1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/loopnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/node.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/regmask.hpp"
  36 #include "opto/type.hpp"
  37 #include "utilities/copy.hpp"
  38 
  39 class RegMask;
  40 // #include "phase.hpp"
  41 class PhaseTransform;
  42 class PhaseGVN;
  43 
  44 // Arena we are currently building Nodes in
  45 const uint Node::NotAMachineReg = 0xffff0000;
  46 
  47 #ifndef PRODUCT
  48 extern int nodes_created;
  49 #endif
  50 
  51 #ifdef ASSERT
  52 
  53 //-------------------------- construct_node------------------------------------
  54 // Set a breakpoint here to identify where a particular node index is built.
  55 void Node::verify_construction() {
  56   _debug_orig = NULL;
  57   int old_debug_idx = Compile::debug_idx();
  58   int new_debug_idx = old_debug_idx+1;
  59   if (new_debug_idx > 0) {
  60     // Arrange that the lowest five decimal digits of _debug_idx
  61     // will repeat those of _idx. In case this is somehow pathological,
  62     // we continue to assign negative numbers (!) consecutively.
  63     const int mod = 100000;
  64     int bump = (int)(_idx - new_debug_idx) % mod;
  65     if (bump < 0)  bump += mod;
  66     assert(bump >= 0 && bump < mod, "");
  67     new_debug_idx += bump;
  68   }
  69   Compile::set_debug_idx(new_debug_idx);
  70   set_debug_idx( new_debug_idx );
  71   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  72   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  73   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  74     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  75     BREAKPOINT;
  76   }
  77 #if OPTO_DU_ITERATOR_ASSERT
  78   _last_del = NULL;
  79   _del_tick = 0;
  80 #endif
  81   _hash_lock = 0;
  82 }
  83 
  84 
  85 // #ifdef ASSERT ...
  86 
  87 #if OPTO_DU_ITERATOR_ASSERT
  88 void DUIterator_Common::sample(const Node* node) {
  89   _vdui     = VerifyDUIterators;
  90   _node     = node;
  91   _outcnt   = node->_outcnt;
  92   _del_tick = node->_del_tick;
  93   _last     = NULL;
  94 }
  95 
  96 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
  97   assert(_node     == node, "consistent iterator source");
  98   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
  99 }
 100 
 101 void DUIterator_Common::verify_resync() {
 102   // Ensure that the loop body has just deleted the last guy produced.
 103   const Node* node = _node;
 104   // Ensure that at least one copy of the last-seen edge was deleted.
 105   // Note:  It is OK to delete multiple copies of the last-seen edge.
 106   // Unfortunately, we have no way to verify that all the deletions delete
 107   // that same edge.  On this point we must use the Honor System.
 108   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 109   assert(node->_last_del == _last, "must have deleted the edge just produced");
 110   // We liked this deletion, so accept the resulting outcnt and tick.
 111   _outcnt   = node->_outcnt;
 112   _del_tick = node->_del_tick;
 113 }
 114 
 115 void DUIterator_Common::reset(const DUIterator_Common& that) {
 116   if (this == &that)  return;  // ignore assignment to self
 117   if (!_vdui) {
 118     // We need to initialize everything, overwriting garbage values.
 119     _last = that._last;
 120     _vdui = that._vdui;
 121   }
 122   // Note:  It is legal (though odd) for an iterator over some node x
 123   // to be reassigned to iterate over another node y.  Some doubly-nested
 124   // progress loops depend on being able to do this.
 125   const Node* node = that._node;
 126   // Re-initialize everything, except _last.
 127   _node     = node;
 128   _outcnt   = node->_outcnt;
 129   _del_tick = node->_del_tick;
 130 }
 131 
 132 void DUIterator::sample(const Node* node) {
 133   DUIterator_Common::sample(node);      // Initialize the assertion data.
 134   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 135 }
 136 
 137 void DUIterator::verify(const Node* node, bool at_end_ok) {
 138   DUIterator_Common::verify(node, at_end_ok);
 139   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 140 }
 141 
 142 void DUIterator::verify_increment() {
 143   if (_refresh_tick & 1) {
 144     // We have refreshed the index during this loop.
 145     // Fix up _idx to meet asserts.
 146     if (_idx > _outcnt)  _idx = _outcnt;
 147   }
 148   verify(_node, true);
 149 }
 150 
 151 void DUIterator::verify_resync() {
 152   // Note:  We do not assert on _outcnt, because insertions are OK here.
 153   DUIterator_Common::verify_resync();
 154   // Make sure we are still in sync, possibly with no more out-edges:
 155   verify(_node, true);
 156 }
 157 
 158 void DUIterator::reset(const DUIterator& that) {
 159   if (this == &that)  return;  // self assignment is always a no-op
 160   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 161   assert(that._idx          == 0, "assign only the result of Node::outs()");
 162   assert(_idx               == that._idx, "already assigned _idx");
 163   if (!_vdui) {
 164     // We need to initialize everything, overwriting garbage values.
 165     sample(that._node);
 166   } else {
 167     DUIterator_Common::reset(that);
 168     if (_refresh_tick & 1) {
 169       _refresh_tick++;                  // Clear the "was refreshed" flag.
 170     }
 171     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 172   }
 173 }
 174 
 175 void DUIterator::refresh() {
 176   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 177   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 178 }
 179 
 180 void DUIterator::verify_finish() {
 181   // If the loop has killed the node, do not require it to re-run.
 182   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 183   // If this assert triggers, it means that a loop used refresh_out_pos
 184   // to re-synch an iteration index, but the loop did not correctly
 185   // re-run itself, using a "while (progress)" construct.
 186   // This iterator enforces the rule that you must keep trying the loop
 187   // until it "runs clean" without any need for refreshing.
 188   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 189 }
 190 
 191 
 192 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 193   DUIterator_Common::verify(node, at_end_ok);
 194   Node** out    = node->_out;
 195   uint   cnt    = node->_outcnt;
 196   assert(cnt == _outcnt, "no insertions allowed");
 197   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 198   // This last check is carefully designed to work for NO_OUT_ARRAY.
 199 }
 200 
 201 void DUIterator_Fast::verify_limit() {
 202   const Node* node = _node;
 203   verify(node, true);
 204   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 205 }
 206 
 207 void DUIterator_Fast::verify_resync() {
 208   const Node* node = _node;
 209   if (_outp == node->_out + _outcnt) {
 210     // Note that the limit imax, not the pointer i, gets updated with the
 211     // exact count of deletions.  (For the pointer it's always "--i".)
 212     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 213     // This is a limit pointer, with a name like "imax".
 214     // Fudge the _last field so that the common assert will be happy.
 215     _last = (Node*) node->_last_del;
 216     DUIterator_Common::verify_resync();
 217   } else {
 218     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 219     // A normal internal pointer.
 220     DUIterator_Common::verify_resync();
 221     // Make sure we are still in sync, possibly with no more out-edges:
 222     verify(node, true);
 223   }
 224 }
 225 
 226 void DUIterator_Fast::verify_relimit(uint n) {
 227   const Node* node = _node;
 228   assert((int)n > 0, "use imax -= n only with a positive count");
 229   // This must be a limit pointer, with a name like "imax".
 230   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 231   // The reported number of deletions must match what the node saw.
 232   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 233   // Fudge the _last field so that the common assert will be happy.
 234   _last = (Node*) node->_last_del;
 235   DUIterator_Common::verify_resync();
 236 }
 237 
 238 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 239   assert(_outp              == that._outp, "already assigned _outp");
 240   DUIterator_Common::reset(that);
 241 }
 242 
 243 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 244   // at_end_ok means the _outp is allowed to underflow by 1
 245   _outp += at_end_ok;
 246   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 247   _outp -= at_end_ok;
 248   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 249 }
 250 
 251 void DUIterator_Last::verify_limit() {
 252   // Do not require the limit address to be resynched.
 253   //verify(node, true);
 254   assert(_outp == _node->_out, "limit still correct");
 255 }
 256 
 257 void DUIterator_Last::verify_step(uint num_edges) {
 258   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 259   _outcnt   -= num_edges;
 260   _del_tick += num_edges;
 261   // Make sure we are still in sync, possibly with no more out-edges:
 262   const Node* node = _node;
 263   verify(node, true);
 264   assert(node->_last_del == _last, "must have deleted the edge just produced");
 265 }
 266 
 267 #endif //OPTO_DU_ITERATOR_ASSERT
 268 
 269 
 270 #endif //ASSERT
 271 
 272 
 273 // This constant used to initialize _out may be any non-null value.
 274 // The value NULL is reserved for the top node only.
 275 #define NO_OUT_ARRAY ((Node**)-1)
 276 
 277 // This funny expression handshakes with Node::operator new
 278 // to pull Compile::current out of the new node's _out field,
 279 // and then calls a subroutine which manages most field
 280 // initializations.  The only one which is tricky is the
 281 // _idx field, which is const, and so must be initialized
 282 // by a return value, not an assignment.
 283 //
 284 // (Aren't you thankful that Java finals don't require so many tricks?)
 285 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
 286 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
 287 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 288 #endif
 289 
 290 // Out-of-line code from node constructors.
 291 // Executed only when extra debug info. is being passed around.
 292 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 293   C->set_node_notes_at(idx, nn);
 294 }
 295 
 296 // Shared initialization code.
 297 inline int Node::Init(int req, Compile* C) {
 298   assert(Compile::current() == C, "must use operator new(Compile*)");
 299   int idx = C->next_unique();
 300 
 301   // Allocate memory for the necessary number of edges.
 302   if (req > 0) {
 303     // Allocate space for _in array to have double alignment.
 304     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 305 #ifdef ASSERT
 306     _in[req-1] = this; // magic cookie for assertion check
 307 #endif
 308   }
 309   // If there are default notes floating around, capture them:
 310   Node_Notes* nn = C->default_node_notes();
 311   if (nn != NULL)  init_node_notes(C, idx, nn);
 312 
 313   // Note:  At this point, C is dead,
 314   // and we begin to initialize the new Node.
 315 
 316   _cnt = _max = req;
 317   _outcnt = _outmax = 0;
 318   _class_id = Class_Node;
 319   _flags = 0;
 320   _out = NO_OUT_ARRAY;
 321   return idx;
 322 }
 323 
 324 //------------------------------Node-------------------------------------------
 325 // Create a Node, with a given number of required edges.
 326 Node::Node(uint req)
 327   : _idx(IDX_INIT(req))
 328 #ifdef ASSERT
 329   , _parse_idx(_idx)
 330 #endif
 331 {
 332   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 333   debug_only( verify_construction() );
 334   NOT_PRODUCT(nodes_created++);
 335   if (req == 0) {
 336     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 337     _in = NULL;
 338   } else {
 339     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 340     Node** to = _in;
 341     for(uint i = 0; i < req; i++) {
 342       to[i] = NULL;
 343     }
 344   }
 345 }
 346 
 347 //------------------------------Node-------------------------------------------
 348 Node::Node(Node *n0)
 349   : _idx(IDX_INIT(1))
 350 #ifdef ASSERT
 351   , _parse_idx(_idx)
 352 #endif
 353 {
 354   debug_only( verify_construction() );
 355   NOT_PRODUCT(nodes_created++);
 356   // Assert we allocated space for input array already
 357   assert( _in[0] == this, "Must pass arg count to 'new'" );
 358   assert( is_not_dead(n0), "can not use dead node");
 359   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 360 }
 361 
 362 //------------------------------Node-------------------------------------------
 363 Node::Node(Node *n0, Node *n1)
 364   : _idx(IDX_INIT(2))
 365 #ifdef ASSERT
 366   , _parse_idx(_idx)
 367 #endif
 368 {
 369   debug_only( verify_construction() );
 370   NOT_PRODUCT(nodes_created++);
 371   // Assert we allocated space for input array already
 372   assert( _in[1] == this, "Must pass arg count to 'new'" );
 373   assert( is_not_dead(n0), "can not use dead node");
 374   assert( is_not_dead(n1), "can not use dead node");
 375   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 376   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 377 }
 378 
 379 //------------------------------Node-------------------------------------------
 380 Node::Node(Node *n0, Node *n1, Node *n2)
 381   : _idx(IDX_INIT(3))
 382 #ifdef ASSERT
 383   , _parse_idx(_idx)
 384 #endif
 385 {
 386   debug_only( verify_construction() );
 387   NOT_PRODUCT(nodes_created++);
 388   // Assert we allocated space for input array already
 389   assert( _in[2] == this, "Must pass arg count to 'new'" );
 390   assert( is_not_dead(n0), "can not use dead node");
 391   assert( is_not_dead(n1), "can not use dead node");
 392   assert( is_not_dead(n2), "can not use dead node");
 393   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 394   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 395   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 396 }
 397 
 398 //------------------------------Node-------------------------------------------
 399 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 400   : _idx(IDX_INIT(4))
 401 #ifdef ASSERT
 402   , _parse_idx(_idx)
 403 #endif
 404 {
 405   debug_only( verify_construction() );
 406   NOT_PRODUCT(nodes_created++);
 407   // Assert we allocated space for input array already
 408   assert( _in[3] == this, "Must pass arg count to 'new'" );
 409   assert( is_not_dead(n0), "can not use dead node");
 410   assert( is_not_dead(n1), "can not use dead node");
 411   assert( is_not_dead(n2), "can not use dead node");
 412   assert( is_not_dead(n3), "can not use dead node");
 413   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 414   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 415   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 416   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 417 }
 418 
 419 //------------------------------Node-------------------------------------------
 420 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 421   : _idx(IDX_INIT(5))
 422 #ifdef ASSERT
 423   , _parse_idx(_idx)
 424 #endif
 425 {
 426   debug_only( verify_construction() );
 427   NOT_PRODUCT(nodes_created++);
 428   // Assert we allocated space for input array already
 429   assert( _in[4] == this, "Must pass arg count to 'new'" );
 430   assert( is_not_dead(n0), "can not use dead node");
 431   assert( is_not_dead(n1), "can not use dead node");
 432   assert( is_not_dead(n2), "can not use dead node");
 433   assert( is_not_dead(n3), "can not use dead node");
 434   assert( is_not_dead(n4), "can not use dead node");
 435   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 436   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 437   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 438   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 439   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 440 }
 441 
 442 //------------------------------Node-------------------------------------------
 443 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 444                      Node *n4, Node *n5)
 445   : _idx(IDX_INIT(6))
 446 #ifdef ASSERT
 447   , _parse_idx(_idx)
 448 #endif
 449 {
 450   debug_only( verify_construction() );
 451   NOT_PRODUCT(nodes_created++);
 452   // Assert we allocated space for input array already
 453   assert( _in[5] == this, "Must pass arg count to 'new'" );
 454   assert( is_not_dead(n0), "can not use dead node");
 455   assert( is_not_dead(n1), "can not use dead node");
 456   assert( is_not_dead(n2), "can not use dead node");
 457   assert( is_not_dead(n3), "can not use dead node");
 458   assert( is_not_dead(n4), "can not use dead node");
 459   assert( is_not_dead(n5), "can not use dead node");
 460   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 461   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 462   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 463   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 464   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 465   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 466 }
 467 
 468 //------------------------------Node-------------------------------------------
 469 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 470                      Node *n4, Node *n5, Node *n6)
 471   : _idx(IDX_INIT(7))
 472 #ifdef ASSERT
 473   , _parse_idx(_idx)
 474 #endif
 475 {
 476   debug_only( verify_construction() );
 477   NOT_PRODUCT(nodes_created++);
 478   // Assert we allocated space for input array already
 479   assert( _in[6] == this, "Must pass arg count to 'new'" );
 480   assert( is_not_dead(n0), "can not use dead node");
 481   assert( is_not_dead(n1), "can not use dead node");
 482   assert( is_not_dead(n2), "can not use dead node");
 483   assert( is_not_dead(n3), "can not use dead node");
 484   assert( is_not_dead(n4), "can not use dead node");
 485   assert( is_not_dead(n5), "can not use dead node");
 486   assert( is_not_dead(n6), "can not use dead node");
 487   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 488   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 489   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 490   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 491   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 492   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 493   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 494 }
 495 
 496 
 497 //------------------------------clone------------------------------------------
 498 // Clone a Node.
 499 Node *Node::clone() const {
 500   Compile* C = Compile::current();
 501   uint s = size_of();           // Size of inherited Node
 502   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 503   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 504   // Set the new input pointer array
 505   n->_in = (Node**)(((char*)n)+s);
 506   // Cannot share the old output pointer array, so kill it
 507   n->_out = NO_OUT_ARRAY;
 508   // And reset the counters to 0
 509   n->_outcnt = 0;
 510   n->_outmax = 0;
 511   // Unlock this guy, since he is not in any hash table.
 512   debug_only(n->_hash_lock = 0);
 513   // Walk the old node's input list to duplicate its edges
 514   uint i;
 515   for( i = 0; i < len(); i++ ) {
 516     Node *x = in(i);
 517     n->_in[i] = x;
 518     if (x != NULL) x->add_out(n);
 519   }
 520   if (is_macro())
 521     C->add_macro_node(n);
 522   if (is_expensive())
 523     C->add_expensive_node(n);
 524   // If the cloned node is a range check dependent CastII, add it to the list.
 525   CastIINode* cast = n->isa_CastII();
 526   if (cast != NULL && cast->has_range_check()) {
 527     C->add_range_check_cast(cast);
 528   }
 529 
 530   n->set_idx(C->next_unique()); // Get new unique index as well
 531   debug_only( n->verify_construction() );
 532   NOT_PRODUCT(nodes_created++);
 533   // Do not patch over the debug_idx of a clone, because it makes it
 534   // impossible to break on the clone's moment of creation.
 535   //debug_only( n->set_debug_idx( debug_idx() ) );
 536 
 537   C->copy_node_notes_to(n, (Node*) this);
 538 
 539   // MachNode clone
 540   uint nopnds;
 541   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 542     MachNode *mach  = n->as_Mach();
 543     MachNode *mthis = this->as_Mach();
 544     // Get address of _opnd_array.
 545     // It should be the same offset since it is the clone of this node.
 546     MachOper **from = mthis->_opnds;
 547     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 548                     pointer_delta((const void*)from,
 549                                   (const void*)(&mthis->_opnds), 1));
 550     mach->_opnds = to;
 551     for ( uint i = 0; i < nopnds; ++i ) {
 552       to[i] = from[i]->clone(C);
 553     }
 554   }
 555   // cloning CallNode may need to clone JVMState
 556   if (n->is_Call()) {
 557     n->as_Call()->clone_jvms(C);
 558   }
 559   if (n->is_SafePoint()) {
 560     n->as_SafePoint()->clone_replaced_nodes();
 561   }
 562   return n;                     // Return the clone
 563 }
 564 
 565 //---------------------------setup_is_top--------------------------------------
 566 // Call this when changing the top node, to reassert the invariants
 567 // required by Node::is_top.  See Compile::set_cached_top_node.
 568 void Node::setup_is_top() {
 569   if (this == (Node*)Compile::current()->top()) {
 570     // This node has just become top.  Kill its out array.
 571     _outcnt = _outmax = 0;
 572     _out = NULL;                           // marker value for top
 573     assert(is_top(), "must be top");
 574   } else {
 575     if (_out == NULL)  _out = NO_OUT_ARRAY;
 576     assert(!is_top(), "must not be top");
 577   }
 578 }
 579 
 580 
 581 //------------------------------~Node------------------------------------------
 582 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 583 extern int reclaim_idx ;
 584 extern int reclaim_in  ;
 585 extern int reclaim_node;
 586 void Node::destruct() {
 587   // Eagerly reclaim unique Node numberings
 588   Compile* compile = Compile::current();
 589   if ((uint)_idx+1 == compile->unique()) {
 590     compile->set_unique(compile->unique()-1);
 591 #ifdef ASSERT
 592     reclaim_idx++;
 593 #endif
 594   }
 595   // Clear debug info:
 596   Node_Notes* nn = compile->node_notes_at(_idx);
 597   if (nn != NULL)  nn->clear();
 598   // Walk the input array, freeing the corresponding output edges
 599   _cnt = _max;  // forget req/prec distinction
 600   uint i;
 601   for( i = 0; i < _max; i++ ) {
 602     set_req(i, NULL);
 603     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 604   }
 605   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 606   // See if the input array was allocated just prior to the object
 607   int edge_size = _max*sizeof(void*);
 608   int out_edge_size = _outmax*sizeof(void*);
 609   char *edge_end = ((char*)_in) + edge_size;
 610   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 611   char *out_edge_end = out_array + out_edge_size;
 612   int node_size = size_of();
 613 
 614   // Free the output edge array
 615   if (out_edge_size > 0) {
 616 #ifdef ASSERT
 617     if( out_edge_end == compile->node_arena()->hwm() )
 618       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 619 #endif
 620     compile->node_arena()->Afree(out_array, out_edge_size);
 621   }
 622 
 623   // Free the input edge array and the node itself
 624   if( edge_end == (char*)this ) {
 625 #ifdef ASSERT
 626     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 627       reclaim_in  += edge_size;
 628       reclaim_node+= node_size;
 629     }
 630 #else
 631     // It was; free the input array and object all in one hit
 632     compile->node_arena()->Afree(_in,edge_size+node_size);
 633 #endif
 634   } else {
 635 
 636     // Free just the input array
 637 #ifdef ASSERT
 638     if( edge_end == compile->node_arena()->hwm() )
 639       reclaim_in  += edge_size;
 640 #endif
 641     compile->node_arena()->Afree(_in,edge_size);
 642 
 643     // Free just the object
 644 #ifdef ASSERT
 645     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 646       reclaim_node+= node_size;
 647 #else
 648     compile->node_arena()->Afree(this,node_size);
 649 #endif
 650   }
 651   if (is_macro()) {
 652     compile->remove_macro_node(this);
 653   }
 654   if (is_expensive()) {
 655     compile->remove_expensive_node(this);
 656   }
 657   CastIINode* cast = isa_CastII();
 658   if (cast != NULL && cast->has_range_check()) {
 659     compile->remove_range_check_cast(cast);
 660   }
 661 
 662   if (is_SafePoint()) {
 663     as_SafePoint()->delete_replaced_nodes();
 664   }
 665 #ifdef ASSERT
 666   // We will not actually delete the storage, but we'll make the node unusable.
 667   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 668   _in = _out = (Node**) badAddress;
 669   _max = _cnt = _outmax = _outcnt = 0;
 670 #endif
 671 }
 672 
 673 //------------------------------grow-------------------------------------------
 674 // Grow the input array, making space for more edges
 675 void Node::grow( uint len ) {
 676   Arena* arena = Compile::current()->node_arena();
 677   uint new_max = _max;
 678   if( new_max == 0 ) {
 679     _max = 4;
 680     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 681     Node** to = _in;
 682     to[0] = NULL;
 683     to[1] = NULL;
 684     to[2] = NULL;
 685     to[3] = NULL;
 686     return;
 687   }
 688   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 689   // Trimming to limit allows a uint8 to handle up to 255 edges.
 690   // Previously I was using only powers-of-2 which peaked at 128 edges.
 691   //if( new_max >= limit ) new_max = limit-1;
 692   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 693   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 694   _max = new_max;               // Record new max length
 695   // This assertion makes sure that Node::_max is wide enough to
 696   // represent the numerical value of new_max.
 697   assert(_max == new_max && _max > len, "int width of _max is too small");
 698 }
 699 
 700 //-----------------------------out_grow----------------------------------------
 701 // Grow the input array, making space for more edges
 702 void Node::out_grow( uint len ) {
 703   assert(!is_top(), "cannot grow a top node's out array");
 704   Arena* arena = Compile::current()->node_arena();
 705   uint new_max = _outmax;
 706   if( new_max == 0 ) {
 707     _outmax = 4;
 708     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 709     return;
 710   }
 711   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 712   // Trimming to limit allows a uint8 to handle up to 255 edges.
 713   // Previously I was using only powers-of-2 which peaked at 128 edges.
 714   //if( new_max >= limit ) new_max = limit-1;
 715   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 716   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 717   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 718   _outmax = new_max;               // Record new max length
 719   // This assertion makes sure that Node::_max is wide enough to
 720   // represent the numerical value of new_max.
 721   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 722 }
 723 
 724 #ifdef ASSERT
 725 //------------------------------is_dead----------------------------------------
 726 bool Node::is_dead() const {
 727   // Mach and pinch point nodes may look like dead.
 728   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 729     return false;
 730   for( uint i = 0; i < _max; i++ )
 731     if( _in[i] != NULL )
 732       return false;
 733   dump();
 734   return true;
 735 }
 736 #endif
 737 
 738 
 739 //------------------------------is_unreachable---------------------------------
 740 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 741   assert(!is_Mach(), "doesn't work with MachNodes");
 742   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 743 }
 744 
 745 //------------------------------add_req----------------------------------------
 746 // Add a new required input at the end
 747 void Node::add_req( Node *n ) {
 748   assert( is_not_dead(n), "can not use dead node");
 749 
 750   // Look to see if I can move precedence down one without reallocating
 751   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 752     grow( _max+1 );
 753 
 754   // Find a precedence edge to move
 755   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 756     uint i;
 757     for( i=_cnt; i<_max; i++ )
 758       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 759         break;                  // There must be one, since we grew the array
 760     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 761   }
 762   _in[_cnt++] = n;            // Stuff over old prec edge
 763   if (n != NULL) n->add_out((Node *)this);
 764 }
 765 
 766 //---------------------------add_req_batch-------------------------------------
 767 // Add a new required input at the end
 768 void Node::add_req_batch( Node *n, uint m ) {
 769   assert( is_not_dead(n), "can not use dead node");
 770   // check various edge cases
 771   if ((int)m <= 1) {
 772     assert((int)m >= 0, "oob");
 773     if (m != 0)  add_req(n);
 774     return;
 775   }
 776 
 777   // Look to see if I can move precedence down one without reallocating
 778   if( (_cnt+m) > _max || _in[_max-m] )
 779     grow( _max+m );
 780 
 781   // Find a precedence edge to move
 782   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 783     uint i;
 784     for( i=_cnt; i<_max; i++ )
 785       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 786         break;                  // There must be one, since we grew the array
 787     // Slide all the precs over by m positions (assume #prec << m).
 788     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 789   }
 790 
 791   // Stuff over the old prec edges
 792   for(uint i=0; i<m; i++ ) {
 793     _in[_cnt++] = n;
 794   }
 795 
 796   // Insert multiple out edges on the node.
 797   if (n != NULL && !n->is_top()) {
 798     for(uint i=0; i<m; i++ ) {
 799       n->add_out((Node *)this);
 800     }
 801   }
 802 }
 803 
 804 //------------------------------del_req----------------------------------------
 805 // Delete the required edge and compact the edge array
 806 void Node::del_req( uint idx ) {
 807   assert( idx < _cnt, "oob");
 808   assert( !VerifyHashTableKeys || _hash_lock == 0,
 809           "remove node from hash table before modifying it");
 810   // First remove corresponding def-use edge
 811   Node *n = in(idx);
 812   if (n != NULL) n->del_out((Node *)this);
 813   _in[idx] = in(--_cnt);  // Compact the array
 814   _in[_cnt] = NULL;       // NULL out emptied slot
 815 }
 816 
 817 //------------------------------del_req_ordered--------------------------------
 818 // Delete the required edge and compact the edge array with preserved order
 819 void Node::del_req_ordered( uint idx ) {
 820   assert( idx < _cnt, "oob");
 821   assert( !VerifyHashTableKeys || _hash_lock == 0,
 822           "remove node from hash table before modifying it");
 823   // First remove corresponding def-use edge
 824   Node *n = in(idx);
 825   if (n != NULL) n->del_out((Node *)this);
 826   if (idx < _cnt - 1) { // Not last edge ?
 827     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx-1)*sizeof(Node*)));
 828   }
 829   _in[--_cnt] = NULL;   // NULL out emptied slot
 830 }
 831 
 832 //------------------------------ins_req----------------------------------------
 833 // Insert a new required input at the end
 834 void Node::ins_req( uint idx, Node *n ) {
 835   assert( is_not_dead(n), "can not use dead node");
 836   add_req(NULL);                // Make space
 837   assert( idx < _max, "Must have allocated enough space");
 838   // Slide over
 839   if(_cnt-idx-1 > 0) {
 840     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 841   }
 842   _in[idx] = n;                            // Stuff over old required edge
 843   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 844 }
 845 
 846 //-----------------------------find_edge---------------------------------------
 847 int Node::find_edge(Node* n) {
 848   for (uint i = 0; i < len(); i++) {
 849     if (_in[i] == n)  return i;
 850   }
 851   return -1;
 852 }
 853 
 854 //----------------------------replace_edge-------------------------------------
 855 int Node::replace_edge(Node* old, Node* neww) {
 856   if (old == neww)  return 0;  // nothing to do
 857   uint nrep = 0;
 858   for (uint i = 0; i < len(); i++) {
 859     if (in(i) == old) {
 860       if (i < req())
 861         set_req(i, neww);
 862       else
 863         set_prec(i, neww);
 864       nrep++;
 865     }
 866   }
 867   return nrep;
 868 }
 869 
 870 /**
 871  * Replace input edges in the range pointing to 'old' node.
 872  */
 873 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 874   if (old == neww)  return 0;  // nothing to do
 875   uint nrep = 0;
 876   for (int i = start; i < end; i++) {
 877     if (in(i) == old) {
 878       set_req(i, neww);
 879       nrep++;
 880     }
 881   }
 882   return nrep;
 883 }
 884 
 885 //-------------------------disconnect_inputs-----------------------------------
 886 // NULL out all inputs to eliminate incoming Def-Use edges.
 887 // Return the number of edges between 'n' and 'this'
 888 int Node::disconnect_inputs(Node *n, Compile* C) {
 889   int edges_to_n = 0;
 890 
 891   uint cnt = req();
 892   for( uint i = 0; i < cnt; ++i ) {
 893     if( in(i) == 0 ) continue;
 894     if( in(i) == n ) ++edges_to_n;
 895     set_req(i, NULL);
 896   }
 897   // Remove precedence edges if any exist
 898   // Note: Safepoints may have precedence edges, even during parsing
 899   if( (req() != len()) && (in(req()) != NULL) ) {
 900     uint max = len();
 901     for( uint i = 0; i < max; ++i ) {
 902       if( in(i) == 0 ) continue;
 903       if( in(i) == n ) ++edges_to_n;
 904       set_prec(i, NULL);
 905     }
 906   }
 907 
 908   // Node::destruct requires all out edges be deleted first
 909   // debug_only(destruct();)   // no reuse benefit expected
 910   if (edges_to_n == 0) {
 911     C->record_dead_node(_idx);
 912   }
 913   return edges_to_n;
 914 }
 915 
 916 //-----------------------------uncast---------------------------------------
 917 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 918 // Strip away casting.  (It is depth-limited.)
 919 Node* Node::uncast() const {
 920   // Should be inline:
 921   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 922   if (is_ConstraintCast() || is_CheckCastPP())
 923     return uncast_helper(this);
 924   else
 925     return (Node*) this;
 926 }
 927 
 928 //---------------------------uncast_helper-------------------------------------
 929 Node* Node::uncast_helper(const Node* p) {
 930 #ifdef ASSERT
 931   uint depth_count = 0;
 932   const Node* orig_p = p;
 933 #endif
 934 
 935   while (true) {
 936 #ifdef ASSERT
 937     if (depth_count >= K) {
 938       orig_p->dump(4);
 939       if (p != orig_p)
 940         p->dump(1);
 941     }
 942     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 943 #endif
 944     if (p == NULL || p->req() != 2) {
 945       break;
 946     } else if (p->is_ConstraintCast()) {
 947       p = p->in(1);
 948     } else if (p->is_CheckCastPP()) {
 949       p = p->in(1);
 950     } else {
 951       break;
 952     }
 953   }
 954   return (Node*) p;
 955 }
 956 
 957 //------------------------------add_prec---------------------------------------
 958 // Add a new precedence input.  Precedence inputs are unordered, with
 959 // duplicates removed and NULLs packed down at the end.
 960 void Node::add_prec( Node *n ) {
 961   assert( is_not_dead(n), "can not use dead node");
 962 
 963   // Check for NULL at end
 964   if( _cnt >= _max || in(_max-1) )
 965     grow( _max+1 );
 966 
 967   // Find a precedence edge to move
 968   uint i = _cnt;
 969   while( in(i) != NULL ) i++;
 970   _in[i] = n;                                // Stuff prec edge over NULL
 971   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 972 }
 973 
 974 //------------------------------rm_prec----------------------------------------
 975 // Remove a precedence input.  Precedence inputs are unordered, with
 976 // duplicates removed and NULLs packed down at the end.
 977 void Node::rm_prec( uint j ) {
 978 
 979   // Find end of precedence list to pack NULLs
 980   uint i;
 981   for( i=j; i<_max; i++ )
 982     if( !_in[i] )               // Find the NULL at end of prec edge list
 983       break;
 984   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
 985   _in[j] = _in[--i];            // Move last element over removed guy
 986   _in[i] = NULL;                // NULL out last element
 987 }
 988 
 989 //------------------------------size_of----------------------------------------
 990 uint Node::size_of() const { return sizeof(*this); }
 991 
 992 //------------------------------ideal_reg--------------------------------------
 993 uint Node::ideal_reg() const { return 0; }
 994 
 995 //------------------------------jvms-------------------------------------------
 996 JVMState* Node::jvms() const { return NULL; }
 997 
 998 #ifdef ASSERT
 999 //------------------------------jvms-------------------------------------------
1000 bool Node::verify_jvms(const JVMState* using_jvms) const {
1001   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1002     if (jvms == using_jvms)  return true;
1003   }
1004   return false;
1005 }
1006 
1007 //------------------------------init_NodeProperty------------------------------
1008 void Node::init_NodeProperty() {
1009   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1010   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1011 }
1012 #endif
1013 
1014 //------------------------------format-----------------------------------------
1015 // Print as assembly
1016 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1017 //------------------------------emit-------------------------------------------
1018 // Emit bytes starting at parameter 'ptr'.
1019 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1020 //------------------------------size-------------------------------------------
1021 // Size of instruction in bytes
1022 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1023 
1024 //------------------------------CFG Construction-------------------------------
1025 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1026 // Goto and Return.
1027 const Node *Node::is_block_proj() const { return 0; }
1028 
1029 // Minimum guaranteed type
1030 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1031 
1032 
1033 //------------------------------raise_bottom_type------------------------------
1034 // Get the worst-case Type output for this Node.
1035 void Node::raise_bottom_type(const Type* new_type) {
1036   if (is_Type()) {
1037     TypeNode *n = this->as_Type();
1038     if (VerifyAliases) {
1039       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1040     }
1041     n->set_type(new_type);
1042   } else if (is_Load()) {
1043     LoadNode *n = this->as_Load();
1044     if (VerifyAliases) {
1045       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1046     }
1047     n->set_type(new_type);
1048   }
1049 }
1050 
1051 //------------------------------Identity---------------------------------------
1052 // Return a node that the given node is equivalent to.
1053 Node *Node::Identity( PhaseTransform * ) {
1054   return this;                  // Default to no identities
1055 }
1056 
1057 //------------------------------Value------------------------------------------
1058 // Compute a new Type for a node using the Type of the inputs.
1059 const Type *Node::Value( PhaseTransform * ) const {
1060   return bottom_type();         // Default to worst-case Type
1061 }
1062 
1063 //------------------------------Ideal------------------------------------------
1064 //
1065 // 'Idealize' the graph rooted at this Node.
1066 //
1067 // In order to be efficient and flexible there are some subtle invariants
1068 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1069 // these invariants, although its too slow to have on by default.  If you are
1070 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1071 //
1072 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1073 // pointer.  If ANY change is made, it must return the root of the reshaped
1074 // graph - even if the root is the same Node.  Example: swapping the inputs
1075 // to an AddINode gives the same answer and same root, but you still have to
1076 // return the 'this' pointer instead of NULL.
1077 //
1078 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1079 // Identity call to return an old Node; basically if Identity can find
1080 // another Node have the Ideal call make no change and return NULL.
1081 // Example: AddINode::Ideal must check for add of zero; in this case it
1082 // returns NULL instead of doing any graph reshaping.
1083 //
1084 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1085 // sharing there may be other users of the old Nodes relying on their current
1086 // semantics.  Modifying them will break the other users.
1087 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1088 // "X+3" unchanged in case it is shared.
1089 //
1090 // If you modify the 'this' pointer's inputs, you should use
1091 // 'set_req'.  If you are making a new Node (either as the new root or
1092 // some new internal piece) you may use 'init_req' to set the initial
1093 // value.  You can make a new Node with either 'new' or 'clone'.  In
1094 // either case, def-use info is correctly maintained.
1095 //
1096 // Example: reshape "(X+3)+4" into "X+7":
1097 //    set_req(1, in(1)->in(1));
1098 //    set_req(2, phase->intcon(7));
1099 //    return this;
1100 // Example: reshape "X*4" into "X<<2"
1101 //    return new (C) LShiftINode(in(1), phase->intcon(2));
1102 //
1103 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1104 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1105 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
1106 //    return new (C) AddINode(shift, in(1));
1107 //
1108 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1109 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
1110 // The Right Thing with def-use info.
1111 //
1112 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1113 // graph uses the 'this' Node it must be the root.  If you want a Node with
1114 // the same Opcode as the 'this' pointer use 'clone'.
1115 //
1116 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1117   return NULL;                  // Default to being Ideal already
1118 }
1119 
1120 // Some nodes have specific Ideal subgraph transformations only if they are
1121 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1122 // for the transformations to happen.
1123 bool Node::has_special_unique_user() const {
1124   assert(outcnt() == 1, "match only for unique out");
1125   Node* n = unique_out();
1126   int op  = Opcode();
1127   if( this->is_Store() ) {
1128     // Condition for back-to-back stores folding.
1129     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1130   } else if (this->is_Load()) {
1131     // Condition for removing an unused LoadNode from the MemBarAcquire precedence input
1132     return n->Opcode() == Op_MemBarAcquire;
1133   } else if( op == Op_AddL ) {
1134     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1135     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1136   } else if( op == Op_SubI || op == Op_SubL ) {
1137     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1138     return n->Opcode() == op && n->in(2) == this;
1139   }
1140   return false;
1141 };
1142 
1143 //--------------------------find_exact_control---------------------------------
1144 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1145 Node* Node::find_exact_control(Node* ctrl) {
1146   if (ctrl == NULL && this->is_Region())
1147     ctrl = this->as_Region()->is_copy();
1148 
1149   if (ctrl != NULL && ctrl->is_CatchProj()) {
1150     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1151       ctrl = ctrl->in(0);
1152     if (ctrl != NULL && !ctrl->is_top())
1153       ctrl = ctrl->in(0);
1154   }
1155 
1156   if (ctrl != NULL && ctrl->is_Proj())
1157     ctrl = ctrl->in(0);
1158 
1159   return ctrl;
1160 }
1161 
1162 //--------------------------dominates------------------------------------------
1163 // Helper function for MemNode::all_controls_dominate().
1164 // Check if 'this' control node dominates or equal to 'sub' control node.
1165 // We already know that if any path back to Root or Start reaches 'this',
1166 // then all paths so, so this is a simple search for one example,
1167 // not an exhaustive search for a counterexample.
1168 bool Node::dominates(Node* sub, Node_List &nlist) {
1169   assert(this->is_CFG(), "expecting control");
1170   assert(sub != NULL && sub->is_CFG(), "expecting control");
1171 
1172   // detect dead cycle without regions
1173   int iterations_without_region_limit = DominatorSearchLimit;
1174 
1175   Node* orig_sub = sub;
1176   Node* dom      = this;
1177   bool  met_dom  = false;
1178   nlist.clear();
1179 
1180   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1181   // After seeing 'dom', continue up to Root or Start.
1182   // If we hit a region (backward split point), it may be a loop head.
1183   // Keep going through one of the region's inputs.  If we reach the
1184   // same region again, go through a different input.  Eventually we
1185   // will either exit through the loop head, or give up.
1186   // (If we get confused, break out and return a conservative 'false'.)
1187   while (sub != NULL) {
1188     if (sub->is_top())  break; // Conservative answer for dead code.
1189     if (sub == dom) {
1190       if (nlist.size() == 0) {
1191         // No Region nodes except loops were visited before and the EntryControl
1192         // path was taken for loops: it did not walk in a cycle.
1193         return true;
1194       } else if (met_dom) {
1195         break;          // already met before: walk in a cycle
1196       } else {
1197         // Region nodes were visited. Continue walk up to Start or Root
1198         // to make sure that it did not walk in a cycle.
1199         met_dom = true; // first time meet
1200         iterations_without_region_limit = DominatorSearchLimit; // Reset
1201      }
1202     }
1203     if (sub->is_Start() || sub->is_Root()) {
1204       // Success if we met 'dom' along a path to Start or Root.
1205       // We assume there are no alternative paths that avoid 'dom'.
1206       // (This assumption is up to the caller to ensure!)
1207       return met_dom;
1208     }
1209     Node* up = sub->in(0);
1210     // Normalize simple pass-through regions and projections:
1211     up = sub->find_exact_control(up);
1212     // If sub == up, we found a self-loop.  Try to push past it.
1213     if (sub == up && sub->is_Loop()) {
1214       // Take loop entry path on the way up to 'dom'.
1215       up = sub->in(1); // in(LoopNode::EntryControl);
1216     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1217       // Always take in(1) path on the way up to 'dom' for clone regions
1218       // (with only one input) or regions which merge > 2 paths
1219       // (usually used to merge fast/slow paths).
1220       up = sub->in(1);
1221     } else if (sub == up && sub->is_Region()) {
1222       // Try both paths for Regions with 2 input paths (it may be a loop head).
1223       // It could give conservative 'false' answer without information
1224       // which region's input is the entry path.
1225       iterations_without_region_limit = DominatorSearchLimit; // Reset
1226 
1227       bool region_was_visited_before = false;
1228       // Was this Region node visited before?
1229       // If so, we have reached it because we accidentally took a
1230       // loop-back edge from 'sub' back into the body of the loop,
1231       // and worked our way up again to the loop header 'sub'.
1232       // So, take the first unexplored path on the way up to 'dom'.
1233       for (int j = nlist.size() - 1; j >= 0; j--) {
1234         intptr_t ni = (intptr_t)nlist.at(j);
1235         Node* visited = (Node*)(ni & ~1);
1236         bool  visited_twice_already = ((ni & 1) != 0);
1237         if (visited == sub) {
1238           if (visited_twice_already) {
1239             // Visited 2 paths, but still stuck in loop body.  Give up.
1240             return false;
1241           }
1242           // The Region node was visited before only once.
1243           // (We will repush with the low bit set, below.)
1244           nlist.remove(j);
1245           // We will find a new edge and re-insert.
1246           region_was_visited_before = true;
1247           break;
1248         }
1249       }
1250 
1251       // Find an incoming edge which has not been seen yet; walk through it.
1252       assert(up == sub, "");
1253       uint skip = region_was_visited_before ? 1 : 0;
1254       for (uint i = 1; i < sub->req(); i++) {
1255         Node* in = sub->in(i);
1256         if (in != NULL && !in->is_top() && in != sub) {
1257           if (skip == 0) {
1258             up = in;
1259             break;
1260           }
1261           --skip;               // skip this nontrivial input
1262         }
1263       }
1264 
1265       // Set 0 bit to indicate that both paths were taken.
1266       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1267     }
1268 
1269     if (up == sub) {
1270       break;    // some kind of tight cycle
1271     }
1272     if (up == orig_sub && met_dom) {
1273       // returned back after visiting 'dom'
1274       break;    // some kind of cycle
1275     }
1276     if (--iterations_without_region_limit < 0) {
1277       break;    // dead cycle
1278     }
1279     sub = up;
1280   }
1281 
1282   // Did not meet Root or Start node in pred. chain.
1283   // Conservative answer for dead code.
1284   return false;
1285 }
1286 
1287 //------------------------------remove_dead_region-----------------------------
1288 // This control node is dead.  Follow the subgraph below it making everything
1289 // using it dead as well.  This will happen normally via the usual IterGVN
1290 // worklist but this call is more efficient.  Do not update use-def info
1291 // inside the dead region, just at the borders.
1292 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1293   // Con's are a popular node to re-hit in the hash table again.
1294   if( dead->is_Con() ) return;
1295 
1296   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1297   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1298   Node_List  nstack(Thread::current()->resource_area());
1299 
1300   Node *top = igvn->C->top();
1301   nstack.push(dead);
1302   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1303 
1304   while (nstack.size() > 0) {
1305     dead = nstack.pop();
1306     if (dead->outcnt() > 0) {
1307       // Keep dead node on stack until all uses are processed.
1308       nstack.push(dead);
1309       // For all Users of the Dead...    ;-)
1310       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1311         Node* use = dead->last_out(k);
1312         igvn->hash_delete(use);       // Yank from hash table prior to mod
1313         if (use->in(0) == dead) {     // Found another dead node
1314           assert (!use->is_Con(), "Control for Con node should be Root node.");
1315           use->set_req(0, top);       // Cut dead edge to prevent processing
1316           nstack.push(use);           // the dead node again.
1317         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1318                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1319                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1320           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1321           use->set_req(0, top);       // Cut self edge
1322           nstack.push(use);
1323         } else {                      // Else found a not-dead user
1324           // Dead if all inputs are top or null
1325           bool dead_use = !use->is_Root(); // Keep empty graph alive
1326           for (uint j = 1; j < use->req(); j++) {
1327             Node* in = use->in(j);
1328             if (in == dead) {         // Turn all dead inputs into TOP
1329               use->set_req(j, top);
1330             } else if (in != NULL && !in->is_top()) {
1331               dead_use = false;
1332             }
1333           }
1334           if (dead_use) {
1335             if (use->is_Region()) {
1336               use->set_req(0, top);   // Cut self edge
1337             }
1338             nstack.push(use);
1339           } else {
1340             igvn->_worklist.push(use);
1341           }
1342         }
1343         // Refresh the iterator, since any number of kills might have happened.
1344         k = dead->last_outs(kmin);
1345       }
1346     } else { // (dead->outcnt() == 0)
1347       // Done with outputs.
1348       igvn->hash_delete(dead);
1349       igvn->_worklist.remove(dead);
1350       igvn->set_type(dead, Type::TOP);
1351       if (dead->is_macro()) {
1352         igvn->C->remove_macro_node(dead);
1353       }
1354       if (dead->is_expensive()) {
1355         igvn->C->remove_expensive_node(dead);
1356       }
1357       CastIINode* cast = dead->isa_CastII();
1358       if (cast != NULL && cast->has_range_check()) {
1359         igvn->C->remove_range_check_cast(cast);
1360       }
1361       igvn->C->record_dead_node(dead->_idx);
1362       // Kill all inputs to the dead guy
1363       for (uint i=0; i < dead->req(); i++) {
1364         Node *n = dead->in(i);      // Get input to dead guy
1365         if (n != NULL && !n->is_top()) { // Input is valid?
1366           dead->set_req(i, top);    // Smash input away
1367           if (n->outcnt() == 0) {   // Input also goes dead?
1368             if (!n->is_Con())
1369               nstack.push(n);       // Clear it out as well
1370           } else if (n->outcnt() == 1 &&
1371                      n->has_special_unique_user()) {
1372             igvn->add_users_to_worklist( n );
1373           } else if (n->outcnt() <= 2 && n->is_Store()) {
1374             // Push store's uses on worklist to enable folding optimization for
1375             // store/store and store/load to the same address.
1376             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1377             // and remove_globally_dead_node().
1378             igvn->add_users_to_worklist( n );
1379           }
1380         }
1381       }
1382     } // (dead->outcnt() == 0)
1383   }   // while (nstack.size() > 0) for outputs
1384   return;
1385 }
1386 
1387 //------------------------------remove_dead_region-----------------------------
1388 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1389   Node *n = in(0);
1390   if( !n ) return false;
1391   // Lost control into this guy?  I.e., it became unreachable?
1392   // Aggressively kill all unreachable code.
1393   if (can_reshape && n->is_top()) {
1394     kill_dead_code(this, phase->is_IterGVN());
1395     return false; // Node is dead.
1396   }
1397 
1398   if( n->is_Region() && n->as_Region()->is_copy() ) {
1399     Node *m = n->nonnull_req();
1400     set_req(0, m);
1401     return true;
1402   }
1403   return false;
1404 }
1405 
1406 //------------------------------Ideal_DU_postCCP-------------------------------
1407 // Idealize graph, using DU info.  Must clone result into new-space
1408 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1409   return NULL;                 // Default to no change
1410 }
1411 
1412 //------------------------------hash-------------------------------------------
1413 // Hash function over Nodes.
1414 uint Node::hash() const {
1415   uint sum = 0;
1416   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1417     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1418   return (sum>>2) + _cnt + Opcode();
1419 }
1420 
1421 //------------------------------cmp--------------------------------------------
1422 // Compare special parts of simple Nodes
1423 uint Node::cmp( const Node &n ) const {
1424   return 1;                     // Must be same
1425 }
1426 
1427 //------------------------------rematerialize-----------------------------------
1428 // Should we clone rather than spill this instruction?
1429 bool Node::rematerialize() const {
1430   if ( is_Mach() )
1431     return this->as_Mach()->rematerialize();
1432   else
1433     return (_flags & Flag_rematerialize) != 0;
1434 }
1435 
1436 //------------------------------needs_anti_dependence_check---------------------
1437 // Nodes which use memory without consuming it, hence need antidependences.
1438 bool Node::needs_anti_dependence_check() const {
1439   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1440     return false;
1441   else
1442     return in(1)->bottom_type()->has_memory();
1443 }
1444 
1445 
1446 // Get an integer constant from a ConNode (or CastIINode).
1447 // Return a default value if there is no apparent constant here.
1448 const TypeInt* Node::find_int_type() const {
1449   if (this->is_Type()) {
1450     return this->as_Type()->type()->isa_int();
1451   } else if (this->is_Con()) {
1452     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1453     return this->bottom_type()->isa_int();
1454   }
1455   return NULL;
1456 }
1457 
1458 // Get a pointer constant from a ConstNode.
1459 // Returns the constant if it is a pointer ConstNode
1460 intptr_t Node::get_ptr() const {
1461   assert( Opcode() == Op_ConP, "" );
1462   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1463 }
1464 
1465 // Get a narrow oop constant from a ConNNode.
1466 intptr_t Node::get_narrowcon() const {
1467   assert( Opcode() == Op_ConN, "" );
1468   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1469 }
1470 
1471 // Get a long constant from a ConNode.
1472 // Return a default value if there is no apparent constant here.
1473 const TypeLong* Node::find_long_type() const {
1474   if (this->is_Type()) {
1475     return this->as_Type()->type()->isa_long();
1476   } else if (this->is_Con()) {
1477     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1478     return this->bottom_type()->isa_long();
1479   }
1480   return NULL;
1481 }
1482 
1483 
1484 /**
1485  * Return a ptr type for nodes which should have it.
1486  */
1487 const TypePtr* Node::get_ptr_type() const {
1488   const TypePtr* tp = this->bottom_type()->make_ptr();
1489 #ifdef ASSERT
1490   if (tp == NULL) {
1491     this->dump(1);
1492     assert((tp != NULL), "unexpected node type");
1493   }
1494 #endif
1495   return tp;
1496 }
1497 
1498 // Get a double constant from a ConstNode.
1499 // Returns the constant if it is a double ConstNode
1500 jdouble Node::getd() const {
1501   assert( Opcode() == Op_ConD, "" );
1502   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1503 }
1504 
1505 // Get a float constant from a ConstNode.
1506 // Returns the constant if it is a float ConstNode
1507 jfloat Node::getf() const {
1508   assert( Opcode() == Op_ConF, "" );
1509   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1510 }
1511 
1512 #ifndef PRODUCT
1513 
1514 //----------------------------NotANode----------------------------------------
1515 // Used in debugging code to avoid walking across dead or uninitialized edges.
1516 static inline bool NotANode(const Node* n) {
1517   if (n == NULL)                   return true;
1518   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1519   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1520   return false;
1521 }
1522 
1523 
1524 //------------------------------find------------------------------------------
1525 // Find a neighbor of this Node with the given _idx
1526 // If idx is negative, find its absolute value, following both _in and _out.
1527 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1528                         VectorSet* old_space, VectorSet* new_space ) {
1529   int node_idx = (idx >= 0) ? idx : -idx;
1530   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1531   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1532   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1533   if( v->test(n->_idx) ) return;
1534   if( (int)n->_idx == node_idx
1535       debug_only(|| n->debug_idx() == node_idx) ) {
1536     if (result != NULL)
1537       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1538                  (uintptr_t)result, (uintptr_t)n, node_idx);
1539     result = n;
1540   }
1541   v->set(n->_idx);
1542   for( uint i=0; i<n->len(); i++ ) {
1543     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1544     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1545   }
1546   // Search along forward edges also:
1547   if (idx < 0 && !only_ctrl) {
1548     for( uint j=0; j<n->outcnt(); j++ ) {
1549       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1550     }
1551   }
1552 #ifdef ASSERT
1553   // Search along debug_orig edges last, checking for cycles
1554   Node* orig = n->debug_orig();
1555   if (orig != NULL) {
1556     do {
1557       if (NotANode(orig))  break;
1558       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1559       orig = orig->debug_orig();
1560     } while (orig != NULL && orig != n->debug_orig());
1561   }
1562 #endif //ASSERT
1563 }
1564 
1565 // call this from debugger:
1566 Node* find_node(Node* n, int idx) {
1567   return n->find(idx);
1568 }
1569 
1570 //------------------------------find-------------------------------------------
1571 Node* Node::find(int idx) const {
1572   ResourceArea *area = Thread::current()->resource_area();
1573   VectorSet old_space(area), new_space(area);
1574   Node* result = NULL;
1575   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1576   return result;
1577 }
1578 
1579 //------------------------------find_ctrl--------------------------------------
1580 // Find an ancestor to this node in the control history with given _idx
1581 Node* Node::find_ctrl(int idx) const {
1582   ResourceArea *area = Thread::current()->resource_area();
1583   VectorSet old_space(area), new_space(area);
1584   Node* result = NULL;
1585   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1586   return result;
1587 }
1588 #endif
1589 
1590 
1591 
1592 #ifndef PRODUCT
1593 
1594 // -----------------------------Name-------------------------------------------
1595 extern const char *NodeClassNames[];
1596 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1597 
1598 static bool is_disconnected(const Node* n) {
1599   for (uint i = 0; i < n->req(); i++) {
1600     if (n->in(i) != NULL)  return false;
1601   }
1602   return true;
1603 }
1604 
1605 #ifdef ASSERT
1606 static void dump_orig(Node* orig, outputStream *st) {
1607   Compile* C = Compile::current();
1608   if (NotANode(orig)) orig = NULL;
1609   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1610   if (orig == NULL) return;
1611   st->print(" !orig=");
1612   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1613   if (NotANode(fast)) fast = NULL;
1614   while (orig != NULL) {
1615     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1616     if (discon) st->print("[");
1617     if (!Compile::current()->node_arena()->contains(orig))
1618       st->print("o");
1619     st->print("%d", orig->_idx);
1620     if (discon) st->print("]");
1621     orig = orig->debug_orig();
1622     if (NotANode(orig)) orig = NULL;
1623     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1624     if (orig != NULL) st->print(",");
1625     if (fast != NULL) {
1626       // Step fast twice for each single step of orig:
1627       fast = fast->debug_orig();
1628       if (NotANode(fast)) fast = NULL;
1629       if (fast != NULL && fast != orig) {
1630         fast = fast->debug_orig();
1631         if (NotANode(fast)) fast = NULL;
1632       }
1633       if (fast == orig) {
1634         st->print("...");
1635         break;
1636       }
1637     }
1638   }
1639 }
1640 
1641 void Node::set_debug_orig(Node* orig) {
1642   _debug_orig = orig;
1643   if (BreakAtNode == 0)  return;
1644   if (NotANode(orig))  orig = NULL;
1645   int trip = 10;
1646   while (orig != NULL) {
1647     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1648       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1649                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1650       BREAKPOINT;
1651     }
1652     orig = orig->debug_orig();
1653     if (NotANode(orig))  orig = NULL;
1654     if (trip-- <= 0)  break;
1655   }
1656 }
1657 #endif //ASSERT
1658 
1659 //------------------------------dump------------------------------------------
1660 // Dump a Node
1661 void Node::dump(const char* suffix, outputStream *st) const {
1662   Compile* C = Compile::current();
1663   bool is_new = C->node_arena()->contains(this);
1664   C->_in_dump_cnt++;
1665   st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
1666 
1667   // Dump the required and precedence inputs
1668   dump_req(st);
1669   dump_prec(st);
1670   // Dump the outputs
1671   dump_out(st);
1672 
1673   if (is_disconnected(this)) {
1674 #ifdef ASSERT
1675     st->print("  [%d]",debug_idx());
1676     dump_orig(debug_orig(), st);
1677 #endif
1678     st->cr();
1679     C->_in_dump_cnt--;
1680     return;                     // don't process dead nodes
1681   }
1682 
1683   // Dump node-specific info
1684   dump_spec(st);
1685 #ifdef ASSERT
1686   // Dump the non-reset _debug_idx
1687   if (Verbose && WizardMode) {
1688     st->print("  [%d]",debug_idx());
1689   }
1690 #endif
1691 
1692   const Type *t = bottom_type();
1693 
1694   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1695     const TypeInstPtr  *toop = t->isa_instptr();
1696     const TypeKlassPtr *tkls = t->isa_klassptr();
1697     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1698     if (klass && klass->is_loaded() && klass->is_interface()) {
1699       st->print("  Interface:");
1700     } else if (toop) {
1701       st->print("  Oop:");
1702     } else if (tkls) {
1703       st->print("  Klass:");
1704     }
1705     t->dump_on(st);
1706   } else if (t == Type::MEMORY) {
1707     st->print("  Memory:");
1708     MemNode::dump_adr_type(this, adr_type(), st);
1709   } else if (Verbose || WizardMode) {
1710     st->print("  Type:");
1711     if (t) {
1712       t->dump_on(st);
1713     } else {
1714       st->print("no type");
1715     }
1716   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1717     // Dump MachSpillcopy vector type.
1718     t->dump_on(st);
1719   }
1720   if (is_new) {
1721     debug_only(dump_orig(debug_orig(), st));
1722     Node_Notes* nn = C->node_notes_at(_idx);
1723     if (nn != NULL && !nn->is_clear()) {
1724       if (nn->jvms() != NULL) {
1725         st->print(" !jvms:");
1726         nn->jvms()->dump_spec(st);
1727       }
1728     }
1729   }
1730   if (suffix) st->print("%s", suffix);
1731   C->_in_dump_cnt--;
1732 }
1733 
1734 //------------------------------dump_req--------------------------------------
1735 void Node::dump_req(outputStream *st) const {
1736   // Dump the required input edges
1737   for (uint i = 0; i < req(); i++) {    // For all required inputs
1738     Node* d = in(i);
1739     if (d == NULL) {
1740       st->print("_ ");
1741     } else if (NotANode(d)) {
1742       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1743     } else {
1744       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1745     }
1746   }
1747 }
1748 
1749 
1750 //------------------------------dump_prec-------------------------------------
1751 void Node::dump_prec(outputStream *st) const {
1752   // Dump the precedence edges
1753   int any_prec = 0;
1754   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1755     Node* p = in(i);
1756     if (p != NULL) {
1757       if (!any_prec++) st->print(" |");
1758       if (NotANode(p)) { st->print("NotANode "); continue; }
1759       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1760     }
1761   }
1762 }
1763 
1764 //------------------------------dump_out--------------------------------------
1765 void Node::dump_out(outputStream *st) const {
1766   // Delimit the output edges
1767   st->print(" [[");
1768   // Dump the output edges
1769   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1770     Node* u = _out[i];
1771     if (u == NULL) {
1772       st->print("_ ");
1773     } else if (NotANode(u)) {
1774       st->print("NotANode ");
1775     } else {
1776       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1777     }
1778   }
1779   st->print("]] ");
1780 }
1781 
1782 //------------------------------dump_nodes-------------------------------------
1783 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1784   Node* s = (Node*)start; // remove const
1785   if (NotANode(s)) return;
1786 
1787   uint depth = (uint)ABS(d);
1788   int direction = d;
1789   Compile* C = Compile::current();
1790   GrowableArray <Node *> nstack(C->live_nodes());
1791 
1792   nstack.append(s);
1793   int begin = 0;
1794   int end = 0;
1795   for(uint i = 0; i < depth; i++) {
1796     end = nstack.length();
1797     for(int j = begin; j < end; j++) {
1798       Node* tp  = nstack.at(j);
1799       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1800       for(uint k = 0; k < limit; k++) {
1801         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1802 
1803         if (NotANode(n))  continue;
1804         // do not recurse through top or the root (would reach unrelated stuff)
1805         if (n->is_Root() || n->is_top())  continue;
1806         if (only_ctrl && !n->is_CFG()) continue;
1807 
1808         bool on_stack = nstack.contains(n);
1809         if (!on_stack) {
1810           nstack.append(n);
1811         }
1812       }
1813     }
1814     begin = end;
1815   }
1816   end = nstack.length();
1817   if (direction > 0) {
1818     for(int j = end-1; j >= 0; j--) {
1819       nstack.at(j)->dump();
1820     }
1821   } else {
1822     for(int j = 0; j < end; j++) {
1823       nstack.at(j)->dump();
1824     }
1825   }
1826 }
1827 
1828 //------------------------------dump-------------------------------------------
1829 void Node::dump(int d) const {
1830   dump_nodes(this, d, false);
1831 }
1832 
1833 //------------------------------dump_ctrl--------------------------------------
1834 // Dump a Node's control history to depth
1835 void Node::dump_ctrl(int d) const {
1836   dump_nodes(this, d, true);
1837 }
1838 
1839 // VERIFICATION CODE
1840 // For each input edge to a node (ie - for each Use-Def edge), verify that
1841 // there is a corresponding Def-Use edge.
1842 //------------------------------verify_edges-----------------------------------
1843 void Node::verify_edges(Unique_Node_List &visited) {
1844   uint i, j, idx;
1845   int  cnt;
1846   Node *n;
1847 
1848   // Recursive termination test
1849   if (visited.member(this))  return;
1850   visited.push(this);
1851 
1852   // Walk over all input edges, checking for correspondence
1853   for( i = 0; i < len(); i++ ) {
1854     n = in(i);
1855     if (n != NULL && !n->is_top()) {
1856       // Count instances of (Node *)this
1857       cnt = 0;
1858       for (idx = 0; idx < n->_outcnt; idx++ ) {
1859         if (n->_out[idx] == (Node *)this)  cnt++;
1860       }
1861       assert( cnt > 0,"Failed to find Def-Use edge." );
1862       // Check for duplicate edges
1863       // walk the input array downcounting the input edges to n
1864       for( j = 0; j < len(); j++ ) {
1865         if( in(j) == n ) cnt--;
1866       }
1867       assert( cnt == 0,"Mismatched edge count.");
1868     } else if (n == NULL) {
1869       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1870     } else {
1871       assert(n->is_top(), "sanity");
1872       // Nothing to check.
1873     }
1874   }
1875   // Recursive walk over all input edges
1876   for( i = 0; i < len(); i++ ) {
1877     n = in(i);
1878     if( n != NULL )
1879       in(i)->verify_edges(visited);
1880   }
1881 }
1882 
1883 //------------------------------verify_recur-----------------------------------
1884 static const Node *unique_top = NULL;
1885 
1886 void Node::verify_recur(const Node *n, int verify_depth,
1887                         VectorSet &old_space, VectorSet &new_space) {
1888   if ( verify_depth == 0 )  return;
1889   if (verify_depth > 0)  --verify_depth;
1890 
1891   Compile* C = Compile::current();
1892 
1893   // Contained in new_space or old_space?
1894   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1895   // Check for visited in the proper space.  Numberings are not unique
1896   // across spaces so we need a separate VectorSet for each space.
1897   if( v->test_set(n->_idx) ) return;
1898 
1899   if (n->is_Con() && n->bottom_type() == Type::TOP) {
1900     if (C->cached_top_node() == NULL)
1901       C->set_cached_top_node((Node*)n);
1902     assert(C->cached_top_node() == n, "TOP node must be unique");
1903   }
1904 
1905   for( uint i = 0; i < n->len(); i++ ) {
1906     Node *x = n->in(i);
1907     if (!x || x->is_top()) continue;
1908 
1909     // Verify my input has a def-use edge to me
1910     if (true /*VerifyDefUse*/) {
1911       // Count use-def edges from n to x
1912       int cnt = 0;
1913       for( uint j = 0; j < n->len(); j++ )
1914         if( n->in(j) == x )
1915           cnt++;
1916       // Count def-use edges from x to n
1917       uint max = x->_outcnt;
1918       for( uint k = 0; k < max; k++ )
1919         if (x->_out[k] == n)
1920           cnt--;
1921       assert( cnt == 0, "mismatched def-use edge counts" );
1922     }
1923 
1924     verify_recur(x, verify_depth, old_space, new_space);
1925   }
1926 
1927 }
1928 
1929 //------------------------------verify-----------------------------------------
1930 // Check Def-Use info for my subgraph
1931 void Node::verify() const {
1932   Compile* C = Compile::current();
1933   Node* old_top = C->cached_top_node();
1934   ResourceMark rm;
1935   ResourceArea *area = Thread::current()->resource_area();
1936   VectorSet old_space(area), new_space(area);
1937   verify_recur(this, -1, old_space, new_space);
1938   C->set_cached_top_node(old_top);
1939 }
1940 #endif
1941 
1942 
1943 //------------------------------walk-------------------------------------------
1944 // Graph walk, with both pre-order and post-order functions
1945 void Node::walk(NFunc pre, NFunc post, void *env) {
1946   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1947   walk_(pre, post, env, visited);
1948 }
1949 
1950 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1951   if( visited.test_set(_idx) ) return;
1952   pre(*this,env);               // Call the pre-order walk function
1953   for( uint i=0; i<_max; i++ )
1954     if( in(i) )                 // Input exists and is not walked?
1955       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1956   post(*this,env);              // Call the post-order walk function
1957 }
1958 
1959 void Node::nop(Node &, void*) {}
1960 
1961 //------------------------------Registers--------------------------------------
1962 // Do we Match on this edge index or not?  Generally false for Control
1963 // and true for everything else.  Weird for calls & returns.
1964 uint Node::match_edge(uint idx) const {
1965   return idx;                   // True for other than index 0 (control)
1966 }
1967 
1968 static RegMask _not_used_at_all;
1969 // Register classes are defined for specific machines
1970 const RegMask &Node::out_RegMask() const {
1971   ShouldNotCallThis();
1972   return _not_used_at_all;
1973 }
1974 
1975 const RegMask &Node::in_RegMask(uint) const {
1976   ShouldNotCallThis();
1977   return _not_used_at_all;
1978 }
1979 
1980 //=============================================================================
1981 //-----------------------------------------------------------------------------
1982 void Node_Array::reset( Arena *new_arena ) {
1983   _a->Afree(_nodes,_max*sizeof(Node*));
1984   _max   = 0;
1985   _nodes = NULL;
1986   _a     = new_arena;
1987 }
1988 
1989 //------------------------------clear------------------------------------------
1990 // Clear all entries in _nodes to NULL but keep storage
1991 void Node_Array::clear() {
1992   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1993 }
1994 
1995 //-----------------------------------------------------------------------------
1996 void Node_Array::grow( uint i ) {
1997   if( !_max ) {
1998     _max = 1;
1999     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2000     _nodes[0] = NULL;
2001   }
2002   uint old = _max;
2003   while( i >= _max ) _max <<= 1;        // Double to fit
2004   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2005   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2006 }
2007 
2008 //-----------------------------------------------------------------------------
2009 void Node_Array::insert( uint i, Node *n ) {
2010   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2011   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2012   _nodes[i] = n;
2013 }
2014 
2015 //-----------------------------------------------------------------------------
2016 void Node_Array::remove( uint i ) {
2017   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2018   _nodes[_max-1] = NULL;
2019 }
2020 
2021 //-----------------------------------------------------------------------------
2022 void Node_Array::sort( C_sort_func_t func) {
2023   qsort( _nodes, _max, sizeof( Node* ), func );
2024 }
2025 
2026 //-----------------------------------------------------------------------------
2027 void Node_Array::dump() const {
2028 #ifndef PRODUCT
2029   for( uint i = 0; i < _max; i++ ) {
2030     Node *nn = _nodes[i];
2031     if( nn != NULL ) {
2032       tty->print("%5d--> ",i); nn->dump();
2033     }
2034   }
2035 #endif
2036 }
2037 
2038 //--------------------------is_iteratively_computed------------------------------
2039 // Operation appears to be iteratively computed (such as an induction variable)
2040 // It is possible for this operation to return false for a loop-varying
2041 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2042 bool Node::is_iteratively_computed() {
2043   if (ideal_reg()) { // does operation have a result register?
2044     for (uint i = 1; i < req(); i++) {
2045       Node* n = in(i);
2046       if (n != NULL && n->is_Phi()) {
2047         for (uint j = 1; j < n->req(); j++) {
2048           if (n->in(j) == this) {
2049             return true;
2050           }
2051         }
2052       }
2053     }
2054   }
2055   return false;
2056 }
2057 
2058 //--------------------------find_similar------------------------------
2059 // Return a node with opcode "opc" and same inputs as "this" if one can
2060 // be found; Otherwise return NULL;
2061 Node* Node::find_similar(int opc) {
2062   if (req() >= 2) {
2063     Node* def = in(1);
2064     if (def && def->outcnt() >= 2) {
2065       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2066         Node* use = def->fast_out(i);
2067         if (use->Opcode() == opc &&
2068             use->req() == req()) {
2069           uint j;
2070           for (j = 0; j < use->req(); j++) {
2071             if (use->in(j) != in(j)) {
2072               break;
2073             }
2074           }
2075           if (j == use->req()) {
2076             return use;
2077           }
2078         }
2079       }
2080     }
2081   }
2082   return NULL;
2083 }
2084 
2085 
2086 //--------------------------unique_ctrl_out------------------------------
2087 // Return the unique control out if only one. Null if none or more than one.
2088 Node* Node::unique_ctrl_out() {
2089   Node* found = NULL;
2090   for (uint i = 0; i < outcnt(); i++) {
2091     Node* use = raw_out(i);
2092     if (use->is_CFG() && use != this) {
2093       if (found != NULL) return NULL;
2094       found = use;
2095     }
2096   }
2097   return found;
2098 }
2099 
2100 //=============================================================================
2101 //------------------------------yank-------------------------------------------
2102 // Find and remove
2103 void Node_List::yank( Node *n ) {
2104   uint i;
2105   for( i = 0; i < _cnt; i++ )
2106     if( _nodes[i] == n )
2107       break;
2108 
2109   if( i < _cnt )
2110     _nodes[i] = _nodes[--_cnt];
2111 }
2112 
2113 //------------------------------dump-------------------------------------------
2114 void Node_List::dump() const {
2115 #ifndef PRODUCT
2116   for( uint i = 0; i < _cnt; i++ )
2117     if( _nodes[i] ) {
2118       tty->print("%5d--> ",i);
2119       _nodes[i]->dump();
2120     }
2121 #endif
2122 }
2123 
2124 void Node_List::dump_simple() const {
2125 #ifndef PRODUCT
2126   for( uint i = 0; i < _cnt; i++ )
2127     if( _nodes[i] ) {
2128       tty->print(" %d", _nodes[i]->_idx);
2129     } else {
2130       tty->print(" NULL");
2131     }
2132 #endif
2133 }
2134 
2135 //=============================================================================
2136 //------------------------------remove-----------------------------------------
2137 void Unique_Node_List::remove( Node *n ) {
2138   if( _in_worklist[n->_idx] ) {
2139     for( uint i = 0; i < size(); i++ )
2140       if( _nodes[i] == n ) {
2141         map(i,Node_List::pop());
2142         _in_worklist >>= n->_idx;
2143         return;
2144       }
2145     ShouldNotReachHere();
2146   }
2147 }
2148 
2149 //-----------------------remove_useless_nodes----------------------------------
2150 // Remove useless nodes from worklist
2151 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2152 
2153   for( uint i = 0; i < size(); ++i ) {
2154     Node *n = at(i);
2155     assert( n != NULL, "Did not expect null entries in worklist");
2156     if( ! useful.test(n->_idx) ) {
2157       _in_worklist >>= n->_idx;
2158       map(i,Node_List::pop());
2159       // Node *replacement = Node_List::pop();
2160       // if( i != size() ) { // Check if removing last entry
2161       //   _nodes[i] = replacement;
2162       // }
2163       --i;  // Visit popped node
2164       // If it was last entry, loop terminates since size() was also reduced
2165     }
2166   }
2167 }
2168 
2169 //=============================================================================
2170 void Node_Stack::grow() {
2171   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2172   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2173   size_t max = old_max << 1;             // max * 2
2174   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2175   _inode_max = _inodes + max;
2176   _inode_top = _inodes + old_top;        // restore _top
2177 }
2178 
2179 // Node_Stack is used to map nodes.
2180 Node* Node_Stack::find(uint idx) const {
2181   uint sz = size();
2182   for (uint i=0; i < sz; i++) {
2183     if (idx == index_at(i) )
2184       return node_at(i);
2185   }
2186   return NULL;
2187 }
2188 
2189 //=============================================================================
2190 uint TypeNode::size_of() const { return sizeof(*this); }
2191 #ifndef PRODUCT
2192 void TypeNode::dump_spec(outputStream *st) const {
2193   if( !Verbose && !WizardMode ) {
2194     // standard dump does this in Verbose and WizardMode
2195     st->print(" #"); _type->dump_on(st);
2196   }
2197 }
2198 #endif
2199 uint TypeNode::hash() const {
2200   return Node::hash() + _type->hash();
2201 }
2202 uint TypeNode::cmp( const Node &n ) const
2203 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2204 const Type *TypeNode::bottom_type() const { return _type; }
2205 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2206 
2207 //------------------------------ideal_reg--------------------------------------
2208 uint TypeNode::ideal_reg() const {
2209   return _type->ideal_reg();
2210 }