src/share/vm/code/codeCache.hpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File
*** old/src/share/vm/code/codeCache.hpp	Tue Jun  3 09:37:20 2014
--- new/src/share/vm/code/codeCache.hpp	Tue Jun  3 09:37:20 2014

*** 28,132 **** --- 28,145 ---- #include "code/codeBlob.hpp" #include "memory/allocation.hpp" #include "memory/heap.hpp" #include "oops/instanceKlass.hpp" #include "oops/oopsHierarchy.hpp" + #include "runtime/mutexLocker.hpp" + // The CodeCache implements the code cache for various pieces of generated // code, e.g., compiled java methods, runtime stubs, transition frames, etc. // The entries in the CodeCache are all CodeBlob's. // Implementation: // - Each CodeBlob occupies one chunk of memory. // - Like the offset table in oldspace the zone has at table for // locating a method given a addess of an instruction. + // -- Implementation -- + // The CodeCache consists of one or more CodeHeaps, each of which contains + // CodeBlobs of a specific CodeBlobType. Currently heaps for the following + // types are available: + // - Non-methods: Non-methods like Buffers, Adapters and Runtime Stubs + // - Profiled nmethods: nmethods that are profiled, i.e., those + // executed at level 2 or 3 + // - Non-Profiled nmethods: nmethods that are not profiled, i.e., those + // executed at level 1 or 4 and native methods + // - All: Used for code of all types if code cache segmentation is disabled. + // + // Depending on the availability of compilers and TieredCompilation there + // may be fewer heaps. The size of the code heaps depends on the values of + // ReservedCodeCacheSize, NonProfiledCodeHeapSize and ProfiledCodeHeapSize + // (see CodeCache::heap_available(..) and CodeCache::initialize_heaps(..) + // for details). + // + // Code cache segmentation is controlled by the flag SegmentedCodeCache. + // If turned off, all code types are stored in a single code heap. By default + // code cache segmentation is turned on if TieredCompilation is enabled and + // ReservedCodeCacheSize >= 240 MB. + // + // All methods of the CodeCache accepting a CodeBlobType only apply to + // CodeBlobs of the given type. For example, iteration over the + // CodeBlobs of a specific type can be done by using CodeCache::first_blob(..) + // and CodeCache::next_blob(..) and providing the corresponding CodeBlobType. + // + // IMPORTANT: If you add new CodeHeaps to the code cache or change the + // existing ones, make sure to adapt the dtrace scripts (jhelper.d) for + // Solaris and BSD. class OopClosure; class DepChange; class CodeCache : AllStatic { friend class VMStructs; private: ! // CodeHeap is malloc()'ed at startup and never deleted during shutdown, // so that the generated assembly code is always there when it's needed. // This may cause memory leak, but is necessary, for now. See 4423824, // 4422213 or 4436291 for details. ! static CodeHeap * _heap; ! static int _number_of_blobs; ! static int _number_of_adapters; ! static int _number_of_nmethods; ! static int _number_of_nmethods_with_dependencies; ! static bool _needs_cache_clean; ! // CodeHeaps of the cache + static GrowableArray<CodeHeap*>* _heaps; + + static address _low_bound; // Lower bound of CodeHeap addresses ! static address _high_bound; // Upper bound of CodeHeap addresses ! static int _number_of_blobs; // Total number of CodeBlobs in the cache ! static int _number_of_adapters; // Total number of Adapters in the cache ! static int _number_of_nmethods; // Total number of nmethods in the cache ! static int _number_of_nmethods_with_dependencies; // Total number of nmethods with dependencies ! static bool _needs_cache_clean; // True if inline caches of the nmethods needs to be flushed static nmethod* _scavenge_root_nmethods; // linked via nm->scavenge_root_link() + static int _codemem_full_count; // Number of times a CodeHeap in the cache was full static void mark_scavenge_root_nmethods() PRODUCT_RETURN; static void verify_perm_nmethods(CodeBlobClosure* f_or_null) PRODUCT_RETURN; static int _codemem_full_count; ! static size_t bytes_allocated_in_freelist() { return _heap->allocated_in_freelist(); } static int allocated_segments() { return _heap->allocated_segments(); } ! static size_t freelist_length() { return _heap->freelist_length(); } + // CodeHeap management ! static void initialize_heaps(); // Initializes the CodeHeaps + // Creates a new heap with the given name and size, containing CodeBlobs of the given type ! static void add_heap(ReservedSpace rs, const char* name, size_t size_initial, int code_blob_type); + static CodeHeap* get_code_heap(int code_blob_type); // Returns the CodeHeap for the given CodeBlobType + static bool heap_available(int code_blob_type); // Returns true if a CodeHeap for the given CodeBlobType is available + static ReservedCodeSpace reserve_heap_memory(size_t size); // Reserves one continuous chunk of memory for the CodeHeaps public: + // Iteration + static CodeBlob* first_blob(CodeHeap* heap); // Returns the first CodeBlob on the given CodeHeap + static CodeBlob* next_blob(CodeHeap* heap, CodeBlob* cb); // Returns the first alive CodeBlob on the given CodeHeap + static CodeBlob* first_alive_blob(CodeHeap* heap); // Returns the next CodeBlob on the given CodeHeap succeeding the given CodeBlob + static CodeBlob* next_alive_blob(CodeHeap* heap, CodeBlob* cb); // Returns the next alive CodeBlob on the given CodeHeap succeeding the given CodeBlob + + static size_t bytes_allocated_in_freelists(); + static int allocated_segments(); + static size_t freelists_length(); + public: // Initialization static void initialize(); static void report_codemem_full(); // Allocation/administration ! static CodeBlob* allocate(int size, int code_blob_type, bool is_critical = false); // allocates a new CodeBlob static void commit(CodeBlob* cb); // called when the allocated CodeBlob has been filled static int alignment_unit(); // guaranteed alignment of all CodeBlobs static int alignment_offset(); // guaranteed offset of first CodeBlob byte within alignment unit (i.e., allocation header) ! static void free(CodeBlob* cb); // frees a CodeBlob ! static void free(CodeBlob* cb, int code_blob_type); // frees a CodeBlob static bool contains(void *p); // returns whether p is included static void blobs_do(void f(CodeBlob* cb)); // iterates over all CodeBlobs static void blobs_do(CodeBlobClosure* f); // iterates over all CodeBlobs static void nmethods_do(void f(nmethod* nm)); // iterates over all nmethods static void alive_nmethods_do(void f(nmethod* nm)); // iterates over all alive nmethods // Lookup ! static CodeBlob* find_blob(void* start); // Returns the CodeBlob containing the given address ! static nmethod* find_nmethod(void* start); // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know // what you are doing) static CodeBlob* find_blob_unsafe(void* start) { // NMT can walk the stack before code cache is created if (_heap == NULL) return NULL; CodeBlob* result = (CodeBlob*)_heap->find_start(start); // this assert is too strong because the heap code will return the // heapblock containing start. That block can often be larger than // the codeBlob itself. If you look up an address that is within // the heapblock but not in the codeBlob you will assert. // // Most things will not lookup such bad addresses. However // AsyncGetCallTrace can see intermediate frames and get that kind // of invalid address and so can a developer using hsfind. // // The more correct answer is to return NULL if blob_contains() returns // false. // assert(result == NULL || result->blob_contains((address)start), "found wrong CodeBlob"); if (result != NULL && !result->blob_contains((address)start)) { result = NULL; } return result; } ! static CodeBlob* find_blob_unsafe(void* start); // Same as find_blob but does not fail if looking up a zombie method + static nmethod* find_nmethod(void* start); // Returns the nmethod containing the given address // Iteration static CodeBlob* first(); ! static CodeBlob* next (CodeBlob* cb); static CodeBlob* alive(CodeBlob *cb); ! static nmethod* alive_nmethod(CodeBlob *cb); static nmethod* first_nmethod(); ! static nmethod* next_nmethod (CodeBlob* cb); ! static int nof_blobs() { return _number_of_blobs; } ! static int nof_adapters() { return _number_of_adapters; } static int nof_nmethods() { return _number_of_nmethods; } + // Returns the first CodeBlob of the given type ! static CodeBlob* first_blob(int code_blob_type) { return first_blob(get_code_heap(code_blob_type)); } + // Returns the next CodeBlob of the given type succeeding the given CodeBlob ! static CodeBlob* next_blob(CodeBlob* cb, int code_blob_type) { return next_blob(get_code_heap(code_blob_type), cb); } + ! static int nof_blobs() { return _number_of_blobs; } // Returns the total number of CodeBlobs in the cache ! static int nof_adapters() { return _number_of_adapters; } // Returns the total number of Adapters in the cache ! static int nof_nmethods() { return _number_of_nmethods; } // Returns the total number of nmethods in the cache // GC support static void gc_epilogue(); static void gc_prologue(); static void verify_oops();
*** 153,180 **** --- 166,213 ---- static void print_memory_overhead(); static void verify(); // verifies the code cache static void print_trace(const char* event, CodeBlob* cb, int size = 0) PRODUCT_RETURN; static void print_summary(outputStream* st, bool detailed = true); // Prints a summary of the code cache usage static void log_state(outputStream* st); + static const char* get_code_heap_name(int code_blob_type) { return (heap_available(code_blob_type) ? get_code_heap(code_blob_type)->name() : "Unused"); } + static void report_codemem_full(int code_blob_type, bool print); // The full limits of the codeCache ! static address low_bound() { return (address) _heap->low_boundary(); } ! static address high_bound() { return (address) _heap->high_boundary(); } static address high() { return (address) _heap->high(); } ! static address low_bound() { return _low_bound; } ! static address high_bound() { return _high_bound; } // Profiling ! static address first_address(); // first address used for CodeBlobs ! static address last_address(); // last address used for CodeBlobs ! static size_t capacity() { return _heap->capacity(); } ! static size_t max_capacity() { return _heap->max_capacity(); } ! static size_t unallocated_capacity() { return _heap->unallocated_capacity(); } ! static double reverse_free_ratio(); ! static size_t capacity(int code_blob_type) { return heap_available(code_blob_type) ? get_code_heap(code_blob_type)->capacity() : 0; } ! static size_t capacity(); ! static size_t unallocated_capacity(int code_blob_type) { return heap_available(code_blob_type) ? get_code_heap(code_blob_type)->unallocated_capacity() : 0; } ! static size_t unallocated_capacity(); ! static size_t max_capacity(int code_blob_type) { return heap_available(code_blob_type) ? get_code_heap(code_blob_type)->max_capacity() : 0; } ! static size_t max_capacity(); + + static bool is_full(int* code_blob_type); + static double reverse_free_ratio(int code_blob_type); static bool needs_cache_clean() { return _needs_cache_clean; } static void set_needs_cache_clean(bool v) { _needs_cache_clean = v; } static void clear_inline_caches(); // clear all inline caches + // Returns the CodeBlobType for nmethods of the given compilation level + static int get_code_blob_type(int comp_level) { + if (comp_level == CompLevel_none || + comp_level == CompLevel_simple || + comp_level == CompLevel_full_optimization) { + // Non profiled methods + return CodeBlobType::MethodNonProfiled; + } else if (comp_level == CompLevel_limited_profile || + comp_level == CompLevel_full_profile) { + // Profiled methods + return CodeBlobType::MethodProfiled; + } + ShouldNotReachHere(); + return 0; + } + // Deoptimization static int mark_for_deoptimization(DepChange& changes); #ifdef HOTSWAP static int mark_for_evol_deoptimization(instanceKlassHandle dependee); #endif // HOTSWAP
*** 188,193 **** --- 221,288 ---- static int number_of_nmethods_with_dependencies(); static int get_codemem_full_count() { return _codemem_full_count; } }; + + // Iterator to iterate over nmethods in the CodeCache. + class NMethodIterator : public StackObj { + private: + int _code_blob_type; // Refers to current CodeHeap + CodeBlob* _code_blob; // Current CodeBlob + + public: + NMethodIterator() { + if (SegmentedCodeCache) { + // Only iterate over method code heaps + _code_blob_type = CodeBlobType::MethodNonProfiled; + } else { + // Iterate over all CodeBlobs + _code_blob_type = CodeBlobType::All; + } + // Initialize to NULL, first call to next() sets _code_blob + _code_blob = NULL; + } + + // Advance iterator to next nmethod + bool next() { + assert_locked_or_safepoint(CodeCache_lock); + assert(_code_blob_type < CodeBlobType::NumTypes, "end reached"); + + if (SegmentedCodeCache) { + // Code cache is segmented, iterate over all method heaps + // Get first CodeBlob + if (_code_blob == NULL) { + _code_blob = CodeCache::first_blob(_code_blob_type); + return _code_blob != NULL; + } + // Get next CodeBlob + _code_blob = CodeCache::next_blob(_code_blob, _code_blob_type); + while (_code_blob == NULL && _code_blob_type < CodeBlobType::MethodProfiled) { + // Advance to next CodeBlobType if CodeBlob is NULL + _code_blob_type++; + _code_blob = CodeCache::first_blob(_code_blob_type); + } + } else { + // Code cache is not segmented, search for method code blobs + // Get first method CodeBlob + if (_code_blob == NULL) { + _code_blob = CodeCache::first_blob(_code_blob_type); + if (_code_blob->is_nmethod()) { + return true; + } + } + // Search for next method CodeBlob + _code_blob = CodeCache::next_blob(_code_blob, _code_blob_type); + while (_code_blob != NULL && !_code_blob->is_nmethod()) { + _code_blob = CodeCache::next_blob(_code_blob, _code_blob_type); + } + } + // End reached? + return _code_blob != NULL; + } + + bool end() const { return _code_blob == NULL; } + nmethod* method() const { return (nmethod*)_code_blob; } + }; + #endif // SHARE_VM_CODE_CODECACHE_HPP

src/share/vm/code/codeCache.hpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File