1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/castnode.hpp"
  29 #include "opto/cfgnode.hpp"
  30 #include "opto/connode.hpp"
  31 #include "opto/loopnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/node.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/type.hpp"
  38 #include "utilities/copy.hpp"
  39 
  40 class RegMask;
  41 // #include "phase.hpp"
  42 class PhaseTransform;
  43 class PhaseGVN;
  44 
  45 // Arena we are currently building Nodes in
  46 const uint Node::NotAMachineReg = 0xffff0000;
  47 
  48 #ifndef PRODUCT
  49 extern int nodes_created;
  50 #endif
  51 #ifdef __clang__
  52 #pragma clang diagnostic push
  53 #pragma GCC diagnostic ignored "-Wuninitialized"
  54 #endif
  55 
  56 #ifdef ASSERT
  57 
  58 //-------------------------- construct_node------------------------------------
  59 // Set a breakpoint here to identify where a particular node index is built.
  60 void Node::verify_construction() {
  61   _debug_orig = NULL;
  62   int old_debug_idx = Compile::debug_idx();
  63   int new_debug_idx = old_debug_idx+1;
  64   if (new_debug_idx > 0) {
  65     // Arrange that the lowest five decimal digits of _debug_idx
  66     // will repeat those of _idx. In case this is somehow pathological,
  67     // we continue to assign negative numbers (!) consecutively.
  68     const int mod = 100000;
  69     int bump = (int)(_idx - new_debug_idx) % mod;
  70     if (bump < 0)  bump += mod;
  71     assert(bump >= 0 && bump < mod, "");
  72     new_debug_idx += bump;
  73   }
  74   Compile::set_debug_idx(new_debug_idx);
  75   set_debug_idx( new_debug_idx );
  76   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  77   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  78   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  79     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  80     BREAKPOINT;
  81   }
  82 #if OPTO_DU_ITERATOR_ASSERT
  83   _last_del = NULL;
  84   _del_tick = 0;
  85 #endif
  86   _hash_lock = 0;
  87 }
  88 
  89 
  90 // #ifdef ASSERT ...
  91 
  92 #if OPTO_DU_ITERATOR_ASSERT
  93 void DUIterator_Common::sample(const Node* node) {
  94   _vdui     = VerifyDUIterators;
  95   _node     = node;
  96   _outcnt   = node->_outcnt;
  97   _del_tick = node->_del_tick;
  98   _last     = NULL;
  99 }
 100 
 101 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 102   assert(_node     == node, "consistent iterator source");
 103   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 104 }
 105 
 106 void DUIterator_Common::verify_resync() {
 107   // Ensure that the loop body has just deleted the last guy produced.
 108   const Node* node = _node;
 109   // Ensure that at least one copy of the last-seen edge was deleted.
 110   // Note:  It is OK to delete multiple copies of the last-seen edge.
 111   // Unfortunately, we have no way to verify that all the deletions delete
 112   // that same edge.  On this point we must use the Honor System.
 113   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 114   assert(node->_last_del == _last, "must have deleted the edge just produced");
 115   // We liked this deletion, so accept the resulting outcnt and tick.
 116   _outcnt   = node->_outcnt;
 117   _del_tick = node->_del_tick;
 118 }
 119 
 120 void DUIterator_Common::reset(const DUIterator_Common& that) {
 121   if (this == &that)  return;  // ignore assignment to self
 122   if (!_vdui) {
 123     // We need to initialize everything, overwriting garbage values.
 124     _last = that._last;
 125     _vdui = that._vdui;
 126   }
 127   // Note:  It is legal (though odd) for an iterator over some node x
 128   // to be reassigned to iterate over another node y.  Some doubly-nested
 129   // progress loops depend on being able to do this.
 130   const Node* node = that._node;
 131   // Re-initialize everything, except _last.
 132   _node     = node;
 133   _outcnt   = node->_outcnt;
 134   _del_tick = node->_del_tick;
 135 }
 136 
 137 void DUIterator::sample(const Node* node) {
 138   DUIterator_Common::sample(node);      // Initialize the assertion data.
 139   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 140 }
 141 
 142 void DUIterator::verify(const Node* node, bool at_end_ok) {
 143   DUIterator_Common::verify(node, at_end_ok);
 144   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 145 }
 146 
 147 void DUIterator::verify_increment() {
 148   if (_refresh_tick & 1) {
 149     // We have refreshed the index during this loop.
 150     // Fix up _idx to meet asserts.
 151     if (_idx > _outcnt)  _idx = _outcnt;
 152   }
 153   verify(_node, true);
 154 }
 155 
 156 void DUIterator::verify_resync() {
 157   // Note:  We do not assert on _outcnt, because insertions are OK here.
 158   DUIterator_Common::verify_resync();
 159   // Make sure we are still in sync, possibly with no more out-edges:
 160   verify(_node, true);
 161 }
 162 
 163 void DUIterator::reset(const DUIterator& that) {
 164   if (this == &that)  return;  // self assignment is always a no-op
 165   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 166   assert(that._idx          == 0, "assign only the result of Node::outs()");
 167   assert(_idx               == that._idx, "already assigned _idx");
 168   if (!_vdui) {
 169     // We need to initialize everything, overwriting garbage values.
 170     sample(that._node);
 171   } else {
 172     DUIterator_Common::reset(that);
 173     if (_refresh_tick & 1) {
 174       _refresh_tick++;                  // Clear the "was refreshed" flag.
 175     }
 176     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 177   }
 178 }
 179 
 180 void DUIterator::refresh() {
 181   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 182   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 183 }
 184 
 185 void DUIterator::verify_finish() {
 186   // If the loop has killed the node, do not require it to re-run.
 187   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 188   // If this assert triggers, it means that a loop used refresh_out_pos
 189   // to re-synch an iteration index, but the loop did not correctly
 190   // re-run itself, using a "while (progress)" construct.
 191   // This iterator enforces the rule that you must keep trying the loop
 192   // until it "runs clean" without any need for refreshing.
 193   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 194 }
 195 
 196 
 197 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 198   DUIterator_Common::verify(node, at_end_ok);
 199   Node** out    = node->_out;
 200   uint   cnt    = node->_outcnt;
 201   assert(cnt == _outcnt, "no insertions allowed");
 202   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 203   // This last check is carefully designed to work for NO_OUT_ARRAY.
 204 }
 205 
 206 void DUIterator_Fast::verify_limit() {
 207   const Node* node = _node;
 208   verify(node, true);
 209   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 210 }
 211 
 212 void DUIterator_Fast::verify_resync() {
 213   const Node* node = _node;
 214   if (_outp == node->_out + _outcnt) {
 215     // Note that the limit imax, not the pointer i, gets updated with the
 216     // exact count of deletions.  (For the pointer it's always "--i".)
 217     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 218     // This is a limit pointer, with a name like "imax".
 219     // Fudge the _last field so that the common assert will be happy.
 220     _last = (Node*) node->_last_del;
 221     DUIterator_Common::verify_resync();
 222   } else {
 223     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 224     // A normal internal pointer.
 225     DUIterator_Common::verify_resync();
 226     // Make sure we are still in sync, possibly with no more out-edges:
 227     verify(node, true);
 228   }
 229 }
 230 
 231 void DUIterator_Fast::verify_relimit(uint n) {
 232   const Node* node = _node;
 233   assert((int)n > 0, "use imax -= n only with a positive count");
 234   // This must be a limit pointer, with a name like "imax".
 235   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 236   // The reported number of deletions must match what the node saw.
 237   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 238   // Fudge the _last field so that the common assert will be happy.
 239   _last = (Node*) node->_last_del;
 240   DUIterator_Common::verify_resync();
 241 }
 242 
 243 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 244   assert(_outp              == that._outp, "already assigned _outp");
 245   DUIterator_Common::reset(that);
 246 }
 247 
 248 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 249   // at_end_ok means the _outp is allowed to underflow by 1
 250   _outp += at_end_ok;
 251   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 252   _outp -= at_end_ok;
 253   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 254 }
 255 
 256 void DUIterator_Last::verify_limit() {
 257   // Do not require the limit address to be resynched.
 258   //verify(node, true);
 259   assert(_outp == _node->_out, "limit still correct");
 260 }
 261 
 262 void DUIterator_Last::verify_step(uint num_edges) {
 263   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 264   _outcnt   -= num_edges;
 265   _del_tick += num_edges;
 266   // Make sure we are still in sync, possibly with no more out-edges:
 267   const Node* node = _node;
 268   verify(node, true);
 269   assert(node->_last_del == _last, "must have deleted the edge just produced");
 270 }
 271 
 272 #endif //OPTO_DU_ITERATOR_ASSERT
 273 
 274 
 275 #endif //ASSERT
 276 
 277 
 278 // This constant used to initialize _out may be any non-null value.
 279 // The value NULL is reserved for the top node only.
 280 #define NO_OUT_ARRAY ((Node**)-1)
 281 
 282 // Out-of-line code from node constructors.
 283 // Executed only when extra debug info. is being passed around.
 284 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 285   C->set_node_notes_at(idx, nn);
 286 }
 287 
 288 // Shared initialization code.
 289 inline int Node::Init(int req) {
 290   Compile* C = Compile::current();
 291   int idx = C->next_unique();
 292 
 293   // Allocate memory for the necessary number of edges.
 294   if (req > 0) {
 295     // Allocate space for _in array to have double alignment.
 296     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 297 #ifdef ASSERT
 298     _in[req-1] = this; // magic cookie for assertion check
 299 #endif
 300   }
 301   // If there are default notes floating around, capture them:
 302   Node_Notes* nn = C->default_node_notes();
 303   if (nn != NULL)  init_node_notes(C, idx, nn);
 304 
 305   // Note:  At this point, C is dead,
 306   // and we begin to initialize the new Node.
 307 
 308   _cnt = _max = req;
 309   _outcnt = _outmax = 0;
 310   _class_id = Class_Node;
 311   _flags = 0;
 312   _out = NO_OUT_ARRAY;
 313   return idx;
 314 }
 315 
 316 //------------------------------Node-------------------------------------------
 317 // Create a Node, with a given number of required edges.
 318 Node::Node(uint req)
 319   : _idx(Init(req))
 320 #ifdef ASSERT
 321   , _parse_idx(_idx)
 322 #endif
 323 {
 324   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 325   debug_only( verify_construction() );
 326   NOT_PRODUCT(nodes_created++);
 327   if (req == 0) {
 328     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 329     _in = NULL;
 330   } else {
 331     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 332     Node** to = _in;
 333     for(uint i = 0; i < req; i++) {
 334       to[i] = NULL;
 335     }
 336   }
 337 }
 338 
 339 //------------------------------Node-------------------------------------------
 340 Node::Node(Node *n0)
 341   : _idx(Init(1))
 342 #ifdef ASSERT
 343   , _parse_idx(_idx)
 344 #endif
 345 {
 346   debug_only( verify_construction() );
 347   NOT_PRODUCT(nodes_created++);
 348   // Assert we allocated space for input array already
 349   assert( _in[0] == this, "Must pass arg count to 'new'" );
 350   assert( is_not_dead(n0), "can not use dead node");
 351   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 352 }
 353 
 354 //------------------------------Node-------------------------------------------
 355 Node::Node(Node *n0, Node *n1)
 356   : _idx(Init(2))
 357 #ifdef ASSERT
 358   , _parse_idx(_idx)
 359 #endif
 360 {
 361   debug_only( verify_construction() );
 362   NOT_PRODUCT(nodes_created++);
 363   // Assert we allocated space for input array already
 364   assert( _in[1] == this, "Must pass arg count to 'new'" );
 365   assert( is_not_dead(n0), "can not use dead node");
 366   assert( is_not_dead(n1), "can not use dead node");
 367   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 368   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 369 }
 370 
 371 //------------------------------Node-------------------------------------------
 372 Node::Node(Node *n0, Node *n1, Node *n2)
 373   : _idx(Init(3))
 374 #ifdef ASSERT
 375   , _parse_idx(_idx)
 376 #endif
 377 {
 378   debug_only( verify_construction() );
 379   NOT_PRODUCT(nodes_created++);
 380   // Assert we allocated space for input array already
 381   assert( _in[2] == this, "Must pass arg count to 'new'" );
 382   assert( is_not_dead(n0), "can not use dead node");
 383   assert( is_not_dead(n1), "can not use dead node");
 384   assert( is_not_dead(n2), "can not use dead node");
 385   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 386   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 387   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 388 }
 389 
 390 //------------------------------Node-------------------------------------------
 391 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 392   : _idx(Init(4))
 393 #ifdef ASSERT
 394   , _parse_idx(_idx)
 395 #endif
 396 {
 397   debug_only( verify_construction() );
 398   NOT_PRODUCT(nodes_created++);
 399   // Assert we allocated space for input array already
 400   assert( _in[3] == this, "Must pass arg count to 'new'" );
 401   assert( is_not_dead(n0), "can not use dead node");
 402   assert( is_not_dead(n1), "can not use dead node");
 403   assert( is_not_dead(n2), "can not use dead node");
 404   assert( is_not_dead(n3), "can not use dead node");
 405   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 406   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 407   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 408   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 409 }
 410 
 411 //------------------------------Node-------------------------------------------
 412 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 413   : _idx(Init(5))
 414 #ifdef ASSERT
 415   , _parse_idx(_idx)
 416 #endif
 417 {
 418   debug_only( verify_construction() );
 419   NOT_PRODUCT(nodes_created++);
 420   // Assert we allocated space for input array already
 421   assert( _in[4] == this, "Must pass arg count to 'new'" );
 422   assert( is_not_dead(n0), "can not use dead node");
 423   assert( is_not_dead(n1), "can not use dead node");
 424   assert( is_not_dead(n2), "can not use dead node");
 425   assert( is_not_dead(n3), "can not use dead node");
 426   assert( is_not_dead(n4), "can not use dead node");
 427   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 428   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 429   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 430   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 431   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 432 }
 433 
 434 //------------------------------Node-------------------------------------------
 435 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 436                      Node *n4, Node *n5)
 437   : _idx(Init(6))
 438 #ifdef ASSERT
 439   , _parse_idx(_idx)
 440 #endif
 441 {
 442   debug_only( verify_construction() );
 443   NOT_PRODUCT(nodes_created++);
 444   // Assert we allocated space for input array already
 445   assert( _in[5] == this, "Must pass arg count to 'new'" );
 446   assert( is_not_dead(n0), "can not use dead node");
 447   assert( is_not_dead(n1), "can not use dead node");
 448   assert( is_not_dead(n2), "can not use dead node");
 449   assert( is_not_dead(n3), "can not use dead node");
 450   assert( is_not_dead(n4), "can not use dead node");
 451   assert( is_not_dead(n5), "can not use dead node");
 452   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 453   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 454   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 455   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 456   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 457   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 458 }
 459 
 460 //------------------------------Node-------------------------------------------
 461 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 462                      Node *n4, Node *n5, Node *n6)
 463   : _idx(Init(7))
 464 #ifdef ASSERT
 465   , _parse_idx(_idx)
 466 #endif
 467 {
 468   debug_only( verify_construction() );
 469   NOT_PRODUCT(nodes_created++);
 470   // Assert we allocated space for input array already
 471   assert( _in[6] == this, "Must pass arg count to 'new'" );
 472   assert( is_not_dead(n0), "can not use dead node");
 473   assert( is_not_dead(n1), "can not use dead node");
 474   assert( is_not_dead(n2), "can not use dead node");
 475   assert( is_not_dead(n3), "can not use dead node");
 476   assert( is_not_dead(n4), "can not use dead node");
 477   assert( is_not_dead(n5), "can not use dead node");
 478   assert( is_not_dead(n6), "can not use dead node");
 479   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 480   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 481   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 482   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 483   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 484   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 485   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 486 }
 487 
 488 #ifdef __clang__
 489 #pragma clang diagnostic pop
 490 #endif
 491 
 492 
 493 //------------------------------clone------------------------------------------
 494 // Clone a Node.
 495 Node *Node::clone() const {
 496   Compile* C = Compile::current();
 497   uint s = size_of();           // Size of inherited Node
 498   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 499   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 500   // Set the new input pointer array
 501   n->_in = (Node**)(((char*)n)+s);
 502   // Cannot share the old output pointer array, so kill it
 503   n->_out = NO_OUT_ARRAY;
 504   // And reset the counters to 0
 505   n->_outcnt = 0;
 506   n->_outmax = 0;
 507   // Unlock this guy, since he is not in any hash table.
 508   debug_only(n->_hash_lock = 0);
 509   // Walk the old node's input list to duplicate its edges
 510   uint i;
 511   for( i = 0; i < len(); i++ ) {
 512     Node *x = in(i);
 513     n->_in[i] = x;
 514     if (x != NULL) x->add_out(n);
 515   }
 516   if (is_macro())
 517     C->add_macro_node(n);
 518   if (is_expensive())
 519     C->add_expensive_node(n);
 520 #ifdef _LP64
 521   // If the cloned node is a range check dependent CastII, add it to the list.
 522   CastIINode* cast = n->isa_CastII();
 523   if (cast != NULL && cast->has_range_check()) {
 524     C->add_range_check_cast(cast);
 525   }
 526 #endif
 527 
 528   n->set_idx(C->next_unique()); // Get new unique index as well
 529   debug_only( n->verify_construction() );
 530   NOT_PRODUCT(nodes_created++);
 531   // Do not patch over the debug_idx of a clone, because it makes it
 532   // impossible to break on the clone's moment of creation.
 533   //debug_only( n->set_debug_idx( debug_idx() ) );
 534 
 535   C->copy_node_notes_to(n, (Node*) this);
 536 
 537   // MachNode clone
 538   uint nopnds;
 539   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 540     MachNode *mach  = n->as_Mach();
 541     MachNode *mthis = this->as_Mach();
 542     // Get address of _opnd_array.
 543     // It should be the same offset since it is the clone of this node.
 544     MachOper **from = mthis->_opnds;
 545     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 546                     pointer_delta((const void*)from,
 547                                   (const void*)(&mthis->_opnds), 1));
 548     mach->_opnds = to;
 549     for ( uint i = 0; i < nopnds; ++i ) {
 550       to[i] = from[i]->clone();
 551     }
 552   }
 553   // cloning CallNode may need to clone JVMState
 554   if (n->is_Call()) {
 555     n->as_Call()->clone_jvms(C);
 556   }
 557   if (n->is_SafePoint()) {
 558     n->as_SafePoint()->clone_replaced_nodes();
 559   }
 560   return n;                     // Return the clone
 561 }
 562 
 563 //---------------------------setup_is_top--------------------------------------
 564 // Call this when changing the top node, to reassert the invariants
 565 // required by Node::is_top.  See Compile::set_cached_top_node.
 566 void Node::setup_is_top() {
 567   if (this == (Node*)Compile::current()->top()) {
 568     // This node has just become top.  Kill its out array.
 569     _outcnt = _outmax = 0;
 570     _out = NULL;                           // marker value for top
 571     assert(is_top(), "must be top");
 572   } else {
 573     if (_out == NULL)  _out = NO_OUT_ARRAY;
 574     assert(!is_top(), "must not be top");
 575   }
 576 }
 577 
 578 
 579 //------------------------------~Node------------------------------------------
 580 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 581 extern int reclaim_idx ;
 582 extern int reclaim_in  ;
 583 extern int reclaim_node;
 584 void Node::destruct() {
 585   // Eagerly reclaim unique Node numberings
 586   Compile* compile = Compile::current();
 587   if ((uint)_idx+1 == compile->unique()) {
 588     compile->set_unique(compile->unique()-1);
 589 #ifdef ASSERT
 590     reclaim_idx++;
 591 #endif
 592   }
 593   // Clear debug info:
 594   Node_Notes* nn = compile->node_notes_at(_idx);
 595   if (nn != NULL)  nn->clear();
 596   // Walk the input array, freeing the corresponding output edges
 597   _cnt = _max;  // forget req/prec distinction
 598   uint i;
 599   for( i = 0; i < _max; i++ ) {
 600     set_req(i, NULL);
 601     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 602   }
 603   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 604   // See if the input array was allocated just prior to the object
 605   int edge_size = _max*sizeof(void*);
 606   int out_edge_size = _outmax*sizeof(void*);
 607   char *edge_end = ((char*)_in) + edge_size;
 608   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 609   char *out_edge_end = out_array + out_edge_size;
 610   int node_size = size_of();
 611 
 612   // Free the output edge array
 613   if (out_edge_size > 0) {
 614 #ifdef ASSERT
 615     if( out_edge_end == compile->node_arena()->hwm() )
 616       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 617 #endif
 618     compile->node_arena()->Afree(out_array, out_edge_size);
 619   }
 620 
 621   // Free the input edge array and the node itself
 622   if( edge_end == (char*)this ) {
 623 #ifdef ASSERT
 624     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 625       reclaim_in  += edge_size;
 626       reclaim_node+= node_size;
 627     }
 628 #else
 629     // It was; free the input array and object all in one hit
 630     compile->node_arena()->Afree(_in,edge_size+node_size);
 631 #endif
 632   } else {
 633 
 634     // Free just the input array
 635 #ifdef ASSERT
 636     if( edge_end == compile->node_arena()->hwm() )
 637       reclaim_in  += edge_size;
 638 #endif
 639     compile->node_arena()->Afree(_in,edge_size);
 640 
 641     // Free just the object
 642 #ifdef ASSERT
 643     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 644       reclaim_node+= node_size;
 645 #else
 646     compile->node_arena()->Afree(this,node_size);
 647 #endif
 648   }
 649   if (is_macro()) {
 650     compile->remove_macro_node(this);
 651   }
 652   if (is_expensive()) {
 653     compile->remove_expensive_node(this);
 654   }
 655 #ifdef _LP64
 656   CastIINode* cast = isa_CastII();
 657   if (cast != NULL && cast->has_range_check()) {
 658     compile->remove_range_check_cast(cast);
 659   }
 660 #endif
 661 
 662   if (is_SafePoint()) {
 663     as_SafePoint()->delete_replaced_nodes();
 664   }
 665 #ifdef ASSERT
 666   // We will not actually delete the storage, but we'll make the node unusable.
 667   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 668   _in = _out = (Node**) badAddress;
 669   _max = _cnt = _outmax = _outcnt = 0;
 670   compile->remove_modified_node(this);
 671 #endif
 672 }
 673 
 674 //------------------------------grow-------------------------------------------
 675 // Grow the input array, making space for more edges
 676 void Node::grow( uint len ) {
 677   Arena* arena = Compile::current()->node_arena();
 678   uint new_max = _max;
 679   if( new_max == 0 ) {
 680     _max = 4;
 681     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 682     Node** to = _in;
 683     to[0] = NULL;
 684     to[1] = NULL;
 685     to[2] = NULL;
 686     to[3] = NULL;
 687     return;
 688   }
 689   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 690   // Trimming to limit allows a uint8 to handle up to 255 edges.
 691   // Previously I was using only powers-of-2 which peaked at 128 edges.
 692   //if( new_max >= limit ) new_max = limit-1;
 693   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 694   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 695   _max = new_max;               // Record new max length
 696   // This assertion makes sure that Node::_max is wide enough to
 697   // represent the numerical value of new_max.
 698   assert(_max == new_max && _max > len, "int width of _max is too small");
 699 }
 700 
 701 //-----------------------------out_grow----------------------------------------
 702 // Grow the input array, making space for more edges
 703 void Node::out_grow( uint len ) {
 704   assert(!is_top(), "cannot grow a top node's out array");
 705   Arena* arena = Compile::current()->node_arena();
 706   uint new_max = _outmax;
 707   if( new_max == 0 ) {
 708     _outmax = 4;
 709     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 710     return;
 711   }
 712   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 713   // Trimming to limit allows a uint8 to handle up to 255 edges.
 714   // Previously I was using only powers-of-2 which peaked at 128 edges.
 715   //if( new_max >= limit ) new_max = limit-1;
 716   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 717   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 718   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 719   _outmax = new_max;               // Record new max length
 720   // This assertion makes sure that Node::_max is wide enough to
 721   // represent the numerical value of new_max.
 722   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 723 }
 724 
 725 #ifdef ASSERT
 726 //------------------------------is_dead----------------------------------------
 727 bool Node::is_dead() const {
 728   // Mach and pinch point nodes may look like dead.
 729   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 730     return false;
 731   for( uint i = 0; i < _max; i++ )
 732     if( _in[i] != NULL )
 733       return false;
 734   dump();
 735   return true;
 736 }
 737 #endif
 738 
 739 
 740 //------------------------------is_unreachable---------------------------------
 741 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 742   assert(!is_Mach(), "doesn't work with MachNodes");
 743   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 744 }
 745 
 746 //------------------------------add_req----------------------------------------
 747 // Add a new required input at the end
 748 void Node::add_req( Node *n ) {
 749   assert( is_not_dead(n), "can not use dead node");
 750 
 751   // Look to see if I can move precedence down one without reallocating
 752   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 753     grow( _max+1 );
 754 
 755   // Find a precedence edge to move
 756   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 757     uint i;
 758     for( i=_cnt; i<_max; i++ )
 759       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 760         break;                  // There must be one, since we grew the array
 761     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 762   }
 763   _in[_cnt++] = n;            // Stuff over old prec edge
 764   if (n != NULL) n->add_out((Node *)this);
 765 }
 766 
 767 //---------------------------add_req_batch-------------------------------------
 768 // Add a new required input at the end
 769 void Node::add_req_batch( Node *n, uint m ) {
 770   assert( is_not_dead(n), "can not use dead node");
 771   // check various edge cases
 772   if ((int)m <= 1) {
 773     assert((int)m >= 0, "oob");
 774     if (m != 0)  add_req(n);
 775     return;
 776   }
 777 
 778   // Look to see if I can move precedence down one without reallocating
 779   if( (_cnt+m) > _max || _in[_max-m] )
 780     grow( _max+m );
 781 
 782   // Find a precedence edge to move
 783   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 784     uint i;
 785     for( i=_cnt; i<_max; i++ )
 786       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 787         break;                  // There must be one, since we grew the array
 788     // Slide all the precs over by m positions (assume #prec << m).
 789     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 790   }
 791 
 792   // Stuff over the old prec edges
 793   for(uint i=0; i<m; i++ ) {
 794     _in[_cnt++] = n;
 795   }
 796 
 797   // Insert multiple out edges on the node.
 798   if (n != NULL && !n->is_top()) {
 799     for(uint i=0; i<m; i++ ) {
 800       n->add_out((Node *)this);
 801     }
 802   }
 803 }
 804 
 805 //------------------------------del_req----------------------------------------
 806 // Delete the required edge and compact the edge array
 807 void Node::del_req( uint idx ) {
 808   assert( idx < _cnt, "oob");
 809   assert( !VerifyHashTableKeys || _hash_lock == 0,
 810           "remove node from hash table before modifying it");
 811   // First remove corresponding def-use edge
 812   Node *n = in(idx);
 813   if (n != NULL) n->del_out((Node *)this);
 814   _in[idx] = in(--_cnt); // Compact the array
 815   // Avoid spec violation: Gap in prec edges.
 816   close_prec_gap_at(_cnt);
 817   Compile::current()->record_modified_node(this);
 818 }
 819 
 820 //------------------------------del_req_ordered--------------------------------
 821 // Delete the required edge and compact the edge array with preserved order
 822 void Node::del_req_ordered( uint idx ) {
 823   assert( idx < _cnt, "oob");
 824   assert( !VerifyHashTableKeys || _hash_lock == 0,
 825           "remove node from hash table before modifying it");
 826   // First remove corresponding def-use edge
 827   Node *n = in(idx);
 828   if (n != NULL) n->del_out((Node *)this);
 829   if (idx < --_cnt) {    // Not last edge ?
 830     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 831   }
 832   // Avoid spec violation: Gap in prec edges.
 833   close_prec_gap_at(_cnt);
 834   Compile::current()->record_modified_node(this);
 835 }
 836 
 837 //------------------------------ins_req----------------------------------------
 838 // Insert a new required input at the end
 839 void Node::ins_req( uint idx, Node *n ) {
 840   assert( is_not_dead(n), "can not use dead node");
 841   add_req(NULL);                // Make space
 842   assert( idx < _max, "Must have allocated enough space");
 843   // Slide over
 844   if(_cnt-idx-1 > 0) {
 845     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 846   }
 847   _in[idx] = n;                            // Stuff over old required edge
 848   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 849 }
 850 
 851 //-----------------------------find_edge---------------------------------------
 852 int Node::find_edge(Node* n) {
 853   for (uint i = 0; i < len(); i++) {
 854     if (_in[i] == n)  return i;
 855   }
 856   return -1;
 857 }
 858 
 859 //----------------------------replace_edge-------------------------------------
 860 int Node::replace_edge(Node* old, Node* neww) {
 861   if (old == neww)  return 0;  // nothing to do
 862   uint nrep = 0;
 863   for (uint i = 0; i < len(); i++) {
 864     if (in(i) == old) {
 865       if (i < req()) {
 866         set_req(i, neww);
 867       } else {
 868         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 869         set_prec(i, neww);
 870       }
 871       nrep++;
 872     }
 873   }
 874   return nrep;
 875 }
 876 
 877 /**
 878  * Replace input edges in the range pointing to 'old' node.
 879  */
 880 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 881   if (old == neww)  return 0;  // nothing to do
 882   uint nrep = 0;
 883   for (int i = start; i < end; i++) {
 884     if (in(i) == old) {
 885       set_req(i, neww);
 886       nrep++;
 887     }
 888   }
 889   return nrep;
 890 }
 891 
 892 //-------------------------disconnect_inputs-----------------------------------
 893 // NULL out all inputs to eliminate incoming Def-Use edges.
 894 // Return the number of edges between 'n' and 'this'
 895 int Node::disconnect_inputs(Node *n, Compile* C) {
 896   int edges_to_n = 0;
 897 
 898   uint cnt = req();
 899   for( uint i = 0; i < cnt; ++i ) {
 900     if( in(i) == 0 ) continue;
 901     if( in(i) == n ) ++edges_to_n;
 902     set_req(i, NULL);
 903   }
 904   // Remove precedence edges if any exist
 905   // Note: Safepoints may have precedence edges, even during parsing
 906   if( (req() != len()) && (in(req()) != NULL) ) {
 907     uint max = len();
 908     for( uint i = 0; i < max; ++i ) {
 909       if( in(i) == 0 ) continue;
 910       if( in(i) == n ) ++edges_to_n;
 911       set_prec(i, NULL);
 912     }
 913   }
 914 
 915   // Node::destruct requires all out edges be deleted first
 916   // debug_only(destruct();)   // no reuse benefit expected
 917   if (edges_to_n == 0) {
 918     C->record_dead_node(_idx);
 919   }
 920   return edges_to_n;
 921 }
 922 
 923 //-----------------------------uncast---------------------------------------
 924 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 925 // Strip away casting.  (It is depth-limited.)
 926 Node* Node::uncast() const {
 927   // Should be inline:
 928   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 929   if (is_ConstraintCast())
 930     return uncast_helper(this);
 931   else
 932     return (Node*) this;
 933 }
 934 
 935 // Find out of current node that matches opcode.
 936 Node* Node::find_out_with(int opcode) {
 937   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 938     Node* use = fast_out(i);
 939     if (use->Opcode() == opcode) {
 940       return use;
 941     }
 942   }
 943   return NULL;
 944 }
 945 
 946 // Return true if the current node has an out that matches opcode.
 947 bool Node::has_out_with(int opcode) {
 948   return (find_out_with(opcode) != NULL);
 949 }
 950 
 951 // Return true if the current node has an out that matches any of the opcodes.
 952 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 953   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 954       int opcode = fast_out(i)->Opcode();
 955       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 956         return true;
 957       }
 958   }
 959   return false;
 960 }
 961 
 962 
 963 //---------------------------uncast_helper-------------------------------------
 964 Node* Node::uncast_helper(const Node* p) {
 965 #ifdef ASSERT
 966   uint depth_count = 0;
 967   const Node* orig_p = p;
 968 #endif
 969 
 970   while (true) {
 971 #ifdef ASSERT
 972     if (depth_count >= K) {
 973       orig_p->dump(4);
 974       if (p != orig_p)
 975         p->dump(1);
 976     }
 977     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 978 #endif
 979     if (p == NULL || p->req() != 2) {
 980       break;
 981     } else if (p->is_ConstraintCast()) {
 982       p = p->in(1);
 983     } else {
 984       break;
 985     }
 986   }
 987   return (Node*) p;
 988 }
 989 
 990 //------------------------------add_prec---------------------------------------
 991 // Add a new precedence input.  Precedence inputs are unordered, with
 992 // duplicates removed and NULLs packed down at the end.
 993 void Node::add_prec( Node *n ) {
 994   assert( is_not_dead(n), "can not use dead node");
 995 
 996   // Check for NULL at end
 997   if( _cnt >= _max || in(_max-1) )
 998     grow( _max+1 );
 999 
1000   // Find a precedence edge to move
1001   uint i = _cnt;
1002   while( in(i) != NULL ) {
1003     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
1004     i++;
1005   }
1006   _in[i] = n;                                // Stuff prec edge over NULL
1007   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
1008 
1009 #ifdef ASSERT
1010   while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
1011 #endif
1012 }
1013 
1014 //------------------------------rm_prec----------------------------------------
1015 // Remove a precedence input.  Precedence inputs are unordered, with
1016 // duplicates removed and NULLs packed down at the end.
1017 void Node::rm_prec( uint j ) {
1018   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
1019   assert(j >= _cnt, "not a precedence edge");
1020   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
1021   _in[j]->del_out((Node *)this);
1022   close_prec_gap_at(j);
1023 }
1024 
1025 //------------------------------size_of----------------------------------------
1026 uint Node::size_of() const { return sizeof(*this); }
1027 
1028 //------------------------------ideal_reg--------------------------------------
1029 uint Node::ideal_reg() const { return 0; }
1030 
1031 //------------------------------jvms-------------------------------------------
1032 JVMState* Node::jvms() const { return NULL; }
1033 
1034 #ifdef ASSERT
1035 //------------------------------jvms-------------------------------------------
1036 bool Node::verify_jvms(const JVMState* using_jvms) const {
1037   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1038     if (jvms == using_jvms)  return true;
1039   }
1040   return false;
1041 }
1042 
1043 //------------------------------init_NodeProperty------------------------------
1044 void Node::init_NodeProperty() {
1045   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1046   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1047 }
1048 #endif
1049 
1050 //------------------------------format-----------------------------------------
1051 // Print as assembly
1052 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1053 //------------------------------emit-------------------------------------------
1054 // Emit bytes starting at parameter 'ptr'.
1055 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1056 //------------------------------size-------------------------------------------
1057 // Size of instruction in bytes
1058 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1059 
1060 //------------------------------CFG Construction-------------------------------
1061 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1062 // Goto and Return.
1063 const Node *Node::is_block_proj() const { return 0; }
1064 
1065 // Minimum guaranteed type
1066 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1067 
1068 
1069 //------------------------------raise_bottom_type------------------------------
1070 // Get the worst-case Type output for this Node.
1071 void Node::raise_bottom_type(const Type* new_type) {
1072   if (is_Type()) {
1073     TypeNode *n = this->as_Type();
1074     if (VerifyAliases) {
1075       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1076     }
1077     n->set_type(new_type);
1078   } else if (is_Load()) {
1079     LoadNode *n = this->as_Load();
1080     if (VerifyAliases) {
1081       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1082     }
1083     n->set_type(new_type);
1084   }
1085 }
1086 
1087 //------------------------------Identity---------------------------------------
1088 // Return a node that the given node is equivalent to.
1089 Node* Node::Identity(PhaseGVN* phase) {
1090   return this;                  // Default to no identities
1091 }
1092 
1093 //------------------------------Value------------------------------------------
1094 // Compute a new Type for a node using the Type of the inputs.
1095 const Type* Node::Value(PhaseGVN* phase) const {
1096   return bottom_type();         // Default to worst-case Type
1097 }
1098 
1099 //------------------------------Ideal------------------------------------------
1100 //
1101 // 'Idealize' the graph rooted at this Node.
1102 //
1103 // In order to be efficient and flexible there are some subtle invariants
1104 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1105 // these invariants, although its too slow to have on by default.  If you are
1106 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1107 //
1108 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1109 // pointer.  If ANY change is made, it must return the root of the reshaped
1110 // graph - even if the root is the same Node.  Example: swapping the inputs
1111 // to an AddINode gives the same answer and same root, but you still have to
1112 // return the 'this' pointer instead of NULL.
1113 //
1114 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1115 // Identity call to return an old Node; basically if Identity can find
1116 // another Node have the Ideal call make no change and return NULL.
1117 // Example: AddINode::Ideal must check for add of zero; in this case it
1118 // returns NULL instead of doing any graph reshaping.
1119 //
1120 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1121 // sharing there may be other users of the old Nodes relying on their current
1122 // semantics.  Modifying them will break the other users.
1123 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1124 // "X+3" unchanged in case it is shared.
1125 //
1126 // If you modify the 'this' pointer's inputs, you should use
1127 // 'set_req'.  If you are making a new Node (either as the new root or
1128 // some new internal piece) you may use 'init_req' to set the initial
1129 // value.  You can make a new Node with either 'new' or 'clone'.  In
1130 // either case, def-use info is correctly maintained.
1131 //
1132 // Example: reshape "(X+3)+4" into "X+7":
1133 //    set_req(1, in(1)->in(1));
1134 //    set_req(2, phase->intcon(7));
1135 //    return this;
1136 // Example: reshape "X*4" into "X<<2"
1137 //    return new LShiftINode(in(1), phase->intcon(2));
1138 //
1139 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1140 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1141 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1142 //    return new AddINode(shift, in(1));
1143 //
1144 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1145 // These forms are faster than 'phase->transform(new ConNode())' and Do
1146 // The Right Thing with def-use info.
1147 //
1148 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1149 // graph uses the 'this' Node it must be the root.  If you want a Node with
1150 // the same Opcode as the 'this' pointer use 'clone'.
1151 //
1152 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1153   return NULL;                  // Default to being Ideal already
1154 }
1155 
1156 // Some nodes have specific Ideal subgraph transformations only if they are
1157 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1158 // for the transformations to happen.
1159 bool Node::has_special_unique_user() const {
1160   assert(outcnt() == 1, "match only for unique out");
1161   Node* n = unique_out();
1162   int op  = Opcode();
1163   if (this->is_Store()) {
1164     // Condition for back-to-back stores folding.
1165     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1166   } else if (this->is_Load()) {
1167     // Condition for removing an unused LoadNode from the MemBarAcquire precedence input
1168     return n->Opcode() == Op_MemBarAcquire;
1169   } else if (op == Op_AddL) {
1170     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1171     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1172   } else if (op == Op_SubI || op == Op_SubL) {
1173     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1174     return n->Opcode() == op && n->in(2) == this;
1175   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1176     // See IfProjNode::Identity()
1177     return true;
1178   }
1179   return false;
1180 };
1181 
1182 //--------------------------find_exact_control---------------------------------
1183 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1184 Node* Node::find_exact_control(Node* ctrl) {
1185   if (ctrl == NULL && this->is_Region())
1186     ctrl = this->as_Region()->is_copy();
1187 
1188   if (ctrl != NULL && ctrl->is_CatchProj()) {
1189     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1190       ctrl = ctrl->in(0);
1191     if (ctrl != NULL && !ctrl->is_top())
1192       ctrl = ctrl->in(0);
1193   }
1194 
1195   if (ctrl != NULL && ctrl->is_Proj())
1196     ctrl = ctrl->in(0);
1197 
1198   return ctrl;
1199 }
1200 
1201 //--------------------------dominates------------------------------------------
1202 // Helper function for MemNode::all_controls_dominate().
1203 // Check if 'this' control node dominates or equal to 'sub' control node.
1204 // We already know that if any path back to Root or Start reaches 'this',
1205 // then all paths so, so this is a simple search for one example,
1206 // not an exhaustive search for a counterexample.
1207 bool Node::dominates(Node* sub, Node_List &nlist) {
1208   assert(this->is_CFG(), "expecting control");
1209   assert(sub != NULL && sub->is_CFG(), "expecting control");
1210 
1211   // detect dead cycle without regions
1212   int iterations_without_region_limit = DominatorSearchLimit;
1213 
1214   Node* orig_sub = sub;
1215   Node* dom      = this;
1216   bool  met_dom  = false;
1217   nlist.clear();
1218 
1219   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1220   // After seeing 'dom', continue up to Root or Start.
1221   // If we hit a region (backward split point), it may be a loop head.
1222   // Keep going through one of the region's inputs.  If we reach the
1223   // same region again, go through a different input.  Eventually we
1224   // will either exit through the loop head, or give up.
1225   // (If we get confused, break out and return a conservative 'false'.)
1226   while (sub != NULL) {
1227     if (sub->is_top())  break; // Conservative answer for dead code.
1228     if (sub == dom) {
1229       if (nlist.size() == 0) {
1230         // No Region nodes except loops were visited before and the EntryControl
1231         // path was taken for loops: it did not walk in a cycle.
1232         return true;
1233       } else if (met_dom) {
1234         break;          // already met before: walk in a cycle
1235       } else {
1236         // Region nodes were visited. Continue walk up to Start or Root
1237         // to make sure that it did not walk in a cycle.
1238         met_dom = true; // first time meet
1239         iterations_without_region_limit = DominatorSearchLimit; // Reset
1240      }
1241     }
1242     if (sub->is_Start() || sub->is_Root()) {
1243       // Success if we met 'dom' along a path to Start or Root.
1244       // We assume there are no alternative paths that avoid 'dom'.
1245       // (This assumption is up to the caller to ensure!)
1246       return met_dom;
1247     }
1248     Node* up = sub->in(0);
1249     // Normalize simple pass-through regions and projections:
1250     up = sub->find_exact_control(up);
1251     // If sub == up, we found a self-loop.  Try to push past it.
1252     if (sub == up && sub->is_Loop()) {
1253       // Take loop entry path on the way up to 'dom'.
1254       up = sub->in(1); // in(LoopNode::EntryControl);
1255     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1256       // Always take in(1) path on the way up to 'dom' for clone regions
1257       // (with only one input) or regions which merge > 2 paths
1258       // (usually used to merge fast/slow paths).
1259       up = sub->in(1);
1260     } else if (sub == up && sub->is_Region()) {
1261       // Try both paths for Regions with 2 input paths (it may be a loop head).
1262       // It could give conservative 'false' answer without information
1263       // which region's input is the entry path.
1264       iterations_without_region_limit = DominatorSearchLimit; // Reset
1265 
1266       bool region_was_visited_before = false;
1267       // Was this Region node visited before?
1268       // If so, we have reached it because we accidentally took a
1269       // loop-back edge from 'sub' back into the body of the loop,
1270       // and worked our way up again to the loop header 'sub'.
1271       // So, take the first unexplored path on the way up to 'dom'.
1272       for (int j = nlist.size() - 1; j >= 0; j--) {
1273         intptr_t ni = (intptr_t)nlist.at(j);
1274         Node* visited = (Node*)(ni & ~1);
1275         bool  visited_twice_already = ((ni & 1) != 0);
1276         if (visited == sub) {
1277           if (visited_twice_already) {
1278             // Visited 2 paths, but still stuck in loop body.  Give up.
1279             return false;
1280           }
1281           // The Region node was visited before only once.
1282           // (We will repush with the low bit set, below.)
1283           nlist.remove(j);
1284           // We will find a new edge and re-insert.
1285           region_was_visited_before = true;
1286           break;
1287         }
1288       }
1289 
1290       // Find an incoming edge which has not been seen yet; walk through it.
1291       assert(up == sub, "");
1292       uint skip = region_was_visited_before ? 1 : 0;
1293       for (uint i = 1; i < sub->req(); i++) {
1294         Node* in = sub->in(i);
1295         if (in != NULL && !in->is_top() && in != sub) {
1296           if (skip == 0) {
1297             up = in;
1298             break;
1299           }
1300           --skip;               // skip this nontrivial input
1301         }
1302       }
1303 
1304       // Set 0 bit to indicate that both paths were taken.
1305       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1306     }
1307 
1308     if (up == sub) {
1309       break;    // some kind of tight cycle
1310     }
1311     if (up == orig_sub && met_dom) {
1312       // returned back after visiting 'dom'
1313       break;    // some kind of cycle
1314     }
1315     if (--iterations_without_region_limit < 0) {
1316       break;    // dead cycle
1317     }
1318     sub = up;
1319   }
1320 
1321   // Did not meet Root or Start node in pred. chain.
1322   // Conservative answer for dead code.
1323   return false;
1324 }
1325 
1326 //------------------------------remove_dead_region-----------------------------
1327 // This control node is dead.  Follow the subgraph below it making everything
1328 // using it dead as well.  This will happen normally via the usual IterGVN
1329 // worklist but this call is more efficient.  Do not update use-def info
1330 // inside the dead region, just at the borders.
1331 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1332   // Con's are a popular node to re-hit in the hash table again.
1333   if( dead->is_Con() ) return;
1334 
1335   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1336   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1337   Node_List  nstack(Thread::current()->resource_area());
1338 
1339   Node *top = igvn->C->top();
1340   nstack.push(dead);
1341   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1342 
1343   while (nstack.size() > 0) {
1344     dead = nstack.pop();
1345     if (dead->outcnt() > 0) {
1346       // Keep dead node on stack until all uses are processed.
1347       nstack.push(dead);
1348       // For all Users of the Dead...    ;-)
1349       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1350         Node* use = dead->last_out(k);
1351         igvn->hash_delete(use);       // Yank from hash table prior to mod
1352         if (use->in(0) == dead) {     // Found another dead node
1353           assert (!use->is_Con(), "Control for Con node should be Root node.");
1354           use->set_req(0, top);       // Cut dead edge to prevent processing
1355           nstack.push(use);           // the dead node again.
1356         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1357                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1358                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1359           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1360           use->set_req(0, top);       // Cut self edge
1361           nstack.push(use);
1362         } else {                      // Else found a not-dead user
1363           // Dead if all inputs are top or null
1364           bool dead_use = !use->is_Root(); // Keep empty graph alive
1365           for (uint j = 1; j < use->req(); j++) {
1366             Node* in = use->in(j);
1367             if (in == dead) {         // Turn all dead inputs into TOP
1368               use->set_req(j, top);
1369             } else if (in != NULL && !in->is_top()) {
1370               dead_use = false;
1371             }
1372           }
1373           if (dead_use) {
1374             if (use->is_Region()) {
1375               use->set_req(0, top);   // Cut self edge
1376             }
1377             nstack.push(use);
1378           } else {
1379             igvn->_worklist.push(use);
1380           }
1381         }
1382         // Refresh the iterator, since any number of kills might have happened.
1383         k = dead->last_outs(kmin);
1384       }
1385     } else { // (dead->outcnt() == 0)
1386       // Done with outputs.
1387       igvn->hash_delete(dead);
1388       igvn->_worklist.remove(dead);
1389       igvn->C->remove_modified_node(dead);
1390       igvn->set_type(dead, Type::TOP);
1391       if (dead->is_macro()) {
1392         igvn->C->remove_macro_node(dead);
1393       }
1394       if (dead->is_expensive()) {
1395         igvn->C->remove_expensive_node(dead);
1396       }
1397 #ifdef _LP64
1398       CastIINode* cast = dead->isa_CastII();
1399       if (cast != NULL && cast->has_range_check()) {
1400         igvn->C->remove_range_check_cast(cast);
1401       }
1402 #endif
1403       igvn->C->record_dead_node(dead->_idx);
1404       // Kill all inputs to the dead guy
1405       for (uint i=0; i < dead->req(); i++) {
1406         Node *n = dead->in(i);      // Get input to dead guy
1407         if (n != NULL && !n->is_top()) { // Input is valid?
1408           dead->set_req(i, top);    // Smash input away
1409           if (n->outcnt() == 0) {   // Input also goes dead?
1410             if (!n->is_Con())
1411               nstack.push(n);       // Clear it out as well
1412           } else if (n->outcnt() == 1 &&
1413                      n->has_special_unique_user()) {
1414             igvn->add_users_to_worklist( n );
1415           } else if (n->outcnt() <= 2 && n->is_Store()) {
1416             // Push store's uses on worklist to enable folding optimization for
1417             // store/store and store/load to the same address.
1418             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1419             // and remove_globally_dead_node().
1420             igvn->add_users_to_worklist( n );
1421           }
1422         }
1423       }
1424     } // (dead->outcnt() == 0)
1425   }   // while (nstack.size() > 0) for outputs
1426   return;
1427 }
1428 
1429 //------------------------------remove_dead_region-----------------------------
1430 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1431   Node *n = in(0);
1432   if( !n ) return false;
1433   // Lost control into this guy?  I.e., it became unreachable?
1434   // Aggressively kill all unreachable code.
1435   if (can_reshape && n->is_top()) {
1436     kill_dead_code(this, phase->is_IterGVN());
1437     return false; // Node is dead.
1438   }
1439 
1440   if( n->is_Region() && n->as_Region()->is_copy() ) {
1441     Node *m = n->nonnull_req();
1442     set_req(0, m);
1443     return true;
1444   }
1445   return false;
1446 }
1447 
1448 //------------------------------hash-------------------------------------------
1449 // Hash function over Nodes.
1450 uint Node::hash() const {
1451   uint sum = 0;
1452   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1453     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1454   return (sum>>2) + _cnt + Opcode();
1455 }
1456 
1457 //------------------------------cmp--------------------------------------------
1458 // Compare special parts of simple Nodes
1459 uint Node::cmp( const Node &n ) const {
1460   return 1;                     // Must be same
1461 }
1462 
1463 //------------------------------rematerialize-----------------------------------
1464 // Should we clone rather than spill this instruction?
1465 bool Node::rematerialize() const {
1466   if ( is_Mach() )
1467     return this->as_Mach()->rematerialize();
1468   else
1469     return (_flags & Flag_rematerialize) != 0;
1470 }
1471 
1472 //------------------------------needs_anti_dependence_check---------------------
1473 // Nodes which use memory without consuming it, hence need antidependences.
1474 bool Node::needs_anti_dependence_check() const {
1475   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1476     return false;
1477   else
1478     return in(1)->bottom_type()->has_memory();
1479 }
1480 
1481 
1482 // Get an integer constant from a ConNode (or CastIINode).
1483 // Return a default value if there is no apparent constant here.
1484 const TypeInt* Node::find_int_type() const {
1485   if (this->is_Type()) {
1486     return this->as_Type()->type()->isa_int();
1487   } else if (this->is_Con()) {
1488     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1489     return this->bottom_type()->isa_int();
1490   }
1491   return NULL;
1492 }
1493 
1494 // Get a pointer constant from a ConstNode.
1495 // Returns the constant if it is a pointer ConstNode
1496 intptr_t Node::get_ptr() const {
1497   assert( Opcode() == Op_ConP, "" );
1498   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1499 }
1500 
1501 // Get a narrow oop constant from a ConNNode.
1502 intptr_t Node::get_narrowcon() const {
1503   assert( Opcode() == Op_ConN, "" );
1504   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1505 }
1506 
1507 // Get a long constant from a ConNode.
1508 // Return a default value if there is no apparent constant here.
1509 const TypeLong* Node::find_long_type() const {
1510   if (this->is_Type()) {
1511     return this->as_Type()->type()->isa_long();
1512   } else if (this->is_Con()) {
1513     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1514     return this->bottom_type()->isa_long();
1515   }
1516   return NULL;
1517 }
1518 
1519 
1520 /**
1521  * Return a ptr type for nodes which should have it.
1522  */
1523 const TypePtr* Node::get_ptr_type() const {
1524   const TypePtr* tp = this->bottom_type()->make_ptr();
1525 #ifdef ASSERT
1526   if (tp == NULL) {
1527     this->dump(1);
1528     assert((tp != NULL), "unexpected node type");
1529   }
1530 #endif
1531   return tp;
1532 }
1533 
1534 // Get a double constant from a ConstNode.
1535 // Returns the constant if it is a double ConstNode
1536 jdouble Node::getd() const {
1537   assert( Opcode() == Op_ConD, "" );
1538   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1539 }
1540 
1541 // Get a float constant from a ConstNode.
1542 // Returns the constant if it is a float ConstNode
1543 jfloat Node::getf() const {
1544   assert( Opcode() == Op_ConF, "" );
1545   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1546 }
1547 
1548 #ifndef PRODUCT
1549 
1550 //------------------------------find------------------------------------------
1551 // Find a neighbor of this Node with the given _idx
1552 // If idx is negative, find its absolute value, following both _in and _out.
1553 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1554                         VectorSet* old_space, VectorSet* new_space ) {
1555   int node_idx = (idx >= 0) ? idx : -idx;
1556   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1557   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1558   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1559   if( v->test(n->_idx) ) return;
1560   if( (int)n->_idx == node_idx
1561       debug_only(|| n->debug_idx() == node_idx) ) {
1562     if (result != NULL)
1563       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1564                  (uintptr_t)result, (uintptr_t)n, node_idx);
1565     result = n;
1566   }
1567   v->set(n->_idx);
1568   for( uint i=0; i<n->len(); i++ ) {
1569     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1570     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1571   }
1572   // Search along forward edges also:
1573   if (idx < 0 && !only_ctrl) {
1574     for( uint j=0; j<n->outcnt(); j++ ) {
1575       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1576     }
1577   }
1578 #ifdef ASSERT
1579   // Search along debug_orig edges last, checking for cycles
1580   Node* orig = n->debug_orig();
1581   if (orig != NULL) {
1582     do {
1583       if (NotANode(orig))  break;
1584       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1585       orig = orig->debug_orig();
1586     } while (orig != NULL && orig != n->debug_orig());
1587   }
1588 #endif //ASSERT
1589 }
1590 
1591 // call this from debugger:
1592 Node* find_node(Node* n, int idx) {
1593   return n->find(idx);
1594 }
1595 
1596 //------------------------------find-------------------------------------------
1597 Node* Node::find(int idx) const {
1598   ResourceArea *area = Thread::current()->resource_area();
1599   VectorSet old_space(area), new_space(area);
1600   Node* result = NULL;
1601   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1602   return result;
1603 }
1604 
1605 //------------------------------find_ctrl--------------------------------------
1606 // Find an ancestor to this node in the control history with given _idx
1607 Node* Node::find_ctrl(int idx) const {
1608   ResourceArea *area = Thread::current()->resource_area();
1609   VectorSet old_space(area), new_space(area);
1610   Node* result = NULL;
1611   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1612   return result;
1613 }
1614 #endif
1615 
1616 
1617 
1618 #ifndef PRODUCT
1619 
1620 // -----------------------------Name-------------------------------------------
1621 extern const char *NodeClassNames[];
1622 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1623 
1624 static bool is_disconnected(const Node* n) {
1625   for (uint i = 0; i < n->req(); i++) {
1626     if (n->in(i) != NULL)  return false;
1627   }
1628   return true;
1629 }
1630 
1631 #ifdef ASSERT
1632 static void dump_orig(Node* orig, outputStream *st) {
1633   Compile* C = Compile::current();
1634   if (NotANode(orig)) orig = NULL;
1635   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1636   if (orig == NULL) return;
1637   st->print(" !orig=");
1638   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1639   if (NotANode(fast)) fast = NULL;
1640   while (orig != NULL) {
1641     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1642     if (discon) st->print("[");
1643     if (!Compile::current()->node_arena()->contains(orig))
1644       st->print("o");
1645     st->print("%d", orig->_idx);
1646     if (discon) st->print("]");
1647     orig = orig->debug_orig();
1648     if (NotANode(orig)) orig = NULL;
1649     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1650     if (orig != NULL) st->print(",");
1651     if (fast != NULL) {
1652       // Step fast twice for each single step of orig:
1653       fast = fast->debug_orig();
1654       if (NotANode(fast)) fast = NULL;
1655       if (fast != NULL && fast != orig) {
1656         fast = fast->debug_orig();
1657         if (NotANode(fast)) fast = NULL;
1658       }
1659       if (fast == orig) {
1660         st->print("...");
1661         break;
1662       }
1663     }
1664   }
1665 }
1666 
1667 void Node::set_debug_orig(Node* orig) {
1668   _debug_orig = orig;
1669   if (BreakAtNode == 0)  return;
1670   if (NotANode(orig))  orig = NULL;
1671   int trip = 10;
1672   while (orig != NULL) {
1673     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1674       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1675                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1676       BREAKPOINT;
1677     }
1678     orig = orig->debug_orig();
1679     if (NotANode(orig))  orig = NULL;
1680     if (trip-- <= 0)  break;
1681   }
1682 }
1683 #endif //ASSERT
1684 
1685 //------------------------------dump------------------------------------------
1686 // Dump a Node
1687 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1688   Compile* C = Compile::current();
1689   bool is_new = C->node_arena()->contains(this);
1690   C->_in_dump_cnt++;
1691   st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
1692 
1693   // Dump the required and precedence inputs
1694   dump_req(st);
1695   dump_prec(st);
1696   // Dump the outputs
1697   dump_out(st);
1698 
1699   if (is_disconnected(this)) {
1700 #ifdef ASSERT
1701     st->print("  [%d]",debug_idx());
1702     dump_orig(debug_orig(), st);
1703 #endif
1704     st->cr();
1705     C->_in_dump_cnt--;
1706     return;                     // don't process dead nodes
1707   }
1708 
1709   if (C->clone_map().value(_idx) != 0) {
1710     C->clone_map().dump(_idx);
1711   }
1712   // Dump node-specific info
1713   dump_spec(st);
1714 #ifdef ASSERT
1715   // Dump the non-reset _debug_idx
1716   if (Verbose && WizardMode) {
1717     st->print("  [%d]",debug_idx());
1718   }
1719 #endif
1720 
1721   const Type *t = bottom_type();
1722 
1723   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1724     const TypeInstPtr  *toop = t->isa_instptr();
1725     const TypeKlassPtr *tkls = t->isa_klassptr();
1726     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1727     if (klass && klass->is_loaded() && klass->is_interface()) {
1728       st->print("  Interface:");
1729     } else if (toop) {
1730       st->print("  Oop:");
1731     } else if (tkls) {
1732       st->print("  Klass:");
1733     }
1734     t->dump_on(st);
1735   } else if (t == Type::MEMORY) {
1736     st->print("  Memory:");
1737     MemNode::dump_adr_type(this, adr_type(), st);
1738   } else if (Verbose || WizardMode) {
1739     st->print("  Type:");
1740     if (t) {
1741       t->dump_on(st);
1742     } else {
1743       st->print("no type");
1744     }
1745   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1746     // Dump MachSpillcopy vector type.
1747     t->dump_on(st);
1748   }
1749   if (is_new) {
1750     debug_only(dump_orig(debug_orig(), st));
1751     Node_Notes* nn = C->node_notes_at(_idx);
1752     if (nn != NULL && !nn->is_clear()) {
1753       if (nn->jvms() != NULL) {
1754         st->print(" !jvms:");
1755         nn->jvms()->dump_spec(st);
1756       }
1757     }
1758   }
1759   if (suffix) st->print("%s", suffix);
1760   C->_in_dump_cnt--;
1761 }
1762 
1763 //------------------------------dump_req--------------------------------------
1764 void Node::dump_req(outputStream *st) const {
1765   // Dump the required input edges
1766   for (uint i = 0; i < req(); i++) {    // For all required inputs
1767     Node* d = in(i);
1768     if (d == NULL) {
1769       st->print("_ ");
1770     } else if (NotANode(d)) {
1771       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1772     } else {
1773       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1774     }
1775   }
1776 }
1777 
1778 
1779 //------------------------------dump_prec-------------------------------------
1780 void Node::dump_prec(outputStream *st) const {
1781   // Dump the precedence edges
1782   int any_prec = 0;
1783   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1784     Node* p = in(i);
1785     if (p != NULL) {
1786       if (!any_prec++) st->print(" |");
1787       if (NotANode(p)) { st->print("NotANode "); continue; }
1788       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1789     }
1790   }
1791 }
1792 
1793 //------------------------------dump_out--------------------------------------
1794 void Node::dump_out(outputStream *st) const {
1795   // Delimit the output edges
1796   st->print(" [[");
1797   // Dump the output edges
1798   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1799     Node* u = _out[i];
1800     if (u == NULL) {
1801       st->print("_ ");
1802     } else if (NotANode(u)) {
1803       st->print("NotANode ");
1804     } else {
1805       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1806     }
1807   }
1808   st->print("]] ");
1809 }
1810 
1811 //----------------------------collect_nodes_i----------------------------------
1812 // Collects nodes from an Ideal graph, starting from a given start node and
1813 // moving in a given direction until a certain depth (distance from the start
1814 // node) is reached. Duplicates are ignored.
1815 // Arguments:
1816 //   nstack:        the nodes are collected into this array.
1817 //   start:         the node at which to start collecting.
1818 //   direction:     if this is a positive number, collect input nodes; if it is
1819 //                  a negative number, collect output nodes.
1820 //   depth:         collect nodes up to this distance from the start node.
1821 //   include_start: whether to include the start node in the result collection.
1822 //   only_ctrl:     whether to regard control edges only during traversal.
1823 //   only_data:     whether to regard data edges only during traversal.
1824 static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1825   Node* s = (Node*) start; // remove const
1826   nstack->append(s);
1827   int begin = 0;
1828   int end = 0;
1829   for(uint i = 0; i < depth; i++) {
1830     end = nstack->length();
1831     for(int j = begin; j < end; j++) {
1832       Node* tp  = nstack->at(j);
1833       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1834       for(uint k = 0; k < limit; k++) {
1835         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1836 
1837         if (NotANode(n))  continue;
1838         // do not recurse through top or the root (would reach unrelated stuff)
1839         if (n->is_Root() || n->is_top()) continue;
1840         if (only_ctrl && !n->is_CFG()) continue;
1841         if (only_data && n->is_CFG()) continue;
1842 
1843         bool on_stack = nstack->contains(n);
1844         if (!on_stack) {
1845           nstack->append(n);
1846         }
1847       }
1848     }
1849     begin = end;
1850   }
1851   if (!include_start) {
1852     nstack->remove(s);
1853   }
1854 }
1855 
1856 //------------------------------dump_nodes-------------------------------------
1857 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1858   if (NotANode(start)) return;
1859 
1860   GrowableArray <Node *> nstack(Compile::current()->live_nodes());
1861   collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
1862 
1863   int end = nstack.length();
1864   if (d > 0) {
1865     for(int j = end-1; j >= 0; j--) {
1866       nstack.at(j)->dump();
1867     }
1868   } else {
1869     for(int j = 0; j < end; j++) {
1870       nstack.at(j)->dump();
1871     }
1872   }
1873 }
1874 
1875 //------------------------------dump-------------------------------------------
1876 void Node::dump(int d) const {
1877   dump_nodes(this, d, false);
1878 }
1879 
1880 //------------------------------dump_ctrl--------------------------------------
1881 // Dump a Node's control history to depth
1882 void Node::dump_ctrl(int d) const {
1883   dump_nodes(this, d, true);
1884 }
1885 
1886 //-----------------------------dump_compact------------------------------------
1887 void Node::dump_comp() const {
1888   this->dump_comp("\n");
1889 }
1890 
1891 //-----------------------------dump_compact------------------------------------
1892 // Dump a Node in compact representation, i.e., just print its name and index.
1893 // Nodes can specify additional specifics to print in compact representation by
1894 // implementing dump_compact_spec.
1895 void Node::dump_comp(const char* suffix, outputStream *st) const {
1896   Compile* C = Compile::current();
1897   C->_in_dump_cnt++;
1898   st->print("%s(%d)", Name(), _idx);
1899   this->dump_compact_spec(st);
1900   if (suffix) {
1901     st->print("%s", suffix);
1902   }
1903   C->_in_dump_cnt--;
1904 }
1905 
1906 //----------------------------dump_related-------------------------------------
1907 // Dump a Node's related nodes - the notion of "related" depends on the Node at
1908 // hand and is determined by the implementation of the virtual method rel.
1909 void Node::dump_related() const {
1910   Compile* C = Compile::current();
1911   GrowableArray <Node *> in_rel(C->unique());
1912   GrowableArray <Node *> out_rel(C->unique());
1913   this->related(&in_rel, &out_rel, false);
1914   for (int i = in_rel.length() - 1; i >= 0; i--) {
1915     in_rel.at(i)->dump();
1916   }
1917   this->dump("\n", true);
1918   for (int i = 0; i < out_rel.length(); i++) {
1919     out_rel.at(i)->dump();
1920   }
1921 }
1922 
1923 //----------------------------dump_related-------------------------------------
1924 // Dump a Node's related nodes up to a given depth (distance from the start
1925 // node).
1926 // Arguments:
1927 //   d_in:  depth for input nodes.
1928 //   d_out: depth for output nodes (note: this also is a positive number).
1929 void Node::dump_related(uint d_in, uint d_out) const {
1930   Compile* C = Compile::current();
1931   GrowableArray <Node *> in_rel(C->unique());
1932   GrowableArray <Node *> out_rel(C->unique());
1933 
1934   // call collect_nodes_i directly
1935   collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1936   collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1937 
1938   for (int i = in_rel.length() - 1; i >= 0; i--) {
1939     in_rel.at(i)->dump();
1940   }
1941   this->dump("\n", true);
1942   for (int i = 0; i < out_rel.length(); i++) {
1943     out_rel.at(i)->dump();
1944   }
1945 }
1946 
1947 //------------------------dump_related_compact---------------------------------
1948 // Dump a Node's related nodes in compact representation. The notion of
1949 // "related" depends on the Node at hand and is determined by the implementation
1950 // of the virtual method rel.
1951 void Node::dump_related_compact() const {
1952   Compile* C = Compile::current();
1953   GrowableArray <Node *> in_rel(C->unique());
1954   GrowableArray <Node *> out_rel(C->unique());
1955   this->related(&in_rel, &out_rel, true);
1956   int n_in = in_rel.length();
1957   int n_out = out_rel.length();
1958 
1959   this->dump_comp(n_in == 0 ? "\n" : "  ");
1960   for (int i = 0; i < n_in; i++) {
1961     in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
1962   }
1963   for (int i = 0; i < n_out; i++) {
1964     out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
1965   }
1966 }
1967 
1968 //------------------------------related----------------------------------------
1969 // Collect a Node's related nodes. The default behaviour just collects the
1970 // inputs and outputs at depth 1, including both control and data flow edges,
1971 // regardless of whether the presentation is compact or not. For data nodes,
1972 // the default is to collect all data inputs (till level 1 if compact), and
1973 // outputs till level 1.
1974 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1975   if (this->is_CFG()) {
1976     collect_nodes_i(in_rel, this, 1, 1, false, false, false);
1977     collect_nodes_i(out_rel, this, -1, 1, false, false, false);
1978   } else {
1979     if (compact) {
1980       this->collect_nodes(in_rel, 1, false, true);
1981     } else {
1982       this->collect_nodes_in_all_data(in_rel, false);
1983     }
1984     this->collect_nodes(out_rel, -1, false, false);
1985   }
1986 }
1987 
1988 //---------------------------collect_nodes-------------------------------------
1989 // An entry point to the low-level node collection facility, to start from a
1990 // given node in the graph. The start node is by default not included in the
1991 // result.
1992 // Arguments:
1993 //   ns:   collect the nodes into this data structure.
1994 //   d:    the depth (distance from start node) to which nodes should be
1995 //         collected. A value >0 indicates input nodes, a value <0, output
1996 //         nodes.
1997 //   ctrl: include only control nodes.
1998 //   data: include only data nodes.
1999 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
2000   if (ctrl && data) {
2001     // ignore nonsensical combination
2002     return;
2003   }
2004   collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
2005 }
2006 
2007 //--------------------------collect_nodes_in-----------------------------------
2008 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
2009   // The maximum depth is determined using a BFS that visits all primary (data
2010   // or control) inputs and increments the depth at each level.
2011   uint d_in = 0;
2012   GrowableArray<Node*> nodes(Compile::current()->unique());
2013   nodes.push(start);
2014   int nodes_at_current_level = 1;
2015   int n_idx = 0;
2016   while (nodes_at_current_level > 0) {
2017     // Add all primary inputs reachable from the current level to the list, and
2018     // increase the depth if there were any.
2019     int nodes_at_next_level = 0;
2020     bool nodes_added = false;
2021     while (nodes_at_current_level > 0) {
2022       nodes_at_current_level--;
2023       Node* current = nodes.at(n_idx++);
2024       for (uint i = 0; i < current->len(); i++) {
2025         Node* n = current->in(i);
2026         if (NotANode(n)) {
2027           continue;
2028         }
2029         if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
2030           continue;
2031         }
2032         if (!nodes.contains(n)) {
2033           nodes.push(n);
2034           nodes_added = true;
2035           nodes_at_next_level++;
2036         }
2037       }
2038     }
2039     if (nodes_added) {
2040       d_in++;
2041     }
2042     nodes_at_current_level = nodes_at_next_level;
2043   }
2044   start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
2045   if (collect_secondary) {
2046     // Now, iterate over the secondary nodes in ns and add the respective
2047     // boundary reachable from them.
2048     GrowableArray<Node*> sns(Compile::current()->unique());
2049     for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2050       Node* n = *it;
2051       n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2052       for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2053         ns->append_if_missing(*d);
2054       }
2055       sns.clear();
2056     }
2057   }
2058 }
2059 
2060 //---------------------collect_nodes_in_all_data-------------------------------
2061 // Collect the entire data input graph. Include the control boundary if
2062 // requested.
2063 // Arguments:
2064 //   ns:   collect the nodes into this data structure.
2065 //   ctrl: if true, include the control boundary.
2066 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2067   collect_nodes_in((Node*) this, ns, true, ctrl);
2068 }
2069 
2070 //--------------------------collect_nodes_in_all_ctrl--------------------------
2071 // Collect the entire control input graph. Include the data boundary if
2072 // requested.
2073 //   ns:   collect the nodes into this data structure.
2074 //   data: if true, include the control boundary.
2075 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2076   collect_nodes_in((Node*) this, ns, false, data);
2077 }
2078 
2079 //------------------collect_nodes_out_all_ctrl_boundary------------------------
2080 // Collect the entire output graph until hitting control node boundaries, and
2081 // include those.
2082 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2083   // Perform a BFS and stop at control nodes.
2084   GrowableArray<Node*> nodes(Compile::current()->unique());
2085   nodes.push((Node*) this);
2086   while (nodes.length() > 0) {
2087     Node* current = nodes.pop();
2088     if (NotANode(current)) {
2089       continue;
2090     }
2091     ns->append_if_missing(current);
2092     if (!current->is_CFG()) {
2093       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2094         nodes.push(current->out(i));
2095       }
2096     }
2097   }
2098   ns->remove((Node*) this);
2099 }
2100 
2101 // VERIFICATION CODE
2102 // For each input edge to a node (ie - for each Use-Def edge), verify that
2103 // there is a corresponding Def-Use edge.
2104 //------------------------------verify_edges-----------------------------------
2105 void Node::verify_edges(Unique_Node_List &visited) {
2106   uint i, j, idx;
2107   int  cnt;
2108   Node *n;
2109 
2110   // Recursive termination test
2111   if (visited.member(this))  return;
2112   visited.push(this);
2113 
2114   // Walk over all input edges, checking for correspondence
2115   for( i = 0; i < len(); i++ ) {
2116     n = in(i);
2117     if (n != NULL && !n->is_top()) {
2118       // Count instances of (Node *)this
2119       cnt = 0;
2120       for (idx = 0; idx < n->_outcnt; idx++ ) {
2121         if (n->_out[idx] == (Node *)this)  cnt++;
2122       }
2123       assert( cnt > 0,"Failed to find Def-Use edge." );
2124       // Check for duplicate edges
2125       // walk the input array downcounting the input edges to n
2126       for( j = 0; j < len(); j++ ) {
2127         if( in(j) == n ) cnt--;
2128       }
2129       assert( cnt == 0,"Mismatched edge count.");
2130     } else if (n == NULL) {
2131       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
2132     } else {
2133       assert(n->is_top(), "sanity");
2134       // Nothing to check.
2135     }
2136   }
2137   // Recursive walk over all input edges
2138   for( i = 0; i < len(); i++ ) {
2139     n = in(i);
2140     if( n != NULL )
2141       in(i)->verify_edges(visited);
2142   }
2143 }
2144 
2145 //------------------------------verify_recur-----------------------------------
2146 static const Node *unique_top = NULL;
2147 
2148 void Node::verify_recur(const Node *n, int verify_depth,
2149                         VectorSet &old_space, VectorSet &new_space) {
2150   if ( verify_depth == 0 )  return;
2151   if (verify_depth > 0)  --verify_depth;
2152 
2153   Compile* C = Compile::current();
2154 
2155   // Contained in new_space or old_space?
2156   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
2157   // Check for visited in the proper space.  Numberings are not unique
2158   // across spaces so we need a separate VectorSet for each space.
2159   if( v->test_set(n->_idx) ) return;
2160 
2161   if (n->is_Con() && n->bottom_type() == Type::TOP) {
2162     if (C->cached_top_node() == NULL)
2163       C->set_cached_top_node((Node*)n);
2164     assert(C->cached_top_node() == n, "TOP node must be unique");
2165   }
2166 
2167   for( uint i = 0; i < n->len(); i++ ) {
2168     Node *x = n->in(i);
2169     if (!x || x->is_top()) continue;
2170 
2171     // Verify my input has a def-use edge to me
2172     if (true /*VerifyDefUse*/) {
2173       // Count use-def edges from n to x
2174       int cnt = 0;
2175       for( uint j = 0; j < n->len(); j++ )
2176         if( n->in(j) == x )
2177           cnt++;
2178       // Count def-use edges from x to n
2179       uint max = x->_outcnt;
2180       for( uint k = 0; k < max; k++ )
2181         if (x->_out[k] == n)
2182           cnt--;
2183       assert( cnt == 0, "mismatched def-use edge counts" );
2184     }
2185 
2186     verify_recur(x, verify_depth, old_space, new_space);
2187   }
2188 
2189 }
2190 
2191 //------------------------------verify-----------------------------------------
2192 // Check Def-Use info for my subgraph
2193 void Node::verify() const {
2194   Compile* C = Compile::current();
2195   Node* old_top = C->cached_top_node();
2196   ResourceMark rm;
2197   ResourceArea *area = Thread::current()->resource_area();
2198   VectorSet old_space(area), new_space(area);
2199   verify_recur(this, -1, old_space, new_space);
2200   C->set_cached_top_node(old_top);
2201 }
2202 #endif
2203 
2204 
2205 //------------------------------walk-------------------------------------------
2206 // Graph walk, with both pre-order and post-order functions
2207 void Node::walk(NFunc pre, NFunc post, void *env) {
2208   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
2209   walk_(pre, post, env, visited);
2210 }
2211 
2212 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
2213   if( visited.test_set(_idx) ) return;
2214   pre(*this,env);               // Call the pre-order walk function
2215   for( uint i=0; i<_max; i++ )
2216     if( in(i) )                 // Input exists and is not walked?
2217       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
2218   post(*this,env);              // Call the post-order walk function
2219 }
2220 
2221 void Node::nop(Node &, void*) {}
2222 
2223 //------------------------------Registers--------------------------------------
2224 // Do we Match on this edge index or not?  Generally false for Control
2225 // and true for everything else.  Weird for calls & returns.
2226 uint Node::match_edge(uint idx) const {
2227   return idx;                   // True for other than index 0 (control)
2228 }
2229 
2230 static RegMask _not_used_at_all;
2231 // Register classes are defined for specific machines
2232 const RegMask &Node::out_RegMask() const {
2233   ShouldNotCallThis();
2234   return _not_used_at_all;
2235 }
2236 
2237 const RegMask &Node::in_RegMask(uint) const {
2238   ShouldNotCallThis();
2239   return _not_used_at_all;
2240 }
2241 
2242 //=============================================================================
2243 //-----------------------------------------------------------------------------
2244 void Node_Array::reset( Arena *new_arena ) {
2245   _a->Afree(_nodes,_max*sizeof(Node*));
2246   _max   = 0;
2247   _nodes = NULL;
2248   _a     = new_arena;
2249 }
2250 
2251 //------------------------------clear------------------------------------------
2252 // Clear all entries in _nodes to NULL but keep storage
2253 void Node_Array::clear() {
2254   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2255 }
2256 
2257 //-----------------------------------------------------------------------------
2258 void Node_Array::grow( uint i ) {
2259   if( !_max ) {
2260     _max = 1;
2261     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2262     _nodes[0] = NULL;
2263   }
2264   uint old = _max;
2265   while( i >= _max ) _max <<= 1;        // Double to fit
2266   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2267   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2268 }
2269 
2270 //-----------------------------------------------------------------------------
2271 void Node_Array::insert( uint i, Node *n ) {
2272   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2273   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2274   _nodes[i] = n;
2275 }
2276 
2277 //-----------------------------------------------------------------------------
2278 void Node_Array::remove( uint i ) {
2279   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2280   _nodes[_max-1] = NULL;
2281 }
2282 
2283 //-----------------------------------------------------------------------------
2284 void Node_Array::sort( C_sort_func_t func) {
2285   qsort( _nodes, _max, sizeof( Node* ), func );
2286 }
2287 
2288 //-----------------------------------------------------------------------------
2289 void Node_Array::dump() const {
2290 #ifndef PRODUCT
2291   for( uint i = 0; i < _max; i++ ) {
2292     Node *nn = _nodes[i];
2293     if( nn != NULL ) {
2294       tty->print("%5d--> ",i); nn->dump();
2295     }
2296   }
2297 #endif
2298 }
2299 
2300 //--------------------------is_iteratively_computed------------------------------
2301 // Operation appears to be iteratively computed (such as an induction variable)
2302 // It is possible for this operation to return false for a loop-varying
2303 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2304 bool Node::is_iteratively_computed() {
2305   if (ideal_reg()) { // does operation have a result register?
2306     for (uint i = 1; i < req(); i++) {
2307       Node* n = in(i);
2308       if (n != NULL && n->is_Phi()) {
2309         for (uint j = 1; j < n->req(); j++) {
2310           if (n->in(j) == this) {
2311             return true;
2312           }
2313         }
2314       }
2315     }
2316   }
2317   return false;
2318 }
2319 
2320 //--------------------------find_similar------------------------------
2321 // Return a node with opcode "opc" and same inputs as "this" if one can
2322 // be found; Otherwise return NULL;
2323 Node* Node::find_similar(int opc) {
2324   if (req() >= 2) {
2325     Node* def = in(1);
2326     if (def && def->outcnt() >= 2) {
2327       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2328         Node* use = def->fast_out(i);
2329         if (use->Opcode() == opc &&
2330             use->req() == req()) {
2331           uint j;
2332           for (j = 0; j < use->req(); j++) {
2333             if (use->in(j) != in(j)) {
2334               break;
2335             }
2336           }
2337           if (j == use->req()) {
2338             return use;
2339           }
2340         }
2341       }
2342     }
2343   }
2344   return NULL;
2345 }
2346 
2347 
2348 //--------------------------unique_ctrl_out------------------------------
2349 // Return the unique control out if only one. Null if none or more than one.
2350 Node* Node::unique_ctrl_out() const {
2351   Node* found = NULL;
2352   for (uint i = 0; i < outcnt(); i++) {
2353     Node* use = raw_out(i);
2354     if (use->is_CFG() && use != this) {
2355       if (found != NULL) return NULL;
2356       found = use;
2357     }
2358   }
2359   return found;
2360 }
2361 
2362 void Node::ensure_control_or_add_prec(Node* c) {
2363   if (in(0) == NULL) {
2364     set_req(0, c);
2365   } else if (in(0) != c) {
2366     add_prec(c);
2367   }
2368 }
2369 
2370 //=============================================================================
2371 //------------------------------yank-------------------------------------------
2372 // Find and remove
2373 void Node_List::yank( Node *n ) {
2374   uint i;
2375   for( i = 0; i < _cnt; i++ )
2376     if( _nodes[i] == n )
2377       break;
2378 
2379   if( i < _cnt )
2380     _nodes[i] = _nodes[--_cnt];
2381 }
2382 
2383 //------------------------------dump-------------------------------------------
2384 void Node_List::dump() const {
2385 #ifndef PRODUCT
2386   for( uint i = 0; i < _cnt; i++ )
2387     if( _nodes[i] ) {
2388       tty->print("%5d--> ",i);
2389       _nodes[i]->dump();
2390     }
2391 #endif
2392 }
2393 
2394 void Node_List::dump_simple() const {
2395 #ifndef PRODUCT
2396   for( uint i = 0; i < _cnt; i++ )
2397     if( _nodes[i] ) {
2398       tty->print(" %d", _nodes[i]->_idx);
2399     } else {
2400       tty->print(" NULL");
2401     }
2402 #endif
2403 }
2404 
2405 //=============================================================================
2406 //------------------------------remove-----------------------------------------
2407 void Unique_Node_List::remove( Node *n ) {
2408   if( _in_worklist[n->_idx] ) {
2409     for( uint i = 0; i < size(); i++ )
2410       if( _nodes[i] == n ) {
2411         map(i,Node_List::pop());
2412         _in_worklist >>= n->_idx;
2413         return;
2414       }
2415     ShouldNotReachHere();
2416   }
2417 }
2418 
2419 //-----------------------remove_useless_nodes----------------------------------
2420 // Remove useless nodes from worklist
2421 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2422 
2423   for( uint i = 0; i < size(); ++i ) {
2424     Node *n = at(i);
2425     assert( n != NULL, "Did not expect null entries in worklist");
2426     if( ! useful.test(n->_idx) ) {
2427       _in_worklist >>= n->_idx;
2428       map(i,Node_List::pop());
2429       // Node *replacement = Node_List::pop();
2430       // if( i != size() ) { // Check if removing last entry
2431       //   _nodes[i] = replacement;
2432       // }
2433       --i;  // Visit popped node
2434       // If it was last entry, loop terminates since size() was also reduced
2435     }
2436   }
2437 }
2438 
2439 //=============================================================================
2440 void Node_Stack::grow() {
2441   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2442   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2443   size_t max = old_max << 1;             // max * 2
2444   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2445   _inode_max = _inodes + max;
2446   _inode_top = _inodes + old_top;        // restore _top
2447 }
2448 
2449 // Node_Stack is used to map nodes.
2450 Node* Node_Stack::find(uint idx) const {
2451   uint sz = size();
2452   for (uint i=0; i < sz; i++) {
2453     if (idx == index_at(i) )
2454       return node_at(i);
2455   }
2456   return NULL;
2457 }
2458 
2459 //=============================================================================
2460 uint TypeNode::size_of() const { return sizeof(*this); }
2461 #ifndef PRODUCT
2462 void TypeNode::dump_spec(outputStream *st) const {
2463   if( !Verbose && !WizardMode ) {
2464     // standard dump does this in Verbose and WizardMode
2465     st->print(" #"); _type->dump_on(st);
2466   }
2467 }
2468 
2469 void TypeNode::dump_compact_spec(outputStream *st) const {
2470   st->print("#");
2471   _type->dump_on(st);
2472 }
2473 #endif
2474 uint TypeNode::hash() const {
2475   return Node::hash() + _type->hash();
2476 }
2477 uint TypeNode::cmp( const Node &n ) const
2478 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2479 const Type *TypeNode::bottom_type() const { return _type; }
2480 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
2481 
2482 //------------------------------ideal_reg--------------------------------------
2483 uint TypeNode::ideal_reg() const {
2484   return _type->ideal_reg();
2485 }