src/share/vm/code/codeCache.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File
*** old/src/share/vm/code/codeCache.cpp	Wed Sep  3 12:15:30 2014
--- new/src/share/vm/code/codeCache.cpp	Wed Sep  3 12:15:30 2014

*** 42,57 **** --- 42,65 ---- #include "runtime/handles.inline.hpp" #include "runtime/arguments.hpp" #include "runtime/icache.hpp" #include "runtime/java.hpp" #include "runtime/mutexLocker.hpp" + #include "runtime/compilationPolicy.hpp" #include "services/memoryService.hpp" #include "trace/tracing.hpp" #include "utilities/xmlstream.hpp" + #ifdef COMPILER1 + #include "c1/c1_Compilation.hpp" + #include "c1/c1_Compiler.hpp" + #endif + #ifdef COMPILER2 + #include "opto/c2compiler.hpp" + #include "opto/compile.hpp" + #endif // Helper class for printing in CodeCache class CodeBlob_sizes { private: int count; int total_size; int header_size;
*** 113,180 **** --- 121,337 ---- code_size += cb->code_size(); } } }; // CodeCache implementation + // Iterate over all CodeHeaps + #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap) + // Iterate over all CodeBlobs (cb) on the given CodeHeap + #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb)) ! CodeHeap * CodeCache::_heap = new CodeHeap(); ! address CodeCache::_low_bound = 0; + address CodeCache::_high_bound = 0; int CodeCache::_number_of_blobs = 0; int CodeCache::_number_of_adapters = 0; int CodeCache::_number_of_nmethods = 0; int CodeCache::_number_of_nmethods_with_dependencies = 0; bool CodeCache::_needs_cache_clean = false; nmethod* CodeCache::_scavenge_root_nmethods = NULL; int CodeCache::_codemem_full_count = 0; CodeBlob* CodeCache::first() { ! assert_locked_or_safepoint(CodeCache_lock); return (CodeBlob*)_heap->first(); } + // Initialize array of CodeHeaps ! GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (3, true); + void CodeCache::initialize_heaps() { + // Determine size of compiler buffers + size_t code_buffers_size = 0; + #ifdef COMPILER1 + // C1 temporary code buffers (see Compiler::init_buffer_blob()) + const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple); + code_buffers_size += c1_count * Compiler::code_buffer_size(); + #endif + #ifdef COMPILER2 + // C2 scratch buffers (see Compile::init_scratch_buffer_blob()) + const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization); + // Initial size of constant table (this may be increased if a compiled method needs more space) + code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size(); + #endif CodeBlob* CodeCache::next(CodeBlob* cb) { assert_locked_or_safepoint(CodeCache_lock); return (CodeBlob*)_heap->next(cb); + // Calculate default CodeHeap sizes if not set by user + if (!FLAG_IS_CMDLINE(NonMethodCodeHeapSize) && !FLAG_IS_CMDLINE(ProfiledCodeHeapSize) + && !FLAG_IS_CMDLINE(NonProfiledCodeHeapSize)) { + // Increase default NonMethodCodeHeapSize to account for compiler buffers + FLAG_SET_ERGO(uintx, NonMethodCodeHeapSize, NonMethodCodeHeapSize + code_buffers_size); + + // Check if we have enough space for the non-method code heap + if (ReservedCodeCacheSize > NonMethodCodeHeapSize) { + // Use the default value for NonMethodCodeHeapSize and one half of the + // remaining size for non-profiled methods and one half for profiled methods + size_t remaining_size = ReservedCodeCacheSize - NonMethodCodeHeapSize; + size_t profiled_size = remaining_size / 2; + size_t non_profiled_size = remaining_size - profiled_size; + FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size); + FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size); + } else { + // Use all space for the non-method heap and set other heaps to minimal size + FLAG_SET_ERGO(uintx, NonMethodCodeHeapSize, ReservedCodeCacheSize - os::vm_page_size() * 2); + FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, os::vm_page_size()); + FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, os::vm_page_size()); + } + } + + // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap + if(!heap_available(CodeBlobType::MethodProfiled)) { + FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, NonProfiledCodeHeapSize + ProfiledCodeHeapSize); + FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0); + } + // We do not need the non-profiled CodeHeap, use all space for the non-method CodeHeap + if(!heap_available(CodeBlobType::MethodNonProfiled)) { + FLAG_SET_ERGO(uintx, NonMethodCodeHeapSize, NonMethodCodeHeapSize + NonProfiledCodeHeapSize); + FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0); + } + + // Make sure we have enough space for VM internal code + uint min_code_cache_size = (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3)) + CodeCacheMinimumFreeSpace; + if (NonMethodCodeHeapSize < (min_code_cache_size + code_buffers_size)) { + vm_exit_during_initialization("Not enough space in non-method code heap to run VM."); + } + guarantee(NonProfiledCodeHeapSize + ProfiledCodeHeapSize + NonMethodCodeHeapSize <= ReservedCodeCacheSize, "Size check"); + + // Align reserved sizes of CodeHeaps + size_t non_method_size = ReservedCodeSpace::allocation_align_size_up(NonMethodCodeHeapSize); + size_t profiled_size = ReservedCodeSpace::allocation_align_size_up(ProfiledCodeHeapSize); + size_t non_profiled_size = ReservedCodeSpace::allocation_align_size_up(NonProfiledCodeHeapSize); + + // Compute initial sizes of CodeHeaps + size_t init_non_method_size = MIN2(InitialCodeCacheSize, non_method_size); + size_t init_profiled_size = MIN2(InitialCodeCacheSize, profiled_size); + size_t init_non_profiled_size = MIN2(InitialCodeCacheSize, non_profiled_size); + + // Reserve one continuous chunk of memory for CodeHeaps and split it into + // parts for the individual heaps. The memory layout looks like this: + // ---------- high ----------- + // Non-profiled nmethods + // Profiled nmethods + // Non-methods + // ---------- low ------------ + ReservedCodeSpace rs = reserve_heap_memory(non_profiled_size + profiled_size + non_method_size); + ReservedSpace non_method_space = rs.first_part(non_method_size); + ReservedSpace rest = rs.last_part(non_method_size); + ReservedSpace profiled_space = rest.first_part(profiled_size); + ReservedSpace non_profiled_space = rest.last_part(profiled_size); + + // Non-methods (stubs, adapters, ...) + add_heap(non_method_space, "non-methods", init_non_method_size, CodeBlobType::NonMethod); + // Tier 2 and tier 3 (profiled) methods + add_heap(profiled_space, "profiled nmethods", init_profiled_size, CodeBlobType::MethodProfiled); + // Tier 1 and tier 4 (non-profiled) methods and native methods + add_heap(non_profiled_space, "non-profiled nmethods", init_non_profiled_size, CodeBlobType::MethodNonProfiled); + } + + ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) { + // Determine alignment + const size_t page_size = os::can_execute_large_page_memory() ? + os::page_size_for_region(InitialCodeCacheSize, size, 8) : + os::vm_page_size(); + const size_t granularity = os::vm_allocation_granularity(); + const size_t r_align = MAX2(page_size, granularity); + const size_t r_size = align_size_up(size, r_align); + const size_t rs_align = page_size == (size_t) os::vm_page_size() ? 0 : + MAX2(page_size, granularity); + + ReservedCodeSpace rs(r_size, rs_align, rs_align > 0); + + // Initialize bounds + _low_bound = (address)rs.base(); + _high_bound = _low_bound + rs.size(); + + return rs; + } + + bool CodeCache::heap_available(int code_blob_type) { + if (!SegmentedCodeCache) { + // No segmentation: Use a single code heap + return (code_blob_type == CodeBlobType::All); + } else if (Arguments::mode() == Arguments::_int) { + // Interpreter only: we don't need any method code heaps + return (code_blob_type == CodeBlobType::NonMethod); + } else if (TieredCompilation || code_blob_type == CodeBlobType::NonMethod) { + // Tiered compilation: use all code heaps + return (code_blob_type < CodeBlobType::All); + } else { + // No TieredCompilation: we only need the non-profiled code heap + return (code_blob_type == CodeBlobType::MethodNonProfiled); + } } + void CodeCache::add_heap(ReservedSpace rs, const char* name, size_t size_initial, int code_blob_type) { + // Check if heap is needed + if (!heap_available(code_blob_type)) { + return; + } CodeBlob* CodeCache::alive(CodeBlob *cb) { ! assert_locked_or_safepoint(CodeCache_lock); ! while (cb != NULL && !cb->is_alive()) cb = next(cb); return cb; + // Create CodeHeap ! CodeHeap* heap = new CodeHeap(name, code_blob_type); ! _heaps->append(heap); + + // Reserve Space + size_initial = round_to(size_initial, os::vm_page_size()); + + if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) { + vm_exit_during_initialization("Could not reserve enough space for code cache"); + } + + // Register the CodeHeap + MemoryService::add_code_heap_memory_pool(heap, name); } + CodeHeap* CodeCache::get_code_heap(CodeBlob* cb) { + assert(cb != NULL, "CodeBlob is null"); + FOR_ALL_HEAPS(heap) { + if ((*heap)->contains(cb)) { + return *heap; + } + } + ShouldNotReachHere(); + return NULL; + } ! nmethod* CodeCache::alive_nmethod(CodeBlob* cb) { assert_locked_or_safepoint(CodeCache_lock); while (cb != NULL && (!cb->is_alive() || !cb->is_nmethod())) cb = next(cb); ! return (nmethod*)cb; ! CodeHeap* CodeCache::get_code_heap(int code_blob_type) { + FOR_ALL_HEAPS(heap) { + if ((*heap)->accepts(code_blob_type)) { ! return *heap; + } + } + return NULL; } ! nmethod* CodeCache::first_nmethod() { ! CodeBlob* CodeCache::first_blob(CodeHeap* heap) { assert_locked_or_safepoint(CodeCache_lock); ! CodeBlob* cb = first(); while (cb != NULL && !cb->is_nmethod()) { cb = next(cb); ! assert(heap != NULL, "heap is null"); + return (CodeBlob*)heap->first(); + } + + CodeBlob* CodeCache::first_blob(int code_blob_type) { + if (heap_available(code_blob_type)) { + return first_blob(get_code_heap(code_blob_type)); + } else { + return NULL; } return (nmethod*)cb; } ! nmethod* CodeCache::next_nmethod (CodeBlob* cb) { ! CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) { assert_locked_or_safepoint(CodeCache_lock); ! cb = next(cb); while (cb != NULL && !cb->is_nmethod()) { cb = next(cb); } return (nmethod*)cb; ! assert(heap != NULL, "heap is null"); + return (CodeBlob*)heap->next(cb); } static size_t maxCodeCacheUsed = 0; + CodeBlob* CodeCache::next_blob(CodeBlob* cb) { + return next_blob(get_code_heap(cb), cb); + } ! CodeBlob* CodeCache::allocate(int size, int code_blob_type, bool is_critical) { // Do not seize the CodeCache lock here--if the caller has not // already done so, we are going to lose bigtime, since the code // cache will contain a garbage CodeBlob until the caller can // run the constructor for the CodeBlob subclass he is busy // instantiating.
*** 182,207 **** --- 339,376 ---- assert(size > 0, "allocation request must be reasonable"); if (size <= 0) { return NULL; } CodeBlob* cb = NULL; + + // Get CodeHeap for the given CodeBlobType + CodeHeap* heap = get_code_heap(SegmentedCodeCache ? code_blob_type : CodeBlobType::All); + assert (heap != NULL, "heap is null"); + while (true) { - cb = (CodeBlob*)_heap->allocate(size, is_critical); if (cb != NULL) break; - if (!_heap->expand_by(CodeCacheExpansionSize)) { // Expansion failed + if (SegmentedCodeCache && (code_blob_type == CodeBlobType::NonMethod)) { + // Fallback solution: Store non-method code in the non-profiled code heap + return allocate(size, CodeBlobType::MethodNonProfiled, is_critical); + } return NULL; } if (PrintCodeCacheExtension) { ResourceMark rm; tty->print_cr("code cache extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)", (intptr_t)_heap->low_boundary(), (intptr_t)_heap->high(), (address)_heap->high() - (address)_heap->low_boundary()); + if (SegmentedCodeCache) { + tty->print("Code heap '%s'", heap->name()); + } else { + tty->print("Code cache"); + } + tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)", + (intptr_t)heap->low_boundary(), (intptr_t)heap->high(), + (address)heap->high() - (address)heap->low_boundary()); } } maxCodeCacheUsed = MAX2(maxCodeCacheUsed, ((address)_heap->high_boundary() - (address)_heap->low_boundary()) - unallocated_capacity()); print_trace("allocation", cb, size); _number_of_blobs++; return cb; }
*** 218,233 **** --- 387,402 ---- if (cb->is_adapter_blob()) { _number_of_adapters--; } _number_of_blobs--; _heap->deallocate(cb); + // Get heap for given CodeBlob and deallocate + get_code_heap(cb)->deallocate(cb); assert(_number_of_blobs >= 0, "sanity check"); } void CodeCache::commit(CodeBlob* cb) { // this is called by nmethod::nmethod, which must already own CodeCache_lock assert_locked_or_safepoint(CodeCache_lock); if (cb->is_nmethod()) { _number_of_nmethods++;
*** 241,333 **** --- 410,516 ---- // flush the hardware I-cache ICache::invalidate_range(cb->content_begin(), cb->content_size()); } // Iteration over CodeBlobs #define FOR_ALL_BLOBS(var) for (CodeBlob *var = first() ; var != NULL; var = next(var) ) #define FOR_ALL_ALIVE_BLOBS(var) for (CodeBlob *var = alive(first()); var != NULL; var = alive(next(var))) #define FOR_ALL_ALIVE_NMETHODS(var) for (nmethod *var = alive_nmethod(first()); var != NULL; var = alive_nmethod(next(var))) bool CodeCache::contains(void *p) { // It should be ok to call contains without holding a lock return _heap->contains(p); + FOR_ALL_HEAPS(heap) { + if ((*heap)->contains(p)) { + return true; + } + } + return false; } // This method is safe to call without holding the CodeCache_lock, as long as a dead codeblob is not // looked up (i.e., one that has been marked for deletion). It only dependes on the _segmap to contain + // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not + // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled. CodeBlob* CodeCache::find_blob(void* start) { CodeBlob* result = find_blob_unsafe(start); if (result == NULL) return NULL; // We could potentially look up non_entrant methods ! guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || is_error_reported(), "unsafe access to zombie method"); return result; } + // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know + // what you are doing) + CodeBlob* CodeCache::find_blob_unsafe(void* start) { + // NMT can walk the stack before code cache is created + if (_heaps == NULL || _heaps->is_empty()) return NULL; + + FOR_ALL_HEAPS(heap) { + CodeBlob* result = (CodeBlob*) (*heap)->find_start(start); + if (result != NULL && result->blob_contains((address)start)) { + return result; + } + } + return NULL; + } + nmethod* CodeCache::find_nmethod(void* start) { ! CodeBlob *cb = find_blob(start); - assert(cb == NULL || cb->is_nmethod(), "did not find an nmethod"); ! CodeBlob* cb = find_blob(start); ! assert(cb->is_nmethod(), "did not find an nmethod"); return (nmethod*)cb; } void CodeCache::blobs_do(void f(CodeBlob* nm)) { assert_locked_or_safepoint(CodeCache_lock); ! FOR_ALL_BLOBS(p) { f(p); ! FOR_ALL_HEAPS(heap) { + FOR_ALL_BLOBS(cb, *heap) { + f(cb); + } } } void CodeCache::nmethods_do(void f(nmethod* nm)) { assert_locked_or_safepoint(CodeCache_lock); FOR_ALL_BLOBS(nm) { if (nm->is_nmethod()) f((nmethod*)nm); + NMethodIterator iter; + while(iter.next()) { + f(iter.method()); } } void CodeCache::alive_nmethods_do(void f(nmethod* nm)) { assert_locked_or_safepoint(CodeCache_lock); FOR_ALL_ALIVE_NMETHODS(nm) { f(nm); + NMethodIterator iter; + while(iter.next_alive()) { + f(iter.method()); } } int CodeCache::alignment_unit() { ! return (int)_heaps->first()->alignment_unit(); } int CodeCache::alignment_offset() { ! return (int)_heaps->first()->alignment_offset(); } // Mark nmethods for unloading if they contain otherwise unreachable // oops. + // Mark nmethods for unloading if they contain otherwise unreachable oops. void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) { assert_locked_or_safepoint(CodeCache_lock); FOR_ALL_ALIVE_NMETHODS(nm) { nm->do_unloading(is_alive, unloading_occurred); + NMethodIterator iter; + while(iter.next_alive()) { + iter.method()->do_unloading(is_alive, unloading_occurred); } } void CodeCache::blobs_do(CodeBlobClosure* f) { assert_locked_or_safepoint(CodeCache_lock); ! FOR_ALL_ALIVE_BLOBS(cb) { ! FOR_ALL_HEAPS(heap) { + FOR_ALL_BLOBS(cb, *heap) { + if (cb->is_alive()) { f->do_code_blob(cb); #ifdef ASSERT if (cb->is_nmethod()) ((nmethod*)cb)->verify_scavenge_root_oops(); #endif //ASSERT } + } + } } // Walk the list of methods which might contain non-perm oops. void CodeCache::scavenge_root_nmethods_do(CodeBlobClosure* f) { assert_locked_or_safepoint(CodeCache_lock);
*** 450,511 **** --- 633,691 ---- verify_perm_nmethods(f); } // Temporarily mark nmethods that are claimed to be on the non-perm list. void CodeCache::mark_scavenge_root_nmethods() { FOR_ALL_ALIVE_BLOBS(cb) { ! if (cb->is_nmethod()) { ! nmethod *nm = (nmethod*)cb; + NMethodIterator iter; ! while(iter.next_alive()) { ! nmethod* nm = iter.method(); assert(nm->scavenge_root_not_marked(), "clean state"); if (nm->on_scavenge_root_list()) nm->set_scavenge_root_marked(); } } } // If the closure is given, run it on the unlisted nmethods. // Also make sure that the effects of mark_scavenge_root_nmethods is gone. void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) { FOR_ALL_ALIVE_BLOBS(cb) { + NMethodIterator iter; + while(iter.next_alive()) { + nmethod* nm = iter.method(); bool call_f = (f_or_null != NULL); if (cb->is_nmethod()) { nmethod *nm = (nmethod*)cb; assert(nm->scavenge_root_not_marked(), "must be already processed"); if (nm->on_scavenge_root_list()) call_f = false; // don't show this one to the client nm->verify_scavenge_root_oops(); } else { call_f = false; // not an nmethod } if (call_f) f_or_null->do_code_blob(cb); + if (call_f) f_or_null->do_code_blob(nm); } } #endif //PRODUCT void CodeCache::verify_clean_inline_caches() { #ifdef ASSERT FOR_ALL_ALIVE_BLOBS(cb) { ! if (cb->is_nmethod()) { ! nmethod* nm = (nmethod*)cb; + NMethodIterator iter; ! while(iter.next_alive()) { ! nmethod* nm = iter.method(); assert(!nm->is_unloaded(), "Tautology"); nm->verify_clean_inline_caches(); nm->verify(); } } #endif } void CodeCache::verify_icholder_relocations() { #ifdef ASSERT // make sure that we aren't leaking icholders int count = 0; ! FOR_ALL_BLOBS(cb) { ! FOR_ALL_HEAPS(heap) { + FOR_ALL_BLOBS(cb, *heap) { if (cb->is_nmethod()) { nmethod* nm = (nmethod*)cb; count += nm->verify_icholder_relocations(); } } + } assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() == CompiledICHolder::live_count(), "must agree"); #endif }
*** 513,573 **** --- 693,804 ---- void CodeCache::gc_prologue() { } void CodeCache::gc_epilogue() { assert_locked_or_safepoint(CodeCache_lock); FOR_ALL_ALIVE_BLOBS(cb) { ! if (cb->is_nmethod()) { ! nmethod *nm = (nmethod*)cb; + NMethodIterator iter; ! while(iter.next_alive()) { ! nmethod* nm = iter.method(); assert(!nm->is_unloaded(), "Tautology"); if (needs_cache_clean()) { nm->cleanup_inline_caches(); } DEBUG_ONLY(nm->verify()); DEBUG_ONLY(nm->verify_oop_relocations()); } } set_needs_cache_clean(false); prune_scavenge_root_nmethods(); verify_icholder_relocations(); } void CodeCache::verify_oops() { MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); VerifyOopClosure voc; FOR_ALL_ALIVE_BLOBS(cb) { ! if (cb->is_nmethod()) { ! nmethod *nm = (nmethod*)cb; + NMethodIterator iter; ! while(iter.next_alive()) { ! nmethod* nm = iter.method(); nm->oops_do(&voc); nm->verify_oop_relocations(); } } } + size_t CodeCache::capacity() { + size_t cap = 0; + FOR_ALL_HEAPS(heap) { + cap += (*heap)->capacity(); + } + return cap; + } ! address CodeCache::first_address() { ! assert_locked_or_safepoint(CodeCache_lock); return (address)_heap->low_boundary(); ! size_t CodeCache::unallocated_capacity() { ! size_t unallocated_cap = 0; + FOR_ALL_HEAPS(heap) { + unallocated_cap += (*heap)->unallocated_capacity(); + } + return unallocated_cap; } + size_t CodeCache::max_capacity() { + size_t max_cap = 0; + FOR_ALL_HEAPS(heap) { + max_cap += (*heap)->max_capacity(); + } + return max_cap; + } address CodeCache::last_address() { assert_locked_or_safepoint(CodeCache_lock); return (address)_heap->high(); + /** + * Returns true if a CodeHeap is full and sets code_blob_type accordingly. + */ + bool CodeCache::is_full(int* code_blob_type) { + FOR_ALL_HEAPS(heap) { + if ((*heap)->unallocated_capacity() < CodeCacheMinimumFreeSpace) { + *code_blob_type = (*heap)->code_blob_type(); + return true; + } + } + return false; } /** ! * Returns the reverse free ratio. E.g., if 25% (1/4) of the code cache ! * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap * is free, reverse_free_ratio() returns 4. */ ! double CodeCache::reverse_free_ratio(int code_blob_type) { ! double unallocated_capacity = (double)(CodeCache::unallocated_capacity() - CodeCacheMinimumFreeSpace); double max_capacity = (double)CodeCache::max_capacity(); ! CodeHeap* heap = get_code_heap(code_blob_type); + if (heap == NULL) { + return 0; + } + double unallocated_capacity = (double)(heap->unallocated_capacity() - CodeCacheMinimumFreeSpace); + double max_capacity = (double)heap->max_capacity(); return max_capacity / unallocated_capacity; } + size_t CodeCache::bytes_allocated_in_freelists() { + size_t allocated_bytes = 0; + FOR_ALL_HEAPS(heap) { + allocated_bytes += (*heap)->allocated_in_freelist(); + } + return allocated_bytes; + } + + int CodeCache::allocated_segments() { + int number_of_segments = 0; + FOR_ALL_HEAPS(heap) { + number_of_segments += (*heap)->allocated_segments(); + } + return number_of_segments; + } + + size_t CodeCache::freelists_length() { + size_t length = 0; + FOR_ALL_HEAPS(heap) { + length += (*heap)->freelist_length(); + } + return length; + } + void icache_init(); void CodeCache::initialize() { assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points"); #ifdef COMPILER2
*** 576,604 **** --- 807,836 ---- assert(CodeCacheSegmentSize >= sizeof(jdouble), "CodeCacheSegmentSize must be large enough to align constants"); // This was originally just a check of the alignment, causing failure, instead, round // the code cache to the page size. In particular, Solaris is moving to a larger // default page size. CodeCacheExpansionSize = round_to(CodeCacheExpansionSize, os::vm_page_size()); InitialCodeCacheSize = round_to(InitialCodeCacheSize, os::vm_page_size()); ReservedCodeCacheSize = round_to(ReservedCodeCacheSize, os::vm_page_size()); if (!_heap->reserve(ReservedCodeCacheSize, InitialCodeCacheSize, CodeCacheSegmentSize)) { vm_exit_during_initialization("Could not reserve enough space for code cache"); } MemoryService::add_code_heap_memory_pool(_heap); + if (SegmentedCodeCache) { + // Use multiple code heaps + initialize_heaps(); + } else { + // Use a single code heap + ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize); + add_heap(rs, "Code heap", InitialCodeCacheSize, CodeBlobType::All); + } // Initialize ICache flush mechanism // This service is needed for os::register_code_area icache_init(); // Give OS a chance to register generated code area. // This is used on Windows 64 bit platforms to register // Structured Exception Handlers for our generated code. ! os::register_code_area(_heap->low_boundary(), _heap->high_boundary()); ! os::register_code_area((char*)low_bound(), (char*)high_bound()); } void codeCache_init() { CodeCache::initialize(); } //------------------------------------------------------------------------------------------------
*** 607,618 **** --- 839,851 ---- return _number_of_nmethods_with_dependencies; } void CodeCache::clear_inline_caches() { assert_locked_or_safepoint(CodeCache_lock); FOR_ALL_ALIVE_NMETHODS(nm) { nm->clear_inline_caches(); + NMethodIterator iter; + while(iter.next_alive()) { + iter.method()->clear_inline_caches(); } } // Keeps track of time spent for checking dependencies NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
*** 663,673 **** --- 896,908 ---- nm->mark_for_deoptimization(); number_of_marked_CodeBlobs++; } } FOR_ALL_ALIVE_NMETHODS(nm) { + NMethodIterator iter; + while(iter.next_alive()) { + nmethod* nm = iter.method(); if (nm->is_marked_for_deoptimization()) { // ...Already marked in the previous pass; don't count it again. } else if (nm->is_evol_dependent_on(dependee())) { ResourceMark rm; nm->mark_for_deoptimization();
*** 684,704 **** --- 919,941 ---- // Deoptimize all methods void CodeCache::mark_all_nmethods_for_deoptimization() { MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); FOR_ALL_ALIVE_NMETHODS(nm) { nm->mark_for_deoptimization(); + NMethodIterator iter; + while(iter.next_alive()) { + iter.method()->mark_for_deoptimization(); } } int CodeCache::mark_for_deoptimization(Method* dependee) { MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); int number_of_marked_CodeBlobs = 0; FOR_ALL_ALIVE_NMETHODS(nm) { + NMethodIterator iter; + while(iter.next_alive()) { + nmethod* nm = iter.method(); if (nm->is_dependent_on_method(dependee)) { ResourceMark rm; nm->mark_for_deoptimization(); number_of_marked_CodeBlobs++; }
*** 707,717 **** --- 944,956 ---- return number_of_marked_CodeBlobs; } void CodeCache::make_marked_nmethods_zombies() { assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); FOR_ALL_ALIVE_NMETHODS(nm) { + NMethodIterator iter; + while(iter.next_alive()) { + nmethod* nm = iter.method(); if (nm->is_marked_for_deoptimization()) { // If the nmethod has already been made non-entrant and it can be converted // then zombie it now. Otherwise make it non-entrant and it will eventually // be zombied when it is no longer seen on the stack. Note that the nmethod
*** 728,778 **** --- 967,1053 ---- } } void CodeCache::make_marked_nmethods_not_entrant() { assert_locked_or_safepoint(CodeCache_lock); FOR_ALL_ALIVE_NMETHODS(nm) { + NMethodIterator iter; + while(iter.next_alive()) { + nmethod* nm = iter.method(); if (nm->is_marked_for_deoptimization()) { nm->make_not_entrant(); } } } void CodeCache::verify() { ! _heap->verify(); ! FOR_ALL_ALIVE_BLOBS(p) { ! p->verify(); ! assert_locked_or_safepoint(CodeCache_lock); ! FOR_ALL_HEAPS(heap) { ! (*heap)->verify(); + FOR_ALL_BLOBS(cb, *heap) { + if (cb->is_alive()) { + cb->verify(); + } + } } } void CodeCache::report_codemem_full() { + // A CodeHeap is full. Print out warning and report event. + void CodeCache::report_codemem_full(int code_blob_type, bool print) { + // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event + CodeHeap* heap = get_code_heap(SegmentedCodeCache ? code_blob_type : CodeBlobType::All); + + if (!heap->was_full() || print) { + // Not yet reported for this heap, report + heap->report_full(); + if (SegmentedCodeCache) { + warning("CodeHeap for %s is full. Compiler has been disabled.", CodeCache::get_code_heap_name(code_blob_type)); + warning("Try increasing the code heap size using -XX:%s=", + (code_blob_type == CodeBlobType::MethodNonProfiled) ? "NonProfiledCodeHeapSize" : "ProfiledCodeHeapSize"); + } else { + warning("CodeCache is full. Compiler has been disabled."); + warning("Try increasing the code cache size using -XX:ReservedCodeCacheSize="); + } + ResourceMark rm; + stringStream s; + // Dump code cache into a buffer before locking the tty, + { + MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); + print_summary(&s); + } + ttyLocker ttyl; + tty->print("%s", s.as_string()); + } + _codemem_full_count++; EventCodeCacheFull event; if (event.should_commit()) { ! event.set_startAddress((u8)low_bound()); ! event.set_commitedTopAddress((u8)high()); ! event.set_reservedTopAddress((u8)high_bound()); ! event.set_codeBlobType((u1)code_blob_type); ! event.set_startAddress((u8)heap->low_boundary()); ! event.set_commitedTopAddress((u8)heap->high()); + event.set_reservedTopAddress((u8)heap->high_boundary()); event.set_entryCount(nof_blobs()); event.set_methodCount(nof_nmethods()); event.set_adaptorCount(nof_adapters()); ! event.set_unallocatedCapacity(heap->unallocated_capacity()/K); event.set_fullCount(_codemem_full_count); event.commit(); } } void CodeCache::print_memory_overhead() { size_t wasted_bytes = 0; CodeBlob *cb; for (cb = first(); cb != NULL; cb = next(cb)) { + FOR_ALL_HEAPS(heap) { + CodeHeap* curr_heap = *heap; + for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) { HeapBlock* heap_block = ((HeapBlock*)cb) - 1; wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size(); } + } // Print bytes that are allocated in the freelist ttyLocker ttl; ! tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT, freelist_length()); ! tty->print_cr("Allocated in freelist: " SSIZE_FORMAT "kB", bytes_allocated_in_freelist()/K); ! tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT, freelists_length()); ! tty->print_cr("Allocated in freelist: " SSIZE_FORMAT "kB", bytes_allocated_in_freelists()/K); tty->print_cr("Unused bytes in CodeBlobs: " SSIZE_FORMAT "kB", (wasted_bytes/K)); tty->print_cr("Segment map size: " SSIZE_FORMAT "kB", allocated_segments()/K); // 1 byte per segment } //------------------------------------------------------------------------------------------------
*** 803,814 **** --- 1078,1093 ---- int nmethodJava = 0; int nmethodNative = 0; int max_nm_size = 0; ResourceMark rm; ! CodeBlob *cb; ! for (cb = first(); cb != NULL; cb = next(cb)) { ! int i = 0; ! FOR_ALL_HEAPS(heap) { + if (SegmentedCodeCache && Verbose) { + tty->print_cr("-- Code heap '%s' --", (*heap)->name()); + } + FOR_ALL_BLOBS(cb, *heap) { total++; if (cb->is_nmethod()) { nmethod* nm = (nmethod*)cb; if (Verbose && nm->method() != NULL) {
*** 842,865 **** --- 1121,1144 ---- adapterCount++; } else if (cb->is_buffer_blob()) { bufferBlobCount++; } } + } int bucketSize = 512; int bucketLimit = max_nm_size / bucketSize + 1; int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode); memset(buckets, 0, sizeof(int) * bucketLimit); for (cb = first(); cb != NULL; cb = next(cb)) { ! if (cb->is_nmethod()) { ! nmethod* nm = (nmethod*)cb; ! if(nm->is_java_method()) { + NMethodIterator iter; ! while(iter.next()) { ! nmethod* nm = iter.method(); ! if(nm->method() != NULL && nm->is_java_method()) { buckets[nm->size() / bucketSize]++; } } } tty->print_cr("Code Cache Entries (total of %d)",total); tty->print_cr("-------------------------------------------------"); tty->print_cr("nmethods: %d",nmethodCount); tty->print_cr("\talive: %d",nmethodAlive);
*** 897,911 **** --- 1176,1192 ---- if (!Verbose) return; CodeBlob_sizes live; CodeBlob_sizes dead; ! FOR_ALL_BLOBS(p) { ! if (!p->is_alive()) { dead.add(p); ! FOR_ALL_HEAPS(heap) { ! FOR_ALL_BLOBS(cb, *heap) { + if (!cb->is_alive()) { + dead.add(cb); } else { ! live.add(p); ! live.add(cb); + } } } tty->print_cr("CodeCache:"); tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
*** 915,942 **** --- 1196,1224 ---- } if (!dead.is_empty()) { dead.print("dead"); } if (WizardMode) { // print the oop_map usage int code_size = 0; int number_of_blobs = 0; int number_of_oop_maps = 0; int map_size = 0; ! FOR_ALL_BLOBS(p) { ! if (p->is_alive()) { ! FOR_ALL_HEAPS(heap) { ! FOR_ALL_BLOBS(cb, *heap) { + if (cb->is_alive()) { number_of_blobs++; ! code_size += p->code_size(); ! OopMapSet* set = p->oop_maps(); ! code_size += cb->code_size(); ! OopMapSet* set = cb->oop_maps(); if (set != NULL) { number_of_oop_maps += set->size(); map_size += set->heap_size(); } } } + } tty->print_cr("OopMaps"); tty->print_cr(" #blobs = %d", number_of_blobs); tty->print_cr(" code size = %d", code_size); tty->print_cr(" #oop_maps = %d", number_of_oop_maps); tty->print_cr(" map size = %d", map_size);
*** 944,964 **** --- 1226,1257 ---- #endif // !PRODUCT } void CodeCache::print_summary(outputStream* st, bool detailed) { size_t total = (_heap->high_boundary() - _heap->low_boundary()); st->print_cr("CodeCache: size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT + FOR_ALL_HEAPS(heap_iterator) { + CodeHeap* heap = (*heap_iterator); + size_t total = (heap->high_boundary() - heap->low_boundary()); + if (SegmentedCodeCache) { + st->print("CodeHeap '%s':", heap->name()); + } else { + st->print("CodeCache:"); + } + st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb", ! total/K, (total - heap->unallocated_capacity())/K, ! maxCodeCacheUsed/K, unallocated_capacity()/K); ! heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K); if (detailed) { st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]", ! p2i(_heap->low_boundary()), ! p2i(_heap->high()), ! p2i(_heap->high_boundary())); ! p2i(heap->low_boundary()), ! p2i(heap->high()), ! p2i(heap->high_boundary())); + } + } + + if (detailed) { st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT " adapters=" UINT32_FORMAT, nof_blobs(), nof_nmethods(), nof_adapters()); st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ? "enabled" : Arguments::mode() == Arguments::_int ?
*** 971,976 **** --- 1264,1268 ---- st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'" " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'", nof_blobs(), nof_nmethods(), nof_adapters(), unallocated_capacity()); }

src/share/vm/code/codeCache.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File