnError or
1346         // ShowMessageBoxOnError when it is ready to abort.
1347         os::sleep(this, 5 * 1000, false);
1348       }
1349     }
1350 
1351     PeriodicTask::real_time_tick(time_waited);
1352   }
1353 
1354   // Signal that it is terminated
1355   {
1356     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1357     _watcher_thread = NULL;
1358     Terminator_lock->notify();
1359   }
1360 
1361   // Thread destructor usually does this..
1362   ThreadLocalStorage::set_thread(NULL);
1363 }
1364 
1365 void WatcherThread::start() {
1366   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1367 
1368   if (watcher_thread() == NULL && _startable) {
1369     _should_terminate = false;
1370     // Create the single instance of WatcherThread
1371     new WatcherThread();
1372   }
1373 }
1374 
1375 void WatcherThread::make_startable() {
1376   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1377   _startable = true;
1378 }
1379 
1380 void WatcherThread::stop() {
1381   {
1382     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1383     _should_terminate = true;
1384     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1385 
1386     WatcherThread* watcher = watcher_thread();
1387     if (watcher != NULL)
1388       watcher->unpark();
1389   }
1390 
1391   // it is ok to take late safepoints here, if needed
1392   MutexLocker mu(Terminator_lock);
1393 
1394   while(watcher_thread() != NULL) {
1395     // This wait should make safepoint checks, wait without a timeout,
1396     // and wait as a suspend-equivalent condition.
1397     //
1398     // Note: If the FlatProfiler is running, then this thread is waiting
1399     // for the WatcherThread to terminate and the WatcherThread, via the
1400     // FlatProfiler task, is waiting for the external suspend request on
1401     // this thread to complete. wait_for_ext_suspend_completion() will
1402     // eventually timeout, but that takes time. Making this wait a
1403     // suspend-equivalent condition solves that timeout problem.
1404     //
1405     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1406                           Mutex::_as_suspend_equivalent_flag);
1407   }
1408 }
1409 
1410 void WatcherThread::unpark() {
1411   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1412   PeriodicTask_lock->notify();
1413 }
1414 
1415 void WatcherThread::print_on(outputStream* st) const {
1416   st->print("\"%s\" ", name());
1417   Thread::print_on(st);
1418   st->cr();
1419 }
1420 
1421 // ======= JavaThread ========
1422 
1423 #ifdef GRAAL
1424 
1425 jlong* JavaThread::_graal_old_thread_counters;
1426 
1427 bool graal_counters_include(oop threadObj) {
1428   return !GraalCountersExcludeCompiler || threadObj == NULL || threadObj->klass() != SystemDictionary::CompilerThread_klass();
1429 }
1430 
1431 void JavaThread::collect_counters(typeArrayOop array) {
1432   if (GraalCounterSize > 0) {
1433     MutexLocker tl(Threads_lock);
1434     for (int i = 0; i < array->length(); i++) {
1435       array->long_at_put(i, _graal_old_thread_counters[i]);
1436     }
1437     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1438       if (graal_counters_include(tp->threadObj())) {
1439         for (int i = 0; i < array->length(); i++) {
1440           array->long_at_put(i, array->long_at(i) + tp->_graal_counters[i]);
1441         }
1442       }
1443     }
1444   }
1445 }
1446 
1447 #endif // GRAAL
1448 
1449 // A JavaThread is a normal Java thread
1450 
1451 void JavaThread::initialize() {
1452   // Initialize fields
1453 
1454   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1455   set_claimed_par_id(-1);
1456   
1457   _buffer_blob = NULL;
1458   set_saved_exception_pc(NULL);
1459   set_threadObj(NULL);
1460   _anchor.clear();
1461   set_entry_point(NULL);
1462   set_jni_functions(jni_functions());
1463   set_callee_target(NULL);
1464   set_vm_result(NULL);
1465   set_vm_result_2(NULL);
1466   set_vframe_array_head(NULL);
1467   set_vframe_array_last(NULL);
1468   set_deferred_locals(NULL);
1469   set_deopt_mark(NULL);
1470   set_deopt_nmethod(NULL);
1471   clear_must_deopt_id();
1472   set_monitor_chunks(NULL);
1473   set_next(NULL);
1474 #ifdef GRAAL
1475   set_gpu_exception_bci(0);
1476   set_gpu_exception_method(NULL);  
1477   set_gpu_hsail_deopt_info(NULL);
1478   _gpu_hsail_tlabs_count = 0;
1479   _gpu_hsail_tlabs = NULL;
1480 #endif
1481   set_thread_state(_thread_new);
1482 #if INCLUDE_NMT
1483   set_recorder(NULL);
1484 #endif
1485   _terminated = _not_terminated;
1486   _privileged_stack_top = NULL;
1487   _array_for_gc = NULL;
1488   _suspend_equivalent = false;
1489   _in_deopt_handler = 0;
1490   _doing_unsafe_access = false;
1491   _stack_guard_state = stack_guard_unused;
1492 #ifdef GRAAL
1493   _graal_alternate_call_target = NULL;
1494   _graal_implicit_exception_pc = NULL;
1495   if (GraalCounterSize > 0) {
1496     _graal_counters = NEW_C_HEAP_ARRAY(jlong, GraalCounterSize, mtInternal);
1497     memset(_graal_counters, 0, sizeof(jlong) * GraalCounterSize);
1498   } else {
1499     _graal_counters = NULL;
1500   }
1501 #endif // GRAAL
1502   (void)const_cast<oop&>(_exception_oop = NULL);
1503   _exception_pc  = 0;
1504   _exception_handler_pc = 0;
1505   _is_method_handle_return = 0;
1506   _jvmti_thread_state= NULL;
1507   _should_post_on_exceptions_flag = JNI_FALSE;
1508   _jvmti_get_loaded_classes_closure = NULL;
1509   _interp_only_mode    = 0;
1510   _special_runtime_exit_condition = _no_async_condition;
1511   _pending_async_exception = NULL;
1512   _thread_stat = NULL;
1513   _thread_stat = new ThreadStatistics();
1514   _blocked_on_compilation = false;
1515   _jni_active_critical = 0;
1516   _do_not_unlock_if_synchronized = false;
1517   _cached_monitor_info = NULL;
1518   _parker = Parker::Allocate(this) ;
1519   _scanned_nmethod = NULL;
1520 
1521 #ifndef PRODUCT
1522   _jmp_ring_index = 0;
1523   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1524     record_jump(NULL, NULL, NULL, 0);
1525   }
1526 #endif /* PRODUCT */
1527 
1528   set_thread_profiler(NULL);
1529   if (FlatProfiler::is_active()) {
1530     // This is where we would decide to either give each thread it's own profiler
1531     // or use one global one from FlatProfiler,
1532     // or up to some count of the number of profiled threads, etc.
1533     ThreadProfiler* pp = new ThreadProfiler();
1534     pp->engage();
1535     set_thread_profiler(pp);
1536   }
1537 
1538   // Setup safepoint state info for this thread
1539   ThreadSafepointState::create(this);
1540 
1541   debug_only(_java_call_counter = 0);
1542 
1543   // JVMTI PopFrame support
1544   _popframe_condition = popframe_inactive;
1545   _popframe_preserved_args = NULL;
1546   _popframe_preserved_args_size = 0;
1547 
1548   pd_initialize();
1549 }
1550 
1551 #if INCLUDE_ALL_GCS
1552 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1553 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1554 #endif // INCLUDE_ALL_GCS
1555 
1556 JavaThread::JavaThread(bool is_attaching_via_jni) :
1557   Thread()
1558 #if INCLUDE_ALL_GCS
1559   , _satb_mark_queue(&_satb_mark_queue_set),
1560   _dirty_card_queue(&_dirty_card_queue_set)
1561 #endif // INCLUDE_ALL_GCS
1562 {
1563   initialize();
1564   if (is_attaching_via_jni) {
1565     _jni_attach_state = _attaching_via_jni;
1566   } else {
1567     _jni_attach_state = _not_attaching_via_jni;
1568   }
1569   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1570   _safepoint_visible = false;
1571 }
1572 
1573 bool JavaThread::reguard_stack(address cur_sp) {
1574   if (_stack_guard_state != stack_guard_yellow_disabled) {
1575     return true; // Stack already guarded or guard pages not needed.
1576   }
1577 
1578   if (register_stack_overflow()) {
1579     // For those architectures which have separate register and
1580     // memory stacks, we must check the register stack to see if
1581     // it has overflowed.
1582     return false;
1583   }
1584 
1585   // Java code never executes within the yellow zone: the latter is only
1586   // there to provoke an exception during stack banging.  If java code
1587   // is executing there, either StackShadowPages should be larger, or
1588   // some exception code in c1, c2 or the interpreter isn't unwinding
1589   // when it should.
1590   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1591 
1592   enable_stack_yellow_zone();
1593   return true;
1594 }
1595 
1596 bool JavaThread::reguard_stack(void) {
1597   return reguard_stack(os::current_stack_pointer());
1598 }
1599 
1600 
1601 void JavaThread::block_if_vm_exited() {
1602   if (_terminated == _vm_exited) {
1603     // _vm_exited is set at safepoint, and Threads_lock is never released
1604     // we will block here forever
1605     Threads_lock->lock_without_safepoint_check();
1606     ShouldNotReachHere();
1607   }
1608 }
1609 
1610 
1611 // Remove this ifdef when C1 is ported to the compiler interface.
1612 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1613 
1614 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1615   Thread()
1616 #if INCLUDE_ALL_GCS
1617   , _satb_mark_queue(&_satb_mark_queue_set),
1618   _dirty_card_queue(&_dirty_card_queue_set)
1619 #endif // INCLUDE_ALL_GCS
1620 {
1621   if (TraceThreadEvents) {
1622     tty->print_cr("creating thread %p", this);
1623   }
1624   initialize();
1625   _jni_attach_state = _not_attaching_via_jni;
1626   set_entry_point(entry_point);
1627   // Create the native thread itself.
1628   // %note runtime_23
1629   os::ThreadType thr_type = os::java_thread;
1630   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1631                                                      os::java_thread;
1632   os::create_thread(this, thr_type, stack_sz);
1633   _safepoint_visible = false;
1634   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1635   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1636   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1637   // the exception consists of creating the exception object & initializing it, initialization
1638   // will leave the VM via a JavaCall and then all locks must be unlocked).
1639   //
1640   // The thread is still suspended when we reach here. Thread must be explicit started
1641   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1642   // by calling Threads:add. The reason why this is not done here, is because the thread
1643   // object must be fully initialized (take a look at JVM_Start)
1644 }
1645 
1646 JavaThread::~JavaThread() {
1647   if (TraceThreadEvents) {
1648       tty->print_cr("terminate thread %p", this);
1649   }
1650 
1651   // By now, this thread should already be invisible to safepoint,
1652   // and its per-thread recorder also collected.
1653   assert(!is_safepoint_visible(), "wrong state");
1654 #if INCLUDE_NMT
1655   assert(get_recorder() == NULL, "Already collected");
1656 #endif // INCLUDE_NMT
1657 
1658   // JSR166 -- return the parker to the free list
1659   Parker::Release(_parker);
1660   _parker = NULL ;
1661 
1662   // Free any remaining  previous UnrollBlock
1663   vframeArray* old_array = vframe_array_last();
1664 
1665   if (old_array != NULL) {
1666     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1667     old_array->set_unroll_block(NULL);
1668     delete old_info;
1669     delete old_array;
1670   }
1671 
1672   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1673   if (deferred != NULL) {
1674     // This can only happen if thread is destroyed before deoptimization occurs.
1675     assert(deferred->length() != 0, "empty array!");
1676     do {
1677       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1678       deferred->remove_at(0);
1679       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1680       delete dlv;
1681     } while (deferred->length() != 0);
1682     delete deferred;
1683   }
1684 
1685   // All Java related clean up happens in exit
1686   ThreadSafepointState::destroy(this);
1687   if (_thread_profiler != NULL) delete _thread_profiler;
1688   if (_thread_stat != NULL) delete _thread_stat;
1689 
1690 #ifdef GRAAL
1691   if (GraalCounterSize > 0) {
1692     if (graal_counters_include(threadObj())) {
1693       for (int i = 0; i < GraalCounterSize; i++) {
1694         _graal_old_thread_counters[i] += _graal_counters[i];
1695       }
1696     }
1697     FREE_C_HEAP_ARRAY(jlong, _graal_counters, mtInternal);
1698   }
1699 
1700   delete_gpu_hsail_tlabs();
1701 #endif // GRAAL
1702 }
1703 
1704 
1705 // The first routine called by a new Java thread
1706 void JavaThread::run() {
1707   // initialize thread-local alloc buffer related fields
1708   this->initialize_tlab();
1709 
1710   // used to test validitity of stack trace backs
1711   this->record_base_of_stack_pointer();
1712 
1713   // Record real stack base and size.
1714   this->record_stack_base_and_size();
1715 
1716   // Initialize thread local storage; set before calling MutexLocker
1717   this->initialize_thread_local_storage();
1718 
1719   this->create_stack_guard_pages();
1720 
1721   this->cache_global_variables();
1722 
1723   // Thread is now sufficient initialized to be handled by the safepoint code as being
1724   // in the VM. Change thread state from _thread_new to _thread_in_vm
1725   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1726 
1727   assert(JavaThread::current() == this, "sanity check");
1728   assert(!Thread::current()->owns_locks(), "sanity check");
1729 
1730   DTRACE_THREAD_PROBE(start, this);
1731 
1732   // This operation might block. We call that after all safepoint checks for a new thread has
1733   // been completed.
1734   this->set_active_handles(JNIHandleBlock::allocate_block());
1735 
1736   if (JvmtiExport::should_post_thread_life()) {
1737     JvmtiExport::post_thread_start(this);
1738   }
1739 
1740   EventThreadStart event;
1741   if (event.should_commit()) {
1742      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1743      event.commit();
1744   }
1745 
1746   // We call another function to do the rest so we are sure that the stack addresses used
1747   // from there will be lower than the stack base just computed
1748   thread_main_inner();
1749 
1750   // Note, thread is no longer valid at this point!
1751 }
1752 
1753 
1754 void JavaThread::thread_main_inner() {
1755   assert(JavaThread::current() == this, "sanity check");
1756   assert(this->threadObj() != NULL, "just checking");
1757 
1758   // Execute thread entry point unless this thread has a pending exception
1759   // or has been stopped before starting.
1760   // Note: Due to JVM_StopThread we can have pending exceptions already!
1761   if (!this->has_pending_exception() &&
1762       !java_lang_Thread::is_stillborn(this->threadObj())) {
1763     {
1764       ResourceMark rm(this);
1765       this->set_native_thread_name(this->get_thread_name());
1766     }
1767     HandleMark hm(this);
1768     this->entry_point()(this, this);
1769   }
1770 
1771   DTRACE_THREAD_PROBE(stop, this);
1772 
1773   this->exit(false);
1774   delete this;
1775 }
1776 
1777 
1778 static void ensure_join(JavaThread* thread) {
1779   // We do not need to grap the Threads_lock, since we are operating on ourself.
1780   Handle threadObj(thread, thread->threadObj());
1781   assert(threadObj.not_null(), "java thread object must exist");
1782   ObjectLocker lock(threadObj, thread);
1783   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1784   thread->clear_pending_exception();
1785   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1786   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1787   // Clear the native thread instance - this makes isAlive return false and allows the join()
1788   // to complete once we've done the notify_all below
1789   java_lang_Thread::set_thread(threadObj(), NULL);
1790   lock.notify_all(thread);
1791   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1792   thread->clear_pending_exception();
1793 }
1794 
1795 
1796 // For any new cleanup additions, please check to see if they need to be applied to
1797 // cleanup_failed_attach_current_thread as well.
1798 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1799   assert(this == JavaThread::current(),  "thread consistency check");
1800 
1801   HandleMark hm(this);
1802   Handle uncaught_exception(this, this->pending_exception());
1803   this->clear_pending_exception();
1804   Handle threadObj(this, this->threadObj());
1805   assert(threadObj.not_null(), "Java thread object should be created");
1806 
1807   if (get_thread_profiler() != NULL) {
1808     get_thread_profiler()->disengage();
1809     ResourceMark rm;
1810     get_thread_profiler()->print(get_thread_name());
1811   }
1812 
1813 
1814   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1815   {
1816     EXCEPTION_MARK;
1817 
1818     CLEAR_PENDING_EXCEPTION;
1819   }
1820   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1821   // has to be fixed by a runtime query method
1822   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1823     // JSR-166: change call from from ThreadGroup.uncaughtException to
1824     // java.lang.Thread.dispatchUncaughtException
1825     if (uncaught_exception.not_null()) {
1826       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1827       {
1828         EXCEPTION_MARK;
1829         // Check if the method Thread.dispatchUncaughtException() exists. If so
1830         // call it.  Otherwise we have an older library without the JSR-166 changes,
1831         // so call ThreadGroup.uncaughtException()
1832         KlassHandle recvrKlass(THREAD, threadObj->klass());
1833         CallInfo callinfo;
1834         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1835         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1836                                            vmSymbols::dispatchUncaughtException_name(),
1837                                            vmSymbols::throwable_void_signature(),
1838                                            KlassHandle(), false, false, THREAD);
1839         CLEAR_PENDING_EXCEPTION;
1840         methodHandle method = callinfo.selected_method();
1841         if (method.not_null()) {
1842           JavaValue result(T_VOID);
1843           JavaCalls::call_virtual(&result,
1844                                   threadObj, thread_klass,
1845                                   vmSymbols::dispatchUncaughtException_name(),
1846                                   vmSymbols::throwable_void_signature(),
1847                                   uncaught_exception,
1848                                   THREAD);
1849         } else {
1850           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1851           JavaValue result(T_VOID);
1852           JavaCalls::call_virtual(&result,
1853                                   group, thread_group,
1854                                   vmSymbols::uncaughtException_name(),
1855                                   vmSymbols::thread_throwable_void_signature(),
1856                                   threadObj,           // Arg 1
1857                                   uncaught_exception,  // Arg 2
1858                                   THREAD);
1859         }
1860         if (HAS_PENDING_EXCEPTION) {
1861           ResourceMark rm(this);
1862           jio_fprintf(defaultStream::error_stream(),
1863                 "\nException: %s thrown from the UncaughtExceptionHandler"
1864                 " in thread \"%s\"\n",
1865                 pending_exception()->klass()->external_name(),
1866                 get_thread_name());
1867           CLEAR_PENDING_EXCEPTION;
1868         }
1869       }
1870     }
1871 
1872     // Called before the java thread exit since we want to read info
1873     // from java_lang_Thread object
1874     EventThreadEnd event;
1875     if (event.should_commit()) {
1876         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1877         event.commit();
1878     }
1879 
1880     // Call after last event on thread
1881     EVENT_THREAD_EXIT(this);
1882 
1883     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1884     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1885     // is deprecated anyhow.
1886     if (!is_Compiler_thread()) {
1887       int count = 3;
1888       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1889         EXCEPTION_MARK;
1890         JavaValue result(T_VOID);
1891         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1892         JavaCalls::call_virtual(&result,
1893                               threadObj, thread_klass,
1894                               vmSymbols::exit_method_name(),
1895                               vmSymbols::void_method_signature(),
1896                               THREAD);
1897         CLEAR_PENDING_EXCEPTION;
1898       }
1899     }
1900     // notify JVMTI
1901     if (JvmtiExport::should_post_thread_life()) {
1902       JvmtiExport::post_thread_end(this);
1903     }
1904 
1905     // We have notified the agents that we are exiting, before we go on,
1906     // we must check for a pending external suspend request and honor it
1907     // in order to not surprise the thread that made the suspend request.
1908     while (true) {
1909       {
1910         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1911         if (!is_external_suspend()) {
1912           set_terminated(_thread_exiting);
1913           ThreadService::current_thread_exiting(this);
1914           break;
1915         }
1916         // Implied else:
1917         // Things get a little tricky here. We have a pending external
1918         // suspend request, but we are holding the SR_lock so we
1919         // can't just self-suspend. So we temporarily drop the lock
1920         // and then self-suspend.
1921       }
1922 
1923       ThreadBlockInVM tbivm(this);
1924       java_suspend_self();
1925 
1926       // We're done with this suspend request, but we have to loop around
1927       // and check again. Eventually we will get SR_lock without a pending
1928       // external suspend request and will be able to mark ourselves as
1929       // exiting.
1930     }
1931     // no more external suspends are allowed at this point
1932   } else {
1933     // before_exit() has already posted JVMTI THREAD_END events
1934   }
1935 
1936   // Notify waiters on thread object. This has to be done after exit() is called
1937   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1938   // group should have the destroyed bit set before waiters are notified).
1939   ensure_join(this);
1940   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1941 
1942   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1943   // held by this thread must be released.  A detach operation must only
1944   // get here if there are no Java frames on the stack.  Therefore, any
1945   // owned monitors at this point MUST be JNI-acquired monitors which are
1946   // pre-inflated and in the monitor cache.
1947   //
1948   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1949   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1950     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1951     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1952     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1953   }
1954 
1955   // These things needs to be done while we are still a Java Thread. Make sure that thread
1956   // is in a consistent state, in case GC happens
1957   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1958 
1959   if (active_handles() != NULL) {
1960     JNIHandleBlock* block = active_handles();
1961     set_active_handles(NULL);
1962     JNIHandleBlock::release_block(block);
1963   }
1964 
1965   if (free_handle_block() != NULL) {
1966     JNIHandleBlock* block = free_handle_block();
1967     set_free_handle_block(NULL);
1968     JNIHandleBlock::release_block(block);
1969   }
1970 
1971   // These have to be removed while this is still a valid thread.
1972   remove_stack_guard_pages();
1973 
1974   if (UseTLAB) {
1975     tlab().make_parsable(true);  // retire TLAB
1976   }
1977 
1978   if (JvmtiEnv::environments_might_exist()) {
1979     JvmtiExport::cleanup_thread(this);
1980   }
1981 
1982   // We must flush any deferred card marks before removing a thread from
1983   // the list of active threads.
1984   Universe::heap()->flush_deferred_store_barrier(this);
1985   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1986 
1987 #if INCLUDE_ALL_GCS
1988   // We must flush the G1-related buffers before removing a thread
1989   // from the list of active threads. We must do this after any deferred
1990   // card marks have been flushed (above) so that any entries that are
1991   // added to the thread's dirty card queue as a result are not lost.
1992   if (UseG1GC) {
1993     flush_barrier_queues();
1994   }
1995 #endif // INCLUDE_ALL_GCS
1996 
1997   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1998   Threads::remove(this);
1999 }
2000 
2001 #if INCLUDE_ALL_GCS
2002 // Flush G1-related queues.
2003 void JavaThread::flush_barrier_queues() {
2004   satb_mark_queue().flush();
2005   dirty_card_queue().flush();
2006 }
2007 
2008 void JavaThread::initialize_queues() {
2009   assert(!SafepointSynchronize::is_at_safepoint(),
2010          "we should not be at a safepoint");
2011 
2012   ObjPtrQueue& satb_queue = satb_mark_queue();
2013   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
2014   // The SATB queue should have been constructed with its active
2015   // field set to false.
2016   assert(!satb_queue.is_active(), "SATB queue should not be active");
2017   assert(satb_queue.is_empty(), "SATB queue should be empty");
2018   // If we are creating the thread during a marking cycle, we should
2019   // set the active field of the SATB queue to true.
2020   if (satb_queue_set.is_active()) {
2021     satb_queue.set_active(true);
2022   }
2023 
2024   DirtyCardQueue& dirty_queue = dirty_card_queue();
2025   // The dirty card queue should have been constructed with its
2026   // active field set to true.
2027   assert(dirty_queue.is_active(), "dirty card queue should be active");
2028 }
2029 #endif // INCLUDE_ALL_GCS
2030 
2031 void JavaThread::cleanup_failed_attach_current_thread() {
2032   if (get_thread_profiler() != NULL) {
2033     get_thread_profiler()->disengage();
2034     ResourceMark rm;
2035     get_thread_profiler()->print(get_thread_name());
2036   }
2037 
2038   if (active_handles() != NULL) {
2039     JNIHandleBlock* block = active_handles();
2040     set_active_handles(NULL);
2041     JNIHandleBlock::release_block(block);
2042   }
2043 
2044   if (free_handle_block() != NULL) {
2045     JNIHandleBlock* block = free_handle_block();
2046     set_free_handle_block(NULL);
2047     JNIHandleBlock::release_block(block);
2048   }
2049 
2050   // These have to be removed while this is still a valid thread.
2051   remove_stack_guard_pages();
2052 
2053   if (UseTLAB) {
2054     tlab().make_parsable(true);  // retire TLAB, if any
2055   }
2056 
2057 #if INCLUDE_ALL_GCS
2058   if (UseG1GC) {
2059     flush_barrier_queues();
2060   }
2061 #endif // INCLUDE_ALL_GCS
2062 
2063   Threads::remove(this);
2064   delete this;
2065 }
2066 
2067 
2068 
2069 
2070 JavaThread* JavaThread::active() {
2071   Thread* thread = ThreadLocalStorage::thread();
2072   assert(thread != NULL, "just checking");
2073   if (thread->is_Java_thread()) {
2074     return (JavaThread*) thread;
2075   } else {
2076     assert(thread->is_VM_thread(), "this must be a vm thread");
2077     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2078     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2079     assert(ret->is_Java_thread(), "must be a Java thread");
2080     return ret;
2081   }
2082 }
2083 
2084 bool JavaThread::is_lock_owned(address adr) const {
2085   if (Thread::is_lock_owned(adr)) return true;
2086 
2087   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2088     if (chunk->contains(adr)) return true;
2089   }
2090 
2091   return false;
2092 }
2093 
2094 
2095 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2096   chunk->set_next(monitor_chunks());
2097   set_monitor_chunks(chunk);
2098 }
2099 
2100 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2101   guarantee(monitor_chunks() != NULL, "must be non empty");
2102   if (monitor_chunks() == chunk) {
2103     set_monitor_chunks(chunk->next());
2104   } else {
2105     MonitorChunk* prev = monitor_chunks();
2106     while (prev->next() != chunk) prev = prev->next();
2107     prev->set_next(chunk->next());
2108   }
2109 }
2110 
2111 // JVM support.
2112 
2113 // Note: this function shouldn't block if it's called in
2114 // _thread_in_native_trans state (such as from
2115 // check_special_condition_for_native_trans()).
2116 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2117 
2118   if (has_last_Java_frame() && has_async_condition()) {
2119     // If we are at a polling page safepoint (not a poll return)
2120     // then we must defer async exception because live registers
2121     // will be clobbered by the exception path. Poll return is
2122     // ok because the call we a returning from already collides
2123     // with exception handling registers and so there is no issue.
2124     // (The exception handling path kills call result registers but
2125     //  this is ok since the exception kills the result anyway).
2126 
2127     if (is_at_poll_safepoint()) {
2128       // if the code we are returning to has deoptimized we must defer
2129       // the exception otherwise live registers get clobbered on the
2130       // exception path before deoptimization is able to retrieve them.
2131       //
2132       RegisterMap map(this, false);
2133       frame caller_fr = last_frame().sender(&map);
2134       assert(caller_fr.is_compiled_frame(), "what?");
2135       if (caller_fr.is_deoptimized_frame()) {
2136         if (TraceExceptions) {
2137           ResourceMark rm;
2138           tty->print_cr("deferred async exception at compiled safepoint");
2139         }
2140         return;
2141       }
2142     }
2143   }
2144 
2145   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2146   if (condition == _no_async_condition) {
2147     // Conditions have changed since has_special_runtime_exit_condition()
2148     // was called:
2149     // - if we were here only because of an external suspend request,
2150     //   then that was taken care of above (or cancelled) so we are done
2151     // - if we were here because of another async request, then it has
2152     //   been cleared between the has_special_runtime_exit_condition()
2153     //   and now so again we are done
2154     return;
2155   }
2156 
2157   // Check for pending async. exception
2158   if (_pending_async_exception != NULL) {
2159     // Only overwrite an already pending exception, if it is not a threadDeath.
2160     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2161 
2162       // We cannot call Exceptions::_throw(...) here because we cannot block
2163       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2164 
2165       if (TraceExceptions) {
2166         ResourceMark rm;
2167         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2168         if (has_last_Java_frame() ) {
2169           frame f = last_frame();
2170           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2171         }
2172         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2173       }
2174       _pending_async_exception = NULL;
2175       clear_has_async_exception();
2176     }
2177   }
2178 
2179   if (check_unsafe_error &&
2180       condition == _async_unsafe_access_error && !has_pending_exception()) {
2181     condition = _no_async_condition;  // done
2182     switch (thread_state()) {
2183     case _thread_in_vm:
2184       {
2185         JavaThread* THREAD = this;
2186         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2187       }
2188     case _thread_in_native:
2189       {
2190         ThreadInVMfromNative tiv(this);
2191         JavaThread* THREAD = this;
2192         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2193       }
2194     case _thread_in_Java:
2195       {
2196         ThreadInVMfromJava tiv(this);
2197         JavaThread* THREAD = this;
2198         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2199       }
2200     default:
2201       ShouldNotReachHere();
2202     }
2203   }
2204 
2205   assert(condition == _no_async_condition || has_pending_exception() ||
2206          (!check_unsafe_error && condition == _async_unsafe_access_error),
2207          "must have handled the async condition, if no exception");
2208 }
2209 
2210 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2211   //
2212   // Check for pending external suspend. Internal suspend requests do
2213   // not use handle_special_runtime_exit_condition().
2214   // If JNIEnv proxies are allowed, don't self-suspend if the target
2215   // thread is not the current thread. In older versions of jdbx, jdbx
2216   // threads could call into the VM with another thread's JNIEnv so we
2217   // can be here operating on behalf of a suspended thread (4432884).
2218   bool do_self_suspend = is_external_suspend_with_lock();
2219   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2220     //
2221     // Because thread is external suspended the safepoint code will count
2222     // thread as at a safepoint. This can be odd because we can be here
2223     // as _thread_in_Java which would normally transition to _thread_blocked
2224     // at a safepoint. We would like to mark the thread as _thread_blocked
2225     // before calling java_suspend_self like all other callers of it but
2226     // we must then observe proper safepoint protocol. (We can't leave
2227     // _thread_blocked with a safepoint in progress). However we can be
2228     // here as _thread_in_native_trans so we can't use a normal transition
2229     // constructor/destructor pair because they assert on that type of
2230     // transition. We could do something like:
2231     //
2232     // JavaThreadState state = thread_state();
2233     // set_thread_state(_thread_in_vm);
2234     // {
2235     //   ThreadBlockInVM tbivm(this);
2236     //   java_suspend_self()
2237     // }
2238     // set_thread_state(_thread_in_vm_trans);
2239     // if (safepoint) block;
2240     // set_thread_state(state);
2241     //
2242     // but that is pretty messy. Instead we just go with the way the
2243     // code has worked before and note that this is the only path to
2244     // java_suspend_self that doesn't put the thread in _thread_blocked
2245     // mode.
2246 
2247     frame_anchor()->make_walkable(this);
2248     java_suspend_self();
2249 
2250     // We might be here for reasons in addition to the self-suspend request
2251     // so check for other async requests.
2252   }
2253 
2254   if (check_asyncs) {
2255     check_and_handle_async_exceptions();
2256   }
2257 }
2258 
2259 void JavaThread::send_thread_stop(oop java_throwable)  {
2260   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2261   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2262   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2263 
2264   // Do not throw asynchronous exceptions against the compiler thread
2265   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2266   if (!can_call_java()) return;
2267 
2268   {
2269     // Actually throw the Throwable against the target Thread - however
2270     // only if there is no thread death exception installed already.
2271     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2272       // If the topmost frame is a runtime stub, then we are calling into
2273       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2274       // must deoptimize the caller before continuing, as the compiled  exception handler table
2275       // may not be valid
2276       if (has_last_Java_frame()) {
2277         frame f = last_frame();
2278         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2279           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2280           RegisterMap reg_map(this, UseBiasedLocking);
2281           frame compiled_frame = f.sender(&reg_map);
2282           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2283             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2284           }
2285         }
2286       }
2287 
2288       // Set async. pending exception in thread.
2289       set_pending_async_exception(java_throwable);
2290 
2291       if (TraceExceptions) {
2292        ResourceMark rm;
2293        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2294       }
2295       // for AbortVMOnException flag
2296       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2297     }
2298   }
2299 
2300 
2301   // Interrupt thread so it will wake up from a potential wait()
2302   Thread::interrupt(this);
2303 }
2304 
2305 // External suspension mechanism.
2306 //
2307 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2308 // to any VM_locks and it is at a transition
2309 // Self-suspension will happen on the transition out of the vm.
2310 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2311 //
2312 // Guarantees on return:
2313 //   + Target thread will not execute any new bytecode (that's why we need to
2314 //     force a safepoint)
2315 //   + Target thread will not enter any new monitors
2316 //
2317 void JavaThread::java_suspend() {
2318   { MutexLocker mu(Threads_lock);
2319     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2320        return;
2321     }
2322   }
2323 
2324   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2325     if (!is_external_suspend()) {
2326       // a racing resume has cancelled us; bail out now
2327       return;
2328     }
2329 
2330     // suspend is done
2331     uint32_t debug_bits = 0;
2332     // Warning: is_ext_suspend_completed() may temporarily drop the
2333     // SR_lock to allow the thread to reach a stable thread state if
2334     // it is currently in a transient thread state.
2335     if (is_ext_suspend_completed(false /* !called_by_wait */,
2336                                  SuspendRetryDelay, &debug_bits) ) {
2337       return;
2338     }
2339   }
2340 
2341   VM_ForceSafepoint vm_suspend;
2342   VMThread::execute(&vm_suspend);
2343 }
2344 
2345 // Part II of external suspension.
2346 // A JavaThread self suspends when it detects a pending external suspend
2347 // request. This is usually on transitions. It is also done in places
2348 // where continuing to the next transition would surprise the caller,
2349 // e.g., monitor entry.
2350 //
2351 // Returns the number of times that the thread self-suspended.
2352 //
2353 // Note: DO NOT call java_suspend_self() when you just want to block current
2354 //       thread. java_suspend_self() is the second stage of cooperative
2355 //       suspension for external suspend requests and should only be used
2356 //       to complete an external suspend request.
2357 //
2358 int JavaThread::java_suspend_self() {
2359   int ret = 0;
2360 
2361   // we are in the process of exiting so don't suspend
2362   if (is_exiting()) {
2363      clear_external_suspend();
2364      return ret;
2365   }
2366 
2367   assert(_anchor.walkable() ||
2368     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2369     "must have walkable stack");
2370 
2371   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2372 
2373   assert(!this->is_ext_suspended(),
2374     "a thread trying to self-suspend should not already be suspended");
2375 
2376   if (this->is_suspend_equivalent()) {
2377     // If we are self-suspending as a result of the lifting of a
2378     // suspend equivalent condition, then the suspend_equivalent
2379     // flag is not cleared until we set the ext_suspended flag so
2380     // that wait_for_ext_suspend_completion() returns consistent
2381     // results.
2382     this->clear_suspend_equivalent();
2383   }
2384 
2385   // A racing resume may have cancelled us before we grabbed SR_lock
2386   // above. Or another external suspend request could be waiting for us
2387   // by the time we return from SR_lock()->wait(). The thread
2388   // that requested the suspension may already be trying to walk our
2389   // stack and if we return now, we can change the stack out from under
2390   // it. This would be a "bad thing (TM)" and cause the stack walker
2391   // to crash. We stay self-suspended until there are no more pending
2392   // external suspend requests.
2393   while (is_external_suspend()) {
2394     ret++;
2395     this->set_ext_suspended();
2396 
2397     // _ext_suspended flag is cleared by java_resume()
2398     while (is_ext_suspended()) {
2399       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2400     }
2401   }
2402 
2403   return ret;
2404 }
2405 
2406 #ifdef ASSERT
2407 // verify the JavaThread has not yet been published in the Threads::list, and
2408 // hence doesn't need protection from concurrent access at this stage
2409 void JavaThread::verify_not_published() {
2410   if (!Threads_lock->owned_by_self()) {
2411    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2412    assert( !Threads::includes(this),
2413            "java thread shouldn't have been published yet!");
2414   }
2415   else {
2416    assert( !Threads::includes(this),
2417            "java thread shouldn't have been published yet!");
2418   }
2419 }
2420 #endif
2421 
2422 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2423 // progress or when _suspend_flags is non-zero.
2424 // Current thread needs to self-suspend if there is a suspend request and/or
2425 // block if a safepoint is in progress.
2426 // Async exception ISN'T checked.
2427 // Note only the ThreadInVMfromNative transition can call this function
2428 // directly and when thread state is _thread_in_native_trans
2429 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2430   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2431 
2432   JavaThread *curJT = JavaThread::current();
2433   bool do_self_suspend = thread->is_external_suspend();
2434 
2435   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2436 
2437   // If JNIEnv proxies are allowed, don't self-suspend if the target
2438   // thread is not the current thread. In older versions of jdbx, jdbx
2439   // threads could call into the VM with another thread's JNIEnv so we
2440   // can be here operating on behalf of a suspended thread (4432884).
2441   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2442     JavaThreadState state = thread->thread_state();
2443 
2444     // We mark this thread_blocked state as a suspend-equivalent so
2445     // that a caller to is_ext_suspend_completed() won't be confused.
2446     // The suspend-equivalent state is cleared by java_suspend_self().
2447     thread->set_suspend_equivalent();
2448 
2449     // If the safepoint code sees the _thread_in_native_trans state, it will
2450     // wait until the thread changes to other thread state. There is no
2451     // guarantee on how soon we can obtain the SR_lock and complete the
2452     // self-suspend request. It would be a bad idea to let safepoint wait for
2453     // too long. Temporarily change the state to _thread_blocked to
2454     // let the VM thread know that this thread is ready for GC. The problem
2455     // of changing thread state is that safepoint could happen just after
2456     // java_suspend_self() returns after being resumed, and VM thread will
2457     // see the _thread_blocked state. We must check for safepoint
2458     // after restoring the state and make sure we won't leave while a safepoint
2459     // is in progress.
2460     thread->set_thread_state(_thread_blocked);
2461     thread->java_suspend_self();
2462     thread->set_thread_state(state);
2463     // Make sure new state is seen by VM thread
2464     if (os::is_MP()) {
2465       if (UseMembar) {
2466         // Force a fence between the write above and read below
2467         OrderAccess::fence();
2468       } else {
2469         // Must use this rather than serialization page in particular on Windows
2470         InterfaceSupport::serialize_memory(thread);
2471       }
2472     }
2473   }
2474 
2475   if (SafepointSynchronize::do_call_back()) {
2476     // If we are safepointing, then block the caller which may not be
2477     // the same as the target thread (see above).
2478     SafepointSynchronize::block(curJT);
2479   }
2480 
2481   if (thread->is_deopt_suspend()) {
2482     thread->clear_deopt_suspend();
2483     RegisterMap map(thread, false);
2484     frame f = thread->last_frame();
2485     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2486       f = f.sender(&map);
2487     }
2488     if (f.id() == thread->must_deopt_id()) {
2489       thread->clear_must_deopt_id();
2490       f.deoptimize(thread);
2491     } else {
2492       fatal("missed deoptimization!");
2493     }
2494   }
2495 }
2496 
2497 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2498 // progress or when _suspend_flags is non-zero.
2499 // Current thread needs to self-suspend if there is a suspend request and/or
2500 // block if a safepoint is in progress.
2501 // Also check for pending async exception (not including unsafe access error).
2502 // Note only the native==>VM/Java barriers can call this function and when
2503 // thread state is _thread_in_native_trans.
2504 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2505   check_safepoint_and_suspend_for_native_trans(thread);
2506 
2507   if (thread->has_async_exception()) {
2508     // We are in _thread_in_native_trans state, don't handle unsafe
2509     // access error since that may block.
2510     thread->check_and_handle_async_exceptions(false);
2511   }
2512 }
2513 
2514 // This is a variant of the normal
2515 // check_special_condition_for_native_trans with slightly different
2516 // semantics for use by critical native wrappers.  It does all the
2517 // normal checks but also performs the transition back into
2518 // thread_in_Java state.  This is required so that critical natives
2519 // can potentially block and perform a GC if they are the last thread
2520 // exiting the GC_locker.
2521 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2522   check_special_condition_for_native_trans(thread);
2523 
2524   // Finish the transition
2525   thread->set_thread_state(_thread_in_Java);
2526 
2527   if (thread->do_critical_native_unlock()) {
2528     ThreadInVMfromJavaNoAsyncException tiv(thread);
2529     GC_locker::unlock_critical(thread);
2530     thread->clear_critical_native_unlock();
2531   }
2532 }
2533 
2534 // We need to guarantee the Threads_lock here, since resumes are not
2535 // allowed during safepoint synchronization
2536 // Can only resume from an external suspension
2537 void JavaThread::java_resume() {
2538   assert_locked_or_safepoint(Threads_lock);
2539 
2540   // Sanity check: thread is gone, has started exiting or the thread
2541   // was not externally suspended.
2542   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2543     return;
2544   }
2545 
2546   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2547 
2548   clear_external_suspend();
2549 
2550   if (is_ext_suspended()) {
2551     clear_ext_suspended();
2552     SR_lock()->notify_all();
2553   }
2554 }
2555 
2556 void JavaThread::create_stack_guard_pages() {
2557   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2558   address low_addr = stack_base() - stack_size();
2559   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2560 
2561   int allocate = os::allocate_stack_guard_pages();
2562   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2563 
2564   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2565     warning("Attempt to allocate stack guard pages failed.");
2566     return;
2567   }
2568 
2569   if (os::guard_memory((char *) low_addr, len)) {
2570     _stack_guard_state = stack_guard_enabled;
2571   } else {
2572     warning("Attempt to protect stack guard pages failed.");
2573     if (os::uncommit_memory((char *) low_addr, len)) {
2574       warning("Attempt to deallocate stack guard pages failed.");
2575     }
2576   }
2577 }
2578 
2579 void JavaThread::remove_stack_guard_pages() {
2580   assert(Thread::current() == this, "from different thread");
2581   if (_stack_guard_state == stack_guard_unused) return;
2582   address low_addr = stack_base() - stack_size();
2583   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2584 
2585   if (os::allocate_stack_guard_pages()) {
2586     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2587       _stack_guard_state = stack_guard_unused;
2588     } else {
2589       warning("Attempt to deallocate stack guard pages failed.");
2590     }
2591   } else {
2592     if (_stack_guard_state == stack_guard_unused) return;
2593     if (os::unguard_memory((char *) low_addr, len)) {
2594       _stack_guard_state = stack_guard_unused;
2595     } else {
2596         warning("Attempt to unprotect stack guard pages failed.");
2597     }
2598   }
2599 }
2600 
2601 void JavaThread::enable_stack_yellow_zone() {
2602   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2603   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2604 
2605   // The base notation is from the stacks point of view, growing downward.
2606   // We need to adjust it to work correctly with guard_memory()
2607   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2608 
2609   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2610   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2611 
2612   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2613     _stack_guard_state = stack_guard_enabled;
2614   } else {
2615     warning("Attempt to guard stack yellow zone failed.");
2616   }
2617   enable_register_stack_guard();
2618 }
2619 
2620 void JavaThread::disable_stack_yellow_zone() {
2621   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2622   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2623 
2624   // Simply return if called for a thread that does not use guard pages.
2625   if (_stack_guard_state == stack_guard_unused) return;
2626 
2627   // The base notation is from the stacks point of view, growing downward.
2628   // We need to adjust it to work correctly with guard_memory()
2629   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2630 
2631   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2632     _stack_guard_state = stack_guard_yellow_disabled;
2633   } else {
2634     warning("Attempt to unguard stack yellow zone failed.");
2635   }
2636   disable_register_stack_guard();
2637 }
2638 
2639 void JavaThread::enable_stack_red_zone() {
2640   // The base notation is from the stacks point of view, growing downward.
2641   // We need to adjust it to work correctly with guard_memory()
2642   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2643   address base = stack_red_zone_base() - stack_red_zone_size();
2644 
2645   guarantee(base < stack_base(),"Error calculating stack red zone");
2646   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2647 
2648   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2649     warning("Attempt to guard stack red zone failed.");
2650   }
2651 }
2652 
2653 void JavaThread::disable_stack_red_zone() {
2654   // The base notation is from the stacks point of view, growing downward.
2655   // We need to adjust it to work correctly with guard_memory()
2656   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2657   address base = stack_red_zone_base() - stack_red_zone_size();
2658   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2659     warning("Attempt to unguard stack red zone failed.");
2660   }
2661 }
2662 
2663 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2664   // ignore is there is no stack
2665   if (!has_last_Java_frame()) return;
2666   // traverse the stack frames. Starts from top frame.
2667   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2668     frame* fr = fst.current();
2669     f(fr, fst.register_map());
2670   }
2671 }
2672 
2673 
2674 #ifndef PRODUCT
2675 // Deoptimization
2676 // Function for testing deoptimization
2677 void JavaThread::deoptimize() {
2678   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2679   StackFrameStream fst(this, UseBiasedLocking);
2680   bool deopt = false;           // Dump stack only if a deopt actually happens.
2681   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2682   // Iterate over all frames in the thread and deoptimize
2683   for(; !fst.is_done(); fst.next()) {
2684     if(fst.current()->can_be_deoptimized()) {
2685 
2686       if (only_at) {
2687         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2688         // consists of comma or carriage return separated numbers so
2689         // search for the current bci in that string.
2690         address pc = fst.current()->pc();
2691         nmethod* nm =  (nmethod*) fst.current()->cb();
2692         ScopeDesc* sd = nm->scope_desc_at( pc);
2693         char buffer[8];
2694         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2695         size_t len = strlen(buffer);
2696         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2697         while (found != NULL) {
2698           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2699               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2700             // Check that the bci found is bracketed by terminators.
2701             break;
2702           }
2703           found = strstr(found + 1, buffer);
2704         }
2705         if (!found) {
2706           continue;
2707         }
2708       }
2709 
2710       if (DebugDeoptimization && !deopt) {
2711         deopt = true; // One-time only print before deopt
2712         tty->print_cr("[BEFORE Deoptimization]");
2713         trace_frames();
2714         trace_stack();
2715       }
2716       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2717     }
2718   }
2719 
2720   if (DebugDeoptimization && deopt) {
2721     tty->print_cr("[AFTER Deoptimization]");
2722     trace_frames();
2723   }
2724 }
2725 
2726 
2727 // Make zombies
2728 void JavaThread::make_zombies() {
2729   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2730     if (fst.current()->can_be_deoptimized()) {
2731       // it is a Java nmethod
2732       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2733       nm->make_not_entrant();
2734     }
2735   }
2736 }
2737 #endif // PRODUCT
2738 
2739 
2740 void JavaThread::deoptimized_wrt_marked_nmethods() {
2741   if (!has_last_Java_frame()) return;
2742   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2743   StackFrameStream fst(this, UseBiasedLocking);
2744   for(; !fst.is_done(); fst.next()) {
2745     if (fst.current()->should_be_deoptimized()) {
2746       if (LogCompilation && xtty != NULL) {
2747         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2748         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2749                    this->name(), nm != NULL ? nm->compile_id() : -1);
2750       }
2751 
2752       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2753     }
2754   }
2755 }
2756 
2757 
2758 // GC support
2759 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2760 
2761 void JavaThread::gc_epilogue() {
2762   frames_do(frame_gc_epilogue);
2763 }
2764 
2765 
2766 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2767 
2768 void JavaThread::gc_prologue() {
2769   frames_do(frame_gc_prologue);
2770 }
2771 
2772 // If the caller is a NamedThread, then remember, in the current scope,
2773 // the given JavaThread in its _processed_thread field.
2774 class RememberProcessedThread: public StackObj {
2775   NamedThread* _cur_thr;
2776 public:
2777   RememberProcessedThread(JavaThread* jthr) {
2778     Thread* thread = Thread::current();
2779     if (thread->is_Named_thread()) {
2780       _cur_thr = (NamedThread *)thread;
2781       _cur_thr->set_processed_thread(jthr);
2782     } else {
2783       _cur_thr = NULL;
2784     }
2785   }
2786 
2787   ~RememberProcessedThread() {
2788     if (_cur_thr) {
2789       _cur_thr->set_processed_thread(NULL);
2790     }
2791   }
2792 };
2793 
2794 void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2795   // Verify that the deferred card marks have been flushed.
2796   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2797 
2798   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2799   // since there may be more than one thread using each ThreadProfiler.
2800 
2801   // Traverse the GCHandles
2802   Thread::oops_do(f, cld_f, cf);
2803 
2804   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2805           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2806 
2807   if (has_last_Java_frame()) {
2808     // Record JavaThread to GC thread
2809     RememberProcessedThread rpt(this);
2810 
2811     // Traverse the privileged stack
2812     if (_privileged_stack_top != NULL) {
2813       _privileged_stack_top->oops_do(f);
2814     }
2815 
2816     // traverse the registered growable array
2817     if (_array_for_gc != NULL) {
2818       for (int index = 0; index < _array_for_gc->length(); index++) {
2819         f->do_oop(_array_for_gc->adr_at(index));
2820       }
2821     }
2822 
2823     // Traverse the monitor chunks
2824     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2825       chunk->oops_do(f);
2826     }
2827 
2828     // Traverse the execution stack
2829     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2830       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2831     }
2832   }
2833 
2834   // callee_target is never live across a gc point so NULL it here should
2835   // it still contain a methdOop.
2836 
2837   set_callee_target(NULL);
2838 
2839   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2840   // If we have deferred set_locals there might be oops waiting to be
2841   // written
2842   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2843   if (list != NULL) {
2844     for (int i = 0; i < list->length(); i++) {
2845       list->at(i)->oops_do(f);
2846     }
2847   }
2848 
2849   // Traverse instance variables at the end since the GC may be moving things
2850   // around using this function
2851   f->do_oop((oop*) &_threadObj);
2852   f->do_oop((oop*) &_vm_result);
2853   f->do_oop((oop*) &_exception_oop);
2854   f->do_oop((oop*) &_pending_async_exception);
2855 
2856   if (jvmti_thread_state() != NULL) {
2857     jvmti_thread_state()->oops_do(f);
2858   }
2859 
2860   if (_scanned_nmethod != NULL && cf != NULL) {
2861     // Safepoints can occur when the sweeper is scanning an nmethod so
2862     // process it here to make sure it isn't unloaded in the middle of
2863     // a scan.
2864     cf->do_code_blob(_scanned_nmethod);
2865   }
2866 
2867 #ifdef GRAAL
2868   Hsail::HSAILDeoptimizationInfo* gpu_hsail_deopt_info = (Hsail::HSAILDeoptimizationInfo*) get_gpu_hsail_deopt_info();
2869   if (gpu_hsail_deopt_info != NULL) {
2870     gpu_hsail_deopt_info->oops_do(f);
2871   }
2872 #endif
2873 }
2874 
2875 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2876   Thread::nmethods_do(cf);  // (super method is a no-op)
2877 
2878   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2879           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2880 
2881   if (has_last_Java_frame()) {
2882     // Traverse the execution stack
2883     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2884       fst.current()->nmethods_do(cf);
2885     }
2886   }
2887 }
2888 
2889 void JavaThread::metadata_do(void f(Metadata*)) {
2890   Thread::metadata_do(f);
2891   if (has_last_Java_frame()) {
2892     // Traverse the execution stack to call f() on the methods in the stack
2893     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2894       fst.current()->metadata_do(f);
2895     }
2896   } else if (is_Compiler_thread()) {
2897     // need to walk ciMetadata in current compile tasks to keep alive.
2898     CompilerThread* ct = (CompilerThread*)this;
2899     if (ct->env() != NULL) {
2900       ct->env()->metadata_do(f);
2901     }
2902   }
2903 }
2904 
2905 // Printing
2906 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2907   switch (_thread_state) {
2908   case _thread_uninitialized:     return "_thread_uninitialized";
2909   case _thread_new:               return "_thread_new";
2910   case _thread_new_trans:         return "_thread_new_trans";
2911   case _thread_in_native:         return "_thread_in_native";
2912   case _thread_in_native_trans:   return "_thread_in_native_trans";
2913   case _thread_in_vm:             return "_thread_in_vm";
2914   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2915   case _thread_in_Java:           return "_thread_in_Java";
2916   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2917   case _thread_blocked:           return "_thread_blocked";
2918   case _thread_blocked_trans:     return "_thread_blocked_trans";
2919   default:                        return "unknown thread state";
2920   }
2921 }
2922 
2923 #ifndef PRODUCT
2924 void JavaThread::print_thread_state_on(outputStream *st) const {
2925   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2926 };
2927 void JavaThread::print_thread_state() const {
2928   print_thread_state_on(tty);
2929 };
2930 #endif // PRODUCT
2931 
2932 // Called by Threads::print() for VM_PrintThreads operation
2933 void JavaThread::print_on(outputStream *st) const {
2934   st->print("\"%s\" ", get_thread_name());
2935   oop thread_oop = threadObj();
2936   if (thread_oop != NULL) {
2937     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2938     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2939     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2940   }
2941   Thread::print_on(st);
2942   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2943   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2944   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2945     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2946   }
2947 #ifndef PRODUCT
2948   print_thread_state_on(st);
2949   _safepoint_state->print_on(st);
2950 #endif // PRODUCT
2951 }
2952 
2953 // Called by fatal error handler. The difference between this and
2954 // JavaThread::print() is that we can't grab lock or allocate memory.
2955 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2956   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2957   oop thread_obj = threadObj();
2958   if (thread_obj != NULL) {
2959      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2960   }
2961   st->print(" [");
2962   st->print("%s", _get_thread_state_name(_thread_state));
2963   if (osthread()) {
2964     st->print(", id=%d", osthread()->thread_id());
2965   }
2966   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2967             _stack_base - _stack_size, _stack_base);
2968   st->print("]");
2969   return;
2970 }
2971 
2972 // Verification
2973 
2974 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2975 
2976 void JavaThread::verify() {
2977   // Verify oops in the thread.
2978   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2979 
2980   // Verify the stack frames.
2981   frames_do(frame_verify);
2982 }
2983 
2984 // CR 6300358 (sub-CR 2137150)
2985 // Most callers of this method assume that it can't return NULL but a
2986 // thread may not have a name whilst it is in the process of attaching to
2987 // the VM - see CR 6412693, and there are places where a JavaThread can be
2988 // seen prior to having it's threadObj set (eg JNI attaching threads and
2989 // if vm exit occurs during initialization). These cases can all be accounted
2990 // for such that this method never returns NULL.
2991 const char* JavaThread::get_thread_name() const {
2992 #ifdef ASSERT
2993   // early safepoints can hit while current thread does not yet have TLS
2994   if (!SafepointSynchronize::is_at_safepoint()) {
2995     Thread *cur = Thread::current();
2996     if (!(cur->is_Java_thread() && cur == this)) {
2997       // Current JavaThreads are allowed to get their own name without
2998       // the Threads_lock.
2999       assert_locked_or_safepoint(Threads_lock);
3000     }
3001   }
3002 #endif // ASSERT
3003     return get_thread_name_string();
3004 }
3005 
3006 // Returns a non-NULL representation of this thread's name, or a suitable
3007 // descriptive string if there is no set name
3008 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3009   const char* name_str;
3010   oop thread_obj = threadObj();
3011   if (thread_obj != NULL) {
3012     typeArrayOop name = java_lang_Thread::name(thread_obj);
3013     if (name != NULL) {
3014       if (buf == NULL) {
3015         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
3016       }
3017       else {
3018         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
3019       }
3020     }
3021     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3022       name_str = "<no-name - thread is attaching>";
3023     }
3024     else {
3025       name_str = Thread::name();
3026     }
3027   }
3028   else {
3029     name_str = Thread::name();
3030   }
3031   assert(name_str != NULL, "unexpected NULL thread name");
3032   return name_str;
3033 }
3034 
3035 
3036 const char* JavaThread::get_threadgroup_name() const {
3037   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3038   oop thread_obj = threadObj();
3039   if (thread_obj != NULL) {
3040     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3041     if (thread_group != NULL) {
3042       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
3043       // ThreadGroup.name can be null
3044       if (name != NULL) {
3045         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
3046         return str;
3047       }
3048     }
3049   }
3050   return NULL;
3051 }
3052 
3053 const char* JavaThread::get_parent_name() const {
3054   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3055   oop thread_obj = threadObj();
3056   if (thread_obj != NULL) {
3057     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3058     if (thread_group != NULL) {
3059       oop parent = java_lang_ThreadGroup::parent(thread_group);
3060       if (parent != NULL) {
3061         typeArrayOop name = java_lang_ThreadGroup::name(parent);
3062         // ThreadGroup.name can be null
3063         if (name != NULL) {
3064           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
3065           return str;
3066         }
3067       }
3068     }
3069   }
3070   return NULL;
3071 }
3072 
3073 ThreadPriority JavaThread::java_priority() const {
3074   oop thr_oop = threadObj();
3075   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3076   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3077   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3078   return priority;
3079 }
3080 
3081 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3082 
3083   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3084   // Link Java Thread object <-> C++ Thread
3085 
3086   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3087   // and put it into a new Handle.  The Handle "thread_oop" can then
3088   // be used to pass the C++ thread object to other methods.
3089 
3090   // Set the Java level thread object (jthread) field of the
3091   // new thread (a JavaThread *) to C++ thread object using the
3092   // "thread_oop" handle.
3093 
3094   // Set the thread field (a JavaThread *) of the
3095   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3096 
3097   Handle thread_oop(Thread::current(),
3098                     JNIHandles::resolve_non_null(jni_thread));
3099   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3100     "must be initialized");
3101   set_threadObj(thread_oop());
3102   java_lang_Thread::set_thread(thread_oop(), this);
3103 
3104   if (prio == NoPriority) {
3105     prio = java_lang_Thread::priority(thread_oop());
3106     assert(prio != NoPriority, "A valid priority should be present");
3107   }
3108 
3109   // Push the Java priority down to the native thread; needs Threads_lock
3110   Thread::set_priority(this, prio);
3111 
3112   // Add the new thread to the Threads list and set it in motion.
3113   // We must have threads lock in order to call Threads::add.
3114   // It is crucial that we do not block before the thread is
3115   // added to the Threads list for if a GC happens, then the java_thread oop
3116   // will not be visited by GC.
3117   Threads::add(this);
3118 }
3119 
3120 oop JavaThread::current_park_blocker() {
3121   // Support for JSR-166 locks
3122   oop thread_oop = threadObj();
3123   if (thread_oop != NULL &&
3124       JDK_Version::current().supports_thread_park_blocker()) {
3125     return java_lang_Thread::park_blocker(thread_oop);
3126   }
3127   return NULL;
3128 }
3129 
3130 
3131 void JavaThread::print_stack_on(outputStream* st) {
3132   if (!has_last_Java_frame()) return;
3133   ResourceMark rm;
3134   HandleMark   hm;
3135 
3136   RegisterMap reg_map(this);
3137   vframe* start_vf = last_java_vframe(&reg_map);
3138   int count = 0;
3139   for (vframe* f = start_vf; f; f = f->sender() ) {
3140     if (f->is_java_frame()) {
3141       javaVFrame* jvf = javaVFrame::cast(f);
3142       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3143 
3144       // Print out lock information
3145       if (JavaMonitorsInStackTrace) {
3146         jvf->print_lock_info_on(st, count);
3147       }
3148     } else {
3149       // Ignore non-Java frames
3150     }
3151 
3152     // Bail-out case for too deep stacks
3153     count++;
3154     if (MaxJavaStackTraceDepth == count) return;
3155   }
3156 }
3157 
3158 
3159 // JVMTI PopFrame support
3160 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3161   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3162   if (in_bytes(size_in_bytes) != 0) {
3163     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3164     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3165     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3166   }
3167 }
3168 
3169 void* JavaThread::popframe_preserved_args() {
3170   return _popframe_preserved_args;
3171 }
3172 
3173 ByteSize JavaThread::popframe_preserved_args_size() {
3174   return in_ByteSize(_popframe_preserved_args_size);
3175 }
3176 
3177 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3178   int sz = in_bytes(popframe_preserved_args_size());
3179   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3180   return in_WordSize(sz / wordSize);
3181 }
3182 
3183 void JavaThread::popframe_free_preserved_args() {
3184   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3185   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3186   _popframe_preserved_args = NULL;
3187   _popframe_preserved_args_size = 0;
3188 }
3189 
3190 #ifndef PRODUCT
3191 
3192 void JavaThread::trace_frames() {
3193   tty->print_cr("[Describe stack]");
3194   int frame_no = 1;
3195   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3196     tty->print("  %d. ", frame_no++);
3197     fst.current()->print_value_on(tty,this);
3198     tty->cr();
3199   }
3200 }
3201 
3202 class PrintAndVerifyOopClosure: public OopClosure {
3203  protected:
3204   template <class T> inline void do_oop_work(T* p) {
3205     oop obj = oopDesc::load_decode_heap_oop(p);
3206     if (obj == NULL) return;
3207     tty->print(INTPTR_FORMAT ": ", p);
3208     if (obj->is_oop_or_null()) {
3209       if (obj->is_objArray()) {
3210         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3211       } else {
3212         obj->print();
3213       }
3214     } else {
3215       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3216     }
3217     tty->cr();
3218   }
3219  public:
3220   virtual void do_oop(oop* p) { do_oop_work(p); }
3221   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3222 };
3223 
3224 
3225 static void oops_print(frame* f, const RegisterMap *map) {
3226   PrintAndVerifyOopClosure print;
3227   f->print_value();
3228   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3229 }
3230 
3231 // Print our all the locations that contain oops and whether they are
3232 // valid or not.  This useful when trying to find the oldest frame
3233 // where an oop has gone bad since the frame walk is from youngest to
3234 // oldest.
3235 void JavaThread::trace_oops() {
3236   tty->print_cr("[Trace oops]");
3237   frames_do(oops_print);
3238 }
3239 
3240 
3241 #ifdef ASSERT
3242 // Print or validate the layout of stack frames
3243 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3244   ResourceMark rm;
3245   PRESERVE_EXCEPTION_MARK;
3246   FrameValues values;
3247   int frame_no = 0;
3248   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3249     fst.current()->describe(values, ++frame_no);
3250     if (depth == frame_no) break;
3251   }
3252   if (validate_only) {
3253     values.validate();
3254   } else {
3255     tty->print_cr("[Describe stack layout]");
3256     values.print(this);
3257   }
3258 }
3259 #endif
3260 
3261 void JavaThread::trace_stack_from(vframe* start_vf) {
3262   ResourceMark rm;
3263   int vframe_no = 1;
3264   for (vframe* f = start_vf; f; f = f->sender() ) {
3265     if (f->is_java_frame()) {
3266       javaVFrame::cast(f)->print_activation(vframe_no++);
3267     } else {
3268       f->print();
3269     }
3270     if (vframe_no > StackPrintLimit) {
3271       tty->print_cr("...<more frames>...");
3272       return;
3273     }
3274   }
3275 }
3276 
3277 
3278 void JavaThread::trace_stack() {
3279   if (!has_last_Java_frame()) return;
3280   ResourceMark rm;
3281   HandleMark   hm;
3282   RegisterMap reg_map(this);
3283   trace_stack_from(last_java_vframe(&reg_map));
3284 }
3285 
3286 
3287 #endif // PRODUCT
3288 
3289 
3290 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3291   assert(reg_map != NULL, "a map must be given");
3292   frame f = last_frame();
3293   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3294     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3295   }
3296   return NULL;
3297 }
3298 
3299 
3300 Klass* JavaThread::security_get_caller_class(int depth) {
3301   vframeStream vfst(this);
3302   vfst.security_get_caller_frame(depth);
3303   if (!vfst.at_end()) {
3304     return vfst.method()->method_holder();
3305   }
3306   return NULL;
3307 }
3308 
3309 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3310   assert(thread->is_Compiler_thread(), "must be compiler thread");
3311   CompileBroker::compiler_thread_loop();
3312 }
3313 
3314 // Create a CompilerThread
3315 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3316 : JavaThread(&compiler_thread_entry) {
3317   _env   = NULL;
3318   _log   = NULL;
3319   _task  = NULL;
3320   _queue = queue;
3321   _counters = counters;
3322   _buffer_blob = NULL;
3323   _scanned_nmethod = NULL;
3324   _compiler = NULL;
3325 
3326 #ifndef PRODUCT
3327   _ideal_graph_printer = NULL;
3328 #endif
3329 }
3330 
3331 #ifdef COMPILERGRAAL
3332 bool CompilerThread::can_call_java() const {
3333   return _compiler != NULL && _compiler->is_graal();
3334 }
3335 #endif
3336 
3337 void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3338   JavaThread::oops_do(f, cld_f, cf);
3339   if (_scanned_nmethod != NULL && cf != NULL) {
3340     // Safepoints can occur when the sweeper is scanning an nmethod so
3341     // process it here to make sure it isn't unloaded in the middle of
3342     // a scan.
3343     cf->do_code_blob(_scanned_nmethod);
3344   }
3345 }
3346 
3347 
3348 // ======= Threads ========
3349 
3350 // The Threads class links together all active threads, and provides
3351 // operations over all threads.  It is protected by its own Mutex
3352 // lock, which is also used in other contexts to protect thread
3353 // operations from having the thread being operated on from exiting
3354 // and going away unexpectedly (e.g., safepoint synchronization)
3355 
3356 JavaThread* Threads::_thread_list = NULL;
3357 int         Threads::_number_of_threads = 0;
3358 int         Threads::_number_of_non_daemon_threads = 0;
3359 int         Threads::_return_code = 0;
3360 size_t      JavaThread::_stack_size_at_create = 0;
3361 #ifdef ASSERT
3362 bool        Threads::_vm_complete = false;
3363 #endif
3364 
3365 // All JavaThreads
3366 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3367 
3368 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3369 void Threads::threads_do(ThreadClosure* tc) {
3370   assert_locked_or_safepoint(Threads_lock);
3371   // ALL_JAVA_THREADS iterates through all JavaThreads
3372   ALL_JAVA_THREADS(p) {
3373     tc->do_thread(p);
3374   }
3375   // Someday we could have a table or list of all non-JavaThreads.
3376   // For now, just manually iterate through them.
3377   tc->do_thread(VMThread::vm_thread());
3378   Universe::heap()->gc_threads_do(tc);
3379   WatcherThread *wt = WatcherThread::watcher_thread();
3380   // Strictly speaking, the following NULL check isn't sufficient to make sure
3381   // the data for WatcherThread is still valid upon being examined. However,
3382   // considering that WatchThread terminates when the VM is on the way to
3383   // exit at safepoint, the chance of the above is extremely small. The right
3384   // way to prevent termination of WatcherThread would be to acquire
3385   // Terminator_lock, but we can't do that without violating the lock rank
3386   // checking in some cases.
3387   if (wt != NULL)
3388     tc->do_thread(wt);
3389 
3390   // If CompilerThreads ever become non-JavaThreads, add them here
3391 }
3392 
3393 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3394 
3395   extern void JDK_Version_init();
3396 
3397   // Check version
3398   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3399 
3400   // Initialize the output stream module
3401   ostream_init();
3402 
3403   // Process java launcher properties.
3404   Arguments::process_sun_java_launcher_properties(args);
3405 
3406   // Initialize the os module before using TLS
3407   os::init();
3408 
3409   // Initialize system properties.
3410   Arguments::init_system_properties();
3411 
3412   // So that JDK version can be used as a discrimintor when parsing arguments
3413   JDK_Version_init();
3414 
3415   // Update/Initialize System properties after JDK version number is known
3416   Arguments::init_version_specific_system_properties();
3417 
3418   // Parse arguments
3419   jint parse_result = Arguments::parse(args);
3420   if (parse_result != JNI_OK) return parse_result;
3421 
3422   os::init_before_ergo();
3423 
3424   jint ergo_result = Arguments::apply_ergo();
3425   if (ergo_result != JNI_OK) return ergo_result;
3426 
3427   if (PauseAtStartup) {
3428     os::pause();
3429   }
3430 
3431 #ifndef USDT2
3432   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3433 #else /* USDT2 */
3434   HOTSPOT_VM_INIT_BEGIN();
3435 #endif /* USDT2 */
3436 
3437   // Record VM creation timing statistics
3438   TraceVmCreationTime create_vm_timer;
3439   create_vm_timer.start();
3440 
3441   // Timing (must come after argument parsing)
3442   TraceTime timer("Create VM", TraceStartupTime);
3443 
3444   // Initialize the os module after parsing the args
3445   jint os_init_2_result = os::init_2();
3446   if (os_init_2_result != JNI_OK) return os_init_2_result;
3447 
3448   jint adjust_after_os_result = Arguments::adjust_after_os();
3449   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3450 
3451   // intialize TLS
3452   ThreadLocalStorage::init();
3453 
3454   // Bootstrap native memory tracking, so it can start recording memory
3455   // activities before worker thread is started. This is the first phase
3456   // of bootstrapping, VM is currently running in single-thread mode.
3457   MemTracker::bootstrap_single_thread();
3458 
3459   // Initialize output stream logging
3460   ostream_init_log();
3461 
3462   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3463   // Must be before create_vm_init_agents()
3464   if (Arguments::init_libraries_at_startup()) {
3465     convert_vm_init_libraries_to_agents();
3466   }
3467 
3468   // Launch -agentlib/-agentpath and converted -Xrun agents
3469   if (Arguments::init_agents_at_startup()) {
3470     create_vm_init_agents();
3471   }
3472 
3473   // Initialize Threads state
3474   _thread_list = NULL;
3475   _number_of_threads = 0;
3476   _number_of_non_daemon_threads = 0;
3477 
3478   // Initialize global data structures and create system classes in heap
3479   vm_init_globals();
3480 
3481 #ifdef GRAAL
3482   if (GraalCounterSize > 0) {
3483     JavaThread::_graal_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, GraalCounterSize, mtInternal);
3484     memset(JavaThread::_graal_old_thread_counters, 0, sizeof(jlong) * GraalCounterSize);
3485   } else {
3486     JavaThread::_graal_old_thread_counters = NULL;
3487   }
3488 #endif // GRAAL
3489 
3490   // Attach the main thread to this os thread
3491   JavaThread* main_thread = new JavaThread();
3492   main_thread->set_thread_state(_thread_in_vm);
3493   // must do this before set_active_handles and initialize_thread_local_storage
3494   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3495   // change the stack size recorded here to one based on the java thread
3496   // stacksize. This adjusted size is what is used to figure the placement
3497   // of the guard pages.
3498   main_thread->record_stack_base_and_size();
3499   main_thread->initialize_thread_local_storage();
3500 
3501   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3502 
3503   if (!main_thread->set_as_starting_thread()) {
3504     vm_shutdown_during_initialization(
3505       "Failed necessary internal allocation. Out of swap space");
3506     delete main_thread;
3507     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3508     return JNI_ENOMEM;
3509   }
3510 
3511   // Enable guard page *after* os::create_main_thread(), otherwise it would
3512   // crash Linux VM, see notes in os_linux.cpp.
3513   main_thread->create_stack_guard_pages();
3514 
3515   // Initialize Java-Level synchronization subsystem
3516   ObjectMonitor::Initialize() ;
3517 
3518   // Second phase of bootstrapping, VM is about entering multi-thread mode
3519   MemTracker::bootstrap_multi_thread();
3520 
3521   // Initialize global modules
3522   jint status = init_globals();
3523   if (status != JNI_OK) {
3524     delete main_thread;
3525     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3526     return status;
3527   }
3528 
3529   // Should be done after the heap is fully created
3530   main_thread->cache_global_variables();
3531 
3532   HandleMark hm;
3533 
3534   { MutexLocker mu(Threads_lock);
3535     Threads::add(main_thread);
3536   }
3537 
3538   // Any JVMTI raw monitors entered in onload will transition into
3539   // real raw monitor. VM is setup enough here for raw monitor enter.
3540   JvmtiExport::transition_pending_onload_raw_monitors();
3541 
3542   // Fully start NMT
3543   MemTracker::start();
3544 
3545   // Create the VMThread
3546   { TraceTime timer("Start VMThread", TraceStartupTime);
3547     VMThread::create();
3548     Thread* vmthread = VMThread::vm_thread();
3549 
3550     if (!os::create_thread(vmthread, os::vm_thread))
3551       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3552 
3553     // Wait for the VM thread to become ready, and VMThread::run to initialize
3554     // Monitors can have spurious returns, must always check another state flag
3555     {
3556       MutexLocker ml(Notify_lock);
3557       os::start_thread(vmthread);
3558       while (vmthread->active_handles() == NULL) {
3559         Notify_lock->wait();
3560       }
3561     }
3562   }
3563 
3564   assert (Universe::is_fully_initialized(), "not initialized");
3565   if (VerifyDuringStartup) {
3566     // Make sure we're starting with a clean slate.
3567     VM_Verify verify_op;
3568     VMThread::execute(&verify_op);
3569   }
3570 
3571   EXCEPTION_MARK;
3572 
3573   // At this point, the Universe is initialized, but we have not executed
3574   // any byte code.  Now is a good time (the only time) to dump out the
3575   // internal state of the JVM for sharing.
3576   if (DumpSharedSpaces) {
3577     MetaspaceShared::preload_and_dump(CHECK_0);
3578     ShouldNotReachHere();
3579   }
3580 
3581   // Always call even when there are not JVMTI environments yet, since environments
3582   // may be attached late and JVMTI must track phases of VM execution
3583   JvmtiExport::enter_start_phase();
3584 
3585   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3586   JvmtiExport::post_vm_start();
3587 
3588   {
3589     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3590 
3591     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3592       create_vm_init_libraries();
3593     }
3594 
3595     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3596 
3597     // Initialize java_lang.System (needed before creating the thread)
3598     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3599     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3600     Handle thread_group = create_initial_thread_group(CHECK_0);
3601     Universe::set_main_thread_group(thread_group());
3602     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3603     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3604     main_thread->set_threadObj(thread_object);
3605     // Set thread status to running since main thread has
3606     // been started and running.
3607     java_lang_Thread::set_thread_status(thread_object,
3608                                         java_lang_Thread::RUNNABLE);
3609 
3610     // The VM creates & returns objects of this class. Make sure it's initialized.
3611     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3612 
3613     // The VM preresolves methods to these classes. Make sure that they get initialized
3614     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3615     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3616     call_initializeSystemClass(CHECK_0);
3617 
3618     // get the Java runtime name after java.lang.System is initialized
3619     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3620     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3621 
3622     // an instance of OutOfMemory exception has been allocated earlier
3623     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3624     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3625     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3626     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3627     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3628     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3629     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3630     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3631   }
3632 
3633   // See        : bugid 4211085.
3634   // Background : the static initializer of java.lang.Compiler tries to read
3635   //              property"java.compiler" and read & write property "java.vm.info".
3636   //              When a security manager is installed through the command line
3637   //              option "-Djava.security.manager", the above properties are not
3638   //              readable and the static initializer for java.lang.Compiler fails
3639   //              resulting in a NoClassDefFoundError.  This can happen in any
3640   //              user code which calls methods in java.lang.Compiler.
3641   // Hack :       the hack is to pre-load and initialize this class, so that only
3642   //              system domains are on the stack when the properties are read.
3643   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3644   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3645   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3646   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3647   //              Once that is done, we should remove this hack.
3648   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3649 
3650   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3651   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3652   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3653   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3654   // This should also be taken out as soon as 4211383 gets fixed.
3655   reset_vm_info_property(CHECK_0);
3656 
3657   quicken_jni_functions();
3658 
3659   // Must be run after init_ft which initializes ft_enabled
3660   if (TRACE_INITIALIZE() != JNI_OK) {
3661     vm_exit_during_initialization("Failed to initialize tracing backend");
3662   }
3663 
3664   // Set flag that basic initialization has completed. Used by exceptions and various
3665   // debug stuff, that does not work until all basic classes have been initialized.
3666   set_init_completed();
3667 
3668 #ifndef USDT2
3669   HS_DTRACE_PROBE(hotspot, vm__init__end);
3670 #else /* USDT2 */
3671   HOTSPOT_VM_INIT_END();
3672 #endif /* USDT2 */
3673 
3674   // record VM initialization completion time
3675 #if INCLUDE_MANAGEMENT
3676   Management::record_vm_init_completed();
3677 #endif // INCLUDE_MANAGEMENT
3678 
3679   // Compute system loader. Note that this has to occur after set_init_completed, since
3680   // valid exceptions may be thrown in the process.
3681   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3682   // set_init_completed has just been called, causing exceptions not to be shortcut
3683   // anymore. We call vm_exit_during_initialization directly instead.
3684   SystemDictionary::compute_java_system_loader(THREAD);
3685 #ifdef GRAAL
3686   if (!HAS_PENDING_EXCEPTION) {
3687     SystemDictionary::initialize_preloaded_graal_classes(THREAD);
3688   }
3689 #endif
3690   if (HAS_PENDING_EXCEPTION) {
3691     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3692   }
3693 
3694 #if INCLUDE_ALL_GCS
3695   // Support for ConcurrentMarkSweep. This should be cleaned up
3696   // and better encapsulated. The ugly nested if test would go away
3697   // once things are properly refactored. XXX YSR
3698   if (UseConcMarkSweepGC || UseG1GC) {
3699     if (UseConcMarkSweepGC) {
3700       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3701     } else {
3702       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3703     }
3704     if (HAS_PENDING_EXCEPTION) {
3705       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3706     }
3707   }
3708 #endif // INCLUDE_ALL_GCS
3709 
3710   // Always call even when there are not JVMTI environments yet, since environments
3711   // may be attached late and JVMTI must track phases of VM execution
3712   JvmtiExport::enter_live_phase();
3713 
3714   // Signal Dispatcher needs to be started before VMInit event is posted
3715   os::signal_init();
3716 
3717   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3718   if (!DisableAttachMechanism) {
3719     AttachListener::vm_start();
3720     if (StartAttachListener || AttachListener::init_at_startup()) {
3721       AttachListener::init();
3722     }
3723   }
3724 
3725   // Launch -Xrun agents
3726   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3727   // back-end can launch with -Xdebug -Xrunjdwp.
3728   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3729     create_vm_init_libraries();
3730   }
3731 
3732   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3733   JvmtiExport::post_vm_initialized();
3734 
3735   if (TRACE_START() != JNI_OK) {
3736     vm_exit_during_initialization("Failed to start tracing backend.");
3737   }
3738 
3739   if (CleanChunkPoolAsync) {
3740     Chunk::start_chunk_pool_cleaner_task();
3741   }
3742 
3743 #ifdef GRAAL
3744   status = GraalRuntime::check_arguments(main_thread);
3745   if (status != JNI_OK) {
3746     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3747     return status;
3748   }
3749 #endif
3750 
3751   // initialize compiler(s)
3752 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || defined(COMPILERGRAAL)
3753   CompileBroker::compilation_init();
3754 #endif
3755 
3756   if (EnableInvokeDynamic) {
3757     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3758     // It is done after compilers are initialized, because otherwise compilations of
3759     // signature polymorphic MH intrinsics can be missed
3760     // (see SystemDictionary::find_method_handle_intrinsic).
3761     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3762     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3763     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3764   }
3765 
3766 #if INCLUDE_MANAGEMENT
3767   Management::initialize(THREAD);
3768 #endif // INCLUDE_MANAGEMENT
3769 
3770   if (HAS_PENDING_EXCEPTION) {
3771     // management agent fails to start possibly due to
3772     // configuration problem and is responsible for printing
3773     // stack trace if appropriate. Simply exit VM.
3774     vm_exit(1);
3775   }
3776 
3777   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3778   if (MemProfiling)                   MemProfiler::engage();
3779   StatSampler::engage();
3780   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3781 
3782   BiasedLocking::init();
3783 
3784   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3785     call_postVMInitHook(THREAD);
3786     // The Java side of PostVMInitHook.run must deal with all
3787     // exceptions and provide means of diagnosis.
3788     if (HAS_PENDING_EXCEPTION) {
3789       CLEAR_PENDING_EXCEPTION;
3790     }
3791   }
3792 
3793   {
3794       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3795       // Make sure the watcher thread can be started by WatcherThread::start()
3796       // or by dynamic enrollment.
3797       WatcherThread::make_startable();
3798       // Start up the WatcherThread if there are any periodic tasks
3799       // NOTE:  All PeriodicTasks should be registered by now. If they
3800       //   aren't, late joiners might appear to start slowly (we might
3801       //   take a while to process their first tick).
3802       if (PeriodicTask::num_tasks() > 0) {
3803           WatcherThread::start();
3804       }
3805   }
3806 
3807   // Give os specific code one last chance to start
3808   os::init_3();
3809 
3810   create_vm_timer.end();
3811 #ifdef ASSERT
3812   _vm_complete = true;
3813 #endif
3814   return JNI_OK;
3815 }
3816 
3817 // type for the Agent_OnLoad and JVM_OnLoad entry points
3818 extern "C" {
3819   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3820 }
3821 // Find a command line agent library and return its entry point for
3822 //         -agentlib:  -agentpath:   -Xrun
3823 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3824 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3825   OnLoadEntry_t on_load_entry = NULL;
3826   void *library = NULL;
3827 
3828   if (!agent->valid()) {
3829     char buffer[JVM_MAXPATHLEN];
3830     char ebuf[1024];
3831     const char *name = agent->name();
3832     const char *msg = "Could not find agent library ";
3833 
3834     // First check to see if agent is statically linked into executable
3835     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3836       library = agent->os_lib();
3837     } else if (agent->is_absolute_path()) {
3838       library = os::dll_load(name, ebuf, sizeof ebuf);
3839       if (library == NULL) {
3840         const char *sub_msg = " in absolute path, with error: ";
3841         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3842         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3843         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3844         // If we can't find the agent, exit.
3845         vm_exit_during_initialization(buf, NULL);
3846         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3847       }
3848     } else {
3849       // Try to load the agent from the standard dll directory
3850       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3851                              name)) {
3852         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3853       }
3854       if (library == NULL) { // Try the local directory
3855         char ns[1] = {0};
3856         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3857           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3858         }
3859         if (library == NULL) {
3860           const char *sub_msg = " on the library path, with error: ";
3861           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3862           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3863           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3864           // If we can't find the agent, exit.
3865           vm_exit_during_initialization(buf, NULL);
3866           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3867         }
3868       }
3869     }
3870     agent->set_os_lib(library);
3871     agent->set_valid();
3872   }
3873 
3874   // Find the OnLoad function.
3875   on_load_entry =
3876     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3877                                                           false,
3878                                                           on_load_symbols,
3879                                                           num_symbol_entries));
3880   return on_load_entry;
3881 }
3882 
3883 // Find the JVM_OnLoad entry point
3884 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3885   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3886   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3887 }
3888 
3889 // Find the Agent_OnLoad entry point
3890 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3891   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3892   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3893 }
3894 
3895 // For backwards compatibility with -Xrun
3896 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3897 // treated like -agentpath:
3898 // Must be called before agent libraries are created
3899 void Threads::convert_vm_init_libraries_to_agents() {
3900   AgentLibrary* agent;
3901   AgentLibrary* next;
3902 
3903   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3904     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3905     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3906 
3907     // If there is an JVM_OnLoad function it will get called later,
3908     // otherwise see if there is an Agent_OnLoad
3909     if (on_load_entry == NULL) {
3910       on_load_entry = lookup_agent_on_load(agent);
3911       if (on_load_entry != NULL) {
3912         // switch it to the agent list -- so that Agent_OnLoad will be called,
3913         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3914         Arguments::convert_library_to_agent(agent);
3915       } else {
3916         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3917       }
3918     }
3919   }
3920 }
3921 
3922 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3923 // Invokes Agent_OnLoad
3924 // Called very early -- before JavaThreads exist
3925 void Threads::create_vm_init_agents() {
3926   extern struct JavaVM_ main_vm;
3927   AgentLibrary* agent;
3928 
3929   JvmtiExport::enter_onload_phase();
3930 
3931   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3932     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3933 
3934     if (on_load_entry != NULL) {
3935       // Invoke the Agent_OnLoad function
3936       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3937       if (err != JNI_OK) {
3938         vm_exit_during_initialization("agent library failed to init", agent->name());
3939       }
3940     } else {
3941       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3942     }
3943   }
3944   JvmtiExport::enter_primordial_phase();
3945 }
3946 
3947 extern "C" {
3948   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3949 }
3950 
3951 void Threads::shutdown_vm_agents() {
3952   // Send any Agent_OnUnload notifications
3953   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3954   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3955   extern struct JavaVM_ main_vm;
3956   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3957 
3958     // Find the Agent_OnUnload function.
3959     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3960       os::find_agent_function(agent,
3961       false,
3962       on_unload_symbols,
3963       num_symbol_entries));
3964 
3965     // Invoke the Agent_OnUnload function
3966     if (unload_entry != NULL) {
3967       JavaThread* thread = JavaThread::current();
3968       ThreadToNativeFromVM ttn(thread);
3969       HandleMark hm(thread);
3970       (*unload_entry)(&main_vm);
3971     }
3972   }
3973 }
3974 
3975 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3976 // Invokes JVM_OnLoad
3977 void Threads::create_vm_init_libraries() {
3978   extern struct JavaVM_ main_vm;
3979   AgentLibrary* agent;
3980 
3981   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3982     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3983 
3984     if (on_load_entry != NULL) {
3985       // Invoke the JVM_OnLoad function
3986       JavaThread* thread = JavaThread::current();
3987       ThreadToNativeFromVM ttn(thread);
3988       HandleMark hm(thread);
3989       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3990       if (err != JNI_OK) {
3991         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3992       }
3993     } else {
3994       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3995     }
3996   }
3997 }
3998 
3999 // Last thread running calls java.lang.Shutdown.shutdown()
4000 void JavaThread::invoke_shutdown_hooks() {
4001   HandleMark hm(this);
4002 
4003   // We could get here with a pending exception, if so clear it now.
4004   if (this->has_pending_exception()) {
4005     this->clear_pending_exception();
4006   }
4007 
4008   EXCEPTION_MARK;
4009   Klass* k =
4010     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4011                                       THREAD);
4012   if (k != NULL) {
4013     // SystemDictionary::resolve_or_null will return null if there was
4014     // an exception.  If we cannot load the Shutdown class, just don't
4015     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4016     // and finalizers (if runFinalizersOnExit is set) won't be run.
4017     // Note that if a shutdown hook was registered or runFinalizersOnExit
4018     // was called, the Shutdown class would have already been loaded
4019     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4020     instanceKlassHandle shutdown_klass (THREAD, k);
4021     JavaValue result(T_VOID);
4022     JavaCalls::call_static(&result,
4023                            shutdown_klass,
4024                            vmSymbols::shutdown_method_name(),
4025                            vmSymbols::void_method_signature(),
4026                            THREAD);
4027   }
4028   CLEAR_PENDING_EXCEPTION;
4029 }
4030 
4031 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4032 // the program falls off the end of main(). Another VM exit path is through
4033 // vm_exit() when the program calls System.exit() to return a value or when
4034 // there is a serious error in VM. The two shutdown paths are not exactly
4035 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4036 // and VM_Exit op at VM level.
4037 //
4038 // Shutdown sequence:
4039 //   + Shutdown native memory tracking if it is on
4040 //   + Wait until we are the last non-daemon thread to execute
4041 //     <-- every thing is still working at this moment -->
4042 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4043 //        shutdown hooks, run finalizers if finalization-on-exit
4044 //   + Call before_exit(), prepare for VM exit
4045 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4046 //        currently the only user of this mechanism is File.deleteOnExit())
4047 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4048 //        post thread end and vm death events to JVMTI,
4049 //        stop signal thread
4050 //   + Call JavaThread::exit(), it will:
4051 //      > release JNI handle blocks, remove stack guard pages
4052 //      > remove this thread from Threads list
4053 //     <-- no more Java code from this thread after this point -->
4054 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4055 //     the compiler threads at safepoint
4056 //     <-- do not use anything that could get blocked by Safepoint -->
4057 //   + Disable tracing at JNI/JVM barriers
4058 //   + Set _vm_exited flag for threads that are still running native code
4059 //   + Delete this thread
4060 //   + Call exit_globals()
4061 //      > deletes tty
4062 //      > deletes PerfMemory resources
4063 //   + Return to caller
4064 
4065 bool Threads::destroy_vm() {
4066   JavaThread* thread = JavaThread::current();
4067 
4068 #ifdef ASSERT
4069   _vm_complete = false;
4070 #endif
4071   // Wait until we are the last non-daemon thread to execute
4072   { MutexLocker nu(Threads_lock);
4073     while (Threads::number_of_non_daemon_threads() > 1 )
4074       // This wait should make safepoint checks, wait without a timeout,
4075       // and wait as a suspend-equivalent condition.
4076       //
4077       // Note: If the FlatProfiler is running and this thread is waiting
4078       // for another non-daemon thread to finish, then the FlatProfiler
4079       // is waiting for the external suspend request on this thread to
4080       // complete. wait_for_ext_suspend_completion() will eventually
4081       // timeout, but that takes time. Making this wait a suspend-
4082       // equivalent condition solves that timeout problem.
4083       //
4084       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4085                          Mutex::_as_suspend_equivalent_flag);
4086   }
4087 
4088   // Hang forever on exit if we are reporting an error.
4089   if (ShowMessageBoxOnError && is_error_reported()) {
4090     os::infinite_sleep();
4091   }
4092   os::wait_for_keypress_at_exit();
4093 
4094   if (JDK_Version::is_jdk12x_version()) {
4095     // We are the last thread running, so check if finalizers should be run.
4096     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
4097     HandleMark rm(thread);
4098     Universe::run_finalizers_on_exit();
4099   } else {
4100     // run Java level shutdown hooks
4101     thread->invoke_shutdown_hooks();
4102   }
4103 
4104   before_exit(thread);
4105 
4106   thread->exit(true);
4107 
4108   // Stop VM thread.
4109   {
4110     // 4945125 The vm thread comes to a safepoint during exit.
4111     // GC vm_operations can get caught at the safepoint, and the
4112     // heap is unparseable if they are caught. Grab the Heap_lock
4113     // to prevent this. The GC vm_operations will not be able to
4114     // queue until after the vm thread is dead.
4115     // After this point, we'll never emerge out of the safepoint before
4116     // the VM exits, so concurrent GC threads do not need to be explicitly
4117     // stopped; they remain inactive until the process exits.
4118     // Note: some concurrent G1 threads may be running during a safepoint,
4119     // but these will not be accessing the heap, just some G1-specific side
4120     // data structures that are not accessed by any other threads but them
4121     // after this point in a terminal safepoint.
4122 
4123     MutexLocker ml(Heap_lock);
4124 
4125     VMThread::wait_for_vm_thread_exit();
4126     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4127     VMThread::destroy();
4128   }
4129 
4130   // clean up ideal graph printers
4131 #if defined(COMPILER2) && !defined(PRODUCT)
4132   IdealGraphPrinter::clean_up();
4133 #endif
4134 
4135   // Now, all Java threads are gone except daemon threads. Daemon threads
4136   // running Java code or in VM are stopped by the Safepoint. However,
4137   // daemon threads executing native code are still running.  But they
4138   // will be stopped at native=>Java/VM barriers. Note that we can't
4139   // simply kill or suspend them, as it is inherently deadlock-prone.
4140 
4141 #ifndef PRODUCT
4142   // disable function tracing at JNI/JVM barriers
4143   TraceJNICalls = false;
4144   TraceJVMCalls = false;
4145   TraceRuntimeCalls = false;
4146 #endif
4147 
4148   VM_Exit::set_vm_exited();
4149 
4150   notify_vm_shutdown();
4151 
4152   delete thread;
4153 
4154 #ifdef GRAAL
4155   if (GraalCounterSize > 0) {
4156     FREE_C_HEAP_ARRAY(jlong, JavaThread::_graal_old_thread_counters, mtInternal);
4157   }
4158 #endif // GRAAL
4159 
4160   // exit_globals() will delete tty
4161   exit_globals();
4162 
4163   return true;
4164 }
4165 
4166 
4167 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4168   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4169   return is_supported_jni_version(version);
4170 }
4171 
4172 
4173 jboolean Threads::is_supported_jni_version(jint version) {
4174   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4175   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4176   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4177   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4178   return JNI_FALSE;
4179 }
4180 
4181 
4182 void Threads::add(JavaThread* p, bool force_daemon) {
4183   // The threads lock must be owned at this point
4184   assert_locked_or_safepoint(Threads_lock);
4185 
4186   // See the comment for this method in thread.hpp for its purpose and
4187   // why it is called here.
4188   p->initialize_queues();
4189   p->set_next(_thread_list);
4190   _thread_list = p;
4191   _number_of_threads++;
4192   oop threadObj = p->threadObj();
4193   bool daemon = true;
4194   // Bootstrapping problem: threadObj can be null for initial
4195   // JavaThread (or for threads attached via JNI)
4196   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4197     _number_of_non_daemon_threads++;
4198     daemon = false;
4199   }
4200 
4201   p->set_safepoint_visible(true);
4202 
4203   ThreadService::add_thread(p, daemon);
4204 
4205   // Possible GC point.
4206   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4207 }
4208 
4209 void Threads::remove(JavaThread* p) {
4210   // Extra scope needed for Thread_lock, so we can check
4211   // that we do not remove thread without safepoint code notice
4212   { MutexLocker ml(Threads_lock);
4213 
4214     assert(includes(p), "p must be present");
4215 
4216     JavaThread* current = _thread_list;
4217     JavaThread* prev    = NULL;
4218 
4219     while (current != p) {
4220       prev    = current;
4221       current = current->next();
4222     }
4223 
4224     if (prev) {
4225       prev->set_next(current->next());
4226     } else {
4227       _thread_list = p->next();
4228     }
4229     _number_of_threads--;
4230     oop threadObj = p->threadObj();
4231     bool daemon = true;
4232     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4233       _number_of_non_daemon_threads--;
4234       daemon = false;
4235 
4236       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4237       // on destroy_vm will wake up.
4238       if (number_of_non_daemon_threads() == 1)
4239         Threads_lock->notify_all();
4240     }
4241     ThreadService::remove_thread(p, daemon);
4242 
4243     // Make sure that safepoint code disregard this thread. This is needed since
4244     // the thread might mess around with locks after this point. This can cause it
4245     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4246     // of this thread since it is removed from the queue.
4247     p->set_terminated_value();
4248 
4249     // Now, this thread is not visible to safepoint
4250     p->set_safepoint_visible(false);
4251     // once the thread becomes safepoint invisible, we can not use its per-thread
4252     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4253     // to release its per-thread recorder here.
4254     MemTracker::thread_exiting(p);
4255   } // unlock Threads_lock
4256 
4257   // Since Events::log uses a lock, we grab it outside the Threads_lock
4258   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4259 }
4260 
4261 // Threads_lock must be held when this is called (or must be called during a safepoint)
4262 bool Threads::includes(JavaThread* p) {
4263   assert(Threads_lock->is_locked(), "sanity check");
4264   ALL_JAVA_THREADS(q) {
4265     if (q == p ) {
4266       return true;
4267     }
4268   }
4269   return false;
4270 }
4271 
4272 // Operations on the Threads list for GC.  These are not explicitly locked,
4273 // but the garbage collector must provide a safe context for them to run.
4274 // In particular, these things should never be called when the Threads_lock
4275 // is held by some other thread. (Note: the Safepoint abstraction also
4276 // uses the Threads_lock to gurantee this property. It also makes sure that
4277 // all threads gets blocked when exiting or starting).
4278 
4279 void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4280   ALL_JAVA_THREADS(p) {
4281     p->oops_do(f, cld_f, cf);
4282   }
4283   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4284 }
4285 
4286 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4287   // Introduce a mechanism allowing parallel threads to claim threads as
4288   // root groups.  Overhead should be small enough to use all the time,
4289   // even in sequential code.
4290   SharedHeap* sh = SharedHeap::heap();
4291   // Cannot yet substitute active_workers for n_par_threads
4292   // because of G1CollectedHeap::verify() use of
4293   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4294   // turn off parallelism in process_strong_roots while active_workers
4295   // is being used for parallelism elsewhere.
4296   bool is_par = sh->n_par_threads() > 0;
4297   assert(!is_par ||
4298          (SharedHeap::heap()->n_par_threads() ==
4299           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4300   int cp = SharedHeap::heap()->strong_roots_parity();
4301   ALL_JAVA_THREADS(p) {
4302     if (p->claim_oops_do(is_par, cp)) {
4303       p->oops_do(f, cld_f, cf);
4304     }
4305   }
4306   VMThread* vmt = VMThread::vm_thread();
4307   if (vmt->claim_oops_do(is_par, cp)) {
4308     vmt->oops_do(f, cld_f, cf);
4309   }
4310 }
4311 
4312 #if INCLUDE_ALL_GCS
4313 // Used by ParallelScavenge
4314 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4315   ALL_JAVA_THREADS(p) {
4316     q->enqueue(new ThreadRootsTask(p));
4317   }
4318   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4319 }
4320 
4321 // Used by Parallel Old
4322 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4323   ALL_JAVA_THREADS(p) {
4324     q->enqueue(new ThreadRootsMarkingTask(p));
4325   }
4326   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4327 }
4328 #endif // INCLUDE_ALL_GCS
4329 
4330 void Threads::nmethods_do(CodeBlobClosure* cf) {
4331   ALL_JAVA_THREADS(p) {
4332     p->nmethods_do(cf);
4333   }
4334   VMThread::vm_thread()->nmethods_do(cf);
4335 }
4336 
4337 void Threads::metadata_do(void f(Metadata*)) {
4338   ALL_JAVA_THREADS(p) {
4339     p->metadata_do(f);
4340   }
4341 }
4342 
4343 void Threads::gc_epilogue() {
4344   ALL_JAVA_THREADS(p) {
4345     p->gc_epilogue();
4346   }
4347 }
4348 
4349 void Threads::gc_prologue() {
4350   ALL_JAVA_THREADS(p) {
4351     p->gc_prologue();
4352   }
4353 }
4354 
4355 void Threads::deoptimized_wrt_marked_nmethods() {
4356   ALL_JAVA_THREADS(p) {
4357     p->deoptimized_wrt_marked_nmethods();
4358   }
4359 }
4360 
4361 
4362 // Get count Java threads that are waiting to enter the specified monitor.
4363 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4364   address monitor, bool doLock) {
4365   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4366     "must grab Threads_lock or be at safepoint");
4367   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4368 
4369   int i = 0;
4370   {
4371     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4372     ALL_JAVA_THREADS(p) {
4373       if (!p->can_call_java()) continue;
4374 
4375       address pending = (address)p->current_pending_monitor();
4376       if (pending == monitor) {             // found a match
4377         if (i < count) result->append(p);   // save the first count matches
4378         i++;
4379       }
4380     }
4381   }
4382   return result;
4383 }
4384 
4385 
4386 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4387   assert(doLock ||
4388          Threads_lock->owned_by_self() ||
4389          SafepointSynchronize::is_at_safepoint(),
4390          "must grab Threads_lock or be at safepoint");
4391 
4392   // NULL owner means not locked so we can skip the search
4393   if (owner == NULL) return NULL;
4394 
4395   {
4396     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4397     ALL_JAVA_THREADS(p) {
4398       // first, see if owner is the address of a Java thread
4399       if (owner == (address)p) return p;
4400     }
4401   }
4402   // Cannot assert on lack of success here since this function may be
4403   // used by code that is trying to report useful problem information
4404   // like deadlock detection.
4405   if (UseHeavyMonitors) return NULL;
4406 
4407   //
4408   // If we didn't find a matching Java thread and we didn't force use of
4409   // heavyweight monitors, then the owner is the stack address of the
4410   // Lock Word in the owning Java thread's stack.
4411   //
4412   JavaThread* the_owner = NULL;
4413   {
4414     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4415     ALL_JAVA_THREADS(q) {
4416       if (q->is_lock_owned(owner)) {
4417         the_owner = q;
4418         break;
4419       }
4420     }
4421   }
4422   // cannot assert on lack of success here; see above comment
4423   return the_owner;
4424 }
4425 
4426 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4427 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4428   char buf[32];
4429   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4430 
4431   st->print_cr("Full thread dump %s (%s %s):",
4432                 Abstract_VM_Version::vm_name(),
4433                 Abstract_VM_Version::vm_release(),
4434                 Abstract_VM_Version::vm_info_string()
4435                );
4436   st->cr();
4437 
4438 #if INCLUDE_ALL_GCS
4439   // Dump concurrent locks
4440   ConcurrentLocksDump concurrent_locks;
4441   if (print_concurrent_locks) {
4442     concurrent_locks.dump_at_safepoint();
4443   }
4444 #endif // INCLUDE_ALL_GCS
4445 
4446   ALL_JAVA_THREADS(p) {
4447     ResourceMark rm;
4448     p->print_on(st);
4449     if (print_stacks) {
4450       if (internal_format) {
4451         p->trace_stack();
4452       } else {
4453         p->print_stack_on(st);
4454       }
4455     }
4456     st->cr();
4457 #if INCLUDE_ALL_GCS
4458     if (print_concurrent_locks) {
4459       concurrent_locks.print_locks_on(p, st);
4460     }
4461 #endif // INCLUDE_ALL_GCS
4462   }
4463 
4464   VMThread::vm_thread()->print_on(st);
4465   st->cr();
4466   Universe::heap()->print_gc_threads_on(st);
4467   WatcherThread* wt = WatcherThread::watcher_thread();
4468   if (wt != NULL) {
4469     wt->print_on(st);
4470     st->cr();
4471   }
4472   CompileBroker::print_compiler_threads_on(st);
4473   st->flush();
4474 }
4475 
4476 // Threads::print_on_error() is called by fatal error handler. It's possible
4477 // that VM is not at safepoint and/or current thread is inside signal handler.
4478 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4479 // memory (even in resource area), it might deadlock the error handler.
4480 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4481   bool found_current = false;
4482   st->print_cr("Java Threads: ( => current thread )");
4483   ALL_JAVA_THREADS(thread) {
4484     bool is_current = (current == thread);
4485     found_current = found_current || is_current;
4486 
4487     st->print("%s", is_current ? "=>" : "  ");
4488 
4489     st->print(PTR_FORMAT, thread);
4490     st->print(" ");
4491     thread->print_on_error(st, buf, buflen);
4492     st->cr();
4493   }
4494   st->cr();
4495 
4496   st->print_cr("Other Threads:");
4497   if (VMThread::vm_thread()) {
4498     bool is_current = (current == VMThread::vm_thread());
4499     found_current = found_current || is_current;
4500     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4501 
4502     st->print(PTR_FORMAT, VMThread::vm_thread());
4503     st->print(" ");
4504     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4505     st->cr();
4506   }
4507   WatcherThread* wt = WatcherThread::watcher_thread();
4508   if (wt != NULL) {
4509     bool is_current = (current == wt);
4510     found_current = found_current || is_current;
4511     st->print("%s", is_current ? "=>" : "  ");
4512 
4513     st->print(PTR_FORMAT, wt);
4514     st->print(" ");
4515     wt->print_on_error(st, buf, buflen);
4516     st->cr();
4517   }
4518   if (!found_current) {
4519     st->cr();
4520     st->print("=>" PTR_FORMAT " (exited) ", current);
4521     current->print_on_error(st, buf, buflen);
4522     st->cr();
4523   }
4524 }
4525 
4526 // Internal SpinLock and Mutex
4527 // Based on ParkEvent
4528 
4529 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4530 //
4531 // We employ SpinLocks _only for low-contention, fixed-length
4532 // short-duration critical sections where we're concerned
4533 // about native mutex_t or HotSpot Mutex:: latency.
4534 // The mux construct provides a spin-then-block mutual exclusion
4535 // mechanism.
4536 //
4537 // Testing has shown that contention on the ListLock guarding gFreeList
4538 // is common.  If we implement ListLock as a simple SpinLock it's common
4539 // for the JVM to devolve to yielding with little progress.  This is true
4540 // despite the fact that the critical sections protected by ListLock are
4541 // extremely short.
4542 //
4543 // TODO-FIXME: ListLock should be of type SpinLock.
4544 // We should make this a 1st-class type, integrated into the lock
4545 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4546 // should have sufficient padding to avoid false-sharing and excessive
4547 // cache-coherency traffic.
4548 
4549 
4550 typedef volatile int SpinLockT ;
4551 
4552 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4553   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4554      return ;   // normal fast-path return
4555   }
4556 
4557   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4558   TEVENT (SpinAcquire - ctx) ;
4559   int ctr = 0 ;
4560   int Yields = 0 ;
4561   for (;;) {
4562      while (*adr != 0) {
4563         ++ctr ;
4564         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4565            if (Yields > 5) {
4566              // Consider using a simple NakedSleep() instead.
4567              // Then SpinAcquire could be called by non-JVM threads
4568              Thread::current()->_ParkEvent->park(1) ;
4569            } else {
4570              os::NakedYield() ;
4571              ++Yields ;
4572            }
4573         } else {
4574            SpinPause() ;
4575         }
4576      }
4577      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4578   }
4579 }
4580 
4581 void Thread::SpinRelease (volatile int * adr) {
4582   assert (*adr != 0, "invariant") ;
4583   OrderAccess::fence() ;      // guarantee at least release consistency.
4584   // Roach-motel semantics.
4585   // It's safe if subsequent LDs and STs float "up" into the critical section,
4586   // but prior LDs and STs within the critical section can't be allowed
4587   // to reorder or float past the ST that releases the lock.
4588   *adr = 0 ;
4589 }
4590 
4591 // muxAcquire and muxRelease:
4592 //
4593 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4594 //    The LSB of the word is set IFF the lock is held.
4595 //    The remainder of the word points to the head of a singly-linked list
4596 //    of threads blocked on the lock.
4597 //
4598 // *  The current implementation of muxAcquire-muxRelease uses its own
4599 //    dedicated Thread._MuxEvent instance.  If we're interested in
4600 //    minimizing the peak number of extant ParkEvent instances then
4601 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4602 //    as certain invariants were satisfied.  Specifically, care would need
4603 //    to be taken with regards to consuming unpark() "permits".
4604 //    A safe rule of thumb is that a thread would never call muxAcquire()
4605 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4606 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4607 //    consume an unpark() permit intended for monitorenter, for instance.
4608 //    One way around this would be to widen the restricted-range semaphore
4609 //    implemented in park().  Another alternative would be to provide
4610 //    multiple instances of the PlatformEvent() for each thread.  One
4611 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4612 //
4613 // *  Usage:
4614 //    -- Only as leaf locks
4615 //    -- for short-term locking only as muxAcquire does not perform
4616 //       thread state transitions.
4617 //
4618 // Alternatives:
4619 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4620 //    but with parking or spin-then-park instead of pure spinning.
4621 // *  Use Taura-Oyama-Yonenzawa locks.
4622 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4623 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4624 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4625 //    acquiring threads use timers (ParkTimed) to detect and recover from
4626 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4627 //    boundaries by using placement-new.
4628 // *  Augment MCS with advisory back-link fields maintained with CAS().
4629 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4630 //    The validity of the backlinks must be ratified before we trust the value.
4631 //    If the backlinks are invalid the exiting thread must back-track through the
4632 //    the forward links, which are always trustworthy.
4633 // *  Add a successor indication.  The LockWord is currently encoded as
4634 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4635 //    to provide the usual futile-wakeup optimization.
4636 //    See RTStt for details.
4637 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4638 //
4639 
4640 
4641 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4642 enum MuxBits { LOCKBIT = 1 } ;
4643 
4644 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4645   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4646   if (w == 0) return ;
4647   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4648      return ;
4649   }
4650 
4651   TEVENT (muxAcquire - Contention) ;
4652   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4653   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4654   for (;;) {
4655      int its = (os::is_MP() ? 100 : 0) + 1 ;
4656 
4657      // Optional spin phase: spin-then-park strategy
4658      while (--its >= 0) {
4659        w = *Lock ;
4660        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4661           return ;
4662        }
4663      }
4664 
4665      Self->reset() ;
4666      Self->OnList = intptr_t(Lock) ;
4667      // The following fence() isn't _strictly necessary as the subsequent
4668      // CAS() both serializes execution and ratifies the fetched *Lock value.
4669      OrderAccess::fence();
4670      for (;;) {
4671         w = *Lock ;
4672         if ((w & LOCKBIT) == 0) {
4673             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4674                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4675                 return ;
4676             }
4677             continue ;      // Interference -- *Lock changed -- Just retry
4678         }
4679         assert (w & LOCKBIT, "invariant") ;
4680         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4681         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4682      }
4683 
4684      while (Self->OnList != 0) {
4685         Self->park() ;
4686      }
4687   }
4688 }
4689 
4690 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4691   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4692   if (w == 0) return ;
4693   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4694     return ;
4695   }
4696 
4697   TEVENT (muxAcquire - Contention) ;
4698   ParkEvent * ReleaseAfter = NULL ;
4699   if (ev == NULL) {
4700     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4701   }
4702   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4703   for (;;) {
4704     guarantee (ev->OnList == 0, "invariant") ;
4705     int its = (os::is_MP() ? 100 : 0) + 1 ;
4706 
4707     // Optional spin phase: spin-then-park strategy
4708     while (--its >= 0) {
4709       w = *Lock ;
4710       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4711         if (ReleaseAfter != NULL) {
4712           ParkEvent::Release (ReleaseAfter) ;
4713         }
4714         return ;
4715       }
4716     }
4717 
4718     ev->reset() ;
4719     ev->OnList = intptr_t(Lock) ;
4720     // The following fence() isn't _strictly necessary as the subsequent
4721     // CAS() both serializes execution and ratifies the fetched *Lock value.
4722     OrderAccess::fence();
4723     for (;;) {
4724       w = *Lock ;
4725       if ((w & LOCKBIT) == 0) {
4726         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4727           ev->OnList = 0 ;
4728           // We call ::Release while holding the outer lock, thus
4729           // artificially lengthening the critical section.
4730           // Consider deferring the ::Release() until the subsequent unlock(),
4731           // after we've dropped the outer lock.
4732           if (ReleaseAfter != NULL) {
4733             ParkEvent::Release (ReleaseAfter) ;
4734           }
4735           return ;
4736         }
4737         continue ;      // Interference -- *Lock changed -- Just retry
4738       }
4739       assert (w & LOCKBIT, "invariant") ;
4740       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4741       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4742     }
4743 
4744     while (ev->OnList != 0) {
4745       ev->park() ;
4746     }
4747   }
4748 }
4749 
4750 // Release() must extract a successor from the list and then wake that thread.
4751 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4752 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4753 // Release() would :
4754 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4755 // (B) Extract a successor from the private list "in-hand"
4756 // (C) attempt to CAS() the residual back into *Lock over null.
4757 //     If there were any newly arrived threads and the CAS() would fail.
4758 //     In that case Release() would detach the RATs, re-merge the list in-hand
4759 //     with the RATs and repeat as needed.  Alternately, Release() might
4760 //     detach and extract a successor, but then pass the residual list to the wakee.
4761 //     The wakee would be responsible for reattaching and remerging before it
4762 //     competed for the lock.
4763 //
4764 // Both "pop" and DMR are immune from ABA corruption -- there can be
4765 // multiple concurrent pushers, but only one popper or detacher.
4766 // This implementation pops from the head of the list.  This is unfair,
4767 // but tends to provide excellent throughput as hot threads remain hot.
4768 // (We wake recently run threads first).
4769 
4770 void Thread::muxRelease (volatile intptr_t * Lock)  {
4771   for (;;) {
4772     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4773     assert (w & LOCKBIT, "invariant") ;
4774     if (w == LOCKBIT) return ;
4775     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4776     assert (List != NULL, "invariant") ;
4777     assert (List->OnList == intptr_t(Lock), "invariant") ;
4778     ParkEvent * nxt = List->ListNext ;
4779 
4780     // The following CAS() releases the lock and pops the head element.
4781     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4782       continue ;
4783     }
4784     List->OnList = 0 ;
4785     OrderAccess::fence() ;
4786     List->unpark () ;
4787     return ;
4788   }
4789 }
4790 
4791 
4792 void Threads::verify() {
4793   ALL_JAVA_THREADS(p) {
4794     p->verify();
4795   }
4796   VMThread* thread = VMThread::vm_thread();
4797   if (thread != NULL) thread->verify();
4798 }
4799 
4800 #ifdef GRAAL
4801 void JavaThread::initialize_gpu_hsail_tlabs(jint count) {
4802   if (!UseTLAB) return;
4803   // create tlabs
4804   _gpu_hsail_tlabs = NEW_C_HEAP_ARRAY(ThreadLocalAllocBuffer*, count, mtInternal);
4805   // initialize
4806   for (jint i = 0; i < count; i++) {
4807     _gpu_hsail_tlabs[i] = new ThreadLocalAllocBuffer();
4808     _gpu_hsail_tlabs[i]->initialize(Thread::current());
4809   }
4810   _gpu_hsail_tlabs_count = count;
4811 }
4812 
4813 ThreadLocalAllocBuffer* JavaThread::get_gpu_hsail_tlab_at(jint idx) {
4814   assert(idx >= 0 && idx < get_gpu_hsail_tlabs_count(), "illegal gpu tlab index");
4815   return _gpu_hsail_tlabs[idx];
4816 }
4817 
4818 void JavaThread::gpu_hsail_tlabs_make_parsable(bool retire) {
4819   for (jint i = 0; i < get_gpu_hsail_tlabs_count(); i++) {
4820     get_gpu_hsail_tlab_at(i)->make_parsable(retire);
4821   }
4822 }
4823 
4824 void JavaThread::delete_gpu_hsail_tlabs() {
4825   if (!UseTLAB) return;
4826   if (_gpu_hsail_tlabs_count == 0) return;
4827 
4828   gpu_hsail_tlabs_make_parsable(true);
4829   for (jint i = 0; i < get_gpu_hsail_tlabs_count(); i++) {
4830     delete get_gpu_hsail_tlab_at(i);
4831   }
4832   FREE_C_HEAP_ARRAY(ThreadLocalAllocBuffer*, _gpu_hsail_tlabs, mtInternal);
4833   _gpu_hsail_tlabs = NULL;
4834   _gpu_hsail_tlabs_count = 0;
4835 }
4836 
4837 
4838 #endif
4839