1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/castnode.hpp"
  42 #include "opto/cfgnode.hpp"
  43 #include "opto/chaitin.hpp"
  44 #include "opto/compile.hpp"
  45 #include "opto/connode.hpp"
  46 #include "opto/convertnode.hpp"
  47 #include "opto/divnode.hpp"
  48 #include "opto/escape.hpp"
  49 #include "opto/idealGraphPrinter.hpp"
  50 #include "opto/loopnode.hpp"
  51 #include "opto/machnode.hpp"
  52 #include "opto/macro.hpp"
  53 #include "opto/matcher.hpp"
  54 #include "opto/mathexactnode.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/narrowptrnode.hpp"
  58 #include "opto/node.hpp"
  59 #include "opto/opcodes.hpp"
  60 #include "opto/output.hpp"
  61 #include "opto/parse.hpp"
  62 #include "opto/phaseX.hpp"
  63 #include "opto/rootnode.hpp"
  64 #include "opto/runtime.hpp"
  65 #include "opto/stringopts.hpp"
  66 #include "opto/type.hpp"
  67 #include "opto/vectornode.hpp"
  68 #include "runtime/arguments.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/signature.hpp"
  71 #include "runtime/stubRoutines.hpp"
  72 #include "runtime/timer.hpp"
  73 #include "utilities/copy.hpp"
  74 
  75 
  76 // -------------------- Compile::mach_constant_base_node -----------------------
  77 // Constant table base node singleton.
  78 MachConstantBaseNode* Compile::mach_constant_base_node() {
  79   if (_mach_constant_base_node == NULL) {
  80     _mach_constant_base_node = new MachConstantBaseNode();
  81     _mach_constant_base_node->add_req(C->root());
  82   }
  83   return _mach_constant_base_node;
  84 }
  85 
  86 
  87 /// Support for intrinsics.
  88 
  89 // Return the index at which m must be inserted (or already exists).
  90 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  91 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  92 #ifdef ASSERT
  93   for (int i = 1; i < _intrinsics->length(); i++) {
  94     CallGenerator* cg1 = _intrinsics->at(i-1);
  95     CallGenerator* cg2 = _intrinsics->at(i);
  96     assert(cg1->method() != cg2->method()
  97            ? cg1->method()     < cg2->method()
  98            : cg1->is_virtual() < cg2->is_virtual(),
  99            "compiler intrinsics list must stay sorted");
 100   }
 101 #endif
 102   // Binary search sorted list, in decreasing intervals [lo, hi].
 103   int lo = 0, hi = _intrinsics->length()-1;
 104   while (lo <= hi) {
 105     int mid = (uint)(hi + lo) / 2;
 106     ciMethod* mid_m = _intrinsics->at(mid)->method();
 107     if (m < mid_m) {
 108       hi = mid-1;
 109     } else if (m > mid_m) {
 110       lo = mid+1;
 111     } else {
 112       // look at minor sort key
 113       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 114       if (is_virtual < mid_virt) {
 115         hi = mid-1;
 116       } else if (is_virtual > mid_virt) {
 117         lo = mid+1;
 118       } else {
 119         return mid;  // exact match
 120       }
 121     }
 122   }
 123   return lo;  // inexact match
 124 }
 125 
 126 void Compile::register_intrinsic(CallGenerator* cg) {
 127   if (_intrinsics == NULL) {
 128     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 129   }
 130   // This code is stolen from ciObjectFactory::insert.
 131   // Really, GrowableArray should have methods for
 132   // insert_at, remove_at, and binary_search.
 133   int len = _intrinsics->length();
 134   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 135   if (index == len) {
 136     _intrinsics->append(cg);
 137   } else {
 138 #ifdef ASSERT
 139     CallGenerator* oldcg = _intrinsics->at(index);
 140     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 141 #endif
 142     _intrinsics->append(_intrinsics->at(len-1));
 143     int pos;
 144     for (pos = len-2; pos >= index; pos--) {
 145       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 146     }
 147     _intrinsics->at_put(index, cg);
 148   }
 149   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 150 }
 151 
 152 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 153   assert(m->is_loaded(), "don't try this on unloaded methods");
 154   if (_intrinsics != NULL) {
 155     int index = intrinsic_insertion_index(m, is_virtual);
 156     if (index < _intrinsics->length()
 157         && _intrinsics->at(index)->method() == m
 158         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 159       return _intrinsics->at(index);
 160     }
 161   }
 162   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 163   if (m->intrinsic_id() != vmIntrinsics::_none &&
 164       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 165     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 166     if (cg != NULL) {
 167       // Save it for next time:
 168       register_intrinsic(cg);
 169       return cg;
 170     } else {
 171       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 172     }
 173   }
 174   return NULL;
 175 }
 176 
 177 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 178 // in library_call.cpp.
 179 
 180 
 181 #ifndef PRODUCT
 182 // statistics gathering...
 183 
 184 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 185 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 186 
 187 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 188   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 189   int oflags = _intrinsic_hist_flags[id];
 190   assert(flags != 0, "what happened?");
 191   if (is_virtual) {
 192     flags |= _intrinsic_virtual;
 193   }
 194   bool changed = (flags != oflags);
 195   if ((flags & _intrinsic_worked) != 0) {
 196     juint count = (_intrinsic_hist_count[id] += 1);
 197     if (count == 1) {
 198       changed = true;           // first time
 199     }
 200     // increment the overall count also:
 201     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 202   }
 203   if (changed) {
 204     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 205       // Something changed about the intrinsic's virtuality.
 206       if ((flags & _intrinsic_virtual) != 0) {
 207         // This is the first use of this intrinsic as a virtual call.
 208         if (oflags != 0) {
 209           // We already saw it as a non-virtual, so note both cases.
 210           flags |= _intrinsic_both;
 211         }
 212       } else if ((oflags & _intrinsic_both) == 0) {
 213         // This is the first use of this intrinsic as a non-virtual
 214         flags |= _intrinsic_both;
 215       }
 216     }
 217     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 218   }
 219   // update the overall flags also:
 220   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 221   return changed;
 222 }
 223 
 224 static char* format_flags(int flags, char* buf) {
 225   buf[0] = 0;
 226   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 227   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 228   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 229   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 230   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 231   if (buf[0] == 0)  strcat(buf, ",");
 232   assert(buf[0] == ',', "must be");
 233   return &buf[1];
 234 }
 235 
 236 void Compile::print_intrinsic_statistics() {
 237   char flagsbuf[100];
 238   ttyLocker ttyl;
 239   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 240   tty->print_cr("Compiler intrinsic usage:");
 241   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 242   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 243   #define PRINT_STAT_LINE(name, c, f) \
 244     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 245   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 246     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 247     int   flags = _intrinsic_hist_flags[id];
 248     juint count = _intrinsic_hist_count[id];
 249     if ((flags | count) != 0) {
 250       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 251     }
 252   }
 253   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 254   if (xtty != NULL)  xtty->tail("statistics");
 255 }
 256 
 257 void Compile::print_statistics() {
 258   { ttyLocker ttyl;
 259     if (xtty != NULL)  xtty->head("statistics type='opto'");
 260     Parse::print_statistics();
 261     PhaseCCP::print_statistics();
 262     PhaseRegAlloc::print_statistics();
 263     Scheduling::print_statistics();
 264     PhasePeephole::print_statistics();
 265     PhaseIdealLoop::print_statistics();
 266     if (xtty != NULL)  xtty->tail("statistics");
 267   }
 268   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 269     // put this under its own <statistics> element.
 270     print_intrinsic_statistics();
 271   }
 272 }
 273 #endif //PRODUCT
 274 
 275 // Support for bundling info
 276 Bundle* Compile::node_bundling(const Node *n) {
 277   assert(valid_bundle_info(n), "oob");
 278   return &_node_bundling_base[n->_idx];
 279 }
 280 
 281 bool Compile::valid_bundle_info(const Node *n) {
 282   return (_node_bundling_limit > n->_idx);
 283 }
 284 
 285 
 286 void Compile::gvn_replace_by(Node* n, Node* nn) {
 287   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 288     Node* use = n->last_out(i);
 289     bool is_in_table = initial_gvn()->hash_delete(use);
 290     uint uses_found = 0;
 291     for (uint j = 0; j < use->len(); j++) {
 292       if (use->in(j) == n) {
 293         if (j < use->req())
 294           use->set_req(j, nn);
 295         else
 296           use->set_prec(j, nn);
 297         uses_found++;
 298       }
 299     }
 300     if (is_in_table) {
 301       // reinsert into table
 302       initial_gvn()->hash_find_insert(use);
 303     }
 304     record_for_igvn(use);
 305     i -= uses_found;    // we deleted 1 or more copies of this edge
 306   }
 307 }
 308 
 309 
 310 static inline bool not_a_node(const Node* n) {
 311   if (n == NULL)                   return true;
 312   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 313   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 314   return false;
 315 }
 316 
 317 // Identify all nodes that are reachable from below, useful.
 318 // Use breadth-first pass that records state in a Unique_Node_List,
 319 // recursive traversal is slower.
 320 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 321   int estimated_worklist_size = live_nodes();
 322   useful.map( estimated_worklist_size, NULL );  // preallocate space
 323 
 324   // Initialize worklist
 325   if (root() != NULL)     { useful.push(root()); }
 326   // If 'top' is cached, declare it useful to preserve cached node
 327   if( cached_top_node() ) { useful.push(cached_top_node()); }
 328 
 329   // Push all useful nodes onto the list, breadthfirst
 330   for( uint next = 0; next < useful.size(); ++next ) {
 331     assert( next < unique(), "Unique useful nodes < total nodes");
 332     Node *n  = useful.at(next);
 333     uint max = n->len();
 334     for( uint i = 0; i < max; ++i ) {
 335       Node *m = n->in(i);
 336       if (not_a_node(m))  continue;
 337       useful.push(m);
 338     }
 339   }
 340 }
 341 
 342 // Update dead_node_list with any missing dead nodes using useful
 343 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 344 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 345   uint max_idx = unique();
 346   VectorSet& useful_node_set = useful.member_set();
 347 
 348   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 349     // If node with index node_idx is not in useful set,
 350     // mark it as dead in dead node list.
 351     if (! useful_node_set.test(node_idx) ) {
 352       record_dead_node(node_idx);
 353     }
 354   }
 355 }
 356 
 357 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 358   int shift = 0;
 359   for (int i = 0; i < inlines->length(); i++) {
 360     CallGenerator* cg = inlines->at(i);
 361     CallNode* call = cg->call_node();
 362     if (shift > 0) {
 363       inlines->at_put(i-shift, cg);
 364     }
 365     if (!useful.member(call)) {
 366       shift++;
 367     }
 368   }
 369   inlines->trunc_to(inlines->length()-shift);
 370 }
 371 
 372 // Disconnect all useless nodes by disconnecting those at the boundary.
 373 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 374   uint next = 0;
 375   while (next < useful.size()) {
 376     Node *n = useful.at(next++);
 377     if (n->is_SafePoint()) {
 378       // We're done with a parsing phase. Replaced nodes are not valid
 379       // beyond that point.
 380       n->as_SafePoint()->delete_replaced_nodes();
 381     }
 382     // Use raw traversal of out edges since this code removes out edges
 383     int max = n->outcnt();
 384     for (int j = 0; j < max; ++j) {
 385       Node* child = n->raw_out(j);
 386       if (! useful.member(child)) {
 387         assert(!child->is_top() || child != top(),
 388                "If top is cached in Compile object it is in useful list");
 389         // Only need to remove this out-edge to the useless node
 390         n->raw_del_out(j);
 391         --j;
 392         --max;
 393       }
 394     }
 395     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 396       record_for_igvn(n->unique_out());
 397     }
 398   }
 399   // Remove useless macro and predicate opaq nodes
 400   for (int i = C->macro_count()-1; i >= 0; i--) {
 401     Node* n = C->macro_node(i);
 402     if (!useful.member(n)) {
 403       remove_macro_node(n);
 404     }
 405   }
 406 #ifdef _LP64
 407   // Remove useless CastII nodes with range check dependency
 408   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 409     Node* cast = range_check_cast_node(i);
 410     if (!useful.member(cast)) {
 411       remove_range_check_cast(cast);
 412     }
 413   }
 414 #endif
 415   // Remove useless expensive node
 416   for (int i = C->expensive_count()-1; i >= 0; i--) {
 417     Node* n = C->expensive_node(i);
 418     if (!useful.member(n)) {
 419       remove_expensive_node(n);
 420     }
 421   }
 422   // clean up the late inline lists
 423   remove_useless_late_inlines(&_string_late_inlines, useful);
 424   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 425   remove_useless_late_inlines(&_late_inlines, useful);
 426   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 427 }
 428 
 429 //------------------------------frame_size_in_words-----------------------------
 430 // frame_slots in units of words
 431 int Compile::frame_size_in_words() const {
 432   // shift is 0 in LP32 and 1 in LP64
 433   const int shift = (LogBytesPerWord - LogBytesPerInt);
 434   int words = _frame_slots >> shift;
 435   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 436   return words;
 437 }
 438 
 439 // To bang the stack of this compiled method we use the stack size
 440 // that the interpreter would need in case of a deoptimization. This
 441 // removes the need to bang the stack in the deoptimization blob which
 442 // in turn simplifies stack overflow handling.
 443 int Compile::bang_size_in_bytes() const {
 444   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 445 }
 446 
 447 // ============================================================================
 448 //------------------------------CompileWrapper---------------------------------
 449 class CompileWrapper : public StackObj {
 450   Compile *const _compile;
 451  public:
 452   CompileWrapper(Compile* compile);
 453 
 454   ~CompileWrapper();
 455 };
 456 
 457 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 458   // the Compile* pointer is stored in the current ciEnv:
 459   ciEnv* env = compile->env();
 460   assert(env == ciEnv::current(), "must already be a ciEnv active");
 461   assert(env->compiler_data() == NULL, "compile already active?");
 462   env->set_compiler_data(compile);
 463   assert(compile == Compile::current(), "sanity");
 464 
 465   compile->set_type_dict(NULL);
 466   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 467   compile->clone_map().set_clone_idx(0);
 468   compile->set_type_hwm(NULL);
 469   compile->set_type_last_size(0);
 470   compile->set_last_tf(NULL, NULL);
 471   compile->set_indexSet_arena(NULL);
 472   compile->set_indexSet_free_block_list(NULL);
 473   compile->init_type_arena();
 474   Type::Initialize(compile);
 475   _compile->set_scratch_buffer_blob(NULL);
 476   _compile->begin_method();
 477   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 478 }
 479 CompileWrapper::~CompileWrapper() {
 480   _compile->end_method();
 481   if (_compile->scratch_buffer_blob() != NULL)
 482     BufferBlob::free(_compile->scratch_buffer_blob());
 483   _compile->env()->set_compiler_data(NULL);
 484 }
 485 
 486 
 487 //----------------------------print_compile_messages---------------------------
 488 void Compile::print_compile_messages() {
 489 #ifndef PRODUCT
 490   // Check if recompiling
 491   if (_subsume_loads == false && PrintOpto) {
 492     // Recompiling without allowing machine instructions to subsume loads
 493     tty->print_cr("*********************************************************");
 494     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 495     tty->print_cr("*********************************************************");
 496   }
 497   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 498     // Recompiling without escape analysis
 499     tty->print_cr("*********************************************************");
 500     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 501     tty->print_cr("*********************************************************");
 502   }
 503   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 504     // Recompiling without boxing elimination
 505     tty->print_cr("*********************************************************");
 506     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 507     tty->print_cr("*********************************************************");
 508   }
 509   if (C->directive()->BreakAtCompileOption) {
 510     // Open the debugger when compiling this method.
 511     tty->print("### Breaking when compiling: ");
 512     method()->print_short_name();
 513     tty->cr();
 514     BREAKPOINT;
 515   }
 516 
 517   if( PrintOpto ) {
 518     if (is_osr_compilation()) {
 519       tty->print("[OSR]%3d", _compile_id);
 520     } else {
 521       tty->print("%3d", _compile_id);
 522     }
 523   }
 524 #endif
 525 }
 526 
 527 
 528 //-----------------------init_scratch_buffer_blob------------------------------
 529 // Construct a temporary BufferBlob and cache it for this compile.
 530 void Compile::init_scratch_buffer_blob(int const_size) {
 531   // If there is already a scratch buffer blob allocated and the
 532   // constant section is big enough, use it.  Otherwise free the
 533   // current and allocate a new one.
 534   BufferBlob* blob = scratch_buffer_blob();
 535   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 536     // Use the current blob.
 537   } else {
 538     if (blob != NULL) {
 539       BufferBlob::free(blob);
 540     }
 541 
 542     ResourceMark rm;
 543     _scratch_const_size = const_size;
 544     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 545     blob = BufferBlob::create("Compile::scratch_buffer", size);
 546     // Record the buffer blob for next time.
 547     set_scratch_buffer_blob(blob);
 548     // Have we run out of code space?
 549     if (scratch_buffer_blob() == NULL) {
 550       // Let CompilerBroker disable further compilations.
 551       record_failure("Not enough space for scratch buffer in CodeCache");
 552       return;
 553     }
 554   }
 555 
 556   // Initialize the relocation buffers
 557   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 558   set_scratch_locs_memory(locs_buf);
 559 }
 560 
 561 
 562 //-----------------------scratch_emit_size-------------------------------------
 563 // Helper function that computes size by emitting code
 564 uint Compile::scratch_emit_size(const Node* n) {
 565   // Start scratch_emit_size section.
 566   set_in_scratch_emit_size(true);
 567 
 568   // Emit into a trash buffer and count bytes emitted.
 569   // This is a pretty expensive way to compute a size,
 570   // but it works well enough if seldom used.
 571   // All common fixed-size instructions are given a size
 572   // method by the AD file.
 573   // Note that the scratch buffer blob and locs memory are
 574   // allocated at the beginning of the compile task, and
 575   // may be shared by several calls to scratch_emit_size.
 576   // The allocation of the scratch buffer blob is particularly
 577   // expensive, since it has to grab the code cache lock.
 578   BufferBlob* blob = this->scratch_buffer_blob();
 579   assert(blob != NULL, "Initialize BufferBlob at start");
 580   assert(blob->size() > MAX_inst_size, "sanity");
 581   relocInfo* locs_buf = scratch_locs_memory();
 582   address blob_begin = blob->content_begin();
 583   address blob_end   = (address)locs_buf;
 584   assert(blob->content_contains(blob_end), "sanity");
 585   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 586   buf.initialize_consts_size(_scratch_const_size);
 587   buf.initialize_stubs_size(MAX_stubs_size);
 588   assert(locs_buf != NULL, "sanity");
 589   int lsize = MAX_locs_size / 3;
 590   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 591   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 592   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 593 
 594   // Do the emission.
 595 
 596   Label fakeL; // Fake label for branch instructions.
 597   Label*   saveL = NULL;
 598   uint save_bnum = 0;
 599   bool is_branch = n->is_MachBranch();
 600   if (is_branch) {
 601     MacroAssembler masm(&buf);
 602     masm.bind(fakeL);
 603     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 604     n->as_MachBranch()->label_set(&fakeL, 0);
 605   }
 606   n->emit(buf, this->regalloc());
 607 
 608   // Emitting into the scratch buffer should not fail
 609   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 610 
 611   if (is_branch) // Restore label.
 612     n->as_MachBranch()->label_set(saveL, save_bnum);
 613 
 614   // End scratch_emit_size section.
 615   set_in_scratch_emit_size(false);
 616 
 617   return buf.insts_size();
 618 }
 619 
 620 
 621 // ============================================================================
 622 //------------------------------Compile standard-------------------------------
 623 debug_only( int Compile::_debug_idx = 100000; )
 624 
 625 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 626 // the continuation bci for on stack replacement.
 627 
 628 
 629 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 630                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 631                 : Phase(Compiler),
 632                   _env(ci_env),
 633                   _directive(directive),
 634                   _log(ci_env->log()),
 635                   _compile_id(ci_env->compile_id()),
 636                   _save_argument_registers(false),
 637                   _stub_name(NULL),
 638                   _stub_function(NULL),
 639                   _stub_entry_point(NULL),
 640                   _method(target),
 641                   _entry_bci(osr_bci),
 642                   _initial_gvn(NULL),
 643                   _for_igvn(NULL),
 644                   _warm_calls(NULL),
 645                   _subsume_loads(subsume_loads),
 646                   _do_escape_analysis(do_escape_analysis),
 647                   _eliminate_boxing(eliminate_boxing),
 648                   _failure_reason(NULL),
 649                   _code_buffer("Compile::Fill_buffer"),
 650                   _orig_pc_slot(0),
 651                   _orig_pc_slot_offset_in_bytes(0),
 652                   _has_method_handle_invokes(false),
 653                   _mach_constant_base_node(NULL),
 654                   _node_bundling_limit(0),
 655                   _node_bundling_base(NULL),
 656                   _java_calls(0),
 657                   _inner_loops(0),
 658                   _scratch_const_size(-1),
 659                   _in_scratch_emit_size(false),
 660                   _dead_node_list(comp_arena()),
 661                   _dead_node_count(0),
 662 #ifndef PRODUCT
 663                   _trace_opto_output(directive->TraceOptoOutputOption),
 664                   _in_dump_cnt(0),
 665                   _printer(IdealGraphPrinter::printer()),
 666 #endif
 667                   _congraph(NULL),
 668                   _comp_arena(mtCompiler),
 669                   _node_arena(mtCompiler),
 670                   _old_arena(mtCompiler),
 671                   _Compile_types(mtCompiler),
 672                   _replay_inline_data(NULL),
 673                   _late_inlines(comp_arena(), 2, 0, NULL),
 674                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 675                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 676                   _late_inlines_pos(0),
 677                   _number_of_mh_late_inlines(0),
 678                   _inlining_progress(false),
 679                   _inlining_incrementally(false),
 680                   _print_inlining_list(NULL),
 681                   _print_inlining_stream(NULL),
 682                   _print_inlining_idx(0),
 683                   _print_inlining_output(NULL),
 684                   _interpreter_frame_size(0),
 685                   _max_node_limit(MaxNodeLimit),
 686                   _has_reserved_stack_access(target->has_reserved_stack_access()) {
 687   C = this;
 688 #ifndef PRODUCT
 689   if (_printer != NULL) {
 690     _printer->set_compile(this);
 691   }
 692 #endif
 693   CompileWrapper cw(this);
 694 
 695   if (CITimeVerbose) {
 696     tty->print(" ");
 697     target->holder()->name()->print();
 698     tty->print(".");
 699     target->print_short_name();
 700     tty->print("  ");
 701   }
 702   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 703   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 704 
 705 #ifndef PRODUCT
 706   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 707   if (!print_opto_assembly) {
 708     bool print_assembly = directive->PrintAssemblyOption;
 709     if (print_assembly && !Disassembler::can_decode()) {
 710       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 711       print_opto_assembly = true;
 712     }
 713   }
 714   set_print_assembly(print_opto_assembly);
 715   set_parsed_irreducible_loop(false);
 716 
 717   if (directive->ReplayInlineOption) {
 718     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 719   }
 720 #endif
 721   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 722   set_print_intrinsics(directive->PrintIntrinsicsOption);
 723   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 724 
 725   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 726     // Make sure the method being compiled gets its own MDO,
 727     // so we can at least track the decompile_count().
 728     // Need MDO to record RTM code generation state.
 729     method()->ensure_method_data();
 730   }
 731 
 732   Init(::AliasLevel);
 733 
 734 
 735   print_compile_messages();
 736 
 737   _ilt = InlineTree::build_inline_tree_root();
 738 
 739   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 740   assert(num_alias_types() >= AliasIdxRaw, "");
 741 
 742 #define MINIMUM_NODE_HASH  1023
 743   // Node list that Iterative GVN will start with
 744   Unique_Node_List for_igvn(comp_arena());
 745   set_for_igvn(&for_igvn);
 746 
 747   // GVN that will be run immediately on new nodes
 748   uint estimated_size = method()->code_size()*4+64;
 749   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 750   PhaseGVN gvn(node_arena(), estimated_size);
 751   set_initial_gvn(&gvn);
 752 
 753   print_inlining_init();
 754   { // Scope for timing the parser
 755     TracePhase tp("parse", &timers[_t_parser]);
 756 
 757     // Put top into the hash table ASAP.
 758     initial_gvn()->transform_no_reclaim(top());
 759 
 760     // Set up tf(), start(), and find a CallGenerator.
 761     CallGenerator* cg = NULL;
 762     if (is_osr_compilation()) {
 763       const TypeTuple *domain = StartOSRNode::osr_domain();
 764       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 765       init_tf(TypeFunc::make(domain, range));
 766       StartNode* s = new StartOSRNode(root(), domain);
 767       initial_gvn()->set_type_bottom(s);
 768       init_start(s);
 769       cg = CallGenerator::for_osr(method(), entry_bci());
 770     } else {
 771       // Normal case.
 772       init_tf(TypeFunc::make(method()));
 773       StartNode* s = new StartNode(root(), tf()->domain());
 774       initial_gvn()->set_type_bottom(s);
 775       init_start(s);
 776       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 777         // With java.lang.ref.reference.get() we must go through the
 778         // intrinsic when G1 is enabled - even when get() is the root
 779         // method of the compile - so that, if necessary, the value in
 780         // the referent field of the reference object gets recorded by
 781         // the pre-barrier code.
 782         // Specifically, if G1 is enabled, the value in the referent
 783         // field is recorded by the G1 SATB pre barrier. This will
 784         // result in the referent being marked live and the reference
 785         // object removed from the list of discovered references during
 786         // reference processing.
 787         cg = find_intrinsic(method(), false);
 788       }
 789       if (cg == NULL) {
 790         float past_uses = method()->interpreter_invocation_count();
 791         float expected_uses = past_uses;
 792         cg = CallGenerator::for_inline(method(), expected_uses);
 793       }
 794     }
 795     if (failing())  return;
 796     if (cg == NULL) {
 797       record_method_not_compilable_all_tiers("cannot parse method");
 798       return;
 799     }
 800     JVMState* jvms = build_start_state(start(), tf());
 801     if ((jvms = cg->generate(jvms)) == NULL) {
 802       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 803         record_method_not_compilable("method parse failed");
 804       }
 805       return;
 806     }
 807     GraphKit kit(jvms);
 808 
 809     if (!kit.stopped()) {
 810       // Accept return values, and transfer control we know not where.
 811       // This is done by a special, unique ReturnNode bound to root.
 812       return_values(kit.jvms());
 813     }
 814 
 815     if (kit.has_exceptions()) {
 816       // Any exceptions that escape from this call must be rethrown
 817       // to whatever caller is dynamically above us on the stack.
 818       // This is done by a special, unique RethrowNode bound to root.
 819       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 820     }
 821 
 822     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 823 
 824     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 825       inline_string_calls(true);
 826     }
 827 
 828     if (failing())  return;
 829 
 830     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 831 
 832     // Remove clutter produced by parsing.
 833     if (!failing()) {
 834       ResourceMark rm;
 835       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 836     }
 837   }
 838 
 839   // Note:  Large methods are capped off in do_one_bytecode().
 840   if (failing())  return;
 841 
 842   // After parsing, node notes are no longer automagic.
 843   // They must be propagated by register_new_node_with_optimizer(),
 844   // clone(), or the like.
 845   set_default_node_notes(NULL);
 846 
 847   for (;;) {
 848     int successes = Inline_Warm();
 849     if (failing())  return;
 850     if (successes == 0)  break;
 851   }
 852 
 853   // Drain the list.
 854   Finish_Warm();
 855 #ifndef PRODUCT
 856   if (_printer && _printer->should_print(1)) {
 857     _printer->print_inlining();
 858   }
 859 #endif
 860 
 861   if (failing())  return;
 862   NOT_PRODUCT( verify_graph_edges(); )
 863 
 864   // Now optimize
 865   Optimize();
 866   if (failing())  return;
 867   NOT_PRODUCT( verify_graph_edges(); )
 868 
 869 #ifndef PRODUCT
 870   if (PrintIdeal) {
 871     ttyLocker ttyl;  // keep the following output all in one block
 872     // This output goes directly to the tty, not the compiler log.
 873     // To enable tools to match it up with the compilation activity,
 874     // be sure to tag this tty output with the compile ID.
 875     if (xtty != NULL) {
 876       xtty->head("ideal compile_id='%d'%s", compile_id(),
 877                  is_osr_compilation()    ? " compile_kind='osr'" :
 878                  "");
 879     }
 880     root()->dump(9999);
 881     if (xtty != NULL) {
 882       xtty->tail("ideal");
 883     }
 884   }
 885 #endif
 886 
 887   NOT_PRODUCT( verify_barriers(); )
 888 
 889   // Dump compilation data to replay it.
 890   if (directive->DumpReplayOption) {
 891     env()->dump_replay_data(_compile_id);
 892   }
 893   if (directive->DumpInlineOption && (ilt() != NULL)) {
 894     env()->dump_inline_data(_compile_id);
 895   }
 896 
 897   // Now that we know the size of all the monitors we can add a fixed slot
 898   // for the original deopt pc.
 899 
 900   _orig_pc_slot =  fixed_slots();
 901   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 902   set_fixed_slots(next_slot);
 903 
 904   // Compute when to use implicit null checks. Used by matching trap based
 905   // nodes and NullCheck optimization.
 906   set_allowed_deopt_reasons();
 907 
 908   // Now generate code
 909   Code_Gen();
 910   if (failing())  return;
 911 
 912   // Check if we want to skip execution of all compiled code.
 913   {
 914 #ifndef PRODUCT
 915     if (OptoNoExecute) {
 916       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 917       return;
 918     }
 919 #endif
 920     TracePhase tp("install_code", &timers[_t_registerMethod]);
 921 
 922     if (is_osr_compilation()) {
 923       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 924       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 925     } else {
 926       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 927       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 928     }
 929 
 930     env()->register_method(_method, _entry_bci,
 931                            &_code_offsets,
 932                            _orig_pc_slot_offset_in_bytes,
 933                            code_buffer(),
 934                            frame_size_in_words(), _oop_map_set,
 935                            &_handler_table, &_inc_table,
 936                            compiler,
 937                            has_unsafe_access(),
 938                            SharedRuntime::is_wide_vector(max_vector_size()),
 939                            _directive,
 940                            rtm_state()
 941                            );
 942 
 943     if (log() != NULL) // Print code cache state into compiler log
 944       log()->code_cache_state();
 945   }
 946 }
 947 
 948 //------------------------------Compile----------------------------------------
 949 // Compile a runtime stub
 950 Compile::Compile( ciEnv* ci_env,
 951                   TypeFunc_generator generator,
 952                   address stub_function,
 953                   const char *stub_name,
 954                   int is_fancy_jump,
 955                   bool pass_tls,
 956                   bool save_arg_registers,
 957                   bool return_pc,
 958                   DirectiveSet* directive)
 959   : Phase(Compiler),
 960     _env(ci_env),
 961     _directive(directive),
 962     _log(ci_env->log()),
 963     _compile_id(0),
 964     _save_argument_registers(save_arg_registers),
 965     _method(NULL),
 966     _stub_name(stub_name),
 967     _stub_function(stub_function),
 968     _stub_entry_point(NULL),
 969     _entry_bci(InvocationEntryBci),
 970     _initial_gvn(NULL),
 971     _for_igvn(NULL),
 972     _warm_calls(NULL),
 973     _orig_pc_slot(0),
 974     _orig_pc_slot_offset_in_bytes(0),
 975     _subsume_loads(true),
 976     _do_escape_analysis(false),
 977     _eliminate_boxing(false),
 978     _failure_reason(NULL),
 979     _code_buffer("Compile::Fill_buffer"),
 980     _has_method_handle_invokes(false),
 981     _mach_constant_base_node(NULL),
 982     _node_bundling_limit(0),
 983     _node_bundling_base(NULL),
 984     _java_calls(0),
 985     _inner_loops(0),
 986 #ifndef PRODUCT
 987     _trace_opto_output(TraceOptoOutput),
 988     _in_dump_cnt(0),
 989     _printer(NULL),
 990 #endif
 991     _comp_arena(mtCompiler),
 992     _node_arena(mtCompiler),
 993     _old_arena(mtCompiler),
 994     _Compile_types(mtCompiler),
 995     _dead_node_list(comp_arena()),
 996     _dead_node_count(0),
 997     _congraph(NULL),
 998     _replay_inline_data(NULL),
 999     _number_of_mh_late_inlines(0),
1000     _inlining_progress(false),
1001     _inlining_incrementally(false),
1002     _print_inlining_list(NULL),
1003     _print_inlining_stream(NULL),
1004     _print_inlining_idx(0),
1005     _print_inlining_output(NULL),
1006     _allowed_reasons(0),
1007     _interpreter_frame_size(0),
1008     _max_node_limit(MaxNodeLimit) {
1009   C = this;
1010 
1011   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1012   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1013 
1014 #ifndef PRODUCT
1015   set_print_assembly(PrintFrameConverterAssembly);
1016   set_parsed_irreducible_loop(false);
1017 #endif
1018   set_has_irreducible_loop(false); // no loops
1019 
1020   CompileWrapper cw(this);
1021   Init(/*AliasLevel=*/ 0);
1022   init_tf((*generator)());
1023 
1024   {
1025     // The following is a dummy for the sake of GraphKit::gen_stub
1026     Unique_Node_List for_igvn(comp_arena());
1027     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1028     PhaseGVN gvn(Thread::current()->resource_area(),255);
1029     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1030     gvn.transform_no_reclaim(top());
1031 
1032     GraphKit kit;
1033     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1034   }
1035 
1036   NOT_PRODUCT( verify_graph_edges(); )
1037   Code_Gen();
1038   if (failing())  return;
1039 
1040 
1041   // Entry point will be accessed using compile->stub_entry_point();
1042   if (code_buffer() == NULL) {
1043     Matcher::soft_match_failure();
1044   } else {
1045     if (PrintAssembly && (WizardMode || Verbose))
1046       tty->print_cr("### Stub::%s", stub_name);
1047 
1048     if (!failing()) {
1049       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1050 
1051       // Make the NMethod
1052       // For now we mark the frame as never safe for profile stackwalking
1053       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1054                                                       code_buffer(),
1055                                                       CodeOffsets::frame_never_safe,
1056                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1057                                                       frame_size_in_words(),
1058                                                       _oop_map_set,
1059                                                       save_arg_registers);
1060       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1061 
1062       _stub_entry_point = rs->entry_point();
1063     }
1064   }
1065 }
1066 
1067 //------------------------------Init-------------------------------------------
1068 // Prepare for a single compilation
1069 void Compile::Init(int aliaslevel) {
1070   _unique  = 0;
1071   _regalloc = NULL;
1072 
1073   _tf      = NULL;  // filled in later
1074   _top     = NULL;  // cached later
1075   _matcher = NULL;  // filled in later
1076   _cfg     = NULL;  // filled in later
1077 
1078   set_24_bit_selection_and_mode(Use24BitFP, false);
1079 
1080   _node_note_array = NULL;
1081   _default_node_notes = NULL;
1082   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1083 
1084   _immutable_memory = NULL; // filled in at first inquiry
1085 
1086   // Globally visible Nodes
1087   // First set TOP to NULL to give safe behavior during creation of RootNode
1088   set_cached_top_node(NULL);
1089   set_root(new RootNode());
1090   // Now that you have a Root to point to, create the real TOP
1091   set_cached_top_node( new ConNode(Type::TOP) );
1092   set_recent_alloc(NULL, NULL);
1093 
1094   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1095   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1096   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1097   env()->set_dependencies(new Dependencies(env()));
1098 
1099   _fixed_slots = 0;
1100   set_has_split_ifs(false);
1101   set_has_loops(has_method() && method()->has_loops()); // first approximation
1102   set_has_stringbuilder(false);
1103   set_has_boxed_value(false);
1104   _trap_can_recompile = false;  // no traps emitted yet
1105   _major_progress = true; // start out assuming good things will happen
1106   set_has_unsafe_access(false);
1107   set_max_vector_size(0);
1108   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1109   set_decompile_count(0);
1110 
1111   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1112   set_num_loop_opts(LoopOptsCount);
1113   set_do_inlining(Inline);
1114   set_max_inline_size(MaxInlineSize);
1115   set_freq_inline_size(FreqInlineSize);
1116   set_do_scheduling(OptoScheduling);
1117   set_do_count_invocations(false);
1118   set_do_method_data_update(false);
1119 
1120   set_do_vector_loop(false);
1121 
1122   if (AllowVectorizeOnDemand) {
1123     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1124       set_do_vector_loop(true);
1125       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1126     } else if (has_method() && method()->name() != 0 &&
1127                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1128       set_do_vector_loop(true);
1129     }
1130   }
1131   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1132   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1133 
1134   set_age_code(has_method() && method()->profile_aging());
1135   set_rtm_state(NoRTM); // No RTM lock eliding by default
1136   _max_node_limit = _directive->MaxNodeLimitOption;
1137 
1138 #if INCLUDE_RTM_OPT
1139   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1140     int rtm_state = method()->method_data()->rtm_state();
1141     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1142       // Don't generate RTM lock eliding code.
1143       set_rtm_state(NoRTM);
1144     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1145       // Generate RTM lock eliding code without abort ratio calculation code.
1146       set_rtm_state(UseRTM);
1147     } else if (UseRTMDeopt) {
1148       // Generate RTM lock eliding code and include abort ratio calculation
1149       // code if UseRTMDeopt is on.
1150       set_rtm_state(ProfileRTM);
1151     }
1152   }
1153 #endif
1154   if (debug_info()->recording_non_safepoints()) {
1155     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1156                         (comp_arena(), 8, 0, NULL));
1157     set_default_node_notes(Node_Notes::make(this));
1158   }
1159 
1160   // // -- Initialize types before each compile --
1161   // // Update cached type information
1162   // if( _method && _method->constants() )
1163   //   Type::update_loaded_types(_method, _method->constants());
1164 
1165   // Init alias_type map.
1166   if (!_do_escape_analysis && aliaslevel == 3)
1167     aliaslevel = 2;  // No unique types without escape analysis
1168   _AliasLevel = aliaslevel;
1169   const int grow_ats = 16;
1170   _max_alias_types = grow_ats;
1171   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1172   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1173   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1174   {
1175     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1176   }
1177   // Initialize the first few types.
1178   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1179   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1180   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1181   _num_alias_types = AliasIdxRaw+1;
1182   // Zero out the alias type cache.
1183   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1184   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1185   probe_alias_cache(NULL)->_index = AliasIdxTop;
1186 
1187   _intrinsics = NULL;
1188   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1189   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1190   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1191 #ifdef _LP64
1192   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1193 #endif
1194   register_library_intrinsics();
1195 }
1196 
1197 //---------------------------init_start----------------------------------------
1198 // Install the StartNode on this compile object.
1199 void Compile::init_start(StartNode* s) {
1200   if (failing())
1201     return; // already failing
1202   assert(s == start(), "");
1203 }
1204 
1205 /**
1206  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1207  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1208  * the ideal graph.
1209  */
1210 StartNode* Compile::start() const {
1211   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1212   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1213     Node* start = root()->fast_out(i);
1214     if (start->is_Start()) {
1215       return start->as_Start();
1216     }
1217   }
1218   fatal("Did not find Start node!");
1219   return NULL;
1220 }
1221 
1222 //-------------------------------immutable_memory-------------------------------------
1223 // Access immutable memory
1224 Node* Compile::immutable_memory() {
1225   if (_immutable_memory != NULL) {
1226     return _immutable_memory;
1227   }
1228   StartNode* s = start();
1229   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1230     Node *p = s->fast_out(i);
1231     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1232       _immutable_memory = p;
1233       return _immutable_memory;
1234     }
1235   }
1236   ShouldNotReachHere();
1237   return NULL;
1238 }
1239 
1240 //----------------------set_cached_top_node------------------------------------
1241 // Install the cached top node, and make sure Node::is_top works correctly.
1242 void Compile::set_cached_top_node(Node* tn) {
1243   if (tn != NULL)  verify_top(tn);
1244   Node* old_top = _top;
1245   _top = tn;
1246   // Calling Node::setup_is_top allows the nodes the chance to adjust
1247   // their _out arrays.
1248   if (_top != NULL)     _top->setup_is_top();
1249   if (old_top != NULL)  old_top->setup_is_top();
1250   assert(_top == NULL || top()->is_top(), "");
1251 }
1252 
1253 #ifdef ASSERT
1254 uint Compile::count_live_nodes_by_graph_walk() {
1255   Unique_Node_List useful(comp_arena());
1256   // Get useful node list by walking the graph.
1257   identify_useful_nodes(useful);
1258   return useful.size();
1259 }
1260 
1261 void Compile::print_missing_nodes() {
1262 
1263   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1264   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1265     return;
1266   }
1267 
1268   // This is an expensive function. It is executed only when the user
1269   // specifies VerifyIdealNodeCount option or otherwise knows the
1270   // additional work that needs to be done to identify reachable nodes
1271   // by walking the flow graph and find the missing ones using
1272   // _dead_node_list.
1273 
1274   Unique_Node_List useful(comp_arena());
1275   // Get useful node list by walking the graph.
1276   identify_useful_nodes(useful);
1277 
1278   uint l_nodes = C->live_nodes();
1279   uint l_nodes_by_walk = useful.size();
1280 
1281   if (l_nodes != l_nodes_by_walk) {
1282     if (_log != NULL) {
1283       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1284       _log->stamp();
1285       _log->end_head();
1286     }
1287     VectorSet& useful_member_set = useful.member_set();
1288     int last_idx = l_nodes_by_walk;
1289     for (int i = 0; i < last_idx; i++) {
1290       if (useful_member_set.test(i)) {
1291         if (_dead_node_list.test(i)) {
1292           if (_log != NULL) {
1293             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1294           }
1295           if (PrintIdealNodeCount) {
1296             // Print the log message to tty
1297               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1298               useful.at(i)->dump();
1299           }
1300         }
1301       }
1302       else if (! _dead_node_list.test(i)) {
1303         if (_log != NULL) {
1304           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1305         }
1306         if (PrintIdealNodeCount) {
1307           // Print the log message to tty
1308           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1309         }
1310       }
1311     }
1312     if (_log != NULL) {
1313       _log->tail("mismatched_nodes");
1314     }
1315   }
1316 }
1317 void Compile::record_modified_node(Node* n) {
1318   if (_modified_nodes != NULL && !_inlining_incrementally &&
1319       n->outcnt() != 0 && !n->is_Con()) {
1320     _modified_nodes->push(n);
1321   }
1322 }
1323 
1324 void Compile::remove_modified_node(Node* n) {
1325   if (_modified_nodes != NULL) {
1326     _modified_nodes->remove(n);
1327   }
1328 }
1329 #endif
1330 
1331 #ifndef PRODUCT
1332 void Compile::verify_top(Node* tn) const {
1333   if (tn != NULL) {
1334     assert(tn->is_Con(), "top node must be a constant");
1335     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1336     assert(tn->in(0) != NULL, "must have live top node");
1337   }
1338 }
1339 #endif
1340 
1341 
1342 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1343 
1344 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1345   guarantee(arr != NULL, "");
1346   int num_blocks = arr->length();
1347   if (grow_by < num_blocks)  grow_by = num_blocks;
1348   int num_notes = grow_by * _node_notes_block_size;
1349   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1350   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1351   while (num_notes > 0) {
1352     arr->append(notes);
1353     notes     += _node_notes_block_size;
1354     num_notes -= _node_notes_block_size;
1355   }
1356   assert(num_notes == 0, "exact multiple, please");
1357 }
1358 
1359 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1360   if (source == NULL || dest == NULL)  return false;
1361 
1362   if (dest->is_Con())
1363     return false;               // Do not push debug info onto constants.
1364 
1365 #ifdef ASSERT
1366   // Leave a bread crumb trail pointing to the original node:
1367   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1368     dest->set_debug_orig(source);
1369   }
1370 #endif
1371 
1372   if (node_note_array() == NULL)
1373     return false;               // Not collecting any notes now.
1374 
1375   // This is a copy onto a pre-existing node, which may already have notes.
1376   // If both nodes have notes, do not overwrite any pre-existing notes.
1377   Node_Notes* source_notes = node_notes_at(source->_idx);
1378   if (source_notes == NULL || source_notes->is_clear())  return false;
1379   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1380   if (dest_notes == NULL || dest_notes->is_clear()) {
1381     return set_node_notes_at(dest->_idx, source_notes);
1382   }
1383 
1384   Node_Notes merged_notes = (*source_notes);
1385   // The order of operations here ensures that dest notes will win...
1386   merged_notes.update_from(dest_notes);
1387   return set_node_notes_at(dest->_idx, &merged_notes);
1388 }
1389 
1390 
1391 //--------------------------allow_range_check_smearing-------------------------
1392 // Gating condition for coalescing similar range checks.
1393 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1394 // single covering check that is at least as strong as any of them.
1395 // If the optimization succeeds, the simplified (strengthened) range check
1396 // will always succeed.  If it fails, we will deopt, and then give up
1397 // on the optimization.
1398 bool Compile::allow_range_check_smearing() const {
1399   // If this method has already thrown a range-check,
1400   // assume it was because we already tried range smearing
1401   // and it failed.
1402   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1403   return !already_trapped;
1404 }
1405 
1406 
1407 //------------------------------flatten_alias_type-----------------------------
1408 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1409   int offset = tj->offset();
1410   TypePtr::PTR ptr = tj->ptr();
1411 
1412   // Known instance (scalarizable allocation) alias only with itself.
1413   bool is_known_inst = tj->isa_oopptr() != NULL &&
1414                        tj->is_oopptr()->is_known_instance();
1415 
1416   // Process weird unsafe references.
1417   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1418     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1419     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1420     tj = TypeOopPtr::BOTTOM;
1421     ptr = tj->ptr();
1422     offset = tj->offset();
1423   }
1424 
1425   // Array pointers need some flattening
1426   const TypeAryPtr *ta = tj->isa_aryptr();
1427   if (ta && ta->is_stable()) {
1428     // Erase stability property for alias analysis.
1429     tj = ta = ta->cast_to_stable(false);
1430   }
1431   if( ta && is_known_inst ) {
1432     if ( offset != Type::OffsetBot &&
1433          offset > arrayOopDesc::length_offset_in_bytes() ) {
1434       offset = Type::OffsetBot; // Flatten constant access into array body only
1435       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1436     }
1437   } else if( ta && _AliasLevel >= 2 ) {
1438     // For arrays indexed by constant indices, we flatten the alias
1439     // space to include all of the array body.  Only the header, klass
1440     // and array length can be accessed un-aliased.
1441     if( offset != Type::OffsetBot ) {
1442       if( ta->const_oop() ) { // MethodData* or Method*
1443         offset = Type::OffsetBot;   // Flatten constant access into array body
1444         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1445       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1446         // range is OK as-is.
1447         tj = ta = TypeAryPtr::RANGE;
1448       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1449         tj = TypeInstPtr::KLASS; // all klass loads look alike
1450         ta = TypeAryPtr::RANGE; // generic ignored junk
1451         ptr = TypePtr::BotPTR;
1452       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1453         tj = TypeInstPtr::MARK;
1454         ta = TypeAryPtr::RANGE; // generic ignored junk
1455         ptr = TypePtr::BotPTR;
1456       } else {                  // Random constant offset into array body
1457         offset = Type::OffsetBot;   // Flatten constant access into array body
1458         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1459       }
1460     }
1461     // Arrays of fixed size alias with arrays of unknown size.
1462     if (ta->size() != TypeInt::POS) {
1463       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1464       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1465     }
1466     // Arrays of known objects become arrays of unknown objects.
1467     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1468       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1469       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1470     }
1471     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1472       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1473       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1474     }
1475     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1476     // cannot be distinguished by bytecode alone.
1477     if (ta->elem() == TypeInt::BOOL) {
1478       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1479       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1480       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1481     }
1482     // During the 2nd round of IterGVN, NotNull castings are removed.
1483     // Make sure the Bottom and NotNull variants alias the same.
1484     // Also, make sure exact and non-exact variants alias the same.
1485     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1486       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1487     }
1488   }
1489 
1490   // Oop pointers need some flattening
1491   const TypeInstPtr *to = tj->isa_instptr();
1492   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1493     ciInstanceKlass *k = to->klass()->as_instance_klass();
1494     if( ptr == TypePtr::Constant ) {
1495       if (to->klass() != ciEnv::current()->Class_klass() ||
1496           offset < k->size_helper() * wordSize) {
1497         // No constant oop pointers (such as Strings); they alias with
1498         // unknown strings.
1499         assert(!is_known_inst, "not scalarizable allocation");
1500         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1501       }
1502     } else if( is_known_inst ) {
1503       tj = to; // Keep NotNull and klass_is_exact for instance type
1504     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1505       // During the 2nd round of IterGVN, NotNull castings are removed.
1506       // Make sure the Bottom and NotNull variants alias the same.
1507       // Also, make sure exact and non-exact variants alias the same.
1508       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1509     }
1510     if (to->speculative() != NULL) {
1511       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1512     }
1513     // Canonicalize the holder of this field
1514     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1515       // First handle header references such as a LoadKlassNode, even if the
1516       // object's klass is unloaded at compile time (4965979).
1517       if (!is_known_inst) { // Do it only for non-instance types
1518         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1519       }
1520     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1521       // Static fields are in the space above the normal instance
1522       // fields in the java.lang.Class instance.
1523       if (to->klass() != ciEnv::current()->Class_klass()) {
1524         to = NULL;
1525         tj = TypeOopPtr::BOTTOM;
1526         offset = tj->offset();
1527       }
1528     } else {
1529       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1530       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1531         if( is_known_inst ) {
1532           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1533         } else {
1534           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1535         }
1536       }
1537     }
1538   }
1539 
1540   // Klass pointers to object array klasses need some flattening
1541   const TypeKlassPtr *tk = tj->isa_klassptr();
1542   if( tk ) {
1543     // If we are referencing a field within a Klass, we need
1544     // to assume the worst case of an Object.  Both exact and
1545     // inexact types must flatten to the same alias class so
1546     // use NotNull as the PTR.
1547     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1548 
1549       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1550                                    TypeKlassPtr::OBJECT->klass(),
1551                                    offset);
1552     }
1553 
1554     ciKlass* klass = tk->klass();
1555     if( klass->is_obj_array_klass() ) {
1556       ciKlass* k = TypeAryPtr::OOPS->klass();
1557       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1558         k = TypeInstPtr::BOTTOM->klass();
1559       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1560     }
1561 
1562     // Check for precise loads from the primary supertype array and force them
1563     // to the supertype cache alias index.  Check for generic array loads from
1564     // the primary supertype array and also force them to the supertype cache
1565     // alias index.  Since the same load can reach both, we need to merge
1566     // these 2 disparate memories into the same alias class.  Since the
1567     // primary supertype array is read-only, there's no chance of confusion
1568     // where we bypass an array load and an array store.
1569     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1570     if (offset == Type::OffsetBot ||
1571         (offset >= primary_supers_offset &&
1572          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1573         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1574       offset = in_bytes(Klass::secondary_super_cache_offset());
1575       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1576     }
1577   }
1578 
1579   // Flatten all Raw pointers together.
1580   if (tj->base() == Type::RawPtr)
1581     tj = TypeRawPtr::BOTTOM;
1582 
1583   if (tj->base() == Type::AnyPtr)
1584     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1585 
1586   // Flatten all to bottom for now
1587   switch( _AliasLevel ) {
1588   case 0:
1589     tj = TypePtr::BOTTOM;
1590     break;
1591   case 1:                       // Flatten to: oop, static, field or array
1592     switch (tj->base()) {
1593     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1594     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1595     case Type::AryPtr:   // do not distinguish arrays at all
1596     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1597     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1598     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1599     default: ShouldNotReachHere();
1600     }
1601     break;
1602   case 2:                       // No collapsing at level 2; keep all splits
1603   case 3:                       // No collapsing at level 3; keep all splits
1604     break;
1605   default:
1606     Unimplemented();
1607   }
1608 
1609   offset = tj->offset();
1610   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1611 
1612   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1613           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1614           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1615           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1616           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1617           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1618           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1619           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1620   assert( tj->ptr() != TypePtr::TopPTR &&
1621           tj->ptr() != TypePtr::AnyNull &&
1622           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1623 //    assert( tj->ptr() != TypePtr::Constant ||
1624 //            tj->base() == Type::RawPtr ||
1625 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1626 
1627   return tj;
1628 }
1629 
1630 void Compile::AliasType::Init(int i, const TypePtr* at) {
1631   _index = i;
1632   _adr_type = at;
1633   _field = NULL;
1634   _element = NULL;
1635   _is_rewritable = true; // default
1636   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1637   if (atoop != NULL && atoop->is_known_instance()) {
1638     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1639     _general_index = Compile::current()->get_alias_index(gt);
1640   } else {
1641     _general_index = 0;
1642   }
1643 }
1644 
1645 //---------------------------------print_on------------------------------------
1646 #ifndef PRODUCT
1647 void Compile::AliasType::print_on(outputStream* st) {
1648   if (index() < 10)
1649         st->print("@ <%d> ", index());
1650   else  st->print("@ <%d>",  index());
1651   st->print(is_rewritable() ? "   " : " RO");
1652   int offset = adr_type()->offset();
1653   if (offset == Type::OffsetBot)
1654         st->print(" +any");
1655   else  st->print(" +%-3d", offset);
1656   st->print(" in ");
1657   adr_type()->dump_on(st);
1658   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1659   if (field() != NULL && tjp) {
1660     if (tjp->klass()  != field()->holder() ||
1661         tjp->offset() != field()->offset_in_bytes()) {
1662       st->print(" != ");
1663       field()->print();
1664       st->print(" ***");
1665     }
1666   }
1667 }
1668 
1669 void print_alias_types() {
1670   Compile* C = Compile::current();
1671   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1672   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1673     C->alias_type(idx)->print_on(tty);
1674     tty->cr();
1675   }
1676 }
1677 #endif
1678 
1679 
1680 //----------------------------probe_alias_cache--------------------------------
1681 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1682   intptr_t key = (intptr_t) adr_type;
1683   key ^= key >> logAliasCacheSize;
1684   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1685 }
1686 
1687 
1688 //-----------------------------grow_alias_types--------------------------------
1689 void Compile::grow_alias_types() {
1690   const int old_ats  = _max_alias_types; // how many before?
1691   const int new_ats  = old_ats;          // how many more?
1692   const int grow_ats = old_ats+new_ats;  // how many now?
1693   _max_alias_types = grow_ats;
1694   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1695   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1696   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1697   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1698 }
1699 
1700 
1701 //--------------------------------find_alias_type------------------------------
1702 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1703   if (_AliasLevel == 0)
1704     return alias_type(AliasIdxBot);
1705 
1706   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1707   if (ace->_adr_type == adr_type) {
1708     return alias_type(ace->_index);
1709   }
1710 
1711   // Handle special cases.
1712   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1713   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1714 
1715   // Do it the slow way.
1716   const TypePtr* flat = flatten_alias_type(adr_type);
1717 
1718 #ifdef ASSERT
1719   assert(flat == flatten_alias_type(flat), "idempotent");
1720   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1721   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1722     const TypeOopPtr* foop = flat->is_oopptr();
1723     // Scalarizable allocations have exact klass always.
1724     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1725     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1726     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1727   }
1728   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1729 #endif
1730 
1731   int idx = AliasIdxTop;
1732   for (int i = 0; i < num_alias_types(); i++) {
1733     if (alias_type(i)->adr_type() == flat) {
1734       idx = i;
1735       break;
1736     }
1737   }
1738 
1739   if (idx == AliasIdxTop) {
1740     if (no_create)  return NULL;
1741     // Grow the array if necessary.
1742     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1743     // Add a new alias type.
1744     idx = _num_alias_types++;
1745     _alias_types[idx]->Init(idx, flat);
1746     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1747     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1748     if (flat->isa_instptr()) {
1749       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1750           && flat->is_instptr()->klass() == env()->Class_klass())
1751         alias_type(idx)->set_rewritable(false);
1752     }
1753     if (flat->isa_aryptr()) {
1754 #ifdef ASSERT
1755       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1756       // (T_BYTE has the weakest alignment and size restrictions...)
1757       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1758 #endif
1759       if (flat->offset() == TypePtr::OffsetBot) {
1760         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1761       }
1762     }
1763     if (flat->isa_klassptr()) {
1764       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1765         alias_type(idx)->set_rewritable(false);
1766       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1767         alias_type(idx)->set_rewritable(false);
1768       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1769         alias_type(idx)->set_rewritable(false);
1770       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1771         alias_type(idx)->set_rewritable(false);
1772     }
1773     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1774     // but the base pointer type is not distinctive enough to identify
1775     // references into JavaThread.)
1776 
1777     // Check for final fields.
1778     const TypeInstPtr* tinst = flat->isa_instptr();
1779     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1780       ciField* field;
1781       if (tinst->const_oop() != NULL &&
1782           tinst->klass() == ciEnv::current()->Class_klass() &&
1783           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1784         // static field
1785         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1786         field = k->get_field_by_offset(tinst->offset(), true);
1787       } else {
1788         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1789         field = k->get_field_by_offset(tinst->offset(), false);
1790       }
1791       assert(field == NULL ||
1792              original_field == NULL ||
1793              (field->holder() == original_field->holder() &&
1794               field->offset() == original_field->offset() &&
1795               field->is_static() == original_field->is_static()), "wrong field?");
1796       // Set field() and is_rewritable() attributes.
1797       if (field != NULL)  alias_type(idx)->set_field(field);
1798     }
1799   }
1800 
1801   // Fill the cache for next time.
1802   ace->_adr_type = adr_type;
1803   ace->_index    = idx;
1804   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1805 
1806   // Might as well try to fill the cache for the flattened version, too.
1807   AliasCacheEntry* face = probe_alias_cache(flat);
1808   if (face->_adr_type == NULL) {
1809     face->_adr_type = flat;
1810     face->_index    = idx;
1811     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1812   }
1813 
1814   return alias_type(idx);
1815 }
1816 
1817 
1818 Compile::AliasType* Compile::alias_type(ciField* field) {
1819   const TypeOopPtr* t;
1820   if (field->is_static())
1821     t = TypeInstPtr::make(field->holder()->java_mirror());
1822   else
1823     t = TypeOopPtr::make_from_klass_raw(field->holder());
1824   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1825   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1826   return atp;
1827 }
1828 
1829 
1830 //------------------------------have_alias_type--------------------------------
1831 bool Compile::have_alias_type(const TypePtr* adr_type) {
1832   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1833   if (ace->_adr_type == adr_type) {
1834     return true;
1835   }
1836 
1837   // Handle special cases.
1838   if (adr_type == NULL)             return true;
1839   if (adr_type == TypePtr::BOTTOM)  return true;
1840 
1841   return find_alias_type(adr_type, true, NULL) != NULL;
1842 }
1843 
1844 //-----------------------------must_alias--------------------------------------
1845 // True if all values of the given address type are in the given alias category.
1846 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1847   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1848   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1849   if (alias_idx == AliasIdxTop)         return false; // the empty category
1850   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1851 
1852   // the only remaining possible overlap is identity
1853   int adr_idx = get_alias_index(adr_type);
1854   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1855   assert(adr_idx == alias_idx ||
1856          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1857           && adr_type                       != TypeOopPtr::BOTTOM),
1858          "should not be testing for overlap with an unsafe pointer");
1859   return adr_idx == alias_idx;
1860 }
1861 
1862 //------------------------------can_alias--------------------------------------
1863 // True if any values of the given address type are in the given alias category.
1864 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1865   if (alias_idx == AliasIdxTop)         return false; // the empty category
1866   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1867   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1868   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1869 
1870   // the only remaining possible overlap is identity
1871   int adr_idx = get_alias_index(adr_type);
1872   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1873   return adr_idx == alias_idx;
1874 }
1875 
1876 
1877 
1878 //---------------------------pop_warm_call-------------------------------------
1879 WarmCallInfo* Compile::pop_warm_call() {
1880   WarmCallInfo* wci = _warm_calls;
1881   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1882   return wci;
1883 }
1884 
1885 //----------------------------Inline_Warm--------------------------------------
1886 int Compile::Inline_Warm() {
1887   // If there is room, try to inline some more warm call sites.
1888   // %%% Do a graph index compaction pass when we think we're out of space?
1889   if (!InlineWarmCalls)  return 0;
1890 
1891   int calls_made_hot = 0;
1892   int room_to_grow   = NodeCountInliningCutoff - unique();
1893   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1894   int amount_grown   = 0;
1895   WarmCallInfo* call;
1896   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1897     int est_size = (int)call->size();
1898     if (est_size > (room_to_grow - amount_grown)) {
1899       // This one won't fit anyway.  Get rid of it.
1900       call->make_cold();
1901       continue;
1902     }
1903     call->make_hot();
1904     calls_made_hot++;
1905     amount_grown   += est_size;
1906     amount_to_grow -= est_size;
1907   }
1908 
1909   if (calls_made_hot > 0)  set_major_progress();
1910   return calls_made_hot;
1911 }
1912 
1913 
1914 //----------------------------Finish_Warm--------------------------------------
1915 void Compile::Finish_Warm() {
1916   if (!InlineWarmCalls)  return;
1917   if (failing())  return;
1918   if (warm_calls() == NULL)  return;
1919 
1920   // Clean up loose ends, if we are out of space for inlining.
1921   WarmCallInfo* call;
1922   while ((call = pop_warm_call()) != NULL) {
1923     call->make_cold();
1924   }
1925 }
1926 
1927 //---------------------cleanup_loop_predicates-----------------------
1928 // Remove the opaque nodes that protect the predicates so that all unused
1929 // checks and uncommon_traps will be eliminated from the ideal graph
1930 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1931   if (predicate_count()==0) return;
1932   for (int i = predicate_count(); i > 0; i--) {
1933     Node * n = predicate_opaque1_node(i-1);
1934     assert(n->Opcode() == Op_Opaque1, "must be");
1935     igvn.replace_node(n, n->in(1));
1936   }
1937   assert(predicate_count()==0, "should be clean!");
1938 }
1939 
1940 #ifdef _LP64
1941 void Compile::add_range_check_cast(Node* n) {
1942   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1943   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1944   _range_check_casts->append(n);
1945 }
1946 
1947 // Remove all range check dependent CastIINodes.
1948 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1949   for (int i = range_check_cast_count(); i > 0; i--) {
1950     Node* cast = range_check_cast_node(i-1);
1951     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1952     igvn.replace_node(cast, cast->in(1));
1953   }
1954   assert(range_check_cast_count() == 0, "should be empty");
1955 }
1956 #endif
1957 
1958 // StringOpts and late inlining of string methods
1959 void Compile::inline_string_calls(bool parse_time) {
1960   {
1961     // remove useless nodes to make the usage analysis simpler
1962     ResourceMark rm;
1963     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1964   }
1965 
1966   {
1967     ResourceMark rm;
1968     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1969     PhaseStringOpts pso(initial_gvn(), for_igvn());
1970     print_method(PHASE_AFTER_STRINGOPTS, 3);
1971   }
1972 
1973   // now inline anything that we skipped the first time around
1974   if (!parse_time) {
1975     _late_inlines_pos = _late_inlines.length();
1976   }
1977 
1978   while (_string_late_inlines.length() > 0) {
1979     CallGenerator* cg = _string_late_inlines.pop();
1980     cg->do_late_inline();
1981     if (failing())  return;
1982   }
1983   _string_late_inlines.trunc_to(0);
1984 }
1985 
1986 // Late inlining of boxing methods
1987 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1988   if (_boxing_late_inlines.length() > 0) {
1989     assert(has_boxed_value(), "inconsistent");
1990 
1991     PhaseGVN* gvn = initial_gvn();
1992     set_inlining_incrementally(true);
1993 
1994     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1995     for_igvn()->clear();
1996     gvn->replace_with(&igvn);
1997 
1998     _late_inlines_pos = _late_inlines.length();
1999 
2000     while (_boxing_late_inlines.length() > 0) {
2001       CallGenerator* cg = _boxing_late_inlines.pop();
2002       cg->do_late_inline();
2003       if (failing())  return;
2004     }
2005     _boxing_late_inlines.trunc_to(0);
2006 
2007     {
2008       ResourceMark rm;
2009       PhaseRemoveUseless pru(gvn, for_igvn());
2010     }
2011 
2012     igvn = PhaseIterGVN(gvn);
2013     igvn.optimize();
2014 
2015     set_inlining_progress(false);
2016     set_inlining_incrementally(false);
2017   }
2018 }
2019 
2020 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2021   assert(IncrementalInline, "incremental inlining should be on");
2022   PhaseGVN* gvn = initial_gvn();
2023 
2024   set_inlining_progress(false);
2025   for_igvn()->clear();
2026   gvn->replace_with(&igvn);
2027 
2028   {
2029     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2030     int i = 0;
2031     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2032       CallGenerator* cg = _late_inlines.at(i);
2033       _late_inlines_pos = i+1;
2034       cg->do_late_inline();
2035       if (failing())  return;
2036     }
2037     int j = 0;
2038     for (; i < _late_inlines.length(); i++, j++) {
2039       _late_inlines.at_put(j, _late_inlines.at(i));
2040     }
2041     _late_inlines.trunc_to(j);
2042   }
2043 
2044   {
2045     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2046     ResourceMark rm;
2047     PhaseRemoveUseless pru(gvn, for_igvn());
2048   }
2049 
2050   {
2051     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2052     igvn = PhaseIterGVN(gvn);
2053   }
2054 }
2055 
2056 // Perform incremental inlining until bound on number of live nodes is reached
2057 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2058   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2059 
2060   PhaseGVN* gvn = initial_gvn();
2061 
2062   set_inlining_incrementally(true);
2063   set_inlining_progress(true);
2064   uint low_live_nodes = 0;
2065 
2066   while(inlining_progress() && _late_inlines.length() > 0) {
2067 
2068     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2069       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2070         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2071         // PhaseIdealLoop is expensive so we only try it once we are
2072         // out of live nodes and we only try it again if the previous
2073         // helped got the number of nodes down significantly
2074         PhaseIdealLoop ideal_loop( igvn, false, true );
2075         if (failing())  return;
2076         low_live_nodes = live_nodes();
2077         _major_progress = true;
2078       }
2079 
2080       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2081         break;
2082       }
2083     }
2084 
2085     inline_incrementally_one(igvn);
2086 
2087     if (failing())  return;
2088 
2089     {
2090       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2091       igvn.optimize();
2092     }
2093 
2094     if (failing())  return;
2095   }
2096 
2097   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2098 
2099   if (_string_late_inlines.length() > 0) {
2100     assert(has_stringbuilder(), "inconsistent");
2101     for_igvn()->clear();
2102     initial_gvn()->replace_with(&igvn);
2103 
2104     inline_string_calls(false);
2105 
2106     if (failing())  return;
2107 
2108     {
2109       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2110       ResourceMark rm;
2111       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2112     }
2113 
2114     {
2115       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2116       igvn = PhaseIterGVN(gvn);
2117       igvn.optimize();
2118     }
2119   }
2120 
2121   set_inlining_incrementally(false);
2122 }
2123 
2124 
2125 //------------------------------Optimize---------------------------------------
2126 // Given a graph, optimize it.
2127 void Compile::Optimize() {
2128   TracePhase tp("optimizer", &timers[_t_optimizer]);
2129 
2130 #ifndef PRODUCT
2131   if (_directive->BreakAtCompileOption) {
2132     BREAKPOINT;
2133   }
2134 
2135 #endif
2136 
2137   ResourceMark rm;
2138   int          loop_opts_cnt;
2139 
2140   print_inlining_reinit();
2141 
2142   NOT_PRODUCT( verify_graph_edges(); )
2143 
2144   print_method(PHASE_AFTER_PARSING);
2145 
2146  {
2147   // Iterative Global Value Numbering, including ideal transforms
2148   // Initialize IterGVN with types and values from parse-time GVN
2149   PhaseIterGVN igvn(initial_gvn());
2150 #ifdef ASSERT
2151   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2152 #endif
2153   {
2154     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2155     igvn.optimize();
2156   }
2157 
2158   print_method(PHASE_ITER_GVN1, 2);
2159 
2160   if (failing())  return;
2161 
2162   inline_incrementally(igvn);
2163 
2164   print_method(PHASE_INCREMENTAL_INLINE, 2);
2165 
2166   if (failing())  return;
2167 
2168   if (eliminate_boxing()) {
2169     // Inline valueOf() methods now.
2170     inline_boxing_calls(igvn);
2171 
2172     if (AlwaysIncrementalInline) {
2173       inline_incrementally(igvn);
2174     }
2175 
2176     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2177 
2178     if (failing())  return;
2179   }
2180 
2181   // Remove the speculative part of types and clean up the graph from
2182   // the extra CastPP nodes whose only purpose is to carry them. Do
2183   // that early so that optimizations are not disrupted by the extra
2184   // CastPP nodes.
2185   remove_speculative_types(igvn);
2186 
2187   // No more new expensive nodes will be added to the list from here
2188   // so keep only the actual candidates for optimizations.
2189   cleanup_expensive_nodes(igvn);
2190 
2191   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2192     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2193     initial_gvn()->replace_with(&igvn);
2194     for_igvn()->clear();
2195     Unique_Node_List new_worklist(C->comp_arena());
2196     {
2197       ResourceMark rm;
2198       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2199     }
2200     set_for_igvn(&new_worklist);
2201     igvn = PhaseIterGVN(initial_gvn());
2202     igvn.optimize();
2203   }
2204 
2205   // Perform escape analysis
2206   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2207     if (has_loops()) {
2208       // Cleanup graph (remove dead nodes).
2209       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2210       PhaseIdealLoop ideal_loop( igvn, false, true );
2211       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2212       if (failing())  return;
2213     }
2214     ConnectionGraph::do_analysis(this, &igvn);
2215 
2216     if (failing())  return;
2217 
2218     // Optimize out fields loads from scalar replaceable allocations.
2219     igvn.optimize();
2220     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2221 
2222     if (failing())  return;
2223 
2224     if (congraph() != NULL && macro_count() > 0) {
2225       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2226       PhaseMacroExpand mexp(igvn);
2227       mexp.eliminate_macro_nodes();
2228       igvn.set_delay_transform(false);
2229 
2230       igvn.optimize();
2231       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2232 
2233       if (failing())  return;
2234     }
2235   }
2236 
2237   // Loop transforms on the ideal graph.  Range Check Elimination,
2238   // peeling, unrolling, etc.
2239 
2240   // Set loop opts counter
2241   loop_opts_cnt = num_loop_opts();
2242   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2243     {
2244       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2245       PhaseIdealLoop ideal_loop( igvn, true );
2246       loop_opts_cnt--;
2247       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2248       if (failing())  return;
2249     }
2250     // Loop opts pass if partial peeling occurred in previous pass
2251     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2252       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2253       PhaseIdealLoop ideal_loop( igvn, false );
2254       loop_opts_cnt--;
2255       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2256       if (failing())  return;
2257     }
2258     // Loop opts pass for loop-unrolling before CCP
2259     if(major_progress() && (loop_opts_cnt > 0)) {
2260       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2261       PhaseIdealLoop ideal_loop( igvn, false );
2262       loop_opts_cnt--;
2263       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2264     }
2265     if (!failing()) {
2266       // Verify that last round of loop opts produced a valid graph
2267       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2268       PhaseIdealLoop::verify(igvn);
2269     }
2270   }
2271   if (failing())  return;
2272 
2273   // Conditional Constant Propagation;
2274   PhaseCCP ccp( &igvn );
2275   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2276   {
2277     TracePhase tp("ccp", &timers[_t_ccp]);
2278     ccp.do_transform();
2279   }
2280   print_method(PHASE_CPP1, 2);
2281 
2282   assert( true, "Break here to ccp.dump_old2new_map()");
2283 
2284   // Iterative Global Value Numbering, including ideal transforms
2285   {
2286     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2287     igvn = ccp;
2288     igvn.optimize();
2289   }
2290 
2291   print_method(PHASE_ITER_GVN2, 2);
2292 
2293   if (failing())  return;
2294 
2295   // Loop transforms on the ideal graph.  Range Check Elimination,
2296   // peeling, unrolling, etc.
2297   if(loop_opts_cnt > 0) {
2298     debug_only( int cnt = 0; );
2299     while(major_progress() && (loop_opts_cnt > 0)) {
2300       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2301       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2302       PhaseIdealLoop ideal_loop( igvn, true);
2303       loop_opts_cnt--;
2304       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2305       if (failing())  return;
2306     }
2307   }
2308   // Ensure that major progress is now clear
2309   C->clear_major_progress();
2310 
2311   {
2312     // Verify that all previous optimizations produced a valid graph
2313     // at least to this point, even if no loop optimizations were done.
2314     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2315     PhaseIdealLoop::verify(igvn);
2316   }
2317 
2318 #ifdef _LP64
2319   if (range_check_cast_count() > 0) {
2320     // No more loop optimizations. Remove all range check dependent CastIINodes.
2321     C->remove_range_check_casts(igvn);
2322     igvn.optimize();
2323   }
2324 #endif
2325 
2326   {
2327     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2328     PhaseMacroExpand  mex(igvn);
2329     if (mex.expand_macro_nodes()) {
2330       assert(failing(), "must bail out w/ explicit message");
2331       return;
2332     }
2333   }
2334 
2335   DEBUG_ONLY( _modified_nodes = NULL; )
2336  } // (End scope of igvn; run destructor if necessary for asserts.)
2337 
2338  process_print_inlining();
2339  // A method with only infinite loops has no edges entering loops from root
2340  {
2341    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2342    if (final_graph_reshaping()) {
2343      assert(failing(), "must bail out w/ explicit message");
2344      return;
2345    }
2346  }
2347 
2348  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2349 }
2350 
2351 
2352 //------------------------------Code_Gen---------------------------------------
2353 // Given a graph, generate code for it
2354 void Compile::Code_Gen() {
2355   if (failing()) {
2356     return;
2357   }
2358 
2359   // Perform instruction selection.  You might think we could reclaim Matcher
2360   // memory PDQ, but actually the Matcher is used in generating spill code.
2361   // Internals of the Matcher (including some VectorSets) must remain live
2362   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2363   // set a bit in reclaimed memory.
2364 
2365   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2366   // nodes.  Mapping is only valid at the root of each matched subtree.
2367   NOT_PRODUCT( verify_graph_edges(); )
2368 
2369   Matcher matcher;
2370   _matcher = &matcher;
2371   {
2372     TracePhase tp("matcher", &timers[_t_matcher]);
2373     matcher.match();
2374   }
2375   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2376   // nodes.  Mapping is only valid at the root of each matched subtree.
2377   NOT_PRODUCT( verify_graph_edges(); )
2378 
2379   // If you have too many nodes, or if matching has failed, bail out
2380   check_node_count(0, "out of nodes matching instructions");
2381   if (failing()) {
2382     return;
2383   }
2384 
2385   // Build a proper-looking CFG
2386   PhaseCFG cfg(node_arena(), root(), matcher);
2387   _cfg = &cfg;
2388   {
2389     TracePhase tp("scheduler", &timers[_t_scheduler]);
2390     bool success = cfg.do_global_code_motion();
2391     if (!success) {
2392       return;
2393     }
2394 
2395     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2396     NOT_PRODUCT( verify_graph_edges(); )
2397     debug_only( cfg.verify(); )
2398   }
2399 
2400   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2401   _regalloc = &regalloc;
2402   {
2403     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2404     // Perform register allocation.  After Chaitin, use-def chains are
2405     // no longer accurate (at spill code) and so must be ignored.
2406     // Node->LRG->reg mappings are still accurate.
2407     _regalloc->Register_Allocate();
2408 
2409     // Bail out if the allocator builds too many nodes
2410     if (failing()) {
2411       return;
2412     }
2413   }
2414 
2415   // Prior to register allocation we kept empty basic blocks in case the
2416   // the allocator needed a place to spill.  After register allocation we
2417   // are not adding any new instructions.  If any basic block is empty, we
2418   // can now safely remove it.
2419   {
2420     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2421     cfg.remove_empty_blocks();
2422     if (do_freq_based_layout()) {
2423       PhaseBlockLayout layout(cfg);
2424     } else {
2425       cfg.set_loop_alignment();
2426     }
2427     cfg.fixup_flow();
2428   }
2429 
2430   // Apply peephole optimizations
2431   if( OptoPeephole ) {
2432     TracePhase tp("peephole", &timers[_t_peephole]);
2433     PhasePeephole peep( _regalloc, cfg);
2434     peep.do_transform();
2435   }
2436 
2437   // Do late expand if CPU requires this.
2438   if (Matcher::require_postalloc_expand) {
2439     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2440     cfg.postalloc_expand(_regalloc);
2441   }
2442 
2443   // Convert Nodes to instruction bits in a buffer
2444   {
2445     TraceTime tp("output", &timers[_t_output], CITime);
2446     Output();
2447   }
2448 
2449   print_method(PHASE_FINAL_CODE);
2450 
2451   // He's dead, Jim.
2452   _cfg     = (PhaseCFG*)0xdeadbeef;
2453   _regalloc = (PhaseChaitin*)0xdeadbeef;
2454 }
2455 
2456 
2457 //------------------------------dump_asm---------------------------------------
2458 // Dump formatted assembly
2459 #ifndef PRODUCT
2460 void Compile::dump_asm(int *pcs, uint pc_limit) {
2461   bool cut_short = false;
2462   tty->print_cr("#");
2463   tty->print("#  ");  _tf->dump();  tty->cr();
2464   tty->print_cr("#");
2465 
2466   // For all blocks
2467   int pc = 0x0;                 // Program counter
2468   char starts_bundle = ' ';
2469   _regalloc->dump_frame();
2470 
2471   Node *n = NULL;
2472   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2473     if (VMThread::should_terminate()) {
2474       cut_short = true;
2475       break;
2476     }
2477     Block* block = _cfg->get_block(i);
2478     if (block->is_connector() && !Verbose) {
2479       continue;
2480     }
2481     n = block->head();
2482     if (pcs && n->_idx < pc_limit) {
2483       tty->print("%3.3x   ", pcs[n->_idx]);
2484     } else {
2485       tty->print("      ");
2486     }
2487     block->dump_head(_cfg);
2488     if (block->is_connector()) {
2489       tty->print_cr("        # Empty connector block");
2490     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2491       tty->print_cr("        # Block is sole successor of call");
2492     }
2493 
2494     // For all instructions
2495     Node *delay = NULL;
2496     for (uint j = 0; j < block->number_of_nodes(); j++) {
2497       if (VMThread::should_terminate()) {
2498         cut_short = true;
2499         break;
2500       }
2501       n = block->get_node(j);
2502       if (valid_bundle_info(n)) {
2503         Bundle* bundle = node_bundling(n);
2504         if (bundle->used_in_unconditional_delay()) {
2505           delay = n;
2506           continue;
2507         }
2508         if (bundle->starts_bundle()) {
2509           starts_bundle = '+';
2510         }
2511       }
2512 
2513       if (WizardMode) {
2514         n->dump();
2515       }
2516 
2517       if( !n->is_Region() &&    // Dont print in the Assembly
2518           !n->is_Phi() &&       // a few noisely useless nodes
2519           !n->is_Proj() &&
2520           !n->is_MachTemp() &&
2521           !n->is_SafePointScalarObject() &&
2522           !n->is_Catch() &&     // Would be nice to print exception table targets
2523           !n->is_MergeMem() &&  // Not very interesting
2524           !n->is_top() &&       // Debug info table constants
2525           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2526           ) {
2527         if (pcs && n->_idx < pc_limit)
2528           tty->print("%3.3x", pcs[n->_idx]);
2529         else
2530           tty->print("   ");
2531         tty->print(" %c ", starts_bundle);
2532         starts_bundle = ' ';
2533         tty->print("\t");
2534         n->format(_regalloc, tty);
2535         tty->cr();
2536       }
2537 
2538       // If we have an instruction with a delay slot, and have seen a delay,
2539       // then back up and print it
2540       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2541         assert(delay != NULL, "no unconditional delay instruction");
2542         if (WizardMode) delay->dump();
2543 
2544         if (node_bundling(delay)->starts_bundle())
2545           starts_bundle = '+';
2546         if (pcs && n->_idx < pc_limit)
2547           tty->print("%3.3x", pcs[n->_idx]);
2548         else
2549           tty->print("   ");
2550         tty->print(" %c ", starts_bundle);
2551         starts_bundle = ' ';
2552         tty->print("\t");
2553         delay->format(_regalloc, tty);
2554         tty->cr();
2555         delay = NULL;
2556       }
2557 
2558       // Dump the exception table as well
2559       if( n->is_Catch() && (Verbose || WizardMode) ) {
2560         // Print the exception table for this offset
2561         _handler_table.print_subtable_for(pc);
2562       }
2563     }
2564 
2565     if (pcs && n->_idx < pc_limit)
2566       tty->print_cr("%3.3x", pcs[n->_idx]);
2567     else
2568       tty->cr();
2569 
2570     assert(cut_short || delay == NULL, "no unconditional delay branch");
2571 
2572   } // End of per-block dump
2573   tty->cr();
2574 
2575   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2576 }
2577 #endif
2578 
2579 //------------------------------Final_Reshape_Counts---------------------------
2580 // This class defines counters to help identify when a method
2581 // may/must be executed using hardware with only 24-bit precision.
2582 struct Final_Reshape_Counts : public StackObj {
2583   int  _call_count;             // count non-inlined 'common' calls
2584   int  _float_count;            // count float ops requiring 24-bit precision
2585   int  _double_count;           // count double ops requiring more precision
2586   int  _java_call_count;        // count non-inlined 'java' calls
2587   int  _inner_loop_count;       // count loops which need alignment
2588   VectorSet _visited;           // Visitation flags
2589   Node_List _tests;             // Set of IfNodes & PCTableNodes
2590 
2591   Final_Reshape_Counts() :
2592     _call_count(0), _float_count(0), _double_count(0),
2593     _java_call_count(0), _inner_loop_count(0),
2594     _visited( Thread::current()->resource_area() ) { }
2595 
2596   void inc_call_count  () { _call_count  ++; }
2597   void inc_float_count () { _float_count ++; }
2598   void inc_double_count() { _double_count++; }
2599   void inc_java_call_count() { _java_call_count++; }
2600   void inc_inner_loop_count() { _inner_loop_count++; }
2601 
2602   int  get_call_count  () const { return _call_count  ; }
2603   int  get_float_count () const { return _float_count ; }
2604   int  get_double_count() const { return _double_count; }
2605   int  get_java_call_count() const { return _java_call_count; }
2606   int  get_inner_loop_count() const { return _inner_loop_count; }
2607 };
2608 
2609 #ifdef ASSERT
2610 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2611   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2612   // Make sure the offset goes inside the instance layout.
2613   return k->contains_field_offset(tp->offset());
2614   // Note that OffsetBot and OffsetTop are very negative.
2615 }
2616 #endif
2617 
2618 // Eliminate trivially redundant StoreCMs and accumulate their
2619 // precedence edges.
2620 void Compile::eliminate_redundant_card_marks(Node* n) {
2621   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2622   if (n->in(MemNode::Address)->outcnt() > 1) {
2623     // There are multiple users of the same address so it might be
2624     // possible to eliminate some of the StoreCMs
2625     Node* mem = n->in(MemNode::Memory);
2626     Node* adr = n->in(MemNode::Address);
2627     Node* val = n->in(MemNode::ValueIn);
2628     Node* prev = n;
2629     bool done = false;
2630     // Walk the chain of StoreCMs eliminating ones that match.  As
2631     // long as it's a chain of single users then the optimization is
2632     // safe.  Eliminating partially redundant StoreCMs would require
2633     // cloning copies down the other paths.
2634     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2635       if (adr == mem->in(MemNode::Address) &&
2636           val == mem->in(MemNode::ValueIn)) {
2637         // redundant StoreCM
2638         if (mem->req() > MemNode::OopStore) {
2639           // Hasn't been processed by this code yet.
2640           n->add_prec(mem->in(MemNode::OopStore));
2641         } else {
2642           // Already converted to precedence edge
2643           for (uint i = mem->req(); i < mem->len(); i++) {
2644             // Accumulate any precedence edges
2645             if (mem->in(i) != NULL) {
2646               n->add_prec(mem->in(i));
2647             }
2648           }
2649           // Everything above this point has been processed.
2650           done = true;
2651         }
2652         // Eliminate the previous StoreCM
2653         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2654         assert(mem->outcnt() == 0, "should be dead");
2655         mem->disconnect_inputs(NULL, this);
2656       } else {
2657         prev = mem;
2658       }
2659       mem = prev->in(MemNode::Memory);
2660     }
2661   }
2662 }
2663 
2664 //------------------------------final_graph_reshaping_impl----------------------
2665 // Implement items 1-5 from final_graph_reshaping below.
2666 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2667 
2668   if ( n->outcnt() == 0 ) return; // dead node
2669   uint nop = n->Opcode();
2670 
2671   // Check for 2-input instruction with "last use" on right input.
2672   // Swap to left input.  Implements item (2).
2673   if( n->req() == 3 &&          // two-input instruction
2674       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2675       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2676       n->in(2)->outcnt() == 1 &&// right use IS a last use
2677       !n->in(2)->is_Con() ) {   // right use is not a constant
2678     // Check for commutative opcode
2679     switch( nop ) {
2680     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2681     case Op_MaxI:  case Op_MinI:
2682     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2683     case Op_AndL:  case Op_XorL:  case Op_OrL:
2684     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2685       // Move "last use" input to left by swapping inputs
2686       n->swap_edges(1, 2);
2687       break;
2688     }
2689     default:
2690       break;
2691     }
2692   }
2693 
2694 #ifdef ASSERT
2695   if( n->is_Mem() ) {
2696     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2697     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2698             // oop will be recorded in oop map if load crosses safepoint
2699             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2700                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2701             "raw memory operations should have control edge");
2702   }
2703 #endif
2704   // Count FPU ops and common calls, implements item (3)
2705   switch( nop ) {
2706   // Count all float operations that may use FPU
2707   case Op_AddF:
2708   case Op_SubF:
2709   case Op_MulF:
2710   case Op_DivF:
2711   case Op_NegF:
2712   case Op_ModF:
2713   case Op_ConvI2F:
2714   case Op_ConF:
2715   case Op_CmpF:
2716   case Op_CmpF3:
2717   // case Op_ConvL2F: // longs are split into 32-bit halves
2718     frc.inc_float_count();
2719     break;
2720 
2721   case Op_ConvF2D:
2722   case Op_ConvD2F:
2723     frc.inc_float_count();
2724     frc.inc_double_count();
2725     break;
2726 
2727   // Count all double operations that may use FPU
2728   case Op_AddD:
2729   case Op_SubD:
2730   case Op_MulD:
2731   case Op_DivD:
2732   case Op_NegD:
2733   case Op_ModD:
2734   case Op_ConvI2D:
2735   case Op_ConvD2I:
2736   // case Op_ConvL2D: // handled by leaf call
2737   // case Op_ConvD2L: // handled by leaf call
2738   case Op_ConD:
2739   case Op_CmpD:
2740   case Op_CmpD3:
2741     frc.inc_double_count();
2742     break;
2743   case Op_Opaque1:              // Remove Opaque Nodes before matching
2744   case Op_Opaque2:              // Remove Opaque Nodes before matching
2745   case Op_Opaque3:
2746     n->subsume_by(n->in(1), this);
2747     break;
2748   case Op_CallStaticJava:
2749   case Op_CallJava:
2750   case Op_CallDynamicJava:
2751     frc.inc_java_call_count(); // Count java call site;
2752   case Op_CallRuntime:
2753   case Op_CallLeaf:
2754   case Op_CallLeafNoFP: {
2755     assert( n->is_Call(), "" );
2756     CallNode *call = n->as_Call();
2757     // Count call sites where the FP mode bit would have to be flipped.
2758     // Do not count uncommon runtime calls:
2759     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2760     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2761     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2762       frc.inc_call_count();   // Count the call site
2763     } else {                  // See if uncommon argument is shared
2764       Node *n = call->in(TypeFunc::Parms);
2765       int nop = n->Opcode();
2766       // Clone shared simple arguments to uncommon calls, item (1).
2767       if( n->outcnt() > 1 &&
2768           !n->is_Proj() &&
2769           nop != Op_CreateEx &&
2770           nop != Op_CheckCastPP &&
2771           nop != Op_DecodeN &&
2772           nop != Op_DecodeNKlass &&
2773           !n->is_Mem() ) {
2774         Node *x = n->clone();
2775         call->set_req( TypeFunc::Parms, x );
2776       }
2777     }
2778     break;
2779   }
2780 
2781   case Op_StoreD:
2782   case Op_LoadD:
2783   case Op_LoadD_unaligned:
2784     frc.inc_double_count();
2785     goto handle_mem;
2786   case Op_StoreF:
2787   case Op_LoadF:
2788     frc.inc_float_count();
2789     goto handle_mem;
2790 
2791   case Op_StoreCM:
2792     {
2793       // Convert OopStore dependence into precedence edge
2794       Node* prec = n->in(MemNode::OopStore);
2795       n->del_req(MemNode::OopStore);
2796       n->add_prec(prec);
2797       eliminate_redundant_card_marks(n);
2798     }
2799 
2800     // fall through
2801 
2802   case Op_StoreB:
2803   case Op_StoreC:
2804   case Op_StorePConditional:
2805   case Op_StoreI:
2806   case Op_StoreL:
2807   case Op_StoreIConditional:
2808   case Op_StoreLConditional:
2809   case Op_CompareAndSwapI:
2810   case Op_CompareAndSwapL:
2811   case Op_CompareAndSwapP:
2812   case Op_CompareAndSwapN:
2813   case Op_GetAndAddI:
2814   case Op_GetAndAddL:
2815   case Op_GetAndSetI:
2816   case Op_GetAndSetL:
2817   case Op_GetAndSetP:
2818   case Op_GetAndSetN:
2819   case Op_StoreP:
2820   case Op_StoreN:
2821   case Op_StoreNKlass:
2822   case Op_LoadB:
2823   case Op_LoadUB:
2824   case Op_LoadUS:
2825   case Op_LoadI:
2826   case Op_LoadKlass:
2827   case Op_LoadNKlass:
2828   case Op_LoadL:
2829   case Op_LoadL_unaligned:
2830   case Op_LoadPLocked:
2831   case Op_LoadP:
2832   case Op_LoadN:
2833   case Op_LoadRange:
2834   case Op_LoadS: {
2835   handle_mem:
2836 #ifdef ASSERT
2837     if( VerifyOptoOopOffsets ) {
2838       assert( n->is_Mem(), "" );
2839       MemNode *mem  = (MemNode*)n;
2840       // Check to see if address types have grounded out somehow.
2841       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2842       assert( !tp || oop_offset_is_sane(tp), "" );
2843     }
2844 #endif
2845     break;
2846   }
2847 
2848   case Op_AddP: {               // Assert sane base pointers
2849     Node *addp = n->in(AddPNode::Address);
2850     assert( !addp->is_AddP() ||
2851             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2852             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2853             "Base pointers must match" );
2854 #ifdef _LP64
2855     if ((UseCompressedOops || UseCompressedClassPointers) &&
2856         addp->Opcode() == Op_ConP &&
2857         addp == n->in(AddPNode::Base) &&
2858         n->in(AddPNode::Offset)->is_Con()) {
2859       // Use addressing with narrow klass to load with offset on x86.
2860       // On sparc loading 32-bits constant and decoding it have less
2861       // instructions (4) then load 64-bits constant (7).
2862       // Do this transformation here since IGVN will convert ConN back to ConP.
2863       const Type* t = addp->bottom_type();
2864       if (t->isa_oopptr() || t->isa_klassptr()) {
2865         Node* nn = NULL;
2866 
2867         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2868 
2869         // Look for existing ConN node of the same exact type.
2870         Node* r  = root();
2871         uint cnt = r->outcnt();
2872         for (uint i = 0; i < cnt; i++) {
2873           Node* m = r->raw_out(i);
2874           if (m!= NULL && m->Opcode() == op &&
2875               m->bottom_type()->make_ptr() == t) {
2876             nn = m;
2877             break;
2878           }
2879         }
2880         if (nn != NULL) {
2881           // Decode a narrow oop to match address
2882           // [R12 + narrow_oop_reg<<3 + offset]
2883           if (t->isa_oopptr()) {
2884             nn = new DecodeNNode(nn, t);
2885           } else {
2886             nn = new DecodeNKlassNode(nn, t);
2887           }
2888           n->set_req(AddPNode::Base, nn);
2889           n->set_req(AddPNode::Address, nn);
2890           if (addp->outcnt() == 0) {
2891             addp->disconnect_inputs(NULL, this);
2892           }
2893         }
2894       }
2895     }
2896 #endif
2897     break;
2898   }
2899 
2900   case Op_CastPP: {
2901     // Remove CastPP nodes to gain more freedom during scheduling but
2902     // keep the dependency they encode as control or precedence edges
2903     // (if control is set already) on memory operations. Some CastPP
2904     // nodes don't have a control (don't carry a dependency): skip
2905     // those.
2906     if (n->in(0) != NULL) {
2907       ResourceMark rm;
2908       Unique_Node_List wq;
2909       wq.push(n);
2910       for (uint next = 0; next < wq.size(); ++next) {
2911         Node *m = wq.at(next);
2912         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2913           Node* use = m->fast_out(i);
2914           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2915             use->ensure_control_or_add_prec(n->in(0));
2916           } else {
2917             switch(use->Opcode()) {
2918             case Op_AddP:
2919             case Op_DecodeN:
2920             case Op_DecodeNKlass:
2921             case Op_CheckCastPP:
2922             case Op_CastPP:
2923               wq.push(use);
2924               break;
2925             }
2926           }
2927         }
2928       }
2929     }
2930     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2931     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2932       Node* in1 = n->in(1);
2933       const Type* t = n->bottom_type();
2934       Node* new_in1 = in1->clone();
2935       new_in1->as_DecodeN()->set_type(t);
2936 
2937       if (!Matcher::narrow_oop_use_complex_address()) {
2938         //
2939         // x86, ARM and friends can handle 2 adds in addressing mode
2940         // and Matcher can fold a DecodeN node into address by using
2941         // a narrow oop directly and do implicit NULL check in address:
2942         //
2943         // [R12 + narrow_oop_reg<<3 + offset]
2944         // NullCheck narrow_oop_reg
2945         //
2946         // On other platforms (Sparc) we have to keep new DecodeN node and
2947         // use it to do implicit NULL check in address:
2948         //
2949         // decode_not_null narrow_oop_reg, base_reg
2950         // [base_reg + offset]
2951         // NullCheck base_reg
2952         //
2953         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2954         // to keep the information to which NULL check the new DecodeN node
2955         // corresponds to use it as value in implicit_null_check().
2956         //
2957         new_in1->set_req(0, n->in(0));
2958       }
2959 
2960       n->subsume_by(new_in1, this);
2961       if (in1->outcnt() == 0) {
2962         in1->disconnect_inputs(NULL, this);
2963       }
2964     } else {
2965       n->subsume_by(n->in(1), this);
2966       if (n->outcnt() == 0) {
2967         n->disconnect_inputs(NULL, this);
2968       }
2969     }
2970     break;
2971   }
2972 #ifdef _LP64
2973   case Op_CmpP:
2974     // Do this transformation here to preserve CmpPNode::sub() and
2975     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2976     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2977       Node* in1 = n->in(1);
2978       Node* in2 = n->in(2);
2979       if (!in1->is_DecodeNarrowPtr()) {
2980         in2 = in1;
2981         in1 = n->in(2);
2982       }
2983       assert(in1->is_DecodeNarrowPtr(), "sanity");
2984 
2985       Node* new_in2 = NULL;
2986       if (in2->is_DecodeNarrowPtr()) {
2987         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2988         new_in2 = in2->in(1);
2989       } else if (in2->Opcode() == Op_ConP) {
2990         const Type* t = in2->bottom_type();
2991         if (t == TypePtr::NULL_PTR) {
2992           assert(in1->is_DecodeN(), "compare klass to null?");
2993           // Don't convert CmpP null check into CmpN if compressed
2994           // oops implicit null check is not generated.
2995           // This will allow to generate normal oop implicit null check.
2996           if (Matcher::gen_narrow_oop_implicit_null_checks())
2997             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2998           //
2999           // This transformation together with CastPP transformation above
3000           // will generated code for implicit NULL checks for compressed oops.
3001           //
3002           // The original code after Optimize()
3003           //
3004           //    LoadN memory, narrow_oop_reg
3005           //    decode narrow_oop_reg, base_reg
3006           //    CmpP base_reg, NULL
3007           //    CastPP base_reg // NotNull
3008           //    Load [base_reg + offset], val_reg
3009           //
3010           // after these transformations will be
3011           //
3012           //    LoadN memory, narrow_oop_reg
3013           //    CmpN narrow_oop_reg, NULL
3014           //    decode_not_null narrow_oop_reg, base_reg
3015           //    Load [base_reg + offset], val_reg
3016           //
3017           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3018           // since narrow oops can be used in debug info now (see the code in
3019           // final_graph_reshaping_walk()).
3020           //
3021           // At the end the code will be matched to
3022           // on x86:
3023           //
3024           //    Load_narrow_oop memory, narrow_oop_reg
3025           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3026           //    NullCheck narrow_oop_reg
3027           //
3028           // and on sparc:
3029           //
3030           //    Load_narrow_oop memory, narrow_oop_reg
3031           //    decode_not_null narrow_oop_reg, base_reg
3032           //    Load [base_reg + offset], val_reg
3033           //    NullCheck base_reg
3034           //
3035         } else if (t->isa_oopptr()) {
3036           new_in2 = ConNode::make(t->make_narrowoop());
3037         } else if (t->isa_klassptr()) {
3038           new_in2 = ConNode::make(t->make_narrowklass());
3039         }
3040       }
3041       if (new_in2 != NULL) {
3042         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3043         n->subsume_by(cmpN, this);
3044         if (in1->outcnt() == 0) {
3045           in1->disconnect_inputs(NULL, this);
3046         }
3047         if (in2->outcnt() == 0) {
3048           in2->disconnect_inputs(NULL, this);
3049         }
3050       }
3051     }
3052     break;
3053 
3054   case Op_DecodeN:
3055   case Op_DecodeNKlass:
3056     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3057     // DecodeN could be pinned when it can't be fold into
3058     // an address expression, see the code for Op_CastPP above.
3059     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3060     break;
3061 
3062   case Op_EncodeP:
3063   case Op_EncodePKlass: {
3064     Node* in1 = n->in(1);
3065     if (in1->is_DecodeNarrowPtr()) {
3066       n->subsume_by(in1->in(1), this);
3067     } else if (in1->Opcode() == Op_ConP) {
3068       const Type* t = in1->bottom_type();
3069       if (t == TypePtr::NULL_PTR) {
3070         assert(t->isa_oopptr(), "null klass?");
3071         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3072       } else if (t->isa_oopptr()) {
3073         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3074       } else if (t->isa_klassptr()) {
3075         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3076       }
3077     }
3078     if (in1->outcnt() == 0) {
3079       in1->disconnect_inputs(NULL, this);
3080     }
3081     break;
3082   }
3083 
3084   case Op_Proj: {
3085     if (OptimizeStringConcat) {
3086       ProjNode* p = n->as_Proj();
3087       if (p->_is_io_use) {
3088         // Separate projections were used for the exception path which
3089         // are normally removed by a late inline.  If it wasn't inlined
3090         // then they will hang around and should just be replaced with
3091         // the original one.
3092         Node* proj = NULL;
3093         // Replace with just one
3094         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3095           Node *use = i.get();
3096           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3097             proj = use;
3098             break;
3099           }
3100         }
3101         assert(proj != NULL, "must be found");
3102         p->subsume_by(proj, this);
3103       }
3104     }
3105     break;
3106   }
3107 
3108   case Op_Phi:
3109     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3110       // The EncodeP optimization may create Phi with the same edges
3111       // for all paths. It is not handled well by Register Allocator.
3112       Node* unique_in = n->in(1);
3113       assert(unique_in != NULL, "");
3114       uint cnt = n->req();
3115       for (uint i = 2; i < cnt; i++) {
3116         Node* m = n->in(i);
3117         assert(m != NULL, "");
3118         if (unique_in != m)
3119           unique_in = NULL;
3120       }
3121       if (unique_in != NULL) {
3122         n->subsume_by(unique_in, this);
3123       }
3124     }
3125     break;
3126 
3127 #ifdef ASSERT
3128   case Op_CastII:
3129     // Verify that all range check dependent CastII nodes were removed.
3130     if (n->isa_CastII()->has_range_check()) {
3131       n->dump(3);
3132       assert(false, "Range check dependent CastII node was not removed");
3133     }
3134     break;
3135 #endif
3136 
3137 #endif // _LP64
3138 
3139   case Op_ModI:
3140     if (UseDivMod) {
3141       // Check if a%b and a/b both exist
3142       Node* d = n->find_similar(Op_DivI);
3143       if (d) {
3144         // Replace them with a fused divmod if supported
3145         if (Matcher::has_match_rule(Op_DivModI)) {
3146           DivModINode* divmod = DivModINode::make(n);
3147           d->subsume_by(divmod->div_proj(), this);
3148           n->subsume_by(divmod->mod_proj(), this);
3149         } else {
3150           // replace a%b with a-((a/b)*b)
3151           Node* mult = new MulINode(d, d->in(2));
3152           Node* sub  = new SubINode(d->in(1), mult);
3153           n->subsume_by(sub, this);
3154         }
3155       }
3156     }
3157     break;
3158 
3159   case Op_ModL:
3160     if (UseDivMod) {
3161       // Check if a%b and a/b both exist
3162       Node* d = n->find_similar(Op_DivL);
3163       if (d) {
3164         // Replace them with a fused divmod if supported
3165         if (Matcher::has_match_rule(Op_DivModL)) {
3166           DivModLNode* divmod = DivModLNode::make(n);
3167           d->subsume_by(divmod->div_proj(), this);
3168           n->subsume_by(divmod->mod_proj(), this);
3169         } else {
3170           // replace a%b with a-((a/b)*b)
3171           Node* mult = new MulLNode(d, d->in(2));
3172           Node* sub  = new SubLNode(d->in(1), mult);
3173           n->subsume_by(sub, this);
3174         }
3175       }
3176     }
3177     break;
3178 
3179   case Op_LoadVector:
3180   case Op_StoreVector:
3181     break;
3182 
3183   case Op_AddReductionVI:
3184   case Op_AddReductionVL:
3185   case Op_AddReductionVF:
3186   case Op_AddReductionVD:
3187   case Op_MulReductionVI:
3188   case Op_MulReductionVL:
3189   case Op_MulReductionVF:
3190   case Op_MulReductionVD:
3191     break;
3192 
3193   case Op_PackB:
3194   case Op_PackS:
3195   case Op_PackI:
3196   case Op_PackF:
3197   case Op_PackL:
3198   case Op_PackD:
3199     if (n->req()-1 > 2) {
3200       // Replace many operand PackNodes with a binary tree for matching
3201       PackNode* p = (PackNode*) n;
3202       Node* btp = p->binary_tree_pack(1, n->req());
3203       n->subsume_by(btp, this);
3204     }
3205     break;
3206   case Op_Loop:
3207   case Op_CountedLoop:
3208     if (n->as_Loop()->is_inner_loop()) {
3209       frc.inc_inner_loop_count();
3210     }
3211     break;
3212   case Op_LShiftI:
3213   case Op_RShiftI:
3214   case Op_URShiftI:
3215   case Op_LShiftL:
3216   case Op_RShiftL:
3217   case Op_URShiftL:
3218     if (Matcher::need_masked_shift_count) {
3219       // The cpu's shift instructions don't restrict the count to the
3220       // lower 5/6 bits. We need to do the masking ourselves.
3221       Node* in2 = n->in(2);
3222       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3223       const TypeInt* t = in2->find_int_type();
3224       if (t != NULL && t->is_con()) {
3225         juint shift = t->get_con();
3226         if (shift > mask) { // Unsigned cmp
3227           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3228         }
3229       } else {
3230         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3231           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3232           n->set_req(2, shift);
3233         }
3234       }
3235       if (in2->outcnt() == 0) { // Remove dead node
3236         in2->disconnect_inputs(NULL, this);
3237       }
3238     }
3239     break;
3240   case Op_MemBarStoreStore:
3241   case Op_MemBarRelease:
3242     // Break the link with AllocateNode: it is no longer useful and
3243     // confuses register allocation.
3244     if (n->req() > MemBarNode::Precedent) {
3245       n->set_req(MemBarNode::Precedent, top());
3246     }
3247     break;
3248   case Op_RangeCheck: {
3249     RangeCheckNode* rc = n->as_RangeCheck();
3250     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3251     n->subsume_by(iff, this);
3252     frc._tests.push(iff);
3253     break;
3254   }
3255   default:
3256     assert( !n->is_Call(), "" );
3257     assert( !n->is_Mem(), "" );
3258     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3259     break;
3260   }
3261 
3262   // Collect CFG split points
3263   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3264     frc._tests.push(n);
3265   }
3266 }
3267 
3268 //------------------------------final_graph_reshaping_walk---------------------
3269 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3270 // requires that the walk visits a node's inputs before visiting the node.
3271 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3272   ResourceArea *area = Thread::current()->resource_area();
3273   Unique_Node_List sfpt(area);
3274 
3275   frc._visited.set(root->_idx); // first, mark node as visited
3276   uint cnt = root->req();
3277   Node *n = root;
3278   uint  i = 0;
3279   while (true) {
3280     if (i < cnt) {
3281       // Place all non-visited non-null inputs onto stack
3282       Node* m = n->in(i);
3283       ++i;
3284       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3285         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3286           // compute worst case interpreter size in case of a deoptimization
3287           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3288 
3289           sfpt.push(m);
3290         }
3291         cnt = m->req();
3292         nstack.push(n, i); // put on stack parent and next input's index
3293         n = m;
3294         i = 0;
3295       }
3296     } else {
3297       // Now do post-visit work
3298       final_graph_reshaping_impl( n, frc );
3299       if (nstack.is_empty())
3300         break;             // finished
3301       n = nstack.node();   // Get node from stack
3302       cnt = n->req();
3303       i = nstack.index();
3304       nstack.pop();        // Shift to the next node on stack
3305     }
3306   }
3307 
3308   // Skip next transformation if compressed oops are not used.
3309   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3310       (!UseCompressedOops && !UseCompressedClassPointers))
3311     return;
3312 
3313   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3314   // It could be done for an uncommon traps or any safepoints/calls
3315   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3316   while (sfpt.size() > 0) {
3317     n = sfpt.pop();
3318     JVMState *jvms = n->as_SafePoint()->jvms();
3319     assert(jvms != NULL, "sanity");
3320     int start = jvms->debug_start();
3321     int end   = n->req();
3322     bool is_uncommon = (n->is_CallStaticJava() &&
3323                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3324     for (int j = start; j < end; j++) {
3325       Node* in = n->in(j);
3326       if (in->is_DecodeNarrowPtr()) {
3327         bool safe_to_skip = true;
3328         if (!is_uncommon ) {
3329           // Is it safe to skip?
3330           for (uint i = 0; i < in->outcnt(); i++) {
3331             Node* u = in->raw_out(i);
3332             if (!u->is_SafePoint() ||
3333                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3334               safe_to_skip = false;
3335             }
3336           }
3337         }
3338         if (safe_to_skip) {
3339           n->set_req(j, in->in(1));
3340         }
3341         if (in->outcnt() == 0) {
3342           in->disconnect_inputs(NULL, this);
3343         }
3344       }
3345     }
3346   }
3347 }
3348 
3349 //------------------------------final_graph_reshaping--------------------------
3350 // Final Graph Reshaping.
3351 //
3352 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3353 //     and not commoned up and forced early.  Must come after regular
3354 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3355 //     inputs to Loop Phis; these will be split by the allocator anyways.
3356 //     Remove Opaque nodes.
3357 // (2) Move last-uses by commutative operations to the left input to encourage
3358 //     Intel update-in-place two-address operations and better register usage
3359 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3360 //     calls canonicalizing them back.
3361 // (3) Count the number of double-precision FP ops, single-precision FP ops
3362 //     and call sites.  On Intel, we can get correct rounding either by
3363 //     forcing singles to memory (requires extra stores and loads after each
3364 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3365 //     clearing the mode bit around call sites).  The mode bit is only used
3366 //     if the relative frequency of single FP ops to calls is low enough.
3367 //     This is a key transform for SPEC mpeg_audio.
3368 // (4) Detect infinite loops; blobs of code reachable from above but not
3369 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3370 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3371 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3372 //     Detection is by looking for IfNodes where only 1 projection is
3373 //     reachable from below or CatchNodes missing some targets.
3374 // (5) Assert for insane oop offsets in debug mode.
3375 
3376 bool Compile::final_graph_reshaping() {
3377   // an infinite loop may have been eliminated by the optimizer,
3378   // in which case the graph will be empty.
3379   if (root()->req() == 1) {
3380     record_method_not_compilable("trivial infinite loop");
3381     return true;
3382   }
3383 
3384   // Expensive nodes have their control input set to prevent the GVN
3385   // from freely commoning them. There's no GVN beyond this point so
3386   // no need to keep the control input. We want the expensive nodes to
3387   // be freely moved to the least frequent code path by gcm.
3388   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3389   for (int i = 0; i < expensive_count(); i++) {
3390     _expensive_nodes->at(i)->set_req(0, NULL);
3391   }
3392 
3393   Final_Reshape_Counts frc;
3394 
3395   // Visit everybody reachable!
3396   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3397   Node_Stack nstack(live_nodes() >> 1);
3398   final_graph_reshaping_walk(nstack, root(), frc);
3399 
3400   // Check for unreachable (from below) code (i.e., infinite loops).
3401   for( uint i = 0; i < frc._tests.size(); i++ ) {
3402     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3403     // Get number of CFG targets.
3404     // Note that PCTables include exception targets after calls.
3405     uint required_outcnt = n->required_outcnt();
3406     if (n->outcnt() != required_outcnt) {
3407       // Check for a few special cases.  Rethrow Nodes never take the
3408       // 'fall-thru' path, so expected kids is 1 less.
3409       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3410         if (n->in(0)->in(0)->is_Call()) {
3411           CallNode *call = n->in(0)->in(0)->as_Call();
3412           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3413             required_outcnt--;      // Rethrow always has 1 less kid
3414           } else if (call->req() > TypeFunc::Parms &&
3415                      call->is_CallDynamicJava()) {
3416             // Check for null receiver. In such case, the optimizer has
3417             // detected that the virtual call will always result in a null
3418             // pointer exception. The fall-through projection of this CatchNode
3419             // will not be populated.
3420             Node *arg0 = call->in(TypeFunc::Parms);
3421             if (arg0->is_Type() &&
3422                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3423               required_outcnt--;
3424             }
3425           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3426                      call->req() > TypeFunc::Parms+1 &&
3427                      call->is_CallStaticJava()) {
3428             // Check for negative array length. In such case, the optimizer has
3429             // detected that the allocation attempt will always result in an
3430             // exception. There is no fall-through projection of this CatchNode .
3431             Node *arg1 = call->in(TypeFunc::Parms+1);
3432             if (arg1->is_Type() &&
3433                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3434               required_outcnt--;
3435             }
3436           }
3437         }
3438       }
3439       // Recheck with a better notion of 'required_outcnt'
3440       if (n->outcnt() != required_outcnt) {
3441         record_method_not_compilable("malformed control flow");
3442         return true;            // Not all targets reachable!
3443       }
3444     }
3445     // Check that I actually visited all kids.  Unreached kids
3446     // must be infinite loops.
3447     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3448       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3449         record_method_not_compilable("infinite loop");
3450         return true;            // Found unvisited kid; must be unreach
3451       }
3452   }
3453 
3454   // If original bytecodes contained a mixture of floats and doubles
3455   // check if the optimizer has made it homogenous, item (3).
3456   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3457       frc.get_float_count() > 32 &&
3458       frc.get_double_count() == 0 &&
3459       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3460     set_24_bit_selection_and_mode( false,  true );
3461   }
3462 
3463   set_java_calls(frc.get_java_call_count());
3464   set_inner_loops(frc.get_inner_loop_count());
3465 
3466   // No infinite loops, no reason to bail out.
3467   return false;
3468 }
3469 
3470 //-----------------------------too_many_traps----------------------------------
3471 // Report if there are too many traps at the current method and bci.
3472 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3473 bool Compile::too_many_traps(ciMethod* method,
3474                              int bci,
3475                              Deoptimization::DeoptReason reason) {
3476   ciMethodData* md = method->method_data();
3477   if (md->is_empty()) {
3478     // Assume the trap has not occurred, or that it occurred only
3479     // because of a transient condition during start-up in the interpreter.
3480     return false;
3481   }
3482   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3483   if (md->has_trap_at(bci, m, reason) != 0) {
3484     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3485     // Also, if there are multiple reasons, or if there is no per-BCI record,
3486     // assume the worst.
3487     if (log())
3488       log()->elem("observe trap='%s' count='%d'",
3489                   Deoptimization::trap_reason_name(reason),
3490                   md->trap_count(reason));
3491     return true;
3492   } else {
3493     // Ignore method/bci and see if there have been too many globally.
3494     return too_many_traps(reason, md);
3495   }
3496 }
3497 
3498 // Less-accurate variant which does not require a method and bci.
3499 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3500                              ciMethodData* logmd) {
3501   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3502     // Too many traps globally.
3503     // Note that we use cumulative trap_count, not just md->trap_count.
3504     if (log()) {
3505       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3506       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3507                   Deoptimization::trap_reason_name(reason),
3508                   mcount, trap_count(reason));
3509     }
3510     return true;
3511   } else {
3512     // The coast is clear.
3513     return false;
3514   }
3515 }
3516 
3517 //--------------------------too_many_recompiles--------------------------------
3518 // Report if there are too many recompiles at the current method and bci.
3519 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3520 // Is not eager to return true, since this will cause the compiler to use
3521 // Action_none for a trap point, to avoid too many recompilations.
3522 bool Compile::too_many_recompiles(ciMethod* method,
3523                                   int bci,
3524                                   Deoptimization::DeoptReason reason) {
3525   ciMethodData* md = method->method_data();
3526   if (md->is_empty()) {
3527     // Assume the trap has not occurred, or that it occurred only
3528     // because of a transient condition during start-up in the interpreter.
3529     return false;
3530   }
3531   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3532   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3533   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3534   Deoptimization::DeoptReason per_bc_reason
3535     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3536   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3537   if ((per_bc_reason == Deoptimization::Reason_none
3538        || md->has_trap_at(bci, m, reason) != 0)
3539       // The trap frequency measure we care about is the recompile count:
3540       && md->trap_recompiled_at(bci, m)
3541       && md->overflow_recompile_count() >= bc_cutoff) {
3542     // Do not emit a trap here if it has already caused recompilations.
3543     // Also, if there are multiple reasons, or if there is no per-BCI record,
3544     // assume the worst.
3545     if (log())
3546       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3547                   Deoptimization::trap_reason_name(reason),
3548                   md->trap_count(reason),
3549                   md->overflow_recompile_count());
3550     return true;
3551   } else if (trap_count(reason) != 0
3552              && decompile_count() >= m_cutoff) {
3553     // Too many recompiles globally, and we have seen this sort of trap.
3554     // Use cumulative decompile_count, not just md->decompile_count.
3555     if (log())
3556       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3557                   Deoptimization::trap_reason_name(reason),
3558                   md->trap_count(reason), trap_count(reason),
3559                   md->decompile_count(), decompile_count());
3560     return true;
3561   } else {
3562     // The coast is clear.
3563     return false;
3564   }
3565 }
3566 
3567 // Compute when not to trap. Used by matching trap based nodes and
3568 // NullCheck optimization.
3569 void Compile::set_allowed_deopt_reasons() {
3570   _allowed_reasons = 0;
3571   if (is_method_compilation()) {
3572     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3573       assert(rs < BitsPerInt, "recode bit map");
3574       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3575         _allowed_reasons |= nth_bit(rs);
3576       }
3577     }
3578   }
3579 }
3580 
3581 #ifndef PRODUCT
3582 //------------------------------verify_graph_edges---------------------------
3583 // Walk the Graph and verify that there is a one-to-one correspondence
3584 // between Use-Def edges and Def-Use edges in the graph.
3585 void Compile::verify_graph_edges(bool no_dead_code) {
3586   if (VerifyGraphEdges) {
3587     ResourceArea *area = Thread::current()->resource_area();
3588     Unique_Node_List visited(area);
3589     // Call recursive graph walk to check edges
3590     _root->verify_edges(visited);
3591     if (no_dead_code) {
3592       // Now make sure that no visited node is used by an unvisited node.
3593       bool dead_nodes = false;
3594       Unique_Node_List checked(area);
3595       while (visited.size() > 0) {
3596         Node* n = visited.pop();
3597         checked.push(n);
3598         for (uint i = 0; i < n->outcnt(); i++) {
3599           Node* use = n->raw_out(i);
3600           if (checked.member(use))  continue;  // already checked
3601           if (visited.member(use))  continue;  // already in the graph
3602           if (use->is_Con())        continue;  // a dead ConNode is OK
3603           // At this point, we have found a dead node which is DU-reachable.
3604           if (!dead_nodes) {
3605             tty->print_cr("*** Dead nodes reachable via DU edges:");
3606             dead_nodes = true;
3607           }
3608           use->dump(2);
3609           tty->print_cr("---");
3610           checked.push(use);  // No repeats; pretend it is now checked.
3611         }
3612       }
3613       assert(!dead_nodes, "using nodes must be reachable from root");
3614     }
3615   }
3616 }
3617 
3618 // Verify GC barriers consistency
3619 // Currently supported:
3620 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3621 void Compile::verify_barriers() {
3622   if (UseG1GC) {
3623     // Verify G1 pre-barriers
3624     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
3625 
3626     ResourceArea *area = Thread::current()->resource_area();
3627     Unique_Node_List visited(area);
3628     Node_List worklist(area);
3629     // We're going to walk control flow backwards starting from the Root
3630     worklist.push(_root);
3631     while (worklist.size() > 0) {
3632       Node* x = worklist.pop();
3633       if (x == NULL || x == top()) continue;
3634       if (visited.member(x)) {
3635         continue;
3636       } else {
3637         visited.push(x);
3638       }
3639 
3640       if (x->is_Region()) {
3641         for (uint i = 1; i < x->req(); i++) {
3642           worklist.push(x->in(i));
3643         }
3644       } else {
3645         worklist.push(x->in(0));
3646         // We are looking for the pattern:
3647         //                            /->ThreadLocal
3648         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3649         //              \->ConI(0)
3650         // We want to verify that the If and the LoadB have the same control
3651         // See GraphKit::g1_write_barrier_pre()
3652         if (x->is_If()) {
3653           IfNode *iff = x->as_If();
3654           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3655             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3656             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3657                 && cmp->in(1)->is_Load()) {
3658               LoadNode* load = cmp->in(1)->as_Load();
3659               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3660                   && load->in(2)->in(3)->is_Con()
3661                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3662 
3663                 Node* if_ctrl = iff->in(0);
3664                 Node* load_ctrl = load->in(0);
3665 
3666                 if (if_ctrl != load_ctrl) {
3667                   // Skip possible CProj->NeverBranch in infinite loops
3668                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3669                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3670                     if_ctrl = if_ctrl->in(0)->in(0);
3671                   }
3672                 }
3673                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3674               }
3675             }
3676           }
3677         }
3678       }
3679     }
3680   }
3681 }
3682 
3683 #endif
3684 
3685 // The Compile object keeps track of failure reasons separately from the ciEnv.
3686 // This is required because there is not quite a 1-1 relation between the
3687 // ciEnv and its compilation task and the Compile object.  Note that one
3688 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3689 // to backtrack and retry without subsuming loads.  Other than this backtracking
3690 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3691 // by the logic in C2Compiler.
3692 void Compile::record_failure(const char* reason) {
3693   if (log() != NULL) {
3694     log()->elem("failure reason='%s' phase='compile'", reason);
3695   }
3696   if (_failure_reason == NULL) {
3697     // Record the first failure reason.
3698     _failure_reason = reason;
3699   }
3700 
3701   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3702     C->print_method(PHASE_FAILURE);
3703   }
3704   _root = NULL;  // flush the graph, too
3705 }
3706 
3707 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3708   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3709     _phase_name(name), _dolog(CITimeVerbose)
3710 {
3711   if (_dolog) {
3712     C = Compile::current();
3713     _log = C->log();
3714   } else {
3715     C = NULL;
3716     _log = NULL;
3717   }
3718   if (_log != NULL) {
3719     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3720     _log->stamp();
3721     _log->end_head();
3722   }
3723 }
3724 
3725 Compile::TracePhase::~TracePhase() {
3726 
3727   C = Compile::current();
3728   if (_dolog) {
3729     _log = C->log();
3730   } else {
3731     _log = NULL;
3732   }
3733 
3734 #ifdef ASSERT
3735   if (PrintIdealNodeCount) {
3736     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3737                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3738   }
3739 
3740   if (VerifyIdealNodeCount) {
3741     Compile::current()->print_missing_nodes();
3742   }
3743 #endif
3744 
3745   if (_log != NULL) {
3746     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3747   }
3748 }
3749 
3750 //=============================================================================
3751 // Two Constant's are equal when the type and the value are equal.
3752 bool Compile::Constant::operator==(const Constant& other) {
3753   if (type()          != other.type()         )  return false;
3754   if (can_be_reused() != other.can_be_reused())  return false;
3755   // For floating point values we compare the bit pattern.
3756   switch (type()) {
3757   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3758   case T_LONG:
3759   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3760   case T_OBJECT:
3761   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3762   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3763   case T_METADATA: return (_v._metadata == other._v._metadata);
3764   default: ShouldNotReachHere();
3765   }
3766   return false;
3767 }
3768 
3769 static int type_to_size_in_bytes(BasicType t) {
3770   switch (t) {
3771   case T_LONG:    return sizeof(jlong  );
3772   case T_FLOAT:   return sizeof(jfloat );
3773   case T_DOUBLE:  return sizeof(jdouble);
3774   case T_METADATA: return sizeof(Metadata*);
3775     // We use T_VOID as marker for jump-table entries (labels) which
3776     // need an internal word relocation.
3777   case T_VOID:
3778   case T_ADDRESS:
3779   case T_OBJECT:  return sizeof(jobject);
3780   }
3781 
3782   ShouldNotReachHere();
3783   return -1;
3784 }
3785 
3786 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3787   // sort descending
3788   if (a->freq() > b->freq())  return -1;
3789   if (a->freq() < b->freq())  return  1;
3790   return 0;
3791 }
3792 
3793 void Compile::ConstantTable::calculate_offsets_and_size() {
3794   // First, sort the array by frequencies.
3795   _constants.sort(qsort_comparator);
3796 
3797 #ifdef ASSERT
3798   // Make sure all jump-table entries were sorted to the end of the
3799   // array (they have a negative frequency).
3800   bool found_void = false;
3801   for (int i = 0; i < _constants.length(); i++) {
3802     Constant con = _constants.at(i);
3803     if (con.type() == T_VOID)
3804       found_void = true;  // jump-tables
3805     else
3806       assert(!found_void, "wrong sorting");
3807   }
3808 #endif
3809 
3810   int offset = 0;
3811   for (int i = 0; i < _constants.length(); i++) {
3812     Constant* con = _constants.adr_at(i);
3813 
3814     // Align offset for type.
3815     int typesize = type_to_size_in_bytes(con->type());
3816     offset = align_size_up(offset, typesize);
3817     con->set_offset(offset);   // set constant's offset
3818 
3819     if (con->type() == T_VOID) {
3820       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3821       offset = offset + typesize * n->outcnt();  // expand jump-table
3822     } else {
3823       offset = offset + typesize;
3824     }
3825   }
3826 
3827   // Align size up to the next section start (which is insts; see
3828   // CodeBuffer::align_at_start).
3829   assert(_size == -1, "already set?");
3830   _size = align_size_up(offset, CodeEntryAlignment);
3831 }
3832 
3833 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3834   MacroAssembler _masm(&cb);
3835   for (int i = 0; i < _constants.length(); i++) {
3836     Constant con = _constants.at(i);
3837     address constant_addr = NULL;
3838     switch (con.type()) {
3839     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3840     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3841     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3842     case T_OBJECT: {
3843       jobject obj = con.get_jobject();
3844       int oop_index = _masm.oop_recorder()->find_index(obj);
3845       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3846       break;
3847     }
3848     case T_ADDRESS: {
3849       address addr = (address) con.get_jobject();
3850       constant_addr = _masm.address_constant(addr);
3851       break;
3852     }
3853     // We use T_VOID as marker for jump-table entries (labels) which
3854     // need an internal word relocation.
3855     case T_VOID: {
3856       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3857       // Fill the jump-table with a dummy word.  The real value is
3858       // filled in later in fill_jump_table.
3859       address dummy = (address) n;
3860       constant_addr = _masm.address_constant(dummy);
3861       // Expand jump-table
3862       for (uint i = 1; i < n->outcnt(); i++) {
3863         address temp_addr = _masm.address_constant(dummy + i);
3864         assert(temp_addr, "consts section too small");
3865       }
3866       break;
3867     }
3868     case T_METADATA: {
3869       Metadata* obj = con.get_metadata();
3870       int metadata_index = _masm.oop_recorder()->find_index(obj);
3871       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3872       break;
3873     }
3874     default: ShouldNotReachHere();
3875     }
3876     assert(constant_addr, "consts section too small");
3877     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3878             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
3879   }
3880 }
3881 
3882 int Compile::ConstantTable::find_offset(Constant& con) const {
3883   int idx = _constants.find(con);
3884   assert(idx != -1, "constant must be in constant table");
3885   int offset = _constants.at(idx).offset();
3886   assert(offset != -1, "constant table not emitted yet?");
3887   return offset;
3888 }
3889 
3890 void Compile::ConstantTable::add(Constant& con) {
3891   if (con.can_be_reused()) {
3892     int idx = _constants.find(con);
3893     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3894       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3895       return;
3896     }
3897   }
3898   (void) _constants.append(con);
3899 }
3900 
3901 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3902   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3903   Constant con(type, value, b->_freq);
3904   add(con);
3905   return con;
3906 }
3907 
3908 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3909   Constant con(metadata);
3910   add(con);
3911   return con;
3912 }
3913 
3914 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3915   jvalue value;
3916   BasicType type = oper->type()->basic_type();
3917   switch (type) {
3918   case T_LONG:    value.j = oper->constantL(); break;
3919   case T_FLOAT:   value.f = oper->constantF(); break;
3920   case T_DOUBLE:  value.d = oper->constantD(); break;
3921   case T_OBJECT:
3922   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3923   case T_METADATA: return add((Metadata*)oper->constant()); break;
3924   default: guarantee(false, "unhandled type: %s", type2name(type));
3925   }
3926   return add(n, type, value);
3927 }
3928 
3929 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3930   jvalue value;
3931   // We can use the node pointer here to identify the right jump-table
3932   // as this method is called from Compile::Fill_buffer right before
3933   // the MachNodes are emitted and the jump-table is filled (means the
3934   // MachNode pointers do not change anymore).
3935   value.l = (jobject) n;
3936   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3937   add(con);
3938   return con;
3939 }
3940 
3941 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3942   // If called from Compile::scratch_emit_size do nothing.
3943   if (Compile::current()->in_scratch_emit_size())  return;
3944 
3945   assert(labels.is_nonempty(), "must be");
3946   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
3947 
3948   // Since MachConstantNode::constant_offset() also contains
3949   // table_base_offset() we need to subtract the table_base_offset()
3950   // to get the plain offset into the constant table.
3951   int offset = n->constant_offset() - table_base_offset();
3952 
3953   MacroAssembler _masm(&cb);
3954   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3955 
3956   for (uint i = 0; i < n->outcnt(); i++) {
3957     address* constant_addr = &jump_table_base[i];
3958     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
3959     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3960     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3961   }
3962 }
3963 
3964 //----------------------------static_subtype_check-----------------------------
3965 // Shortcut important common cases when superklass is exact:
3966 // (0) superklass is java.lang.Object (can occur in reflective code)
3967 // (1) subklass is already limited to a subtype of superklass => always ok
3968 // (2) subklass does not overlap with superklass => always fail
3969 // (3) superklass has NO subtypes and we can check with a simple compare.
3970 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3971   if (StressReflectiveCode) {
3972     return SSC_full_test;       // Let caller generate the general case.
3973   }
3974 
3975   if (superk == env()->Object_klass()) {
3976     return SSC_always_true;     // (0) this test cannot fail
3977   }
3978 
3979   ciType* superelem = superk;
3980   if (superelem->is_array_klass())
3981     superelem = superelem->as_array_klass()->base_element_type();
3982 
3983   if (!subk->is_interface()) {  // cannot trust static interface types yet
3984     if (subk->is_subtype_of(superk)) {
3985       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3986     }
3987     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3988         !superk->is_subtype_of(subk)) {
3989       return SSC_always_false;
3990     }
3991   }
3992 
3993   // If casting to an instance klass, it must have no subtypes
3994   if (superk->is_interface()) {
3995     // Cannot trust interfaces yet.
3996     // %%% S.B. superk->nof_implementors() == 1
3997   } else if (superelem->is_instance_klass()) {
3998     ciInstanceKlass* ik = superelem->as_instance_klass();
3999     if (!ik->has_subklass() && !ik->is_interface()) {
4000       if (!ik->is_final()) {
4001         // Add a dependency if there is a chance of a later subclass.
4002         dependencies()->assert_leaf_type(ik);
4003       }
4004       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4005     }
4006   } else {
4007     // A primitive array type has no subtypes.
4008     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4009   }
4010 
4011   return SSC_full_test;
4012 }
4013 
4014 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4015 #ifdef _LP64
4016   // The scaled index operand to AddP must be a clean 64-bit value.
4017   // Java allows a 32-bit int to be incremented to a negative
4018   // value, which appears in a 64-bit register as a large
4019   // positive number.  Using that large positive number as an
4020   // operand in pointer arithmetic has bad consequences.
4021   // On the other hand, 32-bit overflow is rare, and the possibility
4022   // can often be excluded, if we annotate the ConvI2L node with
4023   // a type assertion that its value is known to be a small positive
4024   // number.  (The prior range check has ensured this.)
4025   // This assertion is used by ConvI2LNode::Ideal.
4026   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4027   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4028   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4029   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4030 #endif
4031   return idx;
4032 }
4033 
4034 #ifdef _LP64
4035 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4036 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4037   if (ctrl != NULL) {
4038     // Express control dependency by a CastII node with a narrow type.
4039     value = new CastIINode(value, itype, false, true /* range check dependency */);
4040     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4041     // node from floating above the range check during loop optimizations. Otherwise, the
4042     // ConvI2L node may be eliminated independently of the range check, causing the data path
4043     // to become TOP while the control path is still there (although it's unreachable).
4044     value->set_req(0, ctrl);
4045     // Save CastII node to remove it after loop optimizations.
4046     phase->C->add_range_check_cast(value);
4047     value = phase->transform(value);
4048   }
4049   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4050   return phase->transform(new ConvI2LNode(value, ltype));
4051 }
4052 #endif
4053 
4054 // The message about the current inlining is accumulated in
4055 // _print_inlining_stream and transfered into the _print_inlining_list
4056 // once we know whether inlining succeeds or not. For regular
4057 // inlining, messages are appended to the buffer pointed by
4058 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4059 // a new buffer is added after _print_inlining_idx in the list. This
4060 // way we can update the inlining message for late inlining call site
4061 // when the inlining is attempted again.
4062 void Compile::print_inlining_init() {
4063   if (print_inlining() || print_intrinsics()) {
4064     _print_inlining_stream = new stringStream();
4065     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4066   }
4067 }
4068 
4069 void Compile::print_inlining_reinit() {
4070   if (print_inlining() || print_intrinsics()) {
4071     // Re allocate buffer when we change ResourceMark
4072     _print_inlining_stream = new stringStream();
4073   }
4074 }
4075 
4076 void Compile::print_inlining_reset() {
4077   _print_inlining_stream->reset();
4078 }
4079 
4080 void Compile::print_inlining_commit() {
4081   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4082   // Transfer the message from _print_inlining_stream to the current
4083   // _print_inlining_list buffer and clear _print_inlining_stream.
4084   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4085   print_inlining_reset();
4086 }
4087 
4088 void Compile::print_inlining_push() {
4089   // Add new buffer to the _print_inlining_list at current position
4090   _print_inlining_idx++;
4091   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4092 }
4093 
4094 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4095   return _print_inlining_list->at(_print_inlining_idx);
4096 }
4097 
4098 void Compile::print_inlining_update(CallGenerator* cg) {
4099   if (print_inlining() || print_intrinsics()) {
4100     if (!cg->is_late_inline()) {
4101       if (print_inlining_current().cg() != NULL) {
4102         print_inlining_push();
4103       }
4104       print_inlining_commit();
4105     } else {
4106       if (print_inlining_current().cg() != cg &&
4107           (print_inlining_current().cg() != NULL ||
4108            print_inlining_current().ss()->size() != 0)) {
4109         print_inlining_push();
4110       }
4111       print_inlining_commit();
4112       print_inlining_current().set_cg(cg);
4113     }
4114   }
4115 }
4116 
4117 void Compile::print_inlining_move_to(CallGenerator* cg) {
4118   // We resume inlining at a late inlining call site. Locate the
4119   // corresponding inlining buffer so that we can update it.
4120   if (print_inlining()) {
4121     for (int i = 0; i < _print_inlining_list->length(); i++) {
4122       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4123         _print_inlining_idx = i;
4124         return;
4125       }
4126     }
4127     ShouldNotReachHere();
4128   }
4129 }
4130 
4131 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4132   if (print_inlining()) {
4133     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4134     assert(print_inlining_current().cg() == cg, "wrong entry");
4135     // replace message with new message
4136     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4137     print_inlining_commit();
4138     print_inlining_current().set_cg(cg);
4139   }
4140 }
4141 
4142 void Compile::print_inlining_assert_ready() {
4143   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4144 }
4145 
4146 void Compile::process_print_inlining() {
4147   bool do_print_inlining = print_inlining() || print_intrinsics();
4148   if (do_print_inlining || log() != NULL) {
4149     // Print inlining message for candidates that we couldn't inline
4150     // for lack of space
4151     for (int i = 0; i < _late_inlines.length(); i++) {
4152       CallGenerator* cg = _late_inlines.at(i);
4153       if (!cg->is_mh_late_inline()) {
4154         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4155         if (do_print_inlining) {
4156           cg->print_inlining_late(msg);
4157         }
4158         log_late_inline_failure(cg, msg);
4159       }
4160     }
4161   }
4162   if (do_print_inlining) {
4163     ResourceMark rm;
4164     stringStream ss;
4165     for (int i = 0; i < _print_inlining_list->length(); i++) {
4166       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4167     }
4168     size_t end = ss.size();
4169     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4170     strncpy(_print_inlining_output, ss.base(), end+1);
4171     _print_inlining_output[end] = 0;
4172   }
4173 }
4174 
4175 void Compile::dump_print_inlining() {
4176   if (_print_inlining_output != NULL) {
4177     tty->print_raw(_print_inlining_output);
4178   }
4179 }
4180 
4181 void Compile::log_late_inline(CallGenerator* cg) {
4182   if (log() != NULL) {
4183     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4184                 cg->unique_id());
4185     JVMState* p = cg->call_node()->jvms();
4186     while (p != NULL) {
4187       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4188       p = p->caller();
4189     }
4190     log()->tail("late_inline");
4191   }
4192 }
4193 
4194 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4195   log_late_inline(cg);
4196   if (log() != NULL) {
4197     log()->inline_fail(msg);
4198   }
4199 }
4200 
4201 void Compile::log_inline_id(CallGenerator* cg) {
4202   if (log() != NULL) {
4203     // The LogCompilation tool needs a unique way to identify late
4204     // inline call sites. This id must be unique for this call site in
4205     // this compilation. Try to have it unique across compilations as
4206     // well because it can be convenient when grepping through the log
4207     // file.
4208     // Distinguish OSR compilations from others in case CICountOSR is
4209     // on.
4210     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4211     cg->set_unique_id(id);
4212     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4213   }
4214 }
4215 
4216 void Compile::log_inline_failure(const char* msg) {
4217   if (C->log() != NULL) {
4218     C->log()->inline_fail(msg);
4219   }
4220 }
4221 
4222 
4223 // Dump inlining replay data to the stream.
4224 // Don't change thread state and acquire any locks.
4225 void Compile::dump_inline_data(outputStream* out) {
4226   InlineTree* inl_tree = ilt();
4227   if (inl_tree != NULL) {
4228     out->print(" inline %d", inl_tree->count());
4229     inl_tree->dump_replay_data(out);
4230   }
4231 }
4232 
4233 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4234   if (n1->Opcode() < n2->Opcode())      return -1;
4235   else if (n1->Opcode() > n2->Opcode()) return 1;
4236 
4237   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4238   for (uint i = 1; i < n1->req(); i++) {
4239     if (n1->in(i) < n2->in(i))      return -1;
4240     else if (n1->in(i) > n2->in(i)) return 1;
4241   }
4242 
4243   return 0;
4244 }
4245 
4246 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4247   Node* n1 = *n1p;
4248   Node* n2 = *n2p;
4249 
4250   return cmp_expensive_nodes(n1, n2);
4251 }
4252 
4253 void Compile::sort_expensive_nodes() {
4254   if (!expensive_nodes_sorted()) {
4255     _expensive_nodes->sort(cmp_expensive_nodes);
4256   }
4257 }
4258 
4259 bool Compile::expensive_nodes_sorted() const {
4260   for (int i = 1; i < _expensive_nodes->length(); i++) {
4261     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4262       return false;
4263     }
4264   }
4265   return true;
4266 }
4267 
4268 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4269   if (_expensive_nodes->length() == 0) {
4270     return false;
4271   }
4272 
4273   assert(OptimizeExpensiveOps, "optimization off?");
4274 
4275   // Take this opportunity to remove dead nodes from the list
4276   int j = 0;
4277   for (int i = 0; i < _expensive_nodes->length(); i++) {
4278     Node* n = _expensive_nodes->at(i);
4279     if (!n->is_unreachable(igvn)) {
4280       assert(n->is_expensive(), "should be expensive");
4281       _expensive_nodes->at_put(j, n);
4282       j++;
4283     }
4284   }
4285   _expensive_nodes->trunc_to(j);
4286 
4287   // Then sort the list so that similar nodes are next to each other
4288   // and check for at least two nodes of identical kind with same data
4289   // inputs.
4290   sort_expensive_nodes();
4291 
4292   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4293     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4294       return true;
4295     }
4296   }
4297 
4298   return false;
4299 }
4300 
4301 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4302   if (_expensive_nodes->length() == 0) {
4303     return;
4304   }
4305 
4306   assert(OptimizeExpensiveOps, "optimization off?");
4307 
4308   // Sort to bring similar nodes next to each other and clear the
4309   // control input of nodes for which there's only a single copy.
4310   sort_expensive_nodes();
4311 
4312   int j = 0;
4313   int identical = 0;
4314   int i = 0;
4315   bool modified = false;
4316   for (; i < _expensive_nodes->length()-1; i++) {
4317     assert(j <= i, "can't write beyond current index");
4318     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4319       identical++;
4320       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4321       continue;
4322     }
4323     if (identical > 0) {
4324       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4325       identical = 0;
4326     } else {
4327       Node* n = _expensive_nodes->at(i);
4328       igvn.replace_input_of(n, 0, NULL);
4329       igvn.hash_insert(n);
4330       modified = true;
4331     }
4332   }
4333   if (identical > 0) {
4334     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4335   } else if (_expensive_nodes->length() >= 1) {
4336     Node* n = _expensive_nodes->at(i);
4337     igvn.replace_input_of(n, 0, NULL);
4338     igvn.hash_insert(n);
4339     modified = true;
4340   }
4341   _expensive_nodes->trunc_to(j);
4342   if (modified) {
4343     igvn.optimize();
4344   }
4345 }
4346 
4347 void Compile::add_expensive_node(Node * n) {
4348   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4349   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4350   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4351   if (OptimizeExpensiveOps) {
4352     _expensive_nodes->append(n);
4353   } else {
4354     // Clear control input and let IGVN optimize expensive nodes if
4355     // OptimizeExpensiveOps is off.
4356     n->set_req(0, NULL);
4357   }
4358 }
4359 
4360 /**
4361  * Remove the speculative part of types and clean up the graph
4362  */
4363 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4364   if (UseTypeSpeculation) {
4365     Unique_Node_List worklist;
4366     worklist.push(root());
4367     int modified = 0;
4368     // Go over all type nodes that carry a speculative type, drop the
4369     // speculative part of the type and enqueue the node for an igvn
4370     // which may optimize it out.
4371     for (uint next = 0; next < worklist.size(); ++next) {
4372       Node *n  = worklist.at(next);
4373       if (n->is_Type()) {
4374         TypeNode* tn = n->as_Type();
4375         const Type* t = tn->type();
4376         const Type* t_no_spec = t->remove_speculative();
4377         if (t_no_spec != t) {
4378           bool in_hash = igvn.hash_delete(n);
4379           assert(in_hash, "node should be in igvn hash table");
4380           tn->set_type(t_no_spec);
4381           igvn.hash_insert(n);
4382           igvn._worklist.push(n); // give it a chance to go away
4383           modified++;
4384         }
4385       }
4386       uint max = n->len();
4387       for( uint i = 0; i < max; ++i ) {
4388         Node *m = n->in(i);
4389         if (not_a_node(m))  continue;
4390         worklist.push(m);
4391       }
4392     }
4393     // Drop the speculative part of all types in the igvn's type table
4394     igvn.remove_speculative_types();
4395     if (modified > 0) {
4396       igvn.optimize();
4397     }
4398 #ifdef ASSERT
4399     // Verify that after the IGVN is over no speculative type has resurfaced
4400     worklist.clear();
4401     worklist.push(root());
4402     for (uint next = 0; next < worklist.size(); ++next) {
4403       Node *n  = worklist.at(next);
4404       const Type* t = igvn.type_or_null(n);
4405       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4406       if (n->is_Type()) {
4407         t = n->as_Type()->type();
4408         assert(t == t->remove_speculative(), "no more speculative types");
4409       }
4410       uint max = n->len();
4411       for( uint i = 0; i < max; ++i ) {
4412         Node *m = n->in(i);
4413         if (not_a_node(m))  continue;
4414         worklist.push(m);
4415       }
4416     }
4417     igvn.check_no_speculative_types();
4418 #endif
4419   }
4420 }
4421 
4422 // Auxiliary method to support randomized stressing/fuzzing.
4423 //
4424 // This method can be called the arbitrary number of times, with current count
4425 // as the argument. The logic allows selecting a single candidate from the
4426 // running list of candidates as follows:
4427 //    int count = 0;
4428 //    Cand* selected = null;
4429 //    while(cand = cand->next()) {
4430 //      if (randomized_select(++count)) {
4431 //        selected = cand;
4432 //      }
4433 //    }
4434 //
4435 // Including count equalizes the chances any candidate is "selected".
4436 // This is useful when we don't have the complete list of candidates to choose
4437 // from uniformly. In this case, we need to adjust the randomicity of the
4438 // selection, or else we will end up biasing the selection towards the latter
4439 // candidates.
4440 //
4441 // Quick back-envelope calculation shows that for the list of n candidates
4442 // the equal probability for the candidate to persist as "best" can be
4443 // achieved by replacing it with "next" k-th candidate with the probability
4444 // of 1/k. It can be easily shown that by the end of the run, the
4445 // probability for any candidate is converged to 1/n, thus giving the
4446 // uniform distribution among all the candidates.
4447 //
4448 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4449 #define RANDOMIZED_DOMAIN_POW 29
4450 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4451 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4452 bool Compile::randomized_select(int count) {
4453   assert(count > 0, "only positive");
4454   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4455 }
4456 
4457 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4458 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4459 
4460 void NodeCloneInfo::dump() const {
4461   tty->print(" {%d:%d} ", idx(), gen());
4462 }
4463 
4464 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4465   uint64_t val = value(old->_idx);
4466   NodeCloneInfo cio(val);
4467   assert(val != 0, "old node should be in the map");
4468   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4469   insert(nnn->_idx, cin.get());
4470 #ifndef PRODUCT
4471   if (is_debug()) {
4472     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4473   }
4474 #endif
4475 }
4476 
4477 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4478   NodeCloneInfo cio(value(old->_idx));
4479   if (cio.get() == 0) {
4480     cio.set(old->_idx, 0);
4481     insert(old->_idx, cio.get());
4482 #ifndef PRODUCT
4483     if (is_debug()) {
4484       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4485     }
4486 #endif
4487   }
4488   clone(old, nnn, gen);
4489 }
4490 
4491 int CloneMap::max_gen() const {
4492   int g = 0;
4493   DictI di(_dict);
4494   for(; di.test(); ++di) {
4495     int t = gen(di._key);
4496     if (g < t) {
4497       g = t;
4498 #ifndef PRODUCT
4499       if (is_debug()) {
4500         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4501       }
4502 #endif
4503     }
4504   }
4505   return g;
4506 }
4507 
4508 void CloneMap::dump(node_idx_t key) const {
4509   uint64_t val = value(key);
4510   if (val != 0) {
4511     NodeCloneInfo ni(val);
4512     ni.dump();
4513   }
4514 }