/* * Copyright (c) 2013, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "opto/addnode.hpp" #include "opto/cfgnode.hpp" #include "opto/machnode.hpp" #include "opto/matcher.hpp" #include "opto/mathexactnode.hpp" #include "opto/subnode.hpp" template class AddHelper { public: typedef typename OverflowOp::TypeClass TypeClass; typedef typename TypeClass::NativeType NativeType; static bool will_overflow(NativeType value1, NativeType value2) { NativeType result = value1 + value2; // Hacker's Delight 2-12 Overflow if both arguments have the opposite sign of the result if (((value1 ^ result) & (value2 ^ result)) >= 0) { return false; } return true; } static bool can_overflow(const Type* type1, const Type* type2) { if (type1 == TypeClass::ZERO || type2 == TypeClass::ZERO) { return false; } return true; } }; template class SubHelper { public: typedef typename OverflowOp::TypeClass TypeClass; typedef typename TypeClass::NativeType NativeType; static bool will_overflow(NativeType value1, NativeType value2) { NativeType result = value1 - value2; // hacker's delight 2-12 overflow iff the arguments have different signs and // the sign of the result is different than the sign of arg1 if (((value1 ^ value2) & (value1 ^ result)) >= 0) { return false; } return true; } static bool can_overflow(const Type* type1, const Type* type2) { if (type2 == TypeClass::ZERO) { return false; } return true; } }; template class MulHelper { public: typedef typename OverflowOp::TypeClass TypeClass; static bool can_overflow(const Type* type1, const Type* type2) { if (type1 == TypeClass::ZERO || type2 == TypeClass::ZERO) { return false; } else if (type1 == TypeClass::ONE || type2 == TypeClass::ONE) { return false; } return true; } }; bool OverflowAddINode::will_overflow(jint v1, jint v2) const { return AddHelper::will_overflow(v1, v2); } bool OverflowSubINode::will_overflow(jint v1, jint v2) const { return SubHelper::will_overflow(v1, v2); } bool OverflowMulINode::will_overflow(jint v1, jint v2) const { jlong result = (jlong) v1 * (jlong) v2; if ((jint) result == result) { return false; } return true; } bool OverflowAddLNode::will_overflow(jlong v1, jlong v2) const { return AddHelper::will_overflow(v1, v2); } bool OverflowSubLNode::will_overflow(jlong v1, jlong v2) const { return SubHelper::will_overflow(v1, v2); } bool OverflowMulLNode::will_overflow(jlong val1, jlong val2) const { jlong result = val1 * val2; jlong ax = (val1 < 0 ? -val1 : val1); jlong ay = (val2 < 0 ? -val2 : val2); bool overflow = false; if ((ax | ay) & CONST64(0xFFFFFFFF00000000)) { // potential overflow if any bit in upper 32 bits are set if ((val1 == min_jlong && val2 == -1) || (val2 == min_jlong && val1 == -1)) { // -1 * Long.MIN_VALUE will overflow overflow = true; } else if (val2 != 0 && (result / val2 != val1)) { overflow = true; } } return overflow; } bool OverflowAddINode::can_overflow(const Type* t1, const Type* t2) const { return AddHelper::can_overflow(t1, t2); } bool OverflowSubINode::can_overflow(const Type* t1, const Type* t2) const { if (in(1) == in(2)) { return false; } return SubHelper::can_overflow(t1, t2); } bool OverflowMulINode::can_overflow(const Type* t1, const Type* t2) const { return MulHelper::can_overflow(t1, t2); } bool OverflowAddLNode::can_overflow(const Type* t1, const Type* t2) const { return AddHelper::can_overflow(t1, t2); } bool OverflowSubLNode::can_overflow(const Type* t1, const Type* t2) const { if (in(1) == in(2)) { return false; } return SubHelper::can_overflow(t1, t2); } bool OverflowMulLNode::can_overflow(const Type* t1, const Type* t2) const { return MulHelper::can_overflow(t1, t2); } const Type* OverflowNode::sub(const Type* t1, const Type* t2) const { fatal(err_msg_res("sub() should not be called for '%s'", NodeClassNames[this->Opcode()])); return TypeInt::CC; } template struct IdealHelper { typedef typename OverflowOp::TypeClass TypeClass; // TypeInt, TypeLong typedef typename TypeClass::NativeType NativeType; static Node* Ideal(const OverflowOp* node, PhaseGVN* phase, bool can_reshape) { Node* arg1 = node->in(1); Node* arg2 = node->in(2); const Type* type1 = phase->type(arg1); const Type* type2 = phase->type(arg2); if (type1 == NULL || type2 == NULL) { return NULL; } if (type1 != Type::TOP && type1->singleton() && type2 != Type::TOP && type2->singleton()) { NativeType val1 = TypeClass::as_self(type1)->get_con(); NativeType val2 = TypeClass::as_self(type2)->get_con(); if (node->will_overflow(val1, val2) == false) { Node* con_result = ConINode::make(0); return con_result; } return NULL; } return NULL; } static const Type* Value(const OverflowOp* node, PhaseTransform* phase) { const Type *t1 = phase->type( node->in(1) ); const Type *t2 = phase->type( node->in(2) ); if( t1 == Type::TOP ) return Type::TOP; if( t2 == Type::TOP ) return Type::TOP; const TypeClass* i1 = TypeClass::as_self(t1); const TypeClass* i2 = TypeClass::as_self(t2); if (i1 == NULL || i2 == NULL) { return TypeInt::CC; } if (t1->singleton() && t2->singleton()) { NativeType val1 = i1->get_con(); NativeType val2 = i2->get_con(); if (node->will_overflow(val1, val2)) { return TypeInt::CC; } return TypeInt::ZERO; } else if (i1 != TypeClass::TYPE_DOMAIN && i2 != TypeClass::TYPE_DOMAIN) { if (node->will_overflow(i1->_lo, i2->_lo)) { return TypeInt::CC; } else if (node->will_overflow(i1->_lo, i2->_hi)) { return TypeInt::CC; } else if (node->will_overflow(i1->_hi, i2->_lo)) { return TypeInt::CC; } else if (node->will_overflow(i1->_hi, i2->_hi)) { return TypeInt::CC; } return TypeInt::ZERO; } if (!node->can_overflow(t1, t2)) { return TypeInt::ZERO; } return TypeInt::CC; } }; Node* OverflowINode::Ideal(PhaseGVN* phase, bool can_reshape) { return IdealHelper::Ideal(this, phase, can_reshape); } Node* OverflowLNode::Ideal(PhaseGVN* phase, bool can_reshape) { return IdealHelper::Ideal(this, phase, can_reshape); } const Type* OverflowINode::Value(PhaseTransform* phase) const { return IdealHelper::Value(this, phase); } const Type* OverflowLNode::Value(PhaseTransform* phase) const { return IdealHelper::Value(this, phase); }