1 /*
   2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2013, 2014 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateInterpreter.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "memory/universe.inline.hpp"
  34 #include "oops/objArrayKlass.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/methodHandles.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "runtime/synchronizer.hpp"
  40 #include "utilities/macros.hpp"
  41 
  42 #ifndef CC_INTERP
  43 
  44 #undef __
  45 #define __ _masm->
  46 
  47 // ============================================================================
  48 // Misc helpers
  49 
  50 // Do an oop store like *(base + index) = val OR *(base + offset) = val
  51 // (only one of both variants is possible at the same time).
  52 // Index can be noreg.
  53 // Kills:
  54 //   Rbase, Rtmp
  55 static void do_oop_store(InterpreterMacroAssembler* _masm,
  56                          Register           Rbase,
  57                          RegisterOrConstant offset,
  58                          Register           Rval,         // Noreg means always null.
  59                          Register           Rtmp1,
  60                          Register           Rtmp2,
  61                          Register           Rtmp3,
  62                          BarrierSet::Name   barrier,
  63                          bool               precise,
  64                          bool               check_null) {
  65   assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase);
  66 
  67   switch (barrier) {
  68 #if INCLUDE_ALL_GCS
  69     case BarrierSet::G1SATBCT:
  70     case BarrierSet::G1SATBCTLogging:
  71       {
  72         // Load and record the previous value.
  73         __ g1_write_barrier_pre(Rbase, offset,
  74                                 Rtmp3, /* holder of pre_val ? */
  75                                 Rtmp1, Rtmp2, false /* frame */);
  76 
  77         Label Lnull, Ldone;
  78         if (Rval != noreg) {
  79           if (check_null) {
  80             __ cmpdi(CCR0, Rval, 0);
  81             __ beq(CCR0, Lnull);
  82           }
  83           __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1);
  84           // Mark the card.
  85           if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
  86             __ add(Rbase, offset, Rbase);
  87           }
  88           __ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone);
  89           if (check_null) { __ b(Ldone); }
  90         }
  91 
  92         if (Rval == noreg || check_null) { // Store null oop.
  93           Register Rnull = Rval;
  94           __ bind(Lnull);
  95           if (Rval == noreg) {
  96             Rnull = Rtmp1;
  97             __ li(Rnull, 0);
  98           }
  99           if (UseCompressedOops) {
 100             __ stw(Rnull, offset, Rbase);
 101           } else {
 102             __ std(Rnull, offset, Rbase);
 103           }
 104         }
 105         __ bind(Ldone);
 106       }
 107       break;
 108 #endif // INCLUDE_ALL_GCS
 109     case BarrierSet::CardTableModRef:
 110     case BarrierSet::CardTableExtension:
 111       {
 112         Label Lnull, Ldone;
 113         if (Rval != noreg) {
 114           if (check_null) {
 115             __ cmpdi(CCR0, Rval, 0);
 116             __ beq(CCR0, Lnull);
 117           }
 118           __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1);
 119           // Mark the card.
 120           if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
 121             __ add(Rbase, offset, Rbase);
 122           }
 123           __ card_write_barrier_post(Rbase, Rval, Rtmp1);
 124           if (check_null) {
 125             __ b(Ldone);
 126           }
 127         }
 128 
 129         if (Rval == noreg || check_null) { // Store null oop.
 130           Register Rnull = Rval;
 131           __ bind(Lnull);
 132           if (Rval == noreg) {
 133             Rnull = Rtmp1;
 134             __ li(Rnull, 0);
 135           }
 136           if (UseCompressedOops) {
 137             __ stw(Rnull, offset, Rbase);
 138           } else {
 139             __ std(Rnull, offset, Rbase);
 140           }
 141         }
 142         __ bind(Ldone);
 143       }
 144       break;
 145     case BarrierSet::ModRef:
 146     case BarrierSet::Other:
 147       ShouldNotReachHere();
 148       break;
 149     default:
 150       ShouldNotReachHere();
 151   }
 152 }
 153 
 154 // ============================================================================
 155 // Platform-dependent initialization
 156 
 157 void TemplateTable::pd_initialize() {
 158   // No ppc64 specific initialization.
 159 }
 160 
 161 Address TemplateTable::at_bcp(int offset) {
 162   // Not used on ppc.
 163   ShouldNotReachHere();
 164   return Address();
 165 }
 166 
 167 // Patches the current bytecode (ptr to it located in bcp)
 168 // in the bytecode stream with a new one.
 169 void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) {
 170   // With sharing on, may need to test method flag.
 171   if (!RewriteBytecodes) return;
 172   Label L_patch_done;
 173 
 174   switch (new_bc) {
 175     case Bytecodes::_fast_aputfield:
 176     case Bytecodes::_fast_bputfield:
 177     case Bytecodes::_fast_cputfield:
 178     case Bytecodes::_fast_dputfield:
 179     case Bytecodes::_fast_fputfield:
 180     case Bytecodes::_fast_iputfield:
 181     case Bytecodes::_fast_lputfield:
 182     case Bytecodes::_fast_sputfield:
 183     {
 184       // We skip bytecode quickening for putfield instructions when
 185       // the put_code written to the constant pool cache is zero.
 186       // This is required so that every execution of this instruction
 187       // calls out to InterpreterRuntime::resolve_get_put to do
 188       // additional, required work.
 189       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 190       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 191       __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1);
 192       // ((*(cache+indices))>>((1+byte_no)*8))&0xFF:
 193 #if defined(VM_LITTLE_ENDIAN)
 194       __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 1 + byte_no, Rtemp);
 195 #else
 196       __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp);
 197 #endif
 198       __ cmpwi(CCR0, Rnew_bc, 0);
 199       __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
 200       __ beq(CCR0, L_patch_done);
 201       // __ isync(); // acquire not needed
 202       break;
 203     }
 204 
 205     default:
 206       assert(byte_no == -1, "sanity");
 207       if (load_bc_into_bc_reg) {
 208         __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
 209       }
 210   }
 211 
 212   if (JvmtiExport::can_post_breakpoint()) {
 213     Label L_fast_patch;
 214     __ lbz(Rtemp, 0, R14_bcp);
 215     __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint);
 216     __ bne(CCR0, L_fast_patch);
 217     // Perform the quickening, slowly, in the bowels of the breakpoint table.
 218     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc);
 219     __ b(L_patch_done);
 220     __ bind(L_fast_patch);
 221   }
 222 
 223   // Patch bytecode.
 224   __ stb(Rnew_bc, 0, R14_bcp);
 225 
 226   __ bind(L_patch_done);
 227 }
 228 
 229 // ============================================================================
 230 // Individual instructions
 231 
 232 void TemplateTable::nop() {
 233   transition(vtos, vtos);
 234   // Nothing to do.
 235 }
 236 
 237 void TemplateTable::shouldnotreachhere() {
 238   transition(vtos, vtos);
 239   __ stop("shouldnotreachhere bytecode");
 240 }
 241 
 242 void TemplateTable::aconst_null() {
 243   transition(vtos, atos);
 244   __ li(R17_tos, 0);
 245 }
 246 
 247 void TemplateTable::iconst(int value) {
 248   transition(vtos, itos);
 249   assert(value >= -1 && value <= 5, "");
 250   __ li(R17_tos, value);
 251 }
 252 
 253 void TemplateTable::lconst(int value) {
 254   transition(vtos, ltos);
 255   assert(value >= -1 && value <= 5, "");
 256   __ li(R17_tos, value);
 257 }
 258 
 259 void TemplateTable::fconst(int value) {
 260   transition(vtos, ftos);
 261   static float zero = 0.0;
 262   static float one  = 1.0;
 263   static float two  = 2.0;
 264   switch (value) {
 265     default: ShouldNotReachHere();
 266     case 0: {
 267       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
 268       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 269       break;
 270     }
 271     case 1: {
 272       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
 273       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 274       break;
 275     }
 276     case 2: {
 277       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0, true);
 278       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 279       break;
 280     }
 281   }
 282 }
 283 
 284 void TemplateTable::dconst(int value) {
 285   transition(vtos, dtos);
 286   static double zero = 0.0;
 287   static double one  = 1.0;
 288   switch (value) {
 289     case 0: {
 290       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
 291       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
 292       break;
 293     }
 294     case 1: {
 295       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
 296       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
 297       break;
 298     }
 299     default: ShouldNotReachHere();
 300   }
 301 }
 302 
 303 void TemplateTable::bipush() {
 304   transition(vtos, itos);
 305   __ lbz(R17_tos, 1, R14_bcp);
 306   __ extsb(R17_tos, R17_tos);
 307 }
 308 
 309 void TemplateTable::sipush() {
 310   transition(vtos, itos);
 311   __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed);
 312 }
 313 
 314 void TemplateTable::ldc(bool wide) {
 315   Register Rscratch1 = R11_scratch1,
 316            Rscratch2 = R12_scratch2,
 317            Rcpool    = R3_ARG1;
 318 
 319   transition(vtos, vtos);
 320   Label notInt, notClass, exit;
 321 
 322   __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags.
 323   if (wide) { // Read index.
 324     __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned);
 325   } else {
 326     __ lbz(Rscratch1, 1, R14_bcp);
 327   }
 328 
 329   const int base_offset = ConstantPool::header_size() * wordSize;
 330   const int tags_offset = Array<u1>::base_offset_in_bytes();
 331 
 332   // Get type from tags.
 333   __ addi(Rscratch2, Rscratch2, tags_offset);
 334   __ lbzx(Rscratch2, Rscratch2, Rscratch1);
 335 
 336   __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class?
 337   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state?
 338   __ cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
 339 
 340   // Resolved class - need to call vm to get java mirror of the class.
 341   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class);
 342   __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // Neither resolved class nor unresolved case from above?
 343   __ beq(CCR0, notClass);
 344 
 345   __ li(R4, wide ? 1 : 0);
 346   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4);
 347   __ push(atos);
 348   __ b(exit);
 349 
 350   __ align(32, 12);
 351   __ bind(notClass);
 352   __ addi(Rcpool, Rcpool, base_offset);
 353   __ sldi(Rscratch1, Rscratch1, LogBytesPerWord);
 354   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer);
 355   __ bne(CCR0, notInt);
 356   __ isync(); // Order load of constant wrt. tags.
 357   __ lwax(R17_tos, Rcpool, Rscratch1);
 358   __ push(itos);
 359   __ b(exit);
 360 
 361   __ align(32, 12);
 362   __ bind(notInt);
 363 #ifdef ASSERT
 364   // String and Object are rewritten to fast_aldc
 365   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float);
 366   __ asm_assert_eq("unexpected type", 0x8765);
 367 #endif
 368   __ isync(); // Order load of constant wrt. tags.
 369   __ lfsx(F15_ftos, Rcpool, Rscratch1);
 370   __ push(ftos);
 371 
 372   __ align(32, 12);
 373   __ bind(exit);
 374 }
 375 
 376 // Fast path for caching oop constants.
 377 void TemplateTable::fast_aldc(bool wide) {
 378   transition(vtos, atos);
 379 
 380   int index_size = wide ? sizeof(u2) : sizeof(u1);
 381   const Register Rscratch = R11_scratch1;
 382   Label resolved;
 383 
 384   // We are resolved if the resolved reference cache entry contains a
 385   // non-null object (CallSite, etc.)
 386   __ get_cache_index_at_bcp(Rscratch, 1, index_size);  // Load index.
 387   __ load_resolved_reference_at_index(R17_tos, Rscratch);
 388   __ cmpdi(CCR0, R17_tos, 0);
 389   __ bne(CCR0, resolved);
 390   __ load_const_optimized(R3_ARG1, (int)bytecode());
 391 
 392   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 393 
 394   // First time invocation - must resolve first.
 395   __ call_VM(R17_tos, entry, R3_ARG1);
 396 
 397   __ align(32, 12);
 398   __ bind(resolved);
 399   __ verify_oop(R17_tos);
 400 }
 401 
 402 void TemplateTable::ldc2_w() {
 403   transition(vtos, vtos);
 404   Label Llong, Lexit;
 405 
 406   Register Rindex = R11_scratch1,
 407            Rcpool = R12_scratch2,
 408            Rtag   = R3_ARG1;
 409   __ get_cpool_and_tags(Rcpool, Rtag);
 410   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
 411 
 412   const int base_offset = ConstantPool::header_size() * wordSize;
 413   const int tags_offset = Array<u1>::base_offset_in_bytes();
 414   // Get type from tags.
 415   __ addi(Rcpool, Rcpool, base_offset);
 416   __ addi(Rtag, Rtag, tags_offset);
 417 
 418   __ lbzx(Rtag, Rtag, Rindex);
 419 
 420   __ sldi(Rindex, Rindex, LogBytesPerWord);
 421   __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double);
 422   __ bne(CCR0, Llong);
 423   // A double can be placed at word-aligned locations in the constant pool.
 424   // Check out Conversions.java for an example.
 425   // Also ConstantPool::header_size() is 20, which makes it very difficult
 426   // to double-align double on the constant pool. SG, 11/7/97
 427   __ isync(); // Order load of constant wrt. tags.
 428   __ lfdx(F15_ftos, Rcpool, Rindex);
 429   __ push(dtos);
 430   __ b(Lexit);
 431 
 432   __ bind(Llong);
 433   __ isync(); // Order load of constant wrt. tags.
 434   __ ldx(R17_tos, Rcpool, Rindex);
 435   __ push(ltos);
 436 
 437   __ bind(Lexit);
 438 }
 439 
 440 // Get the locals index located in the bytecode stream at bcp + offset.
 441 void TemplateTable::locals_index(Register Rdst, int offset) {
 442   __ lbz(Rdst, offset, R14_bcp);
 443 }
 444 
 445 void TemplateTable::iload() {
 446   transition(vtos, itos);
 447 
 448   // Get the local value into tos
 449   const Register Rindex = R22_tmp2;
 450   locals_index(Rindex);
 451 
 452   // Rewrite iload,iload  pair into fast_iload2
 453   //         iload,caload pair into fast_icaload
 454   if (RewriteFrequentPairs) {
 455     Label Lrewrite, Ldone;
 456     Register Rnext_byte  = R3_ARG1,
 457              Rrewrite_to = R6_ARG4,
 458              Rscratch    = R11_scratch1;
 459 
 460     // get next byte
 461     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp);
 462 
 463     // if _iload, wait to rewrite to iload2. We only want to rewrite the
 464     // last two iloads in a pair. Comparing against fast_iload means that
 465     // the next bytecode is neither an iload or a caload, and therefore
 466     // an iload pair.
 467     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload);
 468     __ beq(CCR0, Ldone);
 469 
 470     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
 471     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2);
 472     __ beq(CCR1, Lrewrite);
 473 
 474     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload);
 475     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload);
 476     __ beq(CCR0, Lrewrite);
 477 
 478     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
 479 
 480     __ bind(Lrewrite);
 481     patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false);
 482     __ bind(Ldone);
 483   }
 484 
 485   __ load_local_int(R17_tos, Rindex, Rindex);
 486 }
 487 
 488 // Load 2 integers in a row without dispatching
 489 void TemplateTable::fast_iload2() {
 490   transition(vtos, itos);
 491 
 492   __ lbz(R3_ARG1, 1, R14_bcp);
 493   __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp);
 494 
 495   __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1);
 496   __ load_local_int(R17_tos, R12_scratch2, R17_tos);
 497   __ push_i(R3_ARG1);
 498 }
 499 
 500 void TemplateTable::fast_iload() {
 501   transition(vtos, itos);
 502   // Get the local value into tos
 503 
 504   const Register Rindex = R11_scratch1;
 505   locals_index(Rindex);
 506   __ load_local_int(R17_tos, Rindex, Rindex);
 507 }
 508 
 509 // Load a local variable type long from locals area to TOS cache register.
 510 // Local index resides in bytecodestream.
 511 void TemplateTable::lload() {
 512   transition(vtos, ltos);
 513 
 514   const Register Rindex = R11_scratch1;
 515   locals_index(Rindex);
 516   __ load_local_long(R17_tos, Rindex, Rindex);
 517 }
 518 
 519 void TemplateTable::fload() {
 520   transition(vtos, ftos);
 521 
 522   const Register Rindex = R11_scratch1;
 523   locals_index(Rindex);
 524   __ load_local_float(F15_ftos, Rindex, Rindex);
 525 }
 526 
 527 void TemplateTable::dload() {
 528   transition(vtos, dtos);
 529 
 530   const Register Rindex = R11_scratch1;
 531   locals_index(Rindex);
 532   __ load_local_double(F15_ftos, Rindex, Rindex);
 533 }
 534 
 535 void TemplateTable::aload() {
 536   transition(vtos, atos);
 537 
 538   const Register Rindex = R11_scratch1;
 539   locals_index(Rindex);
 540   __ load_local_ptr(R17_tos, Rindex, Rindex);
 541 }
 542 
 543 void TemplateTable::locals_index_wide(Register Rdst) {
 544   // Offset is 2, not 1, because Lbcp points to wide prefix code.
 545   __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned);
 546 }
 547 
 548 void TemplateTable::wide_iload() {
 549   // Get the local value into tos.
 550 
 551   const Register Rindex = R11_scratch1;
 552   locals_index_wide(Rindex);
 553   __ load_local_int(R17_tos, Rindex, Rindex);
 554 }
 555 
 556 void TemplateTable::wide_lload() {
 557   transition(vtos, ltos);
 558 
 559   const Register Rindex = R11_scratch1;
 560   locals_index_wide(Rindex);
 561   __ load_local_long(R17_tos, Rindex, Rindex);
 562 }
 563 
 564 void TemplateTable::wide_fload() {
 565   transition(vtos, ftos);
 566 
 567   const Register Rindex = R11_scratch1;
 568   locals_index_wide(Rindex);
 569   __ load_local_float(F15_ftos, Rindex, Rindex);
 570 }
 571 
 572 void TemplateTable::wide_dload() {
 573   transition(vtos, dtos);
 574 
 575   const Register Rindex = R11_scratch1;
 576   locals_index_wide(Rindex);
 577   __ load_local_double(F15_ftos, Rindex, Rindex);
 578 }
 579 
 580 void TemplateTable::wide_aload() {
 581   transition(vtos, atos);
 582 
 583   const Register Rindex = R11_scratch1;
 584   locals_index_wide(Rindex);
 585   __ load_local_ptr(R17_tos, Rindex, Rindex);
 586 }
 587 
 588 void TemplateTable::iaload() {
 589   transition(itos, itos);
 590 
 591   const Register Rload_addr = R3_ARG1,
 592                  Rarray     = R4_ARG2,
 593                  Rtemp      = R5_ARG3;
 594   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
 595   __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr);
 596 }
 597 
 598 void TemplateTable::laload() {
 599   transition(itos, ltos);
 600 
 601   const Register Rload_addr = R3_ARG1,
 602                  Rarray     = R4_ARG2,
 603                  Rtemp      = R5_ARG3;
 604   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
 605   __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr);
 606 }
 607 
 608 void TemplateTable::faload() {
 609   transition(itos, ftos);
 610 
 611   const Register Rload_addr = R3_ARG1,
 612                  Rarray     = R4_ARG2,
 613                  Rtemp      = R5_ARG3;
 614   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
 615   __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr);
 616 }
 617 
 618 void TemplateTable::daload() {
 619   transition(itos, dtos);
 620 
 621   const Register Rload_addr = R3_ARG1,
 622                  Rarray     = R4_ARG2,
 623                  Rtemp      = R5_ARG3;
 624   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
 625   __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr);
 626 }
 627 
 628 void TemplateTable::aaload() {
 629   transition(itos, atos);
 630 
 631   // tos: index
 632   // result tos: array
 633   const Register Rload_addr = R3_ARG1,
 634                  Rarray     = R4_ARG2,
 635                  Rtemp      = R5_ARG3;
 636   __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr);
 637   __ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr);
 638   __ verify_oop(R17_tos);
 639   //__ dcbt(R17_tos); // prefetch
 640 }
 641 
 642 void TemplateTable::baload() {
 643   transition(itos, itos);
 644 
 645   const Register Rload_addr = R3_ARG1,
 646                  Rarray     = R4_ARG2,
 647                  Rtemp      = R5_ARG3;
 648   __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr);
 649   __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr);
 650   __ extsb(R17_tos, R17_tos);
 651 }
 652 
 653 void TemplateTable::caload() {
 654   transition(itos, itos);
 655 
 656   const Register Rload_addr = R3_ARG1,
 657                  Rarray     = R4_ARG2,
 658                  Rtemp      = R5_ARG3;
 659   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 660   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
 661 }
 662 
 663 // Iload followed by caload frequent pair.
 664 void TemplateTable::fast_icaload() {
 665   transition(vtos, itos);
 666 
 667   const Register Rload_addr = R3_ARG1,
 668                  Rarray     = R4_ARG2,
 669                  Rtemp      = R11_scratch1;
 670 
 671   locals_index(R17_tos);
 672   __ load_local_int(R17_tos, Rtemp, R17_tos);
 673   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 674   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
 675 }
 676 
 677 void TemplateTable::saload() {
 678   transition(itos, itos);
 679 
 680   const Register Rload_addr = R11_scratch1,
 681                  Rarray     = R12_scratch2,
 682                  Rtemp      = R3_ARG1;
 683   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 684   __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr);
 685 }
 686 
 687 void TemplateTable::iload(int n) {
 688   transition(vtos, itos);
 689 
 690   __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 691 }
 692 
 693 void TemplateTable::lload(int n) {
 694   transition(vtos, ltos);
 695 
 696   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
 697 }
 698 
 699 void TemplateTable::fload(int n) {
 700   transition(vtos, ftos);
 701 
 702   __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
 703 }
 704 
 705 void TemplateTable::dload(int n) {
 706   transition(vtos, dtos);
 707 
 708   __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
 709 }
 710 
 711 void TemplateTable::aload(int n) {
 712   transition(vtos, atos);
 713 
 714   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 715 }
 716 
 717 void TemplateTable::aload_0() {
 718   transition(vtos, atos);
 719   // According to bytecode histograms, the pairs:
 720   //
 721   // _aload_0, _fast_igetfield
 722   // _aload_0, _fast_agetfield
 723   // _aload_0, _fast_fgetfield
 724   //
 725   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 726   // _aload_0 bytecode checks if the next bytecode is either
 727   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 728   // rewrites the current bytecode into a pair bytecode; otherwise it
 729   // rewrites the current bytecode into _0 that doesn't do
 730   // the pair check anymore.
 731   //
 732   // Note: If the next bytecode is _getfield, the rewrite must be
 733   //       delayed, otherwise we may miss an opportunity for a pair.
 734   //
 735   // Also rewrite frequent pairs
 736   //   aload_0, aload_1
 737   //   aload_0, iload_1
 738   // These bytecodes with a small amount of code are most profitable
 739   // to rewrite.
 740 
 741   if (RewriteFrequentPairs) {
 742 
 743     Label Lrewrite, Ldont_rewrite;
 744     Register Rnext_byte  = R3_ARG1,
 745              Rrewrite_to = R6_ARG4,
 746              Rscratch    = R11_scratch1;
 747 
 748     // Get next byte.
 749     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp);
 750 
 751     // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair.
 752     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield);
 753     __ beq(CCR0, Ldont_rewrite);
 754 
 755     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield);
 756     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0);
 757     __ beq(CCR1, Lrewrite);
 758 
 759     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield);
 760     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0);
 761     __ beq(CCR0, Lrewrite);
 762 
 763     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield);
 764     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0);
 765     __ beq(CCR1, Lrewrite);
 766 
 767     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0);
 768 
 769     __ bind(Lrewrite);
 770     patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false);
 771     __ bind(Ldont_rewrite);
 772   }
 773 
 774   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
 775   aload(0);
 776 }
 777 
 778 void TemplateTable::istore() {
 779   transition(itos, vtos);
 780 
 781   const Register Rindex = R11_scratch1;
 782   locals_index(Rindex);
 783   __ store_local_int(R17_tos, Rindex);
 784 }
 785 
 786 void TemplateTable::lstore() {
 787   transition(ltos, vtos);
 788   const Register Rindex = R11_scratch1;
 789   locals_index(Rindex);
 790   __ store_local_long(R17_tos, Rindex);
 791 }
 792 
 793 void TemplateTable::fstore() {
 794   transition(ftos, vtos);
 795 
 796   const Register Rindex = R11_scratch1;
 797   locals_index(Rindex);
 798   __ store_local_float(F15_ftos, Rindex);
 799 }
 800 
 801 void TemplateTable::dstore() {
 802   transition(dtos, vtos);
 803 
 804   const Register Rindex = R11_scratch1;
 805   locals_index(Rindex);
 806   __ store_local_double(F15_ftos, Rindex);
 807 }
 808 
 809 void TemplateTable::astore() {
 810   transition(vtos, vtos);
 811 
 812   const Register Rindex = R11_scratch1;
 813   __ pop_ptr();
 814   __ verify_oop_or_return_address(R17_tos, Rindex);
 815   locals_index(Rindex);
 816   __ store_local_ptr(R17_tos, Rindex);
 817 }
 818 
 819 void TemplateTable::wide_istore() {
 820   transition(vtos, vtos);
 821 
 822   const Register Rindex = R11_scratch1;
 823   __ pop_i();
 824   locals_index_wide(Rindex);
 825   __ store_local_int(R17_tos, Rindex);
 826 }
 827 
 828 void TemplateTable::wide_lstore() {
 829   transition(vtos, vtos);
 830 
 831   const Register Rindex = R11_scratch1;
 832   __ pop_l();
 833   locals_index_wide(Rindex);
 834   __ store_local_long(R17_tos, Rindex);
 835 }
 836 
 837 void TemplateTable::wide_fstore() {
 838   transition(vtos, vtos);
 839 
 840   const Register Rindex = R11_scratch1;
 841   __ pop_f();
 842   locals_index_wide(Rindex);
 843   __ store_local_float(F15_ftos, Rindex);
 844 }
 845 
 846 void TemplateTable::wide_dstore() {
 847   transition(vtos, vtos);
 848 
 849   const Register Rindex = R11_scratch1;
 850   __ pop_d();
 851   locals_index_wide(Rindex);
 852   __ store_local_double(F15_ftos, Rindex);
 853 }
 854 
 855 void TemplateTable::wide_astore() {
 856   transition(vtos, vtos);
 857 
 858   const Register Rindex = R11_scratch1;
 859   __ pop_ptr();
 860   __ verify_oop_or_return_address(R17_tos, Rindex);
 861   locals_index_wide(Rindex);
 862   __ store_local_ptr(R17_tos, Rindex);
 863 }
 864 
 865 void TemplateTable::iastore() {
 866   transition(itos, vtos);
 867 
 868   const Register Rindex      = R3_ARG1,
 869                  Rstore_addr = R4_ARG2,
 870                  Rarray      = R5_ARG3,
 871                  Rtemp       = R6_ARG4;
 872   __ pop_i(Rindex);
 873   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
 874   __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr);
 875   }
 876 
 877 void TemplateTable::lastore() {
 878   transition(ltos, vtos);
 879 
 880   const Register Rindex      = R3_ARG1,
 881                  Rstore_addr = R4_ARG2,
 882                  Rarray      = R5_ARG3,
 883                  Rtemp       = R6_ARG4;
 884   __ pop_i(Rindex);
 885   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
 886   __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr);
 887   }
 888 
 889 void TemplateTable::fastore() {
 890   transition(ftos, vtos);
 891 
 892   const Register Rindex      = R3_ARG1,
 893                  Rstore_addr = R4_ARG2,
 894                  Rarray      = R5_ARG3,
 895                  Rtemp       = R6_ARG4;
 896   __ pop_i(Rindex);
 897   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
 898   __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr);
 899   }
 900 
 901 void TemplateTable::dastore() {
 902   transition(dtos, vtos);
 903 
 904   const Register Rindex      = R3_ARG1,
 905                  Rstore_addr = R4_ARG2,
 906                  Rarray      = R5_ARG3,
 907                  Rtemp       = R6_ARG4;
 908   __ pop_i(Rindex);
 909   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
 910   __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr);
 911   }
 912 
 913 // Pop 3 values from the stack and...
 914 void TemplateTable::aastore() {
 915   transition(vtos, vtos);
 916 
 917   Label Lstore_ok, Lis_null, Ldone;
 918   const Register Rindex    = R3_ARG1,
 919                  Rarray    = R4_ARG2,
 920                  Rscratch  = R11_scratch1,
 921                  Rscratch2 = R12_scratch2,
 922                  Rarray_klass = R5_ARG3,
 923                  Rarray_element_klass = Rarray_klass,
 924                  Rvalue_klass = R6_ARG4,
 925                  Rstore_addr = R31;    // Use register which survives VM call.
 926 
 927   __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store.
 928   __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index.
 929   __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp);  // Get array.
 930 
 931   __ verify_oop(R17_tos);
 932   __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr);
 933   // Rindex is dead!
 934   Register Rscratch3 = Rindex;
 935 
 936   // Do array store check - check for NULL value first.
 937   __ cmpdi(CCR0, R17_tos, 0);
 938   __ beq(CCR0, Lis_null);
 939 
 940   __ load_klass(Rarray_klass, Rarray);
 941   __ load_klass(Rvalue_klass, R17_tos);
 942 
 943   // Do fast instanceof cache test.
 944   __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass);
 945 
 946   // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure.
 947   __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok);
 948 
 949   // Fell through: subtype check failed => throw an exception.
 950   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry);
 951   __ mtctr(R11_scratch1);
 952   __ bctr();
 953 
 954   __ bind(Lis_null);
 955   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */,
 956                Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
 957   __ profile_null_seen(Rscratch, Rscratch2);
 958   __ b(Ldone);
 959 
 960   // Store is OK.
 961   __ bind(Lstore_ok);
 962   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */,
 963                Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
 964 
 965   __ bind(Ldone);
 966   // Adjust sp (pops array, index and value).
 967   __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize);
 968 }
 969 
 970 void TemplateTable::bastore() {
 971   transition(itos, vtos);
 972 
 973   const Register Rindex   = R11_scratch1,
 974                  Rarray   = R12_scratch2,
 975                  Rscratch = R3_ARG1;
 976   __ pop_i(Rindex);
 977   // tos: val
 978   // Rarray: array ptr (popped by index_check)
 979   __ index_check(Rarray, Rindex, 0, Rscratch, Rarray);
 980   __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray);
 981 }
 982 
 983 void TemplateTable::castore() {
 984   transition(itos, vtos);
 985 
 986   const Register Rindex   = R11_scratch1,
 987                  Rarray   = R12_scratch2,
 988                  Rscratch = R3_ARG1;
 989   __ pop_i(Rindex);
 990   // tos: val
 991   // Rarray: array ptr (popped by index_check)
 992   __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray);
 993   __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray);
 994 }
 995 
 996 void TemplateTable::sastore() {
 997   castore();
 998 }
 999 
1000 void TemplateTable::istore(int n) {
1001   transition(itos, vtos);
1002   __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
1003 }
1004 
1005 void TemplateTable::lstore(int n) {
1006   transition(ltos, vtos);
1007   __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1008 }
1009 
1010 void TemplateTable::fstore(int n) {
1011   transition(ftos, vtos);
1012   __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
1013 }
1014 
1015 void TemplateTable::dstore(int n) {
1016   transition(dtos, vtos);
1017   __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1018 }
1019 
1020 void TemplateTable::astore(int n) {
1021   transition(vtos, vtos);
1022 
1023   __ pop_ptr();
1024   __ verify_oop_or_return_address(R17_tos, R11_scratch1);
1025   __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
1026 }
1027 
1028 void TemplateTable::pop() {
1029   transition(vtos, vtos);
1030 
1031   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize);
1032 }
1033 
1034 void TemplateTable::pop2() {
1035   transition(vtos, vtos);
1036 
1037   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2);
1038 }
1039 
1040 void TemplateTable::dup() {
1041   transition(vtos, vtos);
1042 
1043   __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp);
1044   __ push_ptr(R11_scratch1);
1045 }
1046 
1047 void TemplateTable::dup_x1() {
1048   transition(vtos, vtos);
1049 
1050   Register Ra = R11_scratch1,
1051            Rb = R12_scratch2;
1052   // stack: ..., a, b
1053   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1054   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1055   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1056   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1057   __ push_ptr(Rb);
1058   // stack: ..., b, a, b
1059 }
1060 
1061 void TemplateTable::dup_x2() {
1062   transition(vtos, vtos);
1063 
1064   Register Ra = R11_scratch1,
1065            Rb = R12_scratch2,
1066            Rc = R3_ARG1;
1067 
1068   // stack: ..., a, b, c
1069   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);  // load c
1070   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);  // load a
1071   __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a
1072   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);  // load b
1073   // stack: ..., c, b, c
1074   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b
1075   // stack: ..., c, a, c
1076   __ std(Rb, Interpreter::stackElementSize,     R15_esp); // store b in c
1077   __ push_ptr(Rc);                                        // push c
1078   // stack: ..., c, a, b, c
1079 }
1080 
1081 void TemplateTable::dup2() {
1082   transition(vtos, vtos);
1083 
1084   Register Ra = R11_scratch1,
1085            Rb = R12_scratch2;
1086   // stack: ..., a, b
1087   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1088   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1089   __ push_2ptrs(Ra, Rb);
1090   // stack: ..., a, b, a, b
1091 }
1092 
1093 void TemplateTable::dup2_x1() {
1094   transition(vtos, vtos);
1095 
1096   Register Ra = R11_scratch1,
1097            Rb = R12_scratch2,
1098            Rc = R3_ARG1;
1099   // stack: ..., a, b, c
1100   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);
1101   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);
1102   __ std(Rc, Interpreter::stackElementSize * 2, R15_esp);
1103   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);
1104   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1105   __ std(Rb, Interpreter::stackElementSize * 3, R15_esp);
1106   // stack: ..., b, c, a
1107   __ push_2ptrs(Rb, Rc);
1108   // stack: ..., b, c, a, b, c
1109 }
1110 
1111 void TemplateTable::dup2_x2() {
1112   transition(vtos, vtos);
1113 
1114   Register Ra = R11_scratch1,
1115            Rb = R12_scratch2,
1116            Rc = R3_ARG1,
1117            Rd = R4_ARG2;
1118   // stack: ..., a, b, c, d
1119   __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp);
1120   __ ld(Rd, Interpreter::stackElementSize,     R15_esp);
1121   __ std(Rb, Interpreter::stackElementSize,     R15_esp);  // store b in d
1122   __ std(Rd, Interpreter::stackElementSize * 3, R15_esp);  // store d in b
1123   __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp);
1124   __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp);
1125   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp);  // store a in c
1126   __ std(Rc, Interpreter::stackElementSize * 4, R15_esp);  // store c in a
1127   // stack: ..., c, d, a, b
1128   __ push_2ptrs(Rc, Rd);
1129   // stack: ..., c, d, a, b, c, d
1130 }
1131 
1132 void TemplateTable::swap() {
1133   transition(vtos, vtos);
1134   // stack: ..., a, b
1135 
1136   Register Ra = R11_scratch1,
1137            Rb = R12_scratch2;
1138   // stack: ..., a, b
1139   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1140   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1141   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1142   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1143   // stack: ..., b, a
1144 }
1145 
1146 void TemplateTable::iop2(Operation op) {
1147   transition(itos, itos);
1148 
1149   Register Rscratch = R11_scratch1;
1150 
1151   __ pop_i(Rscratch);
1152   // tos  = number of bits to shift
1153   // Rscratch = value to shift
1154   switch (op) {
1155     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1156     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1157     case  mul:   __ mullw(R17_tos, Rscratch, R17_tos); break;
1158     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1159     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1160     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1161     case  shl:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break;
1162     case  shr:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break;
1163     case  ushr:  __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break;
1164     default:     ShouldNotReachHere();
1165   }
1166 }
1167 
1168 void TemplateTable::lop2(Operation op) {
1169   transition(ltos, ltos);
1170 
1171   Register Rscratch = R11_scratch1;
1172   __ pop_l(Rscratch);
1173   switch (op) {
1174     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1175     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1176     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1177     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1178     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1179     default:     ShouldNotReachHere();
1180   }
1181 }
1182 
1183 void TemplateTable::idiv() {
1184   transition(itos, itos);
1185 
1186   Label Lnormal, Lexception, Ldone;
1187   Register Rdividend = R11_scratch1; // Used by irem.
1188 
1189   __ addi(R0, R17_tos, 1);
1190   __ cmplwi(CCR0, R0, 2);
1191   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1192 
1193   __ cmpwi(CCR1, R17_tos, 0);
1194   __ beq(CCR1, Lexception); // divisor == 0
1195 
1196   __ pop_i(Rdividend);
1197   __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1
1198   __ b(Ldone);
1199 
1200   __ bind(Lexception);
1201   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1202   __ mtctr(R11_scratch1);
1203   __ bctr();
1204 
1205   __ align(32, 12);
1206   __ bind(Lnormal);
1207   __ pop_i(Rdividend);
1208   __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1209   __ bind(Ldone);
1210 }
1211 
1212 void TemplateTable::irem() {
1213   transition(itos, itos);
1214 
1215   __ mr(R12_scratch2, R17_tos);
1216   idiv();
1217   __ mullw(R17_tos, R17_tos, R12_scratch2);
1218   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv.
1219 }
1220 
1221 void TemplateTable::lmul() {
1222   transition(ltos, ltos);
1223 
1224   __ pop_l(R11_scratch1);
1225   __ mulld(R17_tos, R11_scratch1, R17_tos);
1226 }
1227 
1228 void TemplateTable::ldiv() {
1229   transition(ltos, ltos);
1230 
1231   Label Lnormal, Lexception, Ldone;
1232   Register Rdividend = R11_scratch1; // Used by lrem.
1233 
1234   __ addi(R0, R17_tos, 1);
1235   __ cmpldi(CCR0, R0, 2);
1236   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1237 
1238   __ cmpdi(CCR1, R17_tos, 0);
1239   __ beq(CCR1, Lexception); // divisor == 0
1240 
1241   __ pop_l(Rdividend);
1242   __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1
1243   __ b(Ldone);
1244 
1245   __ bind(Lexception);
1246   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1247   __ mtctr(R11_scratch1);
1248   __ bctr();
1249 
1250   __ align(32, 12);
1251   __ bind(Lnormal);
1252   __ pop_l(Rdividend);
1253   __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1254   __ bind(Ldone);
1255 }
1256 
1257 void TemplateTable::lrem() {
1258   transition(ltos, ltos);
1259 
1260   __ mr(R12_scratch2, R17_tos);
1261   ldiv();
1262   __ mulld(R17_tos, R17_tos, R12_scratch2);
1263   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv.
1264 }
1265 
1266 void TemplateTable::lshl() {
1267   transition(itos, ltos);
1268 
1269   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1270   __ pop_l(R11_scratch1);
1271   __ sld(R17_tos, R11_scratch1, R17_tos);
1272 }
1273 
1274 void TemplateTable::lshr() {
1275   transition(itos, ltos);
1276 
1277   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1278   __ pop_l(R11_scratch1);
1279   __ srad(R17_tos, R11_scratch1, R17_tos);
1280 }
1281 
1282 void TemplateTable::lushr() {
1283   transition(itos, ltos);
1284 
1285   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1286   __ pop_l(R11_scratch1);
1287   __ srd(R17_tos, R11_scratch1, R17_tos);
1288 }
1289 
1290 void TemplateTable::fop2(Operation op) {
1291   transition(ftos, ftos);
1292 
1293   switch (op) {
1294     case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break;
1295     case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1296     case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break;
1297     case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1298     case rem:
1299       __ pop_f(F1_ARG1);
1300       __ fmr(F2_ARG2, F15_ftos);
1301       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1302       __ fmr(F15_ftos, F1_RET);
1303       break;
1304 
1305     default: ShouldNotReachHere();
1306   }
1307 }
1308 
1309 void TemplateTable::dop2(Operation op) {
1310   transition(dtos, dtos);
1311 
1312   switch (op) {
1313     case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break;
1314     case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break;
1315     case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break;
1316     case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break;
1317     case rem:
1318       __ pop_d(F1_ARG1);
1319       __ fmr(F2_ARG2, F15_ftos);
1320       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1321       __ fmr(F15_ftos, F1_RET);
1322       break;
1323 
1324     default: ShouldNotReachHere();
1325   }
1326 }
1327 
1328 // Negate the value in the TOS cache.
1329 void TemplateTable::ineg() {
1330   transition(itos, itos);
1331 
1332   __ neg(R17_tos, R17_tos);
1333 }
1334 
1335 // Negate the value in the TOS cache.
1336 void TemplateTable::lneg() {
1337   transition(ltos, ltos);
1338 
1339   __ neg(R17_tos, R17_tos);
1340 }
1341 
1342 void TemplateTable::fneg() {
1343   transition(ftos, ftos);
1344 
1345   __ fneg(F15_ftos, F15_ftos);
1346 }
1347 
1348 void TemplateTable::dneg() {
1349   transition(dtos, dtos);
1350 
1351   __ fneg(F15_ftos, F15_ftos);
1352 }
1353 
1354 // Increments a local variable in place.
1355 void TemplateTable::iinc() {
1356   transition(vtos, vtos);
1357 
1358   const Register Rindex     = R11_scratch1,
1359                  Rincrement = R0,
1360                  Rvalue     = R12_scratch2;
1361 
1362   locals_index(Rindex);              // Load locals index from bytecode stream.
1363   __ lbz(Rincrement, 2, R14_bcp);    // Load increment from the bytecode stream.
1364   __ extsb(Rincrement, Rincrement);
1365 
1366   __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex.
1367 
1368   __ add(Rvalue, Rincrement, Rvalue);
1369   __ stw(Rvalue, 0, Rindex);
1370 }
1371 
1372 void TemplateTable::wide_iinc() {
1373   transition(vtos, vtos);
1374 
1375   Register Rindex       = R11_scratch1,
1376            Rlocals_addr = Rindex,
1377            Rincr        = R12_scratch2;
1378   locals_index_wide(Rindex);
1379   __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed);
1380   __ load_local_int(R17_tos, Rlocals_addr, Rindex);
1381   __ add(R17_tos, Rincr, R17_tos);
1382   __ stw(R17_tos, 0, Rlocals_addr);
1383 }
1384 
1385 void TemplateTable::convert() {
1386   // %%%%% Factor this first part accross platforms
1387 #ifdef ASSERT
1388   TosState tos_in  = ilgl;
1389   TosState tos_out = ilgl;
1390   switch (bytecode()) {
1391     case Bytecodes::_i2l: // fall through
1392     case Bytecodes::_i2f: // fall through
1393     case Bytecodes::_i2d: // fall through
1394     case Bytecodes::_i2b: // fall through
1395     case Bytecodes::_i2c: // fall through
1396     case Bytecodes::_i2s: tos_in = itos; break;
1397     case Bytecodes::_l2i: // fall through
1398     case Bytecodes::_l2f: // fall through
1399     case Bytecodes::_l2d: tos_in = ltos; break;
1400     case Bytecodes::_f2i: // fall through
1401     case Bytecodes::_f2l: // fall through
1402     case Bytecodes::_f2d: tos_in = ftos; break;
1403     case Bytecodes::_d2i: // fall through
1404     case Bytecodes::_d2l: // fall through
1405     case Bytecodes::_d2f: tos_in = dtos; break;
1406     default             : ShouldNotReachHere();
1407   }
1408   switch (bytecode()) {
1409     case Bytecodes::_l2i: // fall through
1410     case Bytecodes::_f2i: // fall through
1411     case Bytecodes::_d2i: // fall through
1412     case Bytecodes::_i2b: // fall through
1413     case Bytecodes::_i2c: // fall through
1414     case Bytecodes::_i2s: tos_out = itos; break;
1415     case Bytecodes::_i2l: // fall through
1416     case Bytecodes::_f2l: // fall through
1417     case Bytecodes::_d2l: tos_out = ltos; break;
1418     case Bytecodes::_i2f: // fall through
1419     case Bytecodes::_l2f: // fall through
1420     case Bytecodes::_d2f: tos_out = ftos; break;
1421     case Bytecodes::_i2d: // fall through
1422     case Bytecodes::_l2d: // fall through
1423     case Bytecodes::_f2d: tos_out = dtos; break;
1424     default             : ShouldNotReachHere();
1425   }
1426   transition(tos_in, tos_out);
1427 #endif
1428 
1429   // Conversion
1430   Label done;
1431   switch (bytecode()) {
1432     case Bytecodes::_i2l:
1433       __ extsw(R17_tos, R17_tos);
1434       break;
1435 
1436     case Bytecodes::_l2i:
1437       // Nothing to do, we'll continue to work with the lower bits.
1438       break;
1439 
1440     case Bytecodes::_i2b:
1441       __ extsb(R17_tos, R17_tos);
1442       break;
1443 
1444     case Bytecodes::_i2c:
1445       __ rldicl(R17_tos, R17_tos, 0, 64-2*8);
1446       break;
1447 
1448     case Bytecodes::_i2s:
1449       __ extsh(R17_tos, R17_tos);
1450       break;
1451 
1452     case Bytecodes::_i2d:
1453       __ extsw(R17_tos, R17_tos);
1454     case Bytecodes::_l2d:
1455       __ push_l_pop_d();
1456       __ fcfid(F15_ftos, F15_ftos);
1457       break;
1458 
1459     case Bytecodes::_i2f:
1460       __ extsw(R17_tos, R17_tos);
1461       __ push_l_pop_d();
1462       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1463         // Comment: alternatively, load with sign extend could be done by lfiwax.
1464         __ fcfids(F15_ftos, F15_ftos);
1465       } else {
1466         __ fcfid(F15_ftos, F15_ftos);
1467         __ frsp(F15_ftos, F15_ftos);
1468       }
1469       break;
1470 
1471     case Bytecodes::_l2f:
1472       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1473         __ push_l_pop_d();
1474         __ fcfids(F15_ftos, F15_ftos);
1475       } else {
1476         // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp.
1477         __ mr(R3_ARG1, R17_tos);
1478         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f));
1479         __ fmr(F15_ftos, F1_RET);
1480       }
1481       break;
1482 
1483     case Bytecodes::_f2d:
1484       // empty
1485       break;
1486 
1487     case Bytecodes::_d2f:
1488       __ frsp(F15_ftos, F15_ftos);
1489       break;
1490 
1491     case Bytecodes::_d2i:
1492     case Bytecodes::_f2i:
1493       __ fcmpu(CCR0, F15_ftos, F15_ftos);
1494       __ li(R17_tos, 0); // 0 in case of NAN
1495       __ bso(CCR0, done);
1496       __ fctiwz(F15_ftos, F15_ftos);
1497       __ push_d_pop_l();
1498       break;
1499 
1500     case Bytecodes::_d2l:
1501     case Bytecodes::_f2l:
1502       __ fcmpu(CCR0, F15_ftos, F15_ftos);
1503       __ li(R17_tos, 0); // 0 in case of NAN
1504       __ bso(CCR0, done);
1505       __ fctidz(F15_ftos, F15_ftos);
1506       __ push_d_pop_l();
1507       break;
1508 
1509     default: ShouldNotReachHere();
1510   }
1511   __ bind(done);
1512 }
1513 
1514 // Long compare
1515 void TemplateTable::lcmp() {
1516   transition(ltos, itos);
1517 
1518   const Register Rscratch = R11_scratch1;
1519   __ pop_l(Rscratch); // first operand, deeper in stack
1520 
1521   __ cmpd(CCR0, Rscratch, R17_tos); // compare
1522   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1523   __ srwi(Rscratch, R17_tos, 30);
1524   __ srawi(R17_tos, R17_tos, 31);
1525   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1526 }
1527 
1528 // fcmpl/fcmpg and dcmpl/dcmpg bytecodes
1529 // unordered_result == -1 => fcmpl or dcmpl
1530 // unordered_result ==  1 => fcmpg or dcmpg
1531 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1532   const FloatRegister Rfirst  = F0_SCRATCH,
1533                       Rsecond = F15_ftos;
1534   const Register Rscratch = R11_scratch1;
1535 
1536   if (is_float) {
1537     __ pop_f(Rfirst);
1538   } else {
1539     __ pop_d(Rfirst);
1540   }
1541 
1542   Label Lunordered, Ldone;
1543   __ fcmpu(CCR0, Rfirst, Rsecond); // compare
1544   if (unordered_result) {
1545     __ bso(CCR0, Lunordered);
1546   }
1547   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1548   __ srwi(Rscratch, R17_tos, 30);
1549   __ srawi(R17_tos, R17_tos, 31);
1550   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1551   if (unordered_result) {
1552     __ b(Ldone);
1553     __ bind(Lunordered);
1554     __ load_const_optimized(R17_tos, unordered_result);
1555   }
1556   __ bind(Ldone);
1557 }
1558 
1559 // Branch_conditional which takes TemplateTable::Condition.
1560 void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) {
1561   bool positive = false;
1562   Assembler::Condition cond = Assembler::equal;
1563   switch (cc) {
1564     case TemplateTable::equal:         positive = true ; cond = Assembler::equal  ; break;
1565     case TemplateTable::not_equal:     positive = false; cond = Assembler::equal  ; break;
1566     case TemplateTable::less:          positive = true ; cond = Assembler::less   ; break;
1567     case TemplateTable::less_equal:    positive = false; cond = Assembler::greater; break;
1568     case TemplateTable::greater:       positive = true ; cond = Assembler::greater; break;
1569     case TemplateTable::greater_equal: positive = false; cond = Assembler::less   ; break;
1570     default: ShouldNotReachHere();
1571   }
1572   int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
1573   int bi = Assembler::bi0(crx, cond);
1574   __ bc(bo, bi, L);
1575 }
1576 
1577 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1578 
1579   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1580   __ verify_thread();
1581 
1582   const Register Rscratch1    = R11_scratch1,
1583                  Rscratch2    = R12_scratch2,
1584                  Rscratch3    = R3_ARG1,
1585                  R4_counters  = R4_ARG2,
1586                  bumped_count = R31,
1587                  Rdisp        = R22_tmp2;
1588 
1589   __ profile_taken_branch(Rscratch1, bumped_count);
1590 
1591   // Get (wide) offset.
1592   if (is_wide) {
1593     __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1594   } else {
1595     __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1596   }
1597 
1598   // --------------------------------------------------------------------------
1599   // Handle all the JSR stuff here, then exit.
1600   // It's much shorter and cleaner than intermingling with the
1601   // non-JSR normal-branch stuff occurring below.
1602   if (is_jsr) {
1603     // Compute return address as bci in Otos_i.
1604     __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1605     __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3));
1606     __ subf(R17_tos, Rscratch1, Rscratch2);
1607 
1608     // Bump bcp to target of JSR.
1609     __ add(R14_bcp, Rdisp, R14_bcp);
1610     // Push returnAddress for "ret" on stack.
1611     __ push_ptr(R17_tos);
1612     // And away we go!
1613     __ dispatch_next(vtos);
1614     return;
1615   }
1616 
1617   // --------------------------------------------------------------------------
1618   // Normal (non-jsr) branch handling
1619 
1620   const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1621   if (increment_invocation_counter_for_backward_branches) {
1622     //__ unimplemented("branch invocation counter");
1623 
1624     Label Lforward;
1625     __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
1626 
1627     // Check branch direction.
1628     __ cmpdi(CCR0, Rdisp, 0);
1629     __ bgt(CCR0, Lforward);
1630 
1631     __ get_method_counters(R19_method, R4_counters, Lforward);
1632 
1633     if (TieredCompilation) {
1634       Label Lno_mdo, Loverflow;
1635       const int increment = InvocationCounter::count_increment;
1636       const int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1637       if (ProfileInterpreter) {
1638         Register Rmdo = Rscratch1;
1639 
1640         // If no method data exists, go to profile_continue.
1641         __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
1642         __ cmpdi(CCR0, Rmdo, 0);
1643         __ beq(CCR0, Lno_mdo);
1644 
1645         // Increment backedge counter in the MDO.
1646         const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1647         __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
1648         __ load_const_optimized(Rscratch3, mask, R0);
1649         __ addi(Rscratch2, Rscratch2, increment);
1650         __ stw(Rscratch2, mdo_bc_offs, Rmdo);
1651         __ and_(Rscratch3, Rscratch2, Rscratch3);
1652         __ bne(CCR0, Lforward);
1653         __ b(Loverflow);
1654       }
1655 
1656       // If there's no MDO, increment counter in method.
1657       const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1658       __ bind(Lno_mdo);
1659       __ lwz(Rscratch2, mo_bc_offs, R4_counters);
1660       __ load_const_optimized(Rscratch3, mask, R0);
1661       __ addi(Rscratch2, Rscratch2, increment);
1662       __ stw(Rscratch2, mo_bc_offs, R19_method);
1663       __ and_(Rscratch3, Rscratch2, Rscratch3);
1664       __ bne(CCR0, Lforward);
1665 
1666       __ bind(Loverflow);
1667 
1668       // Notify point for loop, pass branch bytecode.
1669       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R14_bcp, true);
1670 
1671       // Was an OSR adapter generated?
1672       // O0 = osr nmethod
1673       __ cmpdi(CCR0, R3_RET, 0);
1674       __ beq(CCR0, Lforward);
1675 
1676       // Has the nmethod been invalidated already?
1677       __ lbz(R0, nmethod::state_offset(), R3_RET);
1678       __ cmpwi(CCR0, R0, nmethod::in_use);
1679       __ bne(CCR0, Lforward);
1680 
1681       // Migrate the interpreter frame off of the stack.
1682       // We can use all registers because we will not return to interpreter from this point.
1683 
1684       // Save nmethod.
1685       const Register osr_nmethod = R31;
1686       __ mr(osr_nmethod, R3_RET);
1687       __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1688       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1689       __ reset_last_Java_frame();
1690       // OSR buffer is in ARG1.
1691 
1692       // Remove the interpreter frame.
1693       __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1694 
1695       // Jump to the osr code.
1696       __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1697       __ mtlr(R0);
1698       __ mtctr(R11_scratch1);
1699       __ bctr();
1700 
1701     } else {
1702 
1703       const Register invoke_ctr = Rscratch1;
1704       // Update Backedge branch separately from invocations.
1705       __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3);
1706 
1707       if (ProfileInterpreter) {
1708         __ test_invocation_counter_for_mdp(invoke_ctr, Rscratch2, Lforward);
1709         if (UseOnStackReplacement) {
1710           __ test_backedge_count_for_osr(bumped_count, R14_bcp, Rscratch2);
1711         }
1712       } else {
1713         if (UseOnStackReplacement) {
1714           __ test_backedge_count_for_osr(invoke_ctr, R14_bcp, Rscratch2);
1715         }
1716       }
1717     }
1718 
1719     __ bind(Lforward);
1720 
1721   } else {
1722     // Bump bytecode pointer by displacement (take the branch).
1723     __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
1724   }
1725   // Continue with bytecode @ target.
1726   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1727   // %%%%% and changing dispatch_next to dispatch_only.
1728   __ dispatch_next(vtos);
1729 }
1730 
1731 // Helper function for if_cmp* methods below.
1732 // Factored out common compare and branch code.
1733 void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) {
1734   Label Lnot_taken;
1735   // Note: The condition code we get is the condition under which we
1736   // *fall through*! So we have to inverse the CC here.
1737 
1738   if (is_jint) {
1739     if (cmp0) {
1740       __ cmpwi(CCR0, Rfirst, 0);
1741     } else {
1742       __ cmpw(CCR0, Rfirst, Rsecond);
1743     }
1744   } else {
1745     if (cmp0) {
1746       __ cmpdi(CCR0, Rfirst, 0);
1747     } else {
1748       __ cmpd(CCR0, Rfirst, Rsecond);
1749     }
1750   }
1751   branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true);
1752 
1753   // Conition is false => Jump!
1754   branch(false, false);
1755 
1756   // Condition is not true => Continue.
1757   __ align(32, 12);
1758   __ bind(Lnot_taken);
1759   __ profile_not_taken_branch(Rscratch1, Rscratch2);
1760 }
1761 
1762 // Compare integer values with zero and fall through if CC holds, branch away otherwise.
1763 void TemplateTable::if_0cmp(Condition cc) {
1764   transition(itos, vtos);
1765 
1766   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true);
1767 }
1768 
1769 // Compare integer values and fall through if CC holds, branch away otherwise.
1770 //
1771 // Interface:
1772 //  - Rfirst: First operand  (older stack value)
1773 //  - tos:    Second operand (younger stack value)
1774 void TemplateTable::if_icmp(Condition cc) {
1775   transition(itos, vtos);
1776 
1777   const Register Rfirst  = R0,
1778                  Rsecond = R17_tos;
1779 
1780   __ pop_i(Rfirst);
1781   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false);
1782 }
1783 
1784 void TemplateTable::if_nullcmp(Condition cc) {
1785   transition(atos, vtos);
1786 
1787   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true);
1788 }
1789 
1790 void TemplateTable::if_acmp(Condition cc) {
1791   transition(atos, vtos);
1792 
1793   const Register Rfirst  = R0,
1794                  Rsecond = R17_tos;
1795 
1796   __ pop_ptr(Rfirst);
1797   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false);
1798 }
1799 
1800 void TemplateTable::ret() {
1801   locals_index(R11_scratch1);
1802   __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1);
1803 
1804   __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2);
1805 
1806   __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
1807   __ add(R11_scratch1, R17_tos, R11_scratch1);
1808   __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1809   __ dispatch_next(vtos);
1810 }
1811 
1812 void TemplateTable::wide_ret() {
1813   transition(vtos, vtos);
1814 
1815   const Register Rindex = R3_ARG1,
1816                  Rscratch1 = R11_scratch1,
1817                  Rscratch2 = R12_scratch2;
1818 
1819   locals_index_wide(Rindex);
1820   __ load_local_ptr(R17_tos, R17_tos, Rindex);
1821   __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2);
1822   // Tos now contains the bci, compute the bcp from that.
1823   __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1824   __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset()));
1825   __ add(R14_bcp, Rscratch1, Rscratch2);
1826   __ dispatch_next(vtos);
1827 }
1828 
1829 void TemplateTable::tableswitch() {
1830   transition(itos, vtos);
1831 
1832   Label Ldispatch, Ldefault_case;
1833   Register Rlow_byte         = R3_ARG1,
1834            Rindex            = Rlow_byte,
1835            Rhigh_byte        = R4_ARG2,
1836            Rdef_offset_addr  = R5_ARG3, // is going to contain address of default offset
1837            Rscratch1         = R11_scratch1,
1838            Rscratch2         = R12_scratch2,
1839            Roffset           = R6_ARG4;
1840 
1841   // Align bcp.
1842   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1843   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1844 
1845   // Load lo & hi.
1846   __ get_u4(Rlow_byte, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
1847   __ get_u4(Rhigh_byte, Rdef_offset_addr, 2 *BytesPerInt, InterpreterMacroAssembler::Unsigned);
1848 
1849   // Check for default case (=index outside [low,high]).
1850   __ cmpw(CCR0, R17_tos, Rlow_byte);
1851   __ cmpw(CCR1, R17_tos, Rhigh_byte);
1852   __ blt(CCR0, Ldefault_case);
1853   __ bgt(CCR1, Ldefault_case);
1854 
1855   // Lookup dispatch offset.
1856   __ sub(Rindex, R17_tos, Rlow_byte);
1857   __ extsw(Rindex, Rindex);
1858   __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2);
1859   __ sldi(Rindex, Rindex, LogBytesPerInt);
1860   __ addi(Rindex, Rindex, 3 * BytesPerInt);
1861 #if defined(VM_LITTLE_ENDIAN)
1862   __ lwbrx(Roffset, Rdef_offset_addr, Rindex);
1863   __ extsw(Roffset, Roffset);
1864 #else
1865   __ lwax(Roffset, Rdef_offset_addr, Rindex);
1866 #endif
1867   __ b(Ldispatch);
1868 
1869   __ bind(Ldefault_case);
1870   __ profile_switch_default(Rhigh_byte, Rscratch1);
1871   __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
1872 
1873   __ bind(Ldispatch);
1874 
1875   __ add(R14_bcp, Roffset, R14_bcp);
1876   __ dispatch_next(vtos);
1877 }
1878 
1879 void TemplateTable::lookupswitch() {
1880   transition(itos, itos);
1881   __ stop("lookupswitch bytecode should have been rewritten");
1882 }
1883 
1884 // Table switch using linear search through cases.
1885 // Bytecode stream format:
1886 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
1887 // Note: Everything is big-endian format here.
1888 void TemplateTable::fast_linearswitch() {
1889   transition(itos, vtos);
1890 
1891   Label Lloop_entry, Lsearch_loop, Lcontinue_execution, Ldefault_case;
1892   Register Rcount           = R3_ARG1,
1893            Rcurrent_pair    = R4_ARG2,
1894            Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset.
1895            Roffset          = R31,     // Might need to survive C call.
1896            Rvalue           = R12_scratch2,
1897            Rscratch         = R11_scratch1,
1898            Rcmp_value       = R17_tos;
1899 
1900   // Align bcp.
1901   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1902   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1903 
1904   // Setup loop counter and limit.
1905   __ get_u4(Rcount, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
1906   __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair.
1907 
1908   __ mtctr(Rcount);
1909   __ cmpwi(CCR0, Rcount, 0);
1910   __ bne(CCR0, Lloop_entry);
1911 
1912   // Default case
1913   __ bind(Ldefault_case);
1914   __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
1915   if (ProfileInterpreter) {
1916     __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */);
1917   }
1918   __ b(Lcontinue_execution);
1919 
1920   // Next iteration
1921   __ bind(Lsearch_loop);
1922   __ bdz(Ldefault_case);
1923   __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt);
1924   __ bind(Lloop_entry);
1925   __ get_u4(Rvalue, Rcurrent_pair, 0, InterpreterMacroAssembler::Unsigned);
1926   __ cmpw(CCR0, Rvalue, Rcmp_value);
1927   __ bne(CCR0, Lsearch_loop);
1928 
1929   // Found, load offset.
1930   __ get_u4(Roffset, Rcurrent_pair, BytesPerInt, InterpreterMacroAssembler::Signed);
1931   // Calculate case index and profile
1932   __ mfctr(Rcurrent_pair);
1933   if (ProfileInterpreter) {
1934     __ sub(Rcurrent_pair, Rcount, Rcurrent_pair);
1935     __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch);
1936   }
1937 
1938   __ bind(Lcontinue_execution);
1939   __ add(R14_bcp, Roffset, R14_bcp);
1940   __ dispatch_next(vtos);
1941 }
1942 
1943 // Table switch using binary search (value/offset pairs are ordered).
1944 // Bytecode stream format:
1945 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
1946 // Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
1947 void TemplateTable::fast_binaryswitch() {
1948 
1949   transition(itos, vtos);
1950   // Implementation using the following core algorithm: (copied from Intel)
1951   //
1952   // int binary_search(int key, LookupswitchPair* array, int n) {
1953   //   // Binary search according to "Methodik des Programmierens" by
1954   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1955   //   int i = 0;
1956   //   int j = n;
1957   //   while (i+1 < j) {
1958   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1959   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1960   //     // where a stands for the array and assuming that the (inexisting)
1961   //     // element a[n] is infinitely big.
1962   //     int h = (i + j) >> 1;
1963   //     // i < h < j
1964   //     if (key < array[h].fast_match()) {
1965   //       j = h;
1966   //     } else {
1967   //       i = h;
1968   //     }
1969   //   }
1970   //   // R: a[i] <= key < a[i+1] or Q
1971   //   // (i.e., if key is within array, i is the correct index)
1972   //   return i;
1973   // }
1974 
1975   // register allocation
1976   const Register Rkey     = R17_tos;          // already set (tosca)
1977   const Register Rarray   = R3_ARG1;
1978   const Register Ri       = R4_ARG2;
1979   const Register Rj       = R5_ARG3;
1980   const Register Rh       = R6_ARG4;
1981   const Register Rscratch = R11_scratch1;
1982 
1983   const int log_entry_size = 3;
1984   const int entry_size = 1 << log_entry_size;
1985 
1986   Label found;
1987 
1988   // Find Array start,
1989   __ addi(Rarray, R14_bcp, 3 * BytesPerInt);
1990   __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt));
1991 
1992   // initialize i & j
1993   __ li(Ri,0);
1994   __ get_u4(Rj, Rarray, -BytesPerInt, InterpreterMacroAssembler::Unsigned);
1995 
1996   // and start.
1997   Label entry;
1998   __ b(entry);
1999 
2000   // binary search loop
2001   { Label loop;
2002     __ bind(loop);
2003     // int h = (i + j) >> 1;
2004     __ srdi(Rh, Rh, 1);
2005     // if (key < array[h].fast_match()) {
2006     //   j = h;
2007     // } else {
2008     //   i = h;
2009     // }
2010     __ sldi(Rscratch, Rh, log_entry_size);
2011 #if defined(VM_LITTLE_ENDIAN)
2012     __ lwbrx(Rscratch, Rscratch, Rarray);
2013 #else
2014     __ lwzx(Rscratch, Rscratch, Rarray);
2015 #endif
2016 
2017     // if (key < current value)
2018     //   Rh = Rj
2019     // else
2020     //   Rh = Ri
2021     Label Lgreater;
2022     __ cmpw(CCR0, Rkey, Rscratch);
2023     __ bge(CCR0, Lgreater);
2024     __ mr(Rj, Rh);
2025     __ b(entry);
2026     __ bind(Lgreater);
2027     __ mr(Ri, Rh);
2028 
2029     // while (i+1 < j)
2030     __ bind(entry);
2031     __ addi(Rscratch, Ri, 1);
2032     __ cmpw(CCR0, Rscratch, Rj);
2033     __ add(Rh, Ri, Rj); // start h = i + j >> 1;
2034 
2035     __ blt(CCR0, loop);
2036   }
2037 
2038   // End of binary search, result index is i (must check again!).
2039   Label default_case;
2040   Label continue_execution;
2041   if (ProfileInterpreter) {
2042     __ mr(Rh, Ri);              // Save index in i for profiling.
2043   }
2044   // Ri = value offset
2045   __ sldi(Ri, Ri, log_entry_size);
2046   __ add(Ri, Ri, Rarray);
2047   __ get_u4(Rscratch, Ri, 0, InterpreterMacroAssembler::Unsigned);
2048 
2049   Label not_found;
2050   // Ri = offset offset
2051   __ cmpw(CCR0, Rkey, Rscratch);
2052   __ beq(CCR0, not_found);
2053   // entry not found -> j = default offset
2054   __ get_u4(Rj, Rarray, -2 * BytesPerInt, InterpreterMacroAssembler::Unsigned);
2055   __ b(default_case);
2056 
2057   __ bind(not_found);
2058   // entry found -> j = offset
2059   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
2060   __ get_u4(Rj, Ri, BytesPerInt, InterpreterMacroAssembler::Unsigned);
2061 
2062   if (ProfileInterpreter) {
2063     __ b(continue_execution);
2064   }
2065 
2066   __ bind(default_case); // fall through (if not profiling)
2067   __ profile_switch_default(Ri, Rscratch);
2068 
2069   __ bind(continue_execution);
2070 
2071   __ extsw(Rj, Rj);
2072   __ add(R14_bcp, Rj, R14_bcp);
2073   __ dispatch_next(vtos);
2074 }
2075 
2076 void TemplateTable::_return(TosState state) {
2077   transition(state, state);
2078   assert(_desc->calls_vm(),
2079          "inconsistent calls_vm information"); // call in remove_activation
2080 
2081   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2082 
2083     Register Rscratch     = R11_scratch1,
2084              Rklass       = R12_scratch2,
2085              Rklass_flags = Rklass;
2086     Label Lskip_register_finalizer;
2087 
2088     // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case.
2089     assert(state == vtos, "only valid state");
2090     __ ld(R17_tos, 0, R18_locals);
2091 
2092     // Load klass of this obj.
2093     __ load_klass(Rklass, R17_tos);
2094     __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass);
2095     __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER));
2096     __ bfalse(CCR0, Lskip_register_finalizer);
2097 
2098     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */);
2099 
2100     __ align(32, 12);
2101     __ bind(Lskip_register_finalizer);
2102   }
2103 
2104   // Move the result value into the correct register and remove memory stack frame.
2105   __ remove_activation(state, /* throw_monitor_exception */ true);
2106   // Restoration of lr done by remove_activation.
2107   switch (state) {
2108     case ltos:
2109     case btos:
2110     case ctos:
2111     case stos:
2112     case atos:
2113     case itos: __ mr(R3_RET, R17_tos); break;
2114     case ftos:
2115     case dtos: __ fmr(F1_RET, F15_ftos); break;
2116     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2117                // to get visible before the reference to the object gets stored anywhere.
2118                __ membar(Assembler::StoreStore); break;
2119     default  : ShouldNotReachHere();
2120   }
2121   __ blr();
2122 }
2123 
2124 // ============================================================================
2125 // Constant pool cache access
2126 //
2127 // Memory ordering:
2128 //
2129 // Like done in C++ interpreter, we load the fields
2130 //   - _indices
2131 //   - _f12_oop
2132 // acquired, because these are asked if the cache is already resolved. We don't
2133 // want to float loads above this check.
2134 // See also comments in ConstantPoolCacheEntry::bytecode_1(),
2135 // ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1();
2136 
2137 // Call into the VM if call site is not yet resolved
2138 //
2139 // Input regs:
2140 //   - None, all passed regs are outputs.
2141 //
2142 // Returns:
2143 //   - Rcache:  The const pool cache entry that contains the resolved result.
2144 //   - Rresult: Either noreg or output for f1/f2.
2145 //
2146 // Kills:
2147 //   - Rscratch
2148 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) {
2149 
2150   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2151   Label Lresolved, Ldone;
2152 
2153   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2154   // We are resolved if the indices offset contains the current bytecode.
2155 #if defined(VM_LITTLE_ENDIAN)
2156   __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + byte_no + 1, Rcache);
2157 #else
2158   __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache);
2159 #endif
2160   // Acquire by cmp-br-isync (see below).
2161   __ cmpdi(CCR0, Rscratch, (int)bytecode());
2162   __ beq(CCR0, Lresolved);
2163 
2164   address entry = NULL;
2165   switch (bytecode()) {
2166     case Bytecodes::_getstatic      : // fall through
2167     case Bytecodes::_putstatic      : // fall through
2168     case Bytecodes::_getfield       : // fall through
2169     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2170     case Bytecodes::_invokevirtual  : // fall through
2171     case Bytecodes::_invokespecial  : // fall through
2172     case Bytecodes::_invokestatic   : // fall through
2173     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
2174     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break;
2175     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
2176     default                         : ShouldNotReachHere(); break;
2177   }
2178   __ li(R4_ARG2, (int)bytecode());
2179   __ call_VM(noreg, entry, R4_ARG2, true);
2180 
2181   // Update registers with resolved info.
2182   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2183   __ b(Ldone);
2184 
2185   __ bind(Lresolved);
2186   __ isync(); // Order load wrt. succeeding loads.
2187   __ bind(Ldone);
2188 }
2189 
2190 // Load the constant pool cache entry at field accesses into registers.
2191 // The Rcache and Rindex registers must be set before call.
2192 // Input:
2193 //   - Rcache, Rindex
2194 // Output:
2195 //   - Robj, Roffset, Rflags
2196 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2197                                               Register Rcache,
2198                                               Register Rindex /* unused on PPC64 */,
2199                                               Register Roffset,
2200                                               Register Rflags,
2201                                               bool is_static = false) {
2202   assert_different_registers(Rcache, Rflags, Roffset);
2203   // assert(Rindex == noreg, "parameter not used on PPC64");
2204 
2205   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2206   __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache);
2207   __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache);
2208   if (is_static) {
2209     __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache);
2210     __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj);
2211     // Acquire not needed here. Following access has an address dependency on this value.
2212   }
2213 }
2214 
2215 // Load the constant pool cache entry at invokes into registers.
2216 // Resolve if necessary.
2217 
2218 // Input Registers:
2219 //   - None, bcp is used, though
2220 //
2221 // Return registers:
2222 //   - Rmethod       (f1 field or f2 if invokevirtual)
2223 //   - Ritable_index (f2 field)
2224 //   - Rflags        (flags field)
2225 //
2226 // Kills:
2227 //   - R21
2228 //
2229 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2230                                                Register Rmethod,
2231                                                Register Ritable_index,
2232                                                Register Rflags,
2233                                                bool is_invokevirtual,
2234                                                bool is_invokevfinal,
2235                                                bool is_invokedynamic) {
2236 
2237   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2238   // Determine constant pool cache field offsets.
2239   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2240   const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset()));
2241   const int flags_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset());
2242   // Access constant pool cache fields.
2243   const int index_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset());
2244 
2245   Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP.
2246 
2247   if (is_invokevfinal) {
2248     assert(Ritable_index == noreg, "register not used");
2249     // Already resolved.
2250     __ get_cache_and_index_at_bcp(Rcache, 1);
2251   } else {
2252     resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2));
2253   }
2254 
2255   __ ld(Rmethod, method_offset, Rcache);
2256   __ ld(Rflags, flags_offset, Rcache);
2257 
2258   if (Ritable_index != noreg) {
2259     __ ld(Ritable_index, index_offset, Rcache);
2260   }
2261 }
2262 
2263 // ============================================================================
2264 // Field access
2265 
2266 // Volatile variables demand their effects be made known to all CPU's
2267 // in order. Store buffers on most chips allow reads & writes to
2268 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2269 // without some kind of memory barrier (i.e., it's not sufficient that
2270 // the interpreter does not reorder volatile references, the hardware
2271 // also must not reorder them).
2272 //
2273 // According to the new Java Memory Model (JMM):
2274 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2275 //     writes act as aquire & release, so:
2276 // (2) A read cannot let unrelated NON-volatile memory refs that
2277 //     happen after the read float up to before the read. It's OK for
2278 //     non-volatile memory refs that happen before the volatile read to
2279 //     float down below it.
2280 // (3) Similar a volatile write cannot let unrelated NON-volatile
2281 //     memory refs that happen BEFORE the write float down to after the
2282 //     write. It's OK for non-volatile memory refs that happen after the
2283 //     volatile write to float up before it.
2284 //
2285 // We only put in barriers around volatile refs (they are expensive),
2286 // not _between_ memory refs (that would require us to track the
2287 // flavor of the previous memory refs). Requirements (2) and (3)
2288 // require some barriers before volatile stores and after volatile
2289 // loads. These nearly cover requirement (1) but miss the
2290 // volatile-store-volatile-load case.  This final case is placed after
2291 // volatile-stores although it could just as well go before
2292 // volatile-loads.
2293 
2294 // The registers cache and index expected to be set before call.
2295 // Correct values of the cache and index registers are preserved.
2296 // Kills:
2297 //   Rcache (if has_tos)
2298 //   Rscratch
2299 void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) {
2300 
2301   assert_different_registers(Rcache, Rscratch);
2302 
2303   if (JvmtiExport::can_post_field_access()) {
2304     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2305     Label Lno_field_access_post;
2306 
2307     // Check if post field access in enabled.
2308     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true);
2309     __ lwz(Rscratch, offs, Rscratch);
2310 
2311     __ cmpwi(CCR0, Rscratch, 0);
2312     __ beq(CCR0, Lno_field_access_post);
2313 
2314     // Post access enabled - do it!
2315     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2316     if (is_static) {
2317       __ li(R17_tos, 0);
2318     } else {
2319       if (has_tos) {
2320         // The fast bytecode versions have obj ptr in register.
2321         // Thus, save object pointer before call_VM() clobbers it
2322         // put object on tos where GC wants it.
2323         __ push_ptr(R17_tos);
2324       } else {
2325         // Load top of stack (do not pop the value off the stack).
2326         __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp);
2327       }
2328       __ verify_oop(R17_tos);
2329     }
2330     // tos:   object pointer or NULL if static
2331     // cache: cache entry pointer
2332     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache);
2333     if (!is_static && has_tos) {
2334       // Restore object pointer.
2335       __ pop_ptr(R17_tos);
2336       __ verify_oop(R17_tos);
2337     } else {
2338       // Cache is still needed to get class or obj.
2339       __ get_cache_and_index_at_bcp(Rcache, 1);
2340     }
2341 
2342     __ align(32, 12);
2343     __ bind(Lno_field_access_post);
2344   }
2345 }
2346 
2347 // kills R11_scratch1
2348 void TemplateTable::pop_and_check_object(Register Roop) {
2349   Register Rtmp = R11_scratch1;
2350 
2351   assert_different_registers(Rtmp, Roop);
2352   __ pop_ptr(Roop);
2353   // For field access must check obj.
2354   __ null_check_throw(Roop, -1, Rtmp);
2355   __ verify_oop(Roop);
2356 }
2357 
2358 // PPC64: implement volatile loads as fence-store-acquire.
2359 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2360   transition(vtos, vtos);
2361 
2362   Label Lacquire, Lisync;
2363 
2364   const Register Rcache        = R3_ARG1,
2365                  Rclass_or_obj = R22_tmp2,
2366                  Roffset       = R23_tmp3,
2367                  Rflags        = R31,
2368                  Rbtable       = R5_ARG3,
2369                  Rbc           = R6_ARG4,
2370                  Rscratch      = R12_scratch2;
2371 
2372   static address field_branch_table[number_of_states],
2373                  static_branch_table[number_of_states];
2374 
2375   address* branch_table = is_static ? static_branch_table : field_branch_table;
2376 
2377   // Get field offset.
2378   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2379 
2380   // JVMTI support
2381   jvmti_post_field_access(Rcache, Rscratch, is_static, false);
2382 
2383   // Load after possible GC.
2384   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2385 
2386   // Load pointer to branch table.
2387   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2388 
2389   // Get volatile flag.
2390   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2391   // Note: sync is needed before volatile load on PPC64.
2392 
2393   // Check field type.
2394   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2395 
2396 #ifdef ASSERT
2397   Label LFlagInvalid;
2398   __ cmpldi(CCR0, Rflags, number_of_states);
2399   __ bge(CCR0, LFlagInvalid);
2400 #endif
2401 
2402   // Load from branch table and dispatch (volatile case: one instruction ahead).
2403   __ sldi(Rflags, Rflags, LogBytesPerWord);
2404   __ cmpwi(CCR6, Rscratch, 1); // Volatile?
2405   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2406     __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0.
2407   }
2408   __ ldx(Rbtable, Rbtable, Rflags);
2409 
2410   // Get the obj from stack.
2411   if (!is_static) {
2412     pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
2413   } else {
2414     __ verify_oop(Rclass_or_obj);
2415   }
2416 
2417   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2418     __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2419   }
2420   __ mtctr(Rbtable);
2421   __ bctr();
2422 
2423 #ifdef ASSERT
2424   __ bind(LFlagInvalid);
2425   __ stop("got invalid flag", 0x654);
2426 
2427   // __ bind(Lvtos);
2428   address pc_before_fence = __ pc();
2429   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2430   assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2431   assert(branch_table[vtos] == 0, "can't compute twice");
2432   branch_table[vtos] = __ pc(); // non-volatile_entry point
2433   __ stop("vtos unexpected", 0x655);
2434 #endif
2435 
2436   __ align(32, 28, 28); // Align load.
2437   // __ bind(Ldtos);
2438   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2439   assert(branch_table[dtos] == 0, "can't compute twice");
2440   branch_table[dtos] = __ pc(); // non-volatile_entry point
2441   __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
2442   __ push(dtos);
2443   if (!is_static) patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch);
2444   {
2445     Label acquire_double;
2446     __ beq(CCR6, acquire_double); // Volatile?
2447     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2448 
2449     __ bind(acquire_double);
2450     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2451     __ beq_predict_taken(CCR0, Lisync);
2452     __ b(Lisync); // In case of NAN.
2453   }
2454 
2455   __ align(32, 28, 28); // Align load.
2456   // __ bind(Lftos);
2457   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2458   assert(branch_table[ftos] == 0, "can't compute twice");
2459   branch_table[ftos] = __ pc(); // non-volatile_entry point
2460   __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
2461   __ push(ftos);
2462   if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch); }
2463   {
2464     Label acquire_float;
2465     __ beq(CCR6, acquire_float); // Volatile?
2466     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2467 
2468     __ bind(acquire_float);
2469     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2470     __ beq_predict_taken(CCR0, Lisync);
2471     __ b(Lisync); // In case of NAN.
2472   }
2473 
2474   __ align(32, 28, 28); // Align load.
2475   // __ bind(Litos);
2476   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2477   assert(branch_table[itos] == 0, "can't compute twice");
2478   branch_table[itos] = __ pc(); // non-volatile_entry point
2479   __ lwax(R17_tos, Rclass_or_obj, Roffset);
2480   __ push(itos);
2481   if (!is_static) patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch);
2482   __ beq(CCR6, Lacquire); // Volatile?
2483   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2484 
2485   __ align(32, 28, 28); // Align load.
2486   // __ bind(Lltos);
2487   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2488   assert(branch_table[ltos] == 0, "can't compute twice");
2489   branch_table[ltos] = __ pc(); // non-volatile_entry point
2490   __ ldx(R17_tos, Rclass_or_obj, Roffset);
2491   __ push(ltos);
2492   if (!is_static) patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch);
2493   __ beq(CCR6, Lacquire); // Volatile?
2494   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2495 
2496   __ align(32, 28, 28); // Align load.
2497   // __ bind(Lbtos);
2498   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2499   assert(branch_table[btos] == 0, "can't compute twice");
2500   branch_table[btos] = __ pc(); // non-volatile_entry point
2501   __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2502   __ extsb(R17_tos, R17_tos);
2503   __ push(btos);
2504   if (!is_static) patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
2505   __ beq(CCR6, Lacquire); // Volatile?
2506   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2507 
2508   __ align(32, 28, 28); // Align load.
2509   // __ bind(Lctos);
2510   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2511   assert(branch_table[ctos] == 0, "can't compute twice");
2512   branch_table[ctos] = __ pc(); // non-volatile_entry point
2513   __ lhzx(R17_tos, Rclass_or_obj, Roffset);
2514   __ push(ctos);
2515   if (!is_static) patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch);
2516   __ beq(CCR6, Lacquire); // Volatile?
2517   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2518 
2519   __ align(32, 28, 28); // Align load.
2520   // __ bind(Lstos);
2521   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2522   assert(branch_table[stos] == 0, "can't compute twice");
2523   branch_table[stos] = __ pc(); // non-volatile_entry point
2524   __ lhax(R17_tos, Rclass_or_obj, Roffset);
2525   __ push(stos);
2526   if (!is_static) patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch);
2527   __ beq(CCR6, Lacquire); // Volatile?
2528   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2529 
2530   __ align(32, 28, 28); // Align load.
2531   // __ bind(Latos);
2532   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2533   assert(branch_table[atos] == 0, "can't compute twice");
2534   branch_table[atos] = __ pc(); // non-volatile_entry point
2535   __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2536   __ verify_oop(R17_tos);
2537   __ push(atos);
2538   //__ dcbt(R17_tos); // prefetch
2539   if (!is_static) patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch);
2540   __ beq(CCR6, Lacquire); // Volatile?
2541   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2542 
2543   __ align(32, 12);
2544   __ bind(Lacquire);
2545   __ twi_0(R17_tos);
2546   __ bind(Lisync);
2547   __ isync(); // acquire
2548 
2549 #ifdef ASSERT
2550   for (int i = 0; i<number_of_states; ++i) {
2551     assert(branch_table[i], "get initialization");
2552     //tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2553     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
2554   }
2555 #endif
2556 }
2557 
2558 void TemplateTable::getfield(int byte_no) {
2559   getfield_or_static(byte_no, false);
2560 }
2561 
2562 void TemplateTable::getstatic(int byte_no) {
2563   getfield_or_static(byte_no, true);
2564 }
2565 
2566 // The registers cache and index expected to be set before call.
2567 // The function may destroy various registers, just not the cache and index registers.
2568 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) {
2569 
2570   assert_different_registers(Rcache, Rscratch, R6_ARG4);
2571 
2572   if (JvmtiExport::can_post_field_modification()) {
2573     Label Lno_field_mod_post;
2574 
2575     // Check if post field access in enabled.
2576     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true);
2577     __ lwz(Rscratch, offs, Rscratch);
2578 
2579     __ cmpwi(CCR0, Rscratch, 0);
2580     __ beq(CCR0, Lno_field_mod_post);
2581 
2582     // Do the post
2583     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2584     const Register Robj = Rscratch;
2585 
2586     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2587     if (is_static) {
2588       // Life is simple. Null out the object pointer.
2589       __ li(Robj, 0);
2590     } else {
2591       // In case of the fast versions, value lives in registers => put it back on tos.
2592       int offs = Interpreter::expr_offset_in_bytes(0);
2593       Register base = R15_esp;
2594       switch(bytecode()) {
2595         case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break;
2596         case Bytecodes::_fast_iputfield: // Fall through
2597         case Bytecodes::_fast_bputfield: // Fall through
2598         case Bytecodes::_fast_cputfield: // Fall through
2599         case Bytecodes::_fast_sputfield: __ push_i(); offs+=  Interpreter::stackElementSize; break;
2600         case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break;
2601         case Bytecodes::_fast_fputfield: __ push_f(); offs+=  Interpreter::stackElementSize; break;
2602         case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break;
2603         default: {
2604           offs = 0;
2605           base = Robj;
2606           const Register Rflags = Robj;
2607           Label is_one_slot;
2608           // Life is harder. The stack holds the value on top, followed by the
2609           // object. We don't know the size of the value, though; it could be
2610           // one or two words depending on its type. As a result, we must find
2611           // the type to determine where the object is.
2612           __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian
2613           __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2614 
2615           __ cmpwi(CCR0, Rflags, ltos);
2616           __ cmpwi(CCR1, Rflags, dtos);
2617           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1));
2618           __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
2619           __ beq(CCR0, is_one_slot);
2620           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2));
2621           __ bind(is_one_slot);
2622           break;
2623         }
2624       }
2625       __ ld(Robj, offs, base);
2626       __ verify_oop(Robj);
2627     }
2628 
2629     __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0));
2630     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4);
2631     __ get_cache_and_index_at_bcp(Rcache, 1);
2632 
2633     // In case of the fast versions, value lives in registers => put it back on tos.
2634     switch(bytecode()) {
2635       case Bytecodes::_fast_aputfield: __ pop_ptr(); break;
2636       case Bytecodes::_fast_iputfield: // Fall through
2637       case Bytecodes::_fast_bputfield: // Fall through
2638       case Bytecodes::_fast_cputfield: // Fall through
2639       case Bytecodes::_fast_sputfield: __ pop_i(); break;
2640       case Bytecodes::_fast_lputfield: __ pop_l(); break;
2641       case Bytecodes::_fast_fputfield: __ pop_f(); break;
2642       case Bytecodes::_fast_dputfield: __ pop_d(); break;
2643       default: break; // Nothin' to do.
2644     }
2645 
2646     __ align(32, 12);
2647     __ bind(Lno_field_mod_post);
2648   }
2649 }
2650 
2651 // PPC64: implement volatile stores as release-store (return bytecode contains an additional release).
2652 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2653   Label Lvolatile;
2654 
2655   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
2656                  Rclass_or_obj = R31,      // Needs to survive C call.
2657                  Roffset       = R22_tmp2, // Needs to survive C call.
2658                  Rflags        = R3_ARG1,
2659                  Rbtable       = R4_ARG2,
2660                  Rscratch      = R11_scratch1,
2661                  Rscratch2     = R12_scratch2,
2662                  Rscratch3     = R6_ARG4,
2663                  Rbc           = Rscratch3;
2664   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
2665 
2666   static address field_branch_table[number_of_states],
2667                  static_branch_table[number_of_states];
2668 
2669   address* branch_table = is_static ? static_branch_table : field_branch_table;
2670 
2671   // Stack (grows up):
2672   //  value
2673   //  obj
2674 
2675   // Load the field offset.
2676   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2677   jvmti_post_field_mod(Rcache, Rscratch, is_static);
2678   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2679 
2680   // Load pointer to branch table.
2681   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2682 
2683   // Get volatile flag.
2684   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2685 
2686   // Check the field type.
2687   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2688 
2689 #ifdef ASSERT
2690   Label LFlagInvalid;
2691   __ cmpldi(CCR0, Rflags, number_of_states);
2692   __ bge(CCR0, LFlagInvalid);
2693 #endif
2694 
2695   // Load from branch table and dispatch (volatile case: one instruction ahead).
2696   __ sldi(Rflags, Rflags, LogBytesPerWord);
2697   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpwi(CR_is_vol, Rscratch, 1); } // Volatile?
2698   __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0.
2699   __ ldx(Rbtable, Rbtable, Rflags);
2700 
2701   __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2702   __ mtctr(Rbtable);
2703   __ bctr();
2704 
2705 #ifdef ASSERT
2706   __ bind(LFlagInvalid);
2707   __ stop("got invalid flag", 0x656);
2708 
2709   // __ bind(Lvtos);
2710   address pc_before_release = __ pc();
2711   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2712   assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2713   assert(branch_table[vtos] == 0, "can't compute twice");
2714   branch_table[vtos] = __ pc(); // non-volatile_entry point
2715   __ stop("vtos unexpected", 0x657);
2716 #endif
2717 
2718   __ align(32, 28, 28); // Align pop.
2719   // __ bind(Ldtos);
2720   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2721   assert(branch_table[dtos] == 0, "can't compute twice");
2722   branch_table[dtos] = __ pc(); // non-volatile_entry point
2723   __ pop(dtos);
2724   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2725   __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
2726   if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no); }
2727   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2728     __ beq(CR_is_vol, Lvolatile); // Volatile?
2729   }
2730   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2731 
2732   __ align(32, 28, 28); // Align pop.
2733   // __ bind(Lftos);
2734   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2735   assert(branch_table[ftos] == 0, "can't compute twice");
2736   branch_table[ftos] = __ pc(); // non-volatile_entry point
2737   __ pop(ftos);
2738   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2739   __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
2740   if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no); }
2741   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2742     __ beq(CR_is_vol, Lvolatile); // Volatile?
2743   }
2744   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2745 
2746   __ align(32, 28, 28); // Align pop.
2747   // __ bind(Litos);
2748   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2749   assert(branch_table[itos] == 0, "can't compute twice");
2750   branch_table[itos] = __ pc(); // non-volatile_entry point
2751   __ pop(itos);
2752   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2753   __ stwx(R17_tos, Rclass_or_obj, Roffset);
2754   if (!is_static) { patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no); }
2755   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2756     __ beq(CR_is_vol, Lvolatile); // Volatile?
2757   }
2758   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2759 
2760   __ align(32, 28, 28); // Align pop.
2761   // __ bind(Lltos);
2762   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2763   assert(branch_table[ltos] == 0, "can't compute twice");
2764   branch_table[ltos] = __ pc(); // non-volatile_entry point
2765   __ pop(ltos);
2766   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2767   __ stdx(R17_tos, Rclass_or_obj, Roffset);
2768   if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no); }
2769   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2770     __ beq(CR_is_vol, Lvolatile); // Volatile?
2771   }
2772   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2773 
2774   __ align(32, 28, 28); // Align pop.
2775   // __ bind(Lbtos);
2776   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2777   assert(branch_table[btos] == 0, "can't compute twice");
2778   branch_table[btos] = __ pc(); // non-volatile_entry point
2779   __ pop(btos);
2780   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2781   __ stbx(R17_tos, Rclass_or_obj, Roffset);
2782   if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no); }
2783   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2784     __ beq(CR_is_vol, Lvolatile); // Volatile?
2785   }
2786   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2787 
2788   __ align(32, 28, 28); // Align pop.
2789   // __ bind(Lctos);
2790   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2791   assert(branch_table[ctos] == 0, "can't compute twice");
2792   branch_table[ctos] = __ pc(); // non-volatile_entry point
2793   __ pop(ctos);
2794   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1..
2795   __ sthx(R17_tos, Rclass_or_obj, Roffset);
2796   if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no); }
2797   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2798     __ beq(CR_is_vol, Lvolatile); // Volatile?
2799   }
2800   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2801 
2802   __ align(32, 28, 28); // Align pop.
2803   // __ bind(Lstos);
2804   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2805   assert(branch_table[stos] == 0, "can't compute twice");
2806   branch_table[stos] = __ pc(); // non-volatile_entry point
2807   __ pop(stos);
2808   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2809   __ sthx(R17_tos, Rclass_or_obj, Roffset);
2810   if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no); }
2811   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2812     __ beq(CR_is_vol, Lvolatile); // Volatile?
2813   }
2814   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2815 
2816   __ align(32, 28, 28); // Align pop.
2817   // __ bind(Latos);
2818   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2819   assert(branch_table[atos] == 0, "can't compute twice");
2820   branch_table[atos] = __ pc(); // non-volatile_entry point
2821   __ pop(atos);
2822   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1
2823   do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
2824   if (!is_static) { patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no); }
2825   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2826     __ beq(CR_is_vol, Lvolatile); // Volatile?
2827     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2828 
2829     __ align(32, 12);
2830     __ bind(Lvolatile);
2831     __ fence();
2832   }
2833   // fallthru: __ b(Lexit);
2834 
2835 #ifdef ASSERT
2836   for (int i = 0; i<number_of_states; ++i) {
2837     assert(branch_table[i], "put initialization");
2838     //tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2839     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
2840   }
2841 #endif
2842 }
2843 
2844 void TemplateTable::putfield(int byte_no) {
2845   putfield_or_static(byte_no, false);
2846 }
2847 
2848 void TemplateTable::putstatic(int byte_no) {
2849   putfield_or_static(byte_no, true);
2850 }
2851 
2852 // See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job.
2853 void TemplateTable::jvmti_post_fast_field_mod() {
2854   __ should_not_reach_here();
2855 }
2856 
2857 void TemplateTable::fast_storefield(TosState state) {
2858   transition(state, vtos);
2859 
2860   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
2861                  Rclass_or_obj = R31,      // Needs to survive C call.
2862                  Roffset       = R22_tmp2, // Needs to survive C call.
2863                  Rflags        = R3_ARG1,
2864                  Rscratch      = R11_scratch1,
2865                  Rscratch2     = R12_scratch2,
2866                  Rscratch3     = R4_ARG2;
2867   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
2868 
2869   // Constant pool already resolved => Load flags and offset of field.
2870   __ get_cache_and_index_at_bcp(Rcache, 1);
2871   jvmti_post_field_mod(Rcache, Rscratch, false /* not static */);
2872   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
2873 
2874   // Get the obj and the final store addr.
2875   pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
2876 
2877   // Get volatile flag.
2878   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2879   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); }
2880   {
2881     Label LnotVolatile;
2882     __ beq(CCR0, LnotVolatile);
2883     __ release();
2884     __ align(32, 12);
2885     __ bind(LnotVolatile);
2886   }
2887 
2888   // Do the store and fencing.
2889   switch(bytecode()) {
2890     case Bytecodes::_fast_aputfield:
2891       // Store into the field.
2892       do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
2893       break;
2894 
2895     case Bytecodes::_fast_iputfield:
2896       __ stwx(R17_tos, Rclass_or_obj, Roffset);
2897       break;
2898 
2899     case Bytecodes::_fast_lputfield:
2900       __ stdx(R17_tos, Rclass_or_obj, Roffset);
2901       break;
2902 
2903     case Bytecodes::_fast_bputfield:
2904       __ stbx(R17_tos, Rclass_or_obj, Roffset);
2905       break;
2906 
2907     case Bytecodes::_fast_cputfield:
2908     case Bytecodes::_fast_sputfield:
2909       __ sthx(R17_tos, Rclass_or_obj, Roffset);
2910       break;
2911 
2912     case Bytecodes::_fast_fputfield:
2913       __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
2914       break;
2915 
2916     case Bytecodes::_fast_dputfield:
2917       __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
2918       break;
2919 
2920     default: ShouldNotReachHere();
2921   }
2922 
2923   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2924     Label LVolatile;
2925     __ beq(CR_is_vol, LVolatile);
2926     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2927 
2928     __ align(32, 12);
2929     __ bind(LVolatile);
2930     __ fence();
2931   }
2932 }
2933 
2934 void TemplateTable::fast_accessfield(TosState state) {
2935   transition(atos, state);
2936 
2937   Label LisVolatile;
2938   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2939 
2940   const Register Rcache        = R3_ARG1,
2941                  Rclass_or_obj = R17_tos,
2942                  Roffset       = R22_tmp2,
2943                  Rflags        = R23_tmp3,
2944                  Rscratch      = R12_scratch2;
2945 
2946   // Constant pool already resolved. Get the field offset.
2947   __ get_cache_and_index_at_bcp(Rcache, 1);
2948   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
2949 
2950   // JVMTI support
2951   jvmti_post_field_access(Rcache, Rscratch, false, true);
2952 
2953   // Get the load address.
2954   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
2955 
2956   // Get volatile flag.
2957   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2958   __ bne(CCR0, LisVolatile);
2959 
2960   switch(bytecode()) {
2961     case Bytecodes::_fast_agetfield:
2962     {
2963       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2964       __ verify_oop(R17_tos);
2965       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2966 
2967       __ bind(LisVolatile);
2968       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2969       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2970       __ verify_oop(R17_tos);
2971       __ twi_0(R17_tos);
2972       __ isync();
2973       break;
2974     }
2975     case Bytecodes::_fast_igetfield:
2976     {
2977       __ lwax(R17_tos, Rclass_or_obj, Roffset);
2978       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2979 
2980       __ bind(LisVolatile);
2981       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2982       __ lwax(R17_tos, Rclass_or_obj, Roffset);
2983       __ twi_0(R17_tos);
2984       __ isync();
2985       break;
2986     }
2987     case Bytecodes::_fast_lgetfield:
2988     {
2989       __ ldx(R17_tos, Rclass_or_obj, Roffset);
2990       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2991 
2992       __ bind(LisVolatile);
2993       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2994       __ ldx(R17_tos, Rclass_or_obj, Roffset);
2995       __ twi_0(R17_tos);
2996       __ isync();
2997       break;
2998     }
2999     case Bytecodes::_fast_bgetfield:
3000     {
3001       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
3002       __ extsb(R17_tos, R17_tos);
3003       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3004 
3005       __ bind(LisVolatile);
3006       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3007       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
3008       __ twi_0(R17_tos);
3009       __ extsb(R17_tos, R17_tos);
3010       __ isync();
3011       break;
3012     }
3013     case Bytecodes::_fast_cgetfield:
3014     {
3015       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3016       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3017 
3018       __ bind(LisVolatile);
3019       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3020       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3021       __ twi_0(R17_tos);
3022       __ isync();
3023       break;
3024     }
3025     case Bytecodes::_fast_sgetfield:
3026     {
3027       __ lhax(R17_tos, Rclass_or_obj, Roffset);
3028       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3029 
3030       __ bind(LisVolatile);
3031       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3032       __ lhax(R17_tos, Rclass_or_obj, Roffset);
3033       __ twi_0(R17_tos);
3034       __ isync();
3035       break;
3036     }
3037     case Bytecodes::_fast_fgetfield:
3038     {
3039       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3040       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3041 
3042       __ bind(LisVolatile);
3043       Label Ldummy;
3044       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3045       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3046       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3047       __ bne_predict_not_taken(CCR0, Ldummy);
3048       __ bind(Ldummy);
3049       __ isync();
3050       break;
3051     }
3052     case Bytecodes::_fast_dgetfield:
3053     {
3054       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3055       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3056 
3057       __ bind(LisVolatile);
3058       Label Ldummy;
3059       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3060       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3061       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3062       __ bne_predict_not_taken(CCR0, Ldummy);
3063       __ bind(Ldummy);
3064       __ isync();
3065       break;
3066     }
3067     default: ShouldNotReachHere();
3068   }
3069 }
3070 
3071 void TemplateTable::fast_xaccess(TosState state) {
3072   transition(vtos, state);
3073 
3074   Label LisVolatile;
3075   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3076   const Register Rcache        = R3_ARG1,
3077                  Rclass_or_obj = R17_tos,
3078                  Roffset       = R22_tmp2,
3079                  Rflags        = R23_tmp3,
3080                  Rscratch      = R12_scratch2;
3081 
3082   __ ld(Rclass_or_obj, 0, R18_locals);
3083 
3084   // Constant pool already resolved. Get the field offset.
3085   __ get_cache_and_index_at_bcp(Rcache, 2);
3086   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
3087 
3088   // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches.
3089 
3090   // Needed to report exception at the correct bcp.
3091   __ addi(R14_bcp, R14_bcp, 1);
3092 
3093   // Get the load address.
3094   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
3095 
3096   // Get volatile flag.
3097   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
3098   __ bne(CCR0, LisVolatile);
3099 
3100   switch(state) {
3101   case atos:
3102     {
3103       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3104       __ verify_oop(R17_tos);
3105       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3106 
3107       __ bind(LisVolatile);
3108       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3109       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3110       __ verify_oop(R17_tos);
3111       __ twi_0(R17_tos);
3112       __ isync();
3113       break;
3114     }
3115   case itos:
3116     {
3117       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3118       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3119 
3120       __ bind(LisVolatile);
3121       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3122       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3123       __ twi_0(R17_tos);
3124       __ isync();
3125       break;
3126     }
3127   case ftos:
3128     {
3129       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3130       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3131 
3132       __ bind(LisVolatile);
3133       Label Ldummy;
3134       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3135       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3136       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3137       __ bne_predict_not_taken(CCR0, Ldummy);
3138       __ bind(Ldummy);
3139       __ isync();
3140       break;
3141     }
3142   default: ShouldNotReachHere();
3143   }
3144   __ addi(R14_bcp, R14_bcp, -1);
3145 }
3146 
3147 // ============================================================================
3148 // Calls
3149 
3150 // Common code for invoke
3151 //
3152 // Input:
3153 //   - byte_no
3154 //
3155 // Output:
3156 //   - Rmethod:        The method to invoke next.
3157 //   - Rret_addr:      The return address to return to.
3158 //   - Rindex:         MethodType (invokehandle) or CallSite obj (invokedynamic)
3159 //   - Rrecv:          Cache for "this" pointer, might be noreg if static call.
3160 //   - Rflags:         Method flags from const pool cache.
3161 //
3162 //  Kills:
3163 //   - Rscratch1
3164 //
3165 void TemplateTable::prepare_invoke(int byte_no,
3166                                    Register Rmethod,  // linked method (or i-klass)
3167                                    Register Rret_addr,// return address
3168                                    Register Rindex,   // itable index, MethodType, etc.
3169                                    Register Rrecv,    // If caller wants to see it.
3170                                    Register Rflags,   // If caller wants to test it.
3171                                    Register Rscratch
3172                                    ) {
3173   // Determine flags.
3174   const Bytecodes::Code code = bytecode();
3175   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3176   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3177   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3178   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3179   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3180   const bool load_receiver       = (Rrecv != noreg);
3181   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3182 
3183   assert_different_registers(Rmethod, Rindex, Rflags, Rscratch);
3184   assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch);
3185   assert_different_registers(Rret_addr, Rscratch);
3186 
3187   load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic);
3188 
3189   // Saving of SP done in call_from_interpreter.
3190 
3191   // Maybe push "appendix" to arguments.
3192   if (is_invokedynamic || is_invokehandle) {
3193     Label Ldone;
3194     __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63);
3195     __ beq(CCR0, Ldone);
3196     // Push "appendix" (MethodType, CallSite, etc.).
3197     // This must be done before we get the receiver,
3198     // since the parameter_size includes it.
3199     __ load_resolved_reference_at_index(Rscratch, Rindex);
3200     __ verify_oop(Rscratch);
3201     __ push_ptr(Rscratch);
3202     __ bind(Ldone);
3203   }
3204 
3205   // Load receiver if needed (after appendix is pushed so parameter size is correct).
3206   if (load_receiver) {
3207     const Register Rparam_count = Rscratch;
3208     __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask);
3209     __ load_receiver(Rparam_count, Rrecv);
3210     __ verify_oop(Rrecv);
3211   }
3212 
3213   // Get return address.
3214   {
3215     Register Rtable_addr = Rscratch;
3216     Register Rret_type = Rret_addr;
3217     address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3218 
3219     // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3220     __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3221     __ load_dispatch_table(Rtable_addr, (address*)table_addr);
3222     __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3223     // Get return address.
3224     __ ldx(Rret_addr, Rtable_addr, Rret_type);
3225   }
3226 }
3227 
3228 // Helper for virtual calls. Load target out of vtable and jump off!
3229 // Kills all passed registers.
3230 void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) {
3231 
3232   assert_different_registers(Rrecv_klass, Rtemp, Rret);
3233   const Register Rtarget_method = Rindex;
3234 
3235   // Get target method & entry point.
3236   const int base = InstanceKlass::vtable_start_offset() * wordSize;
3237   // Calc vtable addr scale the vtable index by 8.
3238   __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size() * wordSize));
3239   // Load target.
3240   __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes());
3241   __ ldx(Rtarget_method, Rindex, Rrecv_klass);
3242   __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */);
3243 }
3244 
3245 // Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time.
3246 void TemplateTable::invokevirtual(int byte_no) {
3247   transition(vtos, vtos);
3248 
3249   Register Rtable_addr = R11_scratch1,
3250            Rret_type = R12_scratch2,
3251            Rret_addr = R5_ARG3,
3252            Rflags = R22_tmp2, // Should survive C call.
3253            Rrecv = R3_ARG1,
3254            Rrecv_klass = Rrecv,
3255            Rvtableindex_or_method = R31, // Should survive C call.
3256            Rnum_params = R4_ARG2,
3257            Rnew_bc = R6_ARG4;
3258 
3259   Label LnotFinal;
3260 
3261   load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false);
3262 
3263   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3264   __ bfalse(CCR0, LnotFinal);
3265 
3266   patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2);
3267   invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2);
3268 
3269   __ align(32, 12);
3270   __ bind(LnotFinal);
3271   // Load "this" pointer (receiver).
3272   __ rldicl(Rnum_params, Rflags, 64, 48);
3273   __ load_receiver(Rnum_params, Rrecv);
3274   __ verify_oop(Rrecv);
3275 
3276   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3277   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3278   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3279   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3280   __ ldx(Rret_addr, Rret_type, Rtable_addr);
3281   __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1);
3282   __ load_klass(Rrecv_klass, Rrecv);
3283   __ verify_klass_ptr(Rrecv_klass);
3284   __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false);
3285 
3286   generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1);
3287 }
3288 
3289 void TemplateTable::fast_invokevfinal(int byte_no) {
3290   transition(vtos, vtos);
3291 
3292   assert(byte_no == f2_byte, "use this argument");
3293   Register Rflags  = R22_tmp2,
3294            Rmethod = R31;
3295   load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false);
3296   invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2);
3297 }
3298 
3299 void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) {
3300 
3301   assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2);
3302 
3303   // Load receiver from stack slot.
3304   Register Rrecv = Rscratch2;
3305   Register Rnum_params = Rrecv;
3306 
3307   __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod);
3308   __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params);
3309 
3310   // Get return address.
3311   Register Rtable_addr = Rscratch1,
3312            Rret_addr   = Rflags,
3313            Rret_type   = Rret_addr;
3314   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3315   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3316   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3317   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3318   __ ldx(Rret_addr, Rret_type, Rtable_addr);
3319 
3320   // Load receiver and receiver NULL check.
3321   __ load_receiver(Rnum_params, Rrecv);
3322   __ null_check_throw(Rrecv, -1, Rscratch1);
3323 
3324   __ profile_final_call(Rrecv, Rscratch1);
3325 
3326   // Do the call.
3327   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2);
3328 }
3329 
3330 void TemplateTable::invokespecial(int byte_no) {
3331   assert(byte_no == f1_byte, "use this argument");
3332   transition(vtos, vtos);
3333 
3334   Register Rtable_addr = R3_ARG1,
3335            Rret_addr   = R4_ARG2,
3336            Rflags      = R5_ARG3,
3337            Rreceiver   = R6_ARG4,
3338            Rmethod     = R31;
3339 
3340   prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1);
3341 
3342   // Receiver NULL check.
3343   __ null_check_throw(Rreceiver, -1, R11_scratch1);
3344 
3345   __ profile_call(R11_scratch1, R12_scratch2);
3346   __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2);
3347 }
3348 
3349 void TemplateTable::invokestatic(int byte_no) {
3350   assert(byte_no == f1_byte, "use this argument");
3351   transition(vtos, vtos);
3352 
3353   Register Rtable_addr = R3_ARG1,
3354            Rret_addr   = R4_ARG2,
3355            Rflags      = R5_ARG3;
3356 
3357   prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1);
3358 
3359   __ profile_call(R11_scratch1, R12_scratch2);
3360   __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2);
3361 }
3362 
3363 void TemplateTable::invokeinterface_object_method(Register Rrecv_klass,
3364                                                   Register Rret,
3365                                                   Register Rflags,
3366                                                   Register Rindex,
3367                                                   Register Rtemp1,
3368                                                   Register Rtemp2) {
3369 
3370   assert_different_registers(Rindex, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2);
3371   Label LnotFinal;
3372 
3373   // Check for vfinal.
3374   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3375   __ bfalse(CCR0, LnotFinal);
3376 
3377   Register Rscratch = Rflags; // Rflags is dead now.
3378 
3379   // Final call case.
3380   __ profile_final_call(Rtemp1, Rscratch);
3381   // Do the final call - the index (f2) contains the method.
3382   __ call_from_interpreter(Rindex, Rret, Rscratch, Rrecv_klass /* scratch */);
3383 
3384   // Non-final callc case.
3385   __ bind(LnotFinal);
3386   __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false);
3387   generate_vtable_call(Rrecv_klass, Rindex, Rret, Rscratch);
3388 }
3389 
3390 void TemplateTable::invokeinterface(int byte_no) {
3391   assert(byte_no == f1_byte, "use this argument");
3392   transition(vtos, vtos);
3393 
3394   const Register Rscratch1        = R11_scratch1,
3395                  Rscratch2        = R12_scratch2,
3396                  Rscratch3        = R9_ARG7,
3397                  Rscratch4        = R10_ARG8,
3398                  Rtable_addr      = Rscratch2,
3399                  Rinterface_klass = R5_ARG3,
3400                  Rret_type        = R8_ARG6,
3401                  Rret_addr        = Rret_type,
3402                  Rindex           = R6_ARG4,
3403                  Rreceiver        = R4_ARG2,
3404                  Rrecv_klass      = Rreceiver,
3405                  Rflags           = R7_ARG5;
3406 
3407   prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rindex, Rreceiver, Rflags, Rscratch1);
3408 
3409   // Get receiver klass.
3410   __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch3);
3411   __ load_klass(Rrecv_klass, Rreceiver);
3412 
3413   // Check corner case object method.
3414   Label LobjectMethod;
3415 
3416   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift);
3417   __ btrue(CCR0, LobjectMethod);
3418 
3419   // Fallthrough: The normal invokeinterface case.
3420   __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false);
3421 
3422   // Find entry point to call.
3423   Label Lthrow_icc, Lthrow_ame;
3424   // Result will be returned in Rindex.
3425   __ mr(Rscratch4, Rrecv_klass);
3426   __ mr(Rscratch3, Rindex);
3427   __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rindex, Rscratch1, Rscratch2, Lthrow_icc);
3428 
3429   __ cmpdi(CCR0, Rindex, 0);
3430   __ beq(CCR0, Lthrow_ame);
3431   // Found entry. Jump off!
3432   __ call_from_interpreter(Rindex, Rret_addr, Rscratch1, Rscratch2);
3433 
3434   // Vtable entry was NULL => Throw abstract method error.
3435   __ bind(Lthrow_ame);
3436   __ mr(Rrecv_klass, Rscratch4);
3437   __ mr(Rindex, Rscratch3);
3438   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3439 
3440   // Interface was not found => Throw incompatible class change error.
3441   __ bind(Lthrow_icc);
3442   __ mr(Rrecv_klass, Rscratch4);
3443   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3444 
3445   __ should_not_reach_here();
3446 
3447   // Special case of invokeinterface called for virtual method of
3448   // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details:
3449   // The invokeinterface was rewritten to a invokevirtual, hence we have
3450   // to handle this corner case. This code isn't produced by javac, but could
3451   // be produced by another compliant java compiler.
3452   __ bind(LobjectMethod);
3453   invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rindex, Rscratch1, Rscratch2);
3454 }
3455 
3456 void TemplateTable::invokedynamic(int byte_no) {
3457   transition(vtos, vtos);
3458 
3459   const Register Rret_addr = R3_ARG1,
3460                  Rflags    = R4_ARG2,
3461                  Rmethod   = R22_tmp2,
3462                  Rscratch1 = R11_scratch1,
3463                  Rscratch2 = R12_scratch2;
3464 
3465   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2);
3466 
3467   // Profile this call.
3468   __ profile_call(Rscratch1, Rscratch2);
3469 
3470   // Off we go. With the new method handles, we don't jump to a method handle
3471   // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens
3472   // to be the callsite object the bootstrap method returned. This is passed to a
3473   // "link" method which does the dispatch (Most likely just grabs the MH stored
3474   // inside the callsite and does an invokehandle).
3475   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3476 }
3477 
3478 void TemplateTable::invokehandle(int byte_no) {
3479   transition(vtos, vtos);
3480 
3481   const Register Rret_addr = R3_ARG1,
3482                  Rflags    = R4_ARG2,
3483                  Rrecv     = R5_ARG3,
3484                  Rmethod   = R22_tmp2,
3485                  Rscratch1 = R11_scratch1,
3486                  Rscratch2 = R12_scratch2;
3487 
3488   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2);
3489   __ verify_method_ptr(Rmethod);
3490   __ null_check_throw(Rrecv, -1, Rscratch2);
3491 
3492   __ profile_final_call(Rrecv, Rscratch1);
3493 
3494   // Still no call from handle => We call the method handle interpreter here.
3495   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3496 }
3497 
3498 // =============================================================================
3499 // Allocation
3500 
3501 // Puts allocated obj ref onto the expression stack.
3502 void TemplateTable::_new() {
3503   transition(vtos, atos);
3504 
3505   Label Lslow_case,
3506         Ldone,
3507         Linitialize_header,
3508         Lallocate_shared,
3509         Linitialize_object;  // Including clearing the fields.
3510 
3511   const Register RallocatedObject = R17_tos,
3512                  RinstanceKlass   = R9_ARG7,
3513                  Rscratch         = R11_scratch1,
3514                  Roffset          = R8_ARG6,
3515                  Rinstance_size   = Roffset,
3516                  Rcpool           = R4_ARG2,
3517                  Rtags            = R3_ARG1,
3518                  Rindex           = R5_ARG3;
3519 
3520   const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3521 
3522   // --------------------------------------------------------------------------
3523   // Check if fast case is possible.
3524 
3525   // Load pointers to const pool and const pool's tags array.
3526   __ get_cpool_and_tags(Rcpool, Rtags);
3527   // Load index of constant pool entry.
3528   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
3529 
3530   if (UseTLAB) {
3531     // Make sure the class we're about to instantiate has been resolved
3532     // This is done before loading instanceKlass to be consistent with the order
3533     // how Constant Pool is updated (see ConstantPoolCache::klass_at_put).
3534     __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3535     __ lbzx(Rtags, Rindex, Rtags);
3536 
3537     __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3538     __ bne(CCR0, Lslow_case);
3539 
3540     // Get instanceKlass (load from Rcpool + sizeof(ConstantPool) + Rindex*BytesPerWord).
3541     __ sldi(Roffset, Rindex, LogBytesPerWord);
3542     __ addi(Rscratch, Rcpool, sizeof(ConstantPool));
3543     __ isync(); // Order load of instance Klass wrt. tags.
3544     __ ldx(RinstanceKlass, Roffset, Rscratch);
3545 
3546     // Make sure klass is fully initialized and get instance_size.
3547     __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass);
3548     __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass);
3549 
3550     __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized);
3551     // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class.
3552     __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0?
3553 
3554     __ crnand(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // slow path bit set or not fully initialized?
3555     __ beq(CCR0, Lslow_case);
3556 
3557     // --------------------------------------------------------------------------
3558     // Fast case:
3559     // Allocate the instance.
3560     // 1) Try to allocate in the TLAB.
3561     // 2) If fail, and the TLAB is not full enough to discard, allocate in the shared Eden.
3562     // 3) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.).
3563 
3564     Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits.
3565     Register RnewTopValue = R6_ARG4;
3566     Register RendValue    = R7_ARG5;
3567 
3568     // Check if we can allocate in the TLAB.
3569     __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3570     __ ld(RendValue,    in_bytes(JavaThread::tlab_end_offset()), R16_thread);
3571 
3572     __ add(RnewTopValue, Rinstance_size, RoldTopValue);
3573 
3574     // If there is enough space, we do not CAS and do not clear.
3575     __ cmpld(CCR0, RnewTopValue, RendValue);
3576     __ bgt(CCR0, allow_shared_alloc ? Lallocate_shared : Lslow_case);
3577 
3578     __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3579 
3580     if (ZeroTLAB) {
3581       // The fields have already been cleared.
3582       __ b(Linitialize_header);
3583     } else {
3584       // Initialize both the header and fields.
3585       __ b(Linitialize_object);
3586     }
3587 
3588     // Fall through: TLAB was too small.
3589     if (allow_shared_alloc) {
3590       Register RtlabWasteLimitValue = R10_ARG8;
3591       Register RfreeValue = RnewTopValue;
3592 
3593       __ bind(Lallocate_shared);
3594       // Check if tlab should be discarded (refill_waste_limit >= free).
3595       __ ld(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
3596       __ subf(RfreeValue, RoldTopValue, RendValue);
3597       __ srdi(RfreeValue, RfreeValue, LogHeapWordSize); // in dwords
3598       __ cmpld(CCR0, RtlabWasteLimitValue, RfreeValue);
3599       __ bge(CCR0, Lslow_case);
3600 
3601       // Increment waste limit to prevent getting stuck on this slow path.
3602       __ addi(RtlabWasteLimitValue, RtlabWasteLimitValue, (int)ThreadLocalAllocBuffer::refill_waste_limit_increment());
3603       __ std(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
3604     }
3605     // else: No allocation in the shared eden. // fallthru: __ b(Lslow_case);
3606   }
3607   // else: Always go the slow path.
3608 
3609   // --------------------------------------------------------------------------
3610   // slow case
3611   __ bind(Lslow_case);
3612   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);
3613 
3614   if (UseTLAB) {
3615     __ b(Ldone);
3616     // --------------------------------------------------------------------------
3617     // Init1: Zero out newly allocated memory.
3618 
3619     if (!ZeroTLAB || allow_shared_alloc) {
3620       // Clear object fields.
3621       __ bind(Linitialize_object);
3622 
3623       // Initialize remaining object fields.
3624       Register Rbase = Rtags;
3625       __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc));
3626       __ addi(Rbase, RallocatedObject, sizeof(oopDesc));
3627       __ srdi(Rinstance_size, Rinstance_size, 3);
3628 
3629       // Clear out object skipping header. Takes also care of the zero length case.
3630       __ clear_memory_doubleword(Rbase, Rinstance_size);
3631       // fallthru: __ b(Linitialize_header);
3632     }
3633 
3634     // --------------------------------------------------------------------------
3635     // Init2: Initialize the header: mark, klass
3636     __ bind(Linitialize_header);
3637 
3638     // Init mark.
3639     if (UseBiasedLocking) {
3640       __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass);
3641     } else {
3642       __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0);
3643     }
3644     __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject);
3645 
3646     // Init klass.
3647     __ store_klass_gap(RallocatedObject);
3648     __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms)
3649 
3650     // Check and trigger dtrace event.
3651     {
3652       SkipIfEqualZero skip_if(_masm, Rscratch, &DTraceAllocProbes);
3653       __ push(atos);
3654       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc));
3655       __ pop(atos);
3656     }
3657   }
3658 
3659   // continue
3660   __ bind(Ldone);
3661 
3662   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3663   __ membar(Assembler::StoreStore);
3664 }
3665 
3666 void TemplateTable::newarray() {
3667   transition(itos, atos);
3668 
3669   __ lbz(R4, 1, R14_bcp);
3670   __ extsw(R5, R17_tos);
3671   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */);
3672 
3673   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3674   __ membar(Assembler::StoreStore);
3675 }
3676 
3677 void TemplateTable::anewarray() {
3678   transition(itos, atos);
3679 
3680   __ get_constant_pool(R4);
3681   __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned);
3682   __ extsw(R6, R17_tos); // size
3683   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */);
3684 
3685   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3686   __ membar(Assembler::StoreStore);
3687 }
3688 
3689 // Allocate a multi dimensional array
3690 void TemplateTable::multianewarray() {
3691   transition(vtos, atos);
3692 
3693   Register Rptr = R31; // Needs to survive C call.
3694 
3695   // Put ndims * wordSize into frame temp slot
3696   __ lbz(Rptr, 3, R14_bcp);
3697   __ sldi(Rptr, Rptr, Interpreter::logStackElementSize);
3698   // Esp points past last_dim, so set to R4 to first_dim address.
3699   __ add(R4, Rptr, R15_esp);
3700   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */);
3701   // Pop all dimensions off the stack.
3702   __ add(R15_esp, Rptr, R15_esp);
3703 
3704   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3705   __ membar(Assembler::StoreStore);
3706 }
3707 
3708 void TemplateTable::arraylength() {
3709   transition(atos, itos);
3710 
3711   Label LnoException;
3712   __ verify_oop(R17_tos);
3713   __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1);
3714   __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos);
3715 }
3716 
3717 // ============================================================================
3718 // Typechecks
3719 
3720 void TemplateTable::checkcast() {
3721   transition(atos, atos);
3722 
3723   Label Ldone, Lis_null, Lquicked, Lresolved;
3724   Register Roffset         = R6_ARG4,
3725            RobjKlass       = R4_ARG2,
3726            RspecifiedKlass = R5_ARG3, // Generate_ClassCastException_verbose_handler will read value from this register.
3727            Rcpool          = R11_scratch1,
3728            Rtags           = R12_scratch2;
3729 
3730   // Null does not pass.
3731   __ cmpdi(CCR0, R17_tos, 0);
3732   __ beq(CCR0, Lis_null);
3733 
3734   // Get constant pool tag to find out if the bytecode has already been "quickened".
3735   __ get_cpool_and_tags(Rcpool, Rtags);
3736 
3737   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3738 
3739   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3740   __ lbzx(Rtags, Rtags, Roffset);
3741 
3742   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3743   __ beq(CCR0, Lquicked);
3744 
3745   // Call into the VM to "quicken" instanceof.
3746   __ push_ptr();  // for GC
3747   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3748   __ get_vm_result_2(RspecifiedKlass);
3749   __ pop_ptr();   // Restore receiver.
3750   __ b(Lresolved);
3751 
3752   // Extract target class from constant pool.
3753   __ bind(Lquicked);
3754   __ sldi(Roffset, Roffset, LogBytesPerWord);
3755   __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
3756   __ isync(); // Order load of specified Klass wrt. tags.
3757   __ ldx(RspecifiedKlass, Rcpool, Roffset);
3758 
3759   // Do the checkcast.
3760   __ bind(Lresolved);
3761   // Get value klass in RobjKlass.
3762   __ load_klass(RobjKlass, R17_tos);
3763   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3764   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3765 
3766   // Not a subtype; so must throw exception
3767   // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention.
3768   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry);
3769   __ mtctr(R11_scratch1);
3770   __ bctr();
3771 
3772   // Profile the null case.
3773   __ align(32, 12);
3774   __ bind(Lis_null);
3775   __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch.
3776 
3777   __ align(32, 12);
3778   __ bind(Ldone);
3779 }
3780 
3781 // Output:
3782 //   - tos == 0: Obj was null or not an instance of class.
3783 //   - tos == 1: Obj was an instance of class.
3784 void TemplateTable::instanceof() {
3785   transition(atos, itos);
3786 
3787   Label Ldone, Lis_null, Lquicked, Lresolved;
3788   Register Roffset         = R5_ARG3,
3789            RobjKlass       = R4_ARG2,
3790            RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect the value in this register.
3791            Rcpool          = R11_scratch1,
3792            Rtags           = R12_scratch2;
3793 
3794   // Null does not pass.
3795   __ cmpdi(CCR0, R17_tos, 0);
3796   __ beq(CCR0, Lis_null);
3797 
3798   // Get constant pool tag to find out if the bytecode has already been "quickened".
3799   __ get_cpool_and_tags(Rcpool, Rtags);
3800 
3801   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3802 
3803   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3804   __ lbzx(Rtags, Rtags, Roffset);
3805 
3806   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3807   __ beq(CCR0, Lquicked);
3808 
3809   // Call into the VM to "quicken" instanceof.
3810   __ push_ptr();  // for GC
3811   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3812   __ get_vm_result_2(RspecifiedKlass);
3813   __ pop_ptr();   // Restore receiver.
3814   __ b(Lresolved);
3815 
3816   // Extract target class from constant pool.
3817   __ bind(Lquicked);
3818   __ sldi(Roffset, Roffset, LogBytesPerWord);
3819   __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
3820   __ isync(); // Order load of specified Klass wrt. tags.
3821   __ ldx(RspecifiedKlass, Rcpool, Roffset);
3822 
3823   // Do the checkcast.
3824   __ bind(Lresolved);
3825   // Get value klass in RobjKlass.
3826   __ load_klass(RobjKlass, R17_tos);
3827   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3828   __ li(R17_tos, 1);
3829   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3830   __ li(R17_tos, 0);
3831 
3832   if (ProfileInterpreter) {
3833     __ b(Ldone);
3834   }
3835 
3836   // Profile the null case.
3837   __ align(32, 12);
3838   __ bind(Lis_null);
3839   __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch.
3840 
3841   __ align(32, 12);
3842   __ bind(Ldone);
3843 }
3844 
3845 // =============================================================================
3846 // Breakpoints
3847 
3848 void TemplateTable::_breakpoint() {
3849   transition(vtos, vtos);
3850 
3851   // Get the unpatched byte code.
3852   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp);
3853   __ mr(R31, R3_RET);
3854 
3855   // Post the breakpoint event.
3856   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp);
3857 
3858   // Complete the execution of original bytecode.
3859   __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos));
3860 }
3861 
3862 // =============================================================================
3863 // Exceptions
3864 
3865 void TemplateTable::athrow() {
3866   transition(atos, vtos);
3867 
3868   // Exception oop is in tos
3869   __ verify_oop(R17_tos);
3870 
3871   __ null_check_throw(R17_tos, -1, R11_scratch1);
3872 
3873   // Throw exception interpreter entry expects exception oop to be in R3.
3874   __ mr(R3_RET, R17_tos);
3875   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry());
3876   __ mtctr(R11_scratch1);
3877   __ bctr();
3878 }
3879 
3880 // =============================================================================
3881 // Synchronization
3882 // Searches the basic object lock list on the stack for a free slot
3883 // and uses it to lock the obect in tos.
3884 //
3885 // Recursive locking is enabled by exiting the search if the same
3886 // object is already found in the list. Thus, a new basic lock obj lock
3887 // is allocated "higher up" in the stack and thus is found first
3888 // at next monitor exit.
3889 void TemplateTable::monitorenter() {
3890   transition(atos, vtos);
3891 
3892   __ verify_oop(R17_tos);
3893 
3894   Register Rcurrent_monitor  = R11_scratch1,
3895            Rcurrent_obj      = R12_scratch2,
3896            Robj_to_lock      = R17_tos,
3897            Rscratch1         = R3_ARG1,
3898            Rscratch2         = R4_ARG2,
3899            Rscratch3         = R5_ARG3,
3900            Rcurrent_obj_addr = R6_ARG4;
3901 
3902   // ------------------------------------------------------------------------------
3903   // Null pointer exception.
3904   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
3905 
3906   // Try to acquire a lock on the object.
3907   // Repeat until succeeded (i.e., until monitorenter returns true).
3908 
3909   // ------------------------------------------------------------------------------
3910   // Find a free slot in the monitor block.
3911   Label Lfound, Lexit, Lallocate_new;
3912   ConditionRegister found_free_slot = CCR0,
3913                     found_same_obj  = CCR1,
3914                     reached_limit   = CCR6;
3915   {
3916     Label Lloop, Lentry;
3917     Register Rlimit = Rcurrent_monitor;
3918 
3919     // Set up search loop - start with topmost monitor.
3920     __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
3921 
3922     __ ld(Rlimit, 0, R1_SP);
3923     __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base
3924 
3925     // Check if any slot is present => short cut to allocation if not.
3926     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
3927     __ bgt(reached_limit, Lallocate_new);
3928 
3929     // Pre-load topmost slot.
3930     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
3931     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
3932     // The search loop.
3933     __ bind(Lloop);
3934     // Found free slot?
3935     __ cmpdi(found_free_slot, Rcurrent_obj, 0);
3936     // Is this entry for same obj? If so, stop the search and take the found
3937     // free slot or allocate a new one to enable recursive locking.
3938     __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock);
3939     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
3940     __ beq(found_free_slot, Lexit);
3941     __ beq(found_same_obj, Lallocate_new);
3942     __ bgt(reached_limit, Lallocate_new);
3943     // Check if last allocated BasicLockObj reached.
3944     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
3945     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
3946     // Next iteration if unchecked BasicObjectLocks exist on the stack.
3947     __ b(Lloop);
3948   }
3949 
3950   // ------------------------------------------------------------------------------
3951   // Check if we found a free slot.
3952   __ bind(Lexit);
3953 
3954   __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
3955   __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize);
3956   __ b(Lfound);
3957 
3958   // We didn't find a free BasicObjLock => allocate one.
3959   __ align(32, 12);
3960   __ bind(Lallocate_new);
3961   __ add_monitor_to_stack(false, Rscratch1, Rscratch2);
3962   __ mr(Rcurrent_monitor, R26_monitor);
3963   __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
3964 
3965   // ------------------------------------------------------------------------------
3966   // We now have a slot to lock.
3967   __ bind(Lfound);
3968 
3969   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3970   // The object has already been poped from the stack, so the expression stack looks correct.
3971   __ addi(R14_bcp, R14_bcp, 1);
3972 
3973   __ std(Robj_to_lock, 0, Rcurrent_obj_addr);
3974   __ lock_object(Rcurrent_monitor, Robj_to_lock);
3975 
3976   // Check if there's enough space on the stack for the monitors after locking.
3977   Label Lskip_stack_check;
3978   // Optimization: If the monitors stack section is less then a std page size (4K) don't run
3979   // the stack check. There should be enough shadow pages to fit that in.
3980   __ ld(Rscratch3, 0, R1_SP);
3981   __ sub(Rscratch3, Rscratch3, R26_monitor);
3982   __ cmpdi(CCR0, Rscratch3, 4*K);
3983   __ blt(CCR0, Lskip_stack_check);
3984 
3985   DEBUG_ONLY(__ untested("stack overflow check during monitor enter");)
3986   __ li(Rscratch1, 0);
3987   __ generate_stack_overflow_check_with_compare_and_throw(Rscratch1, Rscratch2);
3988 
3989   __ align(32, 12);
3990   __ bind(Lskip_stack_check);
3991 
3992   // The bcp has already been incremented. Just need to dispatch to next instruction.
3993   __ dispatch_next(vtos);
3994 }
3995 
3996 void TemplateTable::monitorexit() {
3997   transition(atos, vtos);
3998   __ verify_oop(R17_tos);
3999 
4000   Register Rcurrent_monitor  = R11_scratch1,
4001            Rcurrent_obj      = R12_scratch2,
4002            Robj_to_lock      = R17_tos,
4003            Rcurrent_obj_addr = R3_ARG1,
4004            Rlimit            = R4_ARG2;
4005   Label Lfound, Lillegal_monitor_state;
4006 
4007   // Check corner case: unbalanced monitorEnter / Exit.
4008   __ ld(Rlimit, 0, R1_SP);
4009   __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
4010 
4011   // Null pointer check.
4012   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
4013 
4014   __ cmpld(CCR0, R26_monitor, Rlimit);
4015   __ bgt(CCR0, Lillegal_monitor_state);
4016 
4017   // Find the corresponding slot in the monitors stack section.
4018   {
4019     Label Lloop;
4020 
4021     // Start with topmost monitor.
4022     __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
4023     __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes());
4024     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4025     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4026 
4027     __ bind(Lloop);
4028     // Is this entry for same obj?
4029     __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock);
4030     __ beq(CCR0, Lfound);
4031 
4032     // Check if last allocated BasicLockObj reached.
4033 
4034     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4035     __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit);
4036     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4037 
4038     // Next iteration if unchecked BasicObjectLocks exist on the stack.
4039     __ ble(CCR0, Lloop);
4040   }
4041 
4042   // Fell through without finding the basic obj lock => throw up!
4043   __ bind(Lillegal_monitor_state);
4044   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
4045   __ should_not_reach_here();
4046 
4047   __ align(32, 12);
4048   __ bind(Lfound);
4049   __ addi(Rcurrent_monitor, Rcurrent_obj_addr,
4050           -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
4051   __ unlock_object(Rcurrent_monitor);
4052 }
4053 
4054 // ============================================================================
4055 // Wide bytecodes
4056 
4057 // Wide instructions. Simply redirects to the wide entry point for that instruction.
4058 void TemplateTable::wide() {
4059   transition(vtos, vtos);
4060 
4061   const Register Rtable = R11_scratch1,
4062                  Rindex = R12_scratch2,
4063                  Rtmp   = R0;
4064 
4065   __ lbz(Rindex, 1, R14_bcp);
4066 
4067   __ load_dispatch_table(Rtable, Interpreter::_wentry_point);
4068 
4069   __ slwi(Rindex, Rindex, LogBytesPerWord);
4070   __ ldx(Rtmp, Rtable, Rindex);
4071   __ mtctr(Rtmp);
4072   __ bctr();
4073   // Note: the bcp increment step is part of the individual wide bytecode implementations.
4074 }
4075 #endif // !CC_INTERP