1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 #ifndef PRAGMA_DIAG_PUSH
  46 #define PRAGMA_DIAG_PUSH
  47 #endif
  48 #ifndef PRAGMA_DIAG_POP
  49 #define PRAGMA_DIAG_POP
  50 #endif
  51 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  52 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  53 #endif
  54 #ifndef PRAGMA_FORMAT_IGNORED
  55 #define PRAGMA_FORMAT_IGNORED
  56 #endif
  57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  59 #endif
  60 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  61 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  62 #endif
  63 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  64 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  65 #endif
  66 #ifndef ATTRIBUTE_PRINTF
  67 #define ATTRIBUTE_PRINTF(fmt, vargs)
  68 #endif
  69 
  70 
  71 #include "utilities/macros.hpp"
  72 
  73 // This file holds all globally used constants & types, class (forward)
  74 // declarations and a few frequently used utility functions.
  75 
  76 //----------------------------------------------------------------------------------------------------
  77 // Constants
  78 
  79 const int LogBytesPerShort   = 1;
  80 const int LogBytesPerInt     = 2;
  81 #ifdef _LP64
  82 const int LogBytesPerWord    = 3;
  83 #else
  84 const int LogBytesPerWord    = 2;
  85 #endif
  86 const int LogBytesPerLong    = 3;
  87 
  88 const int BytesPerShort      = 1 << LogBytesPerShort;
  89 const int BytesPerInt        = 1 << LogBytesPerInt;
  90 const int BytesPerWord       = 1 << LogBytesPerWord;
  91 const int BytesPerLong       = 1 << LogBytesPerLong;
  92 
  93 const int LogBitsPerByte     = 3;
  94 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  95 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  96 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
  97 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
  98 
  99 const int BitsPerByte        = 1 << LogBitsPerByte;
 100 const int BitsPerShort       = 1 << LogBitsPerShort;
 101 const int BitsPerInt         = 1 << LogBitsPerInt;
 102 const int BitsPerWord        = 1 << LogBitsPerWord;
 103 const int BitsPerLong        = 1 << LogBitsPerLong;
 104 
 105 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 106 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 107 
 108 const int WordsPerLong       = 2;       // Number of stack entries for longs
 109 
 110 const int oopSize            = sizeof(char*); // Full-width oop
 111 extern int heapOopSize;                       // Oop within a java object
 112 const int wordSize           = sizeof(char*);
 113 const int longSize           = sizeof(jlong);
 114 const int jintSize           = sizeof(jint);
 115 const int size_tSize         = sizeof(size_t);
 116 
 117 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 118 
 119 extern int LogBytesPerHeapOop;                // Oop within a java object
 120 extern int LogBitsPerHeapOop;
 121 extern int BytesPerHeapOop;
 122 extern int BitsPerHeapOop;
 123 
 124 // Oop encoding heap max
 125 extern uint64_t OopEncodingHeapMax;
 126 
 127 const int BitsPerJavaInteger = 32;
 128 const int BitsPerJavaLong    = 64;
 129 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 130 
 131 // Size of a char[] needed to represent a jint as a string in decimal.
 132 const int jintAsStringSize = 12;
 133 
 134 // In fact this should be
 135 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 136 // see os::set_memory_serialize_page()
 137 #ifdef _LP64
 138 const int SerializePageShiftCount = 4;
 139 #else
 140 const int SerializePageShiftCount = 3;
 141 #endif
 142 
 143 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 144 // pointer into the heap.  We require that object sizes be measured in
 145 // units of heap words, so that that
 146 //   HeapWord* hw;
 147 //   hw += oop(hw)->foo();
 148 // works, where foo is a method (like size or scavenge) that returns the
 149 // object size.
 150 class HeapWord {
 151   friend class VMStructs;
 152  private:
 153   char* i;
 154 #ifndef PRODUCT
 155  public:
 156   char* value() { return i; }
 157 #endif
 158 };
 159 
 160 // Analogous opaque struct for metadata allocated from
 161 // metaspaces.
 162 class MetaWord {
 163   friend class VMStructs;
 164  private:
 165   char* i;
 166 };
 167 
 168 // HeapWordSize must be 2^LogHeapWordSize.
 169 const int HeapWordSize        = sizeof(HeapWord);
 170 #ifdef _LP64
 171 const int LogHeapWordSize     = 3;
 172 #else
 173 const int LogHeapWordSize     = 2;
 174 #endif
 175 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 176 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 177 
 178 // The larger HeapWordSize for 64bit requires larger heaps
 179 // for the same application running in 64bit.  See bug 4967770.
 180 // The minimum alignment to a heap word size is done.  Other
 181 // parts of the memory system may require additional alignment
 182 // and are responsible for those alignments.
 183 #ifdef _LP64
 184 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 185 #else
 186 #define ScaleForWordSize(x) (x)
 187 #endif
 188 
 189 // The minimum number of native machine words necessary to contain "byte_size"
 190 // bytes.
 191 inline size_t heap_word_size(size_t byte_size) {
 192   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 193 }
 194 
 195 
 196 const size_t K                  = 1024;
 197 const size_t M                  = K*K;
 198 const size_t G                  = M*K;
 199 const size_t HWperKB            = K / sizeof(HeapWord);
 200 
 201 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 202 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 203 
 204 // Constants for converting from a base unit to milli-base units.  For
 205 // example from seconds to milliseconds and microseconds
 206 
 207 const int MILLIUNITS    = 1000;         // milli units per base unit
 208 const int MICROUNITS    = 1000000;      // micro units per base unit
 209 const int NANOUNITS     = 1000000000;   // nano units per base unit
 210 
 211 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 212 const jint  NANOSECS_PER_MILLISEC = 1000000;
 213 
 214 inline const char* proper_unit_for_byte_size(size_t s) {
 215 #ifdef _LP64
 216   if (s >= 10*G) {
 217     return "G";
 218   }
 219 #endif
 220   if (s >= 10*M) {
 221     return "M";
 222   } else if (s >= 10*K) {
 223     return "K";
 224   } else {
 225     return "B";
 226   }
 227 }
 228 
 229 template <class T>
 230 inline T byte_size_in_proper_unit(T s) {
 231 #ifdef _LP64
 232   if (s >= 10*G) {
 233     return (T)(s/G);
 234   }
 235 #endif
 236   if (s >= 10*M) {
 237     return (T)(s/M);
 238   } else if (s >= 10*K) {
 239     return (T)(s/K);
 240   } else {
 241     return s;
 242   }
 243 }
 244 
 245 //----------------------------------------------------------------------------------------------------
 246 // VM type definitions
 247 
 248 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 249 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 250 
 251 typedef intptr_t  intx;
 252 typedef uintptr_t uintx;
 253 
 254 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 255 const intx  max_intx  = (uintx)min_intx - 1;
 256 const uintx max_uintx = (uintx)-1;
 257 
 258 // Table of values:
 259 //      sizeof intx         4               8
 260 // min_intx             0x80000000      0x8000000000000000
 261 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 262 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 263 
 264 typedef unsigned int uint;   NEEDS_CLEANUP
 265 
 266 
 267 //----------------------------------------------------------------------------------------------------
 268 // Java type definitions
 269 
 270 // All kinds of 'plain' byte addresses
 271 typedef   signed char s_char;
 272 typedef unsigned char u_char;
 273 typedef u_char*       address;
 274 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 275                                     // except for some implementations of a C++
 276                                     // linkage pointer to function. Should never
 277                                     // need one of those to be placed in this
 278                                     // type anyway.
 279 
 280 //  Utility functions to "portably" (?) bit twiddle pointers
 281 //  Where portable means keep ANSI C++ compilers quiet
 282 
 283 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 284 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 285 
 286 //  Utility functions to "portably" make cast to/from function pointers.
 287 
 288 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 289 inline address_word  castable_address(address x)              { return address_word(x) ; }
 290 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 291 
 292 // Pointer subtraction.
 293 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 294 // the range we might need to find differences from one end of the heap
 295 // to the other.
 296 // A typical use might be:
 297 //     if (pointer_delta(end(), top()) >= size) {
 298 //       // enough room for an object of size
 299 //       ...
 300 // and then additions like
 301 //       ... top() + size ...
 302 // are safe because we know that top() is at least size below end().
 303 inline size_t pointer_delta(const void* left,
 304                             const void* right,
 305                             size_t element_size) {
 306   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 307 }
 308 // A version specialized for HeapWord*'s.
 309 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 310   return pointer_delta(left, right, sizeof(HeapWord));
 311 }
 312 // A version specialized for MetaWord*'s.
 313 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 314   return pointer_delta(left, right, sizeof(MetaWord));
 315 }
 316 
 317 //
 318 // ANSI C++ does not allow casting from one pointer type to a function pointer
 319 // directly without at best a warning. This macro accomplishes it silently
 320 // In every case that is present at this point the value be cast is a pointer
 321 // to a C linkage function. In somecase the type used for the cast reflects
 322 // that linkage and a picky compiler would not complain. In other cases because
 323 // there is no convenient place to place a typedef with extern C linkage (i.e
 324 // a platform dependent header file) it doesn't. At this point no compiler seems
 325 // picky enough to catch these instances (which are few). It is possible that
 326 // using templates could fix these for all cases. This use of templates is likely
 327 // so far from the middle of the road that it is likely to be problematic in
 328 // many C++ compilers.
 329 //
 330 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 331 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 332 
 333 // Unsigned byte types for os and stream.hpp
 334 
 335 // Unsigned one, two, four and eigth byte quantities used for describing
 336 // the .class file format. See JVM book chapter 4.
 337 
 338 typedef jubyte  u1;
 339 typedef jushort u2;
 340 typedef juint   u4;
 341 typedef julong  u8;
 342 
 343 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 344 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 345 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 346 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 347 
 348 typedef jbyte  s1;
 349 typedef jshort s2;
 350 typedef jint   s4;
 351 typedef jlong  s8;
 352 
 353 //----------------------------------------------------------------------------------------------------
 354 // JVM spec restrictions
 355 
 356 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 357 
 358 // Default ProtectionDomainCacheSize values
 359 
 360 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 361 
 362 //----------------------------------------------------------------------------------------------------
 363 // Default and minimum StringTableSize values
 364 
 365 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 366 const int minimumStringTableSize = 1009;
 367 
 368 const int defaultSymbolTableSize = 20011;
 369 const int minimumSymbolTableSize = 1009;
 370 
 371 
 372 //----------------------------------------------------------------------------------------------------
 373 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 374 //
 375 // Determines whether on-the-fly class replacement and frame popping are enabled.
 376 
 377 #define HOTSWAP
 378 
 379 //----------------------------------------------------------------------------------------------------
 380 // Object alignment, in units of HeapWords.
 381 //
 382 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 383 // reference fields can be naturally aligned.
 384 
 385 extern int MinObjAlignment;
 386 extern int MinObjAlignmentInBytes;
 387 extern int MinObjAlignmentInBytesMask;
 388 
 389 extern int LogMinObjAlignment;
 390 extern int LogMinObjAlignmentInBytes;
 391 
 392 const int LogKlassAlignmentInBytes = 3;
 393 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 394 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 395 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 396 
 397 // Klass encoding metaspace max size
 398 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 399 
 400 // Machine dependent stuff
 401 
 402 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
 403 // Include Restricted Transactional Memory lock eliding optimization
 404 #define INCLUDE_RTM_OPT 1
 405 #define RTM_OPT_ONLY(code) code
 406 #else
 407 #define INCLUDE_RTM_OPT 0
 408 #define RTM_OPT_ONLY(code)
 409 #endif
 410 // States of Restricted Transactional Memory usage.
 411 enum RTMState {
 412   NoRTM      = 0x2, // Don't use RTM
 413   UseRTM     = 0x1, // Use RTM
 414   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 415 };
 416 
 417 #ifdef TARGET_ARCH_x86
 418 # include "globalDefinitions_x86.hpp"
 419 #endif
 420 #ifdef TARGET_ARCH_sparc
 421 # include "globalDefinitions_sparc.hpp"
 422 #endif
 423 #ifdef TARGET_ARCH_zero
 424 # include "globalDefinitions_zero.hpp"
 425 #endif
 426 #ifdef TARGET_ARCH_arm
 427 # include "globalDefinitions_arm.hpp"
 428 #endif
 429 #ifdef TARGET_ARCH_ppc
 430 # include "globalDefinitions_ppc.hpp"
 431 #endif
 432 
 433 /*
 434  * If a platform does not support native stack walking
 435  * the platform specific globalDefinitions (above)
 436  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
 437  */
 438 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
 439 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
 440 #endif
 441 
 442 // To assure the IRIW property on processors that are not multiple copy
 443 // atomic, sync instructions must be issued between volatile reads to
 444 // assure their ordering, instead of after volatile stores.
 445 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 446 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 447 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 448 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 449 #else
 450 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 451 #endif
 452 
 453 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 454 // Note: this value must be a power of 2
 455 
 456 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 457 
 458 // Signed variants of alignment helpers.  There are two versions of each, a macro
 459 // for use in places like enum definitions that require compile-time constant
 460 // expressions and a function for all other places so as to get type checking.
 461 
 462 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 463 
 464 inline bool is_size_aligned(size_t size, size_t alignment) {
 465   return align_size_up_(size, alignment) == size;
 466 }
 467 
 468 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 469   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 470 }
 471 
 472 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 473   return align_size_up_(size, alignment);
 474 }
 475 
 476 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 477 
 478 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 479   return align_size_down_(size, alignment);
 480 }
 481 
 482 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 483 
 484 inline void* align_ptr_up(void* ptr, size_t alignment) {
 485   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 486 }
 487 
 488 inline void* align_ptr_down(void* ptr, size_t alignment) {
 489   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 490 }
 491 
 492 // Align objects by rounding up their size, in HeapWord units.
 493 
 494 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 495 
 496 inline intptr_t align_object_size(intptr_t size) {
 497   return align_size_up(size, MinObjAlignment);
 498 }
 499 
 500 inline bool is_object_aligned(intptr_t addr) {
 501   return addr == align_object_size(addr);
 502 }
 503 
 504 // Pad out certain offsets to jlong alignment, in HeapWord units.
 505 
 506 inline intptr_t align_object_offset(intptr_t offset) {
 507   return align_size_up(offset, HeapWordsPerLong);
 508 }
 509 
 510 inline void* align_pointer_up(const void* addr, size_t size) {
 511   return (void*) align_size_up_((uintptr_t)addr, size);
 512 }
 513 
 514 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 515 
 516 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 517   size_t aligned_size = align_size_down_(size, alignment);
 518   return aligned_size > 0 ? aligned_size : alignment;
 519 }
 520 
 521 // Clamp an address to be within a specific page
 522 // 1. If addr is on the page it is returned as is
 523 // 2. If addr is above the page_address the start of the *next* page will be returned
 524 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 525 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 526   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 527     // address is in the specified page, just return it as is
 528     return addr;
 529   } else if (addr > page_address) {
 530     // address is above specified page, return start of next page
 531     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 532   } else {
 533     // address is below specified page, return start of page
 534     return (address)align_size_down(intptr_t(page_address), page_size);
 535   }
 536 }
 537 
 538 
 539 // The expected size in bytes of a cache line, used to pad data structures.
 540 #define DEFAULT_CACHE_LINE_SIZE 64
 541 
 542 
 543 //----------------------------------------------------------------------------------------------------
 544 // Utility macros for compilers
 545 // used to silence compiler warnings
 546 
 547 #define Unused_Variable(var) var
 548 
 549 
 550 //----------------------------------------------------------------------------------------------------
 551 // Miscellaneous
 552 
 553 // 6302670 Eliminate Hotspot __fabsf dependency
 554 // All fabs() callers should call this function instead, which will implicitly
 555 // convert the operand to double, avoiding a dependency on __fabsf which
 556 // doesn't exist in early versions of Solaris 8.
 557 inline double fabsd(double value) {
 558   return fabs(value);
 559 }
 560 
 561 //----------------------------------------------------------------------------------------------------
 562 // Special casts
 563 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 564 typedef union {
 565   jfloat f;
 566   jint i;
 567 } FloatIntConv;
 568 
 569 typedef union {
 570   jdouble d;
 571   jlong l;
 572   julong ul;
 573 } DoubleLongConv;
 574 
 575 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 576 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 577 
 578 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 579 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 580 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 581 
 582 inline jint low (jlong value)                    { return jint(value); }
 583 inline jint high(jlong value)                    { return jint(value >> 32); }
 584 
 585 // the fancy casts are a hopefully portable way
 586 // to do unsigned 32 to 64 bit type conversion
 587 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 588                                                    *value |= (jlong)(julong)(juint)low; }
 589 
 590 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 591                                                    *value |= (jlong)high       << 32; }
 592 
 593 inline jlong jlong_from(jint h, jint l) {
 594   jlong result = 0; // initialization to avoid warning
 595   set_high(&result, h);
 596   set_low(&result,  l);
 597   return result;
 598 }
 599 
 600 union jlong_accessor {
 601   jint  words[2];
 602   jlong long_value;
 603 };
 604 
 605 void basic_types_init(); // cannot define here; uses assert
 606 
 607 
 608 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 609 enum BasicType {
 610   T_BOOLEAN     =  4,
 611   T_CHAR        =  5,
 612   T_FLOAT       =  6,
 613   T_DOUBLE      =  7,
 614   T_BYTE        =  8,
 615   T_SHORT       =  9,
 616   T_INT         = 10,
 617   T_LONG        = 11,
 618   T_OBJECT      = 12,
 619   T_ARRAY       = 13,
 620   T_VOID        = 14,
 621   T_ADDRESS     = 15,
 622   T_NARROWOOP   = 16,
 623   T_METADATA    = 17,
 624   T_NARROWKLASS = 18,
 625   T_CONFLICT    = 19, // for stack value type with conflicting contents
 626   T_ILLEGAL     = 99
 627 };
 628 
 629 inline bool is_java_primitive(BasicType t) {
 630   return T_BOOLEAN <= t && t <= T_LONG;
 631 }
 632 
 633 inline bool is_subword_type(BasicType t) {
 634   // these guys are processed exactly like T_INT in calling sequences:
 635   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 636 }
 637 
 638 inline bool is_signed_subword_type(BasicType t) {
 639   return (t == T_BYTE || t == T_SHORT);
 640 }
 641 
 642 // Convert a char from a classfile signature to a BasicType
 643 inline BasicType char2type(char c) {
 644   switch( c ) {
 645   case 'B': return T_BYTE;
 646   case 'C': return T_CHAR;
 647   case 'D': return T_DOUBLE;
 648   case 'F': return T_FLOAT;
 649   case 'I': return T_INT;
 650   case 'J': return T_LONG;
 651   case 'S': return T_SHORT;
 652   case 'Z': return T_BOOLEAN;
 653   case 'V': return T_VOID;
 654   case 'L': return T_OBJECT;
 655   case '[': return T_ARRAY;
 656   }
 657   return T_ILLEGAL;
 658 }
 659 
 660 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 661 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 662 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 663 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 664 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 665 extern BasicType name2type(const char* name);
 666 
 667 // Auxilary math routines
 668 // least common multiple
 669 extern size_t lcm(size_t a, size_t b);
 670 
 671 
 672 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 673 enum BasicTypeSize {
 674   T_BOOLEAN_size     = 1,
 675   T_CHAR_size        = 1,
 676   T_FLOAT_size       = 1,
 677   T_DOUBLE_size      = 2,
 678   T_BYTE_size        = 1,
 679   T_SHORT_size       = 1,
 680   T_INT_size         = 1,
 681   T_LONG_size        = 2,
 682   T_OBJECT_size      = 1,
 683   T_ARRAY_size       = 1,
 684   T_NARROWOOP_size   = 1,
 685   T_NARROWKLASS_size = 1,
 686   T_VOID_size        = 0
 687 };
 688 
 689 
 690 // maps a BasicType to its instance field storage type:
 691 // all sub-word integral types are widened to T_INT
 692 extern BasicType type2field[T_CONFLICT+1];
 693 extern BasicType type2wfield[T_CONFLICT+1];
 694 
 695 
 696 // size in bytes
 697 enum ArrayElementSize {
 698   T_BOOLEAN_aelem_bytes     = 1,
 699   T_CHAR_aelem_bytes        = 2,
 700   T_FLOAT_aelem_bytes       = 4,
 701   T_DOUBLE_aelem_bytes      = 8,
 702   T_BYTE_aelem_bytes        = 1,
 703   T_SHORT_aelem_bytes       = 2,
 704   T_INT_aelem_bytes         = 4,
 705   T_LONG_aelem_bytes        = 8,
 706 #ifdef _LP64
 707   T_OBJECT_aelem_bytes      = 8,
 708   T_ARRAY_aelem_bytes       = 8,
 709 #else
 710   T_OBJECT_aelem_bytes      = 4,
 711   T_ARRAY_aelem_bytes       = 4,
 712 #endif
 713   T_NARROWOOP_aelem_bytes   = 4,
 714   T_NARROWKLASS_aelem_bytes = 4,
 715   T_VOID_aelem_bytes        = 0
 716 };
 717 
 718 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 719 #ifdef ASSERT
 720 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 721 #else
 722 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 723 #endif
 724 
 725 
 726 // JavaValue serves as a container for arbitrary Java values.
 727 
 728 class JavaValue {
 729 
 730  public:
 731   typedef union JavaCallValue {
 732     jfloat   f;
 733     jdouble  d;
 734     jint     i;
 735     jlong    l;
 736     jobject  h;
 737   } JavaCallValue;
 738 
 739  private:
 740   BasicType _type;
 741   JavaCallValue _value;
 742 
 743  public:
 744   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 745 
 746   JavaValue(jfloat value) {
 747     _type    = T_FLOAT;
 748     _value.f = value;
 749   }
 750 
 751   JavaValue(jdouble value) {
 752     _type    = T_DOUBLE;
 753     _value.d = value;
 754   }
 755 
 756  jfloat get_jfloat() const { return _value.f; }
 757  jdouble get_jdouble() const { return _value.d; }
 758  jint get_jint() const { return _value.i; }
 759  jlong get_jlong() const { return _value.l; }
 760  jobject get_jobject() const { return _value.h; }
 761  JavaCallValue* get_value_addr() { return &_value; }
 762  BasicType get_type() const { return _type; }
 763 
 764  void set_jfloat(jfloat f) { _value.f = f;}
 765  void set_jdouble(jdouble d) { _value.d = d;}
 766  void set_jint(jint i) { _value.i = i;}
 767  void set_jlong(jlong l) { _value.l = l;}
 768  void set_jobject(jobject h) { _value.h = h;}
 769  void set_type(BasicType t) { _type = t; }
 770 
 771  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 772  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 773  jchar get_jchar() const { return (jchar) (_value.i);}
 774  jshort get_jshort() const { return (jshort) (_value.i);}
 775 
 776 };
 777 
 778 
 779 #define STACK_BIAS      0
 780 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 781 // in order to extend the reach of the stack pointer.
 782 #if defined(SPARC) && defined(_LP64)
 783 #undef STACK_BIAS
 784 #define STACK_BIAS      0x7ff
 785 #endif
 786 
 787 
 788 // TosState describes the top-of-stack state before and after the execution of
 789 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 790 // registers. The TosState corresponds to the 'machine represention' of this cached
 791 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 792 // as well as a 5th state in case the top-of-stack value is actually on the top
 793 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 794 // state when it comes to machine representation but is used separately for (oop)
 795 // type specific operations (e.g. verification code).
 796 
 797 enum TosState {         // describes the tos cache contents
 798   btos = 0,             // byte, bool tos cached
 799   ctos = 1,             // char tos cached
 800   stos = 2,             // short tos cached
 801   itos = 3,             // int tos cached
 802   ltos = 4,             // long tos cached
 803   ftos = 5,             // float tos cached
 804   dtos = 6,             // double tos cached
 805   atos = 7,             // object cached
 806   vtos = 8,             // tos not cached
 807   number_of_states,
 808   ilgl                  // illegal state: should not occur
 809 };
 810 
 811 
 812 inline TosState as_TosState(BasicType type) {
 813   switch (type) {
 814     case T_BYTE   : return btos;
 815     case T_BOOLEAN: return btos; // FIXME: Add ztos
 816     case T_CHAR   : return ctos;
 817     case T_SHORT  : return stos;
 818     case T_INT    : return itos;
 819     case T_LONG   : return ltos;
 820     case T_FLOAT  : return ftos;
 821     case T_DOUBLE : return dtos;
 822     case T_VOID   : return vtos;
 823     case T_ARRAY  : // fall through
 824     case T_OBJECT : return atos;
 825   }
 826   return ilgl;
 827 }
 828 
 829 inline BasicType as_BasicType(TosState state) {
 830   switch (state) {
 831     //case ztos: return T_BOOLEAN;//FIXME
 832     case btos : return T_BYTE;
 833     case ctos : return T_CHAR;
 834     case stos : return T_SHORT;
 835     case itos : return T_INT;
 836     case ltos : return T_LONG;
 837     case ftos : return T_FLOAT;
 838     case dtos : return T_DOUBLE;
 839     case atos : return T_OBJECT;
 840     case vtos : return T_VOID;
 841   }
 842   return T_ILLEGAL;
 843 }
 844 
 845 
 846 // Helper function to convert BasicType info into TosState
 847 // Note: Cannot define here as it uses global constant at the time being.
 848 TosState as_TosState(BasicType type);
 849 
 850 
 851 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 852 // information is needed by the safepoint code.
 853 //
 854 // There are 4 essential states:
 855 //
 856 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 857 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 858 //  _thread_in_vm       : Executing in the vm
 859 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 860 //
 861 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 862 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 863 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 864 //
 865 // Given a state, the xxx_trans state can always be found by adding 1.
 866 //
 867 enum JavaThreadState {
 868   _thread_uninitialized     =  0, // should never happen (missing initialization)
 869   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 870   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 871   _thread_in_native         =  4, // running in native code
 872   _thread_in_native_trans   =  5, // corresponding transition state
 873   _thread_in_vm             =  6, // running in VM
 874   _thread_in_vm_trans       =  7, // corresponding transition state
 875   _thread_in_Java           =  8, // running in Java or in stub code
 876   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 877   _thread_blocked           = 10, // blocked in vm
 878   _thread_blocked_trans     = 11, // corresponding transition state
 879   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 880 };
 881 
 882 
 883 // Handy constants for deciding which compiler mode to use.
 884 enum MethodCompilation {
 885   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 886   InvalidOSREntryBci = -2
 887 };
 888 
 889 // Enumeration to distinguish tiers of compilation
 890 enum CompLevel {
 891   CompLevel_any               = -1,
 892   CompLevel_all               = -1,
 893   CompLevel_none              = 0,         // Interpreter
 894   CompLevel_simple            = 1,         // C1
 895   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 896   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 897   CompLevel_full_optimization = 4,         // C2 or Shark
 898 
 899 #if defined(COMPILER2) || defined(SHARK)
 900   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 901 #elif defined(COMPILER1)
 902   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 903 #else
 904   CompLevel_highest_tier      = CompLevel_none,
 905 #endif
 906 
 907 #if defined(TIERED)
 908   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 909 #elif defined(COMPILER1)
 910   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 911 #elif defined(COMPILER2) || defined(SHARK)
 912   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 913 #else
 914   CompLevel_initial_compile   = CompLevel_none
 915 #endif
 916 };
 917 
 918 inline bool is_c1_compile(int comp_level) {
 919   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 920 }
 921 
 922 inline bool is_c2_compile(int comp_level) {
 923   return comp_level == CompLevel_full_optimization;
 924 }
 925 
 926 inline bool is_highest_tier_compile(int comp_level) {
 927   return comp_level == CompLevel_highest_tier;
 928 }
 929 
 930 inline bool is_compile(int comp_level) {
 931   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 932 }
 933 
 934 //----------------------------------------------------------------------------------------------------
 935 // 'Forward' declarations of frequently used classes
 936 // (in order to reduce interface dependencies & reduce
 937 // number of unnecessary compilations after changes)
 938 
 939 class symbolTable;
 940 class ClassFileStream;
 941 
 942 class Event;
 943 
 944 class Thread;
 945 class  VMThread;
 946 class  JavaThread;
 947 class Threads;
 948 
 949 class VM_Operation;
 950 class VMOperationQueue;
 951 
 952 class CodeBlob;
 953 class  nmethod;
 954 class  OSRAdapter;
 955 class  I2CAdapter;
 956 class  C2IAdapter;
 957 class CompiledIC;
 958 class relocInfo;
 959 class ScopeDesc;
 960 class PcDesc;
 961 
 962 class Recompiler;
 963 class Recompilee;
 964 class RecompilationPolicy;
 965 class RFrame;
 966 class  CompiledRFrame;
 967 class  InterpretedRFrame;
 968 
 969 class frame;
 970 
 971 class vframe;
 972 class   javaVFrame;
 973 class     interpretedVFrame;
 974 class     compiledVFrame;
 975 class     deoptimizedVFrame;
 976 class   externalVFrame;
 977 class     entryVFrame;
 978 
 979 class RegisterMap;
 980 
 981 class Mutex;
 982 class Monitor;
 983 class BasicLock;
 984 class BasicObjectLock;
 985 
 986 class PeriodicTask;
 987 
 988 class JavaCallWrapper;
 989 
 990 class   oopDesc;
 991 class   metaDataOopDesc;
 992 
 993 class NativeCall;
 994 
 995 class zone;
 996 
 997 class StubQueue;
 998 
 999 class outputStream;
1000 
1001 class ResourceArea;
1002 
1003 class DebugInformationRecorder;
1004 class ScopeValue;
1005 class CompressedStream;
1006 class   DebugInfoReadStream;
1007 class   DebugInfoWriteStream;
1008 class LocationValue;
1009 class ConstantValue;
1010 class IllegalValue;
1011 
1012 class PrivilegedElement;
1013 class MonitorArray;
1014 
1015 class MonitorInfo;
1016 
1017 class OffsetClosure;
1018 class OopMapCache;
1019 class InterpreterOopMap;
1020 class OopMapCacheEntry;
1021 class OSThread;
1022 
1023 typedef int (*OSThreadStartFunc)(void*);
1024 
1025 class Space;
1026 
1027 class JavaValue;
1028 class methodHandle;
1029 class JavaCallArguments;
1030 
1031 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1032 
1033 extern void basic_fatal(const char* msg);
1034 
1035 
1036 //----------------------------------------------------------------------------------------------------
1037 // Special constants for debugging
1038 
1039 const jint     badInt           = -3;                       // generic "bad int" value
1040 const long     badAddressVal    = -2;                       // generic "bad address" value
1041 const long     badOopVal        = -1;                       // generic "bad oop" value
1042 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1043 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1044 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1045 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1046 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1047 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1048 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1049 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1050 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1051 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1052 
1053 
1054 // (These must be implemented as #defines because C++ compilers are
1055 // not obligated to inline non-integral constants!)
1056 #define       badAddress        ((address)::badAddressVal)
1057 #define       badOop            (cast_to_oop(::badOopVal))
1058 #define       badHeapWord       (::badHeapWordVal)
1059 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1060 
1061 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1062 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1063 
1064 //----------------------------------------------------------------------------------------------------
1065 // Utility functions for bitfield manipulations
1066 
1067 const intptr_t AllBits    = ~0; // all bits set in a word
1068 const intptr_t NoBits     =  0; // no bits set in a word
1069 const jlong    NoLongBits =  0; // no bits set in a long
1070 const intptr_t OneBit     =  1; // only right_most bit set in a word
1071 
1072 // get a word with the n.th or the right-most or left-most n bits set
1073 // (note: #define used only so that they can be used in enum constant definitions)
1074 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1075 #define right_n_bits(n)   (nth_bit(n) - 1)
1076 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1077 
1078 // bit-operations using a mask m
1079 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1080 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1081 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1082 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1083 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1084 
1085 // bit-operations using the n.th bit
1086 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1087 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1088 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1089 
1090 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1091 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1092   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1093 }
1094 
1095 
1096 //----------------------------------------------------------------------------------------------------
1097 // Utility functions for integers
1098 
1099 // Avoid use of global min/max macros which may cause unwanted double
1100 // evaluation of arguments.
1101 #ifdef max
1102 #undef max
1103 #endif
1104 
1105 #ifdef min
1106 #undef min
1107 #endif
1108 
1109 #define max(a,b) Do_not_use_max_use_MAX2_instead
1110 #define min(a,b) Do_not_use_min_use_MIN2_instead
1111 
1112 // It is necessary to use templates here. Having normal overloaded
1113 // functions does not work because it is necessary to provide both 32-
1114 // and 64-bit overloaded functions, which does not work, and having
1115 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1116 // will be even more error-prone than macros.
1117 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1118 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1119 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1120 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1121 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1122 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1123 
1124 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1125 
1126 // true if x is a power of 2, false otherwise
1127 inline bool is_power_of_2(intptr_t x) {
1128   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1129 }
1130 
1131 // long version of is_power_of_2
1132 inline bool is_power_of_2_long(jlong x) {
1133   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1134 }
1135 
1136 //* largest i such that 2^i <= x
1137 //  A negative value of 'x' will return '31'
1138 inline int log2_intptr(intptr_t x) {
1139   int i = -1;
1140   uintptr_t p =  1;
1141   while (p != 0 && p <= (uintptr_t)x) {
1142     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1143     i++; p *= 2;
1144   }
1145   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1146   // (if p = 0 then overflow occurred and i = 31)
1147   return i;
1148 }
1149 
1150 //* largest i such that 2^i <= x
1151 //  A negative value of 'x' will return '63'
1152 inline int log2_long(jlong x) {
1153   int i = -1;
1154   julong p =  1;
1155   while (p != 0 && p <= (julong)x) {
1156     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1157     i++; p *= 2;
1158   }
1159   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1160   // (if p = 0 then overflow occurred and i = 63)
1161   return i;
1162 }
1163 
1164 //* the argument must be exactly a power of 2
1165 inline int exact_log2(intptr_t x) {
1166   #ifdef ASSERT
1167     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1168   #endif
1169   return log2_intptr(x);
1170 }
1171 
1172 //* the argument must be exactly a power of 2
1173 inline int exact_log2_long(jlong x) {
1174   #ifdef ASSERT
1175     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1176   #endif
1177   return log2_long(x);
1178 }
1179 
1180 
1181 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1182 inline intptr_t round_to(intptr_t x, uintx s) {
1183   #ifdef ASSERT
1184     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1185   #endif
1186   const uintx m = s - 1;
1187   return mask_bits(x + m, ~m);
1188 }
1189 
1190 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1191 inline intptr_t round_down(intptr_t x, uintx s) {
1192   #ifdef ASSERT
1193     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1194   #endif
1195   const uintx m = s - 1;
1196   return mask_bits(x, ~m);
1197 }
1198 
1199 
1200 inline bool is_odd (intx x) { return x & 1;      }
1201 inline bool is_even(intx x) { return !is_odd(x); }
1202 
1203 // "to" should be greater than "from."
1204 inline intx byte_size(void* from, void* to) {
1205   return (address)to - (address)from;
1206 }
1207 
1208 //----------------------------------------------------------------------------------------------------
1209 // Avoid non-portable casts with these routines (DEPRECATED)
1210 
1211 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1212 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1213 
1214 // Given sequence of four bytes, build into a 32-bit word
1215 // following the conventions used in class files.
1216 // On the 386, this could be realized with a simple address cast.
1217 //
1218 
1219 // This routine takes eight bytes:
1220 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1221   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1222        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1223        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1224        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1225        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1226        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1227        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1228        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1229 }
1230 
1231 // This routine takes four bytes:
1232 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1233   return  (( u4(c1) << 24 )  &  0xff000000)
1234        |  (( u4(c2) << 16 )  &  0x00ff0000)
1235        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1236        |  (( u4(c4) <<  0 )  &  0x000000ff);
1237 }
1238 
1239 // And this one works if the four bytes are contiguous in memory:
1240 inline u4 build_u4_from( u1* p ) {
1241   return  build_u4_from( p[0], p[1], p[2], p[3] );
1242 }
1243 
1244 // Ditto for two-byte ints:
1245 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1246   return  u2((( u2(c1) <<  8 )  &  0xff00)
1247           |  (( u2(c2) <<  0 )  &  0x00ff));
1248 }
1249 
1250 // And this one works if the two bytes are contiguous in memory:
1251 inline u2 build_u2_from( u1* p ) {
1252   return  build_u2_from( p[0], p[1] );
1253 }
1254 
1255 // Ditto for floats:
1256 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1257   u4 u = build_u4_from( c1, c2, c3, c4 );
1258   return  *(jfloat*)&u;
1259 }
1260 
1261 inline jfloat build_float_from( u1* p ) {
1262   u4 u = build_u4_from( p );
1263   return  *(jfloat*)&u;
1264 }
1265 
1266 
1267 // now (64-bit) longs
1268 
1269 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1270   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1271        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1272        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1273        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1274        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1275        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1276        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1277        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1278 }
1279 
1280 inline jlong build_long_from( u1* p ) {
1281   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1282 }
1283 
1284 
1285 // Doubles, too!
1286 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1287   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1288   return  *(jdouble*)&u;
1289 }
1290 
1291 inline jdouble build_double_from( u1* p ) {
1292   jlong u = build_long_from( p );
1293   return  *(jdouble*)&u;
1294 }
1295 
1296 
1297 // Portable routines to go the other way:
1298 
1299 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1300   c1 = u1(x >> 8);
1301   c2 = u1(x);
1302 }
1303 
1304 inline void explode_short_to( u2 x, u1* p ) {
1305   explode_short_to( x, p[0], p[1]);
1306 }
1307 
1308 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1309   c1 = u1(x >> 24);
1310   c2 = u1(x >> 16);
1311   c3 = u1(x >>  8);
1312   c4 = u1(x);
1313 }
1314 
1315 inline void explode_int_to( u4 x, u1* p ) {
1316   explode_int_to( x, p[0], p[1], p[2], p[3]);
1317 }
1318 
1319 
1320 // Pack and extract shorts to/from ints:
1321 
1322 inline int extract_low_short_from_int(jint x) {
1323   return x & 0xffff;
1324 }
1325 
1326 inline int extract_high_short_from_int(jint x) {
1327   return (x >> 16) & 0xffff;
1328 }
1329 
1330 inline int build_int_from_shorts( jushort low, jushort high ) {
1331   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1332 }
1333 
1334 // Convert pointer to intptr_t, for use in printing pointers.
1335 inline intptr_t p2i(const void * p) {
1336   return (intptr_t) p;
1337 }
1338 
1339 // Printf-style formatters for fixed- and variable-width types as pointers and
1340 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1341 // doesn't provide appropriate definitions, they should be provided in
1342 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1343 
1344 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1345 
1346 // Format 32-bit quantities.
1347 #define INT32_FORMAT           "%" PRId32
1348 #define UINT32_FORMAT          "%" PRIu32
1349 #define INT32_FORMAT_W(width)  "%" #width PRId32
1350 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1351 
1352 #define PTR32_FORMAT           "0x%08" PRIx32
1353 
1354 // Format 64-bit quantities.
1355 #define INT64_FORMAT           "%" PRId64
1356 #define UINT64_FORMAT          "%" PRIu64
1357 #define UINT64_FORMAT_X        "%" PRIx64
1358 #define INT64_FORMAT_W(width)  "%" #width PRId64
1359 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1360 
1361 #define PTR64_FORMAT           "0x%016" PRIx64
1362 
1363 // Format jlong, if necessary
1364 #ifndef JLONG_FORMAT
1365 #define JLONG_FORMAT           INT64_FORMAT
1366 #endif
1367 #ifndef JULONG_FORMAT
1368 #define JULONG_FORMAT          UINT64_FORMAT
1369 #endif
1370 #ifndef JULONG_FORMAT_X
1371 #define JULONG_FORMAT_X        UINT64_FORMAT_X
1372 #endif
1373 
1374 // Format pointers which change size between 32- and 64-bit.
1375 #ifdef  _LP64
1376 #define INTPTR_FORMAT "0x%016" PRIxPTR
1377 #define PTR_FORMAT    "0x%016" PRIxPTR
1378 #else   // !_LP64
1379 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1380 #define PTR_FORMAT    "0x%08"  PRIxPTR
1381 #endif  // _LP64
1382 
1383 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1384 
1385 #define SSIZE_FORMAT             "%"   PRIdPTR
1386 #define SIZE_FORMAT              "%"   PRIuPTR
1387 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1388 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1389 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1390 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1391 
1392 #define INTX_FORMAT           "%" PRIdPTR
1393 #define UINTX_FORMAT          "%" PRIuPTR
1394 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1395 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1396 
1397 
1398 // Enable zap-a-lot if in debug version.
1399 
1400 # ifdef ASSERT
1401 # ifdef COMPILER2
1402 #   define ENABLE_ZAP_DEAD_LOCALS
1403 #endif /* COMPILER2 */
1404 # endif /* ASSERT */
1405 
1406 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1407 
1408 // Dereference vptr
1409 // All C++ compilers that we know of have the vtbl pointer in the first
1410 // word.  If there are exceptions, this function needs to be made compiler
1411 // specific.
1412 static inline void* dereference_vptr(const void* addr) {
1413   return *(void**)addr;
1414 }
1415 
1416 #ifndef PRODUCT
1417 
1418 // For unit testing only
1419 class GlobalDefinitions {
1420 public:
1421   static void test_globals();
1422 };
1423 
1424 #endif // PRODUCT
1425 
1426 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP