1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/interp_masm.hpp"
  29 #include "interpreter/templateTable.hpp"
  30 #include "memory/universe.inline.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "runtime/synchronizer.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifndef CC_INTERP
  41 #define __ _masm->
  42 
  43 // Misc helpers
  44 
  45 // Do an oop store like *(base + index + offset) = val
  46 // index can be noreg,
  47 static void do_oop_store(InterpreterMacroAssembler* _masm,
  48                          Register base,
  49                          Register index,
  50                          int offset,
  51                          Register val,
  52                          Register tmp,
  53                          BarrierSet::Name barrier,
  54                          bool precise) {
  55   assert(tmp != val && tmp != base && tmp != index, "register collision");
  56   assert(index == noreg || offset == 0, "only one offset");
  57   switch (barrier) {
  58 #if INCLUDE_ALL_GCS
  59     case BarrierSet::G1SATBCT:
  60     case BarrierSet::G1SATBCTLogging:
  61       {
  62         // Load and record the previous value.
  63         __ g1_write_barrier_pre(base, index, offset,
  64                                 noreg /* pre_val */,
  65                                 tmp, true /*preserve_o_regs*/);
  66 
  67         // G1 barrier needs uncompressed oop for region cross check.
  68         Register new_val = val;
  69         if (UseCompressedOops && val != G0) {
  70           new_val = tmp;
  71           __ mov(val, new_val);
  72         }
  73 
  74         if (index == noreg ) {
  75           assert(Assembler::is_simm13(offset), "fix this code");
  76           __ store_heap_oop(val, base, offset);
  77         } else {
  78           __ store_heap_oop(val, base, index);
  79         }
  80 
  81         // No need for post barrier if storing NULL
  82         if (val != G0) {
  83           if (precise) {
  84             if (index == noreg) {
  85               __ add(base, offset, base);
  86             } else {
  87               __ add(base, index, base);
  88             }
  89           }
  90           __ g1_write_barrier_post(base, new_val, tmp);
  91         }
  92       }
  93       break;
  94 #endif // INCLUDE_ALL_GCS
  95     case BarrierSet::CardTableModRef:
  96     case BarrierSet::CardTableExtension:
  97       {
  98         if (index == noreg ) {
  99           assert(Assembler::is_simm13(offset), "fix this code");
 100           __ store_heap_oop(val, base, offset);
 101         } else {
 102           __ store_heap_oop(val, base, index);
 103         }
 104         // No need for post barrier if storing NULL
 105         if (val != G0) {
 106           if (precise) {
 107             if (index == noreg) {
 108               __ add(base, offset, base);
 109             } else {
 110               __ add(base, index, base);
 111             }
 112           }
 113           __ card_write_barrier_post(base, val, tmp);
 114         }
 115       }
 116       break;
 117     case BarrierSet::ModRef:
 118     case BarrierSet::Other:
 119       ShouldNotReachHere();
 120       break;
 121     default      :
 122       ShouldNotReachHere();
 123 
 124   }
 125 }
 126 
 127 
 128 //----------------------------------------------------------------------------------------------------
 129 // Platform-dependent initialization
 130 
 131 void TemplateTable::pd_initialize() {
 132   // (none)
 133 }
 134 
 135 
 136 //----------------------------------------------------------------------------------------------------
 137 // Condition conversion
 138 Assembler::Condition ccNot(TemplateTable::Condition cc) {
 139   switch (cc) {
 140     case TemplateTable::equal        : return Assembler::notEqual;
 141     case TemplateTable::not_equal    : return Assembler::equal;
 142     case TemplateTable::less         : return Assembler::greaterEqual;
 143     case TemplateTable::less_equal   : return Assembler::greater;
 144     case TemplateTable::greater      : return Assembler::lessEqual;
 145     case TemplateTable::greater_equal: return Assembler::less;
 146   }
 147   ShouldNotReachHere();
 148   return Assembler::zero;
 149 }
 150 
 151 //----------------------------------------------------------------------------------------------------
 152 // Miscelaneous helper routines
 153 
 154 
 155 Address TemplateTable::at_bcp(int offset) {
 156   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 157   return Address(Lbcp, offset);
 158 }
 159 
 160 
 161 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 162                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 163                                    int byte_no) {
 164   // With sharing on, may need to test Method* flag.
 165   if (!RewriteBytecodes)  return;
 166   Label L_patch_done;
 167 
 168   switch (bc) {
 169   case Bytecodes::_fast_aputfield:
 170   case Bytecodes::_fast_bputfield:
 171   case Bytecodes::_fast_cputfield:
 172   case Bytecodes::_fast_dputfield:
 173   case Bytecodes::_fast_fputfield:
 174   case Bytecodes::_fast_iputfield:
 175   case Bytecodes::_fast_lputfield:
 176   case Bytecodes::_fast_sputfield:
 177     {
 178       // We skip bytecode quickening for putfield instructions when
 179       // the put_code written to the constant pool cache is zero.
 180       // This is required so that every execution of this instruction
 181       // calls out to InterpreterRuntime::resolve_get_put to do
 182       // additional, required work.
 183       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 184       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 185       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
 186       __ set(bc, bc_reg);
 187       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
 188     }
 189     break;
 190   default:
 191     assert(byte_no == -1, "sanity");
 192     if (load_bc_into_bc_reg) {
 193       __ set(bc, bc_reg);
 194     }
 195   }
 196 
 197   if (JvmtiExport::can_post_breakpoint()) {
 198     Label L_fast_patch;
 199     __ ldub(at_bcp(0), temp_reg);
 200     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
 201     // perform the quickening, slowly, in the bowels of the breakpoint table
 202     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
 203     __ ba_short(L_patch_done);
 204     __ bind(L_fast_patch);
 205   }
 206 
 207 #ifdef ASSERT
 208   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
 209   Label L_okay;
 210   __ ldub(at_bcp(0), temp_reg);
 211   __ cmp(temp_reg, orig_bytecode);
 212   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 213   __ delayed()->cmp(temp_reg, bc_reg);
 214   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 215   __ delayed()->nop();
 216   __ stop("patching the wrong bytecode");
 217   __ bind(L_okay);
 218 #endif
 219 
 220   // patch bytecode
 221   __ stb(bc_reg, at_bcp(0));
 222   __ bind(L_patch_done);
 223 }
 224 
 225 //----------------------------------------------------------------------------------------------------
 226 // Individual instructions
 227 
 228 void TemplateTable::nop() {
 229   transition(vtos, vtos);
 230   // nothing to do
 231 }
 232 
 233 void TemplateTable::shouldnotreachhere() {
 234   transition(vtos, vtos);
 235   __ stop("shouldnotreachhere bytecode");
 236 }
 237 
 238 void TemplateTable::aconst_null() {
 239   transition(vtos, atos);
 240   __ clr(Otos_i);
 241 }
 242 
 243 
 244 void TemplateTable::iconst(int value) {
 245   transition(vtos, itos);
 246   __ set(value, Otos_i);
 247 }
 248 
 249 
 250 void TemplateTable::lconst(int value) {
 251   transition(vtos, ltos);
 252   assert(value >= 0, "check this code");
 253 #ifdef _LP64
 254   __ set(value, Otos_l);
 255 #else
 256   __ set(value, Otos_l2);
 257   __ clr( Otos_l1);
 258 #endif
 259 }
 260 
 261 
 262 void TemplateTable::fconst(int value) {
 263   transition(vtos, ftos);
 264   static float zero = 0.0, one = 1.0, two = 2.0;
 265   float* p;
 266   switch( value ) {
 267    default: ShouldNotReachHere();
 268    case 0:  p = &zero;  break;
 269    case 1:  p = &one;   break;
 270    case 2:  p = &two;   break;
 271   }
 272   AddressLiteral a(p);
 273   __ sethi(a, G3_scratch);
 274   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
 275 }
 276 
 277 
 278 void TemplateTable::dconst(int value) {
 279   transition(vtos, dtos);
 280   static double zero = 0.0, one = 1.0;
 281   double* p;
 282   switch( value ) {
 283    default: ShouldNotReachHere();
 284    case 0:  p = &zero;  break;
 285    case 1:  p = &one;   break;
 286   }
 287   AddressLiteral a(p);
 288   __ sethi(a, G3_scratch);
 289   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
 290 }
 291 
 292 
 293 // %%%%% Should factore most snippet templates across platforms
 294 
 295 void TemplateTable::bipush() {
 296   transition(vtos, itos);
 297   __ ldsb( at_bcp(1), Otos_i );
 298 }
 299 
 300 void TemplateTable::sipush() {
 301   transition(vtos, itos);
 302   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
 303 }
 304 
 305 void TemplateTable::ldc(bool wide) {
 306   transition(vtos, vtos);
 307   Label call_ldc, notInt, isString, notString, notClass, exit;
 308 
 309   if (wide) {
 310     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 311   } else {
 312     __ ldub(Lbcp, 1, O1);
 313   }
 314   __ get_cpool_and_tags(O0, O2);
 315 
 316   const int base_offset = ConstantPool::header_size() * wordSize;
 317   const int tags_offset = Array<u1>::base_offset_in_bytes();
 318 
 319   // get type from tags
 320   __ add(O2, tags_offset, O2);
 321   __ ldub(O2, O1, O2);
 322 
 323   // unresolved class? If so, must resolve
 324   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
 325 
 326   // unresolved class in error state
 327   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
 328 
 329   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
 330   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
 331   __ delayed()->add(O0, base_offset, O0);
 332 
 333   __ bind(call_ldc);
 334   __ set(wide, O1);
 335   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
 336   __ push(atos);
 337   __ ba_short(exit);
 338 
 339   __ bind(notClass);
 340  // __ add(O0, base_offset, O0);
 341   __ sll(O1, LogBytesPerWord, O1);
 342   __ cmp(O2, JVM_CONSTANT_Integer);
 343   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
 344   __ delayed()->cmp(O2, JVM_CONSTANT_String);
 345   __ ld(O0, O1, Otos_i);
 346   __ push(itos);
 347   __ ba_short(exit);
 348 
 349   __ bind(notInt);
 350  // __ cmp(O2, JVM_CONSTANT_String);
 351   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
 352   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 353   __ bind(isString);
 354   __ stop("string should be rewritten to fast_aldc");
 355   __ ba_short(exit);
 356 
 357   __ bind(notString);
 358  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 359   __ push(ftos);
 360 
 361   __ bind(exit);
 362 }
 363 
 364 // Fast path for caching oop constants.
 365 // %%% We should use this to handle Class and String constants also.
 366 // %%% It will simplify the ldc/primitive path considerably.
 367 void TemplateTable::fast_aldc(bool wide) {
 368   transition(vtos, atos);
 369 
 370   int index_size = wide ? sizeof(u2) : sizeof(u1);
 371   Label resolved;
 372 
 373   // We are resolved if the resolved reference cache entry contains a
 374   // non-null object (CallSite, etc.)
 375   assert_different_registers(Otos_i, G3_scratch);
 376   __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
 377   __ load_resolved_reference_at_index(Otos_i, G3_scratch);
 378   __ tst(Otos_i);
 379   __ br(Assembler::notEqual, false, Assembler::pt, resolved);
 380   __ delayed()->set((int)bytecode(), O1);
 381 
 382   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 383 
 384   // first time invocation - must resolve first
 385   __ call_VM(Otos_i, entry, O1);
 386   __ bind(resolved);
 387   __ verify_oop(Otos_i);
 388 }
 389 
 390 
 391 void TemplateTable::ldc2_w() {
 392   transition(vtos, vtos);
 393   Label Long, exit;
 394 
 395   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 396   __ get_cpool_and_tags(O0, O2);
 397 
 398   const int base_offset = ConstantPool::header_size() * wordSize;
 399   const int tags_offset = Array<u1>::base_offset_in_bytes();
 400   // get type from tags
 401   __ add(O2, tags_offset, O2);
 402   __ ldub(O2, O1, O2);
 403 
 404   __ sll(O1, LogBytesPerWord, O1);
 405   __ add(O0, O1, G3_scratch);
 406 
 407   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
 408   // A double can be placed at word-aligned locations in the constant pool.
 409   // Check out Conversions.java for an example.
 410   // Also ConstantPool::header_size() is 20, which makes it very difficult
 411   // to double-align double on the constant pool.  SG, 11/7/97
 412 #ifdef _LP64
 413   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
 414 #else
 415   FloatRegister f = Ftos_d;
 416   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
 417   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
 418          f->successor());
 419 #endif
 420   __ push(dtos);
 421   __ ba_short(exit);
 422 
 423   __ bind(Long);
 424 #ifdef _LP64
 425   __ ldx(G3_scratch, base_offset, Otos_l);
 426 #else
 427   __ ld(G3_scratch, base_offset, Otos_l);
 428   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
 429 #endif
 430   __ push(ltos);
 431 
 432   __ bind(exit);
 433 }
 434 
 435 
 436 void TemplateTable::locals_index(Register reg, int offset) {
 437   __ ldub( at_bcp(offset), reg );
 438 }
 439 
 440 
 441 void TemplateTable::locals_index_wide(Register reg) {
 442   // offset is 2, not 1, because Lbcp points to wide prefix code
 443   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
 444 }
 445 
 446 void TemplateTable::iload() {
 447   transition(vtos, itos);
 448   // Rewrite iload,iload  pair into fast_iload2
 449   //         iload,caload pair into fast_icaload
 450   if (RewriteFrequentPairs) {
 451     Label rewrite, done;
 452 
 453     // get next byte
 454     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
 455 
 456     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 457     // last two iloads in a pair.  Comparing against fast_iload means that
 458     // the next bytecode is neither an iload or a caload, and therefore
 459     // an iload pair.
 460     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
 461 
 462     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
 463     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 464     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
 465 
 466     __ cmp(G3_scratch, (int)Bytecodes::_caload);
 467     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 468     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
 469 
 470     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
 471     // rewrite
 472     // G4_scratch: fast bytecode
 473     __ bind(rewrite);
 474     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
 475     __ bind(done);
 476   }
 477 
 478   // Get the local value into tos
 479   locals_index(G3_scratch);
 480   __ access_local_int( G3_scratch, Otos_i );
 481 }
 482 
 483 void TemplateTable::fast_iload2() {
 484   transition(vtos, itos);
 485   locals_index(G3_scratch);
 486   __ access_local_int( G3_scratch, Otos_i );
 487   __ push_i();
 488   locals_index(G3_scratch, 3);  // get next bytecode's local index.
 489   __ access_local_int( G3_scratch, Otos_i );
 490 }
 491 
 492 void TemplateTable::fast_iload() {
 493   transition(vtos, itos);
 494   locals_index(G3_scratch);
 495   __ access_local_int( G3_scratch, Otos_i );
 496 }
 497 
 498 void TemplateTable::lload() {
 499   transition(vtos, ltos);
 500   locals_index(G3_scratch);
 501   __ access_local_long( G3_scratch, Otos_l );
 502 }
 503 
 504 
 505 void TemplateTable::fload() {
 506   transition(vtos, ftos);
 507   locals_index(G3_scratch);
 508   __ access_local_float( G3_scratch, Ftos_f );
 509 }
 510 
 511 
 512 void TemplateTable::dload() {
 513   transition(vtos, dtos);
 514   locals_index(G3_scratch);
 515   __ access_local_double( G3_scratch, Ftos_d );
 516 }
 517 
 518 
 519 void TemplateTable::aload() {
 520   transition(vtos, atos);
 521   locals_index(G3_scratch);
 522   __ access_local_ptr( G3_scratch, Otos_i);
 523 }
 524 
 525 
 526 void TemplateTable::wide_iload() {
 527   transition(vtos, itos);
 528   locals_index_wide(G3_scratch);
 529   __ access_local_int( G3_scratch, Otos_i );
 530 }
 531 
 532 
 533 void TemplateTable::wide_lload() {
 534   transition(vtos, ltos);
 535   locals_index_wide(G3_scratch);
 536   __ access_local_long( G3_scratch, Otos_l );
 537 }
 538 
 539 
 540 void TemplateTable::wide_fload() {
 541   transition(vtos, ftos);
 542   locals_index_wide(G3_scratch);
 543   __ access_local_float( G3_scratch, Ftos_f );
 544 }
 545 
 546 
 547 void TemplateTable::wide_dload() {
 548   transition(vtos, dtos);
 549   locals_index_wide(G3_scratch);
 550   __ access_local_double( G3_scratch, Ftos_d );
 551 }
 552 
 553 
 554 void TemplateTable::wide_aload() {
 555   transition(vtos, atos);
 556   locals_index_wide(G3_scratch);
 557   __ access_local_ptr( G3_scratch, Otos_i );
 558   __ verify_oop(Otos_i);
 559 }
 560 
 561 
 562 void TemplateTable::iaload() {
 563   transition(itos, itos);
 564   // Otos_i: index
 565   // tos: array
 566   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 567   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
 568 }
 569 
 570 
 571 void TemplateTable::laload() {
 572   transition(itos, ltos);
 573   // Otos_i: index
 574   // O2: array
 575   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 576   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
 577 }
 578 
 579 
 580 void TemplateTable::faload() {
 581   transition(itos, ftos);
 582   // Otos_i: index
 583   // O2: array
 584   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 585   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
 586 }
 587 
 588 
 589 void TemplateTable::daload() {
 590   transition(itos, dtos);
 591   // Otos_i: index
 592   // O2: array
 593   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 594   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
 595 }
 596 
 597 
 598 void TemplateTable::aaload() {
 599   transition(itos, atos);
 600   // Otos_i: index
 601   // tos: array
 602   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
 603   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
 604   __ verify_oop(Otos_i);
 605 }
 606 
 607 
 608 void TemplateTable::baload() {
 609   transition(itos, itos);
 610   // Otos_i: index
 611   // tos: array
 612   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
 613   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
 614 }
 615 
 616 
 617 void TemplateTable::caload() {
 618   transition(itos, itos);
 619   // Otos_i: index
 620   // tos: array
 621   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 622   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 623 }
 624 
 625 void TemplateTable::fast_icaload() {
 626   transition(vtos, itos);
 627   // Otos_i: index
 628   // tos: array
 629   locals_index(G3_scratch);
 630   __ access_local_int( G3_scratch, Otos_i );
 631   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 632   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 633 }
 634 
 635 
 636 void TemplateTable::saload() {
 637   transition(itos, itos);
 638   // Otos_i: index
 639   // tos: array
 640   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 641   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
 642 }
 643 
 644 
 645 void TemplateTable::iload(int n) {
 646   transition(vtos, itos);
 647   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 648 }
 649 
 650 
 651 void TemplateTable::lload(int n) {
 652   transition(vtos, ltos);
 653   assert(n+1 < Argument::n_register_parameters, "would need more code");
 654   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
 655 }
 656 
 657 
 658 void TemplateTable::fload(int n) {
 659   transition(vtos, ftos);
 660   assert(n < Argument::n_register_parameters, "would need more code");
 661   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
 662 }
 663 
 664 
 665 void TemplateTable::dload(int n) {
 666   transition(vtos, dtos);
 667   FloatRegister dst = Ftos_d;
 668   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
 669 }
 670 
 671 
 672 void TemplateTable::aload(int n) {
 673   transition(vtos, atos);
 674   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 675 }
 676 
 677 
 678 void TemplateTable::aload_0() {
 679   transition(vtos, atos);
 680 
 681   // According to bytecode histograms, the pairs:
 682   //
 683   // _aload_0, _fast_igetfield (itos)
 684   // _aload_0, _fast_agetfield (atos)
 685   // _aload_0, _fast_fgetfield (ftos)
 686   //
 687   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 688   // bytecode checks the next bytecode and then rewrites the current
 689   // bytecode into a pair bytecode; otherwise it rewrites the current
 690   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 691   //
 692   if (RewriteFrequentPairs) {
 693     Label rewrite, done;
 694 
 695     // get next byte
 696     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
 697 
 698     // do actual aload_0
 699     aload(0);
 700 
 701     // if _getfield then wait with rewrite
 702     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
 703 
 704     // if _igetfield then rewrite to _fast_iaccess_0
 705     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 706     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
 707     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 708     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
 709 
 710     // if _agetfield then rewrite to _fast_aaccess_0
 711     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 712     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
 713     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 714     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
 715 
 716     // if _fgetfield then rewrite to _fast_faccess_0
 717     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 718     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
 719     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 720     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
 721 
 722     // else rewrite to _fast_aload0
 723     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 724     __ set(Bytecodes::_fast_aload_0, G4_scratch);
 725 
 726     // rewrite
 727     // G4_scratch: fast bytecode
 728     __ bind(rewrite);
 729     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
 730     __ bind(done);
 731   } else {
 732     aload(0);
 733   }
 734 }
 735 
 736 
 737 void TemplateTable::istore() {
 738   transition(itos, vtos);
 739   locals_index(G3_scratch);
 740   __ store_local_int( G3_scratch, Otos_i );
 741 }
 742 
 743 
 744 void TemplateTable::lstore() {
 745   transition(ltos, vtos);
 746   locals_index(G3_scratch);
 747   __ store_local_long( G3_scratch, Otos_l );
 748 }
 749 
 750 
 751 void TemplateTable::fstore() {
 752   transition(ftos, vtos);
 753   locals_index(G3_scratch);
 754   __ store_local_float( G3_scratch, Ftos_f );
 755 }
 756 
 757 
 758 void TemplateTable::dstore() {
 759   transition(dtos, vtos);
 760   locals_index(G3_scratch);
 761   __ store_local_double( G3_scratch, Ftos_d );
 762 }
 763 
 764 
 765 void TemplateTable::astore() {
 766   transition(vtos, vtos);
 767   __ load_ptr(0, Otos_i);
 768   __ inc(Lesp, Interpreter::stackElementSize);
 769   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 770   locals_index(G3_scratch);
 771   __ store_local_ptr(G3_scratch, Otos_i);
 772 }
 773 
 774 
 775 void TemplateTable::wide_istore() {
 776   transition(vtos, vtos);
 777   __ pop_i();
 778   locals_index_wide(G3_scratch);
 779   __ store_local_int( G3_scratch, Otos_i );
 780 }
 781 
 782 
 783 void TemplateTable::wide_lstore() {
 784   transition(vtos, vtos);
 785   __ pop_l();
 786   locals_index_wide(G3_scratch);
 787   __ store_local_long( G3_scratch, Otos_l );
 788 }
 789 
 790 
 791 void TemplateTable::wide_fstore() {
 792   transition(vtos, vtos);
 793   __ pop_f();
 794   locals_index_wide(G3_scratch);
 795   __ store_local_float( G3_scratch, Ftos_f );
 796 }
 797 
 798 
 799 void TemplateTable::wide_dstore() {
 800   transition(vtos, vtos);
 801   __ pop_d();
 802   locals_index_wide(G3_scratch);
 803   __ store_local_double( G3_scratch, Ftos_d );
 804 }
 805 
 806 
 807 void TemplateTable::wide_astore() {
 808   transition(vtos, vtos);
 809   __ load_ptr(0, Otos_i);
 810   __ inc(Lesp, Interpreter::stackElementSize);
 811   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 812   locals_index_wide(G3_scratch);
 813   __ store_local_ptr(G3_scratch, Otos_i);
 814 }
 815 
 816 
 817 void TemplateTable::iastore() {
 818   transition(itos, vtos);
 819   __ pop_i(O2); // index
 820   // Otos_i: val
 821   // O3: array
 822   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 823   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
 824 }
 825 
 826 
 827 void TemplateTable::lastore() {
 828   transition(ltos, vtos);
 829   __ pop_i(O2); // index
 830   // Otos_l: val
 831   // O3: array
 832   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 833   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
 834 }
 835 
 836 
 837 void TemplateTable::fastore() {
 838   transition(ftos, vtos);
 839   __ pop_i(O2); // index
 840   // Ftos_f: val
 841   // O3: array
 842   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 843   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
 844 }
 845 
 846 
 847 void TemplateTable::dastore() {
 848   transition(dtos, vtos);
 849   __ pop_i(O2); // index
 850   // Fos_d: val
 851   // O3: array
 852   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 853   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
 854 }
 855 
 856 
 857 void TemplateTable::aastore() {
 858   Label store_ok, is_null, done;
 859   transition(vtos, vtos);
 860   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
 861   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
 862   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
 863   // Otos_i: val
 864   // O2: index
 865   // O3: array
 866   __ verify_oop(Otos_i);
 867   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
 868 
 869   // do array store check - check for NULL value first
 870   __ br_null_short( Otos_i, Assembler::pn, is_null );
 871 
 872   __ load_klass(O3, O4); // get array klass
 873   __ load_klass(Otos_i, O5); // get value klass
 874 
 875   // do fast instanceof cache test
 876 
 877   __ ld_ptr(O4,     in_bytes(ObjArrayKlass::element_klass_offset()),  O4);
 878 
 879   assert(Otos_i == O0, "just checking");
 880 
 881   // Otos_i:    value
 882   // O1:        addr - offset
 883   // O2:        index
 884   // O3:        array
 885   // O4:        array element klass
 886   // O5:        value klass
 887 
 888   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 889 
 890   // Generate a fast subtype check.  Branch to store_ok if no
 891   // failure.  Throw if failure.
 892   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
 893 
 894   // Not a subtype; so must throw exception
 895   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
 896 
 897   // Store is OK.
 898   __ bind(store_ok);
 899   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
 900 
 901   __ ba(done);
 902   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
 903 
 904   __ bind(is_null);
 905   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
 906 
 907   __ profile_null_seen(G3_scratch);
 908   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
 909   __ bind(done);
 910 }
 911 
 912 
 913 void TemplateTable::bastore() {
 914   transition(itos, vtos);
 915   __ pop_i(O2); // index
 916   // Otos_i: val
 917   // O3: array
 918   __ index_check(O3, O2, 0, G3_scratch, O2);
 919   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
 920 }
 921 
 922 
 923 void TemplateTable::castore() {
 924   transition(itos, vtos);
 925   __ pop_i(O2); // index
 926   // Otos_i: val
 927   // O3: array
 928   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
 929   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
 930 }
 931 
 932 
 933 void TemplateTable::sastore() {
 934   // %%%%% Factor across platform
 935   castore();
 936 }
 937 
 938 
 939 void TemplateTable::istore(int n) {
 940   transition(itos, vtos);
 941   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
 942 }
 943 
 944 
 945 void TemplateTable::lstore(int n) {
 946   transition(ltos, vtos);
 947   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
 948   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
 949 
 950 }
 951 
 952 
 953 void TemplateTable::fstore(int n) {
 954   transition(ftos, vtos);
 955   assert(n < Argument::n_register_parameters, "only handle register cases");
 956   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
 957 }
 958 
 959 
 960 void TemplateTable::dstore(int n) {
 961   transition(dtos, vtos);
 962   FloatRegister src = Ftos_d;
 963   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
 964 }
 965 
 966 
 967 void TemplateTable::astore(int n) {
 968   transition(vtos, vtos);
 969   __ load_ptr(0, Otos_i);
 970   __ inc(Lesp, Interpreter::stackElementSize);
 971   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 972   __ store_local_ptr(n, Otos_i);
 973 }
 974 
 975 
 976 void TemplateTable::pop() {
 977   transition(vtos, vtos);
 978   __ inc(Lesp, Interpreter::stackElementSize);
 979 }
 980 
 981 
 982 void TemplateTable::pop2() {
 983   transition(vtos, vtos);
 984   __ inc(Lesp, 2 * Interpreter::stackElementSize);
 985 }
 986 
 987 
 988 void TemplateTable::dup() {
 989   transition(vtos, vtos);
 990   // stack: ..., a
 991   // load a and tag
 992   __ load_ptr(0, Otos_i);
 993   __ push_ptr(Otos_i);
 994   // stack: ..., a, a
 995 }
 996 
 997 
 998 void TemplateTable::dup_x1() {
 999   transition(vtos, vtos);
1000   // stack: ..., a, b
1001   __ load_ptr( 1, G3_scratch);  // get a
1002   __ load_ptr( 0, Otos_l1);     // get b
1003   __ store_ptr(1, Otos_l1);     // put b
1004   __ store_ptr(0, G3_scratch);  // put a - like swap
1005   __ push_ptr(Otos_l1);         // push b
1006   // stack: ..., b, a, b
1007 }
1008 
1009 
1010 void TemplateTable::dup_x2() {
1011   transition(vtos, vtos);
1012   // stack: ..., a, b, c
1013   // get c and push on stack, reuse registers
1014   __ load_ptr( 0, G3_scratch);  // get c
1015   __ push_ptr(G3_scratch);      // push c with tag
1016   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
1017   // (stack offsets n+1 now)
1018   __ load_ptr( 3, Otos_l1);     // get a
1019   __ store_ptr(3, G3_scratch);  // put c at 3
1020   // stack: ..., c, b, c, c  (a in reg)
1021   __ load_ptr( 2, G3_scratch);  // get b
1022   __ store_ptr(2, Otos_l1);     // put a at 2
1023   // stack: ..., c, a, c, c  (b in reg)
1024   __ store_ptr(1, G3_scratch);  // put b at 1
1025   // stack: ..., c, a, b, c
1026 }
1027 
1028 
1029 void TemplateTable::dup2() {
1030   transition(vtos, vtos);
1031   __ load_ptr(1, G3_scratch);  // get a
1032   __ load_ptr(0, Otos_l1);     // get b
1033   __ push_ptr(G3_scratch);     // push a
1034   __ push_ptr(Otos_l1);        // push b
1035   // stack: ..., a, b, a, b
1036 }
1037 
1038 
1039 void TemplateTable::dup2_x1() {
1040   transition(vtos, vtos);
1041   // stack: ..., a, b, c
1042   __ load_ptr( 1, Lscratch);    // get b
1043   __ load_ptr( 2, Otos_l1);     // get a
1044   __ store_ptr(2, Lscratch);    // put b at a
1045   // stack: ..., b, b, c
1046   __ load_ptr( 0, G3_scratch);  // get c
1047   __ store_ptr(1, G3_scratch);  // put c at b
1048   // stack: ..., b, c, c
1049   __ store_ptr(0, Otos_l1);     // put a at c
1050   // stack: ..., b, c, a
1051   __ push_ptr(Lscratch);        // push b
1052   __ push_ptr(G3_scratch);      // push c
1053   // stack: ..., b, c, a, b, c
1054 }
1055 
1056 
1057 // The spec says that these types can be a mixture of category 1 (1 word)
1058 // types and/or category 2 types (long and doubles)
1059 void TemplateTable::dup2_x2() {
1060   transition(vtos, vtos);
1061   // stack: ..., a, b, c, d
1062   __ load_ptr( 1, Lscratch);    // get c
1063   __ load_ptr( 3, Otos_l1);     // get a
1064   __ store_ptr(3, Lscratch);    // put c at 3
1065   __ store_ptr(1, Otos_l1);     // put a at 1
1066   // stack: ..., c, b, a, d
1067   __ load_ptr( 2, G3_scratch);  // get b
1068   __ load_ptr( 0, Otos_l1);     // get d
1069   __ store_ptr(0, G3_scratch);  // put b at 0
1070   __ store_ptr(2, Otos_l1);     // put d at 2
1071   // stack: ..., c, d, a, b
1072   __ push_ptr(Lscratch);        // push c
1073   __ push_ptr(Otos_l1);         // push d
1074   // stack: ..., c, d, a, b, c, d
1075 }
1076 
1077 
1078 void TemplateTable::swap() {
1079   transition(vtos, vtos);
1080   // stack: ..., a, b
1081   __ load_ptr( 1, G3_scratch);  // get a
1082   __ load_ptr( 0, Otos_l1);     // get b
1083   __ store_ptr(0, G3_scratch);  // put b
1084   __ store_ptr(1, Otos_l1);     // put a
1085   // stack: ..., b, a
1086 }
1087 
1088 
1089 void TemplateTable::iop2(Operation op) {
1090   transition(itos, itos);
1091   __ pop_i(O1);
1092   switch (op) {
1093    case  add:  __  add(O1, Otos_i, Otos_i);  break;
1094    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
1095      // %%%%% Mul may not exist: better to call .mul?
1096    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
1097    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
1098    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
1099    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
1100    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
1101    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
1102    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
1103    default: ShouldNotReachHere();
1104   }
1105 }
1106 
1107 
1108 void TemplateTable::lop2(Operation op) {
1109   transition(ltos, ltos);
1110   __ pop_l(O2);
1111   switch (op) {
1112 #ifdef _LP64
1113    case  add:  __  add(O2, Otos_l, Otos_l);  break;
1114    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
1115    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
1116    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
1117    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
1118 #else
1119    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
1120    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
1121    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
1122    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
1123    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
1124 #endif
1125    default: ShouldNotReachHere();
1126   }
1127 }
1128 
1129 
1130 void TemplateTable::idiv() {
1131   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
1132   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
1133 
1134   transition(itos, itos);
1135   __ pop_i(O1); // get 1st op
1136 
1137   // Y contains upper 32 bits of result, set it to 0 or all ones
1138   __ wry(G0);
1139   __ mov(~0, G3_scratch);
1140 
1141   __ tst(O1);
1142      Label neg;
1143   __ br(Assembler::negative, true, Assembler::pn, neg);
1144   __ delayed()->wry(G3_scratch);
1145   __ bind(neg);
1146 
1147      Label ok;
1148   __ tst(Otos_i);
1149   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
1150 
1151   const int min_int = 0x80000000;
1152   Label regular;
1153   __ cmp(Otos_i, -1);
1154   __ br(Assembler::notEqual, false, Assembler::pt, regular);
1155 #ifdef _LP64
1156   // Don't put set in delay slot
1157   // Set will turn into multiple instructions in 64 bit mode
1158   __ delayed()->nop();
1159   __ set(min_int, G4_scratch);
1160 #else
1161   __ delayed()->set(min_int, G4_scratch);
1162 #endif
1163   Label done;
1164   __ cmp(O1, G4_scratch);
1165   __ br(Assembler::equal, true, Assembler::pt, done);
1166   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
1167 
1168   __ bind(regular);
1169   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
1170   __ bind(done);
1171 }
1172 
1173 
1174 void TemplateTable::irem() {
1175   transition(itos, itos);
1176   __ mov(Otos_i, O2); // save divisor
1177   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
1178   __ smul(Otos_i, O2, Otos_i);
1179   __ sub(O1, Otos_i, Otos_i);
1180 }
1181 
1182 
1183 void TemplateTable::lmul() {
1184   transition(ltos, ltos);
1185   __ pop_l(O2);
1186 #ifdef _LP64
1187   __ mulx(Otos_l, O2, Otos_l);
1188 #else
1189   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
1190 #endif
1191 
1192 }
1193 
1194 
1195 void TemplateTable::ldiv() {
1196   transition(ltos, ltos);
1197 
1198   // check for zero
1199   __ pop_l(O2);
1200 #ifdef _LP64
1201   __ tst(Otos_l);
1202   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1203   __ sdivx(O2, Otos_l, Otos_l);
1204 #else
1205   __ orcc(Otos_l1, Otos_l2, G0);
1206   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1207   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1208 #endif
1209 }
1210 
1211 
1212 void TemplateTable::lrem() {
1213   transition(ltos, ltos);
1214 
1215   // check for zero
1216   __ pop_l(O2);
1217 #ifdef _LP64
1218   __ tst(Otos_l);
1219   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1220   __ sdivx(O2, Otos_l, Otos_l2);
1221   __ mulx (Otos_l2, Otos_l, Otos_l2);
1222   __ sub  (O2, Otos_l2, Otos_l);
1223 #else
1224   __ orcc(Otos_l1, Otos_l2, G0);
1225   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1226   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1227 #endif
1228 }
1229 
1230 
1231 void TemplateTable::lshl() {
1232   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
1233 
1234   __ pop_l(O2);                          // shift value in O2, O3
1235 #ifdef _LP64
1236   __ sllx(O2, Otos_i, Otos_l);
1237 #else
1238   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1239 #endif
1240 }
1241 
1242 
1243 void TemplateTable::lshr() {
1244   transition(itos, ltos); // %%%% see lshl comment
1245 
1246   __ pop_l(O2);                          // shift value in O2, O3
1247 #ifdef _LP64
1248   __ srax(O2, Otos_i, Otos_l);
1249 #else
1250   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1251 #endif
1252 }
1253 
1254 
1255 
1256 void TemplateTable::lushr() {
1257   transition(itos, ltos); // %%%% see lshl comment
1258 
1259   __ pop_l(O2);                          // shift value in O2, O3
1260 #ifdef _LP64
1261   __ srlx(O2, Otos_i, Otos_l);
1262 #else
1263   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1264 #endif
1265 }
1266 
1267 
1268 void TemplateTable::fop2(Operation op) {
1269   transition(ftos, ftos);
1270   switch (op) {
1271    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1272    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1273    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1274    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1275    case  rem:
1276      assert(Ftos_f == F0, "just checking");
1277 #ifdef _LP64
1278      // LP64 calling conventions use F1, F3 for passing 2 floats
1279      __ pop_f(F1);
1280      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
1281 #else
1282      __ pop_i(O0);
1283      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
1284      __ ld( __ d_tmp, O1 );
1285 #endif
1286      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1287      assert( Ftos_f == F0, "fix this code" );
1288      break;
1289 
1290    default: ShouldNotReachHere();
1291   }
1292 }
1293 
1294 
1295 void TemplateTable::dop2(Operation op) {
1296   transition(dtos, dtos);
1297   switch (op) {
1298    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1299    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1300    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1301    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1302    case  rem:
1303 #ifdef _LP64
1304      // Pass arguments in D0, D2
1305      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
1306      __ pop_d( F0 );
1307 #else
1308      // Pass arguments in O0O1, O2O3
1309      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1310      __ ldd( __ d_tmp, O2 );
1311      __ pop_d(Ftos_f);
1312      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1313      __ ldd( __ d_tmp, O0 );
1314 #endif
1315      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1316      assert( Ftos_d == F0, "fix this code" );
1317      break;
1318 
1319    default: ShouldNotReachHere();
1320   }
1321 }
1322 
1323 
1324 void TemplateTable::ineg() {
1325   transition(itos, itos);
1326   __ neg(Otos_i);
1327 }
1328 
1329 
1330 void TemplateTable::lneg() {
1331   transition(ltos, ltos);
1332 #ifdef _LP64
1333   __ sub(G0, Otos_l, Otos_l);
1334 #else
1335   __ lneg(Otos_l1, Otos_l2);
1336 #endif
1337 }
1338 
1339 
1340 void TemplateTable::fneg() {
1341   transition(ftos, ftos);
1342   __ fneg(FloatRegisterImpl::S, Ftos_f, Ftos_f);
1343 }
1344 
1345 
1346 void TemplateTable::dneg() {
1347   transition(dtos, dtos);
1348   __ fneg(FloatRegisterImpl::D, Ftos_f, Ftos_f);
1349 }
1350 
1351 
1352 void TemplateTable::iinc() {
1353   transition(vtos, vtos);
1354   locals_index(G3_scratch);
1355   __ ldsb(Lbcp, 2, O2);  // load constant
1356   __ access_local_int(G3_scratch, Otos_i);
1357   __ add(Otos_i, O2, Otos_i);
1358   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1359 }
1360 
1361 
1362 void TemplateTable::wide_iinc() {
1363   transition(vtos, vtos);
1364   locals_index_wide(G3_scratch);
1365   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
1366   __ access_local_int(G3_scratch, Otos_i);
1367   __ add(Otos_i, O3, Otos_i);
1368   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1369 }
1370 
1371 
1372 void TemplateTable::convert() {
1373 // %%%%% Factor this first part accross platforms
1374   #ifdef ASSERT
1375     TosState tos_in  = ilgl;
1376     TosState tos_out = ilgl;
1377     switch (bytecode()) {
1378       case Bytecodes::_i2l: // fall through
1379       case Bytecodes::_i2f: // fall through
1380       case Bytecodes::_i2d: // fall through
1381       case Bytecodes::_i2b: // fall through
1382       case Bytecodes::_i2c: // fall through
1383       case Bytecodes::_i2s: tos_in = itos; break;
1384       case Bytecodes::_l2i: // fall through
1385       case Bytecodes::_l2f: // fall through
1386       case Bytecodes::_l2d: tos_in = ltos; break;
1387       case Bytecodes::_f2i: // fall through
1388       case Bytecodes::_f2l: // fall through
1389       case Bytecodes::_f2d: tos_in = ftos; break;
1390       case Bytecodes::_d2i: // fall through
1391       case Bytecodes::_d2l: // fall through
1392       case Bytecodes::_d2f: tos_in = dtos; break;
1393       default             : ShouldNotReachHere();
1394     }
1395     switch (bytecode()) {
1396       case Bytecodes::_l2i: // fall through
1397       case Bytecodes::_f2i: // fall through
1398       case Bytecodes::_d2i: // fall through
1399       case Bytecodes::_i2b: // fall through
1400       case Bytecodes::_i2c: // fall through
1401       case Bytecodes::_i2s: tos_out = itos; break;
1402       case Bytecodes::_i2l: // fall through
1403       case Bytecodes::_f2l: // fall through
1404       case Bytecodes::_d2l: tos_out = ltos; break;
1405       case Bytecodes::_i2f: // fall through
1406       case Bytecodes::_l2f: // fall through
1407       case Bytecodes::_d2f: tos_out = ftos; break;
1408       case Bytecodes::_i2d: // fall through
1409       case Bytecodes::_l2d: // fall through
1410       case Bytecodes::_f2d: tos_out = dtos; break;
1411       default             : ShouldNotReachHere();
1412     }
1413     transition(tos_in, tos_out);
1414   #endif
1415 
1416 
1417   // Conversion
1418   Label done;
1419   switch (bytecode()) {
1420    case Bytecodes::_i2l:
1421 #ifdef _LP64
1422     // Sign extend the 32 bits
1423     __ sra ( Otos_i, 0, Otos_l );
1424 #else
1425     __ addcc(Otos_i, 0, Otos_l2);
1426     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
1427     __ delayed()->clr(Otos_l1);
1428     __ set(~0, Otos_l1);
1429 #endif
1430     break;
1431 
1432    case Bytecodes::_i2f:
1433     __ st(Otos_i, __ d_tmp );
1434     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1435     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
1436     break;
1437 
1438    case Bytecodes::_i2d:
1439     __ st(Otos_i, __ d_tmp);
1440     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1441     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
1442     break;
1443 
1444    case Bytecodes::_i2b:
1445     __ sll(Otos_i, 24, Otos_i);
1446     __ sra(Otos_i, 24, Otos_i);
1447     break;
1448 
1449    case Bytecodes::_i2c:
1450     __ sll(Otos_i, 16, Otos_i);
1451     __ srl(Otos_i, 16, Otos_i);
1452     break;
1453 
1454    case Bytecodes::_i2s:
1455     __ sll(Otos_i, 16, Otos_i);
1456     __ sra(Otos_i, 16, Otos_i);
1457     break;
1458 
1459    case Bytecodes::_l2i:
1460 #ifndef _LP64
1461     __ mov(Otos_l2, Otos_i);
1462 #else
1463     // Sign-extend into the high 32 bits
1464     __ sra(Otos_l, 0, Otos_i);
1465 #endif
1466     break;
1467 
1468    case Bytecodes::_l2f:
1469    case Bytecodes::_l2d:
1470     __ st_long(Otos_l, __ d_tmp);
1471     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
1472 
1473     if (bytecode() == Bytecodes::_l2f) {
1474       __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
1475     } else {
1476       __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
1477     }
1478     break;
1479 
1480   case Bytecodes::_f2i:  {
1481       Label isNaN;
1482       // result must be 0 if value is NaN; test by comparing value to itself
1483       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
1484       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
1485       __ delayed()->clr(Otos_i);                                     // NaN
1486       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
1487       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
1488       __ ld(__ d_tmp, Otos_i);
1489       __ bind(isNaN);
1490     }
1491     break;
1492 
1493    case Bytecodes::_f2l:
1494     // must uncache tos
1495     __ push_f();
1496 #ifdef _LP64
1497     __ pop_f(F1);
1498 #else
1499     __ pop_i(O0);
1500 #endif
1501     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1502     break;
1503 
1504    case Bytecodes::_f2d:
1505     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
1506     break;
1507 
1508    case Bytecodes::_d2i:
1509    case Bytecodes::_d2l:
1510     // must uncache tos
1511     __ push_d();
1512 #ifdef _LP64
1513     // LP64 calling conventions pass first double arg in D0
1514     __ pop_d( Ftos_d );
1515 #else
1516     __ pop_i( O0 );
1517     __ pop_i( O1 );
1518 #endif
1519     __ call_VM_leaf(Lscratch,
1520         bytecode() == Bytecodes::_d2i
1521           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
1522           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1523     break;
1524 
1525     case Bytecodes::_d2f:
1526       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
1527     break;
1528 
1529     default: ShouldNotReachHere();
1530   }
1531   __ bind(done);
1532 }
1533 
1534 
1535 void TemplateTable::lcmp() {
1536   transition(ltos, itos);
1537 
1538 #ifdef _LP64
1539   __ pop_l(O1); // pop off value 1, value 2 is in O0
1540   __ lcmp( O1, Otos_l, Otos_i );
1541 #else
1542   __ pop_l(O2); // cmp O2,3 to O0,1
1543   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
1544 #endif
1545 }
1546 
1547 
1548 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1549 
1550   if (is_float) __ pop_f(F2);
1551   else          __ pop_d(F2);
1552 
1553   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
1554 
1555   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
1556 }
1557 
1558 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1559   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1560   __ verify_thread();
1561 
1562   const Register O2_bumped_count = O2;
1563   __ profile_taken_branch(G3_scratch, O2_bumped_count);
1564 
1565   // get (wide) offset to O1_disp
1566   const Register O1_disp = O1;
1567   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
1568   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
1569 
1570   // Handle all the JSR stuff here, then exit.
1571   // It's much shorter and cleaner than intermingling with the
1572   // non-JSR normal-branch stuff occurring below.
1573   if( is_jsr ) {
1574     // compute return address as bci in Otos_i
1575     __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1576     __ sub(Lbcp, G3_scratch, G3_scratch);
1577     __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
1578 
1579     // Bump Lbcp to target of JSR
1580     __ add(Lbcp, O1_disp, Lbcp);
1581     // Push returnAddress for "ret" on stack
1582     __ push_ptr(Otos_i);
1583     // And away we go!
1584     __ dispatch_next(vtos);
1585     return;
1586   }
1587 
1588   // Normal (non-jsr) branch handling
1589 
1590   // Save the current Lbcp
1591   const Register l_cur_bcp = Lscratch;
1592   __ mov( Lbcp, l_cur_bcp );
1593 
1594   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1595   if ( increment_invocation_counter_for_backward_branches ) {
1596     Label Lforward;
1597     // check branch direction
1598     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
1599     // Bump bytecode pointer by displacement (take the branch)
1600     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
1601 
1602     const Register Rcounters = G3_scratch;
1603     __ get_method_counters(Lmethod, Rcounters, Lforward);
1604 
1605     if (TieredCompilation) {
1606       Label Lno_mdo, Loverflow;
1607       int increment = InvocationCounter::count_increment;
1608       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1609       if (ProfileInterpreter) {
1610         // If no method data exists, go to profile_continue.
1611         __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
1612         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
1613 
1614         // Increment backedge counter in the MDO
1615         Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
1616                                                  in_bytes(InvocationCounter::counter_offset()));
1617         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0,
1618                                    Assembler::notZero, &Lforward);
1619         __ ba_short(Loverflow);
1620       }
1621 
1622       // If there's no MDO, increment counter in MethodCounters*
1623       __ bind(Lno_mdo);
1624       Address backedge_counter(Rcounters,
1625               in_bytes(MethodCounters::backedge_counter_offset()) +
1626               in_bytes(InvocationCounter::counter_offset()));
1627       __ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0,
1628                                  Assembler::notZero, &Lforward);
1629       __ bind(Loverflow);
1630 
1631       // notify point for loop, pass branch bytecode
1632       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp);
1633 
1634       // Was an OSR adapter generated?
1635       // O0 = osr nmethod
1636       __ br_null_short(O0, Assembler::pn, Lforward);
1637 
1638       // Has the nmethod been invalidated already?
1639       __ ld(O0, nmethod::entry_bci_offset(), O2);
1640       __ cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, Lforward);
1641 
1642       // migrate the interpreter frame off of the stack
1643 
1644       __ mov(G2_thread, L7);
1645       // save nmethod
1646       __ mov(O0, L6);
1647       __ set_last_Java_frame(SP, noreg);
1648       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
1649       __ reset_last_Java_frame();
1650       __ mov(L7, G2_thread);
1651 
1652       // move OSR nmethod to I1
1653       __ mov(L6, I1);
1654 
1655       // OSR buffer to I0
1656       __ mov(O0, I0);
1657 
1658       // remove the interpreter frame
1659       __ restore(I5_savedSP, 0, SP);
1660 
1661       // Jump to the osr code.
1662       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
1663       __ jmp(O2, G0);
1664       __ delayed()->nop();
1665 
1666     } else {
1667       // Update Backedge branch separately from invocations
1668       const Register G4_invoke_ctr = G4;
1669       __ increment_backedge_counter(Rcounters, G4_invoke_ctr, G1_scratch);
1670       if (ProfileInterpreter) {
1671         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_scratch, Lforward);
1672         if (UseOnStackReplacement) {
1673           __ test_backedge_count_for_osr(O2_bumped_count, l_cur_bcp, G3_scratch);
1674         }
1675       } else {
1676         if (UseOnStackReplacement) {
1677           __ test_backedge_count_for_osr(G4_invoke_ctr, l_cur_bcp, G3_scratch);
1678         }
1679       }
1680     }
1681 
1682     __ bind(Lforward);
1683   } else
1684     // Bump bytecode pointer by displacement (take the branch)
1685     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
1686 
1687   // continue with bytecode @ target
1688   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1689   // %%%%% and changing dispatch_next to dispatch_only
1690   __ dispatch_next(vtos);
1691 }
1692 
1693 
1694 // Note Condition in argument is TemplateTable::Condition
1695 // arg scope is within class scope
1696 
1697 void TemplateTable::if_0cmp(Condition cc) {
1698   // no pointers, integer only!
1699   transition(itos, vtos);
1700   // assume branch is more often taken than not (loops use backward branches)
1701   __ cmp( Otos_i, 0);
1702   __ if_cmp(ccNot(cc), false);
1703 }
1704 
1705 
1706 void TemplateTable::if_icmp(Condition cc) {
1707   transition(itos, vtos);
1708   __ pop_i(O1);
1709   __ cmp(O1, Otos_i);
1710   __ if_cmp(ccNot(cc), false);
1711 }
1712 
1713 
1714 void TemplateTable::if_nullcmp(Condition cc) {
1715   transition(atos, vtos);
1716   __ tst(Otos_i);
1717   __ if_cmp(ccNot(cc), true);
1718 }
1719 
1720 
1721 void TemplateTable::if_acmp(Condition cc) {
1722   transition(atos, vtos);
1723   __ pop_ptr(O1);
1724   __ verify_oop(O1);
1725   __ verify_oop(Otos_i);
1726   __ cmp(O1, Otos_i);
1727   __ if_cmp(ccNot(cc), true);
1728 }
1729 
1730 
1731 
1732 void TemplateTable::ret() {
1733   transition(vtos, vtos);
1734   locals_index(G3_scratch);
1735   __ access_local_returnAddress(G3_scratch, Otos_i);
1736   // Otos_i contains the bci, compute the bcp from that
1737 
1738 #ifdef _LP64
1739 #ifdef ASSERT
1740   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
1741   // the result.  The return address (really a BCI) was stored with an
1742   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
1743   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
1744   // loaded value.
1745   { Label zzz ;
1746      __ set (65536, G3_scratch) ;
1747      __ cmp (Otos_i, G3_scratch) ;
1748      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
1749      __ delayed()->nop();
1750      __ stop("BCI is in the wrong register half?");
1751      __ bind (zzz) ;
1752   }
1753 #endif
1754 #endif
1755 
1756   __ profile_ret(vtos, Otos_i, G4_scratch);
1757 
1758   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1759   __ add(G3_scratch, Otos_i, G3_scratch);
1760   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1761   __ dispatch_next(vtos);
1762 }
1763 
1764 
1765 void TemplateTable::wide_ret() {
1766   transition(vtos, vtos);
1767   locals_index_wide(G3_scratch);
1768   __ access_local_returnAddress(G3_scratch, Otos_i);
1769   // Otos_i contains the bci, compute the bcp from that
1770 
1771   __ profile_ret(vtos, Otos_i, G4_scratch);
1772 
1773   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1774   __ add(G3_scratch, Otos_i, G3_scratch);
1775   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1776   __ dispatch_next(vtos);
1777 }
1778 
1779 
1780 void TemplateTable::tableswitch() {
1781   transition(itos, vtos);
1782   Label default_case, continue_execution;
1783 
1784   // align bcp
1785   __ add(Lbcp, BytesPerInt, O1);
1786   __ and3(O1, -BytesPerInt, O1);
1787   // load lo, hi
1788   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
1789   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
1790 #ifdef _LP64
1791   // Sign extend the 32 bits
1792   __ sra ( Otos_i, 0, Otos_i );
1793 #endif /* _LP64 */
1794 
1795   // check against lo & hi
1796   __ cmp( Otos_i, O2);
1797   __ br( Assembler::less, false, Assembler::pn, default_case);
1798   __ delayed()->cmp( Otos_i, O3 );
1799   __ br( Assembler::greater, false, Assembler::pn, default_case);
1800   // lookup dispatch offset
1801   __ delayed()->sub(Otos_i, O2, O2);
1802   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
1803   __ sll(O2, LogBytesPerInt, O2);
1804   __ add(O2, 3 * BytesPerInt, O2);
1805   __ ba(continue_execution);
1806   __ delayed()->ld(O1, O2, O2);
1807   // handle default
1808   __ bind(default_case);
1809   __ profile_switch_default(O3);
1810   __ ld(O1, 0, O2); // get default offset
1811   // continue execution
1812   __ bind(continue_execution);
1813   __ add(Lbcp, O2, Lbcp);
1814   __ dispatch_next(vtos);
1815 }
1816 
1817 
1818 void TemplateTable::lookupswitch() {
1819   transition(itos, itos);
1820   __ stop("lookupswitch bytecode should have been rewritten");
1821 }
1822 
1823 void TemplateTable::fast_linearswitch() {
1824   transition(itos, vtos);
1825     Label loop_entry, loop, found, continue_execution;
1826   // align bcp
1827   __ add(Lbcp, BytesPerInt, O1);
1828   __ and3(O1, -BytesPerInt, O1);
1829  // set counter
1830   __ ld(O1, BytesPerInt, O2);
1831   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
1832   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
1833   __ ba(loop_entry);
1834   __ delayed()->add(O3, O2, O2); // counter now points past last pair
1835 
1836   // table search
1837   __ bind(loop);
1838   __ cmp(O4, Otos_i);
1839   __ br(Assembler::equal, true, Assembler::pn, found);
1840   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
1841   __ inc(O3, 2 * BytesPerInt);
1842 
1843   __ bind(loop_entry);
1844   __ cmp(O2, O3);
1845   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
1846   __ delayed()->ld(O3, 0, O4);
1847 
1848   // default case
1849   __ ld(O1, 0, O4); // get default offset
1850   if (ProfileInterpreter) {
1851     __ profile_switch_default(O3);
1852     __ ba_short(continue_execution);
1853   }
1854 
1855   // entry found -> get offset
1856   __ bind(found);
1857   if (ProfileInterpreter) {
1858     __ sub(O3, O1, O3);
1859     __ sub(O3, 2*BytesPerInt, O3);
1860     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
1861     __ profile_switch_case(O3, O1, O2, G3_scratch);
1862 
1863     __ bind(continue_execution);
1864   }
1865   __ add(Lbcp, O4, Lbcp);
1866   __ dispatch_next(vtos);
1867 }
1868 
1869 
1870 void TemplateTable::fast_binaryswitch() {
1871   transition(itos, vtos);
1872   // Implementation using the following core algorithm: (copied from Intel)
1873   //
1874   // int binary_search(int key, LookupswitchPair* array, int n) {
1875   //   // Binary search according to "Methodik des Programmierens" by
1876   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1877   //   int i = 0;
1878   //   int j = n;
1879   //   while (i+1 < j) {
1880   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1881   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1882   //     // where a stands for the array and assuming that the (inexisting)
1883   //     // element a[n] is infinitely big.
1884   //     int h = (i + j) >> 1;
1885   //     // i < h < j
1886   //     if (key < array[h].fast_match()) {
1887   //       j = h;
1888   //     } else {
1889   //       i = h;
1890   //     }
1891   //   }
1892   //   // R: a[i] <= key < a[i+1] or Q
1893   //   // (i.e., if key is within array, i is the correct index)
1894   //   return i;
1895   // }
1896 
1897   // register allocation
1898   assert(Otos_i == O0, "alias checking");
1899   const Register Rkey     = Otos_i;                    // already set (tosca)
1900   const Register Rarray   = O1;
1901   const Register Ri       = O2;
1902   const Register Rj       = O3;
1903   const Register Rh       = O4;
1904   const Register Rscratch = O5;
1905 
1906   const int log_entry_size = 3;
1907   const int entry_size = 1 << log_entry_size;
1908 
1909   Label found;
1910   // Find Array start
1911   __ add(Lbcp, 3 * BytesPerInt, Rarray);
1912   __ and3(Rarray, -BytesPerInt, Rarray);
1913   // initialize i & j (in delay slot)
1914   __ clr( Ri );
1915 
1916   // and start
1917   Label entry;
1918   __ ba(entry);
1919   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
1920   // (Rj is already in the native byte-ordering.)
1921 
1922   // binary search loop
1923   { Label loop;
1924     __ bind( loop );
1925     // int h = (i + j) >> 1;
1926     __ sra( Rh, 1, Rh );
1927     // if (key < array[h].fast_match()) {
1928     //   j = h;
1929     // } else {
1930     //   i = h;
1931     // }
1932     __ sll( Rh, log_entry_size, Rscratch );
1933     __ ld( Rarray, Rscratch, Rscratch );
1934     // (Rscratch is already in the native byte-ordering.)
1935     __ cmp( Rkey, Rscratch );
1936     __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
1937     __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
1938 
1939     // while (i+1 < j)
1940     __ bind( entry );
1941     __ add( Ri, 1, Rscratch );
1942     __ cmp(Rscratch, Rj);
1943     __ br( Assembler::less, true, Assembler::pt, loop );
1944     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
1945   }
1946 
1947   // end of binary search, result index is i (must check again!)
1948   Label default_case;
1949   Label continue_execution;
1950   if (ProfileInterpreter) {
1951     __ mov( Ri, Rh );              // Save index in i for profiling
1952   }
1953   __ sll( Ri, log_entry_size, Ri );
1954   __ ld( Rarray, Ri, Rscratch );
1955   // (Rscratch is already in the native byte-ordering.)
1956   __ cmp( Rkey, Rscratch );
1957   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
1958   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
1959 
1960   // entry found -> j = offset
1961   __ inc( Ri, BytesPerInt );
1962   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
1963   __ ld( Rarray, Ri, Rj );
1964   // (Rj is already in the native byte-ordering.)
1965 
1966   if (ProfileInterpreter) {
1967     __ ba_short(continue_execution);
1968   }
1969 
1970   __ bind(default_case); // fall through (if not profiling)
1971   __ profile_switch_default(Ri);
1972 
1973   __ bind(continue_execution);
1974   __ add( Lbcp, Rj, Lbcp );
1975   __ dispatch_next( vtos );
1976 }
1977 
1978 
1979 void TemplateTable::_return(TosState state) {
1980   transition(state, state);
1981   assert(_desc->calls_vm(), "inconsistent calls_vm information");
1982 
1983   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
1984     assert(state == vtos, "only valid state");
1985     __ mov(G0, G3_scratch);
1986     __ access_local_ptr(G3_scratch, Otos_i);
1987     __ load_klass(Otos_i, O2);
1988     __ set(JVM_ACC_HAS_FINALIZER, G3);
1989     __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
1990     __ andcc(G3, O2, G0);
1991     Label skip_register_finalizer;
1992     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
1993     __ delayed()->nop();
1994 
1995     // Call out to do finalizer registration
1996     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
1997 
1998     __ bind(skip_register_finalizer);
1999   }
2000 
2001   __ remove_activation(state, /* throw_monitor_exception */ true);
2002 
2003   // The caller's SP was adjusted upon method entry to accomodate
2004   // the callee's non-argument locals. Undo that adjustment.
2005   __ ret();                             // return to caller
2006   __ delayed()->restore(I5_savedSP, G0, SP);
2007 }
2008 
2009 
2010 // ----------------------------------------------------------------------------
2011 // Volatile variables demand their effects be made known to all CPU's in
2012 // order.  Store buffers on most chips allow reads & writes to reorder; the
2013 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2014 // memory barrier (i.e., it's not sufficient that the interpreter does not
2015 // reorder volatile references, the hardware also must not reorder them).
2016 //
2017 // According to the new Java Memory Model (JMM):
2018 // (1) All volatiles are serialized wrt to each other.
2019 // ALSO reads & writes act as aquire & release, so:
2020 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2021 // the read float up to before the read.  It's OK for non-volatile memory refs
2022 // that happen before the volatile read to float down below it.
2023 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2024 // that happen BEFORE the write float down to after the write.  It's OK for
2025 // non-volatile memory refs that happen after the volatile write to float up
2026 // before it.
2027 //
2028 // We only put in barriers around volatile refs (they are expensive), not
2029 // _between_ memory refs (that would require us to track the flavor of the
2030 // previous memory refs).  Requirements (2) and (3) require some barriers
2031 // before volatile stores and after volatile loads.  These nearly cover
2032 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2033 // case is placed after volatile-stores although it could just as well go
2034 // before volatile-loads.
2035 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
2036   // Helper function to insert a is-volatile test and memory barrier
2037   // All current sparc implementations run in TSO, needing only StoreLoad
2038   if ((order_constraint & Assembler::StoreLoad) == 0) return;
2039   __ membar( order_constraint );
2040 }
2041 
2042 // ----------------------------------------------------------------------------
2043 void TemplateTable::resolve_cache_and_index(int byte_no,
2044                                             Register Rcache,
2045                                             Register index,
2046                                             size_t index_size) {
2047   // Depends on cpCacheOop layout!
2048   Label resolved;
2049 
2050     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2051     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
2052     __ cmp(Lbyte_code, (int) bytecode());  // have we resolved this bytecode?
2053     __ br(Assembler::equal, false, Assembler::pt, resolved);
2054     __ delayed()->set((int)bytecode(), O1);
2055 
2056   address entry;
2057   switch (bytecode()) {
2058     case Bytecodes::_getstatic      : // fall through
2059     case Bytecodes::_putstatic      : // fall through
2060     case Bytecodes::_getfield       : // fall through
2061     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2062     case Bytecodes::_invokevirtual  : // fall through
2063     case Bytecodes::_invokespecial  : // fall through
2064     case Bytecodes::_invokestatic   : // fall through
2065     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
2066     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);  break;
2067     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
2068     default:
2069       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2070       break;
2071   }
2072   // first time invocation - must resolve first
2073   __ call_VM(noreg, entry, O1);
2074   // Update registers with resolved info
2075   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2076   __ bind(resolved);
2077 }
2078 
2079 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2080                                                Register method,
2081                                                Register itable_index,
2082                                                Register flags,
2083                                                bool is_invokevirtual,
2084                                                bool is_invokevfinal,
2085                                                bool is_invokedynamic) {
2086   // Uses both G3_scratch and G4_scratch
2087   Register cache = G3_scratch;
2088   Register index = G4_scratch;
2089   assert_different_registers(cache, method, itable_index);
2090 
2091   // determine constant pool cache field offsets
2092   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2093   const int method_offset = in_bytes(
2094       ConstantPoolCache::base_offset() +
2095       ((byte_no == f2_byte)
2096        ? ConstantPoolCacheEntry::f2_offset()
2097        : ConstantPoolCacheEntry::f1_offset()
2098       )
2099     );
2100   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2101                                     ConstantPoolCacheEntry::flags_offset());
2102   // access constant pool cache fields
2103   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2104                                     ConstantPoolCacheEntry::f2_offset());
2105 
2106   if (is_invokevfinal) {
2107     __ get_cache_and_index_at_bcp(cache, index, 1);
2108     __ ld_ptr(Address(cache, method_offset), method);
2109   } else {
2110     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2111     resolve_cache_and_index(byte_no, cache, index, index_size);
2112     __ ld_ptr(Address(cache, method_offset), method);
2113   }
2114 
2115   if (itable_index != noreg) {
2116     // pick up itable or appendix index from f2 also:
2117     __ ld_ptr(Address(cache, index_offset), itable_index);
2118   }
2119   __ ld_ptr(Address(cache, flags_offset), flags);
2120 }
2121 
2122 // The Rcache register must be set before call
2123 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2124                                               Register Rcache,
2125                                               Register index,
2126                                               Register Roffset,
2127                                               Register Rflags,
2128                                               bool is_static) {
2129   assert_different_registers(Rcache, Rflags, Roffset);
2130 
2131   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2132 
2133   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2134   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2135   if (is_static) {
2136     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
2137     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2138     __ ld_ptr( Robj, mirror_offset, Robj);
2139   }
2140 }
2141 
2142 // The registers Rcache and index expected to be set before call.
2143 // Correct values of the Rcache and index registers are preserved.
2144 void TemplateTable::jvmti_post_field_access(Register Rcache,
2145                                             Register index,
2146                                             bool is_static,
2147                                             bool has_tos) {
2148   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2149 
2150   if (JvmtiExport::can_post_field_access()) {
2151     // Check to see if a field access watch has been set before we take
2152     // the time to call into the VM.
2153     Label Label1;
2154     assert_different_registers(Rcache, index, G1_scratch);
2155     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
2156     __ load_contents(get_field_access_count_addr, G1_scratch);
2157     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
2158 
2159     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
2160 
2161     if (is_static) {
2162       __ clr(Otos_i);
2163     } else {
2164       if (has_tos) {
2165       // save object pointer before call_VM() clobbers it
2166         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
2167       } else {
2168         // Load top of stack (do not pop the value off the stack);
2169         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
2170       }
2171       __ verify_oop(Otos_i);
2172     }
2173     // Otos_i: object pointer or NULL if static
2174     // Rcache: cache entry pointer
2175     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2176                Otos_i, Rcache);
2177     if (!is_static && has_tos) {
2178       __ pop_ptr(Otos_i);  // restore object pointer
2179       __ verify_oop(Otos_i);
2180     }
2181     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2182     __ bind(Label1);
2183   }
2184 }
2185 
2186 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2187   transition(vtos, vtos);
2188 
2189   Register Rcache = G3_scratch;
2190   Register index  = G4_scratch;
2191   Register Rclass = Rcache;
2192   Register Roffset= G4_scratch;
2193   Register Rflags = G1_scratch;
2194   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2195 
2196   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2197   jvmti_post_field_access(Rcache, index, is_static, false);
2198   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2199 
2200   if (!is_static) {
2201     pop_and_check_object(Rclass);
2202   } else {
2203     __ verify_oop(Rclass);
2204   }
2205 
2206   Label exit;
2207 
2208   Assembler::Membar_mask_bits membar_bits =
2209     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2210 
2211   if (__ membar_has_effect(membar_bits)) {
2212     // Get volatile flag
2213     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2214     __ and3(Rflags, Lscratch, Lscratch);
2215   }
2216 
2217   Label checkVolatile;
2218 
2219   // compute field type
2220   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
2221   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2222   // Make sure we don't need to mask Rflags after the above shift
2223   ConstantPoolCacheEntry::verify_tos_state_shift();
2224 
2225   // Check atos before itos for getstatic, more likely (in Queens at least)
2226   __ cmp(Rflags, atos);
2227   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2228   __ delayed() ->cmp(Rflags, itos);
2229 
2230   // atos
2231   __ load_heap_oop(Rclass, Roffset, Otos_i);
2232   __ verify_oop(Otos_i);
2233   __ push(atos);
2234   if (!is_static) {
2235     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
2236   }
2237   __ ba(checkVolatile);
2238   __ delayed()->tst(Lscratch);
2239 
2240   __ bind(notObj);
2241 
2242   // cmp(Rflags, itos);
2243   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2244   __ delayed() ->cmp(Rflags, ltos);
2245 
2246   // itos
2247   __ ld(Rclass, Roffset, Otos_i);
2248   __ push(itos);
2249   if (!is_static) {
2250     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
2251   }
2252   __ ba(checkVolatile);
2253   __ delayed()->tst(Lscratch);
2254 
2255   __ bind(notInt);
2256 
2257   // cmp(Rflags, ltos);
2258   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2259   __ delayed() ->cmp(Rflags, btos);
2260 
2261   // ltos
2262   // load must be atomic
2263   __ ld_long(Rclass, Roffset, Otos_l);
2264   __ push(ltos);
2265   if (!is_static) {
2266     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
2267   }
2268   __ ba(checkVolatile);
2269   __ delayed()->tst(Lscratch);
2270 
2271   __ bind(notLong);
2272 
2273   // cmp(Rflags, btos);
2274   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2275   __ delayed() ->cmp(Rflags, ctos);
2276 
2277   // btos
2278   __ ldsb(Rclass, Roffset, Otos_i);
2279   __ push(itos);
2280   if (!is_static) {
2281     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2282   }
2283   __ ba(checkVolatile);
2284   __ delayed()->tst(Lscratch);
2285 
2286   __ bind(notByte);
2287 
2288   // cmp(Rflags, ctos);
2289   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2290   __ delayed() ->cmp(Rflags, stos);
2291 
2292   // ctos
2293   __ lduh(Rclass, Roffset, Otos_i);
2294   __ push(itos);
2295   if (!is_static) {
2296     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
2297   }
2298   __ ba(checkVolatile);
2299   __ delayed()->tst(Lscratch);
2300 
2301   __ bind(notChar);
2302 
2303   // cmp(Rflags, stos);
2304   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2305   __ delayed() ->cmp(Rflags, ftos);
2306 
2307   // stos
2308   __ ldsh(Rclass, Roffset, Otos_i);
2309   __ push(itos);
2310   if (!is_static) {
2311     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
2312   }
2313   __ ba(checkVolatile);
2314   __ delayed()->tst(Lscratch);
2315 
2316   __ bind(notShort);
2317 
2318 
2319   // cmp(Rflags, ftos);
2320   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
2321   __ delayed() ->tst(Lscratch);
2322 
2323   // ftos
2324   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
2325   __ push(ftos);
2326   if (!is_static) {
2327     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
2328   }
2329   __ ba(checkVolatile);
2330   __ delayed()->tst(Lscratch);
2331 
2332   __ bind(notFloat);
2333 
2334 
2335   // dtos
2336   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
2337   __ push(dtos);
2338   if (!is_static) {
2339     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
2340   }
2341 
2342   __ bind(checkVolatile);
2343   if (__ membar_has_effect(membar_bits)) {
2344     // __ tst(Lscratch); executed in delay slot
2345     __ br(Assembler::zero, false, Assembler::pt, exit);
2346     __ delayed()->nop();
2347     volatile_barrier(membar_bits);
2348   }
2349 
2350   __ bind(exit);
2351 }
2352 
2353 
2354 void TemplateTable::getfield(int byte_no) {
2355   getfield_or_static(byte_no, false);
2356 }
2357 
2358 void TemplateTable::getstatic(int byte_no) {
2359   getfield_or_static(byte_no, true);
2360 }
2361 
2362 
2363 void TemplateTable::fast_accessfield(TosState state) {
2364   transition(atos, state);
2365   Register Rcache  = G3_scratch;
2366   Register index   = G4_scratch;
2367   Register Roffset = G4_scratch;
2368   Register Rflags  = Rcache;
2369   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2370 
2371   __ get_cache_and_index_at_bcp(Rcache, index, 1);
2372   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
2373 
2374   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2375 
2376   __ null_check(Otos_i);
2377   __ verify_oop(Otos_i);
2378 
2379   Label exit;
2380 
2381   Assembler::Membar_mask_bits membar_bits =
2382     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2383   if (__ membar_has_effect(membar_bits)) {
2384     // Get volatile flag
2385     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
2386     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2387   }
2388 
2389   switch (bytecode()) {
2390     case Bytecodes::_fast_bgetfield:
2391       __ ldsb(Otos_i, Roffset, Otos_i);
2392       break;
2393     case Bytecodes::_fast_cgetfield:
2394       __ lduh(Otos_i, Roffset, Otos_i);
2395       break;
2396     case Bytecodes::_fast_sgetfield:
2397       __ ldsh(Otos_i, Roffset, Otos_i);
2398       break;
2399     case Bytecodes::_fast_igetfield:
2400       __ ld(Otos_i, Roffset, Otos_i);
2401       break;
2402     case Bytecodes::_fast_lgetfield:
2403       __ ld_long(Otos_i, Roffset, Otos_l);
2404       break;
2405     case Bytecodes::_fast_fgetfield:
2406       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
2407       break;
2408     case Bytecodes::_fast_dgetfield:
2409       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
2410       break;
2411     case Bytecodes::_fast_agetfield:
2412       __ load_heap_oop(Otos_i, Roffset, Otos_i);
2413       break;
2414     default:
2415       ShouldNotReachHere();
2416   }
2417 
2418   if (__ membar_has_effect(membar_bits)) {
2419     __ btst(Lscratch, Rflags);
2420     __ br(Assembler::zero, false, Assembler::pt, exit);
2421     __ delayed()->nop();
2422     volatile_barrier(membar_bits);
2423     __ bind(exit);
2424   }
2425 
2426   if (state == atos) {
2427     __ verify_oop(Otos_i);    // does not blow flags!
2428   }
2429 }
2430 
2431 void TemplateTable::jvmti_post_fast_field_mod() {
2432   if (JvmtiExport::can_post_field_modification()) {
2433     // Check to see if a field modification watch has been set before we take
2434     // the time to call into the VM.
2435     Label done;
2436     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2437     __ load_contents(get_field_modification_count_addr, G4_scratch);
2438     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
2439     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
2440     __ verify_oop(G4_scratch);
2441     __ push_ptr(G4_scratch);    // put the object pointer back on tos
2442     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
2443     // Save tos values before call_VM() clobbers them. Since we have
2444     // to do it for every data type, we use the saved values as the
2445     // jvalue object.
2446     switch (bytecode()) {  // save tos values before call_VM() clobbers them
2447     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
2448     case Bytecodes::_fast_bputfield: // fall through
2449     case Bytecodes::_fast_sputfield: // fall through
2450     case Bytecodes::_fast_cputfield: // fall through
2451     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
2452     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
2453     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
2454     // get words in right order for use as jvalue object
2455     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
2456     }
2457     // setup pointer to jvalue object
2458     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
2459     // G4_scratch:  object pointer
2460     // G1_scratch: cache entry pointer
2461     // G3_scratch: jvalue object on the stack
2462     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
2463     switch (bytecode()) {             // restore tos values
2464     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
2465     case Bytecodes::_fast_bputfield: // fall through
2466     case Bytecodes::_fast_sputfield: // fall through
2467     case Bytecodes::_fast_cputfield: // fall through
2468     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
2469     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
2470     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
2471     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
2472     }
2473     __ bind(done);
2474   }
2475 }
2476 
2477 // The registers Rcache and index expected to be set before call.
2478 // The function may destroy various registers, just not the Rcache and index registers.
2479 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
2480   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2481 
2482   if (JvmtiExport::can_post_field_modification()) {
2483     // Check to see if a field modification watch has been set before we take
2484     // the time to call into the VM.
2485     Label Label1;
2486     assert_different_registers(Rcache, index, G1_scratch);
2487     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2488     __ load_contents(get_field_modification_count_addr, G1_scratch);
2489     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
2490 
2491     // The Rcache and index registers have been already set.
2492     // This allows to eliminate this call but the Rcache and index
2493     // registers must be correspondingly used after this line.
2494     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
2495 
2496     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
2497     if (is_static) {
2498       // Life is simple.  Null out the object pointer.
2499       __ clr(G4_scratch);
2500     } else {
2501       Register Rflags = G1_scratch;
2502       // Life is harder. The stack holds the value on top, followed by the
2503       // object.  We don't know the size of the value, though; it could be
2504       // one or two words depending on its type. As a result, we must find
2505       // the type to determine where the object is.
2506 
2507       Label two_word, valsizeknown;
2508       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2509       __ mov(Lesp, G4_scratch);
2510       __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2511       // Make sure we don't need to mask Rflags after the above shift
2512       ConstantPoolCacheEntry::verify_tos_state_shift();
2513       __ cmp(Rflags, ltos);
2514       __ br(Assembler::equal, false, Assembler::pt, two_word);
2515       __ delayed()->cmp(Rflags, dtos);
2516       __ br(Assembler::equal, false, Assembler::pt, two_word);
2517       __ delayed()->nop();
2518       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
2519       __ ba_short(valsizeknown);
2520       __ bind(two_word);
2521 
2522       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
2523 
2524       __ bind(valsizeknown);
2525       // setup object pointer
2526       __ ld_ptr(G4_scratch, 0, G4_scratch);
2527       __ verify_oop(G4_scratch);
2528     }
2529     // setup pointer to jvalue object
2530     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
2531     // G4_scratch:  object pointer or NULL if static
2532     // G3_scratch: cache entry pointer
2533     // G1_scratch: jvalue object on the stack
2534     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2535                G4_scratch, G3_scratch, G1_scratch);
2536     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2537     __ bind(Label1);
2538   }
2539 }
2540 
2541 void TemplateTable::pop_and_check_object(Register r) {
2542   __ pop_ptr(r);
2543   __ null_check(r);  // for field access must check obj.
2544   __ verify_oop(r);
2545 }
2546 
2547 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2548   transition(vtos, vtos);
2549   Register Rcache = G3_scratch;
2550   Register index  = G4_scratch;
2551   Register Rclass = Rcache;
2552   Register Roffset= G4_scratch;
2553   Register Rflags = G1_scratch;
2554   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2555 
2556   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2557   jvmti_post_field_mod(Rcache, index, is_static);
2558   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2559 
2560   Assembler::Membar_mask_bits read_bits =
2561     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2562   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2563 
2564   Label notVolatile, checkVolatile, exit;
2565   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2566     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2567     __ and3(Rflags, Lscratch, Lscratch);
2568 
2569     if (__ membar_has_effect(read_bits)) {
2570       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2571       volatile_barrier(read_bits);
2572       __ bind(notVolatile);
2573     }
2574   }
2575 
2576   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2577   // Make sure we don't need to mask Rflags after the above shift
2578   ConstantPoolCacheEntry::verify_tos_state_shift();
2579 
2580   // compute field type
2581   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
2582 
2583   if (is_static) {
2584     // putstatic with object type most likely, check that first
2585     __ cmp(Rflags, atos);
2586     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2587     __ delayed()->cmp(Rflags, itos);
2588 
2589     // atos
2590     {
2591       __ pop_ptr();
2592       __ verify_oop(Otos_i);
2593       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2594       __ ba(checkVolatile);
2595       __ delayed()->tst(Lscratch);
2596     }
2597 
2598     __ bind(notObj);
2599     // cmp(Rflags, itos);
2600     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2601     __ delayed()->cmp(Rflags, btos);
2602 
2603     // itos
2604     {
2605       __ pop_i();
2606       __ st(Otos_i, Rclass, Roffset);
2607       __ ba(checkVolatile);
2608       __ delayed()->tst(Lscratch);
2609     }
2610 
2611     __ bind(notInt);
2612   } else {
2613     // putfield with int type most likely, check that first
2614     __ cmp(Rflags, itos);
2615     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2616     __ delayed()->cmp(Rflags, atos);
2617 
2618     // itos
2619     {
2620       __ pop_i();
2621       pop_and_check_object(Rclass);
2622       __ st(Otos_i, Rclass, Roffset);
2623       patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
2624       __ ba(checkVolatile);
2625       __ delayed()->tst(Lscratch);
2626     }
2627 
2628     __ bind(notInt);
2629     // cmp(Rflags, atos);
2630     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2631     __ delayed()->cmp(Rflags, btos);
2632 
2633     // atos
2634     {
2635       __ pop_ptr();
2636       pop_and_check_object(Rclass);
2637       __ verify_oop(Otos_i);
2638       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2639       patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
2640       __ ba(checkVolatile);
2641       __ delayed()->tst(Lscratch);
2642     }
2643 
2644     __ bind(notObj);
2645   }
2646 
2647   // cmp(Rflags, btos);
2648   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2649   __ delayed()->cmp(Rflags, ltos);
2650 
2651   // btos
2652   {
2653     __ pop_i();
2654     if (!is_static) pop_and_check_object(Rclass);
2655     __ stb(Otos_i, Rclass, Roffset);
2656     if (!is_static) {
2657       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
2658     }
2659     __ ba(checkVolatile);
2660     __ delayed()->tst(Lscratch);
2661   }
2662 
2663   __ bind(notByte);
2664   // cmp(Rflags, ltos);
2665   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2666   __ delayed()->cmp(Rflags, ctos);
2667 
2668   // ltos
2669   {
2670     __ pop_l();
2671     if (!is_static) pop_and_check_object(Rclass);
2672     __ st_long(Otos_l, Rclass, Roffset);
2673     if (!is_static) {
2674       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
2675     }
2676     __ ba(checkVolatile);
2677     __ delayed()->tst(Lscratch);
2678   }
2679 
2680   __ bind(notLong);
2681   // cmp(Rflags, ctos);
2682   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2683   __ delayed()->cmp(Rflags, stos);
2684 
2685   // ctos (char)
2686   {
2687     __ pop_i();
2688     if (!is_static) pop_and_check_object(Rclass);
2689     __ sth(Otos_i, Rclass, Roffset);
2690     if (!is_static) {
2691       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
2692     }
2693     __ ba(checkVolatile);
2694     __ delayed()->tst(Lscratch);
2695   }
2696 
2697   __ bind(notChar);
2698   // cmp(Rflags, stos);
2699   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2700   __ delayed()->cmp(Rflags, ftos);
2701 
2702   // stos (short)
2703   {
2704     __ pop_i();
2705     if (!is_static) pop_and_check_object(Rclass);
2706     __ sth(Otos_i, Rclass, Roffset);
2707     if (!is_static) {
2708       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
2709     }
2710     __ ba(checkVolatile);
2711     __ delayed()->tst(Lscratch);
2712   }
2713 
2714   __ bind(notShort);
2715   // cmp(Rflags, ftos);
2716   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
2717   __ delayed()->nop();
2718 
2719   // ftos
2720   {
2721     __ pop_f();
2722     if (!is_static) pop_and_check_object(Rclass);
2723     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2724     if (!is_static) {
2725       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
2726     }
2727     __ ba(checkVolatile);
2728     __ delayed()->tst(Lscratch);
2729   }
2730 
2731   __ bind(notFloat);
2732 
2733   // dtos
2734   {
2735     __ pop_d();
2736     if (!is_static) pop_and_check_object(Rclass);
2737     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2738     if (!is_static) {
2739       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
2740     }
2741   }
2742 
2743   __ bind(checkVolatile);
2744   __ tst(Lscratch);
2745 
2746   if (__ membar_has_effect(write_bits)) {
2747     // __ tst(Lscratch); in delay slot
2748     __ br(Assembler::zero, false, Assembler::pt, exit);
2749     __ delayed()->nop();
2750     volatile_barrier(Assembler::StoreLoad);
2751     __ bind(exit);
2752   }
2753 }
2754 
2755 void TemplateTable::fast_storefield(TosState state) {
2756   transition(state, vtos);
2757   Register Rcache = G3_scratch;
2758   Register Rclass = Rcache;
2759   Register Roffset= G4_scratch;
2760   Register Rflags = G1_scratch;
2761   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2762 
2763   jvmti_post_fast_field_mod();
2764 
2765   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
2766 
2767   Assembler::Membar_mask_bits read_bits =
2768     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2769   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2770 
2771   Label notVolatile, checkVolatile, exit;
2772   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2773     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2774     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2775     __ and3(Rflags, Lscratch, Lscratch);
2776     if (__ membar_has_effect(read_bits)) {
2777       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2778       volatile_barrier(read_bits);
2779       __ bind(notVolatile);
2780     }
2781   }
2782 
2783   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2784   pop_and_check_object(Rclass);
2785 
2786   switch (bytecode()) {
2787     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
2788     case Bytecodes::_fast_cputfield: /* fall through */
2789     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
2790     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
2791     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
2792     case Bytecodes::_fast_fputfield:
2793       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2794       break;
2795     case Bytecodes::_fast_dputfield:
2796       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2797       break;
2798     case Bytecodes::_fast_aputfield:
2799       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2800       break;
2801     default:
2802       ShouldNotReachHere();
2803   }
2804 
2805   if (__ membar_has_effect(write_bits)) {
2806     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
2807     volatile_barrier(Assembler::StoreLoad);
2808     __ bind(exit);
2809   }
2810 }
2811 
2812 
2813 void TemplateTable::putfield(int byte_no) {
2814   putfield_or_static(byte_no, false);
2815 }
2816 
2817 void TemplateTable::putstatic(int byte_no) {
2818   putfield_or_static(byte_no, true);
2819 }
2820 
2821 
2822 void TemplateTable::fast_xaccess(TosState state) {
2823   transition(vtos, state);
2824   Register Rcache = G3_scratch;
2825   Register Roffset = G4_scratch;
2826   Register Rflags  = G4_scratch;
2827   Register Rreceiver = Lscratch;
2828 
2829   __ ld_ptr(Llocals, 0, Rreceiver);
2830 
2831   // access constant pool cache  (is resolved)
2832   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
2833   __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
2834   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
2835 
2836   __ verify_oop(Rreceiver);
2837   __ null_check(Rreceiver);
2838   if (state == atos) {
2839     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
2840   } else if (state == itos) {
2841     __ ld (Rreceiver, Roffset, Otos_i) ;
2842   } else if (state == ftos) {
2843     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
2844   } else {
2845     ShouldNotReachHere();
2846   }
2847 
2848   Assembler::Membar_mask_bits membar_bits =
2849     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2850   if (__ membar_has_effect(membar_bits)) {
2851 
2852     // Get is_volatile value in Rflags and check if membar is needed
2853     __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
2854 
2855     // Test volatile
2856     Label notVolatile;
2857     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2858     __ btst(Rflags, Lscratch);
2859     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2860     __ delayed()->nop();
2861     volatile_barrier(membar_bits);
2862     __ bind(notVolatile);
2863   }
2864 
2865   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
2866   __ sub(Lbcp, 1, Lbcp);
2867 }
2868 
2869 //----------------------------------------------------------------------------------------------------
2870 // Calls
2871 
2872 void TemplateTable::count_calls(Register method, Register temp) {
2873   // implemented elsewhere
2874   ShouldNotReachHere();
2875 }
2876 
2877 void TemplateTable::prepare_invoke(int byte_no,
2878                                    Register method,  // linked method (or i-klass)
2879                                    Register ra,      // return address
2880                                    Register index,   // itable index, MethodType, etc.
2881                                    Register recv,    // if caller wants to see it
2882                                    Register flags    // if caller wants to test it
2883                                    ) {
2884   // determine flags
2885   const Bytecodes::Code code = bytecode();
2886   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2887   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2888   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2889   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2890   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2891   const bool load_receiver       = (recv != noreg);
2892   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2893   assert(recv  == noreg || recv  == O0, "");
2894   assert(flags == noreg || flags == O1, "");
2895 
2896   // setup registers & access constant pool cache
2897   if (recv  == noreg)  recv  = O0;
2898   if (flags == noreg)  flags = O1;
2899   const Register temp = O2;
2900   assert_different_registers(method, ra, index, recv, flags, temp);
2901 
2902   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2903 
2904   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
2905 
2906   // maybe push appendix to arguments
2907   if (is_invokedynamic || is_invokehandle) {
2908     Label L_no_push;
2909     __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
2910     __ btst(flags, temp);
2911     __ br(Assembler::zero, false, Assembler::pt, L_no_push);
2912     __ delayed()->nop();
2913     // Push the appendix as a trailing parameter.
2914     // This must be done before we get the receiver,
2915     // since the parameter_size includes it.
2916     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2917     __ load_resolved_reference_at_index(temp, index);
2918     __ verify_oop(temp);
2919     __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
2920     __ bind(L_no_push);
2921   }
2922 
2923   // load receiver if needed (after appendix is pushed so parameter size is correct)
2924   if (load_receiver) {
2925     __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
2926     __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
2927     __ verify_oop(recv);
2928   }
2929 
2930   // compute return type
2931   __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
2932   // Make sure we don't need to mask flags after the above shift
2933   ConstantPoolCacheEntry::verify_tos_state_shift();
2934   // load return address
2935   {
2936     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2937     AddressLiteral table(table_addr);
2938     __ set(table, temp);
2939     __ sll(ra, LogBytesPerWord, ra);
2940     __ ld_ptr(Address(temp, ra), ra);
2941   }
2942 }
2943 
2944 
2945 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
2946   Register Rcall = Rindex;
2947   assert_different_registers(Rcall, G5_method, Gargs, Rret);
2948 
2949   // get target Method* & entry point
2950   __ lookup_virtual_method(Rrecv, Rindex, G5_method);
2951   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
2952   __ call_from_interpreter(Rcall, Gargs, Rret);
2953 }
2954 
2955 void TemplateTable::invokevirtual(int byte_no) {
2956   transition(vtos, vtos);
2957   assert(byte_no == f2_byte, "use this argument");
2958 
2959   Register Rscratch = G3_scratch;
2960   Register Rtemp    = G4_scratch;
2961   Register Rret     = Lscratch;
2962   Register O0_recv  = O0;
2963   Label notFinal;
2964 
2965   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
2966   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2967 
2968   // Check for vfinal
2969   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
2970   __ btst(Rret, G4_scratch);
2971   __ br(Assembler::zero, false, Assembler::pt, notFinal);
2972   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
2973 
2974   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
2975 
2976   invokevfinal_helper(Rscratch, Rret);
2977 
2978   __ bind(notFinal);
2979 
2980   __ mov(G5_method, Rscratch);  // better scratch register
2981   __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
2982   // receiver is in O0_recv
2983   __ verify_oop(O0_recv);
2984 
2985   // get return address
2986   AddressLiteral table(Interpreter::invoke_return_entry_table());
2987   __ set(table, Rtemp);
2988   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
2989   // Make sure we don't need to mask Rret after the above shift
2990   ConstantPoolCacheEntry::verify_tos_state_shift();
2991   __ sll(Rret,  LogBytesPerWord, Rret);
2992   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
2993 
2994   // get receiver klass
2995   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
2996   __ load_klass(O0_recv, O0_recv);
2997   __ verify_klass_ptr(O0_recv);
2998 
2999   __ profile_virtual_call(O0_recv, O4);
3000 
3001   generate_vtable_call(O0_recv, Rscratch, Rret);
3002 }
3003 
3004 void TemplateTable::fast_invokevfinal(int byte_no) {
3005   transition(vtos, vtos);
3006   assert(byte_no == f2_byte, "use this argument");
3007 
3008   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
3009                              /*is_invokevfinal*/true, false);
3010   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3011   invokevfinal_helper(G3_scratch, Lscratch);
3012 }
3013 
3014 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
3015   Register Rtemp = G4_scratch;
3016 
3017   // Load receiver from stack slot
3018   __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
3019   __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
3020   __ load_receiver(G4_scratch, O0);
3021 
3022   // receiver NULL check
3023   __ null_check(O0);
3024 
3025   __ profile_final_call(O4);
3026   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3027 
3028   // get return address
3029   AddressLiteral table(Interpreter::invoke_return_entry_table());
3030   __ set(table, Rtemp);
3031   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3032   // Make sure we don't need to mask Rret after the above shift
3033   ConstantPoolCacheEntry::verify_tos_state_shift();
3034   __ sll(Rret,  LogBytesPerWord, Rret);
3035   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3036 
3037 
3038   // do the call
3039   __ call_from_interpreter(Rscratch, Gargs, Rret);
3040 }
3041 
3042 
3043 void TemplateTable::invokespecial(int byte_no) {
3044   transition(vtos, vtos);
3045   assert(byte_no == f1_byte, "use this argument");
3046 
3047   const Register Rret     = Lscratch;
3048   const Register O0_recv  = O0;
3049   const Register Rscratch = G3_scratch;
3050 
3051   prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
3052   __ null_check(O0_recv);
3053 
3054   // do the call
3055   __ profile_call(O4);
3056   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3057   __ call_from_interpreter(Rscratch, Gargs, Rret);
3058 }
3059 
3060 
3061 void TemplateTable::invokestatic(int byte_no) {
3062   transition(vtos, vtos);
3063   assert(byte_no == f1_byte, "use this argument");
3064 
3065   const Register Rret     = Lscratch;
3066   const Register Rscratch = G3_scratch;
3067 
3068   prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
3069 
3070   // do the call
3071   __ profile_call(O4);
3072   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3073   __ call_from_interpreter(Rscratch, Gargs, Rret);
3074 }
3075 
3076 void TemplateTable::invokeinterface_object_method(Register RKlass,
3077                                                   Register Rcall,
3078                                                   Register Rret,
3079                                                   Register Rflags) {
3080   Register Rscratch = G4_scratch;
3081   Register Rindex = Lscratch;
3082 
3083   assert_different_registers(Rscratch, Rindex, Rret);
3084 
3085   Label notFinal;
3086 
3087   // Check for vfinal
3088   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
3089   __ btst(Rflags, Rscratch);
3090   __ br(Assembler::zero, false, Assembler::pt, notFinal);
3091   __ delayed()->nop();
3092 
3093   __ profile_final_call(O4);
3094 
3095   // do the call - the index (f2) contains the Method*
3096   assert_different_registers(G5_method, Gargs, Rcall);
3097   __ mov(Rindex, G5_method);
3098   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3099   __ call_from_interpreter(Rcall, Gargs, Rret);
3100   __ bind(notFinal);
3101 
3102   __ profile_virtual_call(RKlass, O4);
3103   generate_vtable_call(RKlass, Rindex, Rret);
3104 }
3105 
3106 
3107 void TemplateTable::invokeinterface(int byte_no) {
3108   transition(vtos, vtos);
3109   assert(byte_no == f1_byte, "use this argument");
3110 
3111   const Register Rinterface  = G1_scratch;
3112   const Register Rret        = G3_scratch;
3113   const Register Rindex      = Lscratch;
3114   const Register O0_recv     = O0;
3115   const Register O1_flags    = O1;
3116   const Register O2_Klass    = O2;
3117   const Register Rscratch    = G4_scratch;
3118   assert_different_registers(Rscratch, G5_method);
3119 
3120   prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags);
3121 
3122   // get receiver klass
3123   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3124   __ load_klass(O0_recv, O2_Klass);
3125 
3126   // Special case of invokeinterface called for virtual method of
3127   // java.lang.Object.  See cpCacheOop.cpp for details.
3128   // This code isn't produced by javac, but could be produced by
3129   // another compliant java compiler.
3130   Label notMethod;
3131   __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
3132   __ btst(O1_flags, Rscratch);
3133   __ br(Assembler::zero, false, Assembler::pt, notMethod);
3134   __ delayed()->nop();
3135 
3136   invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
3137 
3138   __ bind(notMethod);
3139 
3140   __ profile_virtual_call(O2_Klass, O4);
3141 
3142   //
3143   // find entry point to call
3144   //
3145 
3146   // compute start of first itableOffsetEntry (which is at end of vtable)
3147   const int base = InstanceKlass::vtable_start_offset() * wordSize;
3148   Label search;
3149   Register Rtemp = O1_flags;
3150 
3151   __ ld(O2_Klass, InstanceKlass::vtable_length_offset() * wordSize, Rtemp);
3152   if (align_object_offset(1) > 1) {
3153     __ round_to(Rtemp, align_object_offset(1));
3154   }
3155   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
3156   if (Assembler::is_simm13(base)) {
3157     __ add(Rtemp, base, Rtemp);
3158   } else {
3159     __ set(base, Rscratch);
3160     __ add(Rscratch, Rtemp, Rtemp);
3161   }
3162   __ add(O2_Klass, Rtemp, Rscratch);
3163 
3164   __ bind(search);
3165 
3166   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
3167   {
3168     Label ok;
3169 
3170     // Check that entry is non-null.  Null entries are probably a bytecode
3171     // problem.  If the interface isn't implemented by the receiver class,
3172     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
3173     // this too but that's only if the entry isn't already resolved, so we
3174     // need to check again.
3175     __ br_notnull_short( Rtemp, Assembler::pt, ok);
3176     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3177     __ should_not_reach_here();
3178     __ bind(ok);
3179   }
3180 
3181   __ cmp(Rinterface, Rtemp);
3182   __ brx(Assembler::notEqual, true, Assembler::pn, search);
3183   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
3184 
3185   // entry found and Rscratch points to it
3186   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
3187 
3188   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
3189   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
3190   __ add(Rscratch, Rindex, Rscratch);
3191   __ ld_ptr(O2_Klass, Rscratch, G5_method);
3192 
3193   // Check for abstract method error.
3194   {
3195     Label ok;
3196     __ br_notnull_short(G5_method, Assembler::pt, ok);
3197     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3198     __ should_not_reach_here();
3199     __ bind(ok);
3200   }
3201 
3202   Register Rcall = Rinterface;
3203   assert_different_registers(Rcall, G5_method, Gargs, Rret);
3204 
3205   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3206   __ call_from_interpreter(Rcall, Gargs, Rret);
3207 }
3208 
3209 void TemplateTable::invokehandle(int byte_no) {
3210   transition(vtos, vtos);
3211   assert(byte_no == f1_byte, "use this argument");
3212 
3213   const Register Rret       = Lscratch;
3214   const Register G4_mtype   = G4_scratch;
3215   const Register O0_recv    = O0;
3216   const Register Rscratch   = G3_scratch;
3217 
3218   prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
3219   __ null_check(O0_recv);
3220 
3221   // G4: MethodType object (from cpool->resolved_references[f1], if necessary)
3222   // G5: MH.invokeExact_MT method (from f2)
3223 
3224   // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
3225 
3226   // do the call
3227   __ verify_oop(G4_mtype);
3228   __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
3229   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3230   __ call_from_interpreter(Rscratch, Gargs, Rret);
3231 }
3232 
3233 
3234 void TemplateTable::invokedynamic(int byte_no) {
3235   transition(vtos, vtos);
3236   assert(byte_no == f1_byte, "use this argument");
3237 
3238   const Register Rret        = Lscratch;
3239   const Register G4_callsite = G4_scratch;
3240   const Register Rscratch    = G3_scratch;
3241 
3242   prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
3243 
3244   // G4: CallSite object (from cpool->resolved_references[f1])
3245   // G5: MH.linkToCallSite method (from f2)
3246 
3247   // Note:  G4_callsite is already pushed by prepare_invoke
3248 
3249   // %%% should make a type profile for any invokedynamic that takes a ref argument
3250   // profile this call
3251   __ profile_call(O4);
3252 
3253   // do the call
3254   __ verify_oop(G4_callsite);
3255   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3256   __ call_from_interpreter(Rscratch, Gargs, Rret);
3257 }
3258 
3259 
3260 //----------------------------------------------------------------------------------------------------
3261 // Allocation
3262 
3263 void TemplateTable::_new() {
3264   transition(vtos, atos);
3265 
3266   Label slow_case;
3267   Label done;
3268   Label initialize_header;
3269   Label initialize_object;  // including clearing the fields
3270 
3271   Register RallocatedObject = Otos_i;
3272   Register RinstanceKlass = O1;
3273   Register Roffset = O3;
3274   Register Rscratch = O4;
3275 
3276   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3277   __ get_cpool_and_tags(Rscratch, G3_scratch);
3278   // make sure the class we're about to instantiate has been resolved
3279   // This is done before loading InstanceKlass to be consistent with the order
3280   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3281   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3282   __ ldub(G3_scratch, Roffset, G3_scratch);
3283   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3284   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3285   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3286   // get InstanceKlass
3287   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
3288   __ add(Roffset, sizeof(ConstantPool), Roffset);
3289   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
3290 
3291   // make sure klass is fully initialized:
3292   __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
3293   __ cmp(G3_scratch, InstanceKlass::fully_initialized);
3294   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3295   __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3296 
3297   // get instance_size in InstanceKlass (already aligned)
3298   //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3299 
3300   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
3301   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
3302   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
3303   __ delayed()->nop();
3304 
3305   // allocate the instance
3306   // 1) Try to allocate in the TLAB
3307   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
3308   // 3) if the above fails (or is not applicable), go to a slow case
3309   // (creates a new TLAB, etc.)
3310 
3311   const bool allow_shared_alloc =
3312     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3313 
3314   if(UseTLAB) {
3315     Register RoldTopValue = RallocatedObject;
3316     Register RtlabWasteLimitValue = G3_scratch;
3317     Register RnewTopValue = G1_scratch;
3318     Register RendValue = Rscratch;
3319     Register RfreeValue = RnewTopValue;
3320 
3321     // check if we can allocate in the TLAB
3322     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
3323     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
3324     __ add(RoldTopValue, Roffset, RnewTopValue);
3325 
3326     // if there is enough space, we do not CAS and do not clear
3327     __ cmp(RnewTopValue, RendValue);
3328     if(ZeroTLAB) {
3329       // the fields have already been cleared
3330       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
3331     } else {
3332       // initialize both the header and fields
3333       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
3334     }
3335     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3336 
3337     if (allow_shared_alloc) {
3338       // Check if tlab should be discarded (refill_waste_limit >= free)
3339       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
3340       __ sub(RendValue, RoldTopValue, RfreeValue);
3341 #ifdef _LP64
3342       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
3343 #else
3344       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
3345 #endif
3346       __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
3347 
3348       // increment waste limit to prevent getting stuck on this slow path
3349       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
3350       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3351     } else {
3352       // No allocation in the shared eden.
3353       __ ba_short(slow_case);
3354     }
3355   }
3356 
3357   // Allocation in the shared Eden
3358   if (allow_shared_alloc) {
3359     Register RoldTopValue = G1_scratch;
3360     Register RtopAddr = G3_scratch;
3361     Register RnewTopValue = RallocatedObject;
3362     Register RendValue = Rscratch;
3363 
3364     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
3365 
3366     Label retry;
3367     __ bind(retry);
3368     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
3369     __ ld_ptr(RendValue, 0, RendValue);
3370     __ ld_ptr(RtopAddr, 0, RoldTopValue);
3371     __ add(RoldTopValue, Roffset, RnewTopValue);
3372 
3373     // RnewTopValue contains the top address after the new object
3374     // has been allocated.
3375     __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
3376 
3377     __ cas_ptr(RtopAddr, RoldTopValue, RnewTopValue);
3378 
3379     // if someone beat us on the allocation, try again, otherwise continue
3380     __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
3381 
3382     // bump total bytes allocated by this thread
3383     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
3384     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
3385   }
3386 
3387   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3388     // clear object fields
3389     __ bind(initialize_object);
3390     __ deccc(Roffset, sizeof(oopDesc));
3391     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
3392     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
3393 
3394     // initialize remaining object fields
3395     if (UseBlockZeroing) {
3396       // Use BIS for zeroing
3397       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
3398     } else {
3399       Label loop;
3400       __ subcc(Roffset, wordSize, Roffset);
3401       __ bind(loop);
3402       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
3403       __ st_ptr(G0, G3_scratch, Roffset);
3404       __ br(Assembler::notEqual, false, Assembler::pt, loop);
3405       __ delayed()->subcc(Roffset, wordSize, Roffset);
3406     }
3407     __ ba_short(initialize_header);
3408   }
3409 
3410   // slow case
3411   __ bind(slow_case);
3412   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
3413   __ get_constant_pool(O1);
3414 
3415   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
3416 
3417   __ ba_short(done);
3418 
3419   // Initialize the header: mark, klass
3420   __ bind(initialize_header);
3421 
3422   if (UseBiasedLocking) {
3423     __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
3424   } else {
3425     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
3426   }
3427   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
3428   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
3429   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
3430 
3431   {
3432     SkipIfEqual skip_if(
3433       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
3434     // Trigger dtrace event
3435     __ push(atos);
3436     __ call_VM_leaf(noreg,
3437        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
3438     __ pop(atos);
3439   }
3440 
3441   // continue
3442   __ bind(done);
3443 }
3444 
3445 
3446 
3447 void TemplateTable::newarray() {
3448   transition(itos, atos);
3449   __ ldub(Lbcp, 1, O1);
3450      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
3451 }
3452 
3453 
3454 void TemplateTable::anewarray() {
3455   transition(itos, atos);
3456   __ get_constant_pool(O1);
3457   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
3458      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
3459 }
3460 
3461 
3462 void TemplateTable::arraylength() {
3463   transition(atos, itos);
3464   Label ok;
3465   __ verify_oop(Otos_i);
3466   __ tst(Otos_i);
3467   __ throw_if_not_1_x( Assembler::notZero, ok );
3468   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
3469   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3470 }
3471 
3472 
3473 void TemplateTable::checkcast() {
3474   transition(atos, atos);
3475   Label done, is_null, quicked, cast_ok, resolved;
3476   Register Roffset = G1_scratch;
3477   Register RobjKlass = O5;
3478   Register RspecifiedKlass = O4;
3479 
3480   // Check for casting a NULL
3481   __ br_null_short(Otos_i, Assembler::pn, is_null);
3482 
3483   // Get value klass in RobjKlass
3484   __ load_klass(Otos_i, RobjKlass); // get value klass
3485 
3486   // Get constant pool tag
3487   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3488 
3489   // See if the checkcast has been quickened
3490   __ get_cpool_and_tags(Lscratch, G3_scratch);
3491   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3492   __ ldub(G3_scratch, Roffset, G3_scratch);
3493   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3494   __ br(Assembler::equal, true, Assembler::pt, quicked);
3495   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3496 
3497   __ push_ptr(); // save receiver for result, and for GC
3498   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3499   __ get_vm_result_2(RspecifiedKlass);
3500   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3501 
3502   __ ba_short(resolved);
3503 
3504   // Extract target class from constant pool
3505   __ bind(quicked);
3506   __ add(Roffset, sizeof(ConstantPool), Roffset);
3507   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3508   __ bind(resolved);
3509   __ load_klass(Otos_i, RobjKlass); // get value klass
3510 
3511   // Generate a fast subtype check.  Branch to cast_ok if no
3512   // failure.  Throw exception if failure.
3513   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
3514 
3515   // Not a subtype; so must throw exception
3516   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
3517 
3518   __ bind(cast_ok);
3519 
3520   if (ProfileInterpreter) {
3521     __ ba_short(done);
3522   }
3523   __ bind(is_null);
3524   __ profile_null_seen(G3_scratch);
3525   __ bind(done);
3526 }
3527 
3528 
3529 void TemplateTable::instanceof() {
3530   Label done, is_null, quicked, resolved;
3531   transition(atos, itos);
3532   Register Roffset = G1_scratch;
3533   Register RobjKlass = O5;
3534   Register RspecifiedKlass = O4;
3535 
3536   // Check for casting a NULL
3537   __ br_null_short(Otos_i, Assembler::pt, is_null);
3538 
3539   // Get value klass in RobjKlass
3540   __ load_klass(Otos_i, RobjKlass); // get value klass
3541 
3542   // Get constant pool tag
3543   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3544 
3545   // See if the checkcast has been quickened
3546   __ get_cpool_and_tags(Lscratch, G3_scratch);
3547   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3548   __ ldub(G3_scratch, Roffset, G3_scratch);
3549   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3550   __ br(Assembler::equal, true, Assembler::pt, quicked);
3551   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3552 
3553   __ push_ptr(); // save receiver for result, and for GC
3554   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3555   __ get_vm_result_2(RspecifiedKlass);
3556   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3557 
3558   __ ba_short(resolved);
3559 
3560   // Extract target class from constant pool
3561   __ bind(quicked);
3562   __ add(Roffset, sizeof(ConstantPool), Roffset);
3563   __ get_constant_pool(Lscratch);
3564   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3565   __ bind(resolved);
3566   __ load_klass(Otos_i, RobjKlass); // get value klass
3567 
3568   // Generate a fast subtype check.  Branch to cast_ok if no
3569   // failure.  Return 0 if failure.
3570   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
3571   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
3572   // Not a subtype; return 0;
3573   __ clr( Otos_i );
3574 
3575   if (ProfileInterpreter) {
3576     __ ba_short(done);
3577   }
3578   __ bind(is_null);
3579   __ profile_null_seen(G3_scratch);
3580   __ bind(done);
3581 }
3582 
3583 void TemplateTable::_breakpoint() {
3584 
3585    // Note: We get here even if we are single stepping..
3586    // jbug inists on setting breakpoints at every bytecode
3587    // even if we are in single step mode.
3588 
3589    transition(vtos, vtos);
3590    // get the unpatched byte code
3591    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
3592    __ mov(O0, Lbyte_code);
3593 
3594    // post the breakpoint event
3595    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
3596 
3597    // complete the execution of original bytecode
3598    __ dispatch_normal(vtos);
3599 }
3600 
3601 
3602 //----------------------------------------------------------------------------------------------------
3603 // Exceptions
3604 
3605 void TemplateTable::athrow() {
3606   transition(atos, vtos);
3607 
3608   // This works because exception is cached in Otos_i which is same as O0,
3609   // which is same as what throw_exception_entry_expects
3610   assert(Otos_i == Oexception, "see explanation above");
3611 
3612   __ verify_oop(Otos_i);
3613   __ null_check(Otos_i);
3614   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
3615 }
3616 
3617 
3618 //----------------------------------------------------------------------------------------------------
3619 // Synchronization
3620 
3621 
3622 // See frame_sparc.hpp for monitor block layout.
3623 // Monitor elements are dynamically allocated by growing stack as needed.
3624 
3625 void TemplateTable::monitorenter() {
3626   transition(atos, vtos);
3627   __ verify_oop(Otos_i);
3628   // Try to acquire a lock on the object
3629   // Repeat until succeeded (i.e., until
3630   // monitorenter returns true).
3631 
3632   {   Label ok;
3633     __ tst(Otos_i);
3634     __ throw_if_not_1_x( Assembler::notZero,  ok);
3635     __ delayed()->mov(Otos_i, Lscratch); // save obj
3636     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3637   }
3638 
3639   assert(O0 == Otos_i, "Be sure where the object to lock is");
3640 
3641   // find a free slot in the monitor block
3642 
3643 
3644   // initialize entry pointer
3645   __ clr(O1); // points to free slot or NULL
3646 
3647   {
3648     Label entry, loop, exit;
3649     __ add( __ top_most_monitor(), O2 ); // last one to check
3650     __ ba( entry );
3651     __ delayed()->mov( Lmonitors, O3 ); // first one to check
3652 
3653 
3654     __ bind( loop );
3655 
3656     __ verify_oop(O4);          // verify each monitor's oop
3657     __ tst(O4); // is this entry unused?
3658     __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
3659 
3660     __ cmp(O4, O0); // check if current entry is for same object
3661     __ brx( Assembler::equal, false, Assembler::pn, exit );
3662     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
3663 
3664     __ bind( entry );
3665 
3666     __ cmp( O3, O2 );
3667     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3668     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
3669 
3670     __ bind( exit );
3671   }
3672 
3673   { Label allocated;
3674 
3675     // found free slot?
3676     __ br_notnull_short(O1, Assembler::pn, allocated);
3677 
3678     __ add_monitor_to_stack( false, O2, O3 );
3679     __ mov(Lmonitors, O1);
3680 
3681     __ bind(allocated);
3682   }
3683 
3684   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3685   // The object has already been poped from the stack, so the expression stack looks correct.
3686   __ inc(Lbcp);
3687 
3688   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
3689   __ lock_object(O1, O0);
3690 
3691   // check if there's enough space on the stack for the monitors after locking
3692   __ generate_stack_overflow_check(0);
3693 
3694   // The bcp has already been incremented. Just need to dispatch to next instruction.
3695   __ dispatch_next(vtos);
3696 }
3697 
3698 
3699 void TemplateTable::monitorexit() {
3700   transition(atos, vtos);
3701   __ verify_oop(Otos_i);
3702   __ tst(Otos_i);
3703   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
3704 
3705   assert(O0 == Otos_i, "just checking");
3706 
3707   { Label entry, loop, found;
3708     __ add( __ top_most_monitor(), O2 ); // last one to check
3709     __ ba(entry);
3710     // use Lscratch to hold monitor elem to check, start with most recent monitor,
3711     // By using a local it survives the call to the C routine.
3712     __ delayed()->mov( Lmonitors, Lscratch );
3713 
3714     __ bind( loop );
3715 
3716     __ verify_oop(O4);          // verify each monitor's oop
3717     __ cmp(O4, O0); // check if current entry is for desired object
3718     __ brx( Assembler::equal, true, Assembler::pt, found );
3719     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
3720 
3721     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
3722 
3723     __ bind( entry );
3724 
3725     __ cmp( Lscratch, O2 );
3726     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3727     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
3728 
3729     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3730     __ should_not_reach_here();
3731 
3732     __ bind(found);
3733   }
3734   __ unlock_object(O1);
3735 }
3736 
3737 
3738 //----------------------------------------------------------------------------------------------------
3739 // Wide instructions
3740 
3741 void TemplateTable::wide() {
3742   transition(vtos, vtos);
3743   __ ldub(Lbcp, 1, G3_scratch);// get next bc
3744   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
3745   AddressLiteral ep(Interpreter::_wentry_point);
3746   __ set(ep, G4_scratch);
3747   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
3748   __ jmp(G3_scratch, G0);
3749   __ delayed()->nop();
3750   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
3751 }
3752 
3753 
3754 //----------------------------------------------------------------------------------------------------
3755 // Multi arrays
3756 
3757 void TemplateTable::multianewarray() {
3758   transition(vtos, atos);
3759      // put ndims * wordSize into Lscratch
3760   __ ldub( Lbcp,     3,               Lscratch);
3761   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
3762      // Lesp points past last_dim, so set to O1 to first_dim address
3763   __ add(  Lesp,     Lscratch,        O1);
3764      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
3765   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
3766 }
3767 #endif /* !CC_INTERP */