1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_sparc.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "oops/arrayOop.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/method.hpp"
  33 #include "oops/methodCounters.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "prims/jvmtiRedefineClassesTrace.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 
  42 #ifndef CC_INTERP
  43 #ifndef FAST_DISPATCH
  44 #define FAST_DISPATCH 1
  45 #endif
  46 #undef FAST_DISPATCH
  47 
  48 // Implementation of InterpreterMacroAssembler
  49 
  50 // This file specializes the assember with interpreter-specific macros
  51 
  52 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
  53 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
  54 
  55 #else // CC_INTERP
  56 #ifndef STATE
  57 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  58 #endif // STATE
  59 
  60 #endif // CC_INTERP
  61 
  62 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
  63   // Note: this algorithm is also used by C1's OSR entry sequence.
  64   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
  65   assert_different_registers(args_size, locals_size);
  66   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
  67   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
  68   // Use br/mov combination because it works on both V8 and V9 and is
  69   // faster.
  70   Label skip_move;
  71   br(Assembler::negative, true, Assembler::pt, skip_move);
  72   delayed()->mov(G0, delta);
  73   bind(skip_move);
  74   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
  75   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
  76 }
  77 
  78 #ifndef CC_INTERP
  79 
  80 // Dispatch code executed in the prolog of a bytecode which does not do it's
  81 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
  82 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  83   assert_not_delayed();
  84 #ifdef FAST_DISPATCH
  85   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
  86   // they both use I2.
  87   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
  88   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
  89   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
  90                                                         // add offset to correct dispatch table
  91   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  92   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
  93 #else
  94   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
  95   // dispatch table to use
  96   AddressLiteral tbl(Interpreter::dispatch_table(state));
  97   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  98   set(tbl, G3_scratch);                                 // compute addr of table
  99   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
 100 #endif
 101 }
 102 
 103 
 104 // Dispatch code executed in the epilog of a bytecode which does not do it's
 105 // own dispatch. The dispatch address in IdispatchAddress is used for the
 106 // dispatch.
 107 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
 108   assert_not_delayed();
 109   verify_FPU(1, state);
 110   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 111   jmp( IdispatchAddress, 0 );
 112   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 113   else                delayed()->nop();
 114 }
 115 
 116 
 117 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
 118   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 119   assert_not_delayed();
 120   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 121   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
 122 }
 123 
 124 
 125 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
 126   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 127   assert_not_delayed();
 128   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 129   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
 130 }
 131 
 132 
 133 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 134   // load current bytecode
 135   assert_not_delayed();
 136   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
 137   dispatch_base(state, table);
 138 }
 139 
 140 
 141 void InterpreterMacroAssembler::call_VM_leaf_base(
 142   Register java_thread,
 143   address  entry_point,
 144   int      number_of_arguments
 145 ) {
 146   if (!java_thread->is_valid())
 147     java_thread = L7_thread_cache;
 148   // super call
 149   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
 150 }
 151 
 152 
 153 void InterpreterMacroAssembler::call_VM_base(
 154   Register        oop_result,
 155   Register        java_thread,
 156   Register        last_java_sp,
 157   address         entry_point,
 158   int             number_of_arguments,
 159   bool            check_exception
 160 ) {
 161   if (!java_thread->is_valid())
 162     java_thread = L7_thread_cache;
 163   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
 164   // takes responsibility for setting its own thread-state on call-out.
 165   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
 166 
 167   //save_bcp();                                  // save bcp
 168   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
 169   //restore_bcp();                               // restore bcp
 170   //restore_locals();                            // restore locals pointer
 171 }
 172 
 173 
 174 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 175   if (JvmtiExport::can_pop_frame()) {
 176     Label L;
 177 
 178     // Check the "pending popframe condition" flag in the current thread
 179     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
 180 
 181     // Initiate popframe handling only if it is not already being processed.  If the flag
 182     // has the popframe_processing bit set, it means that this code is called *during* popframe
 183     // handling - we don't want to reenter.
 184     btst(JavaThread::popframe_pending_bit, scratch_reg);
 185     br(zero, false, pt, L);
 186     delayed()->nop();
 187     btst(JavaThread::popframe_processing_bit, scratch_reg);
 188     br(notZero, false, pt, L);
 189     delayed()->nop();
 190 
 191     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 192     // address of the same-named entrypoint in the generated interpreter code.
 193     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 194 
 195     // Jump to Interpreter::_remove_activation_preserving_args_entry
 196     jmpl(O0, G0, G0);
 197     delayed()->nop();
 198     bind(L);
 199   }
 200 }
 201 
 202 
 203 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 204   Register thr_state = G4_scratch;
 205   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 206   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
 207   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
 208   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
 209   switch (state) {
 210   case ltos: ld_long(val_addr, Otos_l);                   break;
 211   case atos: ld_ptr(oop_addr, Otos_l);
 212              st_ptr(G0, oop_addr);                        break;
 213   case btos:                                           // fall through
 214   case ctos:                                           // fall through
 215   case stos:                                           // fall through
 216   case itos: ld(val_addr, Otos_l1);                       break;
 217   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
 218   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
 219   case vtos: /* nothing to do */                          break;
 220   default  : ShouldNotReachHere();
 221   }
 222   // Clean up tos value in the jvmti thread state
 223   or3(G0, ilgl, G3_scratch);
 224   stw(G3_scratch, tos_addr);
 225   st_long(G0, val_addr);
 226   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 227 }
 228 
 229 
 230 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 231   if (JvmtiExport::can_force_early_return()) {
 232     Label L;
 233     Register thr_state = G3_scratch;
 234     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 235     br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
 236 
 237     // Initiate earlyret handling only if it is not already being processed.
 238     // If the flag has the earlyret_processing bit set, it means that this code
 239     // is called *during* earlyret handling - we don't want to reenter.
 240     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
 241     cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
 242 
 243     // Call Interpreter::remove_activation_early_entry() to get the address of the
 244     // same-named entrypoint in the generated interpreter code
 245     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
 246     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
 247 
 248     // Jump to Interpreter::_remove_activation_early_entry
 249     jmpl(O0, G0, G0);
 250     delayed()->nop();
 251     bind(L);
 252   }
 253 }
 254 
 255 
 256 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 257   mov(arg_1, O0);
 258   mov(arg_2, O1);
 259   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
 260 }
 261 #endif /* CC_INTERP */
 262 
 263 
 264 #ifndef CC_INTERP
 265 
 266 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
 267   assert_not_delayed();
 268   dispatch_Lbyte_code(state, table);
 269 }
 270 
 271 
 272 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
 273   dispatch_base(state, Interpreter::normal_table(state));
 274 }
 275 
 276 
 277 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 278   dispatch_base(state, Interpreter::dispatch_table(state));
 279 }
 280 
 281 
 282 // common code to dispatch and dispatch_only
 283 // dispatch value in Lbyte_code and increment Lbcp
 284 
 285 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
 286   verify_FPU(1, state);
 287   // %%%%% maybe implement +VerifyActivationFrameSize here
 288   //verify_thread(); //too slow; we will just verify on method entry & exit
 289   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 290 #ifdef FAST_DISPATCH
 291   if (table == Interpreter::dispatch_table(state)) {
 292     // use IdispatchTables
 293     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
 294                                                         // add offset to correct dispatch table
 295     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 296     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
 297   } else {
 298 #endif
 299     // dispatch table to use
 300     AddressLiteral tbl(table);
 301     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 302     set(tbl, G3_scratch);                               // compute addr of table
 303     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
 304 #ifdef FAST_DISPATCH
 305   }
 306 #endif
 307   jmp( G3_scratch, 0 );
 308   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 309   else                delayed()->nop();
 310 }
 311 
 312 
 313 // Helpers for expression stack
 314 
 315 // Longs and doubles are Category 2 computational types in the
 316 // JVM specification (section 3.11.1) and take 2 expression stack or
 317 // local slots.
 318 // Aligning them on 32 bit with tagged stacks is hard because the code generated
 319 // for the dup* bytecodes depends on what types are already on the stack.
 320 // If the types are split into the two stack/local slots, that is much easier
 321 // (and we can use 0 for non-reference tags).
 322 
 323 // Known good alignment in _LP64 but unknown otherwise
 324 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
 325   assert_not_delayed();
 326 
 327 #ifdef _LP64
 328   ldf(FloatRegisterImpl::D, r1, offset, d);
 329 #else
 330   ldf(FloatRegisterImpl::S, r1, offset, d);
 331   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
 332 #endif
 333 }
 334 
 335 // Known good alignment in _LP64 but unknown otherwise
 336 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
 337   assert_not_delayed();
 338 
 339 #ifdef _LP64
 340   stf(FloatRegisterImpl::D, d, r1, offset);
 341   // store something more useful here
 342   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 343 #else
 344   stf(FloatRegisterImpl::S, d, r1, offset);
 345   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
 346 #endif
 347 }
 348 
 349 
 350 // Known good alignment in _LP64 but unknown otherwise
 351 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
 352   assert_not_delayed();
 353 #ifdef _LP64
 354   ldx(r1, offset, rd);
 355 #else
 356   ld(r1, offset, rd);
 357   ld(r1, offset + Interpreter::stackElementSize, rd->successor());
 358 #endif
 359 }
 360 
 361 // Known good alignment in _LP64 but unknown otherwise
 362 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
 363   assert_not_delayed();
 364 
 365 #ifdef _LP64
 366   stx(l, r1, offset);
 367   // store something more useful here
 368   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 369 #else
 370   st(l, r1, offset);
 371   st(l->successor(), r1, offset + Interpreter::stackElementSize);
 372 #endif
 373 }
 374 
 375 void InterpreterMacroAssembler::pop_i(Register r) {
 376   assert_not_delayed();
 377   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 378   inc(Lesp, Interpreter::stackElementSize);
 379   debug_only(verify_esp(Lesp));
 380 }
 381 
 382 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
 383   assert_not_delayed();
 384   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 385   inc(Lesp, Interpreter::stackElementSize);
 386   debug_only(verify_esp(Lesp));
 387 }
 388 
 389 void InterpreterMacroAssembler::pop_l(Register r) {
 390   assert_not_delayed();
 391   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 392   inc(Lesp, 2*Interpreter::stackElementSize);
 393   debug_only(verify_esp(Lesp));
 394 }
 395 
 396 
 397 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
 398   assert_not_delayed();
 399   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
 400   inc(Lesp, Interpreter::stackElementSize);
 401   debug_only(verify_esp(Lesp));
 402 }
 403 
 404 
 405 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
 406   assert_not_delayed();
 407   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
 408   inc(Lesp, 2*Interpreter::stackElementSize);
 409   debug_only(verify_esp(Lesp));
 410 }
 411 
 412 
 413 void InterpreterMacroAssembler::push_i(Register r) {
 414   assert_not_delayed();
 415   debug_only(verify_esp(Lesp));
 416   st(r, Lesp, 0);
 417   dec(Lesp, Interpreter::stackElementSize);
 418 }
 419 
 420 void InterpreterMacroAssembler::push_ptr(Register r) {
 421   assert_not_delayed();
 422   st_ptr(r, Lesp, 0);
 423   dec(Lesp, Interpreter::stackElementSize);
 424 }
 425 
 426 // remember: our convention for longs in SPARC is:
 427 // O0 (Otos_l1) has high-order part in first word,
 428 // O1 (Otos_l2) has low-order part in second word
 429 
 430 void InterpreterMacroAssembler::push_l(Register r) {
 431   assert_not_delayed();
 432   debug_only(verify_esp(Lesp));
 433   // Longs are stored in memory-correct order, even if unaligned.
 434   int offset = -Interpreter::stackElementSize;
 435   store_unaligned_long(r, Lesp, offset);
 436   dec(Lesp, 2 * Interpreter::stackElementSize);
 437 }
 438 
 439 
 440 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 441   assert_not_delayed();
 442   debug_only(verify_esp(Lesp));
 443   stf(FloatRegisterImpl::S, f, Lesp, 0);
 444   dec(Lesp, Interpreter::stackElementSize);
 445 }
 446 
 447 
 448 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
 449   assert_not_delayed();
 450   debug_only(verify_esp(Lesp));
 451   // Longs are stored in memory-correct order, even if unaligned.
 452   int offset = -Interpreter::stackElementSize;
 453   store_unaligned_double(d, Lesp, offset);
 454   dec(Lesp, 2 * Interpreter::stackElementSize);
 455 }
 456 
 457 
 458 void InterpreterMacroAssembler::push(TosState state) {
 459   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 460   switch (state) {
 461     case atos: push_ptr();            break;
 462     case btos: push_i();              break;
 463     case ctos:
 464     case stos: push_i();              break;
 465     case itos: push_i();              break;
 466     case ltos: push_l();              break;
 467     case ftos: push_f();              break;
 468     case dtos: push_d();              break;
 469     case vtos: /* nothing to do */    break;
 470     default  : ShouldNotReachHere();
 471   }
 472 }
 473 
 474 
 475 void InterpreterMacroAssembler::pop(TosState state) {
 476   switch (state) {
 477     case atos: pop_ptr();            break;
 478     case btos: pop_i();              break;
 479     case ctos:
 480     case stos: pop_i();              break;
 481     case itos: pop_i();              break;
 482     case ltos: pop_l();              break;
 483     case ftos: pop_f();              break;
 484     case dtos: pop_d();              break;
 485     case vtos: /* nothing to do */   break;
 486     default  : ShouldNotReachHere();
 487   }
 488   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 489 }
 490 
 491 
 492 // Helpers for swap and dup
 493 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 494   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
 495 }
 496 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 497   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
 498 }
 499 
 500 
 501 void InterpreterMacroAssembler::load_receiver(Register param_count,
 502                                               Register recv) {
 503   sll(param_count, Interpreter::logStackElementSize, param_count);
 504   ld_ptr(Lesp, param_count, recv);  // gets receiver oop
 505 }
 506 
 507 void InterpreterMacroAssembler::empty_expression_stack() {
 508   // Reset Lesp.
 509   sub( Lmonitors, wordSize, Lesp );
 510 
 511   // Reset SP by subtracting more space from Lesp.
 512   Label done;
 513   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
 514 
 515   // A native does not need to do this, since its callee does not change SP.
 516   ld(Lmethod, Method::access_flags_offset(), Gframe_size);  // Load access flags.
 517   btst(JVM_ACC_NATIVE, Gframe_size);
 518   br(Assembler::notZero, false, Assembler::pt, done);
 519   delayed()->nop();
 520 
 521   // Compute max expression stack+register save area
 522   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Gframe_size);
 523   lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size);  // Load max stack.
 524   add(Gframe_size, frame::memory_parameter_word_sp_offset+Method::extra_stack_entries(), Gframe_size );
 525 
 526   //
 527   // now set up a stack frame with the size computed above
 528   //
 529   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
 530   sll( Gframe_size, LogBytesPerWord, Gframe_size );
 531   sub( Lesp, Gframe_size, Gframe_size );
 532   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
 533   debug_only(verify_sp(Gframe_size, G4_scratch));
 534 #ifdef _LP64
 535   sub(Gframe_size, STACK_BIAS, Gframe_size );
 536 #endif
 537   mov(Gframe_size, SP);
 538 
 539   bind(done);
 540 }
 541 
 542 
 543 #ifdef ASSERT
 544 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
 545   Label Bad, OK;
 546 
 547   // Saved SP must be aligned.
 548 #ifdef _LP64
 549   btst(2*BytesPerWord-1, Rsp);
 550 #else
 551   btst(LongAlignmentMask, Rsp);
 552 #endif
 553   br(Assembler::notZero, false, Assembler::pn, Bad);
 554   delayed()->nop();
 555 
 556   // Saved SP, plus register window size, must not be above FP.
 557   add(Rsp, frame::register_save_words * wordSize, Rtemp);
 558 #ifdef _LP64
 559   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
 560 #endif
 561   cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
 562 
 563   // Saved SP must not be ridiculously below current SP.
 564   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
 565   set(maxstack, Rtemp);
 566   sub(SP, Rtemp, Rtemp);
 567 #ifdef _LP64
 568   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
 569 #endif
 570   cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
 571 
 572   ba_short(OK);
 573 
 574   bind(Bad);
 575   stop("on return to interpreted call, restored SP is corrupted");
 576 
 577   bind(OK);
 578 }
 579 
 580 
 581 void InterpreterMacroAssembler::verify_esp(Register Resp) {
 582   // about to read or write Resp[0]
 583   // make sure it is not in the monitors or the register save area
 584   Label OK1, OK2;
 585 
 586   cmp(Resp, Lmonitors);
 587   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
 588   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
 589   stop("too many pops:  Lesp points into monitor area");
 590   bind(OK1);
 591 #ifdef _LP64
 592   sub(Resp, STACK_BIAS, Resp);
 593 #endif
 594   cmp(Resp, SP);
 595   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
 596   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
 597   stop("too many pushes:  Lesp points into register window");
 598   bind(OK2);
 599 }
 600 #endif // ASSERT
 601 
 602 // Load compiled (i2c) or interpreter entry when calling from interpreted and
 603 // do the call. Centralized so that all interpreter calls will do the same actions.
 604 // If jvmti single stepping is on for a thread we must not call compiled code.
 605 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
 606 
 607   // Assume we want to go compiled if available
 608 
 609   ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
 610 
 611   if (JvmtiExport::can_post_interpreter_events()) {
 612     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 613     // compiled code in threads for which the event is enabled.  Check here for
 614     // interp_only_mode if these events CAN be enabled.
 615     verify_thread();
 616     Label skip_compiled_code;
 617 
 618     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
 619     ld(interp_only, scratch);
 620     cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
 621     delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
 622     bind(skip_compiled_code);
 623   }
 624 
 625   // the i2c_adapters need Method* in G5_method (right? %%%)
 626   // do the call
 627 #ifdef ASSERT
 628   {
 629     Label ok;
 630     br_notnull_short(target, Assembler::pt, ok);
 631     stop("null entry point");
 632     bind(ok);
 633   }
 634 #endif // ASSERT
 635 
 636   // Adjust Rret first so Llast_SP can be same as Rret
 637   add(Rret, -frame::pc_return_offset, O7);
 638   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
 639   // Record SP so we can remove any stack space allocated by adapter transition
 640   jmp(target, 0);
 641   delayed()->mov(SP, Llast_SP);
 642 }
 643 
 644 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
 645   assert_not_delayed();
 646 
 647   Label not_taken;
 648   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
 649   else             br (cc, false, Assembler::pn, not_taken);
 650   delayed()->nop();
 651 
 652   TemplateTable::branch(false,false);
 653 
 654   bind(not_taken);
 655 
 656   profile_not_taken_branch(G3_scratch);
 657 }
 658 
 659 
 660 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
 661                                   int         bcp_offset,
 662                                   Register    Rtmp,
 663                                   Register    Rdst,
 664                                   signedOrNot is_signed,
 665                                   setCCOrNot  should_set_CC ) {
 666   assert(Rtmp != Rdst, "need separate temp register");
 667   assert_not_delayed();
 668   switch (is_signed) {
 669    default: ShouldNotReachHere();
 670 
 671    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
 672    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
 673   }
 674   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
 675   sll( Rdst, BitsPerByte, Rdst);
 676   switch (should_set_CC ) {
 677    default: ShouldNotReachHere();
 678 
 679    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
 680    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
 681   }
 682 }
 683 
 684 
 685 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
 686                                   int        bcp_offset,
 687                                   Register   Rtmp,
 688                                   Register   Rdst,
 689                                   setCCOrNot should_set_CC ) {
 690   assert(Rtmp != Rdst, "need separate temp register");
 691   assert_not_delayed();
 692   add( Lbcp, bcp_offset, Rtmp);
 693   andcc( Rtmp, 3, G0);
 694   Label aligned;
 695   switch (should_set_CC ) {
 696    default: ShouldNotReachHere();
 697 
 698    case      set_CC: break;
 699    case dont_set_CC: break;
 700   }
 701 
 702   br(Assembler::zero, true, Assembler::pn, aligned);
 703 #ifdef _LP64
 704   delayed()->ldsw(Rtmp, 0, Rdst);
 705 #else
 706   delayed()->ld(Rtmp, 0, Rdst);
 707 #endif
 708 
 709   ldub(Lbcp, bcp_offset + 3, Rdst);
 710   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
 711   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
 712 #ifdef _LP64
 713   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 714 #else
 715   // Unsigned load is faster than signed on some implementations
 716   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 717 #endif
 718   or3(Rtmp, Rdst, Rdst );
 719 
 720   bind(aligned);
 721   if (should_set_CC == set_CC) tst(Rdst);
 722 }
 723 
 724 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
 725                                                        int bcp_offset, size_t index_size) {
 726   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 727   if (index_size == sizeof(u2)) {
 728     get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
 729   } else if (index_size == sizeof(u4)) {
 730     get_4_byte_integer_at_bcp(bcp_offset, temp, index);
 731     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 732     xor3(index, -1, index);  // convert to plain index
 733   } else if (index_size == sizeof(u1)) {
 734     ldub(Lbcp, bcp_offset, index);
 735   } else {
 736     ShouldNotReachHere();
 737   }
 738 }
 739 
 740 
 741 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
 742                                                            int bcp_offset, size_t index_size) {
 743   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 744   assert_different_registers(cache, tmp);
 745   assert_not_delayed();
 746   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
 747   // convert from field index to ConstantPoolCacheEntry index and from
 748   // word index to byte offset
 749   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 750   add(LcpoolCache, tmp, cache);
 751 }
 752 
 753 
 754 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 755                                                                         Register temp,
 756                                                                         Register bytecode,
 757                                                                         int byte_no,
 758                                                                         int bcp_offset,
 759                                                                         size_t index_size) {
 760   get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
 761   ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
 762   const int shift_count = (1 + byte_no) * BitsPerByte;
 763   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 764          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 765          "correct shift count");
 766   srl(bytecode, shift_count, bytecode);
 767   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 768   and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
 769 }
 770 
 771 
 772 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 773                                                                int bcp_offset, size_t index_size) {
 774   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 775   assert_different_registers(cache, tmp);
 776   assert_not_delayed();
 777   if (index_size == sizeof(u2)) {
 778     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 779   } else {
 780     ShouldNotReachHere();  // other sizes not supported here
 781   }
 782               // convert from field index to ConstantPoolCacheEntry index
 783               // and from word index to byte offset
 784   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 785               // skip past the header
 786   add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
 787               // construct pointer to cache entry
 788   add(LcpoolCache, tmp, cache);
 789 }
 790 
 791 
 792 // Load object from cpool->resolved_references(index)
 793 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 794                                            Register result, Register index) {
 795   assert_different_registers(result, index);
 796   assert_not_delayed();
 797   // convert from field index to resolved_references() index and from
 798   // word index to byte offset. Since this is a java object, it can be compressed
 799   Register tmp = index;  // reuse
 800   sll(index, LogBytesPerHeapOop, tmp);
 801   get_constant_pool(result);
 802   // load pointer for resolved_references[] objArray
 803   ld_ptr(result, ConstantPool::resolved_references_offset_in_bytes(), result);
 804   // JNIHandles::resolve(result)
 805   ld_ptr(result, 0, result);
 806   // Add in the index
 807   add(result, tmp, result);
 808   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
 809 }
 810 
 811 
 812 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 813 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 814 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 815                                                   Register Rsuper_klass,
 816                                                   Register Rtmp1,
 817                                                   Register Rtmp2,
 818                                                   Register Rtmp3,
 819                                                   Label &ok_is_subtype ) {
 820   Label not_subtype;
 821 
 822   // Profile the not-null value's klass.
 823   profile_typecheck(Rsub_klass, Rtmp1);
 824 
 825   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
 826                                 Rtmp1, Rtmp2,
 827                                 &ok_is_subtype, &not_subtype, NULL);
 828 
 829   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
 830                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
 831                                 &ok_is_subtype, NULL);
 832 
 833   bind(not_subtype);
 834   profile_typecheck_failed(Rtmp1);
 835 }
 836 
 837 // Separate these two to allow for delay slot in middle
 838 // These are used to do a test and full jump to exception-throwing code.
 839 
 840 // %%%%% Could possibly reoptimize this by testing to see if could use
 841 // a single conditional branch (i.e. if span is small enough.
 842 // If you go that route, than get rid of the split and give up
 843 // on the delay-slot hack.
 844 
 845 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
 846                                                     Label&    ok ) {
 847   assert_not_delayed();
 848   br(ok_condition, true, pt, ok);
 849   // DELAY SLOT
 850 }
 851 
 852 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
 853                                                     Label&    ok ) {
 854   assert_not_delayed();
 855   bp( ok_condition, true, Assembler::xcc, pt, ok);
 856   // DELAY SLOT
 857 }
 858 
 859 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
 860                                                   Label&    ok ) {
 861   assert_not_delayed();
 862   brx(ok_condition, true, pt, ok);
 863   // DELAY SLOT
 864 }
 865 
 866 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
 867                                                 Register Rscratch,
 868                                                 Label&   ok ) {
 869   assert(throw_entry_point != NULL, "entry point must be generated by now");
 870   AddressLiteral dest(throw_entry_point);
 871   jump_to(dest, Rscratch);
 872   delayed()->nop();
 873   bind(ok);
 874 }
 875 
 876 
 877 // And if you cannot use the delay slot, here is a shorthand:
 878 
 879 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
 880                                                   address   throw_entry_point,
 881                                                   Register  Rscratch ) {
 882   Label ok;
 883   if (ok_condition != never) {
 884     throw_if_not_1_icc( ok_condition, ok);
 885     delayed()->nop();
 886   }
 887   throw_if_not_2( throw_entry_point, Rscratch, ok);
 888 }
 889 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
 890                                                   address   throw_entry_point,
 891                                                   Register  Rscratch ) {
 892   Label ok;
 893   if (ok_condition != never) {
 894     throw_if_not_1_xcc( ok_condition, ok);
 895     delayed()->nop();
 896   }
 897   throw_if_not_2( throw_entry_point, Rscratch, ok);
 898 }
 899 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
 900                                                 address   throw_entry_point,
 901                                                 Register  Rscratch ) {
 902   Label ok;
 903   if (ok_condition != never) {
 904     throw_if_not_1_x( ok_condition, ok);
 905     delayed()->nop();
 906   }
 907   throw_if_not_2( throw_entry_point, Rscratch, ok);
 908 }
 909 
 910 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
 911 // Note: res is still shy of address by array offset into object.
 912 
 913 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
 914   assert_not_delayed();
 915 
 916   verify_oop(array);
 917 #ifdef _LP64
 918   // sign extend since tos (index) can be a 32bit value
 919   sra(index, G0, index);
 920 #endif // _LP64
 921 
 922   // check array
 923   Label ptr_ok;
 924   tst(array);
 925   throw_if_not_1_x( notZero, ptr_ok );
 926   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
 927   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
 928 
 929   Label index_ok;
 930   cmp(index, tmp);
 931   throw_if_not_1_icc( lessUnsigned, index_ok );
 932   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
 933   else                  delayed()->add(array, index, res); // addr - const offset in index
 934   // convention: move aberrant index into G3_scratch for exception message
 935   mov(index, G3_scratch);
 936   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
 937 
 938   // add offset if didn't do it in delay slot
 939   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
 940 }
 941 
 942 
 943 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 944   assert_not_delayed();
 945 
 946   // pop array
 947   pop_ptr(array);
 948 
 949   // check array
 950   index_check_without_pop(array, index, index_shift, tmp, res);
 951 }
 952 
 953 
 954 void InterpreterMacroAssembler::get_const(Register Rdst) {
 955   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
 956 }
 957 
 958 
 959 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 960   get_const(Rdst);
 961   ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
 962 }
 963 
 964 
 965 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 966   get_constant_pool(Rdst);
 967   ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
 968 }
 969 
 970 
 971 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 972   get_constant_pool(Rcpool);
 973   ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
 974 }
 975 
 976 
 977 // unlock if synchronized method
 978 //
 979 // Unlock the receiver if this is a synchronized method.
 980 // Unlock any Java monitors from syncronized blocks.
 981 //
 982 // If there are locked Java monitors
 983 //    If throw_monitor_exception
 984 //       throws IllegalMonitorStateException
 985 //    Else if install_monitor_exception
 986 //       installs IllegalMonitorStateException
 987 //    Else
 988 //       no error processing
 989 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 990                                                               bool throw_monitor_exception,
 991                                                               bool install_monitor_exception) {
 992   Label unlocked, unlock, no_unlock;
 993 
 994   // get the value of _do_not_unlock_if_synchronized into G1_scratch
 995   const Address do_not_unlock_if_synchronized(G2_thread,
 996     JavaThread::do_not_unlock_if_synchronized_offset());
 997   ldbool(do_not_unlock_if_synchronized, G1_scratch);
 998   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
 999 
1000   // check if synchronized method
1001   const Address access_flags(Lmethod, Method::access_flags_offset());
1002   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1003   push(state); // save tos
1004   ld(access_flags, G3_scratch); // Load access flags.
1005   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
1006   br(zero, false, pt, unlocked);
1007   delayed()->nop();
1008 
1009   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1010   // is set.
1011   cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
1012   delayed()->nop();
1013 
1014   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1015   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1016 
1017   //Intel: if (throw_monitor_exception) ... else ...
1018   // Entry already unlocked, need to throw exception
1019   //...
1020 
1021   // pass top-most monitor elem
1022   add( top_most_monitor(), O1 );
1023 
1024   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
1025   br_notnull_short(G3_scratch, pt, unlock);
1026 
1027   if (throw_monitor_exception) {
1028     // Entry already unlocked need to throw an exception
1029     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1030     should_not_reach_here();
1031   } else {
1032     // Monitor already unlocked during a stack unroll.
1033     // If requested, install an illegal_monitor_state_exception.
1034     // Continue with stack unrolling.
1035     if (install_monitor_exception) {
1036       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1037     }
1038     ba_short(unlocked);
1039   }
1040 
1041   bind(unlock);
1042 
1043   unlock_object(O1);
1044 
1045   bind(unlocked);
1046 
1047   // I0, I1: Might contain return value
1048 
1049   // Check that all monitors are unlocked
1050   { Label loop, exception, entry, restart;
1051 
1052     Register Rmptr   = O0;
1053     Register Rtemp   = O1;
1054     Register Rlimit  = Lmonitors;
1055     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1056     assert( (delta & LongAlignmentMask) == 0,
1057             "sizeof BasicObjectLock must be even number of doublewords");
1058 
1059     #ifdef ASSERT
1060     add(top_most_monitor(), Rmptr, delta);
1061     { Label L;
1062       // ensure that Rmptr starts out above (or at) Rlimit
1063       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1064       stop("monitor stack has negative size");
1065       bind(L);
1066     }
1067     #endif
1068     bind(restart);
1069     ba(entry);
1070     delayed()->
1071     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1072 
1073     // Entry is still locked, need to throw exception
1074     bind(exception);
1075     if (throw_monitor_exception) {
1076       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1077       should_not_reach_here();
1078     } else {
1079       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1080       // Unlock does not block, so don't have to worry about the frame
1081       unlock_object(Rmptr);
1082       if (install_monitor_exception) {
1083         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1084       }
1085       ba_short(restart);
1086     }
1087 
1088     bind(loop);
1089     cmp(Rtemp, G0);                             // check if current entry is used
1090     brx(Assembler::notEqual, false, pn, exception);
1091     delayed()->
1092     dec(Rmptr, delta);                          // otherwise advance to next entry
1093     #ifdef ASSERT
1094     { Label L;
1095       // ensure that Rmptr has not somehow stepped below Rlimit
1096       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1097       stop("ran off the end of the monitor stack");
1098       bind(L);
1099     }
1100     #endif
1101     bind(entry);
1102     cmp(Rmptr, Rlimit);                         // check if bottom reached
1103     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1104     delayed()->
1105     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1106   }
1107 
1108   bind(no_unlock);
1109   pop(state);
1110   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1111 }
1112 
1113 
1114 // remove activation
1115 //
1116 // Unlock the receiver if this is a synchronized method.
1117 // Unlock any Java monitors from syncronized blocks.
1118 // Remove the activation from the stack.
1119 //
1120 // If there are locked Java monitors
1121 //    If throw_monitor_exception
1122 //       throws IllegalMonitorStateException
1123 //    Else if install_monitor_exception
1124 //       installs IllegalMonitorStateException
1125 //    Else
1126 //       no error processing
1127 void InterpreterMacroAssembler::remove_activation(TosState state,
1128                                                   bool throw_monitor_exception,
1129                                                   bool install_monitor_exception) {
1130 
1131   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1132 
1133   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1134   notify_method_exit(false, state, NotifyJVMTI);
1135 
1136   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1137   verify_thread();
1138 
1139   // return tos
1140   assert(Otos_l1 == Otos_i, "adjust code below");
1141   switch (state) {
1142 #ifdef _LP64
1143   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1144 #else
1145   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
1146 #endif
1147   case btos:                                      // fall through
1148   case ctos:
1149   case stos:                                      // fall through
1150   case atos:                                      // fall through
1151   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1152   case ftos:                                      // fall through
1153   case dtos:                                      // fall through
1154   case vtos: /* nothing to do */                     break;
1155   default  : ShouldNotReachHere();
1156   }
1157 
1158 #if defined(COMPILER2) && !defined(_LP64)
1159   if (state == ltos) {
1160     // C2 expects long results in G1 we can't tell if we're returning to interpreted
1161     // or compiled so just be safe use G1 and O0/O1
1162 
1163     // Shift bits into high (msb) of G1
1164     sllx(Otos_l1->after_save(), 32, G1);
1165     // Zero extend low bits
1166     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1167     or3 (Otos_l2->after_save(), G1, G1);
1168   }
1169 #endif /* COMPILER2 */
1170 
1171 }
1172 #endif /* CC_INTERP */
1173 
1174 
1175 // Lock object
1176 //
1177 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1178 //            it must be initialized with the object to lock
1179 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1180   if (UseHeavyMonitors) {
1181     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1182   }
1183   else {
1184     Register obj_reg = Object;
1185     Register mark_reg = G4_scratch;
1186     Register temp_reg = G1_scratch;
1187     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1188     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1189     Label    done;
1190 
1191     Label slow_case;
1192 
1193     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1194 
1195     // load markOop from object into mark_reg
1196     ld_ptr(mark_addr, mark_reg);
1197 
1198     if (UseBiasedLocking) {
1199       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1200     }
1201 
1202     // get the address of basicLock on stack that will be stored in the object
1203     // we need a temporary register here as we do not want to clobber lock_reg
1204     // (cas clobbers the destination register)
1205     mov(lock_reg, temp_reg);
1206     // set mark reg to be (markOop of object | UNLOCK_VALUE)
1207     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1208     // initialize the box  (Must happen before we update the object mark!)
1209     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1210     // compare and exchange object_addr, markOop | 1, stack address of basicLock
1211     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1212     cas_ptr(mark_addr.base(), mark_reg, temp_reg);
1213 
1214     // if the compare and exchange succeeded we are done (we saw an unlocked object)
1215     cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
1216 
1217     // We did not see an unlocked object so try the fast recursive case
1218 
1219     // Check if owner is self by comparing the value in the markOop of object
1220     // with the stack pointer
1221     sub(temp_reg, SP, temp_reg);
1222 #ifdef _LP64
1223     sub(temp_reg, STACK_BIAS, temp_reg);
1224 #endif
1225     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1226 
1227     // Composite "andcc" test:
1228     // (a) %sp -vs- markword proximity check, and,
1229     // (b) verify mark word LSBs == 0 (Stack-locked).
1230     //
1231     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1232     // Note that the page size used for %sp proximity testing is arbitrary and is
1233     // unrelated to the actual MMU page size.  We use a 'logical' page size of
1234     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1235     // field of the andcc instruction.
1236     andcc (temp_reg, 0xFFFFF003, G0) ;
1237 
1238     // if condition is true we are done and hence we can store 0 in the displaced
1239     // header indicating it is a recursive lock and be done
1240     brx(Assembler::zero, true, Assembler::pt, done);
1241     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1242 
1243     // none of the above fast optimizations worked so we have to get into the
1244     // slow case of monitor enter
1245     bind(slow_case);
1246     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1247 
1248     bind(done);
1249   }
1250 }
1251 
1252 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1253 //
1254 // Argument - lock_reg points to the BasicObjectLock for lock
1255 // Throw IllegalMonitorException if object is not locked by current thread
1256 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1257   if (UseHeavyMonitors) {
1258     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1259   } else {
1260     Register obj_reg = G3_scratch;
1261     Register mark_reg = G4_scratch;
1262     Register displaced_header_reg = G1_scratch;
1263     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1264     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1265     Label    done;
1266 
1267     if (UseBiasedLocking) {
1268       // load the object out of the BasicObjectLock
1269       ld_ptr(lockobj_addr, obj_reg);
1270       biased_locking_exit(mark_addr, mark_reg, done, true);
1271       st_ptr(G0, lockobj_addr);  // free entry
1272     }
1273 
1274     // Test first if we are in the fast recursive case
1275     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1276     ld_ptr(lock_addr, displaced_header_reg);
1277     br_null(displaced_header_reg, true, Assembler::pn, done);
1278     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1279 
1280     // See if it is still a light weight lock, if so we just unlock
1281     // the object and we are done
1282 
1283     if (!UseBiasedLocking) {
1284       // load the object out of the BasicObjectLock
1285       ld_ptr(lockobj_addr, obj_reg);
1286     }
1287 
1288     // we have the displaced header in displaced_header_reg
1289     // we expect to see the stack address of the basicLock in case the
1290     // lock is still a light weight lock (lock_reg)
1291     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1292     cas_ptr(mark_addr.base(), lock_reg, displaced_header_reg);
1293     cmp(lock_reg, displaced_header_reg);
1294     brx(Assembler::equal, true, Assembler::pn, done);
1295     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1296 
1297     // The lock has been converted into a heavy lock and hence
1298     // we need to get into the slow case
1299 
1300     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1301 
1302     bind(done);
1303   }
1304 }
1305 
1306 #ifndef CC_INTERP
1307 
1308 // Get the method data pointer from the Method* and set the
1309 // specified register to its value.
1310 
1311 void InterpreterMacroAssembler::set_method_data_pointer() {
1312   assert(ProfileInterpreter, "must be profiling interpreter");
1313   Label get_continue;
1314 
1315   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1316   test_method_data_pointer(get_continue);
1317   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1318   bind(get_continue);
1319 }
1320 
1321 // Set the method data pointer for the current bcp.
1322 
1323 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1324   assert(ProfileInterpreter, "must be profiling interpreter");
1325   Label zero_continue;
1326 
1327   // Test MDO to avoid the call if it is NULL.
1328   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1329   test_method_data_pointer(zero_continue);
1330   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1331   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1332   add(ImethodDataPtr, O0, ImethodDataPtr);
1333   bind(zero_continue);
1334 }
1335 
1336 // Test ImethodDataPtr.  If it is null, continue at the specified label
1337 
1338 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1339   assert(ProfileInterpreter, "must be profiling interpreter");
1340   br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
1341 }
1342 
1343 void InterpreterMacroAssembler::verify_method_data_pointer() {
1344   assert(ProfileInterpreter, "must be profiling interpreter");
1345 #ifdef ASSERT
1346   Label verify_continue;
1347   test_method_data_pointer(verify_continue);
1348 
1349   // If the mdp is valid, it will point to a DataLayout header which is
1350   // consistent with the bcp.  The converse is highly probable also.
1351   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1352   ld_ptr(Lmethod, Method::const_offset(), O5);
1353   add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
1354   add(G3_scratch, O5, G3_scratch);
1355   cmp(Lbcp, G3_scratch);
1356   brx(Assembler::equal, false, Assembler::pt, verify_continue);
1357 
1358   Register temp_reg = O5;
1359   delayed()->mov(ImethodDataPtr, temp_reg);
1360   // %%% should use call_VM_leaf here?
1361   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1362   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1363   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1364   stf(FloatRegisterImpl::D, Ftos_d, d_save);
1365   mov(temp_reg->after_save(), O2);
1366   save_thread(L7_thread_cache);
1367   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1368   delayed()->nop();
1369   restore_thread(L7_thread_cache);
1370   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1371   restore();
1372   bind(verify_continue);
1373 #endif // ASSERT
1374 }
1375 
1376 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1377                                                                 Register Rtmp,
1378                                                                 Label &profile_continue) {
1379   assert(ProfileInterpreter, "must be profiling interpreter");
1380   // Control will flow to "profile_continue" if the counter is less than the
1381   // limit or if we call profile_method()
1382 
1383   Label done;
1384 
1385   // if no method data exists, and the counter is high enough, make one
1386   br_notnull_short(ImethodDataPtr, Assembler::pn, done);
1387 
1388   // Test to see if we should create a method data oop
1389   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
1390   sethi(profile_limit, Rtmp);
1391   ld(Rtmp, profile_limit.low10(), Rtmp);
1392   cmp(invocation_count, Rtmp);
1393   // Use long branches because call_VM() code and following code generated by
1394   // test_backedge_count_for_osr() is large in debug VM.
1395   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1396   delayed()->nop();
1397 
1398   // Build it now.
1399   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1400   set_method_data_pointer_for_bcp();
1401   ba(profile_continue);
1402   delayed()->nop();
1403   bind(done);
1404 }
1405 
1406 // Store a value at some constant offset from the method data pointer.
1407 
1408 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1409   assert(ProfileInterpreter, "must be profiling interpreter");
1410   st_ptr(value, ImethodDataPtr, constant);
1411 }
1412 
1413 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1414                                                       Register bumped_count,
1415                                                       bool decrement) {
1416   assert(ProfileInterpreter, "must be profiling interpreter");
1417 
1418   // Load the counter.
1419   ld_ptr(counter, bumped_count);
1420 
1421   if (decrement) {
1422     // Decrement the register.  Set condition codes.
1423     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1424 
1425     // If the decrement causes the counter to overflow, stay negative
1426     Label L;
1427     brx(Assembler::negative, true, Assembler::pn, L);
1428 
1429     // Store the decremented counter, if it is still negative.
1430     delayed()->st_ptr(bumped_count, counter);
1431     bind(L);
1432   } else {
1433     // Increment the register.  Set carry flag.
1434     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1435 
1436     // If the increment causes the counter to overflow, pull back by 1.
1437     assert(DataLayout::counter_increment == 1, "subc works");
1438     subc(bumped_count, G0, bumped_count);
1439 
1440     // Store the incremented counter.
1441     st_ptr(bumped_count, counter);
1442   }
1443 }
1444 
1445 // Increment the value at some constant offset from the method data pointer.
1446 
1447 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1448                                                       Register bumped_count,
1449                                                       bool decrement) {
1450   // Locate the counter at a fixed offset from the mdp:
1451   Address counter(ImethodDataPtr, constant);
1452   increment_mdp_data_at(counter, bumped_count, decrement);
1453 }
1454 
1455 // Increment the value at some non-fixed (reg + constant) offset from
1456 // the method data pointer.
1457 
1458 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1459                                                       int constant,
1460                                                       Register bumped_count,
1461                                                       Register scratch2,
1462                                                       bool decrement) {
1463   // Add the constant to reg to get the offset.
1464   add(ImethodDataPtr, reg, scratch2);
1465   Address counter(scratch2, constant);
1466   increment_mdp_data_at(counter, bumped_count, decrement);
1467 }
1468 
1469 // Set a flag value at the current method data pointer position.
1470 // Updates a single byte of the header, to avoid races with other header bits.
1471 
1472 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1473                                                 Register scratch) {
1474   assert(ProfileInterpreter, "must be profiling interpreter");
1475   // Load the data header
1476   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1477 
1478   // Set the flag
1479   or3(scratch, flag_constant, scratch);
1480 
1481   // Store the modified header.
1482   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1483 }
1484 
1485 // Test the location at some offset from the method data pointer.
1486 // If it is not equal to value, branch to the not_equal_continue Label.
1487 // Set condition codes to match the nullness of the loaded value.
1488 
1489 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1490                                                  Register value,
1491                                                  Label& not_equal_continue,
1492                                                  Register scratch) {
1493   assert(ProfileInterpreter, "must be profiling interpreter");
1494   ld_ptr(ImethodDataPtr, offset, scratch);
1495   cmp(value, scratch);
1496   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1497   delayed()->tst(scratch);
1498 }
1499 
1500 // Update the method data pointer by the displacement located at some fixed
1501 // offset from the method data pointer.
1502 
1503 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1504                                                      Register scratch) {
1505   assert(ProfileInterpreter, "must be profiling interpreter");
1506   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1507   add(ImethodDataPtr, scratch, ImethodDataPtr);
1508 }
1509 
1510 // Update the method data pointer by the displacement located at the
1511 // offset (reg + offset_of_disp).
1512 
1513 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1514                                                      int offset_of_disp,
1515                                                      Register scratch) {
1516   assert(ProfileInterpreter, "must be profiling interpreter");
1517   add(reg, offset_of_disp, scratch);
1518   ld_ptr(ImethodDataPtr, scratch, scratch);
1519   add(ImethodDataPtr, scratch, ImethodDataPtr);
1520 }
1521 
1522 // Update the method data pointer by a simple constant displacement.
1523 
1524 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1525   assert(ProfileInterpreter, "must be profiling interpreter");
1526   add(ImethodDataPtr, constant, ImethodDataPtr);
1527 }
1528 
1529 // Update the method data pointer for a _ret bytecode whose target
1530 // was not among our cached targets.
1531 
1532 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1533                                                    Register return_bci) {
1534   assert(ProfileInterpreter, "must be profiling interpreter");
1535   push(state);
1536   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1537   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1538   ld_ptr(l_tmp, return_bci);
1539   pop(state);
1540 }
1541 
1542 // Count a taken branch in the bytecodes.
1543 
1544 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1545   if (ProfileInterpreter) {
1546     Label profile_continue;
1547 
1548     // If no method data exists, go to profile_continue.
1549     test_method_data_pointer(profile_continue);
1550 
1551     // We are taking a branch.  Increment the taken count.
1552     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1553 
1554     // The method data pointer needs to be updated to reflect the new target.
1555     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1556     bind (profile_continue);
1557   }
1558 }
1559 
1560 
1561 // Count a not-taken branch in the bytecodes.
1562 
1563 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1564   if (ProfileInterpreter) {
1565     Label profile_continue;
1566 
1567     // If no method data exists, go to profile_continue.
1568     test_method_data_pointer(profile_continue);
1569 
1570     // We are taking a branch.  Increment the not taken count.
1571     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1572 
1573     // The method data pointer needs to be updated to correspond to the
1574     // next bytecode.
1575     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1576     bind (profile_continue);
1577   }
1578 }
1579 
1580 
1581 // Count a non-virtual call in the bytecodes.
1582 
1583 void InterpreterMacroAssembler::profile_call(Register scratch) {
1584   if (ProfileInterpreter) {
1585     Label profile_continue;
1586 
1587     // If no method data exists, go to profile_continue.
1588     test_method_data_pointer(profile_continue);
1589 
1590     // We are making a call.  Increment the count.
1591     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1592 
1593     // The method data pointer needs to be updated to reflect the new target.
1594     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1595     bind (profile_continue);
1596   }
1597 }
1598 
1599 
1600 // Count a final call in the bytecodes.
1601 
1602 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1603   if (ProfileInterpreter) {
1604     Label profile_continue;
1605 
1606     // If no method data exists, go to profile_continue.
1607     test_method_data_pointer(profile_continue);
1608 
1609     // We are making a call.  Increment the count.
1610     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1611 
1612     // The method data pointer needs to be updated to reflect the new target.
1613     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1614     bind (profile_continue);
1615   }
1616 }
1617 
1618 
1619 // Count a virtual call in the bytecodes.
1620 
1621 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1622                                                      Register scratch,
1623                                                      bool receiver_can_be_null) {
1624   if (ProfileInterpreter) {
1625     Label profile_continue;
1626 
1627     // If no method data exists, go to profile_continue.
1628     test_method_data_pointer(profile_continue);
1629 
1630 
1631     Label skip_receiver_profile;
1632     if (receiver_can_be_null) {
1633       Label not_null;
1634       br_notnull_short(receiver, Assembler::pt, not_null);
1635       // We are making a call.  Increment the count for null receiver.
1636       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1637       ba_short(skip_receiver_profile);
1638       bind(not_null);
1639     }
1640 
1641     // Record the receiver type.
1642     record_klass_in_profile(receiver, scratch, true);
1643     bind(skip_receiver_profile);
1644 
1645     // The method data pointer needs to be updated to reflect the new target.
1646     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1647     bind (profile_continue);
1648   }
1649 }
1650 
1651 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1652                                         Register receiver, Register scratch,
1653                                         int start_row, Label& done, bool is_virtual_call) {
1654   if (TypeProfileWidth == 0) {
1655     if (is_virtual_call) {
1656       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1657     }
1658     return;
1659   }
1660 
1661   int last_row = VirtualCallData::row_limit() - 1;
1662   assert(start_row <= last_row, "must be work left to do");
1663   // Test this row for both the receiver and for null.
1664   // Take any of three different outcomes:
1665   //   1. found receiver => increment count and goto done
1666   //   2. found null => keep looking for case 1, maybe allocate this cell
1667   //   3. found something else => keep looking for cases 1 and 2
1668   // Case 3 is handled by a recursive call.
1669   for (int row = start_row; row <= last_row; row++) {
1670     Label next_test;
1671     bool test_for_null_also = (row == start_row);
1672 
1673     // See if the receiver is receiver[n].
1674     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1675     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1676     // delayed()->tst(scratch);
1677 
1678     // The receiver is receiver[n].  Increment count[n].
1679     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1680     increment_mdp_data_at(count_offset, scratch);
1681     ba_short(done);
1682     bind(next_test);
1683 
1684     if (test_for_null_also) {
1685       Label found_null;
1686       // Failed the equality check on receiver[n]...  Test for null.
1687       if (start_row == last_row) {
1688         // The only thing left to do is handle the null case.
1689         if (is_virtual_call) {
1690           brx(Assembler::zero, false, Assembler::pn, found_null);
1691           delayed()->nop();
1692           // Receiver did not match any saved receiver and there is no empty row for it.
1693           // Increment total counter to indicate polymorphic case.
1694           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1695           ba_short(done);
1696           bind(found_null);
1697         } else {
1698           brx(Assembler::notZero, false, Assembler::pt, done);
1699           delayed()->nop();
1700         }
1701         break;
1702       }
1703       // Since null is rare, make it be the branch-taken case.
1704       brx(Assembler::zero, false, Assembler::pn, found_null);
1705       delayed()->nop();
1706 
1707       // Put all the "Case 3" tests here.
1708       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
1709 
1710       // Found a null.  Keep searching for a matching receiver,
1711       // but remember that this is an empty (unused) slot.
1712       bind(found_null);
1713     }
1714   }
1715 
1716   // In the fall-through case, we found no matching receiver, but we
1717   // observed the receiver[start_row] is NULL.
1718 
1719   // Fill in the receiver field and increment the count.
1720   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1721   set_mdp_data_at(recvr_offset, receiver);
1722   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1723   mov(DataLayout::counter_increment, scratch);
1724   set_mdp_data_at(count_offset, scratch);
1725   if (start_row > 0) {
1726     ba_short(done);
1727   }
1728 }
1729 
1730 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1731                                                         Register scratch, bool is_virtual_call) {
1732   assert(ProfileInterpreter, "must be profiling");
1733   Label done;
1734 
1735   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
1736 
1737   bind (done);
1738 }
1739 
1740 
1741 // Count a ret in the bytecodes.
1742 
1743 void InterpreterMacroAssembler::profile_ret(TosState state,
1744                                             Register return_bci,
1745                                             Register scratch) {
1746   if (ProfileInterpreter) {
1747     Label profile_continue;
1748     uint row;
1749 
1750     // If no method data exists, go to profile_continue.
1751     test_method_data_pointer(profile_continue);
1752 
1753     // Update the total ret count.
1754     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1755 
1756     for (row = 0; row < RetData::row_limit(); row++) {
1757       Label next_test;
1758 
1759       // See if return_bci is equal to bci[n]:
1760       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1761                        return_bci, next_test, scratch);
1762 
1763       // return_bci is equal to bci[n].  Increment the count.
1764       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1765 
1766       // The method data pointer needs to be updated to reflect the new target.
1767       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1768       ba_short(profile_continue);
1769       bind(next_test);
1770     }
1771 
1772     update_mdp_for_ret(state, return_bci);
1773 
1774     bind (profile_continue);
1775   }
1776 }
1777 
1778 // Profile an unexpected null in the bytecodes.
1779 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1780   if (ProfileInterpreter) {
1781     Label profile_continue;
1782 
1783     // If no method data exists, go to profile_continue.
1784     test_method_data_pointer(profile_continue);
1785 
1786     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1787 
1788     // The method data pointer needs to be updated.
1789     int mdp_delta = in_bytes(BitData::bit_data_size());
1790     if (TypeProfileCasts) {
1791       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1792     }
1793     update_mdp_by_constant(mdp_delta);
1794 
1795     bind (profile_continue);
1796   }
1797 }
1798 
1799 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1800                                                   Register scratch) {
1801   if (ProfileInterpreter) {
1802     Label profile_continue;
1803 
1804     // If no method data exists, go to profile_continue.
1805     test_method_data_pointer(profile_continue);
1806 
1807     int mdp_delta = in_bytes(BitData::bit_data_size());
1808     if (TypeProfileCasts) {
1809       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1810 
1811       // Record the object type.
1812       record_klass_in_profile(klass, scratch, false);
1813     }
1814 
1815     // The method data pointer needs to be updated.
1816     update_mdp_by_constant(mdp_delta);
1817 
1818     bind (profile_continue);
1819   }
1820 }
1821 
1822 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1823   if (ProfileInterpreter && TypeProfileCasts) {
1824     Label profile_continue;
1825 
1826     // If no method data exists, go to profile_continue.
1827     test_method_data_pointer(profile_continue);
1828 
1829     int count_offset = in_bytes(CounterData::count_offset());
1830     // Back up the address, since we have already bumped the mdp.
1831     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1832 
1833     // *Decrement* the counter.  We expect to see zero or small negatives.
1834     increment_mdp_data_at(count_offset, scratch, true);
1835 
1836     bind (profile_continue);
1837   }
1838 }
1839 
1840 // Count the default case of a switch construct.
1841 
1842 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1843   if (ProfileInterpreter) {
1844     Label profile_continue;
1845 
1846     // If no method data exists, go to profile_continue.
1847     test_method_data_pointer(profile_continue);
1848 
1849     // Update the default case count
1850     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1851                           scratch);
1852 
1853     // The method data pointer needs to be updated.
1854     update_mdp_by_offset(
1855                     in_bytes(MultiBranchData::default_displacement_offset()),
1856                     scratch);
1857 
1858     bind (profile_continue);
1859   }
1860 }
1861 
1862 // Count the index'th case of a switch construct.
1863 
1864 void InterpreterMacroAssembler::profile_switch_case(Register index,
1865                                                     Register scratch,
1866                                                     Register scratch2,
1867                                                     Register scratch3) {
1868   if (ProfileInterpreter) {
1869     Label profile_continue;
1870 
1871     // If no method data exists, go to profile_continue.
1872     test_method_data_pointer(profile_continue);
1873 
1874     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1875     set(in_bytes(MultiBranchData::per_case_size()), scratch);
1876     smul(index, scratch, scratch);
1877     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1878 
1879     // Update the case count
1880     increment_mdp_data_at(scratch,
1881                           in_bytes(MultiBranchData::relative_count_offset()),
1882                           scratch2,
1883                           scratch3);
1884 
1885     // The method data pointer needs to be updated.
1886     update_mdp_by_offset(scratch,
1887                      in_bytes(MultiBranchData::relative_displacement_offset()),
1888                      scratch2);
1889 
1890     bind (profile_continue);
1891   }
1892 }
1893 
1894 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) {
1895   Label not_null, do_nothing, do_update;
1896 
1897   assert_different_registers(obj, mdo_addr.base(), tmp);
1898 
1899   verify_oop(obj);
1900 
1901   ld_ptr(mdo_addr, tmp);
1902 
1903   br_notnull_short(obj, pt, not_null);
1904   or3(tmp, TypeEntries::null_seen, tmp);
1905   ba_short(do_update);
1906 
1907   bind(not_null);
1908   load_klass(obj, obj);
1909 
1910   xor3(obj, tmp, obj);
1911   btst(TypeEntries::type_klass_mask, obj);
1912   // klass seen before, nothing to do. The unknown bit may have been
1913   // set already but no need to check.
1914   brx(zero, false, pt, do_nothing);
1915   delayed()->
1916 
1917   btst(TypeEntries::type_unknown, obj);
1918   // already unknown. Nothing to do anymore.
1919   brx(notZero, false, pt, do_nothing);
1920   delayed()->
1921 
1922   btst(TypeEntries::type_mask, tmp);
1923   brx(zero, true, pt, do_update);
1924   // first time here. Set profile type.
1925   delayed()->or3(tmp, obj, tmp);
1926 
1927   // different than before. Cannot keep accurate profile.
1928   or3(tmp, TypeEntries::type_unknown, tmp);
1929 
1930   bind(do_update);
1931   // update profile
1932   st_ptr(tmp, mdo_addr);
1933 
1934   bind(do_nothing);
1935 }
1936 
1937 void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) {
1938   if (!ProfileInterpreter) {
1939     return;
1940   }
1941 
1942   assert_different_registers(callee, tmp1, tmp2, ImethodDataPtr);
1943 
1944   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1945     Label profile_continue;
1946 
1947     test_method_data_pointer(profile_continue);
1948 
1949     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1950 
1951     ldub(ImethodDataPtr, in_bytes(DataLayout::tag_offset()) - off_to_start, tmp1);
1952     cmp_and_br_short(tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag, notEqual, pn, profile_continue);
1953 
1954     if (MethodData::profile_arguments()) {
1955       Label done;
1956       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1957       add(ImethodDataPtr, off_to_args, ImethodDataPtr);
1958 
1959       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1960         if (i > 0 || MethodData::profile_return()) {
1961           // If return value type is profiled we may have no argument to profile
1962           ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
1963           sub(tmp1, i*TypeStackSlotEntries::per_arg_count(), tmp1);
1964           cmp_and_br_short(tmp1, TypeStackSlotEntries::per_arg_count(), less, pn, done);
1965         }
1966         ld_ptr(Address(callee, Method::const_offset()), tmp1);
1967         lduh(Address(tmp1, ConstMethod::size_of_parameters_offset()), tmp1);
1968         // stack offset o (zero based) from the start of the argument
1969         // list, for n arguments translates into offset n - o - 1 from
1970         // the end of the argument list. But there's an extra slot at
1971         // the stop of the stack. So the offset is n - o from Lesp.
1972         ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, tmp2);
1973         sub(tmp1, tmp2, tmp1);
1974 
1975         // Can't use MacroAssembler::argument_address() which needs Gargs to be set up
1976         sll(tmp1, Interpreter::logStackElementSize, tmp1);
1977         ld_ptr(Lesp, tmp1, tmp1);
1978 
1979         Address mdo_arg_addr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
1980         profile_obj_type(tmp1, mdo_arg_addr, tmp2);
1981 
1982         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1983         add(ImethodDataPtr, to_add, ImethodDataPtr);
1984         off_to_args += to_add;
1985       }
1986 
1987       if (MethodData::profile_return()) {
1988         ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
1989         sub(tmp1, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count(), tmp1);
1990       }
1991 
1992       bind(done);
1993 
1994       if (MethodData::profile_return()) {
1995         // We're right after the type profile for the last
1996         // argument. tmp1 is the number of cells left in the
1997         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1998         // if there's a return to profile.
1999         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
2000         sll(tmp1, exact_log2(DataLayout::cell_size), tmp1);
2001         add(ImethodDataPtr, tmp1, ImethodDataPtr);
2002       }
2003     } else {
2004       assert(MethodData::profile_return(), "either profile call args or call ret");
2005       update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
2006     }
2007 
2008     // mdp points right after the end of the
2009     // CallTypeData/VirtualCallTypeData, right after the cells for the
2010     // return value type if there's one.
2011 
2012     bind(profile_continue);
2013   }
2014 }
2015 
2016 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
2017   assert_different_registers(ret, tmp1, tmp2);
2018   if (ProfileInterpreter && MethodData::profile_return()) {
2019     Label profile_continue, done;
2020 
2021     test_method_data_pointer(profile_continue);
2022 
2023     if (MethodData::profile_return_jsr292_only()) {
2024       // If we don't profile all invoke bytecodes we must make sure
2025       // it's a bytecode we indeed profile. We can't go back to the
2026       // begining of the ProfileData we intend to update to check its
2027       // type because we're right after it and we don't known its
2028       // length.
2029       Label do_profile;
2030       ldub(Lbcp, 0, tmp1);
2031       cmp_and_br_short(tmp1, Bytecodes::_invokedynamic, equal, pn, do_profile);
2032       cmp(tmp1, Bytecodes::_invokehandle);
2033       br(equal, false, pn, do_profile);
2034       delayed()->ldub(Lmethod, Method::intrinsic_id_offset_in_bytes(), tmp1);
2035       cmp_and_br_short(tmp1, vmIntrinsics::_compiledLambdaForm, notEqual, pt, profile_continue);
2036 
2037       bind(do_profile);
2038     }
2039 
2040     Address mdo_ret_addr(ImethodDataPtr, -in_bytes(ReturnTypeEntry::size()));
2041     mov(ret, tmp1);
2042     profile_obj_type(tmp1, mdo_ret_addr, tmp2);
2043 
2044     bind(profile_continue);
2045   }
2046 }
2047 
2048 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2049   if (ProfileInterpreter && MethodData::profile_parameters()) {
2050     Label profile_continue, done;
2051 
2052     test_method_data_pointer(profile_continue);
2053 
2054     // Load the offset of the area within the MDO used for
2055     // parameters. If it's negative we're not profiling any parameters.
2056     lduw(ImethodDataPtr, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), tmp1);
2057     cmp_and_br_short(tmp1, 0, less, pn, profile_continue);
2058 
2059     // Compute a pointer to the area for parameters from the offset
2060     // and move the pointer to the slot for the last
2061     // parameters. Collect profiling from last parameter down.
2062     // mdo start + parameters offset + array length - 1
2063 
2064     // Pointer to the parameter area in the MDO
2065     Register mdp = tmp1;
2066     add(ImethodDataPtr, tmp1, mdp);
2067 
2068     // offset of the current profile entry to update
2069     Register entry_offset = tmp2;
2070     // entry_offset = array len in number of cells
2071     ld_ptr(mdp, ArrayData::array_len_offset(), entry_offset);
2072 
2073     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
2074     assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
2075 
2076     // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
2077     sub(entry_offset, TypeStackSlotEntries::per_arg_count() - (off_base / DataLayout::cell_size), entry_offset);
2078     // entry_offset in bytes
2079     sll(entry_offset, exact_log2(DataLayout::cell_size), entry_offset);
2080 
2081     Label loop;
2082     bind(loop);
2083 
2084     // load offset on the stack from the slot for this parameter
2085     ld_ptr(mdp, entry_offset, tmp3);
2086     sll(tmp3,Interpreter::logStackElementSize, tmp3);
2087     neg(tmp3);
2088     // read the parameter from the local area
2089     ld_ptr(Llocals, tmp3, tmp3);
2090 
2091     // make entry_offset now point to the type field for this parameter
2092     int type_base = in_bytes(ParametersTypeData::type_offset(0));
2093     assert(type_base > off_base, "unexpected");
2094     add(entry_offset, type_base - off_base, entry_offset);
2095 
2096     // profile the parameter
2097     Address arg_type(mdp, entry_offset);
2098     profile_obj_type(tmp3, arg_type, tmp4);
2099 
2100     // go to next parameter
2101     sub(entry_offset, TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base), entry_offset);
2102     cmp_and_br_short(entry_offset, off_base, greaterEqual, pt, loop);
2103 
2104     bind(profile_continue);
2105   }
2106 }
2107 
2108 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
2109 
2110 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
2111                                                       Register Rtemp,
2112                                                       Register Rtemp2 ) {
2113 
2114   Register Rlimit = Lmonitors;
2115   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2116   assert( (delta & LongAlignmentMask) == 0,
2117           "sizeof BasicObjectLock must be even number of doublewords");
2118 
2119   sub( SP,        delta, SP);
2120   sub( Lesp,      delta, Lesp);
2121   sub( Lmonitors, delta, Lmonitors);
2122 
2123   if (!stack_is_empty) {
2124 
2125     // must copy stack contents down
2126 
2127     Label start_copying, next;
2128 
2129     // untested("monitor stack expansion");
2130     compute_stack_base(Rtemp);
2131     ba(start_copying);
2132     delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
2133 
2134     // note: must copy from low memory upwards
2135     // On entry to loop,
2136     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
2137     // Loop mutates Rtemp
2138 
2139     bind( next);
2140 
2141     st_ptr(Rtemp2, Rtemp, 0);
2142     inc(Rtemp, wordSize);
2143     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
2144 
2145     bind( start_copying );
2146 
2147     brx( notEqual, true, pn, next );
2148     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
2149 
2150     // done copying stack
2151   }
2152 }
2153 
2154 // Locals
2155 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
2156   assert_not_delayed();
2157   sll(index, Interpreter::logStackElementSize, index);
2158   sub(Llocals, index, index);
2159   ld_ptr(index, 0, dst);
2160   // Note:  index must hold the effective address--the iinc template uses it
2161 }
2162 
2163 // Just like access_local_ptr but the tag is a returnAddress
2164 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
2165                                                            Register dst ) {
2166   assert_not_delayed();
2167   sll(index, Interpreter::logStackElementSize, index);
2168   sub(Llocals, index, index);
2169   ld_ptr(index, 0, dst);
2170 }
2171 
2172 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
2173   assert_not_delayed();
2174   sll(index, Interpreter::logStackElementSize, index);
2175   sub(Llocals, index, index);
2176   ld(index, 0, dst);
2177   // Note:  index must hold the effective address--the iinc template uses it
2178 }
2179 
2180 
2181 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
2182   assert_not_delayed();
2183   sll(index, Interpreter::logStackElementSize, index);
2184   sub(Llocals, index, index);
2185   // First half stored at index n+1 (which grows down from Llocals[n])
2186   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
2187 }
2188 
2189 
2190 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
2191   assert_not_delayed();
2192   sll(index, Interpreter::logStackElementSize, index);
2193   sub(Llocals, index, index);
2194   ldf(FloatRegisterImpl::S, index, 0, dst);
2195 }
2196 
2197 
2198 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
2199   assert_not_delayed();
2200   sll(index, Interpreter::logStackElementSize, index);
2201   sub(Llocals, index, index);
2202   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
2203 }
2204 
2205 
2206 #ifdef ASSERT
2207 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2208   Label L;
2209 
2210   assert(Rindex != Rscratch, "Registers cannot be same");
2211   assert(Rindex != Rscratch1, "Registers cannot be same");
2212   assert(Rlimit != Rscratch, "Registers cannot be same");
2213   assert(Rlimit != Rscratch1, "Registers cannot be same");
2214   assert(Rscratch1 != Rscratch, "Registers cannot be same");
2215 
2216   // untested("reg area corruption");
2217   add(Rindex, offset, Rscratch);
2218   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2219   cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
2220   stop("regsave area is being clobbered");
2221   bind(L);
2222 }
2223 #endif // ASSERT
2224 
2225 
2226 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2227   assert_not_delayed();
2228   sll(index, Interpreter::logStackElementSize, index);
2229   sub(Llocals, index, index);
2230   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2231   st(src, index, 0);
2232 }
2233 
2234 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2235   assert_not_delayed();
2236   sll(index, Interpreter::logStackElementSize, index);
2237   sub(Llocals, index, index);
2238 #ifdef ASSERT
2239   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2240 #endif
2241   st_ptr(src, index, 0);
2242 }
2243 
2244 
2245 
2246 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2247   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2248 }
2249 
2250 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2251   assert_not_delayed();
2252   sll(index, Interpreter::logStackElementSize, index);
2253   sub(Llocals, index, index);
2254 #ifdef ASSERT
2255   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2256 #endif
2257   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2258 }
2259 
2260 
2261 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2262   assert_not_delayed();
2263   sll(index, Interpreter::logStackElementSize, index);
2264   sub(Llocals, index, index);
2265 #ifdef ASSERT
2266   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2267 #endif
2268   stf(FloatRegisterImpl::S, src, index, 0);
2269 }
2270 
2271 
2272 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2273   assert_not_delayed();
2274   sll(index, Interpreter::logStackElementSize, index);
2275   sub(Llocals, index, index);
2276 #ifdef ASSERT
2277   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2278 #endif
2279   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2280 }
2281 
2282 
2283 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2284   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2285   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2286   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2287 }
2288 
2289 
2290 Address InterpreterMacroAssembler::top_most_monitor() {
2291   return Address(FP, top_most_monitor_byte_offset());
2292 }
2293 
2294 
2295 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2296   add( Lesp,      wordSize,                                    Rdest );
2297 }
2298 
2299 #endif /* CC_INTERP */
2300 
2301 void InterpreterMacroAssembler::get_method_counters(Register method,
2302                                                     Register Rcounters,
2303                                                     Label& skip) {
2304   Label has_counters;
2305   Address method_counters(method, in_bytes(Method::method_counters_offset()));
2306   ld_ptr(method_counters, Rcounters);
2307   br_notnull_short(Rcounters, Assembler::pt, has_counters);
2308   call_VM(noreg, CAST_FROM_FN_PTR(address,
2309           InterpreterRuntime::build_method_counters), method);
2310   ld_ptr(method_counters, Rcounters);
2311   br_null(Rcounters, false, Assembler::pn, skip); // No MethodCounters, OutOfMemory
2312   delayed()->nop();
2313   bind(has_counters);
2314 }
2315 
2316 void InterpreterMacroAssembler::increment_invocation_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2317   assert(UseCompiler, "incrementing must be useful");
2318   assert_different_registers(Rcounters, Rtmp, Rtmp2);
2319 
2320   Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2321                                  InvocationCounter::counter_offset());
2322   Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2323                                  InvocationCounter::counter_offset());
2324   int delta = InvocationCounter::count_increment;
2325 
2326   // Load each counter in a register
2327   ld( inv_counter, Rtmp );
2328   ld( be_counter, Rtmp2 );
2329 
2330   assert( is_simm13( delta ), " delta too large.");
2331 
2332   // Add the delta to the invocation counter and store the result
2333   add( Rtmp, delta, Rtmp );
2334 
2335   // Mask the backedge counter
2336   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2337 
2338   // Store value
2339   st( Rtmp, inv_counter);
2340 
2341   // Add invocation counter + backedge counter
2342   add( Rtmp, Rtmp2, Rtmp);
2343 
2344   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2345 }
2346 
2347 void InterpreterMacroAssembler::increment_backedge_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2348   assert(UseCompiler, "incrementing must be useful");
2349   assert_different_registers(Rcounters, Rtmp, Rtmp2);
2350 
2351   Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2352                                  InvocationCounter::counter_offset());
2353   Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2354                                  InvocationCounter::counter_offset());
2355 
2356   int delta = InvocationCounter::count_increment;
2357   // Load each counter in a register
2358   ld( be_counter, Rtmp );
2359   ld( inv_counter, Rtmp2 );
2360 
2361   // Add the delta to the backedge counter
2362   add( Rtmp, delta, Rtmp );
2363 
2364   // Mask the invocation counter, add to backedge counter
2365   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2366 
2367   // and store the result to memory
2368   st( Rtmp, be_counter );
2369 
2370   // Add backedge + invocation counter
2371   add( Rtmp, Rtmp2, Rtmp );
2372 
2373   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2374 }
2375 
2376 #ifndef CC_INTERP
2377 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2378                                                              Register branch_bcp,
2379                                                              Register Rtmp ) {
2380   Label did_not_overflow;
2381   Label overflow_with_error;
2382   assert_different_registers(backedge_count, Rtmp, branch_bcp);
2383   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2384 
2385   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
2386   load_contents(limit, Rtmp);
2387   cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
2388 
2389   // When ProfileInterpreter is on, the backedge_count comes from the
2390   // MethodData*, which value does not get reset on the call to
2391   // frequency_counter_overflow().  To avoid excessive calls to the overflow
2392   // routine while the method is being compiled, add a second test to make sure
2393   // the overflow function is called only once every overflow_frequency.
2394   if (ProfileInterpreter) {
2395     const int overflow_frequency = 1024;
2396     andcc(backedge_count, overflow_frequency-1, Rtmp);
2397     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2398     delayed()->nop();
2399   }
2400 
2401   // overflow in loop, pass branch bytecode
2402   set(6,Rtmp);
2403   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2404 
2405   // Was an OSR adapter generated?
2406   // O0 = osr nmethod
2407   br_null_short(O0, Assembler::pn, overflow_with_error);
2408 
2409   // Has the nmethod been invalidated already?
2410   ld(O0, nmethod::entry_bci_offset(), O2);
2411   cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
2412 
2413   // migrate the interpreter frame off of the stack
2414 
2415   mov(G2_thread, L7);
2416   // save nmethod
2417   mov(O0, L6);
2418   set_last_Java_frame(SP, noreg);
2419   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2420   reset_last_Java_frame();
2421   mov(L7, G2_thread);
2422 
2423   // move OSR nmethod to I1
2424   mov(L6, I1);
2425 
2426   // OSR buffer to I0
2427   mov(O0, I0);
2428 
2429   // remove the interpreter frame
2430   restore(I5_savedSP, 0, SP);
2431 
2432   // Jump to the osr code.
2433   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2434   jmp(O2, G0);
2435   delayed()->nop();
2436 
2437   bind(overflow_with_error);
2438 
2439   bind(did_not_overflow);
2440 }
2441 
2442 
2443 
2444 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2445   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2446 }
2447 
2448 
2449 // local helper function for the verify_oop_or_return_address macro
2450 static bool verify_return_address(Method* m, int bci) {
2451 #ifndef PRODUCT
2452   address pc = (address)(m->constMethod())
2453              + in_bytes(ConstMethod::codes_offset()) + bci;
2454   // assume it is a valid return address if it is inside m and is preceded by a jsr
2455   if (!m->contains(pc))                                          return false;
2456   address jsr_pc;
2457   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2458   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2459   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2460   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2461 #endif // PRODUCT
2462   return false;
2463 }
2464 
2465 
2466 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2467   if (!VerifyOops)  return;
2468   // the VM documentation for the astore[_wide] bytecode allows
2469   // the TOS to be not only an oop but also a return address
2470   Label test;
2471   Label skip;
2472   // See if it is an address (in the current method):
2473 
2474   mov(reg, Rtmp);
2475   const int log2_bytecode_size_limit = 16;
2476   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2477   br_notnull_short( Rtmp, pt, test );
2478 
2479   // %%% should use call_VM_leaf here?
2480   save_frame_and_mov(0, Lmethod, O0, reg, O1);
2481   save_thread(L7_thread_cache);
2482   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2483   delayed()->nop();
2484   restore_thread(L7_thread_cache);
2485   br_notnull( O0, false, pt, skip );
2486   delayed()->restore();
2487 
2488   // Perform a more elaborate out-of-line call
2489   // Not an address; verify it:
2490   bind(test);
2491   verify_oop(reg);
2492   bind(skip);
2493 }
2494 
2495 
2496 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2497   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2498 }
2499 
2500 
2501 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2502 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2503                                                         int increment, int mask,
2504                                                         Register scratch1, Register scratch2,
2505                                                         Condition cond, Label *where) {
2506   ld(counter_addr, scratch1);
2507   add(scratch1, increment, scratch1);
2508   if (is_simm13(mask)) {
2509     andcc(scratch1, mask, G0);
2510   } else {
2511     set(mask, scratch2);
2512     andcc(scratch1, scratch2,  G0);
2513   }
2514   br(cond, false, Assembler::pn, *where);
2515   delayed()->st(scratch1, counter_addr);
2516 }
2517 #endif /* CC_INTERP */
2518 
2519 // Inline assembly for:
2520 //
2521 // if (thread is in interp_only_mode) {
2522 //   InterpreterRuntime::post_method_entry();
2523 // }
2524 // if (DTraceMethodProbes) {
2525 //   SharedRuntime::dtrace_method_entry(method, receiver);
2526 // }
2527 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2528 //   SharedRuntime::rc_trace_method_entry(method, receiver);
2529 // }
2530 
2531 void InterpreterMacroAssembler::notify_method_entry() {
2532 
2533   // C++ interpreter only uses this for native methods.
2534 
2535   // Whenever JVMTI puts a thread in interp_only_mode, method
2536   // entry/exit events are sent for that thread to track stack
2537   // depth.  If it is possible to enter interp_only_mode we add
2538   // the code to check if the event should be sent.
2539   if (JvmtiExport::can_post_interpreter_events()) {
2540     Label L;
2541     Register temp_reg = O5;
2542     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2543     ld(interp_only, temp_reg);
2544     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2545     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2546     bind(L);
2547   }
2548 
2549   {
2550     Register temp_reg = O5;
2551     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2552     call_VM_leaf(noreg,
2553       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2554       G2_thread, Lmethod);
2555   }
2556 
2557   // RedefineClasses() tracing support for obsolete method entry
2558   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2559     call_VM_leaf(noreg,
2560       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2561       G2_thread, Lmethod);
2562   }
2563 }
2564 
2565 
2566 // Inline assembly for:
2567 //
2568 // if (thread is in interp_only_mode) {
2569 //   // save result
2570 //   InterpreterRuntime::post_method_exit();
2571 //   // restore result
2572 // }
2573 // if (DTraceMethodProbes) {
2574 //   SharedRuntime::dtrace_method_exit(thread, method);
2575 // }
2576 //
2577 // Native methods have their result stored in d_tmp and l_tmp
2578 // Java methods have their result stored in the expression stack
2579 
2580 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2581                                                    TosState state,
2582                                                    NotifyMethodExitMode mode) {
2583   // C++ interpreter only uses this for native methods.
2584 
2585   // Whenever JVMTI puts a thread in interp_only_mode, method
2586   // entry/exit events are sent for that thread to track stack
2587   // depth.  If it is possible to enter interp_only_mode we add
2588   // the code to check if the event should be sent.
2589   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2590     Label L;
2591     Register temp_reg = O5;
2592     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2593     ld(interp_only, temp_reg);
2594     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2595 
2596     // Note: frame::interpreter_frame_result has a dependency on how the
2597     // method result is saved across the call to post_method_exit. For
2598     // native methods it assumes the result registers are saved to
2599     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2600     // implementation will need to be updated too.
2601 
2602     save_return_value(state, is_native_method);
2603     call_VM(noreg,
2604             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2605     restore_return_value(state, is_native_method);
2606     bind(L);
2607   }
2608 
2609   {
2610     Register temp_reg = O5;
2611     // Dtrace notification
2612     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2613     save_return_value(state, is_native_method);
2614     call_VM_leaf(
2615       noreg,
2616       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2617       G2_thread, Lmethod);
2618     restore_return_value(state, is_native_method);
2619   }
2620 }
2621 
2622 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2623 #ifdef CC_INTERP
2624   // result potentially in O0/O1: save it across calls
2625   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2626 #ifdef _LP64
2627   stx(O0, STATE(_native_lresult));
2628 #else
2629   std(O0, STATE(_native_lresult));
2630 #endif
2631 #else // CC_INTERP
2632   if (is_native_call) {
2633     stf(FloatRegisterImpl::D, F0, d_tmp);
2634 #ifdef _LP64
2635     stx(O0, l_tmp);
2636 #else
2637     std(O0, l_tmp);
2638 #endif
2639   } else {
2640     push(state);
2641   }
2642 #endif // CC_INTERP
2643 }
2644 
2645 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2646 #ifdef CC_INTERP
2647   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2648 #ifdef _LP64
2649   ldx(STATE(_native_lresult), O0);
2650 #else
2651   ldd(STATE(_native_lresult), O0);
2652 #endif
2653 #else // CC_INTERP
2654   if (is_native_call) {
2655     ldf(FloatRegisterImpl::D, d_tmp, F0);
2656 #ifdef _LP64
2657     ldx(l_tmp, O0);
2658 #else
2659     ldd(l_tmp, O0);
2660 #endif
2661   } else {
2662     pop(state);
2663   }
2664 #endif // CC_INTERP
2665 }