1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/vectset.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 class AbstractLockNode;
  38 class AddNode;
  39 class AddPNode;
  40 class AliasInfo;
  41 class AllocateArrayNode;
  42 class AllocateNode;
  43 class ArrayCopyNode;
  44 class Block;
  45 class BoolNode;
  46 class BoxLockNode;
  47 class CMoveNode;
  48 class CallDynamicJavaNode;
  49 class CallJavaNode;
  50 class CallLeafNode;
  51 class CallNode;
  52 class CallRuntimeNode;
  53 class CallStaticJavaNode;
  54 class CastIINode;
  55 class CatchNode;
  56 class CatchProjNode;
  57 class CheckCastPPNode;
  58 class ClearArrayNode;
  59 class CmpNode;
  60 class CodeBuffer;
  61 class ConstraintCastNode;
  62 class ConNode;
  63 class CountedLoopNode;
  64 class CountedLoopEndNode;
  65 class DecodeNarrowPtrNode;
  66 class DecodeNNode;
  67 class DecodeNKlassNode;
  68 class EncodeNarrowPtrNode;
  69 class EncodePNode;
  70 class EncodePKlassNode;
  71 class FastLockNode;
  72 class FastUnlockNode;
  73 class IfNode;
  74 class IfFalseNode;
  75 class IfTrueNode;
  76 class InitializeNode;
  77 class JVMState;
  78 class JumpNode;
  79 class JumpProjNode;
  80 class LoadNode;
  81 class LoadStoreNode;
  82 class LockNode;
  83 class LoopNode;
  84 class MachBranchNode;
  85 class MachCallDynamicJavaNode;
  86 class MachCallJavaNode;
  87 class MachCallLeafNode;
  88 class MachCallNode;
  89 class MachCallRuntimeNode;
  90 class MachCallStaticJavaNode;
  91 class MachConstantBaseNode;
  92 class MachConstantNode;
  93 class MachGotoNode;
  94 class MachIfNode;
  95 class MachNode;
  96 class MachNullCheckNode;
  97 class MachProjNode;
  98 class MachReturnNode;
  99 class MachSafePointNode;
 100 class MachSpillCopyNode;
 101 class MachTempNode;
 102 class MachMergeNode;
 103 class Matcher;
 104 class MemBarNode;
 105 class MemBarStoreStoreNode;
 106 class MemNode;
 107 class MergeMemNode;
 108 class MulNode;
 109 class MultiNode;
 110 class MultiBranchNode;
 111 class NeverBranchNode;
 112 class Node;
 113 class Node_Array;
 114 class Node_List;
 115 class Node_Stack;
 116 class NullCheckNode;
 117 class OopMap;
 118 class ParmNode;
 119 class PCTableNode;
 120 class PhaseCCP;
 121 class PhaseGVN;
 122 class PhaseIterGVN;
 123 class PhaseRegAlloc;
 124 class PhaseTransform;
 125 class PhaseValues;
 126 class PhiNode;
 127 class Pipeline;
 128 class ProjNode;
 129 class RangeCheckNode;
 130 class RegMask;
 131 class RegionNode;
 132 class RootNode;
 133 class SafePointNode;
 134 class SafePointScalarObjectNode;
 135 class StartNode;
 136 class State;
 137 class StoreNode;
 138 class SubNode;
 139 class Type;
 140 class TypeNode;
 141 class UnlockNode;
 142 class VectorNode;
 143 class LoadVectorNode;
 144 class StoreVectorNode;
 145 class VectorSet;
 146 typedef void (*NFunc)(Node&,void*);
 147 extern "C" {
 148   typedef int (*C_sort_func_t)(const void *, const void *);
 149 }
 150 
 151 // The type of all node counts and indexes.
 152 // It must hold at least 16 bits, but must also be fast to load and store.
 153 // This type, if less than 32 bits, could limit the number of possible nodes.
 154 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 155 typedef unsigned int node_idx_t;
 156 
 157 
 158 #ifndef OPTO_DU_ITERATOR_ASSERT
 159 #ifdef ASSERT
 160 #define OPTO_DU_ITERATOR_ASSERT 1
 161 #else
 162 #define OPTO_DU_ITERATOR_ASSERT 0
 163 #endif
 164 #endif //OPTO_DU_ITERATOR_ASSERT
 165 
 166 #if OPTO_DU_ITERATOR_ASSERT
 167 class DUIterator;
 168 class DUIterator_Fast;
 169 class DUIterator_Last;
 170 #else
 171 typedef uint   DUIterator;
 172 typedef Node** DUIterator_Fast;
 173 typedef Node** DUIterator_Last;
 174 #endif
 175 
 176 // Node Sentinel
 177 #define NodeSentinel (Node*)-1
 178 
 179 // Unknown count frequency
 180 #define COUNT_UNKNOWN (-1.0f)
 181 
 182 //------------------------------Node-------------------------------------------
 183 // Nodes define actions in the program.  They create values, which have types.
 184 // They are both vertices in a directed graph and program primitives.  Nodes
 185 // are labeled; the label is the "opcode", the primitive function in the lambda
 186 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 187 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 188 // the Node's function.  These inputs also define a Type equation for the Node.
 189 // Solving these Type equations amounts to doing dataflow analysis.
 190 // Control and data are uniformly represented in the graph.  Finally, Nodes
 191 // have a unique dense integer index which is used to index into side arrays
 192 // whenever I have phase-specific information.
 193 
 194 class Node {
 195   friend class VMStructs;
 196 
 197   // Lots of restrictions on cloning Nodes
 198   Node(const Node&);            // not defined; linker error to use these
 199   Node &operator=(const Node &rhs);
 200 
 201 public:
 202   friend class Compile;
 203   #if OPTO_DU_ITERATOR_ASSERT
 204   friend class DUIterator_Common;
 205   friend class DUIterator;
 206   friend class DUIterator_Fast;
 207   friend class DUIterator_Last;
 208   #endif
 209 
 210   // Because Nodes come and go, I define an Arena of Node structures to pull
 211   // from.  This should allow fast access to node creation & deletion.  This
 212   // field is a local cache of a value defined in some "program fragment" for
 213   // which these Nodes are just a part of.
 214 
 215   inline void* operator new(size_t x) throw() {
 216     Compile* C = Compile::current();
 217     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 218 #ifdef ASSERT
 219     n->_in = (Node**)n; // magic cookie for assertion check
 220 #endif
 221     return (void*)n;
 222   }
 223 
 224   // Delete is a NOP
 225   void operator delete( void *ptr ) {}
 226   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 227   void destruct();
 228 
 229   // Create a new Node.  Required is the number is of inputs required for
 230   // semantic correctness.
 231   Node( uint required );
 232 
 233   // Create a new Node with given input edges.
 234   // This version requires use of the "edge-count" new.
 235   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 236   Node( Node *n0 );
 237   Node( Node *n0, Node *n1 );
 238   Node( Node *n0, Node *n1, Node *n2 );
 239   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 240   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 241   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 242   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 243             Node *n4, Node *n5, Node *n6 );
 244 
 245   // Clone an inherited Node given only the base Node type.
 246   Node* clone() const;
 247 
 248   // Clone a Node, immediately supplying one or two new edges.
 249   // The first and second arguments, if non-null, replace in(1) and in(2),
 250   // respectively.
 251   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 252     Node* nn = clone();
 253     if (in1 != NULL)  nn->set_req(1, in1);
 254     if (in2 != NULL)  nn->set_req(2, in2);
 255     return nn;
 256   }
 257 
 258 private:
 259   // Shared setup for the above constructors.
 260   // Handles all interactions with Compile::current.
 261   // Puts initial values in all Node fields except _idx.
 262   // Returns the initial value for _idx, which cannot
 263   // be initialized by assignment.
 264   inline int Init(int req);
 265 
 266 //----------------- input edge handling
 267 protected:
 268   friend class PhaseCFG;        // Access to address of _in array elements
 269   Node **_in;                   // Array of use-def references to Nodes
 270   Node **_out;                  // Array of def-use references to Nodes
 271 
 272   // Input edges are split into two categories.  Required edges are required
 273   // for semantic correctness; order is important and NULLs are allowed.
 274   // Precedence edges are used to help determine execution order and are
 275   // added, e.g., for scheduling purposes.  They are unordered and not
 276   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 277   // are required, from _cnt to _max-1 are precedence edges.
 278   node_idx_t _cnt;              // Total number of required Node inputs.
 279 
 280   node_idx_t _max;              // Actual length of input array.
 281 
 282   // Output edges are an unordered list of def-use edges which exactly
 283   // correspond to required input edges which point from other nodes
 284   // to this one.  Thus the count of the output edges is the number of
 285   // users of this node.
 286   node_idx_t _outcnt;           // Total number of Node outputs.
 287 
 288   node_idx_t _outmax;           // Actual length of output array.
 289 
 290   // Grow the actual input array to the next larger power-of-2 bigger than len.
 291   void grow( uint len );
 292   // Grow the output array to the next larger power-of-2 bigger than len.
 293   void out_grow( uint len );
 294 
 295  public:
 296   // Each Node is assigned a unique small/dense number.  This number is used
 297   // to index into auxiliary arrays of data and bit vectors.
 298   // The field _idx is declared constant to defend against inadvertent assignments,
 299   // since it is used by clients as a naked field. However, the field's value can be
 300   // changed using the set_idx() method.
 301   //
 302   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 303   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 304   // preserved in _parse_idx.
 305   const node_idx_t _idx;
 306   DEBUG_ONLY(const node_idx_t _parse_idx;)
 307 
 308   // Get the (read-only) number of input edges
 309   uint req() const { return _cnt; }
 310   uint len() const { return _max; }
 311   // Get the (read-only) number of output edges
 312   uint outcnt() const { return _outcnt; }
 313 
 314 #if OPTO_DU_ITERATOR_ASSERT
 315   // Iterate over the out-edges of this node.  Deletions are illegal.
 316   inline DUIterator outs() const;
 317   // Use this when the out array might have changed to suppress asserts.
 318   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 319   // Does the node have an out at this position?  (Used for iteration.)
 320   inline bool has_out(DUIterator& i) const;
 321   inline Node*    out(DUIterator& i) const;
 322   // Iterate over the out-edges of this node.  All changes are illegal.
 323   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 324   inline Node*    fast_out(DUIterator_Fast& i) const;
 325   // Iterate over the out-edges of this node, deleting one at a time.
 326   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 327   inline Node*    last_out(DUIterator_Last& i) const;
 328   // The inline bodies of all these methods are after the iterator definitions.
 329 #else
 330   // Iterate over the out-edges of this node.  Deletions are illegal.
 331   // This iteration uses integral indexes, to decouple from array reallocations.
 332   DUIterator outs() const  { return 0; }
 333   // Use this when the out array might have changed to suppress asserts.
 334   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 335 
 336   // Reference to the i'th output Node.  Error if out of bounds.
 337   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 338   // Does the node have an out at this position?  (Used for iteration.)
 339   bool has_out(DUIterator i) const { return i < _outcnt; }
 340 
 341   // Iterate over the out-edges of this node.  All changes are illegal.
 342   // This iteration uses a pointer internal to the out array.
 343   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 344     Node** out = _out;
 345     // Assign a limit pointer to the reference argument:
 346     max = out + (ptrdiff_t)_outcnt;
 347     // Return the base pointer:
 348     return out;
 349   }
 350   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 351   // Iterate over the out-edges of this node, deleting one at a time.
 352   // This iteration uses a pointer internal to the out array.
 353   DUIterator_Last last_outs(DUIterator_Last& min) const {
 354     Node** out = _out;
 355     // Assign a limit pointer to the reference argument:
 356     min = out;
 357     // Return the pointer to the start of the iteration:
 358     return out + (ptrdiff_t)_outcnt - 1;
 359   }
 360   Node*    last_out(DUIterator_Last i) const  { return *i; }
 361 #endif
 362 
 363   // Reference to the i'th input Node.  Error if out of bounds.
 364   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 365   // Reference to the i'th input Node.  NULL if out of bounds.
 366   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
 367   // Reference to the i'th output Node.  Error if out of bounds.
 368   // Use this accessor sparingly.  We are going trying to use iterators instead.
 369   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 370   // Return the unique out edge.
 371   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 372   // Delete out edge at position 'i' by moving last out edge to position 'i'
 373   void  raw_del_out(uint i) {
 374     assert(i < _outcnt,"oob");
 375     assert(_outcnt > 0,"oob");
 376     #if OPTO_DU_ITERATOR_ASSERT
 377     // Record that a change happened here.
 378     debug_only(_last_del = _out[i]; ++_del_tick);
 379     #endif
 380     _out[i] = _out[--_outcnt];
 381     // Smash the old edge so it can't be used accidentally.
 382     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 383   }
 384 
 385 #ifdef ASSERT
 386   bool is_dead() const;
 387 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 388 #endif
 389   // Check whether node has become unreachable
 390   bool is_unreachable(PhaseIterGVN &igvn) const;
 391 
 392   // Set a required input edge, also updates corresponding output edge
 393   void add_req( Node *n ); // Append a NEW required input
 394   void add_req( Node *n0, Node *n1 ) {
 395     add_req(n0); add_req(n1); }
 396   void add_req( Node *n0, Node *n1, Node *n2 ) {
 397     add_req(n0); add_req(n1); add_req(n2); }
 398   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 399   void del_req( uint idx ); // Delete required edge & compact
 400   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 401   void ins_req( uint i, Node *n ); // Insert a NEW required input
 402   void set_req( uint i, Node *n ) {
 403     assert( is_not_dead(n), "can not use dead node");
 404     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 405     assert( !VerifyHashTableKeys || _hash_lock == 0,
 406             "remove node from hash table before modifying it");
 407     Node** p = &_in[i];    // cache this._in, across the del_out call
 408     if (*p != NULL)  (*p)->del_out((Node *)this);
 409     (*p) = n;
 410     if (n != NULL)      n->add_out((Node *)this);
 411     Compile::current()->record_modified_node(this);
 412   }
 413   // Light version of set_req() to init inputs after node creation.
 414   void init_req( uint i, Node *n ) {
 415     assert( i == 0 && this == n ||
 416             is_not_dead(n), "can not use dead node");
 417     assert( i < _cnt, "oob");
 418     assert( !VerifyHashTableKeys || _hash_lock == 0,
 419             "remove node from hash table before modifying it");
 420     assert( _in[i] == NULL, "sanity");
 421     _in[i] = n;
 422     if (n != NULL)      n->add_out((Node *)this);
 423     Compile::current()->record_modified_node(this);
 424   }
 425   // Find first occurrence of n among my edges:
 426   int find_edge(Node* n);
 427   int find_prec_edge(Node* n) {
 428     for (uint i = req(); i < len(); i++) {
 429       if (_in[i] == n) return i;
 430       if (_in[i] == NULL) {
 431         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
 432         break;
 433       }
 434     }
 435     return -1;
 436   }
 437   int replace_edge(Node* old, Node* neww);
 438   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
 439   // NULL out all inputs to eliminate incoming Def-Use edges.
 440   // Return the number of edges between 'n' and 'this'
 441   int  disconnect_inputs(Node *n, Compile *c);
 442 
 443   // Quickly, return true if and only if I am Compile::current()->top().
 444   bool is_top() const {
 445     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 446     return (_out == NULL);
 447   }
 448   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 449   void setup_is_top();
 450 
 451   // Strip away casting.  (It is depth-limited.)
 452   Node* uncast() const;
 453   // Return whether two Nodes are equivalent, after stripping casting.
 454   bool eqv_uncast(const Node* n) const {
 455     return (this->uncast() == n->uncast());
 456   }
 457 
 458   // Find out of current node that matches opcode.
 459   Node* find_out_with(int opcode);
 460   // Return true if the current node has an out that matches opcode.
 461   bool has_out_with(int opcode);
 462   // Return true if the current node has an out that matches any of the opcodes.
 463   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 464 
 465 private:
 466   static Node* uncast_helper(const Node* n);
 467 
 468   // Add an output edge to the end of the list
 469   void add_out( Node *n ) {
 470     if (is_top())  return;
 471     if( _outcnt == _outmax ) out_grow(_outcnt);
 472     _out[_outcnt++] = n;
 473   }
 474   // Delete an output edge
 475   void del_out( Node *n ) {
 476     if (is_top())  return;
 477     Node** outp = &_out[_outcnt];
 478     // Find and remove n
 479     do {
 480       assert(outp > _out, "Missing Def-Use edge");
 481     } while (*--outp != n);
 482     *outp = _out[--_outcnt];
 483     // Smash the old edge so it can't be used accidentally.
 484     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 485     // Record that a change happened here.
 486     #if OPTO_DU_ITERATOR_ASSERT
 487     debug_only(_last_del = n; ++_del_tick);
 488     #endif
 489   }
 490   // Close gap after removing edge.
 491   void close_prec_gap_at(uint gap) {
 492     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 493     uint i = gap;
 494     Node *last = NULL;
 495     for (; i < _max-1; ++i) {
 496       Node *next = _in[i+1];
 497       if (next == NULL) break;
 498       last = next;
 499     }
 500     _in[gap] = last; // Move last slot to empty one.
 501     _in[i] = NULL;   // NULL out last slot.
 502   }
 503 
 504 public:
 505   // Globally replace this node by a given new node, updating all uses.
 506   void replace_by(Node* new_node);
 507   // Globally replace this node by a given new node, updating all uses
 508   // and cutting input edges of old node.
 509   void subsume_by(Node* new_node, Compile* c) {
 510     replace_by(new_node);
 511     disconnect_inputs(NULL, c);
 512   }
 513   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 514   // Find the one non-null required input.  RegionNode only
 515   Node *nonnull_req() const;
 516   // Add or remove precedence edges
 517   void add_prec( Node *n );
 518   void rm_prec( uint i );
 519 
 520   // Note: prec(i) will not necessarily point to n if edge already exists.
 521   void set_prec( uint i, Node *n ) {
 522     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
 523     assert(is_not_dead(n), "can not use dead node");
 524     assert(i >= _cnt, "not a precedence edge");
 525     // Avoid spec violation: duplicated prec edge.
 526     if (_in[i] == n) return;
 527     if (n == NULL || find_prec_edge(n) != -1) {
 528       rm_prec(i);
 529       return;
 530     }
 531     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 532     _in[i] = n;
 533     if (n != NULL) n->add_out((Node *)this);
 534   }
 535 
 536   // Set this node's index, used by cisc_version to replace current node
 537   void set_idx(uint new_idx) {
 538     const node_idx_t* ref = &_idx;
 539     *(node_idx_t*)ref = new_idx;
 540   }
 541   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 542   void swap_edges(uint i1, uint i2) {
 543     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 544     // Def-Use info is unchanged
 545     Node* n1 = in(i1);
 546     Node* n2 = in(i2);
 547     _in[i1] = n2;
 548     _in[i2] = n1;
 549     // If this node is in the hash table, make sure it doesn't need a rehash.
 550     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 551   }
 552 
 553   // Iterators over input Nodes for a Node X are written as:
 554   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 555   // NOTE: Required edges can contain embedded NULL pointers.
 556 
 557 //----------------- Other Node Properties
 558 
 559   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 560   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 561   //
 562   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 563   // the type of the node the ID represents; another subset of an ID's bits are reserved
 564   // for the superclasses of the node represented by the ID.
 565   //
 566   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 567   // returns false. A.is_A() returns true.
 568   //
 569   // If two classes, A and B, have the same superclass, a different bit of A's class id
 570   // is reserved for A's type than for B's type. That bit is specified by the third
 571   // parameter in the macro DEFINE_CLASS_ID.
 572   //
 573   // By convention, classes with deeper hierarchy are declared first. Moreover,
 574   // classes with the same hierarchy depth are sorted by usage frequency.
 575   //
 576   // The query method masks the bits to cut off bits of subclasses and then compares
 577   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 578   //
 579   //  Class_MachCall=30, ClassMask_MachCall=31
 580   // 12               8               4               0
 581   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 582   //                                  |   |   |   |
 583   //                                  |   |   |   Bit_Mach=2
 584   //                                  |   |   Bit_MachReturn=4
 585   //                                  |   Bit_MachSafePoint=8
 586   //                                  Bit_MachCall=16
 587   //
 588   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 589   // 12               8               4               0
 590   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 591   //                              |   |   |
 592   //                              |   |   Bit_Region=8
 593   //                              |   Bit_Loop=16
 594   //                              Bit_CountedLoop=32
 595 
 596   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 597   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 598   Class_##cl = Class_##supcl + Bit_##cl , \
 599   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 600 
 601   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 602   // so that it's values fits into 16 bits.
 603   enum NodeClasses {
 604     Bit_Node   = 0x0000,
 605     Class_Node = 0x0000,
 606     ClassMask_Node = 0xFFFF,
 607 
 608     DEFINE_CLASS_ID(Multi, Node, 0)
 609       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 610         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 611           DEFINE_CLASS_ID(CallJava,         Call, 0)
 612             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 613             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 614           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 615             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 616           DEFINE_CLASS_ID(Allocate,         Call, 2)
 617             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 618           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 619             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 620             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 621           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 622       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 623         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 624           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 625           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 626         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 627           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 628           DEFINE_CLASS_ID(RangeCheck, If, 1)
 629         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 630       DEFINE_CLASS_ID(Start,       Multi, 2)
 631       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 632         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 633         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 634 
 635     DEFINE_CLASS_ID(Mach,  Node, 1)
 636       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 637         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 638           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 639             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 640               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 641               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 642             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 643               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 644       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 645         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 646         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 647         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 648       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 649       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 650       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 651       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 652       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 653 
 654     DEFINE_CLASS_ID(Type,  Node, 2)
 655       DEFINE_CLASS_ID(Phi,   Type, 0)
 656       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 657         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 658       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 659       DEFINE_CLASS_ID(CMove, Type, 3)
 660       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 661       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 662         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 663         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 664       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 665         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 666         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 667 
 668     DEFINE_CLASS_ID(Proj,  Node, 3)
 669       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 670       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 671       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 672       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 673       DEFINE_CLASS_ID(Parm,      Proj, 4)
 674       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 675 
 676     DEFINE_CLASS_ID(Mem,   Node, 4)
 677       DEFINE_CLASS_ID(Load,  Mem, 0)
 678         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 679       DEFINE_CLASS_ID(Store, Mem, 1)
 680         DEFINE_CLASS_ID(StoreVector, Store, 0)
 681       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 682 
 683     DEFINE_CLASS_ID(Region, Node, 5)
 684       DEFINE_CLASS_ID(Loop, Region, 0)
 685         DEFINE_CLASS_ID(Root,        Loop, 0)
 686         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 687 
 688     DEFINE_CLASS_ID(Sub,   Node, 6)
 689       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 690         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 691         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 692 
 693     DEFINE_CLASS_ID(MergeMem, Node, 7)
 694     DEFINE_CLASS_ID(Bool,     Node, 8)
 695     DEFINE_CLASS_ID(AddP,     Node, 9)
 696     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 697     DEFINE_CLASS_ID(Add,      Node, 11)
 698     DEFINE_CLASS_ID(Mul,      Node, 12)
 699     DEFINE_CLASS_ID(Vector,   Node, 13)
 700     DEFINE_CLASS_ID(ClearArray, Node, 14)
 701 
 702     _max_classes  = ClassMask_ClearArray
 703   };
 704   #undef DEFINE_CLASS_ID
 705 
 706   // Flags are sorted by usage frequency.
 707   enum NodeFlags {
 708     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
 709     Flag_rematerialize               = Flag_is_Copy << 1,
 710     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 711     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
 712     Flag_is_Con                      = Flag_is_macro << 1,
 713     Flag_is_cisc_alternate           = Flag_is_Con << 1,
 714     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
 715     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
 716     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
 717     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
 718     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
 719     Flag_is_reduction                = Flag_has_call << 1,
 720     Flag_is_scheduled                = Flag_is_reduction,
 721     Flag_is_expensive                = Flag_is_scheduled << 1,
 722     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
 723   };
 724 
 725 private:
 726   jushort _class_id;
 727   jushort _flags;
 728 
 729 protected:
 730   // These methods should be called from constructors only.
 731   void init_class_id(jushort c) {
 732     assert(c <= _max_classes, "invalid node class");
 733     _class_id = c; // cast out const
 734   }
 735   void init_flags(jushort fl) {
 736     assert(fl <= _max_flags, "invalid node flag");
 737     _flags |= fl;
 738   }
 739   void clear_flag(jushort fl) {
 740     assert(fl <= _max_flags, "invalid node flag");
 741     _flags &= ~fl;
 742   }
 743 
 744 public:
 745   const jushort class_id() const { return _class_id; }
 746 
 747   const jushort flags() const { return _flags; }
 748 
 749   void add_flag(jushort fl) { init_flags(fl); }
 750 
 751   void remove_flag(jushort fl) { clear_flag(fl); }
 752 
 753   // Return a dense integer opcode number
 754   virtual int Opcode() const;
 755 
 756   // Virtual inherited Node size
 757   virtual uint size_of() const;
 758 
 759   // Other interesting Node properties
 760   #define DEFINE_CLASS_QUERY(type)                           \
 761   bool is_##type() const {                                   \
 762     return ((_class_id & ClassMask_##type) == Class_##type); \
 763   }                                                          \
 764   type##Node *as_##type() const {                            \
 765     assert(is_##type(), "invalid node class");               \
 766     return (type##Node*)this;                                \
 767   }                                                          \
 768   type##Node* isa_##type() const {                           \
 769     return (is_##type()) ? as_##type() : NULL;               \
 770   }
 771 
 772   DEFINE_CLASS_QUERY(AbstractLock)
 773   DEFINE_CLASS_QUERY(Add)
 774   DEFINE_CLASS_QUERY(AddP)
 775   DEFINE_CLASS_QUERY(Allocate)
 776   DEFINE_CLASS_QUERY(AllocateArray)
 777   DEFINE_CLASS_QUERY(ArrayCopy)
 778   DEFINE_CLASS_QUERY(Bool)
 779   DEFINE_CLASS_QUERY(BoxLock)
 780   DEFINE_CLASS_QUERY(Call)
 781   DEFINE_CLASS_QUERY(CallDynamicJava)
 782   DEFINE_CLASS_QUERY(CallJava)
 783   DEFINE_CLASS_QUERY(CallLeaf)
 784   DEFINE_CLASS_QUERY(CallRuntime)
 785   DEFINE_CLASS_QUERY(CallStaticJava)
 786   DEFINE_CLASS_QUERY(Catch)
 787   DEFINE_CLASS_QUERY(CatchProj)
 788   DEFINE_CLASS_QUERY(CheckCastPP)
 789   DEFINE_CLASS_QUERY(CastII)
 790   DEFINE_CLASS_QUERY(ConstraintCast)
 791   DEFINE_CLASS_QUERY(ClearArray)
 792   DEFINE_CLASS_QUERY(CMove)
 793   DEFINE_CLASS_QUERY(Cmp)
 794   DEFINE_CLASS_QUERY(CountedLoop)
 795   DEFINE_CLASS_QUERY(CountedLoopEnd)
 796   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 797   DEFINE_CLASS_QUERY(DecodeN)
 798   DEFINE_CLASS_QUERY(DecodeNKlass)
 799   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 800   DEFINE_CLASS_QUERY(EncodeP)
 801   DEFINE_CLASS_QUERY(EncodePKlass)
 802   DEFINE_CLASS_QUERY(FastLock)
 803   DEFINE_CLASS_QUERY(FastUnlock)
 804   DEFINE_CLASS_QUERY(If)
 805   DEFINE_CLASS_QUERY(RangeCheck)
 806   DEFINE_CLASS_QUERY(IfFalse)
 807   DEFINE_CLASS_QUERY(IfTrue)
 808   DEFINE_CLASS_QUERY(Initialize)
 809   DEFINE_CLASS_QUERY(Jump)
 810   DEFINE_CLASS_QUERY(JumpProj)
 811   DEFINE_CLASS_QUERY(Load)
 812   DEFINE_CLASS_QUERY(LoadStore)
 813   DEFINE_CLASS_QUERY(Lock)
 814   DEFINE_CLASS_QUERY(Loop)
 815   DEFINE_CLASS_QUERY(Mach)
 816   DEFINE_CLASS_QUERY(MachBranch)
 817   DEFINE_CLASS_QUERY(MachCall)
 818   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 819   DEFINE_CLASS_QUERY(MachCallJava)
 820   DEFINE_CLASS_QUERY(MachCallLeaf)
 821   DEFINE_CLASS_QUERY(MachCallRuntime)
 822   DEFINE_CLASS_QUERY(MachCallStaticJava)
 823   DEFINE_CLASS_QUERY(MachConstantBase)
 824   DEFINE_CLASS_QUERY(MachConstant)
 825   DEFINE_CLASS_QUERY(MachGoto)
 826   DEFINE_CLASS_QUERY(MachIf)
 827   DEFINE_CLASS_QUERY(MachNullCheck)
 828   DEFINE_CLASS_QUERY(MachProj)
 829   DEFINE_CLASS_QUERY(MachReturn)
 830   DEFINE_CLASS_QUERY(MachSafePoint)
 831   DEFINE_CLASS_QUERY(MachSpillCopy)
 832   DEFINE_CLASS_QUERY(MachTemp)
 833   DEFINE_CLASS_QUERY(MachMerge)
 834   DEFINE_CLASS_QUERY(Mem)
 835   DEFINE_CLASS_QUERY(MemBar)
 836   DEFINE_CLASS_QUERY(MemBarStoreStore)
 837   DEFINE_CLASS_QUERY(MergeMem)
 838   DEFINE_CLASS_QUERY(Mul)
 839   DEFINE_CLASS_QUERY(Multi)
 840   DEFINE_CLASS_QUERY(MultiBranch)
 841   DEFINE_CLASS_QUERY(Parm)
 842   DEFINE_CLASS_QUERY(PCTable)
 843   DEFINE_CLASS_QUERY(Phi)
 844   DEFINE_CLASS_QUERY(Proj)
 845   DEFINE_CLASS_QUERY(Region)
 846   DEFINE_CLASS_QUERY(Root)
 847   DEFINE_CLASS_QUERY(SafePoint)
 848   DEFINE_CLASS_QUERY(SafePointScalarObject)
 849   DEFINE_CLASS_QUERY(Start)
 850   DEFINE_CLASS_QUERY(Store)
 851   DEFINE_CLASS_QUERY(Sub)
 852   DEFINE_CLASS_QUERY(Type)
 853   DEFINE_CLASS_QUERY(Vector)
 854   DEFINE_CLASS_QUERY(LoadVector)
 855   DEFINE_CLASS_QUERY(StoreVector)
 856   DEFINE_CLASS_QUERY(Unlock)
 857 
 858   #undef DEFINE_CLASS_QUERY
 859 
 860   // duplicate of is_MachSpillCopy()
 861   bool is_SpillCopy () const {
 862     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 863   }
 864 
 865   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 866   // The data node which is safe to leave in dead loop during IGVN optimization.
 867   bool is_dead_loop_safe() const {
 868     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 869            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 870             (!is_Proj() || !in(0)->is_Allocate()));
 871   }
 872 
 873   // is_Copy() returns copied edge index (0 or 1)
 874   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 875 
 876   virtual bool is_CFG() const { return false; }
 877 
 878   // If this node is control-dependent on a test, can it be
 879   // rerouted to a dominating equivalent test?  This is usually
 880   // true of non-CFG nodes, but can be false for operations which
 881   // depend for their correct sequencing on more than one test.
 882   // (In that case, hoisting to a dominating test may silently
 883   // skip some other important test.)
 884   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 885 
 886   // When building basic blocks, I need to have a notion of block beginning
 887   // Nodes, next block selector Nodes (block enders), and next block
 888   // projections.  These calls need to work on their machine equivalents.  The
 889   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 890   bool is_block_start() const {
 891     if ( is_Region() )
 892       return this == (const Node*)in(0);
 893     else
 894       return is_Start();
 895   }
 896 
 897   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 898   // Goto and Return.  This call also returns the block ending Node.
 899   virtual const Node *is_block_proj() const;
 900 
 901   // The node is a "macro" node which needs to be expanded before matching
 902   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 903   // The node is expensive: the best control is set during loop opts
 904   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
 905 
 906   // An arithmetic node which accumulates a data in a loop.
 907   // It must have the loop's phi as input and provide a def to the phi.
 908   bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; }
 909 
 910   // Used in lcm to mark nodes that have scheduled
 911   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
 912 
 913 //----------------- Optimization
 914 
 915   // Get the worst-case Type output for this Node.
 916   virtual const class Type *bottom_type() const;
 917 
 918   // If we find a better type for a node, try to record it permanently.
 919   // Return true if this node actually changed.
 920   // Be sure to do the hash_delete game in the "rehash" variant.
 921   void raise_bottom_type(const Type* new_type);
 922 
 923   // Get the address type with which this node uses and/or defs memory,
 924   // or NULL if none.  The address type is conservatively wide.
 925   // Returns non-null for calls, membars, loads, stores, etc.
 926   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 927   virtual const class TypePtr *adr_type() const { return NULL; }
 928 
 929   // Return an existing node which computes the same function as this node.
 930   // The optimistic combined algorithm requires this to return a Node which
 931   // is a small number of steps away (e.g., one of my inputs).
 932   virtual Node* Identity(PhaseGVN* phase);
 933 
 934   // Return the set of values this Node can take on at runtime.
 935   virtual const Type* Value(PhaseGVN* phase) const;
 936 
 937   // Return a node which is more "ideal" than the current node.
 938   // The invariants on this call are subtle.  If in doubt, read the
 939   // treatise in node.cpp above the default implemention AND TEST WITH
 940   // +VerifyIterativeGVN!
 941   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 942 
 943   // Some nodes have specific Ideal subgraph transformations only if they are
 944   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 945   // for the transformations to happen.
 946   bool has_special_unique_user() const;
 947 
 948   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 949   Node* find_exact_control(Node* ctrl);
 950 
 951   // Check if 'this' node dominates or equal to 'sub'.
 952   bool dominates(Node* sub, Node_List &nlist);
 953 
 954 protected:
 955   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 956 public:
 957 
 958   // See if there is valid pipeline info
 959   static  const Pipeline *pipeline_class();
 960   virtual const Pipeline *pipeline() const;
 961 
 962   // Compute the latency from the def to this instruction of the ith input node
 963   uint latency(uint i);
 964 
 965   // Hash & compare functions, for pessimistic value numbering
 966 
 967   // If the hash function returns the special sentinel value NO_HASH,
 968   // the node is guaranteed never to compare equal to any other node.
 969   // If we accidentally generate a hash with value NO_HASH the node
 970   // won't go into the table and we'll lose a little optimization.
 971   enum { NO_HASH = 0 };
 972   virtual uint hash() const;
 973   virtual uint cmp( const Node &n ) const;
 974 
 975   // Operation appears to be iteratively computed (such as an induction variable)
 976   // It is possible for this operation to return false for a loop-varying
 977   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 978   bool is_iteratively_computed();
 979 
 980   // Determine if a node is Counted loop induction variable.
 981   // The method is defined in loopnode.cpp.
 982   const Node* is_loop_iv() const;
 983 
 984   // Return a node with opcode "opc" and same inputs as "this" if one can
 985   // be found; Otherwise return NULL;
 986   Node* find_similar(int opc);
 987 
 988   // Return the unique control out if only one. Null if none or more than one.
 989   Node* unique_ctrl_out() const;
 990 
 991   // Set control or add control as precedence edge
 992   void ensure_control_or_add_prec(Node* c);
 993 
 994 //----------------- Code Generation
 995 
 996   // Ideal register class for Matching.  Zero means unmatched instruction
 997   // (these are cloned instead of converted to machine nodes).
 998   virtual uint ideal_reg() const;
 999 
1000   static const uint NotAMachineReg;   // must be > max. machine register
1001 
1002   // Do we Match on this edge index or not?  Generally false for Control
1003   // and true for everything else.  Weird for calls & returns.
1004   virtual uint match_edge(uint idx) const;
1005 
1006   // Register class output is returned in
1007   virtual const RegMask &out_RegMask() const;
1008   // Register class input is expected in
1009   virtual const RegMask &in_RegMask(uint) const;
1010   // Should we clone rather than spill this instruction?
1011   bool rematerialize() const;
1012 
1013   // Return JVM State Object if this Node carries debug info, or NULL otherwise
1014   virtual JVMState* jvms() const;
1015 
1016   // Print as assembly
1017   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1018   // Emit bytes starting at parameter 'ptr'
1019   // Bump 'ptr' by the number of output bytes
1020   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
1021   // Size of instruction in bytes
1022   virtual uint size(PhaseRegAlloc *ra_) const;
1023 
1024   // Convenience function to extract an integer constant from a node.
1025   // If it is not an integer constant (either Con, CastII, or Mach),
1026   // return value_if_unknown.
1027   jint find_int_con(jint value_if_unknown) const {
1028     const TypeInt* t = find_int_type();
1029     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1030   }
1031   // Return the constant, knowing it is an integer constant already
1032   jint get_int() const {
1033     const TypeInt* t = find_int_type();
1034     guarantee(t != NULL, "must be con");
1035     return t->get_con();
1036   }
1037   // Here's where the work is done.  Can produce non-constant int types too.
1038   const TypeInt* find_int_type() const;
1039 
1040   // Same thing for long (and intptr_t, via type.hpp):
1041   jlong get_long() const {
1042     const TypeLong* t = find_long_type();
1043     guarantee(t != NULL, "must be con");
1044     return t->get_con();
1045   }
1046   jlong find_long_con(jint value_if_unknown) const {
1047     const TypeLong* t = find_long_type();
1048     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1049   }
1050   const TypeLong* find_long_type() const;
1051 
1052   const TypePtr* get_ptr_type() const;
1053 
1054   // These guys are called by code generated by ADLC:
1055   intptr_t get_ptr() const;
1056   intptr_t get_narrowcon() const;
1057   jdouble getd() const;
1058   jfloat getf() const;
1059 
1060   // Nodes which are pinned into basic blocks
1061   virtual bool pinned() const { return false; }
1062 
1063   // Nodes which use memory without consuming it, hence need antidependences
1064   // More specifically, needs_anti_dependence_check returns true iff the node
1065   // (a) does a load, and (b) does not perform a store (except perhaps to a
1066   // stack slot or some other unaliased location).
1067   bool needs_anti_dependence_check() const;
1068 
1069   // Return which operand this instruction may cisc-spill. In other words,
1070   // return operand position that can convert from reg to memory access
1071   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1072   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1073 
1074 //----------------- Graph walking
1075 public:
1076   // Walk and apply member functions recursively.
1077   // Supplied (this) pointer is root.
1078   void walk(NFunc pre, NFunc post, void *env);
1079   static void nop(Node &, void*); // Dummy empty function
1080   static void packregion( Node &n, void* );
1081 private:
1082   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1083 
1084 //----------------- Printing, etc
1085 public:
1086 #ifndef PRODUCT
1087   Node* find(int idx) const;         // Search the graph for the given idx.
1088   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1089   void dump() const { dump("\n"); }  // Print this node.
1090   void dump(const char* suffix, bool mark = false, outputStream *st = tty) const; // Print this node.
1091   void dump(int depth) const;        // Print this node, recursively to depth d
1092   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1093   void dump_comp() const;            // Print this node in compact representation.
1094   // Print this node in compact representation.
1095   void dump_comp(const char* suffix, outputStream *st = tty) const;
1096   virtual void dump_req(outputStream *st = tty) const;    // Print required-edge info
1097   virtual void dump_prec(outputStream *st = tty) const;   // Print precedence-edge info
1098   virtual void dump_out(outputStream *st = tty) const;    // Print the output edge info
1099   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1100   // Print compact per-node info
1101   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1102   void dump_related() const;             // Print related nodes (depends on node at hand).
1103   // Print related nodes up to given depths for input and output nodes.
1104   void dump_related(uint d_in, uint d_out) const;
1105   void dump_related_compact() const;     // Print related nodes in compact representation.
1106   // Collect related nodes.
1107   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1108   // Collect nodes starting from this node, explicitly including/excluding control and data links.
1109   void collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const;
1110 
1111   // Node collectors, to be used in implementations of Node::rel().
1112   // Collect the entire data input graph. Include control inputs if requested.
1113   void collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const;
1114   // Collect the entire control input graph. Include data inputs if requested.
1115   void collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const;
1116   // Collect the entire output graph until hitting and including control nodes.
1117   void collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const;
1118 
1119   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1120   void verify() const;               // Check Def-Use info for my subgraph
1121   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1122 
1123   // This call defines a class-unique string used to identify class instances
1124   virtual const char *Name() const;
1125 
1126   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1127   // RegMask Print Functions
1128   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1129   void dump_out_regmask() { out_RegMask().dump(); }
1130   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1131   void fast_dump() const {
1132     tty->print("%4d: %-17s", _idx, Name());
1133     for (uint i = 0; i < len(); i++)
1134       if (in(i))
1135         tty->print(" %4d", in(i)->_idx);
1136       else
1137         tty->print(" NULL");
1138     tty->print("\n");
1139   }
1140 #endif
1141 #ifdef ASSERT
1142   void verify_construction();
1143   bool verify_jvms(const JVMState* jvms) const;
1144   int  _debug_idx;                     // Unique value assigned to every node.
1145   int   debug_idx() const              { return _debug_idx; }
1146   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1147 
1148   Node* _debug_orig;                   // Original version of this, if any.
1149   Node*  debug_orig() const            { return _debug_orig; }
1150   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1151 
1152   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1153   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1154   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1155 
1156   static void init_NodeProperty();
1157 
1158   #if OPTO_DU_ITERATOR_ASSERT
1159   const Node* _last_del;               // The last deleted node.
1160   uint        _del_tick;               // Bumped when a deletion happens..
1161   #endif
1162 #endif
1163 };
1164 
1165 
1166 #ifndef PRODUCT
1167 
1168 // Used in debugging code to avoid walking across dead or uninitialized edges.
1169 inline bool NotANode(const Node* n) {
1170   if (n == NULL)                   return true;
1171   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1172   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1173   return false;
1174 }
1175 
1176 #endif
1177 
1178 
1179 //-----------------------------------------------------------------------------
1180 // Iterators over DU info, and associated Node functions.
1181 
1182 #if OPTO_DU_ITERATOR_ASSERT
1183 
1184 // Common code for assertion checking on DU iterators.
1185 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1186 #ifdef ASSERT
1187  protected:
1188   bool         _vdui;               // cached value of VerifyDUIterators
1189   const Node*  _node;               // the node containing the _out array
1190   uint         _outcnt;             // cached node->_outcnt
1191   uint         _del_tick;           // cached node->_del_tick
1192   Node*        _last;               // last value produced by the iterator
1193 
1194   void sample(const Node* node);    // used by c'tor to set up for verifies
1195   void verify(const Node* node, bool at_end_ok = false);
1196   void verify_resync();
1197   void reset(const DUIterator_Common& that);
1198 
1199 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1200   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1201 #else
1202   #define I_VDUI_ONLY(i,x) { }
1203 #endif //ASSERT
1204 };
1205 
1206 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1207 
1208 // Default DU iterator.  Allows appends onto the out array.
1209 // Allows deletion from the out array only at the current point.
1210 // Usage:
1211 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1212 //    Node* y = x->out(i);
1213 //    ...
1214 //  }
1215 // Compiles in product mode to a unsigned integer index, which indexes
1216 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1217 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1218 // before continuing the loop.  You must delete only the last-produced
1219 // edge.  You must delete only a single copy of the last-produced edge,
1220 // or else you must delete all copies at once (the first time the edge
1221 // is produced by the iterator).
1222 class DUIterator : public DUIterator_Common {
1223   friend class Node;
1224 
1225   // This is the index which provides the product-mode behavior.
1226   // Whatever the product-mode version of the system does to the
1227   // DUI index is done to this index.  All other fields in
1228   // this class are used only for assertion checking.
1229   uint         _idx;
1230 
1231   #ifdef ASSERT
1232   uint         _refresh_tick;    // Records the refresh activity.
1233 
1234   void sample(const Node* node); // Initialize _refresh_tick etc.
1235   void verify(const Node* node, bool at_end_ok = false);
1236   void verify_increment();       // Verify an increment operation.
1237   void verify_resync();          // Verify that we can back up over a deletion.
1238   void verify_finish();          // Verify that the loop terminated properly.
1239   void refresh();                // Resample verification info.
1240   void reset(const DUIterator& that);  // Resample after assignment.
1241   #endif
1242 
1243   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1244     { _idx = 0;                         debug_only(sample(node)); }
1245 
1246  public:
1247   // initialize to garbage; clear _vdui to disable asserts
1248   DUIterator()
1249     { /*initialize to garbage*/         debug_only(_vdui = false); }
1250 
1251   void operator++(int dummy_to_specify_postfix_op)
1252     { _idx++;                           VDUI_ONLY(verify_increment()); }
1253 
1254   void operator--()
1255     { VDUI_ONLY(verify_resync());       --_idx; }
1256 
1257   ~DUIterator()
1258     { VDUI_ONLY(verify_finish()); }
1259 
1260   void operator=(const DUIterator& that)
1261     { _idx = that._idx;                 debug_only(reset(that)); }
1262 };
1263 
1264 DUIterator Node::outs() const
1265   { return DUIterator(this, 0); }
1266 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1267   { I_VDUI_ONLY(i, i.refresh());        return i; }
1268 bool Node::has_out(DUIterator& i) const
1269   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1270 Node*    Node::out(DUIterator& i) const
1271   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1272 
1273 
1274 // Faster DU iterator.  Disallows insertions into the out array.
1275 // Allows deletion from the out array only at the current point.
1276 // Usage:
1277 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1278 //    Node* y = x->fast_out(i);
1279 //    ...
1280 //  }
1281 // Compiles in product mode to raw Node** pointer arithmetic, with
1282 // no reloading of pointers from the original node x.  If you delete,
1283 // you must perform "--i; --imax" just before continuing the loop.
1284 // If you delete multiple copies of the same edge, you must decrement
1285 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1286 class DUIterator_Fast : public DUIterator_Common {
1287   friend class Node;
1288   friend class DUIterator_Last;
1289 
1290   // This is the pointer which provides the product-mode behavior.
1291   // Whatever the product-mode version of the system does to the
1292   // DUI pointer is done to this pointer.  All other fields in
1293   // this class are used only for assertion checking.
1294   Node**       _outp;
1295 
1296   #ifdef ASSERT
1297   void verify(const Node* node, bool at_end_ok = false);
1298   void verify_limit();
1299   void verify_resync();
1300   void verify_relimit(uint n);
1301   void reset(const DUIterator_Fast& that);
1302   #endif
1303 
1304   // Note:  offset must be signed, since -1 is sometimes passed
1305   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1306     { _outp = node->_out + offset;      debug_only(sample(node)); }
1307 
1308  public:
1309   // initialize to garbage; clear _vdui to disable asserts
1310   DUIterator_Fast()
1311     { /*initialize to garbage*/         debug_only(_vdui = false); }
1312 
1313   void operator++(int dummy_to_specify_postfix_op)
1314     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1315 
1316   void operator--()
1317     { VDUI_ONLY(verify_resync());       --_outp; }
1318 
1319   void operator-=(uint n)   // applied to the limit only
1320     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1321 
1322   bool operator<(DUIterator_Fast& limit) {
1323     I_VDUI_ONLY(*this, this->verify(_node, true));
1324     I_VDUI_ONLY(limit, limit.verify_limit());
1325     return _outp < limit._outp;
1326   }
1327 
1328   void operator=(const DUIterator_Fast& that)
1329     { _outp = that._outp;               debug_only(reset(that)); }
1330 };
1331 
1332 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1333   // Assign a limit pointer to the reference argument:
1334   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1335   // Return the base pointer:
1336   return DUIterator_Fast(this, 0);
1337 }
1338 Node* Node::fast_out(DUIterator_Fast& i) const {
1339   I_VDUI_ONLY(i, i.verify(this));
1340   return debug_only(i._last=) *i._outp;
1341 }
1342 
1343 
1344 // Faster DU iterator.  Requires each successive edge to be removed.
1345 // Does not allow insertion of any edges.
1346 // Usage:
1347 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1348 //    Node* y = x->last_out(i);
1349 //    ...
1350 //  }
1351 // Compiles in product mode to raw Node** pointer arithmetic, with
1352 // no reloading of pointers from the original node x.
1353 class DUIterator_Last : private DUIterator_Fast {
1354   friend class Node;
1355 
1356   #ifdef ASSERT
1357   void verify(const Node* node, bool at_end_ok = false);
1358   void verify_limit();
1359   void verify_step(uint num_edges);
1360   #endif
1361 
1362   // Note:  offset must be signed, since -1 is sometimes passed
1363   DUIterator_Last(const Node* node, ptrdiff_t offset)
1364     : DUIterator_Fast(node, offset) { }
1365 
1366   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1367   void operator<(int)                              {} // do not use
1368 
1369  public:
1370   DUIterator_Last() { }
1371   // initialize to garbage
1372 
1373   void operator--()
1374     { _outp--;              VDUI_ONLY(verify_step(1));  }
1375 
1376   void operator-=(uint n)
1377     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1378 
1379   bool operator>=(DUIterator_Last& limit) {
1380     I_VDUI_ONLY(*this, this->verify(_node, true));
1381     I_VDUI_ONLY(limit, limit.verify_limit());
1382     return _outp >= limit._outp;
1383   }
1384 
1385   void operator=(const DUIterator_Last& that)
1386     { DUIterator_Fast::operator=(that); }
1387 };
1388 
1389 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1390   // Assign a limit pointer to the reference argument:
1391   imin = DUIterator_Last(this, 0);
1392   // Return the initial pointer:
1393   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1394 }
1395 Node* Node::last_out(DUIterator_Last& i) const {
1396   I_VDUI_ONLY(i, i.verify(this));
1397   return debug_only(i._last=) *i._outp;
1398 }
1399 
1400 #endif //OPTO_DU_ITERATOR_ASSERT
1401 
1402 #undef I_VDUI_ONLY
1403 #undef VDUI_ONLY
1404 
1405 // An Iterator that truly follows the iterator pattern.  Doesn't
1406 // support deletion but could be made to.
1407 //
1408 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1409 //     Node* m = i.get();
1410 //
1411 class SimpleDUIterator : public StackObj {
1412  private:
1413   Node* node;
1414   DUIterator_Fast i;
1415   DUIterator_Fast imax;
1416  public:
1417   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1418   bool has_next() { return i < imax; }
1419   void next() { i++; }
1420   Node* get() { return node->fast_out(i); }
1421 };
1422 
1423 
1424 //-----------------------------------------------------------------------------
1425 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1426 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1427 // Note that the constructor just zeros things, and since I use Arena
1428 // allocation I do not need a destructor to reclaim storage.
1429 class Node_Array : public ResourceObj {
1430   friend class VMStructs;
1431 protected:
1432   Arena *_a;                    // Arena to allocate in
1433   uint   _max;
1434   Node **_nodes;
1435   void   grow( uint i );        // Grow array node to fit
1436 public:
1437   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1438     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1439     for( int i = 0; i < OptoNodeListSize; i++ ) {
1440       _nodes[i] = NULL;
1441     }
1442   }
1443 
1444   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1445   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1446   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1447   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1448   Node **adr() { return _nodes; }
1449   // Extend the mapping: index i maps to Node *n.
1450   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1451   void insert( uint i, Node *n );
1452   void remove( uint i );        // Remove, preserving order
1453   void sort( C_sort_func_t func);
1454   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1455   void clear();                 // Set all entries to NULL, keep storage
1456   uint Size() const { return _max; }
1457   void dump() const;
1458 };
1459 
1460 class Node_List : public Node_Array {
1461   friend class VMStructs;
1462   uint _cnt;
1463 public:
1464   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1465   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1466   bool contains(const Node* n) const {
1467     for (uint e = 0; e < size(); e++) {
1468       if (at(e) == n) return true;
1469     }
1470     return false;
1471   }
1472   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1473   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1474   void push( Node *b ) { map(_cnt++,b); }
1475   void yank( Node *n );         // Find and remove
1476   Node *pop() { return _nodes[--_cnt]; }
1477   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1478   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1479   uint size() const { return _cnt; }
1480   void dump() const;
1481   void dump_simple() const;
1482 };
1483 
1484 //------------------------------Unique_Node_List-------------------------------
1485 class Unique_Node_List : public Node_List {
1486   friend class VMStructs;
1487   VectorSet _in_worklist;
1488   uint _clock_index;            // Index in list where to pop from next
1489 public:
1490   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1491   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1492 
1493   void remove( Node *n );
1494   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1495   VectorSet &member_set(){ return _in_worklist; }
1496 
1497   void push( Node *b ) {
1498     if( !_in_worklist.test_set(b->_idx) )
1499       Node_List::push(b);
1500   }
1501   Node *pop() {
1502     if( _clock_index >= size() ) _clock_index = 0;
1503     Node *b = at(_clock_index);
1504     map( _clock_index, Node_List::pop());
1505     if (size() != 0) _clock_index++; // Always start from 0
1506     _in_worklist >>= b->_idx;
1507     return b;
1508   }
1509   Node *remove( uint i ) {
1510     Node *b = Node_List::at(i);
1511     _in_worklist >>= b->_idx;
1512     map(i,Node_List::pop());
1513     return b;
1514   }
1515   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1516   void  clear() {
1517     _in_worklist.Clear();        // Discards storage but grows automatically
1518     Node_List::clear();
1519     _clock_index = 0;
1520   }
1521 
1522   // Used after parsing to remove useless nodes before Iterative GVN
1523   void remove_useless_nodes(VectorSet &useful);
1524 
1525 #ifndef PRODUCT
1526   void print_set() const { _in_worklist.print(); }
1527 #endif
1528 };
1529 
1530 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1531 inline void Compile::record_for_igvn(Node* n) {
1532   _for_igvn->push(n);
1533 }
1534 
1535 //------------------------------Node_Stack-------------------------------------
1536 class Node_Stack {
1537   friend class VMStructs;
1538 protected:
1539   struct INode {
1540     Node *node; // Processed node
1541     uint  indx; // Index of next node's child
1542   };
1543   INode *_inode_top; // tos, stack grows up
1544   INode *_inode_max; // End of _inodes == _inodes + _max
1545   INode *_inodes;    // Array storage for the stack
1546   Arena *_a;         // Arena to allocate in
1547   void grow();
1548 public:
1549   Node_Stack(int size) {
1550     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1551     _a = Thread::current()->resource_area();
1552     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1553     _inode_max = _inodes + max;
1554     _inode_top = _inodes - 1; // stack is empty
1555   }
1556 
1557   Node_Stack(Arena *a, int size) : _a(a) {
1558     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1559     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1560     _inode_max = _inodes + max;
1561     _inode_top = _inodes - 1; // stack is empty
1562   }
1563 
1564   void pop() {
1565     assert(_inode_top >= _inodes, "node stack underflow");
1566     --_inode_top;
1567   }
1568   void push(Node *n, uint i) {
1569     ++_inode_top;
1570     if (_inode_top >= _inode_max) grow();
1571     INode *top = _inode_top; // optimization
1572     top->node = n;
1573     top->indx = i;
1574   }
1575   Node *node() const {
1576     return _inode_top->node;
1577   }
1578   Node* node_at(uint i) const {
1579     assert(_inodes + i <= _inode_top, "in range");
1580     return _inodes[i].node;
1581   }
1582   uint index() const {
1583     return _inode_top->indx;
1584   }
1585   uint index_at(uint i) const {
1586     assert(_inodes + i <= _inode_top, "in range");
1587     return _inodes[i].indx;
1588   }
1589   void set_node(Node *n) {
1590     _inode_top->node = n;
1591   }
1592   void set_index(uint i) {
1593     _inode_top->indx = i;
1594   }
1595   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1596   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1597   bool is_nonempty() const { return (_inode_top >= _inodes); }
1598   bool is_empty() const { return (_inode_top < _inodes); }
1599   void clear() { _inode_top = _inodes - 1; } // retain storage
1600 
1601   // Node_Stack is used to map nodes.
1602   Node* find(uint idx) const;
1603 };
1604 
1605 
1606 //-----------------------------Node_Notes--------------------------------------
1607 // Debugging or profiling annotations loosely and sparsely associated
1608 // with some nodes.  See Compile::node_notes_at for the accessor.
1609 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1610   friend class VMStructs;
1611   JVMState* _jvms;
1612 
1613 public:
1614   Node_Notes(JVMState* jvms = NULL) {
1615     _jvms = jvms;
1616   }
1617 
1618   JVMState* jvms()            { return _jvms; }
1619   void  set_jvms(JVMState* x) {        _jvms = x; }
1620 
1621   // True if there is nothing here.
1622   bool is_clear() {
1623     return (_jvms == NULL);
1624   }
1625 
1626   // Make there be nothing here.
1627   void clear() {
1628     _jvms = NULL;
1629   }
1630 
1631   // Make a new, clean node notes.
1632   static Node_Notes* make(Compile* C) {
1633     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1634     nn->clear();
1635     return nn;
1636   }
1637 
1638   Node_Notes* clone(Compile* C) {
1639     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1640     (*nn) = (*this);
1641     return nn;
1642   }
1643 
1644   // Absorb any information from source.
1645   bool update_from(Node_Notes* source) {
1646     bool changed = false;
1647     if (source != NULL) {
1648       if (source->jvms() != NULL) {
1649         set_jvms(source->jvms());
1650         changed = true;
1651       }
1652     }
1653     return changed;
1654   }
1655 };
1656 
1657 // Inlined accessors for Compile::node_nodes that require the preceding class:
1658 inline Node_Notes*
1659 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1660                            int idx, bool can_grow) {
1661   assert(idx >= 0, "oob");
1662   int block_idx = (idx >> _log2_node_notes_block_size);
1663   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1664   if (grow_by >= 0) {
1665     if (!can_grow)  return NULL;
1666     grow_node_notes(arr, grow_by + 1);
1667   }
1668   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1669   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1670 }
1671 
1672 inline bool
1673 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1674   if (value == NULL || value->is_clear())
1675     return false;  // nothing to write => write nothing
1676   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1677   assert(loc != NULL, "");
1678   return loc->update_from(value);
1679 }
1680 
1681 
1682 //------------------------------TypeNode---------------------------------------
1683 // Node with a Type constant.
1684 class TypeNode : public Node {
1685 protected:
1686   virtual uint hash() const;    // Check the type
1687   virtual uint cmp( const Node &n ) const;
1688   virtual uint size_of() const; // Size is bigger
1689   const Type* const _type;
1690 public:
1691   void set_type(const Type* t) {
1692     assert(t != NULL, "sanity");
1693     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1694     *(const Type**)&_type = t;   // cast away const-ness
1695     // If this node is in the hash table, make sure it doesn't need a rehash.
1696     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1697   }
1698   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1699   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1700     init_class_id(Class_Type);
1701   }
1702   virtual const Type* Value(PhaseGVN* phase) const;
1703   virtual const Type *bottom_type() const;
1704   virtual       uint  ideal_reg() const;
1705 #ifndef PRODUCT
1706   virtual void dump_spec(outputStream *st) const;
1707   virtual void dump_compact_spec(outputStream *st) const;
1708 #endif
1709 };
1710 
1711 #endif // SHARE_VM_OPTO_NODE_HPP