1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/cfgnode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/loopnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/regalloc.hpp"
  36 #include "opto/rootnode.hpp"
  37 
  38 //=============================================================================
  39 #define NODE_HASH_MINIMUM_SIZE    255
  40 //------------------------------NodeHash---------------------------------------
  41 NodeHash::NodeHash(uint est_max_size) :
  42   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  43   _a(Thread::current()->resource_area()),
  44   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
  45   _inserts(0), _insert_limit( insert_limit() )
  46 #ifndef PRODUCT
  47   ,_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  48   _delete_probes(0), _delete_hits(0), _delete_misses(0),
  49   _total_insert_probes(0), _total_inserts(0),
  50   _insert_probes(0), _grows(0)
  51 #endif
  52 {
  53   // _sentinel must be in the current node space
  54   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  55   memset(_table,0,sizeof(Node*)*_max);
  56 }
  57 
  58 //------------------------------NodeHash---------------------------------------
  59 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
  60   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  61   _a(arena),
  62   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
  63   _inserts(0), _insert_limit( insert_limit() )
  64 #ifndef PRODUCT
  65   ,_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  66   _delete_probes(0), _delete_hits(0), _delete_misses(0),
  67   _total_insert_probes(0), _total_inserts(0),
  68   _insert_probes(0), _grows(0)
  69 #endif
  70 {
  71   // _sentinel must be in the current node space
  72   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  73   memset(_table,0,sizeof(Node*)*_max);
  74 }
  75 
  76 //------------------------------NodeHash---------------------------------------
  77 NodeHash::NodeHash(NodeHash *nh) {
  78   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  79   // just copy in all the fields
  80   *this = *nh;
  81   // nh->_sentinel must be in the current node space
  82 }
  83 
  84 void NodeHash::replace_with(NodeHash *nh) {
  85   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  86   // just copy in all the fields
  87   *this = *nh;
  88   // nh->_sentinel must be in the current node space
  89 }
  90 
  91 //------------------------------hash_find--------------------------------------
  92 // Find in hash table
  93 Node *NodeHash::hash_find( const Node *n ) {
  94   // ((Node*)n)->set_hash( n->hash() );
  95   uint hash = n->hash();
  96   if (hash == Node::NO_HASH) {
  97     NOT_PRODUCT( _lookup_misses++ );
  98     return NULL;
  99   }
 100   uint key = hash & (_max-1);
 101   uint stride = key | 0x01;
 102   NOT_PRODUCT( _look_probes++ );
 103   Node *k = _table[key];        // Get hashed value
 104   if( !k ) {                    // ?Miss?
 105     NOT_PRODUCT( _lookup_misses++ );
 106     return NULL;                // Miss!
 107   }
 108 
 109   int op = n->Opcode();
 110   uint req = n->req();
 111   while( 1 ) {                  // While probing hash table
 112     if( k->req() == req &&      // Same count of inputs
 113         k->Opcode() == op ) {   // Same Opcode
 114       for( uint i=0; i<req; i++ )
 115         if( n->in(i)!=k->in(i)) // Different inputs?
 116           goto collision;       // "goto" is a speed hack...
 117       if( n->cmp(*k) ) {        // Check for any special bits
 118         NOT_PRODUCT( _lookup_hits++ );
 119         return k;               // Hit!
 120       }
 121     }
 122   collision:
 123     NOT_PRODUCT( _look_probes++ );
 124     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
 125     k = _table[key];            // Get hashed value
 126     if( !k ) {                  // ?Miss?
 127       NOT_PRODUCT( _lookup_misses++ );
 128       return NULL;              // Miss!
 129     }
 130   }
 131   ShouldNotReachHere();
 132   return NULL;
 133 }
 134 
 135 //------------------------------hash_find_insert-------------------------------
 136 // Find in hash table, insert if not already present
 137 // Used to preserve unique entries in hash table
 138 Node *NodeHash::hash_find_insert( Node *n ) {
 139   // n->set_hash( );
 140   uint hash = n->hash();
 141   if (hash == Node::NO_HASH) {
 142     NOT_PRODUCT( _lookup_misses++ );
 143     return NULL;
 144   }
 145   uint key = hash & (_max-1);
 146   uint stride = key | 0x01;     // stride must be relatively prime to table siz
 147   uint first_sentinel = 0;      // replace a sentinel if seen.
 148   NOT_PRODUCT( _look_probes++ );
 149   Node *k = _table[key];        // Get hashed value
 150   if( !k ) {                    // ?Miss?
 151     NOT_PRODUCT( _lookup_misses++ );
 152     _table[key] = n;            // Insert into table!
 153     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 154     check_grow();               // Grow table if insert hit limit
 155     return NULL;                // Miss!
 156   }
 157   else if( k == _sentinel ) {
 158     first_sentinel = key;      // Can insert here
 159   }
 160 
 161   int op = n->Opcode();
 162   uint req = n->req();
 163   while( 1 ) {                  // While probing hash table
 164     if( k->req() == req &&      // Same count of inputs
 165         k->Opcode() == op ) {   // Same Opcode
 166       for( uint i=0; i<req; i++ )
 167         if( n->in(i)!=k->in(i)) // Different inputs?
 168           goto collision;       // "goto" is a speed hack...
 169       if( n->cmp(*k) ) {        // Check for any special bits
 170         NOT_PRODUCT( _lookup_hits++ );
 171         return k;               // Hit!
 172       }
 173     }
 174   collision:
 175     NOT_PRODUCT( _look_probes++ );
 176     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 177     k = _table[key];            // Get hashed value
 178     if( !k ) {                  // ?Miss?
 179       NOT_PRODUCT( _lookup_misses++ );
 180       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
 181       _table[key] = n;          // Insert into table!
 182       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 183       check_grow();             // Grow table if insert hit limit
 184       return NULL;              // Miss!
 185     }
 186     else if( first_sentinel == 0 && k == _sentinel ) {
 187       first_sentinel = key;    // Can insert here
 188     }
 189 
 190   }
 191   ShouldNotReachHere();
 192   return NULL;
 193 }
 194 
 195 //------------------------------hash_insert------------------------------------
 196 // Insert into hash table
 197 void NodeHash::hash_insert( Node *n ) {
 198   // // "conflict" comments -- print nodes that conflict
 199   // bool conflict = false;
 200   // n->set_hash();
 201   uint hash = n->hash();
 202   if (hash == Node::NO_HASH) {
 203     return;
 204   }
 205   check_grow();
 206   uint key = hash & (_max-1);
 207   uint stride = key | 0x01;
 208 
 209   while( 1 ) {                  // While probing hash table
 210     NOT_PRODUCT( _insert_probes++ );
 211     Node *k = _table[key];      // Get hashed value
 212     if( !k || (k == _sentinel) ) break;       // Found a slot
 213     assert( k != n, "already inserted" );
 214     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
 215     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 216   }
 217   _table[key] = n;              // Insert into table!
 218   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 219   // if( conflict ) { n->dump(); }
 220 }
 221 
 222 //------------------------------hash_delete------------------------------------
 223 // Replace in hash table with sentinel
 224 bool NodeHash::hash_delete( const Node *n ) {
 225   Node *k;
 226   uint hash = n->hash();
 227   if (hash == Node::NO_HASH) {
 228     NOT_PRODUCT( _delete_misses++ );
 229     return false;
 230   }
 231   uint key = hash & (_max-1);
 232   uint stride = key | 0x01;
 233   debug_only( uint counter = 0; );
 234   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
 235     debug_only( counter++ );
 236     NOT_PRODUCT( _delete_probes++ );
 237     k = _table[key];            // Get hashed value
 238     if( !k ) {                  // Miss?
 239       NOT_PRODUCT( _delete_misses++ );
 240 #ifdef ASSERT
 241       if( VerifyOpto ) {
 242         for( uint i=0; i < _max; i++ )
 243           assert( _table[i] != n, "changed edges with rehashing" );
 244       }
 245 #endif
 246       return false;             // Miss! Not in chain
 247     }
 248     else if( n == k ) {
 249       NOT_PRODUCT( _delete_hits++ );
 250       _table[key] = _sentinel;  // Hit! Label as deleted entry
 251       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
 252       return true;
 253     }
 254     else {
 255       // collision: move through table with prime offset
 256       key = (key + stride/*7*/) & (_max-1);
 257       assert( counter <= _insert_limit, "Cycle in hash-table");
 258     }
 259   }
 260   ShouldNotReachHere();
 261   return false;
 262 }
 263 
 264 //------------------------------round_up---------------------------------------
 265 // Round up to nearest power of 2
 266 uint NodeHash::round_up( uint x ) {
 267   x += (x>>2);                  // Add 25% slop
 268   if( x <16 ) return 16;        // Small stuff
 269   uint i=16;
 270   while( i < x ) i <<= 1;       // Double to fit
 271   return i;                     // Return hash table size
 272 }
 273 
 274 //------------------------------grow-------------------------------------------
 275 // Grow _table to next power of 2 and insert old entries
 276 void  NodeHash::grow() {
 277   // Record old state
 278   uint   old_max   = _max;
 279   Node **old_table = _table;
 280   // Construct new table with twice the space
 281 #ifndef PRODUCT
 282   _grows++;
 283   _total_inserts       += _inserts;
 284   _total_insert_probes += _insert_probes;
 285   _insert_probes   = 0;
 286 #endif
 287   _inserts         = 0;
 288   _max     = _max << 1;
 289   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
 290   memset(_table,0,sizeof(Node*)*_max);
 291   _insert_limit = insert_limit();
 292   // Insert old entries into the new table
 293   for( uint i = 0; i < old_max; i++ ) {
 294     Node *m = *old_table++;
 295     if( !m || m == _sentinel ) continue;
 296     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
 297     hash_insert(m);
 298   }
 299 }
 300 
 301 //------------------------------clear------------------------------------------
 302 // Clear all entries in _table to NULL but keep storage
 303 void  NodeHash::clear() {
 304 #ifdef ASSERT
 305   // Unlock all nodes upon removal from table.
 306   for (uint i = 0; i < _max; i++) {
 307     Node* n = _table[i];
 308     if (!n || n == _sentinel)  continue;
 309     n->exit_hash_lock();
 310   }
 311 #endif
 312 
 313   memset( _table, 0, _max * sizeof(Node*) );
 314 }
 315 
 316 //-----------------------remove_useless_nodes----------------------------------
 317 // Remove useless nodes from value table,
 318 // implementation does not depend on hash function
 319 void NodeHash::remove_useless_nodes(VectorSet &useful) {
 320 
 321   // Dead nodes in the hash table inherited from GVN should not replace
 322   // existing nodes, remove dead nodes.
 323   uint max = size();
 324   Node *sentinel_node = sentinel();
 325   for( uint i = 0; i < max; ++i ) {
 326     Node *n = at(i);
 327     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
 328       debug_only(n->exit_hash_lock()); // Unlock the node when removed
 329       _table[i] = sentinel_node;       // Replace with placeholder
 330     }
 331   }
 332 }
 333 
 334 
 335 void NodeHash::check_no_speculative_types() {
 336 #ifdef ASSERT
 337   uint max = size();
 338   Node *sentinel_node = sentinel();
 339   for (uint i = 0; i < max; ++i) {
 340     Node *n = at(i);
 341     if(n != NULL && n != sentinel_node && n->is_Type() && n->outcnt() > 0) {
 342       TypeNode* tn = n->as_Type();
 343       const Type* t = tn->type();
 344       const Type* t_no_spec = t->remove_speculative();
 345       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
 346     }
 347   }
 348 #endif
 349 }
 350 
 351 #ifndef PRODUCT
 352 //------------------------------dump-------------------------------------------
 353 // Dump statistics for the hash table
 354 void NodeHash::dump() {
 355   _total_inserts       += _inserts;
 356   _total_insert_probes += _insert_probes;
 357   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
 358     if (WizardMode) {
 359       for (uint i=0; i<_max; i++) {
 360         if (_table[i])
 361           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
 362       }
 363     }
 364     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
 365     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
 366     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
 367     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
 368     // sentinels increase lookup cost, but not insert cost
 369     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
 370     assert( _inserts+(_inserts>>3) < _max, "table too full" );
 371     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
 372   }
 373 }
 374 
 375 Node *NodeHash::find_index(uint idx) { // For debugging
 376   // Find an entry by its index value
 377   for( uint i = 0; i < _max; i++ ) {
 378     Node *m = _table[i];
 379     if( !m || m == _sentinel ) continue;
 380     if( m->_idx == (uint)idx ) return m;
 381   }
 382   return NULL;
 383 }
 384 #endif
 385 
 386 #ifdef ASSERT
 387 NodeHash::~NodeHash() {
 388   // Unlock all nodes upon destruction of table.
 389   if (_table != (Node**)badAddress)  clear();
 390 }
 391 
 392 void NodeHash::operator=(const NodeHash& nh) {
 393   // Unlock all nodes upon replacement of table.
 394   if (&nh == this)  return;
 395   if (_table != (Node**)badAddress)  clear();
 396   memcpy(this, &nh, sizeof(*this));
 397   // Do not increment hash_lock counts again.
 398   // Instead, be sure we never again use the source table.
 399   ((NodeHash*)&nh)->_table = (Node**)badAddress;
 400 }
 401 
 402 
 403 #endif
 404 
 405 
 406 //=============================================================================
 407 //------------------------------PhaseRemoveUseless-----------------------------
 408 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
 409 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num) : Phase(phase_num),
 410   _useful(Thread::current()->resource_area()) {
 411 
 412   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
 413   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
 414   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
 415 
 416   // Identify nodes that are reachable from below, useful.
 417   C->identify_useful_nodes(_useful);
 418   // Update dead node list
 419   C->update_dead_node_list(_useful);
 420 
 421   // Remove all useless nodes from PhaseValues' recorded types
 422   // Must be done before disconnecting nodes to preserve hash-table-invariant
 423   gvn->remove_useless_nodes(_useful.member_set());
 424 
 425   // Remove all useless nodes from future worklist
 426   worklist->remove_useless_nodes(_useful.member_set());
 427 
 428   // Disconnect 'useless' nodes that are adjacent to useful nodes
 429   C->remove_useless_nodes(_useful);
 430 
 431   // Remove edges from "root" to each SafePoint at a backward branch.
 432   // They were inserted during parsing (see add_safepoint()) to make infinite
 433   // loops without calls or exceptions visible to root, i.e., useful.
 434   Node *root = C->root();
 435   if( root != NULL ) {
 436     for( uint i = root->req(); i < root->len(); ++i ) {
 437       Node *n = root->in(i);
 438       if( n != NULL && n->is_SafePoint() ) {
 439         root->rm_prec(i);
 440         --i;
 441       }
 442     }
 443   }
 444 }
 445 
 446 //=============================================================================
 447 //------------------------------PhaseRenumberLive------------------------------
 448 // First, remove useless nodes (equivalent to identifying live nodes).
 449 // Then, renumber live nodes.
 450 //
 451 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure.
 452 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the
 453 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique
 454 // value in the range [0, x).
 455 //
 456 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is
 457 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes).
 458 //
 459 // The PhaseRenumberLive phase updates two data structures with the new node IDs.
 460 // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be
 461 // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'.
 462 // (2) Type information (the field PhaseGVN::_types) maps type information to each
 463 // node ID. The mapping is updated to use the new node IDs as well. Updated type
 464 // information is returned in PhaseGVN::_types.
 465 //
 466 // The PhaseRenumberLive phase does not preserve the order of elements in the worklist.
 467 //
 468 // Other data structures used by the compiler are not updated. The hash table for value
 469 // numbering (the field PhaseGVN::_table) is not updated because computing the hash
 470 // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either
 471 // because it is empty wherever PhaseRenumberLive is used.
 472 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn,
 473                                      Unique_Node_List* worklist, Unique_Node_List* new_worklist,
 474                                      PhaseNumber phase_num) :
 475   PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live) {
 476 
 477   assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place");
 478   assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes");
 479   assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point");
 480 
 481   uint old_unique_count = C->unique();
 482   uint live_node_count = C->live_nodes();
 483   uint worklist_size = worklist->size();
 484 
 485   // Storage for the updated type information.
 486   Type_Array new_type_array(C->comp_arena());
 487 
 488   // Iterate over the set of live nodes.
 489   uint current_idx = 0; // The current new node ID. Incremented after every assignment.
 490   for (uint i = 0; i < _useful.size(); i++) {
 491     Node* n = _useful.at(i);
 492     const Type* type = gvn->type_or_null(n);
 493     new_type_array.map(current_idx, type);
 494 
 495     bool in_worklist = false;
 496     if (worklist->member(n)) {
 497       in_worklist = true;
 498     }
 499 
 500     n->set_idx(current_idx); // Update node ID.
 501 
 502     if (in_worklist) {
 503       new_worklist->push(n);
 504     }
 505 
 506     current_idx++;
 507   }
 508 
 509   assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist");
 510   assert(live_node_count == current_idx, "all live nodes must be processed");
 511 
 512   // Replace the compiler's type information with the updated type information.
 513   gvn->replace_types(new_type_array);
 514 
 515   // Update the unique node count of the compilation to the number of currently live nodes.
 516   C->set_unique(live_node_count);
 517 
 518   // Set the dead node count to 0 and reset dead node list.
 519   C->reset_dead_node_list();
 520 }
 521 
 522 
 523 //=============================================================================
 524 //------------------------------PhaseTransform---------------------------------
 525 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
 526   _arena(Thread::current()->resource_area()),
 527   _nodes(_arena),
 528   _types(_arena)
 529 {
 530   init_con_caches();
 531 #ifndef PRODUCT
 532   clear_progress();
 533   clear_transforms();
 534   set_allow_progress(true);
 535 #endif
 536   // Force allocation for currently existing nodes
 537   _types.map(C->unique(), NULL);
 538 }
 539 
 540 //------------------------------PhaseTransform---------------------------------
 541 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
 542   _arena(arena),
 543   _nodes(arena),
 544   _types(arena)
 545 {
 546   init_con_caches();
 547 #ifndef PRODUCT
 548   clear_progress();
 549   clear_transforms();
 550   set_allow_progress(true);
 551 #endif
 552   // Force allocation for currently existing nodes
 553   _types.map(C->unique(), NULL);
 554 }
 555 
 556 //------------------------------PhaseTransform---------------------------------
 557 // Initialize with previously generated type information
 558 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
 559   _arena(pt->_arena),
 560   _nodes(pt->_nodes),
 561   _types(pt->_types)
 562 {
 563   init_con_caches();
 564 #ifndef PRODUCT
 565   clear_progress();
 566   clear_transforms();
 567   set_allow_progress(true);
 568 #endif
 569 }
 570 
 571 void PhaseTransform::init_con_caches() {
 572   memset(_icons,0,sizeof(_icons));
 573   memset(_lcons,0,sizeof(_lcons));
 574   memset(_zcons,0,sizeof(_zcons));
 575 }
 576 
 577 
 578 //--------------------------------find_int_type--------------------------------
 579 const TypeInt* PhaseTransform::find_int_type(Node* n) {
 580   if (n == NULL)  return NULL;
 581   // Call type_or_null(n) to determine node's type since we might be in
 582   // parse phase and call n->Value() may return wrong type.
 583   // (For example, a phi node at the beginning of loop parsing is not ready.)
 584   const Type* t = type_or_null(n);
 585   if (t == NULL)  return NULL;
 586   return t->isa_int();
 587 }
 588 
 589 
 590 //-------------------------------find_long_type--------------------------------
 591 const TypeLong* PhaseTransform::find_long_type(Node* n) {
 592   if (n == NULL)  return NULL;
 593   // (See comment above on type_or_null.)
 594   const Type* t = type_or_null(n);
 595   if (t == NULL)  return NULL;
 596   return t->isa_long();
 597 }
 598 
 599 
 600 #ifndef PRODUCT
 601 void PhaseTransform::dump_old2new_map() const {
 602   _nodes.dump();
 603 }
 604 
 605 void PhaseTransform::dump_new( uint nidx ) const {
 606   for( uint i=0; i<_nodes.Size(); i++ )
 607     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
 608       _nodes[i]->dump();
 609       tty->cr();
 610       tty->print_cr("Old index= %d",i);
 611       return;
 612     }
 613   tty->print_cr("Node %d not found in the new indices", nidx);
 614 }
 615 
 616 //------------------------------dump_types-------------------------------------
 617 void PhaseTransform::dump_types( ) const {
 618   _types.dump();
 619 }
 620 
 621 //------------------------------dump_nodes_and_types---------------------------
 622 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
 623   VectorSet visited(Thread::current()->resource_area());
 624   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
 625 }
 626 
 627 //------------------------------dump_nodes_and_types_recur---------------------
 628 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
 629   if( !n ) return;
 630   if( depth == 0 ) return;
 631   if( visited.test_set(n->_idx) ) return;
 632   for( uint i=0; i<n->len(); i++ ) {
 633     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
 634     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
 635   }
 636   n->dump();
 637   if (type_or_null(n) != NULL) {
 638     tty->print("      "); type(n)->dump(); tty->cr();
 639   }
 640 }
 641 
 642 #endif
 643 
 644 
 645 //=============================================================================
 646 //------------------------------PhaseValues------------------------------------
 647 // Set minimum table size to "255"
 648 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
 649   NOT_PRODUCT( clear_new_values(); )
 650 }
 651 
 652 //------------------------------PhaseValues------------------------------------
 653 // Set minimum table size to "255"
 654 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
 655   _table(&ptv->_table) {
 656   NOT_PRODUCT( clear_new_values(); )
 657 }
 658 
 659 //------------------------------PhaseValues------------------------------------
 660 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
 661 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
 662   _table(ptv->arena(),ptv->_table.size()) {
 663   NOT_PRODUCT( clear_new_values(); )
 664 }
 665 
 666 //------------------------------~PhaseValues-----------------------------------
 667 #ifndef PRODUCT
 668 PhaseValues::~PhaseValues() {
 669   _table.dump();
 670 
 671   // Statistics for value progress and efficiency
 672   if( PrintCompilation && Verbose && WizardMode ) {
 673     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
 674       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
 675     if( made_transforms() != 0 ) {
 676       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
 677     } else {
 678       tty->cr();
 679     }
 680   }
 681 }
 682 #endif
 683 
 684 //------------------------------makecon----------------------------------------
 685 ConNode* PhaseTransform::makecon(const Type *t) {
 686   assert(t->singleton(), "must be a constant");
 687   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
 688   switch (t->base()) {  // fast paths
 689   case Type::Half:
 690   case Type::Top:  return (ConNode*) C->top();
 691   case Type::Int:  return intcon( t->is_int()->get_con() );
 692   case Type::Long: return longcon( t->is_long()->get_con() );
 693   }
 694   if (t->is_zero_type())
 695     return zerocon(t->basic_type());
 696   return uncached_makecon(t);
 697 }
 698 
 699 //--------------------------uncached_makecon-----------------------------------
 700 // Make an idealized constant - one of ConINode, ConPNode, etc.
 701 ConNode* PhaseValues::uncached_makecon(const Type *t) {
 702   assert(t->singleton(), "must be a constant");
 703   ConNode* x = ConNode::make(t);
 704   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
 705   if (k == NULL) {
 706     set_type(x, t);             // Missed, provide type mapping
 707     GrowableArray<Node_Notes*>* nna = C->node_note_array();
 708     if (nna != NULL) {
 709       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
 710       loc->clear(); // do not put debug info on constants
 711     }
 712   } else {
 713     x->destruct();              // Hit, destroy duplicate constant
 714     x = k;                      // use existing constant
 715   }
 716   return x;
 717 }
 718 
 719 //------------------------------intcon-----------------------------------------
 720 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
 721 ConINode* PhaseTransform::intcon(int i) {
 722   // Small integer?  Check cache! Check that cached node is not dead
 723   if (i >= _icon_min && i <= _icon_max) {
 724     ConINode* icon = _icons[i-_icon_min];
 725     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
 726       return icon;
 727   }
 728   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
 729   assert(icon->is_Con(), "");
 730   if (i >= _icon_min && i <= _icon_max)
 731     _icons[i-_icon_min] = icon;   // Cache small integers
 732   return icon;
 733 }
 734 
 735 //------------------------------longcon----------------------------------------
 736 // Fast long constant.
 737 ConLNode* PhaseTransform::longcon(jlong l) {
 738   // Small integer?  Check cache! Check that cached node is not dead
 739   if (l >= _lcon_min && l <= _lcon_max) {
 740     ConLNode* lcon = _lcons[l-_lcon_min];
 741     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
 742       return lcon;
 743   }
 744   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
 745   assert(lcon->is_Con(), "");
 746   if (l >= _lcon_min && l <= _lcon_max)
 747     _lcons[l-_lcon_min] = lcon;      // Cache small integers
 748   return lcon;
 749 }
 750 
 751 //------------------------------zerocon-----------------------------------------
 752 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
 753 ConNode* PhaseTransform::zerocon(BasicType bt) {
 754   assert((uint)bt <= _zcon_max, "domain check");
 755   ConNode* zcon = _zcons[bt];
 756   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
 757     return zcon;
 758   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
 759   _zcons[bt] = zcon;
 760   return zcon;
 761 }
 762 
 763 
 764 
 765 //=============================================================================
 766 //------------------------------transform--------------------------------------
 767 // Return a node which computes the same function as this node, but in a
 768 // faster or cheaper fashion.
 769 Node *PhaseGVN::transform( Node *n ) {
 770   return transform_no_reclaim(n);
 771 }
 772 
 773 //------------------------------transform--------------------------------------
 774 // Return a node which computes the same function as this node, but
 775 // in a faster or cheaper fashion.
 776 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
 777   NOT_PRODUCT( set_transforms(); )
 778 
 779   // Apply the Ideal call in a loop until it no longer applies
 780   Node *k = n;
 781   NOT_PRODUCT( uint loop_count = 0; )
 782   while( 1 ) {
 783     Node *i = k->Ideal(this, /*can_reshape=*/false);
 784     if( !i ) break;
 785     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
 786     k = i;
 787     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
 788   }
 789   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
 790 
 791 
 792   // If brand new node, make space in type array.
 793   ensure_type_or_null(k);
 794 
 795   // Since I just called 'Value' to compute the set of run-time values
 796   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
 797   // cache Value.  Later requests for the local phase->type of this Node can
 798   // use the cached Value instead of suffering with 'bottom_type'.
 799   const Type *t = k->Value(this); // Get runtime Value set
 800   assert(t != NULL, "value sanity");
 801   if (type_or_null(k) != t) {
 802 #ifndef PRODUCT
 803     // Do not count initial visit to node as a transformation
 804     if (type_or_null(k) == NULL) {
 805       inc_new_values();
 806       set_progress();
 807     }
 808 #endif
 809     set_type(k, t);
 810     // If k is a TypeNode, capture any more-precise type permanently into Node
 811     k->raise_bottom_type(t);
 812   }
 813 
 814   if( t->singleton() && !k->is_Con() ) {
 815     NOT_PRODUCT( set_progress(); )
 816     return makecon(t);          // Turn into a constant
 817   }
 818 
 819   // Now check for Identities
 820   Node *i = k->Identity(this);  // Look for a nearby replacement
 821   if( i != k ) {                // Found? Return replacement!
 822     NOT_PRODUCT( set_progress(); )
 823     return i;
 824   }
 825 
 826   // Global Value Numbering
 827   i = hash_find_insert(k);      // Insert if new
 828   if( i && (i != k) ) {
 829     // Return the pre-existing node
 830     NOT_PRODUCT( set_progress(); )
 831     return i;
 832   }
 833 
 834   // Return Idealized original
 835   return k;
 836 }
 837 
 838 bool PhaseGVN::is_dominator_helper(Node *d, Node *n, bool linear_only) {
 839   if (d->is_top() || n->is_top()) {
 840     return false;
 841   }
 842   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
 843   int i = 0;
 844   while (d != n) {
 845     n = IfNode::up_one_dom(n, linear_only);
 846     i++;
 847     if (n == NULL || i >= 10) {
 848       return false;
 849     }
 850   }
 851   return true;
 852 }
 853 
 854 #ifdef ASSERT
 855 //------------------------------dead_loop_check--------------------------------
 856 // Check for a simple dead loop when a data node references itself directly
 857 // or through an other data node excluding cons and phis.
 858 void PhaseGVN::dead_loop_check( Node *n ) {
 859   // Phi may reference itself in a loop
 860   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
 861     // Do 2 levels check and only data inputs.
 862     bool no_dead_loop = true;
 863     uint cnt = n->req();
 864     for (uint i = 1; i < cnt && no_dead_loop; i++) {
 865       Node *in = n->in(i);
 866       if (in == n) {
 867         no_dead_loop = false;
 868       } else if (in != NULL && !in->is_dead_loop_safe()) {
 869         uint icnt = in->req();
 870         for (uint j = 1; j < icnt && no_dead_loop; j++) {
 871           if (in->in(j) == n || in->in(j) == in)
 872             no_dead_loop = false;
 873         }
 874       }
 875     }
 876     if (!no_dead_loop) n->dump(3);
 877     assert(no_dead_loop, "dead loop detected");
 878   }
 879 }
 880 #endif
 881 
 882 //=============================================================================
 883 //------------------------------PhaseIterGVN-----------------------------------
 884 // Initialize hash table to fresh and clean for +VerifyOpto
 885 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
 886                                                                       _stack(C->live_nodes() >> 1),
 887                                                                       _delay_transform(false) {
 888 }
 889 
 890 //------------------------------PhaseIterGVN-----------------------------------
 891 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
 892 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
 893                                                    _worklist( igvn->_worklist ),
 894                                                    _stack( igvn->_stack ),
 895                                                    _delay_transform(igvn->_delay_transform)
 896 {
 897 }
 898 
 899 //------------------------------PhaseIterGVN-----------------------------------
 900 // Initialize with previous PhaseGVN info from Parser
 901 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
 902                                               _worklist(*C->for_igvn()),
 903 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that
 904 //       the constructor is used in incremental inlining, this consumes too much memory:
 905 //                                            _stack(C->live_nodes() >> 1),
 906 //       So, as a band-aid, we replace this by:
 907                                               _stack(C->comp_arena(), 32),
 908                                               _delay_transform(false)
 909 {
 910   uint max;
 911 
 912   // Dead nodes in the hash table inherited from GVN were not treated as
 913   // roots during def-use info creation; hence they represent an invisible
 914   // use.  Clear them out.
 915   max = _table.size();
 916   for( uint i = 0; i < max; ++i ) {
 917     Node *n = _table.at(i);
 918     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
 919       if( n->is_top() ) continue;
 920       assert( false, "Parse::remove_useless_nodes missed this node");
 921       hash_delete(n);
 922     }
 923   }
 924 
 925   // Any Phis or Regions on the worklist probably had uses that could not
 926   // make more progress because the uses were made while the Phis and Regions
 927   // were in half-built states.  Put all uses of Phis and Regions on worklist.
 928   max = _worklist.size();
 929   for( uint j = 0; j < max; j++ ) {
 930     Node *n = _worklist.at(j);
 931     uint uop = n->Opcode();
 932     if( uop == Op_Phi || uop == Op_Region ||
 933         n->is_Type() ||
 934         n->is_Mem() )
 935       add_users_to_worklist(n);
 936   }
 937 }
 938 
 939 /**
 940  * Initialize worklist for each node.
 941  */
 942 void PhaseIterGVN::init_worklist(Node* first) {
 943   Unique_Node_List to_process;
 944   to_process.push(first);
 945 
 946   while (to_process.size() > 0) {
 947     Node* n = to_process.pop();
 948     if (!_worklist.member(n)) {
 949       _worklist.push(n);
 950 
 951       uint cnt = n->req();
 952       for(uint i = 0; i < cnt; i++) {
 953         Node* m = n->in(i);
 954         if (m != NULL) {
 955           to_process.push(m);
 956         }
 957       }
 958     }
 959   }
 960 }
 961 
 962 #ifndef PRODUCT
 963 void PhaseIterGVN::verify_step(Node* n) {
 964   if (VerifyIterativeGVN) {
 965     _verify_window[_verify_counter % _verify_window_size] = n;
 966     ++_verify_counter;
 967     ResourceMark rm;
 968     ResourceArea* area = Thread::current()->resource_area();
 969     VectorSet old_space(area), new_space(area);
 970     if (C->unique() < 1000 ||
 971         0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
 972       ++_verify_full_passes;
 973       Node::verify_recur(C->root(), -1, old_space, new_space);
 974     }
 975     const int verify_depth = 4;
 976     for ( int i = 0; i < _verify_window_size; i++ ) {
 977       Node* n = _verify_window[i];
 978       if ( n == NULL )  continue;
 979       if( n->in(0) == NodeSentinel ) {  // xform_idom
 980         _verify_window[i] = n->in(1);
 981         --i; continue;
 982       }
 983       // Typical fanout is 1-2, so this call visits about 6 nodes.
 984       Node::verify_recur(n, verify_depth, old_space, new_space);
 985     }
 986   }
 987 }
 988 
 989 void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) {
 990   if (TraceIterativeGVN) {
 991     uint wlsize = _worklist.size();
 992     const Type* newtype = type_or_null(n);
 993     if (nn != n) {
 994       // print old node
 995       tty->print("< ");
 996       if (oldtype != newtype && oldtype != NULL) {
 997         oldtype->dump();
 998       }
 999       do { tty->print("\t"); } while (tty->position() < 16);
1000       tty->print("<");
1001       n->dump();
1002     }
1003     if (oldtype != newtype || nn != n) {
1004       // print new node and/or new type
1005       if (oldtype == NULL) {
1006         tty->print("* ");
1007       } else if (nn != n) {
1008         tty->print("> ");
1009       } else {
1010         tty->print("= ");
1011       }
1012       if (newtype == NULL) {
1013         tty->print("null");
1014       } else {
1015         newtype->dump();
1016       }
1017       do { tty->print("\t"); } while (tty->position() < 16);
1018       nn->dump();
1019     }
1020     if (Verbose && wlsize < _worklist.size()) {
1021       tty->print("  Push {");
1022       while (wlsize != _worklist.size()) {
1023         Node* pushed = _worklist.at(wlsize++);
1024         tty->print(" %d", pushed->_idx);
1025       }
1026       tty->print_cr(" }");
1027     }
1028     if (nn != n) {
1029       // ignore n, it might be subsumed
1030       verify_step((Node*) NULL);
1031     }
1032   }
1033 }
1034 
1035 void PhaseIterGVN::init_verifyPhaseIterGVN() {
1036   _verify_counter = 0;
1037   _verify_full_passes = 0;
1038   for (int i = 0; i < _verify_window_size; i++) {
1039     _verify_window[i] = NULL;
1040   }
1041 #ifdef ASSERT
1042   // Verify that all modified nodes are on _worklist
1043   Unique_Node_List* modified_list = C->modified_nodes();
1044   while (modified_list != NULL && modified_list->size()) {
1045     Node* n = modified_list->pop();
1046     if (n->outcnt() != 0 && !n->is_Con() && !_worklist.member(n)) {
1047       n->dump();
1048       assert(false, "modified node is not on IGVN._worklist");
1049     }
1050   }
1051 #endif
1052 }
1053 
1054 void PhaseIterGVN::verify_PhaseIterGVN() {
1055 #ifdef ASSERT
1056   // Verify nodes with changed inputs.
1057   Unique_Node_List* modified_list = C->modified_nodes();
1058   while (modified_list != NULL && modified_list->size()) {
1059     Node* n = modified_list->pop();
1060     if (n->outcnt() != 0 && !n->is_Con()) { // skip dead and Con nodes
1061       n->dump();
1062       assert(false, "modified node was not processed by IGVN.transform_old()");
1063     }
1064   }
1065 #endif
1066 
1067   C->verify_graph_edges();
1068   if( VerifyOpto && allow_progress() ) {
1069     // Must turn off allow_progress to enable assert and break recursion
1070     C->root()->verify();
1071     { // Check if any progress was missed using IterGVN
1072       // Def-Use info enables transformations not attempted in wash-pass
1073       // e.g. Region/Phi cleanup, ...
1074       // Null-check elision -- may not have reached fixpoint
1075       //                       do not propagate to dominated nodes
1076       ResourceMark rm;
1077       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
1078       // Fill worklist completely
1079       igvn2.init_worklist(C->root());
1080 
1081       igvn2.set_allow_progress(false);
1082       igvn2.optimize();
1083       igvn2.set_allow_progress(true);
1084     }
1085   }
1086   if (VerifyIterativeGVN && PrintOpto) {
1087     if (_verify_counter == _verify_full_passes) {
1088       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
1089                     (int) _verify_full_passes);
1090     } else {
1091       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
1092                   (int) _verify_counter, (int) _verify_full_passes);
1093     }
1094   }
1095 
1096 #ifdef ASSERT
1097   while (modified_list->size()) {
1098     Node* n = modified_list->pop();
1099     n->dump();
1100     assert(false, "VerifyIterativeGVN: new modified node was added");
1101   }
1102 #endif
1103 }
1104 #endif /* PRODUCT */
1105 
1106 #ifdef ASSERT
1107 /**
1108  * Dumps information that can help to debug the problem. A debug
1109  * build fails with an assert.
1110  */
1111 void PhaseIterGVN::dump_infinite_loop_info(Node* n) {
1112   n->dump(4);
1113   _worklist.dump();
1114   assert(false, "infinite loop in PhaseIterGVN::optimize");
1115 }
1116 
1117 /**
1118  * Prints out information about IGVN if the 'verbose' option is used.
1119  */
1120 void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) {
1121   if (TraceIterativeGVN && Verbose) {
1122     tty->print("  Pop ");
1123     n->dump();
1124     if ((num_processed % 100) == 0) {
1125       _worklist.print_set();
1126     }
1127   }
1128 }
1129 #endif /* ASSERT */
1130 
1131 void PhaseIterGVN::optimize() {
1132   DEBUG_ONLY(uint num_processed  = 0;)
1133   NOT_PRODUCT(init_verifyPhaseIterGVN();)
1134 
1135   uint loop_count = 0;
1136   // Pull from worklist and transform the node. If the node has changed,
1137   // update edge info and put uses on worklist.
1138   while(_worklist.size()) {
1139     if (C->check_node_count(NodeLimitFudgeFactor * 2, "Out of nodes")) {
1140       return;
1141     }
1142     Node* n  = _worklist.pop();
1143     if (++loop_count >= K * C->live_nodes()) {
1144       DEBUG_ONLY(dump_infinite_loop_info(n);)
1145       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
1146       return;
1147     }
1148     DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);)
1149     if (n->outcnt() != 0) {
1150       NOT_PRODUCT(const Type* oldtype = type_or_null(n));
1151       // Do the transformation
1152       Node* nn = transform_old(n);
1153       NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);)
1154     } else if (!n->is_top()) {
1155       remove_dead_node(n);
1156     }
1157   }
1158   NOT_PRODUCT(verify_PhaseIterGVN();)
1159 }
1160 
1161 
1162 /**
1163  * Register a new node with the optimizer.  Update the types array, the def-use
1164  * info.  Put on worklist.
1165  */
1166 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
1167   set_type_bottom(n);
1168   _worklist.push(n);
1169   if (orig != NULL)  C->copy_node_notes_to(n, orig);
1170   return n;
1171 }
1172 
1173 //------------------------------transform--------------------------------------
1174 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
1175 Node *PhaseIterGVN::transform( Node *n ) {
1176   if (_delay_transform) {
1177     // Register the node but don't optimize for now
1178     register_new_node_with_optimizer(n);
1179     return n;
1180   }
1181 
1182   // If brand new node, make space in type array, and give it a type.
1183   ensure_type_or_null(n);
1184   if (type_or_null(n) == NULL) {
1185     set_type_bottom(n);
1186   }
1187 
1188   return transform_old(n);
1189 }
1190 
1191 Node *PhaseIterGVN::transform_old(Node* n) {
1192   DEBUG_ONLY(uint loop_count = 0;);
1193   NOT_PRODUCT(set_transforms());
1194 
1195   // Remove 'n' from hash table in case it gets modified
1196   _table.hash_delete(n);
1197   if (VerifyIterativeGVN) {
1198    assert(!_table.find_index(n->_idx), "found duplicate entry in table");
1199   }
1200 
1201   // Apply the Ideal call in a loop until it no longer applies
1202   Node* k = n;
1203   DEBUG_ONLY(dead_loop_check(k);)
1204   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1205   C->remove_modified_node(k);
1206   Node* i = k->Ideal(this, /*can_reshape=*/true);
1207   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1208 #ifndef PRODUCT
1209   verify_step(k);
1210   if (i && VerifyOpto ) {
1211     if (!allow_progress()) {
1212       if (i->is_Add() && (i->outcnt() == 1)) {
1213         // Switched input to left side because this is the only use
1214       } else if (i->is_If() && (i->in(0) == NULL)) {
1215         // This IF is dead because it is dominated by an equivalent IF When
1216         // dominating if changed, info is not propagated sparsely to 'this'
1217         // Propagating this info further will spuriously identify other
1218         // progress.
1219         return i;
1220       } else
1221         set_progress();
1222     } else {
1223       set_progress();
1224     }
1225   }
1226 #endif
1227 
1228   while (i != NULL) {
1229 #ifdef ASSERT
1230     if (loop_count >= K) {
1231       dump_infinite_loop_info(i);
1232     }
1233     loop_count++;
1234 #endif
1235     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1236     // Made a change; put users of original Node on worklist
1237     add_users_to_worklist(k);
1238     // Replacing root of transform tree?
1239     if (k != i) {
1240       // Make users of old Node now use new.
1241       subsume_node(k, i);
1242       k = i;
1243     }
1244     DEBUG_ONLY(dead_loop_check(k);)
1245     // Try idealizing again
1246     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1247     C->remove_modified_node(k);
1248     i = k->Ideal(this, /*can_reshape=*/true);
1249     assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes");
1250 #ifndef PRODUCT
1251     verify_step(k);
1252     if (i && VerifyOpto) {
1253       set_progress();
1254     }
1255 #endif
1256   }
1257 
1258   // If brand new node, make space in type array.
1259   ensure_type_or_null(k);
1260 
1261   // See what kind of values 'k' takes on at runtime
1262   const Type* t = k->Value(this);
1263   assert(t != NULL, "value sanity");
1264 
1265   // Since I just called 'Value' to compute the set of run-time values
1266   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1267   // cache Value.  Later requests for the local phase->type of this Node can
1268   // use the cached Value instead of suffering with 'bottom_type'.
1269   if (type_or_null(k) != t) {
1270 #ifndef PRODUCT
1271     inc_new_values();
1272     set_progress();
1273 #endif
1274     set_type(k, t);
1275     // If k is a TypeNode, capture any more-precise type permanently into Node
1276     k->raise_bottom_type(t);
1277     // Move users of node to worklist
1278     add_users_to_worklist(k);
1279   }
1280   // If 'k' computes a constant, replace it with a constant
1281   if (t->singleton() && !k->is_Con()) {
1282     NOT_PRODUCT(set_progress();)
1283     Node* con = makecon(t);     // Make a constant
1284     add_users_to_worklist(k);
1285     subsume_node(k, con);       // Everybody using k now uses con
1286     return con;
1287   }
1288 
1289   // Now check for Identities
1290   i = k->Identity(this);      // Look for a nearby replacement
1291   if (i != k) {                // Found? Return replacement!
1292     NOT_PRODUCT(set_progress();)
1293     add_users_to_worklist(k);
1294     subsume_node(k, i);       // Everybody using k now uses i
1295     return i;
1296   }
1297 
1298   // Global Value Numbering
1299   i = hash_find_insert(k);      // Check for pre-existing node
1300   if (i && (i != k)) {
1301     // Return the pre-existing node if it isn't dead
1302     NOT_PRODUCT(set_progress();)
1303     add_users_to_worklist(k);
1304     subsume_node(k, i);       // Everybody using k now uses i
1305     return i;
1306   }
1307 
1308   // Return Idealized original
1309   return k;
1310 }
1311 
1312 //---------------------------------saturate------------------------------------
1313 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1314                                    const Type* limit_type) const {
1315   return new_type->narrow(old_type);
1316 }
1317 
1318 //------------------------------remove_globally_dead_node----------------------
1319 // Kill a globally dead Node.  All uses are also globally dead and are
1320 // aggressively trimmed.
1321 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1322   enum DeleteProgress {
1323     PROCESS_INPUTS,
1324     PROCESS_OUTPUTS
1325   };
1326   assert(_stack.is_empty(), "not empty");
1327   _stack.push(dead, PROCESS_INPUTS);
1328 
1329   while (_stack.is_nonempty()) {
1330     dead = _stack.node();
1331     uint progress_state = _stack.index();
1332     assert(dead != C->root(), "killing root, eh?");
1333     assert(!dead->is_top(), "add check for top when pushing");
1334     NOT_PRODUCT( set_progress(); )
1335     if (progress_state == PROCESS_INPUTS) {
1336       // After following inputs, continue to outputs
1337       _stack.set_index(PROCESS_OUTPUTS);
1338       if (!dead->is_Con()) { // Don't kill cons but uses
1339         bool recurse = false;
1340         // Remove from hash table
1341         _table.hash_delete( dead );
1342         // Smash all inputs to 'dead', isolating him completely
1343         for (uint i = 0; i < dead->req(); i++) {
1344           Node *in = dead->in(i);
1345           if (in != NULL && in != C->top()) {  // Points to something?
1346             int nrep = dead->replace_edge(in, NULL);  // Kill edges
1347             assert((nrep > 0), "sanity");
1348             if (in->outcnt() == 0) { // Made input go dead?
1349               _stack.push(in, PROCESS_INPUTS); // Recursively remove
1350               recurse = true;
1351             } else if (in->outcnt() == 1 &&
1352                        in->has_special_unique_user()) {
1353               _worklist.push(in->unique_out());
1354             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1355               if (in->Opcode() == Op_Region) {
1356                 _worklist.push(in);
1357               } else if (in->is_Store()) {
1358                 DUIterator_Fast imax, i = in->fast_outs(imax);
1359                 _worklist.push(in->fast_out(i));
1360                 i++;
1361                 if (in->outcnt() == 2) {
1362                   _worklist.push(in->fast_out(i));
1363                   i++;
1364                 }
1365                 assert(!(i < imax), "sanity");
1366               }
1367             }
1368             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
1369                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
1370               // A Load that directly follows an InitializeNode is
1371               // going away. The Stores that follow are candidates
1372               // again to be captured by the InitializeNode.
1373               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
1374                 Node *n = in->fast_out(j);
1375                 if (n->is_Store()) {
1376                   _worklist.push(n);
1377                 }
1378               }
1379             }
1380           } // if (in != NULL && in != C->top())
1381         } // for (uint i = 0; i < dead->req(); i++)
1382         if (recurse) {
1383           continue;
1384         }
1385       } // if (!dead->is_Con())
1386     } // if (progress_state == PROCESS_INPUTS)
1387 
1388     // Aggressively kill globally dead uses
1389     // (Rather than pushing all the outs at once, we push one at a time,
1390     // plus the parent to resume later, because of the indefinite number
1391     // of edge deletions per loop trip.)
1392     if (dead->outcnt() > 0) {
1393       // Recursively remove output edges
1394       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
1395     } else {
1396       // Finished disconnecting all input and output edges.
1397       _stack.pop();
1398       // Remove dead node from iterative worklist
1399       _worklist.remove(dead);
1400       C->remove_modified_node(dead);
1401       // Constant node that has no out-edges and has only one in-edge from
1402       // root is usually dead. However, sometimes reshaping walk makes
1403       // it reachable by adding use edges. So, we will NOT count Con nodes
1404       // as dead to be conservative about the dead node count at any
1405       // given time.
1406       if (!dead->is_Con()) {
1407         C->record_dead_node(dead->_idx);
1408       }
1409       if (dead->is_macro()) {
1410         C->remove_macro_node(dead);
1411       }
1412       if (dead->is_expensive()) {
1413         C->remove_expensive_node(dead);
1414       }
1415     }
1416   } // while (_stack.is_nonempty())
1417 }
1418 
1419 //------------------------------subsume_node-----------------------------------
1420 // Remove users from node 'old' and add them to node 'nn'.
1421 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1422   assert( old != hash_find(old), "should already been removed" );
1423   assert( old != C->top(), "cannot subsume top node");
1424   // Copy debug or profile information to the new version:
1425   C->copy_node_notes_to(nn, old);
1426   // Move users of node 'old' to node 'nn'
1427   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1428     Node* use = old->last_out(i);  // for each use...
1429     // use might need re-hashing (but it won't if it's a new node)
1430     rehash_node_delayed(use);
1431     // Update use-def info as well
1432     // We remove all occurrences of old within use->in,
1433     // so as to avoid rehashing any node more than once.
1434     // The hash table probe swamps any outer loop overhead.
1435     uint num_edges = 0;
1436     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1437       if (use->in(j) == old) {
1438         use->set_req(j, nn);
1439         ++num_edges;
1440       }
1441     }
1442     i -= num_edges;    // we deleted 1 or more copies of this edge
1443   }
1444 
1445   // Smash all inputs to 'old', isolating him completely
1446   Node *temp = new Node(1);
1447   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1448   remove_dead_node( old );
1449   temp->del_req(0);         // Yank bogus edge
1450 #ifndef PRODUCT
1451   if( VerifyIterativeGVN ) {
1452     for ( int i = 0; i < _verify_window_size; i++ ) {
1453       if ( _verify_window[i] == old )
1454         _verify_window[i] = nn;
1455     }
1456   }
1457 #endif
1458   _worklist.remove(temp);   // this can be necessary
1459   temp->destruct();         // reuse the _idx of this little guy
1460 }
1461 
1462 //------------------------------add_users_to_worklist--------------------------
1463 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1464   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1465     _worklist.push(n->fast_out(i));  // Push on worklist
1466   }
1467 }
1468 
1469 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1470   add_users_to_worklist0(n);
1471 
1472   // Move users of node to worklist
1473   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1474     Node* use = n->fast_out(i); // Get use
1475 
1476     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1477         use->is_Store() )       // Enable store/load same address
1478       add_users_to_worklist0(use);
1479 
1480     // If we changed the receiver type to a call, we need to revisit
1481     // the Catch following the call.  It's looking for a non-NULL
1482     // receiver to know when to enable the regular fall-through path
1483     // in addition to the NullPtrException path.
1484     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1485       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
1486       if (p != NULL) {
1487         add_users_to_worklist0(p);
1488       }
1489     }
1490 
1491     uint use_op = use->Opcode();
1492     if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
1493       add_users_to_worklist(use); // Put Bool on worklist
1494       if (use->outcnt() > 0) {
1495         Node* bol = use->raw_out(0);
1496         if (bol->outcnt() > 0) {
1497           Node* iff = bol->raw_out(0);
1498           if (use_op == Op_CmpI &&
1499               iff->is_CountedLoopEnd()) {
1500             CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
1501             if (cle->limit() == n && cle->phi() != NULL) {
1502               // If an opaque node feeds into the limit condition of a
1503               // CountedLoop, we need to process the Phi node for the
1504               // induction variable when the opaque node is removed:
1505               // the range of values taken by the Phi is now known and
1506               // so its type is also known.
1507               _worklist.push(cle->phi());
1508             }
1509           } else if (iff->outcnt() == 2) {
1510             // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1511             // phi merging either 0 or 1 onto the worklist
1512             Node* ifproj0 = iff->raw_out(0);
1513             Node* ifproj1 = iff->raw_out(1);
1514             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1515               Node* region0 = ifproj0->raw_out(0);
1516               Node* region1 = ifproj1->raw_out(0);
1517               if( region0 == region1 )
1518                 add_users_to_worklist0(region0);
1519             }
1520           }
1521         }
1522       }
1523       if (use_op == Op_CmpI) {
1524         Node* in1 = use->in(1);
1525         for (uint i = 0; i < in1->outcnt(); i++) {
1526           if (in1->raw_out(i)->Opcode() == Op_CastII) {
1527             Node* castii = in1->raw_out(i);
1528             if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) {
1529               Node* ifnode = castii->in(0)->in(0);
1530               if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) {
1531                 // Reprocess a CastII node that may depend on an
1532                 // opaque node value when the opaque node is
1533                 // removed. In case it carries a dependency we can do
1534                 // a better job of computing its type.
1535                 _worklist.push(castii);
1536               }
1537             }
1538           }
1539         }
1540       }
1541     }
1542 
1543     // If changed Cast input, check Phi users for simple cycles
1544     if (use->is_ConstraintCast()) {
1545       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1546         Node* u = use->fast_out(i2);
1547         if (u->is_Phi())
1548           _worklist.push(u);
1549       }
1550     }
1551     // If changed LShift inputs, check RShift users for useless sign-ext
1552     if( use_op == Op_LShiftI ) {
1553       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1554         Node* u = use->fast_out(i2);
1555         if (u->Opcode() == Op_RShiftI)
1556           _worklist.push(u);
1557       }
1558     }
1559     // If changed AddI/SubI inputs, check CmpU for range check optimization.
1560     if (use_op == Op_AddI || use_op == Op_SubI) {
1561       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1562         Node* u = use->fast_out(i2);
1563         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
1564           _worklist.push(u);
1565         }
1566       }
1567     }
1568     // If changed AddP inputs, check Stores for loop invariant
1569     if( use_op == Op_AddP ) {
1570       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1571         Node* u = use->fast_out(i2);
1572         if (u->is_Mem())
1573           _worklist.push(u);
1574       }
1575     }
1576     // If changed initialization activity, check dependent Stores
1577     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1578       InitializeNode* init = use->as_Allocate()->initialization();
1579       if (init != NULL) {
1580         Node* imem = init->proj_out(TypeFunc::Memory);
1581         if (imem != NULL)  add_users_to_worklist0(imem);
1582       }
1583     }
1584     if (use_op == Op_Initialize) {
1585       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
1586       if (imem != NULL)  add_users_to_worklist0(imem);
1587     }
1588   }
1589 }
1590 
1591 /**
1592  * Remove the speculative part of all types that we know of
1593  */
1594 void PhaseIterGVN::remove_speculative_types()  {
1595   assert(UseTypeSpeculation, "speculation is off");
1596   for (uint i = 0; i < _types.Size(); i++)  {
1597     const Type* t = _types.fast_lookup(i);
1598     if (t != NULL) {
1599       _types.map(i, t->remove_speculative());
1600     }
1601   }
1602   _table.check_no_speculative_types();
1603 }
1604 
1605 //=============================================================================
1606 #ifndef PRODUCT
1607 uint PhaseCCP::_total_invokes   = 0;
1608 uint PhaseCCP::_total_constants = 0;
1609 #endif
1610 //------------------------------PhaseCCP---------------------------------------
1611 // Conditional Constant Propagation, ala Wegman & Zadeck
1612 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1613   NOT_PRODUCT( clear_constants(); )
1614   assert( _worklist.size() == 0, "" );
1615   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1616   _nodes.clear();               // Clear out from IterGVN
1617   analyze();
1618 }
1619 
1620 #ifndef PRODUCT
1621 //------------------------------~PhaseCCP--------------------------------------
1622 PhaseCCP::~PhaseCCP() {
1623   inc_invokes();
1624   _total_constants += count_constants();
1625 }
1626 #endif
1627 
1628 
1629 #ifdef ASSERT
1630 static bool ccp_type_widens(const Type* t, const Type* t0) {
1631   assert(t->meet(t0) == t, "Not monotonic");
1632   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1633   case Type::Int:
1634     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1635     break;
1636   case Type::Long:
1637     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1638     break;
1639   }
1640   return true;
1641 }
1642 #endif //ASSERT
1643 
1644 //------------------------------analyze----------------------------------------
1645 void PhaseCCP::analyze() {
1646   // Initialize all types to TOP, optimistic analysis
1647   for (int i = C->unique() - 1; i >= 0; i--)  {
1648     _types.map(i,Type::TOP);
1649   }
1650 
1651   // Push root onto worklist
1652   Unique_Node_List worklist;
1653   worklist.push(C->root());
1654 
1655   // Pull from worklist; compute new value; push changes out.
1656   // This loop is the meat of CCP.
1657   while( worklist.size() ) {
1658     Node *n = worklist.pop();
1659     const Type *t = n->Value(this);
1660     if (t != type(n)) {
1661       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1662 #ifndef PRODUCT
1663       if( TracePhaseCCP ) {
1664         t->dump();
1665         do { tty->print("\t"); } while (tty->position() < 16);
1666         n->dump();
1667       }
1668 #endif
1669       set_type(n, t);
1670       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1671         Node* m = n->fast_out(i);   // Get user
1672         if (m->is_Region()) {  // New path to Region?  Must recheck Phis too
1673           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1674             Node* p = m->fast_out(i2); // Propagate changes to uses
1675             if (p->bottom_type() != type(p)) { // If not already bottomed out
1676               worklist.push(p); // Propagate change to user
1677             }
1678           }
1679         }
1680         // If we changed the receiver type to a call, we need to revisit
1681         // the Catch following the call.  It's looking for a non-NULL
1682         // receiver to know when to enable the regular fall-through path
1683         // in addition to the NullPtrException path
1684         if (m->is_Call()) {
1685           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1686             Node* p = m->fast_out(i2);  // Propagate changes to uses
1687             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1) {
1688               worklist.push(p->unique_out());
1689             }
1690           }
1691         }
1692         if (m->bottom_type() != type(m)) { // If not already bottomed out
1693           worklist.push(m);     // Propagate change to user
1694         }
1695 
1696         // CmpU nodes can get their type information from two nodes up in the
1697         // graph (instead of from the nodes immediately above). Make sure they
1698         // are added to the worklist if nodes they depend on are updated, since
1699         // they could be missed and get wrong types otherwise.
1700         uint m_op = m->Opcode();
1701         if (m_op == Op_AddI || m_op == Op_SubI) {
1702           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1703             Node* p = m->fast_out(i2); // Propagate changes to uses
1704             if (p->Opcode() == Op_CmpU) {
1705               // Got a CmpU which might need the new type information from node n.
1706               if(p->bottom_type() != type(p)) { // If not already bottomed out
1707                 worklist.push(p); // Propagate change to user
1708               }
1709             }
1710           }
1711         }
1712       }
1713     }
1714   }
1715 }
1716 
1717 //------------------------------do_transform-----------------------------------
1718 // Top level driver for the recursive transformer
1719 void PhaseCCP::do_transform() {
1720   // Correct leaves of new-space Nodes; they point to old-space.
1721   C->set_root( transform(C->root())->as_Root() );
1722   assert( C->top(),  "missing TOP node" );
1723   assert( C->root(), "missing root" );
1724 }
1725 
1726 //------------------------------transform--------------------------------------
1727 // Given a Node in old-space, clone him into new-space.
1728 // Convert any of his old-space children into new-space children.
1729 Node *PhaseCCP::transform( Node *n ) {
1730   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1731   if( new_node != NULL )
1732     return new_node;                // Been there, done that, return old answer
1733   new_node = transform_once(n);     // Check for constant
1734   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1735 
1736   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1737   GrowableArray <Node *> trstack(C->live_nodes() >> 1);
1738 
1739   trstack.push(new_node);           // Process children of cloned node
1740   while ( trstack.is_nonempty() ) {
1741     Node *clone = trstack.pop();
1742     uint cnt = clone->req();
1743     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1744       Node *input = clone->in(i);
1745       if( input != NULL ) {                    // Ignore NULLs
1746         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1747         if( new_input == NULL ) {
1748           new_input = transform_once(input);   // Check for constant
1749           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1750           trstack.push(new_input);
1751         }
1752         assert( new_input == clone->in(i), "insanity check");
1753       }
1754     }
1755   }
1756   return new_node;
1757 }
1758 
1759 
1760 //------------------------------transform_once---------------------------------
1761 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
1762 Node *PhaseCCP::transform_once( Node *n ) {
1763   const Type *t = type(n);
1764   // Constant?  Use constant Node instead
1765   if( t->singleton() ) {
1766     Node *nn = n;               // Default is to return the original constant
1767     if( t == Type::TOP ) {
1768       // cache my top node on the Compile instance
1769       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1770         C->set_cached_top_node(ConNode::make(Type::TOP));
1771         set_type(C->top(), Type::TOP);
1772       }
1773       nn = C->top();
1774     }
1775     if( !n->is_Con() ) {
1776       if( t != Type::TOP ) {
1777         nn = makecon(t);        // ConNode::make(t);
1778         NOT_PRODUCT( inc_constants(); )
1779       } else if( n->is_Region() ) { // Unreachable region
1780         // Note: nn == C->top()
1781         n->set_req(0, NULL);        // Cut selfreference
1782         // Eagerly remove dead phis to avoid phis copies creation.
1783         for (DUIterator i = n->outs(); n->has_out(i); i++) {
1784           Node* m = n->out(i);
1785           if( m->is_Phi() ) {
1786             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1787             replace_node(m, nn);
1788             --i; // deleted this phi; rescan starting with next position
1789           }
1790         }
1791       }
1792       replace_node(n,nn);       // Update DefUse edges for new constant
1793     }
1794     return nn;
1795   }
1796 
1797   // If x is a TypeNode, capture any more-precise type permanently into Node
1798   if (t != n->bottom_type()) {
1799     hash_delete(n);             // changing bottom type may force a rehash
1800     n->raise_bottom_type(t);
1801     _worklist.push(n);          // n re-enters the hash table via the worklist
1802   }
1803 
1804   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1805   switch( n->Opcode() ) {
1806   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1807   case Op_If:
1808   case Op_CountedLoopEnd:
1809   case Op_Region:
1810   case Op_Loop:
1811   case Op_CountedLoop:
1812   case Op_Conv2B:
1813   case Op_Opaque1:
1814   case Op_Opaque2:
1815     _worklist.push(n);
1816     break;
1817   default:
1818     break;
1819   }
1820 
1821   return  n;
1822 }
1823 
1824 //---------------------------------saturate------------------------------------
1825 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1826                                const Type* limit_type) const {
1827   const Type* wide_type = new_type->widen(old_type, limit_type);
1828   if (wide_type != new_type) {          // did we widen?
1829     // If so, we may have widened beyond the limit type.  Clip it back down.
1830     new_type = wide_type->filter(limit_type);
1831   }
1832   return new_type;
1833 }
1834 
1835 //------------------------------print_statistics-------------------------------
1836 #ifndef PRODUCT
1837 void PhaseCCP::print_statistics() {
1838   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1839 }
1840 #endif
1841 
1842 
1843 //=============================================================================
1844 #ifndef PRODUCT
1845 uint PhasePeephole::_total_peepholes = 0;
1846 #endif
1847 //------------------------------PhasePeephole----------------------------------
1848 // Conditional Constant Propagation, ala Wegman & Zadeck
1849 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1850   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1851   NOT_PRODUCT( clear_peepholes(); )
1852 }
1853 
1854 #ifndef PRODUCT
1855 //------------------------------~PhasePeephole---------------------------------
1856 PhasePeephole::~PhasePeephole() {
1857   _total_peepholes += count_peepholes();
1858 }
1859 #endif
1860 
1861 //------------------------------transform--------------------------------------
1862 Node *PhasePeephole::transform( Node *n ) {
1863   ShouldNotCallThis();
1864   return NULL;
1865 }
1866 
1867 //------------------------------do_transform-----------------------------------
1868 void PhasePeephole::do_transform() {
1869   bool method_name_not_printed = true;
1870 
1871   // Examine each basic block
1872   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
1873     Block* block = _cfg.get_block(block_number);
1874     bool block_not_printed = true;
1875 
1876     // and each instruction within a block
1877     uint end_index = block->number_of_nodes();
1878     // block->end_idx() not valid after PhaseRegAlloc
1879     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
1880       Node     *n = block->get_node(instruction_index);
1881       if( n->is_Mach() ) {
1882         MachNode *m = n->as_Mach();
1883         int deleted_count = 0;
1884         // check for peephole opportunities
1885         MachNode *m2 = m->peephole(block, instruction_index, _regalloc, deleted_count);
1886         if( m2 != NULL ) {
1887 #ifndef PRODUCT
1888           if( PrintOptoPeephole ) {
1889             // Print method, first time only
1890             if( C->method() && method_name_not_printed ) {
1891               C->method()->print_short_name(); tty->cr();
1892               method_name_not_printed = false;
1893             }
1894             // Print this block
1895             if( Verbose && block_not_printed) {
1896               tty->print_cr("in block");
1897               block->dump();
1898               block_not_printed = false;
1899             }
1900             // Print instructions being deleted
1901             for( int i = (deleted_count - 1); i >= 0; --i ) {
1902               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
1903             }
1904             tty->print_cr("replaced with");
1905             // Print new instruction
1906             m2->format(_regalloc);
1907             tty->print("\n\n");
1908           }
1909 #endif
1910           // Remove old nodes from basic block and update instruction_index
1911           // (old nodes still exist and may have edges pointing to them
1912           //  as register allocation info is stored in the allocator using
1913           //  the node index to live range mappings.)
1914           uint safe_instruction_index = (instruction_index - deleted_count);
1915           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
1916             block->remove_node( instruction_index );
1917           }
1918           // install new node after safe_instruction_index
1919           block->insert_node(m2, safe_instruction_index + 1);
1920           end_index = block->number_of_nodes() - 1; // Recompute new block size
1921           NOT_PRODUCT( inc_peepholes(); )
1922         }
1923       }
1924     }
1925   }
1926 }
1927 
1928 //------------------------------print_statistics-------------------------------
1929 #ifndef PRODUCT
1930 void PhasePeephole::print_statistics() {
1931   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
1932 }
1933 #endif
1934 
1935 
1936 //=============================================================================
1937 //------------------------------set_req_X--------------------------------------
1938 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
1939   assert( is_not_dead(n), "can not use dead node");
1940   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
1941   Node *old = in(i);
1942   set_req(i, n);
1943 
1944   // old goes dead?
1945   if( old ) {
1946     switch (old->outcnt()) {
1947     case 0:
1948       // Put into the worklist to kill later. We do not kill it now because the
1949       // recursive kill will delete the current node (this) if dead-loop exists
1950       if (!old->is_top())
1951         igvn->_worklist.push( old );
1952       break;
1953     case 1:
1954       if( old->is_Store() || old->has_special_unique_user() )
1955         igvn->add_users_to_worklist( old );
1956       break;
1957     case 2:
1958       if( old->is_Store() )
1959         igvn->add_users_to_worklist( old );
1960       if( old->Opcode() == Op_Region )
1961         igvn->_worklist.push(old);
1962       break;
1963     case 3:
1964       if( old->Opcode() == Op_Region ) {
1965         igvn->_worklist.push(old);
1966         igvn->add_users_to_worklist( old );
1967       }
1968       break;
1969     default:
1970       break;
1971     }
1972   }
1973 
1974 }
1975 
1976 //-------------------------------replace_by-----------------------------------
1977 // Using def-use info, replace one node for another.  Follow the def-use info
1978 // to all users of the OLD node.  Then make all uses point to the NEW node.
1979 void Node::replace_by(Node *new_node) {
1980   assert(!is_top(), "top node has no DU info");
1981   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
1982     Node* use = last_out(i);
1983     uint uses_found = 0;
1984     for (uint j = 0; j < use->len(); j++) {
1985       if (use->in(j) == this) {
1986         if (j < use->req())
1987               use->set_req(j, new_node);
1988         else  use->set_prec(j, new_node);
1989         uses_found++;
1990       }
1991     }
1992     i -= uses_found;    // we deleted 1 or more copies of this edge
1993   }
1994 }
1995 
1996 //=============================================================================
1997 //-----------------------------------------------------------------------------
1998 void Type_Array::grow( uint i ) {
1999   if( !_max ) {
2000     _max = 1;
2001     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
2002     _types[0] = NULL;
2003   }
2004   uint old = _max;
2005   while( i >= _max ) _max <<= 1;        // Double to fit
2006   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
2007   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
2008 }
2009 
2010 //------------------------------dump-------------------------------------------
2011 #ifndef PRODUCT
2012 void Type_Array::dump() const {
2013   uint max = Size();
2014   for( uint i = 0; i < max; i++ ) {
2015     if( _types[i] != NULL ) {
2016       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
2017     }
2018   }
2019 }
2020 #endif