1 /*
   2  * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/movenode.hpp"
  37 #include "opto/rootnode.hpp"
  38 
  39 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  40   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  41   _collecting(true),
  42   _verify(false),
  43   _compile(C),
  44   _igvn(igvn),
  45   _node_map(C->comp_arena()) {
  46   // Add unknown java object.
  47   add_java_object(C->top(), PointsToNode::GlobalEscape);
  48   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  49   // Add ConP(#NULL) and ConN(#NULL) nodes.
  50   Node* oop_null = igvn->zerocon(T_OBJECT);
  51   assert(oop_null->_idx < nodes_size(), "should be created already");
  52   add_java_object(oop_null, PointsToNode::NoEscape);
  53   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  54   if (UseCompressedOops) {
  55     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  56     assert(noop_null->_idx < nodes_size(), "should be created already");
  57     map_ideal_node(noop_null, null_obj);
  58   }
  59   _pcmp_neq = NULL; // Should be initialized
  60   _pcmp_eq  = NULL;
  61 }
  62 
  63 bool ConnectionGraph::has_candidates(Compile *C) {
  64   // EA brings benefits only when the code has allocations and/or locks which
  65   // are represented by ideal Macro nodes.
  66   int cnt = C->macro_count();
  67   for (int i = 0; i < cnt; i++) {
  68     Node *n = C->macro_node(i);
  69     if (n->is_Allocate())
  70       return true;
  71     if (n->is_Lock()) {
  72       Node* obj = n->as_Lock()->obj_node()->uncast();
  73       if (!(obj->is_Parm() || obj->is_Con()))
  74         return true;
  75     }
  76     if (n->is_CallStaticJava() &&
  77         n->as_CallStaticJava()->is_boxing_method()) {
  78       return true;
  79     }
  80   }
  81   return false;
  82 }
  83 
  84 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  85   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
  86   ResourceMark rm;
  87 
  88   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  89   // to create space for them in ConnectionGraph::_nodes[].
  90   Node* oop_null = igvn->zerocon(T_OBJECT);
  91   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  92   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  93   // Perform escape analysis
  94   if (congraph->compute_escape()) {
  95     // There are non escaping objects.
  96     C->set_congraph(congraph);
  97   }
  98   // Cleanup.
  99   if (oop_null->outcnt() == 0)
 100     igvn->hash_delete(oop_null);
 101   if (noop_null->outcnt() == 0)
 102     igvn->hash_delete(noop_null);
 103 }
 104 
 105 bool ConnectionGraph::compute_escape() {
 106   Compile* C = _compile;
 107   PhaseGVN* igvn = _igvn;
 108 
 109   // Worklists used by EA.
 110   Unique_Node_List delayed_worklist;
 111   GrowableArray<Node*> alloc_worklist;
 112   GrowableArray<Node*> ptr_cmp_worklist;
 113   GrowableArray<Node*> storestore_worklist;
 114   GrowableArray<PointsToNode*>   ptnodes_worklist;
 115   GrowableArray<JavaObjectNode*> java_objects_worklist;
 116   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 117   GrowableArray<FieldNode*>      oop_fields_worklist;
 118   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 119 
 120   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
 121 
 122   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 123   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 124   // Initialize worklist
 125   if (C->root() != NULL) {
 126     ideal_nodes.push(C->root());
 127   }
 128   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 129     Node* n = ideal_nodes.at(next);
 130     // Create PointsTo nodes and add them to Connection Graph. Called
 131     // only once per ideal node since ideal_nodes is Unique_Node list.
 132     add_node_to_connection_graph(n, &delayed_worklist);
 133     PointsToNode* ptn = ptnode_adr(n->_idx);
 134     if (ptn != NULL) {
 135       ptnodes_worklist.append(ptn);
 136       if (ptn->is_JavaObject()) {
 137         java_objects_worklist.append(ptn->as_JavaObject());
 138         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 139             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 140           // Only allocations and java static calls results are interesting.
 141           non_escaped_worklist.append(ptn->as_JavaObject());
 142         }
 143       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 144         oop_fields_worklist.append(ptn->as_Field());
 145       }
 146     }
 147     if (n->is_MergeMem()) {
 148       // Collect all MergeMem nodes to add memory slices for
 149       // scalar replaceable objects in split_unique_types().
 150       _mergemem_worklist.append(n->as_MergeMem());
 151     } else if (OptimizePtrCompare && n->is_Cmp() &&
 152                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 153       // Collect compare pointers nodes.
 154       ptr_cmp_worklist.append(n);
 155     } else if (n->is_MemBarStoreStore()) {
 156       // Collect all MemBarStoreStore nodes so that depending on the
 157       // escape status of the associated Allocate node some of them
 158       // may be eliminated.
 159       storestore_worklist.append(n);
 160     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 161                (n->req() > MemBarNode::Precedent)) {
 162       record_for_optimizer(n);
 163 #ifdef ASSERT
 164     } else if (n->is_AddP()) {
 165       // Collect address nodes for graph verification.
 166       addp_worklist.append(n);
 167 #endif
 168     }
 169     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 170       Node* m = n->fast_out(i);   // Get user
 171       ideal_nodes.push(m);
 172     }
 173   }
 174   if (non_escaped_worklist.length() == 0) {
 175     _collecting = false;
 176     return false; // Nothing to do.
 177   }
 178   // Add final simple edges to graph.
 179   while(delayed_worklist.size() > 0) {
 180     Node* n = delayed_worklist.pop();
 181     add_final_edges(n);
 182   }
 183   int ptnodes_length = ptnodes_worklist.length();
 184 
 185 #ifdef ASSERT
 186   if (VerifyConnectionGraph) {
 187     // Verify that no new simple edges could be created and all
 188     // local vars has edges.
 189     _verify = true;
 190     for (int next = 0; next < ptnodes_length; ++next) {
 191       PointsToNode* ptn = ptnodes_worklist.at(next);
 192       add_final_edges(ptn->ideal_node());
 193       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 194         ptn->dump();
 195         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 196       }
 197     }
 198     _verify = false;
 199   }
 200 #endif
 201 
 202   // 2. Finish Graph construction by propagating references to all
 203   //    java objects through graph.
 204   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 205                                  java_objects_worklist, oop_fields_worklist)) {
 206     // All objects escaped or hit time or iterations limits.
 207     _collecting = false;
 208     return false;
 209   }
 210 
 211   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 212   //    scalar replaceable allocations on alloc_worklist for processing
 213   //    in split_unique_types().
 214   int non_escaped_length = non_escaped_worklist.length();
 215   for (int next = 0; next < non_escaped_length; next++) {
 216     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 217     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 218     Node* n = ptn->ideal_node();
 219     if (n->is_Allocate()) {
 220       n->as_Allocate()->_is_non_escaping = noescape;
 221     }
 222     if (n->is_CallStaticJava()) {
 223       n->as_CallStaticJava()->_is_non_escaping = noescape;
 224     }
 225     if (noescape && ptn->scalar_replaceable()) {
 226       adjust_scalar_replaceable_state(ptn);
 227       if (ptn->scalar_replaceable()) {
 228         alloc_worklist.append(ptn->ideal_node());
 229       }
 230     }
 231   }
 232 
 233 #ifdef ASSERT
 234   if (VerifyConnectionGraph) {
 235     // Verify that graph is complete - no new edges could be added or needed.
 236     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 237                             java_objects_worklist, addp_worklist);
 238   }
 239   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 240   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 241          null_obj->edge_count() == 0 &&
 242          !null_obj->arraycopy_src() &&
 243          !null_obj->arraycopy_dst(), "sanity");
 244 #endif
 245 
 246   _collecting = false;
 247 
 248   } // TracePhase t3("connectionGraph")
 249 
 250   // 4. Optimize ideal graph based on EA information.
 251   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 252   if (has_non_escaping_obj) {
 253     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 254   }
 255 
 256 #ifndef PRODUCT
 257   if (PrintEscapeAnalysis) {
 258     dump(ptnodes_worklist); // Dump ConnectionGraph
 259   }
 260 #endif
 261 
 262   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 263 #ifdef ASSERT
 264   if (VerifyConnectionGraph) {
 265     int alloc_length = alloc_worklist.length();
 266     for (int next = 0; next < alloc_length; ++next) {
 267       Node* n = alloc_worklist.at(next);
 268       PointsToNode* ptn = ptnode_adr(n->_idx);
 269       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 270     }
 271   }
 272 #endif
 273 
 274   // 5. Separate memory graph for scalar replaceable allcations.
 275   if (has_scalar_replaceable_candidates &&
 276       C->AliasLevel() >= 3 && EliminateAllocations) {
 277     // Now use the escape information to create unique types for
 278     // scalar replaceable objects.
 279     split_unique_types(alloc_worklist);
 280     if (C->failing())  return false;
 281     C->print_method(PHASE_AFTER_EA, 2);
 282 
 283 #ifdef ASSERT
 284   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 285     tty->print("=== No allocations eliminated for ");
 286     C->method()->print_short_name();
 287     if(!EliminateAllocations) {
 288       tty->print(" since EliminateAllocations is off ===");
 289     } else if(!has_scalar_replaceable_candidates) {
 290       tty->print(" since there are no scalar replaceable candidates ===");
 291     } else if(C->AliasLevel() < 3) {
 292       tty->print(" since AliasLevel < 3 ===");
 293     }
 294     tty->cr();
 295 #endif
 296   }
 297   return has_non_escaping_obj;
 298 }
 299 
 300 // Utility function for nodes that load an object
 301 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 302   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 303   // ThreadLocal has RawPtr type.
 304   const Type* t = _igvn->type(n);
 305   if (t->make_ptr() != NULL) {
 306     Node* adr = n->in(MemNode::Address);
 307 #ifdef ASSERT
 308     if (!adr->is_AddP()) {
 309       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 310     } else {
 311       assert((ptnode_adr(adr->_idx) == NULL ||
 312               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 313     }
 314 #endif
 315     add_local_var_and_edge(n, PointsToNode::NoEscape,
 316                            adr, delayed_worklist);
 317   }
 318 }
 319 
 320 // Populate Connection Graph with PointsTo nodes and create simple
 321 // connection graph edges.
 322 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 323   assert(!_verify, "this method sould not be called for verification");
 324   PhaseGVN* igvn = _igvn;
 325   uint n_idx = n->_idx;
 326   PointsToNode* n_ptn = ptnode_adr(n_idx);
 327   if (n_ptn != NULL)
 328     return; // No need to redefine PointsTo node during first iteration.
 329 
 330   if (n->is_Call()) {
 331     // Arguments to allocation and locking don't escape.
 332     if (n->is_AbstractLock()) {
 333       // Put Lock and Unlock nodes on IGVN worklist to process them during
 334       // first IGVN optimization when escape information is still available.
 335       record_for_optimizer(n);
 336     } else if (n->is_Allocate()) {
 337       add_call_node(n->as_Call());
 338       record_for_optimizer(n);
 339     } else {
 340       if (n->is_CallStaticJava()) {
 341         const char* name = n->as_CallStaticJava()->_name;
 342         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 343           return; // Skip uncommon traps
 344       }
 345       // Don't mark as processed since call's arguments have to be processed.
 346       delayed_worklist->push(n);
 347       // Check if a call returns an object.
 348       if ((n->as_Call()->returns_pointer() &&
 349            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 350           (n->is_CallStaticJava() &&
 351            n->as_CallStaticJava()->is_boxing_method())) {
 352         add_call_node(n->as_Call());
 353       }
 354     }
 355     return;
 356   }
 357   // Put this check here to process call arguments since some call nodes
 358   // point to phantom_obj.
 359   if (n_ptn == phantom_obj || n_ptn == null_obj)
 360     return; // Skip predefined nodes.
 361 
 362   int opcode = n->Opcode();
 363   switch (opcode) {
 364     case Op_AddP: {
 365       Node* base = get_addp_base(n);
 366       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 367       // Field nodes are created for all field types. They are used in
 368       // adjust_scalar_replaceable_state() and split_unique_types().
 369       // Note, non-oop fields will have only base edges in Connection
 370       // Graph because such fields are not used for oop loads and stores.
 371       int offset = address_offset(n, igvn);
 372       add_field(n, PointsToNode::NoEscape, offset);
 373       if (ptn_base == NULL) {
 374         delayed_worklist->push(n); // Process it later.
 375       } else {
 376         n_ptn = ptnode_adr(n_idx);
 377         add_base(n_ptn->as_Field(), ptn_base);
 378       }
 379       break;
 380     }
 381     case Op_CastX2P: {
 382       map_ideal_node(n, phantom_obj);
 383       break;
 384     }
 385     case Op_CastPP:
 386     case Op_CheckCastPP:
 387     case Op_EncodeP:
 388     case Op_DecodeN:
 389     case Op_EncodePKlass:
 390     case Op_DecodeNKlass: {
 391       add_local_var_and_edge(n, PointsToNode::NoEscape,
 392                              n->in(1), delayed_worklist);
 393       break;
 394     }
 395     case Op_CMoveP: {
 396       add_local_var(n, PointsToNode::NoEscape);
 397       // Do not add edges during first iteration because some could be
 398       // not defined yet.
 399       delayed_worklist->push(n);
 400       break;
 401     }
 402     case Op_ConP:
 403     case Op_ConN:
 404     case Op_ConNKlass: {
 405       // assume all oop constants globally escape except for null
 406       PointsToNode::EscapeState es;
 407       const Type* t = igvn->type(n);
 408       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 409         es = PointsToNode::NoEscape;
 410       } else {
 411         es = PointsToNode::GlobalEscape;
 412       }
 413       add_java_object(n, es);
 414       break;
 415     }
 416     case Op_CreateEx: {
 417       // assume that all exception objects globally escape
 418       add_java_object(n, PointsToNode::GlobalEscape);
 419       break;
 420     }
 421     case Op_LoadKlass:
 422     case Op_LoadNKlass: {
 423       // Unknown class is loaded
 424       map_ideal_node(n, phantom_obj);
 425       break;
 426     }
 427     case Op_LoadP:
 428     case Op_LoadN:
 429     case Op_LoadPLocked: {
 430       add_objload_to_connection_graph(n, delayed_worklist);
 431       break;
 432     }
 433     case Op_Parm: {
 434       map_ideal_node(n, phantom_obj);
 435       break;
 436     }
 437     case Op_PartialSubtypeCheck: {
 438       // Produces Null or notNull and is used in only in CmpP so
 439       // phantom_obj could be used.
 440       map_ideal_node(n, phantom_obj); // Result is unknown
 441       break;
 442     }
 443     case Op_Phi: {
 444       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 445       // ThreadLocal has RawPtr type.
 446       const Type* t = n->as_Phi()->type();
 447       if (t->make_ptr() != NULL) {
 448         add_local_var(n, PointsToNode::NoEscape);
 449         // Do not add edges during first iteration because some could be
 450         // not defined yet.
 451         delayed_worklist->push(n);
 452       }
 453       break;
 454     }
 455     case Op_Proj: {
 456       // we are only interested in the oop result projection from a call
 457       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 458           n->in(0)->as_Call()->returns_pointer()) {
 459         add_local_var_and_edge(n, PointsToNode::NoEscape,
 460                                n->in(0), delayed_worklist);
 461       }
 462       break;
 463     }
 464     case Op_Rethrow: // Exception object escapes
 465     case Op_Return: {
 466       if (n->req() > TypeFunc::Parms &&
 467           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 468         // Treat Return value as LocalVar with GlobalEscape escape state.
 469         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 470                                n->in(TypeFunc::Parms), delayed_worklist);
 471       }
 472       break;
 473     }
 474     case Op_GetAndSetP:
 475     case Op_GetAndSetN: {
 476       add_objload_to_connection_graph(n, delayed_worklist);
 477       // fallthrough
 478     }
 479     case Op_StoreP:
 480     case Op_StoreN:
 481     case Op_StoreNKlass:
 482     case Op_StorePConditional:
 483     case Op_CompareAndSwapP:
 484     case Op_CompareAndSwapN: {
 485       Node* adr = n->in(MemNode::Address);
 486       const Type *adr_type = igvn->type(adr);
 487       adr_type = adr_type->make_ptr();
 488       if (adr_type == NULL) {
 489         break; // skip dead nodes
 490       }
 491       if (adr_type->isa_oopptr() ||
 492           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 493                         (adr_type == TypeRawPtr::NOTNULL &&
 494                          adr->in(AddPNode::Address)->is_Proj() &&
 495                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 496         delayed_worklist->push(n); // Process it later.
 497 #ifdef ASSERT
 498         assert(adr->is_AddP(), "expecting an AddP");
 499         if (adr_type == TypeRawPtr::NOTNULL) {
 500           // Verify a raw address for a store captured by Initialize node.
 501           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 502           assert(offs != Type::OffsetBot, "offset must be a constant");
 503         }
 504 #endif
 505       } else {
 506         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 507         if (adr->is_BoxLock())
 508           break;
 509         // Stored value escapes in unsafe access.
 510         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 511           // Pointer stores in G1 barriers looks like unsafe access.
 512           // Ignore such stores to be able scalar replace non-escaping
 513           // allocations.
 514           if (UseG1GC && adr->is_AddP()) {
 515             Node* base = get_addp_base(adr);
 516             if (base->Opcode() == Op_LoadP &&
 517                 base->in(MemNode::Address)->is_AddP()) {
 518               adr = base->in(MemNode::Address);
 519               Node* tls = get_addp_base(adr);
 520               if (tls->Opcode() == Op_ThreadLocal) {
 521                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 522                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 523                                      PtrQueue::byte_offset_of_buf())) {
 524                   break; // G1 pre barier previous oop value store.
 525                 }
 526                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 527                                      PtrQueue::byte_offset_of_buf())) {
 528                   break; // G1 post barier card address store.
 529                 }
 530               }
 531             }
 532           }
 533           delayed_worklist->push(n); // Process unsafe access later.
 534           break;
 535         }
 536 #ifdef ASSERT
 537         n->dump(1);
 538         assert(false, "not unsafe or G1 barrier raw StoreP");
 539 #endif
 540       }
 541       break;
 542     }
 543     case Op_AryEq:
 544     case Op_StrComp:
 545     case Op_StrEquals:
 546     case Op_StrIndexOf:
 547     case Op_EncodeISOArray: {
 548       add_local_var(n, PointsToNode::ArgEscape);
 549       delayed_worklist->push(n); // Process it later.
 550       break;
 551     }
 552     case Op_ThreadLocal: {
 553       add_java_object(n, PointsToNode::ArgEscape);
 554       break;
 555     }
 556     default:
 557       ; // Do nothing for nodes not related to EA.
 558   }
 559   return;
 560 }
 561 
 562 #ifdef ASSERT
 563 #define ELSE_FAIL(name)                               \
 564       /* Should not be called for not pointer type. */  \
 565       n->dump(1);                                       \
 566       assert(false, name);                              \
 567       break;
 568 #else
 569 #define ELSE_FAIL(name) \
 570       break;
 571 #endif
 572 
 573 // Add final simple edges to graph.
 574 void ConnectionGraph::add_final_edges(Node *n) {
 575   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 576 #ifdef ASSERT
 577   if (_verify && n_ptn->is_JavaObject())
 578     return; // This method does not change graph for JavaObject.
 579 #endif
 580 
 581   if (n->is_Call()) {
 582     process_call_arguments(n->as_Call());
 583     return;
 584   }
 585   assert(n->is_Store() || n->is_LoadStore() ||
 586          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 587          "node should be registered already");
 588   int opcode = n->Opcode();
 589   switch (opcode) {
 590     case Op_AddP: {
 591       Node* base = get_addp_base(n);
 592       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 593       assert(ptn_base != NULL, "field's base should be registered");
 594       add_base(n_ptn->as_Field(), ptn_base);
 595       break;
 596     }
 597     case Op_CastPP:
 598     case Op_CheckCastPP:
 599     case Op_EncodeP:
 600     case Op_DecodeN:
 601     case Op_EncodePKlass:
 602     case Op_DecodeNKlass: {
 603       add_local_var_and_edge(n, PointsToNode::NoEscape,
 604                              n->in(1), NULL);
 605       break;
 606     }
 607     case Op_CMoveP: {
 608       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 609         Node* in = n->in(i);
 610         if (in == NULL)
 611           continue;  // ignore NULL
 612         Node* uncast_in = in->uncast();
 613         if (uncast_in->is_top() || uncast_in == n)
 614           continue;  // ignore top or inputs which go back this node
 615         PointsToNode* ptn = ptnode_adr(in->_idx);
 616         assert(ptn != NULL, "node should be registered");
 617         add_edge(n_ptn, ptn);
 618       }
 619       break;
 620     }
 621     case Op_LoadP:
 622     case Op_LoadN:
 623     case Op_LoadPLocked: {
 624       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 625       // ThreadLocal has RawPtr type.
 626       const Type* t = _igvn->type(n);
 627       if (t->make_ptr() != NULL) {
 628         Node* adr = n->in(MemNode::Address);
 629         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 630         break;
 631       }
 632       ELSE_FAIL("Op_LoadP");
 633     }
 634     case Op_Phi: {
 635       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 636       // ThreadLocal has RawPtr type.
 637       const Type* t = n->as_Phi()->type();
 638       if (t->make_ptr() != NULL) {
 639         for (uint i = 1; i < n->req(); i++) {
 640           Node* in = n->in(i);
 641           if (in == NULL)
 642             continue;  // ignore NULL
 643           Node* uncast_in = in->uncast();
 644           if (uncast_in->is_top() || uncast_in == n)
 645             continue;  // ignore top or inputs which go back this node
 646           PointsToNode* ptn = ptnode_adr(in->_idx);
 647           assert(ptn != NULL, "node should be registered");
 648           add_edge(n_ptn, ptn);
 649         }
 650         break;
 651       }
 652       ELSE_FAIL("Op_Phi");
 653     }
 654     case Op_Proj: {
 655       // we are only interested in the oop result projection from a call
 656       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 657           n->in(0)->as_Call()->returns_pointer()) {
 658         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 659         break;
 660       }
 661       ELSE_FAIL("Op_Proj");
 662     }
 663     case Op_Rethrow: // Exception object escapes
 664     case Op_Return: {
 665       if (n->req() > TypeFunc::Parms &&
 666           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 667         // Treat Return value as LocalVar with GlobalEscape escape state.
 668         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 669                                n->in(TypeFunc::Parms), NULL);
 670         break;
 671       }
 672       ELSE_FAIL("Op_Return");
 673     }
 674     case Op_StoreP:
 675     case Op_StoreN:
 676     case Op_StoreNKlass:
 677     case Op_StorePConditional:
 678     case Op_CompareAndSwapP:
 679     case Op_CompareAndSwapN:
 680     case Op_GetAndSetP:
 681     case Op_GetAndSetN: {
 682       Node* adr = n->in(MemNode::Address);
 683       const Type *adr_type = _igvn->type(adr);
 684       adr_type = adr_type->make_ptr();
 685 #ifdef ASSERT
 686       if (adr_type == NULL) {
 687         n->dump(1);
 688         assert(adr_type != NULL, "dead node should not be on list");
 689         break;
 690       }
 691 #endif
 692       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 693         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 694       }
 695       if (adr_type->isa_oopptr() ||
 696           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 697                         (adr_type == TypeRawPtr::NOTNULL &&
 698                          adr->in(AddPNode::Address)->is_Proj() &&
 699                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 700         // Point Address to Value
 701         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 702         assert(adr_ptn != NULL &&
 703                adr_ptn->as_Field()->is_oop(), "node should be registered");
 704         Node *val = n->in(MemNode::ValueIn);
 705         PointsToNode* ptn = ptnode_adr(val->_idx);
 706         assert(ptn != NULL, "node should be registered");
 707         add_edge(adr_ptn, ptn);
 708         break;
 709       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 710         // Stored value escapes in unsafe access.
 711         Node *val = n->in(MemNode::ValueIn);
 712         PointsToNode* ptn = ptnode_adr(val->_idx);
 713         assert(ptn != NULL, "node should be registered");
 714         set_escape_state(ptn, PointsToNode::GlobalEscape);
 715         // Add edge to object for unsafe access with offset.
 716         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 717         assert(adr_ptn != NULL, "node should be registered");
 718         if (adr_ptn->is_Field()) {
 719           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 720           add_edge(adr_ptn, ptn);
 721         }
 722         break;
 723       }
 724       ELSE_FAIL("Op_StoreP");
 725     }
 726     case Op_AryEq:
 727     case Op_StrComp:
 728     case Op_StrEquals:
 729     case Op_StrIndexOf:
 730     case Op_EncodeISOArray: {
 731       // char[] arrays passed to string intrinsic do not escape but
 732       // they are not scalar replaceable. Adjust escape state for them.
 733       // Start from in(2) edge since in(1) is memory edge.
 734       for (uint i = 2; i < n->req(); i++) {
 735         Node* adr = n->in(i);
 736         const Type* at = _igvn->type(adr);
 737         if (!adr->is_top() && at->isa_ptr()) {
 738           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 739                  at->isa_ptr() != NULL, "expecting a pointer");
 740           if (adr->is_AddP()) {
 741             adr = get_addp_base(adr);
 742           }
 743           PointsToNode* ptn = ptnode_adr(adr->_idx);
 744           assert(ptn != NULL, "node should be registered");
 745           add_edge(n_ptn, ptn);
 746         }
 747       }
 748       break;
 749     }
 750     default: {
 751       // This method should be called only for EA specific nodes which may
 752       // miss some edges when they were created.
 753 #ifdef ASSERT
 754       n->dump(1);
 755 #endif
 756       guarantee(false, "unknown node");
 757     }
 758   }
 759   return;
 760 }
 761 
 762 void ConnectionGraph::add_call_node(CallNode* call) {
 763   assert(call->returns_pointer(), "only for call which returns pointer");
 764   uint call_idx = call->_idx;
 765   if (call->is_Allocate()) {
 766     Node* k = call->in(AllocateNode::KlassNode);
 767     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 768     assert(kt != NULL, "TypeKlassPtr  required.");
 769     ciKlass* cik = kt->klass();
 770     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 771     bool scalar_replaceable = true;
 772     if (call->is_AllocateArray()) {
 773       if (!cik->is_array_klass()) { // StressReflectiveCode
 774         es = PointsToNode::GlobalEscape;
 775       } else {
 776         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 777         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 778           // Not scalar replaceable if the length is not constant or too big.
 779           scalar_replaceable = false;
 780         }
 781       }
 782     } else {  // Allocate instance
 783       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 784           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 785          !cik->is_instance_klass() || // StressReflectiveCode
 786           cik->as_instance_klass()->has_finalizer()) {
 787         es = PointsToNode::GlobalEscape;
 788       }
 789     }
 790     add_java_object(call, es);
 791     PointsToNode* ptn = ptnode_adr(call_idx);
 792     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 793       ptn->set_scalar_replaceable(false);
 794     }
 795   } else if (call->is_CallStaticJava()) {
 796     // Call nodes could be different types:
 797     //
 798     // 1. CallDynamicJavaNode (what happened during call is unknown):
 799     //
 800     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 801     //
 802     //    - all oop arguments are escaping globally;
 803     //
 804     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 805     //
 806     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 807     //
 808     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 809     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 810     //      during call is returned;
 811     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 812     //      which are returned and does not escape during call;
 813     //
 814     //    - oop arguments escaping status is defined by bytecode analysis;
 815     //
 816     // For a static call, we know exactly what method is being called.
 817     // Use bytecode estimator to record whether the call's return value escapes.
 818     ciMethod* meth = call->as_CallJava()->method();
 819     if (meth == NULL) {
 820       const char* name = call->as_CallStaticJava()->_name;
 821       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 822       // Returns a newly allocated unescaped object.
 823       add_java_object(call, PointsToNode::NoEscape);
 824       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 825     } else if (meth->is_boxing_method()) {
 826       // Returns boxing object
 827       PointsToNode::EscapeState es;
 828       vmIntrinsics::ID intr = meth->intrinsic_id();
 829       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 830         // It does not escape if object is always allocated.
 831         es = PointsToNode::NoEscape;
 832       } else {
 833         // It escapes globally if object could be loaded from cache.
 834         es = PointsToNode::GlobalEscape;
 835       }
 836       add_java_object(call, es);
 837     } else {
 838       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 839       call_analyzer->copy_dependencies(_compile->dependencies());
 840       if (call_analyzer->is_return_allocated()) {
 841         // Returns a newly allocated unescaped object, simply
 842         // update dependency information.
 843         // Mark it as NoEscape so that objects referenced by
 844         // it's fields will be marked as NoEscape at least.
 845         add_java_object(call, PointsToNode::NoEscape);
 846         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 847       } else {
 848         // Determine whether any arguments are returned.
 849         const TypeTuple* d = call->tf()->domain();
 850         bool ret_arg = false;
 851         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 852           if (d->field_at(i)->isa_ptr() != NULL &&
 853               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 854             ret_arg = true;
 855             break;
 856           }
 857         }
 858         if (ret_arg) {
 859           add_local_var(call, PointsToNode::ArgEscape);
 860         } else {
 861           // Returns unknown object.
 862           map_ideal_node(call, phantom_obj);
 863         }
 864       }
 865     }
 866   } else {
 867     // An other type of call, assume the worst case:
 868     // returned value is unknown and globally escapes.
 869     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 870     map_ideal_node(call, phantom_obj);
 871   }
 872 }
 873 
 874 void ConnectionGraph::process_call_arguments(CallNode *call) {
 875     bool is_arraycopy = false;
 876     switch (call->Opcode()) {
 877 #ifdef ASSERT
 878     case Op_Allocate:
 879     case Op_AllocateArray:
 880     case Op_Lock:
 881     case Op_Unlock:
 882       assert(false, "should be done already");
 883       break;
 884 #endif
 885     case Op_CallLeafNoFP:
 886       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
 887                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
 888       // fall through
 889     case Op_CallLeaf: {
 890       // Stub calls, objects do not escape but they are not scale replaceable.
 891       // Adjust escape state for outgoing arguments.
 892       const TypeTuple * d = call->tf()->domain();
 893       bool src_has_oops = false;
 894       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 895         const Type* at = d->field_at(i);
 896         Node *arg = call->in(i);
 897         const Type *aat = _igvn->type(arg);
 898         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 899           continue;
 900         if (arg->is_AddP()) {
 901           //
 902           // The inline_native_clone() case when the arraycopy stub is called
 903           // after the allocation before Initialize and CheckCastPP nodes.
 904           // Or normal arraycopy for object arrays case.
 905           //
 906           // Set AddP's base (Allocate) as not scalar replaceable since
 907           // pointer to the base (with offset) is passed as argument.
 908           //
 909           arg = get_addp_base(arg);
 910         }
 911         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 912         assert(arg_ptn != NULL, "should be registered");
 913         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 914         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 915           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 916                  aat->isa_ptr() != NULL, "expecting an Ptr");
 917           bool arg_has_oops = aat->isa_oopptr() &&
 918                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 919                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 920           if (i == TypeFunc::Parms) {
 921             src_has_oops = arg_has_oops;
 922           }
 923           //
 924           // src or dst could be j.l.Object when other is basic type array:
 925           //
 926           //   arraycopy(char[],0,Object*,0,size);
 927           //   arraycopy(Object*,0,char[],0,size);
 928           //
 929           // Don't add edges in such cases.
 930           //
 931           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 932                                        arg_has_oops && (i > TypeFunc::Parms);
 933 #ifdef ASSERT
 934           if (!(is_arraycopy ||
 935                 (call->as_CallLeaf()->_name != NULL &&
 936                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 937                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 938                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 939                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 940                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 941                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 942                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 943                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 944                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 945                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 946                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 947                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
 948                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0)
 949                   ))) {
 950             call->dump();
 951             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
 952           }
 953 #endif
 954           // Always process arraycopy's destination object since
 955           // we need to add all possible edges to references in
 956           // source object.
 957           if (arg_esc >= PointsToNode::ArgEscape &&
 958               !arg_is_arraycopy_dest) {
 959             continue;
 960           }
 961           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 962           if (arg_is_arraycopy_dest) {
 963             Node* src = call->in(TypeFunc::Parms);
 964             if (src->is_AddP()) {
 965               src = get_addp_base(src);
 966             }
 967             PointsToNode* src_ptn = ptnode_adr(src->_idx);
 968             assert(src_ptn != NULL, "should be registered");
 969             if (arg_ptn != src_ptn) {
 970               // Special arraycopy edge:
 971               // A destination object's field can't have the source object
 972               // as base since objects escape states are not related.
 973               // Only escape state of destination object's fields affects
 974               // escape state of fields in source object.
 975               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
 976             }
 977           }
 978         }
 979       }
 980       break;
 981     }
 982     case Op_CallStaticJava: {
 983       // For a static call, we know exactly what method is being called.
 984       // Use bytecode estimator to record the call's escape affects
 985 #ifdef ASSERT
 986       const char* name = call->as_CallStaticJava()->_name;
 987       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
 988 #endif
 989       ciMethod* meth = call->as_CallJava()->method();
 990       if ((meth != NULL) && meth->is_boxing_method()) {
 991         break; // Boxing methods do not modify any oops.
 992       }
 993       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
 994       // fall-through if not a Java method or no analyzer information
 995       if (call_analyzer != NULL) {
 996         PointsToNode* call_ptn = ptnode_adr(call->_idx);
 997         const TypeTuple* d = call->tf()->domain();
 998         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 999           const Type* at = d->field_at(i);
1000           int k = i - TypeFunc::Parms;
1001           Node* arg = call->in(i);
1002           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1003           if (at->isa_ptr() != NULL &&
1004               call_analyzer->is_arg_returned(k)) {
1005             // The call returns arguments.
1006             if (call_ptn != NULL) { // Is call's result used?
1007               assert(call_ptn->is_LocalVar(), "node should be registered");
1008               assert(arg_ptn != NULL, "node should be registered");
1009               add_edge(call_ptn, arg_ptn);
1010             }
1011           }
1012           if (at->isa_oopptr() != NULL &&
1013               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1014             if (!call_analyzer->is_arg_stack(k)) {
1015               // The argument global escapes
1016               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1017             } else {
1018               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1019               if (!call_analyzer->is_arg_local(k)) {
1020                 // The argument itself doesn't escape, but any fields might
1021                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1022               }
1023             }
1024           }
1025         }
1026         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1027           // The call returns arguments.
1028           assert(call_ptn->edge_count() > 0, "sanity");
1029           if (!call_analyzer->is_return_local()) {
1030             // Returns also unknown object.
1031             add_edge(call_ptn, phantom_obj);
1032           }
1033         }
1034         break;
1035       }
1036     }
1037     default: {
1038       // Fall-through here if not a Java method or no analyzer information
1039       // or some other type of call, assume the worst case: all arguments
1040       // globally escape.
1041       const TypeTuple* d = call->tf()->domain();
1042       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1043         const Type* at = d->field_at(i);
1044         if (at->isa_oopptr() != NULL) {
1045           Node* arg = call->in(i);
1046           if (arg->is_AddP()) {
1047             arg = get_addp_base(arg);
1048           }
1049           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1050           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1051         }
1052       }
1053     }
1054   }
1055 }
1056 
1057 
1058 // Finish Graph construction.
1059 bool ConnectionGraph::complete_connection_graph(
1060                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1061                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1062                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1063                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1064   // Normally only 1-3 passes needed to build Connection Graph depending
1065   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1066   // Set limit to 20 to catch situation when something did go wrong and
1067   // bailout Escape Analysis.
1068   // Also limit build time to 30 sec (60 in debug VM).
1069 #define CG_BUILD_ITER_LIMIT 20
1070 #ifdef ASSERT
1071 #define CG_BUILD_TIME_LIMIT 60.0
1072 #else
1073 #define CG_BUILD_TIME_LIMIT 30.0
1074 #endif
1075 
1076   // Propagate GlobalEscape and ArgEscape escape states and check that
1077   // we still have non-escaping objects. The method pushs on _worklist
1078   // Field nodes which reference phantom_object.
1079   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1080     return false; // Nothing to do.
1081   }
1082   // Now propagate references to all JavaObject nodes.
1083   int java_objects_length = java_objects_worklist.length();
1084   elapsedTimer time;
1085   int new_edges = 1;
1086   int iterations = 0;
1087   do {
1088     while ((new_edges > 0) &&
1089           (iterations++   < CG_BUILD_ITER_LIMIT) &&
1090           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1091       time.start();
1092       new_edges = 0;
1093       // Propagate references to phantom_object for nodes pushed on _worklist
1094       // by find_non_escaped_objects() and find_field_value().
1095       new_edges += add_java_object_edges(phantom_obj, false);
1096       for (int next = 0; next < java_objects_length; ++next) {
1097         JavaObjectNode* ptn = java_objects_worklist.at(next);
1098         new_edges += add_java_object_edges(ptn, true);
1099       }
1100       if (new_edges > 0) {
1101         // Update escape states on each iteration if graph was updated.
1102         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1103           return false; // Nothing to do.
1104         }
1105       }
1106       time.stop();
1107     }
1108     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
1109         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1110       time.start();
1111       // Find fields which have unknown value.
1112       int fields_length = oop_fields_worklist.length();
1113       for (int next = 0; next < fields_length; next++) {
1114         FieldNode* field = oop_fields_worklist.at(next);
1115         if (field->edge_count() == 0) {
1116           new_edges += find_field_value(field);
1117           // This code may added new edges to phantom_object.
1118           // Need an other cycle to propagate references to phantom_object.
1119         }
1120       }
1121       time.stop();
1122     } else {
1123       new_edges = 0; // Bailout
1124     }
1125   } while (new_edges > 0);
1126 
1127   // Bailout if passed limits.
1128   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
1129       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
1130     Compile* C = _compile;
1131     if (C->log() != NULL) {
1132       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1133       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
1134       C->log()->end_elem(" limit'");
1135     }
1136     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1137            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1138     // Possible infinite build_connection_graph loop,
1139     // bailout (no changes to ideal graph were made).
1140     return false;
1141   }
1142 #ifdef ASSERT
1143   if (Verbose && PrintEscapeAnalysis) {
1144     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1145                   iterations, nodes_size(), ptnodes_worklist.length());
1146   }
1147 #endif
1148 
1149 #undef CG_BUILD_ITER_LIMIT
1150 #undef CG_BUILD_TIME_LIMIT
1151 
1152   // Find fields initialized by NULL for non-escaping Allocations.
1153   int non_escaped_length = non_escaped_worklist.length();
1154   for (int next = 0; next < non_escaped_length; next++) {
1155     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1156     PointsToNode::EscapeState es = ptn->escape_state();
1157     assert(es <= PointsToNode::ArgEscape, "sanity");
1158     if (es == PointsToNode::NoEscape) {
1159       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1160         // Adding references to NULL object does not change escape states
1161         // since it does not escape. Also no fields are added to NULL object.
1162         add_java_object_edges(null_obj, false);
1163       }
1164     }
1165     Node* n = ptn->ideal_node();
1166     if (n->is_Allocate()) {
1167       // The object allocated by this Allocate node will never be
1168       // seen by an other thread. Mark it so that when it is
1169       // expanded no MemBarStoreStore is added.
1170       InitializeNode* ini = n->as_Allocate()->initialization();
1171       if (ini != NULL)
1172         ini->set_does_not_escape();
1173     }
1174   }
1175   return true; // Finished graph construction.
1176 }
1177 
1178 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1179 // and check that we still have non-escaping java objects.
1180 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1181                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1182   GrowableArray<PointsToNode*> escape_worklist;
1183   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1184   int ptnodes_length = ptnodes_worklist.length();
1185   for (int next = 0; next < ptnodes_length; ++next) {
1186     PointsToNode* ptn = ptnodes_worklist.at(next);
1187     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1188         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1189       escape_worklist.push(ptn);
1190     }
1191   }
1192   // Set escape states to referenced nodes (edges list).
1193   while (escape_worklist.length() > 0) {
1194     PointsToNode* ptn = escape_worklist.pop();
1195     PointsToNode::EscapeState es  = ptn->escape_state();
1196     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1197     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1198         es >= PointsToNode::ArgEscape) {
1199       // GlobalEscape or ArgEscape state of field means it has unknown value.
1200       if (add_edge(ptn, phantom_obj)) {
1201         // New edge was added
1202         add_field_uses_to_worklist(ptn->as_Field());
1203       }
1204     }
1205     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1206       PointsToNode* e = i.get();
1207       if (e->is_Arraycopy()) {
1208         assert(ptn->arraycopy_dst(), "sanity");
1209         // Propagate only fields escape state through arraycopy edge.
1210         if (e->fields_escape_state() < field_es) {
1211           set_fields_escape_state(e, field_es);
1212           escape_worklist.push(e);
1213         }
1214       } else if (es >= field_es) {
1215         // fields_escape_state is also set to 'es' if it is less than 'es'.
1216         if (e->escape_state() < es) {
1217           set_escape_state(e, es);
1218           escape_worklist.push(e);
1219         }
1220       } else {
1221         // Propagate field escape state.
1222         bool es_changed = false;
1223         if (e->fields_escape_state() < field_es) {
1224           set_fields_escape_state(e, field_es);
1225           es_changed = true;
1226         }
1227         if ((e->escape_state() < field_es) &&
1228             e->is_Field() && ptn->is_JavaObject() &&
1229             e->as_Field()->is_oop()) {
1230           // Change escape state of referenced fileds.
1231           set_escape_state(e, field_es);
1232           es_changed = true;;
1233         } else if (e->escape_state() < es) {
1234           set_escape_state(e, es);
1235           es_changed = true;;
1236         }
1237         if (es_changed) {
1238           escape_worklist.push(e);
1239         }
1240       }
1241     }
1242   }
1243   // Remove escaped objects from non_escaped list.
1244   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1245     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1246     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1247       non_escaped_worklist.delete_at(next);
1248     }
1249     if (ptn->escape_state() == PointsToNode::NoEscape) {
1250       // Find fields in non-escaped allocations which have unknown value.
1251       find_init_values(ptn, phantom_obj, NULL);
1252     }
1253   }
1254   return (non_escaped_worklist.length() > 0);
1255 }
1256 
1257 // Add all references to JavaObject node by walking over all uses.
1258 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1259   int new_edges = 0;
1260   if (populate_worklist) {
1261     // Populate _worklist by uses of jobj's uses.
1262     for (UseIterator i(jobj); i.has_next(); i.next()) {
1263       PointsToNode* use = i.get();
1264       if (use->is_Arraycopy())
1265         continue;
1266       add_uses_to_worklist(use);
1267       if (use->is_Field() && use->as_Field()->is_oop()) {
1268         // Put on worklist all field's uses (loads) and
1269         // related field nodes (same base and offset).
1270         add_field_uses_to_worklist(use->as_Field());
1271       }
1272     }
1273   }
1274   while(_worklist.length() > 0) {
1275     PointsToNode* use = _worklist.pop();
1276     if (PointsToNode::is_base_use(use)) {
1277       // Add reference from jobj to field and from field to jobj (field's base).
1278       use = PointsToNode::get_use_node(use)->as_Field();
1279       if (add_base(use->as_Field(), jobj)) {
1280         new_edges++;
1281       }
1282       continue;
1283     }
1284     assert(!use->is_JavaObject(), "sanity");
1285     if (use->is_Arraycopy()) {
1286       if (jobj == null_obj) // NULL object does not have field edges
1287         continue;
1288       // Added edge from Arraycopy node to arraycopy's source java object
1289       if (add_edge(use, jobj)) {
1290         jobj->set_arraycopy_src();
1291         new_edges++;
1292       }
1293       // and stop here.
1294       continue;
1295     }
1296     if (!add_edge(use, jobj))
1297       continue; // No new edge added, there was such edge already.
1298     new_edges++;
1299     if (use->is_LocalVar()) {
1300       add_uses_to_worklist(use);
1301       if (use->arraycopy_dst()) {
1302         for (EdgeIterator i(use); i.has_next(); i.next()) {
1303           PointsToNode* e = i.get();
1304           if (e->is_Arraycopy()) {
1305             if (jobj == null_obj) // NULL object does not have field edges
1306               continue;
1307             // Add edge from arraycopy's destination java object to Arraycopy node.
1308             if (add_edge(jobj, e)) {
1309               new_edges++;
1310               jobj->set_arraycopy_dst();
1311             }
1312           }
1313         }
1314       }
1315     } else {
1316       // Added new edge to stored in field values.
1317       // Put on worklist all field's uses (loads) and
1318       // related field nodes (same base and offset).
1319       add_field_uses_to_worklist(use->as_Field());
1320     }
1321   }
1322   return new_edges;
1323 }
1324 
1325 // Put on worklist all related field nodes.
1326 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1327   assert(field->is_oop(), "sanity");
1328   int offset = field->offset();
1329   add_uses_to_worklist(field);
1330   // Loop over all bases of this field and push on worklist Field nodes
1331   // with the same offset and base (since they may reference the same field).
1332   for (BaseIterator i(field); i.has_next(); i.next()) {
1333     PointsToNode* base = i.get();
1334     add_fields_to_worklist(field, base);
1335     // Check if the base was source object of arraycopy and go over arraycopy's
1336     // destination objects since values stored to a field of source object are
1337     // accessable by uses (loads) of fields of destination objects.
1338     if (base->arraycopy_src()) {
1339       for (UseIterator j(base); j.has_next(); j.next()) {
1340         PointsToNode* arycp = j.get();
1341         if (arycp->is_Arraycopy()) {
1342           for (UseIterator k(arycp); k.has_next(); k.next()) {
1343             PointsToNode* abase = k.get();
1344             if (abase->arraycopy_dst() && abase != base) {
1345               // Look for the same arracopy reference.
1346               add_fields_to_worklist(field, abase);
1347             }
1348           }
1349         }
1350       }
1351     }
1352   }
1353 }
1354 
1355 // Put on worklist all related field nodes.
1356 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1357   int offset = field->offset();
1358   if (base->is_LocalVar()) {
1359     for (UseIterator j(base); j.has_next(); j.next()) {
1360       PointsToNode* f = j.get();
1361       if (PointsToNode::is_base_use(f)) { // Field
1362         f = PointsToNode::get_use_node(f);
1363         if (f == field || !f->as_Field()->is_oop())
1364           continue;
1365         int offs = f->as_Field()->offset();
1366         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1367           add_to_worklist(f);
1368         }
1369       }
1370     }
1371   } else {
1372     assert(base->is_JavaObject(), "sanity");
1373     if (// Skip phantom_object since it is only used to indicate that
1374         // this field's content globally escapes.
1375         (base != phantom_obj) &&
1376         // NULL object node does not have fields.
1377         (base != null_obj)) {
1378       for (EdgeIterator i(base); i.has_next(); i.next()) {
1379         PointsToNode* f = i.get();
1380         // Skip arraycopy edge since store to destination object field
1381         // does not update value in source object field.
1382         if (f->is_Arraycopy()) {
1383           assert(base->arraycopy_dst(), "sanity");
1384           continue;
1385         }
1386         if (f == field || !f->as_Field()->is_oop())
1387           continue;
1388         int offs = f->as_Field()->offset();
1389         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1390           add_to_worklist(f);
1391         }
1392       }
1393     }
1394   }
1395 }
1396 
1397 // Find fields which have unknown value.
1398 int ConnectionGraph::find_field_value(FieldNode* field) {
1399   // Escaped fields should have init value already.
1400   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1401   int new_edges = 0;
1402   for (BaseIterator i(field); i.has_next(); i.next()) {
1403     PointsToNode* base = i.get();
1404     if (base->is_JavaObject()) {
1405       // Skip Allocate's fields which will be processed later.
1406       if (base->ideal_node()->is_Allocate())
1407         return 0;
1408       assert(base == null_obj, "only NULL ptr base expected here");
1409     }
1410   }
1411   if (add_edge(field, phantom_obj)) {
1412     // New edge was added
1413     new_edges++;
1414     add_field_uses_to_worklist(field);
1415   }
1416   return new_edges;
1417 }
1418 
1419 // Find fields initializing values for allocations.
1420 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1421   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1422   int new_edges = 0;
1423   Node* alloc = pta->ideal_node();
1424   if (init_val == phantom_obj) {
1425     // Do nothing for Allocate nodes since its fields values are "known".
1426     if (alloc->is_Allocate())
1427       return 0;
1428     assert(alloc->as_CallStaticJava(), "sanity");
1429 #ifdef ASSERT
1430     if (alloc->as_CallStaticJava()->method() == NULL) {
1431       const char* name = alloc->as_CallStaticJava()->_name;
1432       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1433     }
1434 #endif
1435     // Non-escaped allocation returned from Java or runtime call have
1436     // unknown values in fields.
1437     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1438       PointsToNode* field = i.get();
1439       if (field->is_Field() && field->as_Field()->is_oop()) {
1440         if (add_edge(field, phantom_obj)) {
1441           // New edge was added
1442           new_edges++;
1443           add_field_uses_to_worklist(field->as_Field());
1444         }
1445       }
1446     }
1447     return new_edges;
1448   }
1449   assert(init_val == null_obj, "sanity");
1450   // Do nothing for Call nodes since its fields values are unknown.
1451   if (!alloc->is_Allocate())
1452     return 0;
1453 
1454   InitializeNode* ini = alloc->as_Allocate()->initialization();
1455   bool visited_bottom_offset = false;
1456   GrowableArray<int> offsets_worklist;
1457 
1458   // Check if an oop field's initializing value is recorded and add
1459   // a corresponding NULL if field's value if it is not recorded.
1460   // Connection Graph does not record a default initialization by NULL
1461   // captured by Initialize node.
1462   //
1463   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1464     PointsToNode* field = i.get(); // Field (AddP)
1465     if (!field->is_Field() || !field->as_Field()->is_oop())
1466       continue; // Not oop field
1467     int offset = field->as_Field()->offset();
1468     if (offset == Type::OffsetBot) {
1469       if (!visited_bottom_offset) {
1470         // OffsetBot is used to reference array's element,
1471         // always add reference to NULL to all Field nodes since we don't
1472         // known which element is referenced.
1473         if (add_edge(field, null_obj)) {
1474           // New edge was added
1475           new_edges++;
1476           add_field_uses_to_worklist(field->as_Field());
1477           visited_bottom_offset = true;
1478         }
1479       }
1480     } else {
1481       // Check only oop fields.
1482       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1483       if (adr_type->isa_rawptr()) {
1484 #ifdef ASSERT
1485         // Raw pointers are used for initializing stores so skip it
1486         // since it should be recorded already
1487         Node* base = get_addp_base(field->ideal_node());
1488         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1489                (base->in(0) == alloc),"unexpected pointer type");
1490 #endif
1491         continue;
1492       }
1493       if (!offsets_worklist.contains(offset)) {
1494         offsets_worklist.append(offset);
1495         Node* value = NULL;
1496         if (ini != NULL) {
1497           // StoreP::memory_type() == T_ADDRESS
1498           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1499           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1500           // Make sure initializing store has the same type as this AddP.
1501           // This AddP may reference non existing field because it is on a
1502           // dead branch of bimorphic call which is not eliminated yet.
1503           if (store != NULL && store->is_Store() &&
1504               store->as_Store()->memory_type() == ft) {
1505             value = store->in(MemNode::ValueIn);
1506 #ifdef ASSERT
1507             if (VerifyConnectionGraph) {
1508               // Verify that AddP already points to all objects the value points to.
1509               PointsToNode* val = ptnode_adr(value->_idx);
1510               assert((val != NULL), "should be processed already");
1511               PointsToNode* missed_obj = NULL;
1512               if (val->is_JavaObject()) {
1513                 if (!field->points_to(val->as_JavaObject())) {
1514                   missed_obj = val;
1515                 }
1516               } else {
1517                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1518                   tty->print_cr("----------init store has invalid value -----");
1519                   store->dump();
1520                   val->dump();
1521                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1522                 }
1523                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1524                   PointsToNode* obj = j.get();
1525                   if (obj->is_JavaObject()) {
1526                     if (!field->points_to(obj->as_JavaObject())) {
1527                       missed_obj = obj;
1528                       break;
1529                     }
1530                   }
1531                 }
1532               }
1533               if (missed_obj != NULL) {
1534                 tty->print_cr("----------field---------------------------------");
1535                 field->dump();
1536                 tty->print_cr("----------missed referernce to object-----------");
1537                 missed_obj->dump();
1538                 tty->print_cr("----------object referernced by init store -----");
1539                 store->dump();
1540                 val->dump();
1541                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1542               }
1543             }
1544 #endif
1545           } else {
1546             // There could be initializing stores which follow allocation.
1547             // For example, a volatile field store is not collected
1548             // by Initialize node.
1549             //
1550             // Need to check for dependent loads to separate such stores from
1551             // stores which follow loads. For now, add initial value NULL so
1552             // that compare pointers optimization works correctly.
1553           }
1554         }
1555         if (value == NULL) {
1556           // A field's initializing value was not recorded. Add NULL.
1557           if (add_edge(field, null_obj)) {
1558             // New edge was added
1559             new_edges++;
1560             add_field_uses_to_worklist(field->as_Field());
1561           }
1562         }
1563       }
1564     }
1565   }
1566   return new_edges;
1567 }
1568 
1569 // Adjust scalar_replaceable state after Connection Graph is built.
1570 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1571   // Search for non-escaping objects which are not scalar replaceable
1572   // and mark them to propagate the state to referenced objects.
1573 
1574   // 1. An object is not scalar replaceable if the field into which it is
1575   // stored has unknown offset (stored into unknown element of an array).
1576   //
1577   for (UseIterator i(jobj); i.has_next(); i.next()) {
1578     PointsToNode* use = i.get();
1579     assert(!use->is_Arraycopy(), "sanity");
1580     if (use->is_Field()) {
1581       FieldNode* field = use->as_Field();
1582       assert(field->is_oop() && field->scalar_replaceable() &&
1583              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1584       if (field->offset() == Type::OffsetBot) {
1585         jobj->set_scalar_replaceable(false);
1586         return;
1587       }
1588       // 2. An object is not scalar replaceable if the field into which it is
1589       // stored has multiple bases one of which is null.
1590       if (field->base_count() > 1) {
1591         for (BaseIterator i(field); i.has_next(); i.next()) {
1592           PointsToNode* base = i.get();
1593           if (base == null_obj) {
1594             jobj->set_scalar_replaceable(false);
1595             return;
1596           }
1597         }
1598       }
1599     }
1600     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1601     // 3. An object is not scalar replaceable if it is merged with other objects.
1602     for (EdgeIterator j(use); j.has_next(); j.next()) {
1603       PointsToNode* ptn = j.get();
1604       if (ptn->is_JavaObject() && ptn != jobj) {
1605         // Mark all objects.
1606         jobj->set_scalar_replaceable(false);
1607          ptn->set_scalar_replaceable(false);
1608       }
1609     }
1610     if (!jobj->scalar_replaceable()) {
1611       return;
1612     }
1613   }
1614 
1615   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1616     // Non-escaping object node should point only to field nodes.
1617     FieldNode* field = j.get()->as_Field();
1618     int offset = field->as_Field()->offset();
1619 
1620     // 4. An object is not scalar replaceable if it has a field with unknown
1621     // offset (array's element is accessed in loop).
1622     if (offset == Type::OffsetBot) {
1623       jobj->set_scalar_replaceable(false);
1624       return;
1625     }
1626     // 5. Currently an object is not scalar replaceable if a LoadStore node
1627     // access its field since the field value is unknown after it.
1628     //
1629     Node* n = field->ideal_node();
1630     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1631       if (n->fast_out(i)->is_LoadStore()) {
1632         jobj->set_scalar_replaceable(false);
1633         return;
1634       }
1635     }
1636 
1637     // 6. Or the address may point to more then one object. This may produce
1638     // the false positive result (set not scalar replaceable)
1639     // since the flow-insensitive escape analysis can't separate
1640     // the case when stores overwrite the field's value from the case
1641     // when stores happened on different control branches.
1642     //
1643     // Note: it will disable scalar replacement in some cases:
1644     //
1645     //    Point p[] = new Point[1];
1646     //    p[0] = new Point(); // Will be not scalar replaced
1647     //
1648     // but it will save us from incorrect optimizations in next cases:
1649     //
1650     //    Point p[] = new Point[1];
1651     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1652     //
1653     if (field->base_count() > 1) {
1654       for (BaseIterator i(field); i.has_next(); i.next()) {
1655         PointsToNode* base = i.get();
1656         // Don't take into account LocalVar nodes which
1657         // may point to only one object which should be also
1658         // this field's base by now.
1659         if (base->is_JavaObject() && base != jobj) {
1660           // Mark all bases.
1661           jobj->set_scalar_replaceable(false);
1662           base->set_scalar_replaceable(false);
1663         }
1664       }
1665     }
1666   }
1667 }
1668 
1669 #ifdef ASSERT
1670 void ConnectionGraph::verify_connection_graph(
1671                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1672                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1673                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1674                          GrowableArray<Node*>& addp_worklist) {
1675   // Verify that graph is complete - no new edges could be added.
1676   int java_objects_length = java_objects_worklist.length();
1677   int non_escaped_length  = non_escaped_worklist.length();
1678   int new_edges = 0;
1679   for (int next = 0; next < java_objects_length; ++next) {
1680     JavaObjectNode* ptn = java_objects_worklist.at(next);
1681     new_edges += add_java_object_edges(ptn, true);
1682   }
1683   assert(new_edges == 0, "graph was not complete");
1684   // Verify that escape state is final.
1685   int length = non_escaped_worklist.length();
1686   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1687   assert((non_escaped_length == non_escaped_worklist.length()) &&
1688          (non_escaped_length == length) &&
1689          (_worklist.length() == 0), "escape state was not final");
1690 
1691   // Verify fields information.
1692   int addp_length = addp_worklist.length();
1693   for (int next = 0; next < addp_length; ++next ) {
1694     Node* n = addp_worklist.at(next);
1695     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1696     if (field->is_oop()) {
1697       // Verify that field has all bases
1698       Node* base = get_addp_base(n);
1699       PointsToNode* ptn = ptnode_adr(base->_idx);
1700       if (ptn->is_JavaObject()) {
1701         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1702       } else {
1703         assert(ptn->is_LocalVar(), "sanity");
1704         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1705           PointsToNode* e = i.get();
1706           if (e->is_JavaObject()) {
1707             assert(field->has_base(e->as_JavaObject()), "sanity");
1708           }
1709         }
1710       }
1711       // Verify that all fields have initializing values.
1712       if (field->edge_count() == 0) {
1713         tty->print_cr("----------field does not have references----------");
1714         field->dump();
1715         for (BaseIterator i(field); i.has_next(); i.next()) {
1716           PointsToNode* base = i.get();
1717           tty->print_cr("----------field has next base---------------------");
1718           base->dump();
1719           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1720             tty->print_cr("----------base has fields-------------------------");
1721             for (EdgeIterator j(base); j.has_next(); j.next()) {
1722               j.get()->dump();
1723             }
1724             tty->print_cr("----------base has references---------------------");
1725             for (UseIterator j(base); j.has_next(); j.next()) {
1726               j.get()->dump();
1727             }
1728           }
1729         }
1730         for (UseIterator i(field); i.has_next(); i.next()) {
1731           i.get()->dump();
1732         }
1733         assert(field->edge_count() > 0, "sanity");
1734       }
1735     }
1736   }
1737 }
1738 #endif
1739 
1740 // Optimize ideal graph.
1741 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1742                                            GrowableArray<Node*>& storestore_worklist) {
1743   Compile* C = _compile;
1744   PhaseIterGVN* igvn = _igvn;
1745   if (EliminateLocks) {
1746     // Mark locks before changing ideal graph.
1747     int cnt = C->macro_count();
1748     for( int i=0; i < cnt; i++ ) {
1749       Node *n = C->macro_node(i);
1750       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1751         AbstractLockNode* alock = n->as_AbstractLock();
1752         if (!alock->is_non_esc_obj()) {
1753           if (not_global_escape(alock->obj_node())) {
1754             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1755             // The lock could be marked eliminated by lock coarsening
1756             // code during first IGVN before EA. Replace coarsened flag
1757             // to eliminate all associated locks/unlocks.
1758             alock->set_non_esc_obj();
1759           }
1760         }
1761       }
1762     }
1763   }
1764 
1765   if (OptimizePtrCompare) {
1766     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1767     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1768     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1769     // Optimize objects compare.
1770     while (ptr_cmp_worklist.length() != 0) {
1771       Node *n = ptr_cmp_worklist.pop();
1772       Node *res = optimize_ptr_compare(n);
1773       if (res != NULL) {
1774 #ifndef PRODUCT
1775         if (PrintOptimizePtrCompare) {
1776           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1777           if (Verbose) {
1778             n->dump(1);
1779           }
1780         }
1781 #endif
1782         igvn->replace_node(n, res);
1783       }
1784     }
1785     // cleanup
1786     if (_pcmp_neq->outcnt() == 0)
1787       igvn->hash_delete(_pcmp_neq);
1788     if (_pcmp_eq->outcnt()  == 0)
1789       igvn->hash_delete(_pcmp_eq);
1790   }
1791 
1792   // For MemBarStoreStore nodes added in library_call.cpp, check
1793   // escape status of associated AllocateNode and optimize out
1794   // MemBarStoreStore node if the allocated object never escapes.
1795   while (storestore_worklist.length() != 0) {
1796     Node *n = storestore_worklist.pop();
1797     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1798     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1799     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1800     if (not_global_escape(alloc)) {
1801       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1802       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1803       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1804       igvn->register_new_node_with_optimizer(mb);
1805       igvn->replace_node(storestore, mb);
1806     }
1807   }
1808 }
1809 
1810 // Optimize objects compare.
1811 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1812   assert(OptimizePtrCompare, "sanity");
1813   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1814   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1815   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1816   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1817   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1818   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1819 
1820   // Check simple cases first.
1821   if (jobj1 != NULL) {
1822     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1823       if (jobj1 == jobj2) {
1824         // Comparing the same not escaping object.
1825         return _pcmp_eq;
1826       }
1827       Node* obj = jobj1->ideal_node();
1828       // Comparing not escaping allocation.
1829       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1830           !ptn2->points_to(jobj1)) {
1831         return _pcmp_neq; // This includes nullness check.
1832       }
1833     }
1834   }
1835   if (jobj2 != NULL) {
1836     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1837       Node* obj = jobj2->ideal_node();
1838       // Comparing not escaping allocation.
1839       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1840           !ptn1->points_to(jobj2)) {
1841         return _pcmp_neq; // This includes nullness check.
1842       }
1843     }
1844   }
1845   if (jobj1 != NULL && jobj1 != phantom_obj &&
1846       jobj2 != NULL && jobj2 != phantom_obj &&
1847       jobj1->ideal_node()->is_Con() &&
1848       jobj2->ideal_node()->is_Con()) {
1849     // Klass or String constants compare. Need to be careful with
1850     // compressed pointers - compare types of ConN and ConP instead of nodes.
1851     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1852     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1853     if (t1->make_ptr() == t2->make_ptr()) {
1854       return _pcmp_eq;
1855     } else {
1856       return _pcmp_neq;
1857     }
1858   }
1859   if (ptn1->meet(ptn2)) {
1860     return NULL; // Sets are not disjoint
1861   }
1862 
1863   // Sets are disjoint.
1864   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1865   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1866   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1867   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1868   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1869       set2_has_unknown_ptr && set1_has_null_ptr) {
1870     // Check nullness of unknown object.
1871     return NULL;
1872   }
1873 
1874   // Disjointness by itself is not sufficient since
1875   // alias analysis is not complete for escaped objects.
1876   // Disjoint sets are definitely unrelated only when
1877   // at least one set has only not escaping allocations.
1878   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1879     if (ptn1->non_escaping_allocation()) {
1880       return _pcmp_neq;
1881     }
1882   }
1883   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1884     if (ptn2->non_escaping_allocation()) {
1885       return _pcmp_neq;
1886     }
1887   }
1888   return NULL;
1889 }
1890 
1891 // Connection Graph constuction functions.
1892 
1893 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1894   PointsToNode* ptadr = _nodes.at(n->_idx);
1895   if (ptadr != NULL) {
1896     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1897     return;
1898   }
1899   Compile* C = _compile;
1900   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
1901   _nodes.at_put(n->_idx, ptadr);
1902 }
1903 
1904 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1905   PointsToNode* ptadr = _nodes.at(n->_idx);
1906   if (ptadr != NULL) {
1907     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1908     return;
1909   }
1910   Compile* C = _compile;
1911   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
1912   _nodes.at_put(n->_idx, ptadr);
1913 }
1914 
1915 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1916   PointsToNode* ptadr = _nodes.at(n->_idx);
1917   if (ptadr != NULL) {
1918     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1919     return;
1920   }
1921   bool unsafe = false;
1922   bool is_oop = is_oop_field(n, offset, &unsafe);
1923   if (unsafe) {
1924     es = PointsToNode::GlobalEscape;
1925   }
1926   Compile* C = _compile;
1927   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
1928   _nodes.at_put(n->_idx, field);
1929 }
1930 
1931 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1932                                     PointsToNode* src, PointsToNode* dst) {
1933   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1934   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1935   PointsToNode* ptadr = _nodes.at(n->_idx);
1936   if (ptadr != NULL) {
1937     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
1938     return;
1939   }
1940   Compile* C = _compile;
1941   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
1942   _nodes.at_put(n->_idx, ptadr);
1943   // Add edge from arraycopy node to source object.
1944   (void)add_edge(ptadr, src);
1945   src->set_arraycopy_src();
1946   // Add edge from destination object to arraycopy node.
1947   (void)add_edge(dst, ptadr);
1948   dst->set_arraycopy_dst();
1949 }
1950 
1951 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
1952   const Type* adr_type = n->as_AddP()->bottom_type();
1953   BasicType bt = T_INT;
1954   if (offset == Type::OffsetBot) {
1955     // Check only oop fields.
1956     if (!adr_type->isa_aryptr() ||
1957         (adr_type->isa_aryptr()->klass() == NULL) ||
1958          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
1959       // OffsetBot is used to reference array's element. Ignore first AddP.
1960       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
1961         bt = T_OBJECT;
1962       }
1963     }
1964   } else if (offset != oopDesc::klass_offset_in_bytes()) {
1965     if (adr_type->isa_instptr()) {
1966       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
1967       if (field != NULL) {
1968         bt = field->layout_type();
1969       } else {
1970         // Check for unsafe oop field access
1971         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1972           int opcode = n->fast_out(i)->Opcode();
1973           if (opcode == Op_StoreP || opcode == Op_LoadP ||
1974               opcode == Op_StoreN || opcode == Op_LoadN) {
1975             bt = T_OBJECT;
1976             (*unsafe) = true;
1977             break;
1978           }
1979         }
1980       }
1981     } else if (adr_type->isa_aryptr()) {
1982       if (offset == arrayOopDesc::length_offset_in_bytes()) {
1983         // Ignore array length load.
1984       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
1985         // Ignore first AddP.
1986       } else {
1987         const Type* elemtype = adr_type->isa_aryptr()->elem();
1988         bt = elemtype->array_element_basic_type();
1989       }
1990     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
1991       // Allocation initialization, ThreadLocal field access, unsafe access
1992       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1993         int opcode = n->fast_out(i)->Opcode();
1994         if (opcode == Op_StoreP || opcode == Op_LoadP ||
1995             opcode == Op_StoreN || opcode == Op_LoadN) {
1996           bt = T_OBJECT;
1997           break;
1998         }
1999       }
2000     }
2001   }
2002   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2003 }
2004 
2005 // Returns unique pointed java object or NULL.
2006 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2007   assert(!_collecting, "should not call when contructed graph");
2008   // If the node was created after the escape computation we can't answer.
2009   uint idx = n->_idx;
2010   if (idx >= nodes_size()) {
2011     return NULL;
2012   }
2013   PointsToNode* ptn = ptnode_adr(idx);
2014   if (ptn->is_JavaObject()) {
2015     return ptn->as_JavaObject();
2016   }
2017   assert(ptn->is_LocalVar(), "sanity");
2018   // Check all java objects it points to.
2019   JavaObjectNode* jobj = NULL;
2020   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2021     PointsToNode* e = i.get();
2022     if (e->is_JavaObject()) {
2023       if (jobj == NULL) {
2024         jobj = e->as_JavaObject();
2025       } else if (jobj != e) {
2026         return NULL;
2027       }
2028     }
2029   }
2030   return jobj;
2031 }
2032 
2033 // Return true if this node points only to non-escaping allocations.
2034 bool PointsToNode::non_escaping_allocation() {
2035   if (is_JavaObject()) {
2036     Node* n = ideal_node();
2037     if (n->is_Allocate() || n->is_CallStaticJava()) {
2038       return (escape_state() == PointsToNode::NoEscape);
2039     } else {
2040       return false;
2041     }
2042   }
2043   assert(is_LocalVar(), "sanity");
2044   // Check all java objects it points to.
2045   for (EdgeIterator i(this); i.has_next(); i.next()) {
2046     PointsToNode* e = i.get();
2047     if (e->is_JavaObject()) {
2048       Node* n = e->ideal_node();
2049       if ((e->escape_state() != PointsToNode::NoEscape) ||
2050           !(n->is_Allocate() || n->is_CallStaticJava())) {
2051         return false;
2052       }
2053     }
2054   }
2055   return true;
2056 }
2057 
2058 // Return true if we know the node does not escape globally.
2059 bool ConnectionGraph::not_global_escape(Node *n) {
2060   assert(!_collecting, "should not call during graph construction");
2061   // If the node was created after the escape computation we can't answer.
2062   uint idx = n->_idx;
2063   if (idx >= nodes_size()) {
2064     return false;
2065   }
2066   PointsToNode* ptn = ptnode_adr(idx);
2067   PointsToNode::EscapeState es = ptn->escape_state();
2068   // If we have already computed a value, return it.
2069   if (es >= PointsToNode::GlobalEscape)
2070     return false;
2071   if (ptn->is_JavaObject()) {
2072     return true; // (es < PointsToNode::GlobalEscape);
2073   }
2074   assert(ptn->is_LocalVar(), "sanity");
2075   // Check all java objects it points to.
2076   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2077     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2078       return false;
2079   }
2080   return true;
2081 }
2082 
2083 
2084 // Helper functions
2085 
2086 // Return true if this node points to specified node or nodes it points to.
2087 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2088   if (is_JavaObject()) {
2089     return (this == ptn);
2090   }
2091   assert(is_LocalVar() || is_Field(), "sanity");
2092   for (EdgeIterator i(this); i.has_next(); i.next()) {
2093     if (i.get() == ptn)
2094       return true;
2095   }
2096   return false;
2097 }
2098 
2099 // Return true if one node points to an other.
2100 bool PointsToNode::meet(PointsToNode* ptn) {
2101   if (this == ptn) {
2102     return true;
2103   } else if (ptn->is_JavaObject()) {
2104     return this->points_to(ptn->as_JavaObject());
2105   } else if (this->is_JavaObject()) {
2106     return ptn->points_to(this->as_JavaObject());
2107   }
2108   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2109   int ptn_count =  ptn->edge_count();
2110   for (EdgeIterator i(this); i.has_next(); i.next()) {
2111     PointsToNode* this_e = i.get();
2112     for (int j = 0; j < ptn_count; j++) {
2113       if (this_e == ptn->edge(j))
2114         return true;
2115     }
2116   }
2117   return false;
2118 }
2119 
2120 #ifdef ASSERT
2121 // Return true if bases point to this java object.
2122 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2123   for (BaseIterator i(this); i.has_next(); i.next()) {
2124     if (i.get() == jobj)
2125       return true;
2126   }
2127   return false;
2128 }
2129 #endif
2130 
2131 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2132   const Type *adr_type = phase->type(adr);
2133   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2134       adr->in(AddPNode::Address)->is_Proj() &&
2135       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2136     // We are computing a raw address for a store captured by an Initialize
2137     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2138     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2139     assert(offs != Type::OffsetBot ||
2140            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2141            "offset must be a constant or it is initialization of array");
2142     return offs;
2143   }
2144   const TypePtr *t_ptr = adr_type->isa_ptr();
2145   assert(t_ptr != NULL, "must be a pointer type");
2146   return t_ptr->offset();
2147 }
2148 
2149 Node* ConnectionGraph::get_addp_base(Node *addp) {
2150   assert(addp->is_AddP(), "must be AddP");
2151   //
2152   // AddP cases for Base and Address inputs:
2153   // case #1. Direct object's field reference:
2154   //     Allocate
2155   //       |
2156   //     Proj #5 ( oop result )
2157   //       |
2158   //     CheckCastPP (cast to instance type)
2159   //      | |
2160   //     AddP  ( base == address )
2161   //
2162   // case #2. Indirect object's field reference:
2163   //      Phi
2164   //       |
2165   //     CastPP (cast to instance type)
2166   //      | |
2167   //     AddP  ( base == address )
2168   //
2169   // case #3. Raw object's field reference for Initialize node:
2170   //      Allocate
2171   //        |
2172   //      Proj #5 ( oop result )
2173   //  top   |
2174   //     \  |
2175   //     AddP  ( base == top )
2176   //
2177   // case #4. Array's element reference:
2178   //   {CheckCastPP | CastPP}
2179   //     |  | |
2180   //     |  AddP ( array's element offset )
2181   //     |  |
2182   //     AddP ( array's offset )
2183   //
2184   // case #5. Raw object's field reference for arraycopy stub call:
2185   //          The inline_native_clone() case when the arraycopy stub is called
2186   //          after the allocation before Initialize and CheckCastPP nodes.
2187   //      Allocate
2188   //        |
2189   //      Proj #5 ( oop result )
2190   //       | |
2191   //       AddP  ( base == address )
2192   //
2193   // case #6. Constant Pool, ThreadLocal, CastX2P or
2194   //          Raw object's field reference:
2195   //      {ConP, ThreadLocal, CastX2P, raw Load}
2196   //  top   |
2197   //     \  |
2198   //     AddP  ( base == top )
2199   //
2200   // case #7. Klass's field reference.
2201   //      LoadKlass
2202   //       | |
2203   //       AddP  ( base == address )
2204   //
2205   // case #8. narrow Klass's field reference.
2206   //      LoadNKlass
2207   //       |
2208   //      DecodeN
2209   //       | |
2210   //       AddP  ( base == address )
2211   //
2212   Node *base = addp->in(AddPNode::Base);
2213   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2214     base = addp->in(AddPNode::Address);
2215     while (base->is_AddP()) {
2216       // Case #6 (unsafe access) may have several chained AddP nodes.
2217       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2218       base = base->in(AddPNode::Address);
2219     }
2220     Node* uncast_base = base->uncast();
2221     int opcode = uncast_base->Opcode();
2222     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2223            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2224            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2225            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2226   }
2227   return base;
2228 }
2229 
2230 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2231   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2232   Node* addp2 = addp->raw_out(0);
2233   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2234       addp2->in(AddPNode::Base) == n &&
2235       addp2->in(AddPNode::Address) == addp) {
2236     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2237     //
2238     // Find array's offset to push it on worklist first and
2239     // as result process an array's element offset first (pushed second)
2240     // to avoid CastPP for the array's offset.
2241     // Otherwise the inserted CastPP (LocalVar) will point to what
2242     // the AddP (Field) points to. Which would be wrong since
2243     // the algorithm expects the CastPP has the same point as
2244     // as AddP's base CheckCastPP (LocalVar).
2245     //
2246     //    ArrayAllocation
2247     //     |
2248     //    CheckCastPP
2249     //     |
2250     //    memProj (from ArrayAllocation CheckCastPP)
2251     //     |  ||
2252     //     |  ||   Int (element index)
2253     //     |  ||    |   ConI (log(element size))
2254     //     |  ||    |   /
2255     //     |  ||   LShift
2256     //     |  ||  /
2257     //     |  AddP (array's element offset)
2258     //     |  |
2259     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2260     //     | / /
2261     //     AddP (array's offset)
2262     //      |
2263     //     Load/Store (memory operation on array's element)
2264     //
2265     return addp2;
2266   }
2267   return NULL;
2268 }
2269 
2270 //
2271 // Adjust the type and inputs of an AddP which computes the
2272 // address of a field of an instance
2273 //
2274 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2275   PhaseGVN* igvn = _igvn;
2276   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2277   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2278   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2279   if (t == NULL) {
2280     // We are computing a raw address for a store captured by an Initialize
2281     // compute an appropriate address type (cases #3 and #5).
2282     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2283     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2284     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2285     assert(offs != Type::OffsetBot, "offset must be a constant");
2286     t = base_t->add_offset(offs)->is_oopptr();
2287   }
2288   int inst_id =  base_t->instance_id();
2289   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2290                              "old type must be non-instance or match new type");
2291 
2292   // The type 't' could be subclass of 'base_t'.
2293   // As result t->offset() could be large then base_t's size and it will
2294   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2295   // constructor verifies correctness of the offset.
2296   //
2297   // It could happened on subclass's branch (from the type profiling
2298   // inlining) which was not eliminated during parsing since the exactness
2299   // of the allocation type was not propagated to the subclass type check.
2300   //
2301   // Or the type 't' could be not related to 'base_t' at all.
2302   // It could happened when CHA type is different from MDO type on a dead path
2303   // (for example, from instanceof check) which is not collapsed during parsing.
2304   //
2305   // Do nothing for such AddP node and don't process its users since
2306   // this code branch will go away.
2307   //
2308   if (!t->is_known_instance() &&
2309       !base_t->klass()->is_subtype_of(t->klass())) {
2310      return false; // bail out
2311   }
2312   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2313   // Do NOT remove the next line: ensure a new alias index is allocated
2314   // for the instance type. Note: C++ will not remove it since the call
2315   // has side effect.
2316   int alias_idx = _compile->get_alias_index(tinst);
2317   igvn->set_type(addp, tinst);
2318   // record the allocation in the node map
2319   set_map(addp, get_map(base->_idx));
2320   // Set addp's Base and Address to 'base'.
2321   Node *abase = addp->in(AddPNode::Base);
2322   Node *adr   = addp->in(AddPNode::Address);
2323   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2324       adr->in(0)->_idx == (uint)inst_id) {
2325     // Skip AddP cases #3 and #5.
2326   } else {
2327     assert(!abase->is_top(), "sanity"); // AddP case #3
2328     if (abase != base) {
2329       igvn->hash_delete(addp);
2330       addp->set_req(AddPNode::Base, base);
2331       if (abase == adr) {
2332         addp->set_req(AddPNode::Address, base);
2333       } else {
2334         // AddP case #4 (adr is array's element offset AddP node)
2335 #ifdef ASSERT
2336         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2337         assert(adr->is_AddP() && atype != NULL &&
2338                atype->instance_id() == inst_id, "array's element offset should be processed first");
2339 #endif
2340       }
2341       igvn->hash_insert(addp);
2342     }
2343   }
2344   // Put on IGVN worklist since at least addp's type was changed above.
2345   record_for_optimizer(addp);
2346   return true;
2347 }
2348 
2349 //
2350 // Create a new version of orig_phi if necessary. Returns either the newly
2351 // created phi or an existing phi.  Sets create_new to indicate whether a new
2352 // phi was created.  Cache the last newly created phi in the node map.
2353 //
2354 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2355   Compile *C = _compile;
2356   PhaseGVN* igvn = _igvn;
2357   new_created = false;
2358   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2359   // nothing to do if orig_phi is bottom memory or matches alias_idx
2360   if (phi_alias_idx == alias_idx) {
2361     return orig_phi;
2362   }
2363   // Have we recently created a Phi for this alias index?
2364   PhiNode *result = get_map_phi(orig_phi->_idx);
2365   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2366     return result;
2367   }
2368   // Previous check may fail when the same wide memory Phi was split into Phis
2369   // for different memory slices. Search all Phis for this region.
2370   if (result != NULL) {
2371     Node* region = orig_phi->in(0);
2372     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2373       Node* phi = region->fast_out(i);
2374       if (phi->is_Phi() &&
2375           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2376         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2377         return phi->as_Phi();
2378       }
2379     }
2380   }
2381   if ((int) (C->live_nodes() + 2*NodeLimitFudgeFactor) > MaxNodeLimit) {
2382     if (C->do_escape_analysis() == true && !C->failing()) {
2383       // Retry compilation without escape analysis.
2384       // If this is the first failure, the sentinel string will "stick"
2385       // to the Compile object, and the C2Compiler will see it and retry.
2386       C->record_failure(C2Compiler::retry_no_escape_analysis());
2387     }
2388     return NULL;
2389   }
2390   orig_phi_worklist.append_if_missing(orig_phi);
2391   const TypePtr *atype = C->get_adr_type(alias_idx);
2392   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2393   C->copy_node_notes_to(result, orig_phi);
2394   igvn->set_type(result, result->bottom_type());
2395   record_for_optimizer(result);
2396   set_map(orig_phi, result);
2397   new_created = true;
2398   return result;
2399 }
2400 
2401 //
2402 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2403 // specified alias index.
2404 //
2405 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2406   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2407   Compile *C = _compile;
2408   PhaseGVN* igvn = _igvn;
2409   bool new_phi_created;
2410   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2411   if (!new_phi_created) {
2412     return result;
2413   }
2414   GrowableArray<PhiNode *>  phi_list;
2415   GrowableArray<uint>  cur_input;
2416   PhiNode *phi = orig_phi;
2417   uint idx = 1;
2418   bool finished = false;
2419   while(!finished) {
2420     while (idx < phi->req()) {
2421       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2422       if (mem != NULL && mem->is_Phi()) {
2423         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2424         if (new_phi_created) {
2425           // found an phi for which we created a new split, push current one on worklist and begin
2426           // processing new one
2427           phi_list.push(phi);
2428           cur_input.push(idx);
2429           phi = mem->as_Phi();
2430           result = newphi;
2431           idx = 1;
2432           continue;
2433         } else {
2434           mem = newphi;
2435         }
2436       }
2437       if (C->failing()) {
2438         return NULL;
2439       }
2440       result->set_req(idx++, mem);
2441     }
2442 #ifdef ASSERT
2443     // verify that the new Phi has an input for each input of the original
2444     assert( phi->req() == result->req(), "must have same number of inputs.");
2445     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2446 #endif
2447     // Check if all new phi's inputs have specified alias index.
2448     // Otherwise use old phi.
2449     for (uint i = 1; i < phi->req(); i++) {
2450       Node* in = result->in(i);
2451       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2452     }
2453     // we have finished processing a Phi, see if there are any more to do
2454     finished = (phi_list.length() == 0 );
2455     if (!finished) {
2456       phi = phi_list.pop();
2457       idx = cur_input.pop();
2458       PhiNode *prev_result = get_map_phi(phi->_idx);
2459       prev_result->set_req(idx++, result);
2460       result = prev_result;
2461     }
2462   }
2463   return result;
2464 }
2465 
2466 //
2467 // The next methods are derived from methods in MemNode.
2468 //
2469 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2470   Node *mem = mmem;
2471   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2472   // means an array I have not precisely typed yet.  Do not do any
2473   // alias stuff with it any time soon.
2474   if (toop->base() != Type::AnyPtr &&
2475       !(toop->klass() != NULL &&
2476         toop->klass()->is_java_lang_Object() &&
2477         toop->offset() == Type::OffsetBot)) {
2478     mem = mmem->memory_at(alias_idx);
2479     // Update input if it is progress over what we have now
2480   }
2481   return mem;
2482 }
2483 
2484 //
2485 // Move memory users to their memory slices.
2486 //
2487 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2488   Compile* C = _compile;
2489   PhaseGVN* igvn = _igvn;
2490   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2491   assert(tp != NULL, "ptr type");
2492   int alias_idx = C->get_alias_index(tp);
2493   int general_idx = C->get_general_index(alias_idx);
2494 
2495   // Move users first
2496   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2497     Node* use = n->fast_out(i);
2498     if (use->is_MergeMem()) {
2499       MergeMemNode* mmem = use->as_MergeMem();
2500       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2501       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2502         continue; // Nothing to do
2503       }
2504       // Replace previous general reference to mem node.
2505       uint orig_uniq = C->unique();
2506       Node* m = find_inst_mem(n, general_idx, orig_phis);
2507       assert(orig_uniq == C->unique(), "no new nodes");
2508       mmem->set_memory_at(general_idx, m);
2509       --imax;
2510       --i;
2511     } else if (use->is_MemBar()) {
2512       assert(!use->is_Initialize(), "initializing stores should not be moved");
2513       if (use->req() > MemBarNode::Precedent &&
2514           use->in(MemBarNode::Precedent) == n) {
2515         // Don't move related membars.
2516         record_for_optimizer(use);
2517         continue;
2518       }
2519       tp = use->as_MemBar()->adr_type()->isa_ptr();
2520       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2521           alias_idx == general_idx) {
2522         continue; // Nothing to do
2523       }
2524       // Move to general memory slice.
2525       uint orig_uniq = C->unique();
2526       Node* m = find_inst_mem(n, general_idx, orig_phis);
2527       assert(orig_uniq == C->unique(), "no new nodes");
2528       igvn->hash_delete(use);
2529       imax -= use->replace_edge(n, m);
2530       igvn->hash_insert(use);
2531       record_for_optimizer(use);
2532       --i;
2533 #ifdef ASSERT
2534     } else if (use->is_Mem()) {
2535       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2536         // Don't move related cardmark.
2537         continue;
2538       }
2539       // Memory nodes should have new memory input.
2540       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2541       assert(tp != NULL, "ptr type");
2542       int idx = C->get_alias_index(tp);
2543       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2544              "Following memory nodes should have new memory input or be on the same memory slice");
2545     } else if (use->is_Phi()) {
2546       // Phi nodes should be split and moved already.
2547       tp = use->as_Phi()->adr_type()->isa_ptr();
2548       assert(tp != NULL, "ptr type");
2549       int idx = C->get_alias_index(tp);
2550       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2551     } else {
2552       use->dump();
2553       assert(false, "should not be here");
2554 #endif
2555     }
2556   }
2557 }
2558 
2559 //
2560 // Search memory chain of "mem" to find a MemNode whose address
2561 // is the specified alias index.
2562 //
2563 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2564   if (orig_mem == NULL)
2565     return orig_mem;
2566   Compile* C = _compile;
2567   PhaseGVN* igvn = _igvn;
2568   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2569   bool is_instance = (toop != NULL) && toop->is_known_instance();
2570   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2571   Node *prev = NULL;
2572   Node *result = orig_mem;
2573   while (prev != result) {
2574     prev = result;
2575     if (result == start_mem)
2576       break;  // hit one of our sentinels
2577     if (result->is_Mem()) {
2578       const Type *at = igvn->type(result->in(MemNode::Address));
2579       if (at == Type::TOP)
2580         break; // Dead
2581       assert (at->isa_ptr() != NULL, "pointer type required.");
2582       int idx = C->get_alias_index(at->is_ptr());
2583       if (idx == alias_idx)
2584         break; // Found
2585       if (!is_instance && (at->isa_oopptr() == NULL ||
2586                            !at->is_oopptr()->is_known_instance())) {
2587         break; // Do not skip store to general memory slice.
2588       }
2589       result = result->in(MemNode::Memory);
2590     }
2591     if (!is_instance)
2592       continue;  // don't search further for non-instance types
2593     // skip over a call which does not affect this memory slice
2594     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2595       Node *proj_in = result->in(0);
2596       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2597         break;  // hit one of our sentinels
2598       } else if (proj_in->is_Call()) {
2599         CallNode *call = proj_in->as_Call();
2600         if (!call->may_modify(toop, igvn)) {
2601           result = call->in(TypeFunc::Memory);
2602         }
2603       } else if (proj_in->is_Initialize()) {
2604         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2605         // Stop if this is the initialization for the object instance which
2606         // which contains this memory slice, otherwise skip over it.
2607         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2608           result = proj_in->in(TypeFunc::Memory);
2609         }
2610       } else if (proj_in->is_MemBar()) {
2611         result = proj_in->in(TypeFunc::Memory);
2612       }
2613     } else if (result->is_MergeMem()) {
2614       MergeMemNode *mmem = result->as_MergeMem();
2615       result = step_through_mergemem(mmem, alias_idx, toop);
2616       if (result == mmem->base_memory()) {
2617         // Didn't find instance memory, search through general slice recursively.
2618         result = mmem->memory_at(C->get_general_index(alias_idx));
2619         result = find_inst_mem(result, alias_idx, orig_phis);
2620         if (C->failing()) {
2621           return NULL;
2622         }
2623         mmem->set_memory_at(alias_idx, result);
2624       }
2625     } else if (result->is_Phi() &&
2626                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2627       Node *un = result->as_Phi()->unique_input(igvn);
2628       if (un != NULL) {
2629         orig_phis.append_if_missing(result->as_Phi());
2630         result = un;
2631       } else {
2632         break;
2633       }
2634     } else if (result->is_ClearArray()) {
2635       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2636         // Can not bypass initialization of the instance
2637         // we are looking for.
2638         break;
2639       }
2640       // Otherwise skip it (the call updated 'result' value).
2641     } else if (result->Opcode() == Op_SCMemProj) {
2642       Node* mem = result->in(0);
2643       Node* adr = NULL;
2644       if (mem->is_LoadStore()) {
2645         adr = mem->in(MemNode::Address);
2646       } else {
2647         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
2648         adr = mem->in(3); // Memory edge corresponds to destination array
2649       }
2650       const Type *at = igvn->type(adr);
2651       if (at != Type::TOP) {
2652         assert (at->isa_ptr() != NULL, "pointer type required.");
2653         int idx = C->get_alias_index(at->is_ptr());
2654         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2655         break;
2656       }
2657       result = mem->in(MemNode::Memory);
2658     }
2659   }
2660   if (result->is_Phi()) {
2661     PhiNode *mphi = result->as_Phi();
2662     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2663     const TypePtr *t = mphi->adr_type();
2664     if (!is_instance) {
2665       // Push all non-instance Phis on the orig_phis worklist to update inputs
2666       // during Phase 4 if needed.
2667       orig_phis.append_if_missing(mphi);
2668     } else if (C->get_alias_index(t) != alias_idx) {
2669       // Create a new Phi with the specified alias index type.
2670       result = split_memory_phi(mphi, alias_idx, orig_phis);
2671     }
2672   }
2673   // the result is either MemNode, PhiNode, InitializeNode.
2674   return result;
2675 }
2676 
2677 //
2678 //  Convert the types of unescaped object to instance types where possible,
2679 //  propagate the new type information through the graph, and update memory
2680 //  edges and MergeMem inputs to reflect the new type.
2681 //
2682 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2683 //  The processing is done in 4 phases:
2684 //
2685 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2686 //            types for the CheckCastPP for allocations where possible.
2687 //            Propagate the the new types through users as follows:
2688 //               casts and Phi:  push users on alloc_worklist
2689 //               AddP:  cast Base and Address inputs to the instance type
2690 //                      push any AddP users on alloc_worklist and push any memnode
2691 //                      users onto memnode_worklist.
2692 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2693 //            search the Memory chain for a store with the appropriate type
2694 //            address type.  If a Phi is found, create a new version with
2695 //            the appropriate memory slices from each of the Phi inputs.
2696 //            For stores, process the users as follows:
2697 //               MemNode:  push on memnode_worklist
2698 //               MergeMem: push on mergemem_worklist
2699 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2700 //            moving the first node encountered of each  instance type to the
2701 //            the input corresponding to its alias index.
2702 //            appropriate memory slice.
2703 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2704 //
2705 // In the following example, the CheckCastPP nodes are the cast of allocation
2706 // results and the allocation of node 29 is unescaped and eligible to be an
2707 // instance type.
2708 //
2709 // We start with:
2710 //
2711 //     7 Parm #memory
2712 //    10  ConI  "12"
2713 //    19  CheckCastPP   "Foo"
2714 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2715 //    29  CheckCastPP   "Foo"
2716 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2717 //
2718 //    40  StoreP  25   7  20   ... alias_index=4
2719 //    50  StoreP  35  40  30   ... alias_index=4
2720 //    60  StoreP  45  50  20   ... alias_index=4
2721 //    70  LoadP    _  60  30   ... alias_index=4
2722 //    80  Phi     75  50  60   Memory alias_index=4
2723 //    90  LoadP    _  80  30   ... alias_index=4
2724 //   100  LoadP    _  80  20   ... alias_index=4
2725 //
2726 //
2727 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2728 // and creating a new alias index for node 30.  This gives:
2729 //
2730 //     7 Parm #memory
2731 //    10  ConI  "12"
2732 //    19  CheckCastPP   "Foo"
2733 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2734 //    29  CheckCastPP   "Foo"  iid=24
2735 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2736 //
2737 //    40  StoreP  25   7  20   ... alias_index=4
2738 //    50  StoreP  35  40  30   ... alias_index=6
2739 //    60  StoreP  45  50  20   ... alias_index=4
2740 //    70  LoadP    _  60  30   ... alias_index=6
2741 //    80  Phi     75  50  60   Memory alias_index=4
2742 //    90  LoadP    _  80  30   ... alias_index=6
2743 //   100  LoadP    _  80  20   ... alias_index=4
2744 //
2745 // In phase 2, new memory inputs are computed for the loads and stores,
2746 // And a new version of the phi is created.  In phase 4, the inputs to
2747 // node 80 are updated and then the memory nodes are updated with the
2748 // values computed in phase 2.  This results in:
2749 //
2750 //     7 Parm #memory
2751 //    10  ConI  "12"
2752 //    19  CheckCastPP   "Foo"
2753 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2754 //    29  CheckCastPP   "Foo"  iid=24
2755 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2756 //
2757 //    40  StoreP  25  7   20   ... alias_index=4
2758 //    50  StoreP  35  7   30   ... alias_index=6
2759 //    60  StoreP  45  40  20   ... alias_index=4
2760 //    70  LoadP    _  50  30   ... alias_index=6
2761 //    80  Phi     75  40  60   Memory alias_index=4
2762 //   120  Phi     75  50  50   Memory alias_index=6
2763 //    90  LoadP    _ 120  30   ... alias_index=6
2764 //   100  LoadP    _  80  20   ... alias_index=4
2765 //
2766 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
2767   GrowableArray<Node *>  memnode_worklist;
2768   GrowableArray<PhiNode *>  orig_phis;
2769   PhaseIterGVN  *igvn = _igvn;
2770   uint new_index_start = (uint) _compile->num_alias_types();
2771   Arena* arena = Thread::current()->resource_area();
2772   VectorSet visited(arena);
2773   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2774   uint unique_old = _compile->unique();
2775 
2776   //  Phase 1:  Process possible allocations from alloc_worklist.
2777   //  Create instance types for the CheckCastPP for allocations where possible.
2778   //
2779   // (Note: don't forget to change the order of the second AddP node on
2780   //  the alloc_worklist if the order of the worklist processing is changed,
2781   //  see the comment in find_second_addp().)
2782   //
2783   while (alloc_worklist.length() != 0) {
2784     Node *n = alloc_worklist.pop();
2785     uint ni = n->_idx;
2786     if (n->is_Call()) {
2787       CallNode *alloc = n->as_Call();
2788       // copy escape information to call node
2789       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2790       PointsToNode::EscapeState es = ptn->escape_state();
2791       // We have an allocation or call which returns a Java object,
2792       // see if it is unescaped.
2793       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2794         continue;
2795       // Find CheckCastPP for the allocate or for the return value of a call
2796       n = alloc->result_cast();
2797       if (n == NULL) {            // No uses except Initialize node
2798         if (alloc->is_Allocate()) {
2799           // Set the scalar_replaceable flag for allocation
2800           // so it could be eliminated if it has no uses.
2801           alloc->as_Allocate()->_is_scalar_replaceable = true;
2802         }
2803         if (alloc->is_CallStaticJava()) {
2804           // Set the scalar_replaceable flag for boxing method
2805           // so it could be eliminated if it has no uses.
2806           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2807         }
2808         continue;
2809       }
2810       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2811         assert(!alloc->is_Allocate(), "allocation should have unique type");
2812         continue;
2813       }
2814 
2815       // The inline code for Object.clone() casts the allocation result to
2816       // java.lang.Object and then to the actual type of the allocated
2817       // object. Detect this case and use the second cast.
2818       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2819       // the allocation result is cast to java.lang.Object and then
2820       // to the actual Array type.
2821       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2822           && (alloc->is_AllocateArray() ||
2823               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2824         Node *cast2 = NULL;
2825         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2826           Node *use = n->fast_out(i);
2827           if (use->is_CheckCastPP()) {
2828             cast2 = use;
2829             break;
2830           }
2831         }
2832         if (cast2 != NULL) {
2833           n = cast2;
2834         } else {
2835           // Non-scalar replaceable if the allocation type is unknown statically
2836           // (reflection allocation), the object can't be restored during
2837           // deoptimization without precise type.
2838           continue;
2839         }
2840       }
2841       if (alloc->is_Allocate()) {
2842         // Set the scalar_replaceable flag for allocation
2843         // so it could be eliminated.
2844         alloc->as_Allocate()->_is_scalar_replaceable = true;
2845       }
2846       if (alloc->is_CallStaticJava()) {
2847         // Set the scalar_replaceable flag for boxing method
2848         // so it could be eliminated.
2849         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2850       }
2851       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2852       // in order for an object to be scalar-replaceable, it must be:
2853       //   - a direct allocation (not a call returning an object)
2854       //   - non-escaping
2855       //   - eligible to be a unique type
2856       //   - not determined to be ineligible by escape analysis
2857       set_map(alloc, n);
2858       set_map(n, alloc);
2859       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2860       if (t == NULL)
2861         continue;  // not a TypeOopPtr
2862       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
2863       igvn->hash_delete(n);
2864       igvn->set_type(n,  tinst);
2865       n->raise_bottom_type(tinst);
2866       igvn->hash_insert(n);
2867       record_for_optimizer(n);
2868       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2869 
2870         // First, put on the worklist all Field edges from Connection Graph
2871         // which is more accurate then putting immediate users from Ideal Graph.
2872         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2873           PointsToNode* tgt = e.get();
2874           Node* use = tgt->ideal_node();
2875           assert(tgt->is_Field() && use->is_AddP(),
2876                  "only AddP nodes are Field edges in CG");
2877           if (use->outcnt() > 0) { // Don't process dead nodes
2878             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2879             if (addp2 != NULL) {
2880               assert(alloc->is_AllocateArray(),"array allocation was expected");
2881               alloc_worklist.append_if_missing(addp2);
2882             }
2883             alloc_worklist.append_if_missing(use);
2884           }
2885         }
2886 
2887         // An allocation may have an Initialize which has raw stores. Scan
2888         // the users of the raw allocation result and push AddP users
2889         // on alloc_worklist.
2890         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2891         assert (raw_result != NULL, "must have an allocation result");
2892         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2893           Node *use = raw_result->fast_out(i);
2894           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2895             Node* addp2 = find_second_addp(use, raw_result);
2896             if (addp2 != NULL) {
2897               assert(alloc->is_AllocateArray(),"array allocation was expected");
2898               alloc_worklist.append_if_missing(addp2);
2899             }
2900             alloc_worklist.append_if_missing(use);
2901           } else if (use->is_MemBar()) {
2902             memnode_worklist.append_if_missing(use);
2903           }
2904         }
2905       }
2906     } else if (n->is_AddP()) {
2907       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2908       if (jobj == NULL || jobj == phantom_obj) {
2909 #ifdef ASSERT
2910         ptnode_adr(get_addp_base(n)->_idx)->dump();
2911         ptnode_adr(n->_idx)->dump();
2912         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2913 #endif
2914         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2915         return;
2916       }
2917       Node *base = get_map(jobj->idx());  // CheckCastPP node
2918       if (!split_AddP(n, base)) continue; // wrong type from dead path
2919     } else if (n->is_Phi() ||
2920                n->is_CheckCastPP() ||
2921                n->is_EncodeP() ||
2922                n->is_DecodeN() ||
2923                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
2924       if (visited.test_set(n->_idx)) {
2925         assert(n->is_Phi(), "loops only through Phi's");
2926         continue;  // already processed
2927       }
2928       JavaObjectNode* jobj = unique_java_object(n);
2929       if (jobj == NULL || jobj == phantom_obj) {
2930 #ifdef ASSERT
2931         ptnode_adr(n->_idx)->dump();
2932         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2933 #endif
2934         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2935         return;
2936       } else {
2937         Node *val = get_map(jobj->idx());   // CheckCastPP node
2938         TypeNode *tn = n->as_Type();
2939         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
2940         assert(tinst != NULL && tinst->is_known_instance() &&
2941                tinst->instance_id() == jobj->idx() , "instance type expected.");
2942 
2943         const Type *tn_type = igvn->type(tn);
2944         const TypeOopPtr *tn_t;
2945         if (tn_type->isa_narrowoop()) {
2946           tn_t = tn_type->make_ptr()->isa_oopptr();
2947         } else {
2948           tn_t = tn_type->isa_oopptr();
2949         }
2950         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
2951           if (tn_type->isa_narrowoop()) {
2952             tn_type = tinst->make_narrowoop();
2953           } else {
2954             tn_type = tinst;
2955           }
2956           igvn->hash_delete(tn);
2957           igvn->set_type(tn, tn_type);
2958           tn->set_type(tn_type);
2959           igvn->hash_insert(tn);
2960           record_for_optimizer(n);
2961         } else {
2962           assert(tn_type == TypePtr::NULL_PTR ||
2963                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
2964                  "unexpected type");
2965           continue; // Skip dead path with different type
2966         }
2967       }
2968     } else {
2969       debug_only(n->dump();)
2970       assert(false, "EA: unexpected node");
2971       continue;
2972     }
2973     // push allocation's users on appropriate worklist
2974     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2975       Node *use = n->fast_out(i);
2976       if(use->is_Mem() && use->in(MemNode::Address) == n) {
2977         // Load/store to instance's field
2978         memnode_worklist.append_if_missing(use);
2979       } else if (use->is_MemBar()) {
2980         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
2981           memnode_worklist.append_if_missing(use);
2982         }
2983       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
2984         Node* addp2 = find_second_addp(use, n);
2985         if (addp2 != NULL) {
2986           alloc_worklist.append_if_missing(addp2);
2987         }
2988         alloc_worklist.append_if_missing(use);
2989       } else if (use->is_Phi() ||
2990                  use->is_CheckCastPP() ||
2991                  use->is_EncodeNarrowPtr() ||
2992                  use->is_DecodeNarrowPtr() ||
2993                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
2994         alloc_worklist.append_if_missing(use);
2995 #ifdef ASSERT
2996       } else if (use->is_Mem()) {
2997         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
2998       } else if (use->is_MergeMem()) {
2999         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3000       } else if (use->is_SafePoint()) {
3001         // Look for MergeMem nodes for calls which reference unique allocation
3002         // (through CheckCastPP nodes) even for debug info.
3003         Node* m = use->in(TypeFunc::Memory);
3004         if (m->is_MergeMem()) {
3005           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3006         }
3007       } else if (use->Opcode() == Op_EncodeISOArray) {
3008         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3009           // EncodeISOArray overwrites destination array
3010           memnode_worklist.append_if_missing(use);
3011         }
3012       } else {
3013         uint op = use->Opcode();
3014         if (!(op == Op_CmpP || op == Op_Conv2B ||
3015               op == Op_CastP2X || op == Op_StoreCM ||
3016               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
3017               op == Op_StrEquals || op == Op_StrIndexOf)) {
3018           n->dump();
3019           use->dump();
3020           assert(false, "EA: missing allocation reference path");
3021         }
3022 #endif
3023       }
3024     }
3025 
3026   }
3027   // New alias types were created in split_AddP().
3028   uint new_index_end = (uint) _compile->num_alias_types();
3029   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3030 
3031   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3032   //            compute new values for Memory inputs  (the Memory inputs are not
3033   //            actually updated until phase 4.)
3034   if (memnode_worklist.length() == 0)
3035     return;  // nothing to do
3036   while (memnode_worklist.length() != 0) {
3037     Node *n = memnode_worklist.pop();
3038     if (visited.test_set(n->_idx))
3039       continue;
3040     if (n->is_Phi() || n->is_ClearArray()) {
3041       // we don't need to do anything, but the users must be pushed
3042     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3043       // we don't need to do anything, but the users must be pushed
3044       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3045       if (n == NULL)
3046         continue;
3047     } else if (n->Opcode() == Op_EncodeISOArray) {
3048       // get the memory projection
3049       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3050         Node *use = n->fast_out(i);
3051         if (use->Opcode() == Op_SCMemProj) {
3052           n = use;
3053           break;
3054         }
3055       }
3056       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3057     } else {
3058       assert(n->is_Mem(), "memory node required.");
3059       Node *addr = n->in(MemNode::Address);
3060       const Type *addr_t = igvn->type(addr);
3061       if (addr_t == Type::TOP)
3062         continue;
3063       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3064       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3065       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3066       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3067       if (_compile->failing()) {
3068         return;
3069       }
3070       if (mem != n->in(MemNode::Memory)) {
3071         // We delay the memory edge update since we need old one in
3072         // MergeMem code below when instances memory slices are separated.
3073         set_map(n, mem);
3074       }
3075       if (n->is_Load()) {
3076         continue;  // don't push users
3077       } else if (n->is_LoadStore()) {
3078         // get the memory projection
3079         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3080           Node *use = n->fast_out(i);
3081           if (use->Opcode() == Op_SCMemProj) {
3082             n = use;
3083             break;
3084           }
3085         }
3086         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3087       }
3088     }
3089     // push user on appropriate worklist
3090     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3091       Node *use = n->fast_out(i);
3092       if (use->is_Phi() || use->is_ClearArray()) {
3093         memnode_worklist.append_if_missing(use);
3094       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3095         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3096           continue;
3097         memnode_worklist.append_if_missing(use);
3098       } else if (use->is_MemBar()) {
3099         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3100           memnode_worklist.append_if_missing(use);
3101         }
3102 #ifdef ASSERT
3103       } else if(use->is_Mem()) {
3104         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3105       } else if (use->is_MergeMem()) {
3106         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3107       } else if (use->Opcode() == Op_EncodeISOArray) {
3108         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3109           // EncodeISOArray overwrites destination array
3110           memnode_worklist.append_if_missing(use);
3111         }
3112       } else {
3113         uint op = use->Opcode();
3114         if (!(op == Op_StoreCM ||
3115               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3116                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3117               op == Op_AryEq || op == Op_StrComp ||
3118               op == Op_StrEquals || op == Op_StrIndexOf)) {
3119           n->dump();
3120           use->dump();
3121           assert(false, "EA: missing memory path");
3122         }
3123 #endif
3124       }
3125     }
3126   }
3127 
3128   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3129   //            Walk each memory slice moving the first node encountered of each
3130   //            instance type to the the input corresponding to its alias index.
3131   uint length = _mergemem_worklist.length();
3132   for( uint next = 0; next < length; ++next ) {
3133     MergeMemNode* nmm = _mergemem_worklist.at(next);
3134     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3135     // Note: we don't want to use MergeMemStream here because we only want to
3136     // scan inputs which exist at the start, not ones we add during processing.
3137     // Note 2: MergeMem may already contains instance memory slices added
3138     // during find_inst_mem() call when memory nodes were processed above.
3139     igvn->hash_delete(nmm);
3140     uint nslices = nmm->req();
3141     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3142       Node* mem = nmm->in(i);
3143       Node* cur = NULL;
3144       if (mem == NULL || mem->is_top())
3145         continue;
3146       // First, update mergemem by moving memory nodes to corresponding slices
3147       // if their type became more precise since this mergemem was created.
3148       while (mem->is_Mem()) {
3149         const Type *at = igvn->type(mem->in(MemNode::Address));
3150         if (at != Type::TOP) {
3151           assert (at->isa_ptr() != NULL, "pointer type required.");
3152           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3153           if (idx == i) {
3154             if (cur == NULL)
3155               cur = mem;
3156           } else {
3157             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3158               nmm->set_memory_at(idx, mem);
3159             }
3160           }
3161         }
3162         mem = mem->in(MemNode::Memory);
3163       }
3164       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3165       // Find any instance of the current type if we haven't encountered
3166       // already a memory slice of the instance along the memory chain.
3167       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3168         if((uint)_compile->get_general_index(ni) == i) {
3169           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3170           if (nmm->is_empty_memory(m)) {
3171             Node* result = find_inst_mem(mem, ni, orig_phis);
3172             if (_compile->failing()) {
3173               return;
3174             }
3175             nmm->set_memory_at(ni, result);
3176           }
3177         }
3178       }
3179     }
3180     // Find the rest of instances values
3181     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3182       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3183       Node* result = step_through_mergemem(nmm, ni, tinst);
3184       if (result == nmm->base_memory()) {
3185         // Didn't find instance memory, search through general slice recursively.
3186         result = nmm->memory_at(_compile->get_general_index(ni));
3187         result = find_inst_mem(result, ni, orig_phis);
3188         if (_compile->failing()) {
3189           return;
3190         }
3191         nmm->set_memory_at(ni, result);
3192       }
3193     }
3194     igvn->hash_insert(nmm);
3195     record_for_optimizer(nmm);
3196   }
3197 
3198   //  Phase 4:  Update the inputs of non-instance memory Phis and
3199   //            the Memory input of memnodes
3200   // First update the inputs of any non-instance Phi's from
3201   // which we split out an instance Phi.  Note we don't have
3202   // to recursively process Phi's encounted on the input memory
3203   // chains as is done in split_memory_phi() since they  will
3204   // also be processed here.
3205   for (int j = 0; j < orig_phis.length(); j++) {
3206     PhiNode *phi = orig_phis.at(j);
3207     int alias_idx = _compile->get_alias_index(phi->adr_type());
3208     igvn->hash_delete(phi);
3209     for (uint i = 1; i < phi->req(); i++) {
3210       Node *mem = phi->in(i);
3211       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3212       if (_compile->failing()) {
3213         return;
3214       }
3215       if (mem != new_mem) {
3216         phi->set_req(i, new_mem);
3217       }
3218     }
3219     igvn->hash_insert(phi);
3220     record_for_optimizer(phi);
3221   }
3222 
3223   // Update the memory inputs of MemNodes with the value we computed
3224   // in Phase 2 and move stores memory users to corresponding memory slices.
3225   // Disable memory split verification code until the fix for 6984348.
3226   // Currently it produces false negative results since it does not cover all cases.
3227 #if 0 // ifdef ASSERT
3228   visited.Reset();
3229   Node_Stack old_mems(arena, _compile->unique() >> 2);
3230 #endif
3231   for (uint i = 0; i < ideal_nodes.size(); i++) {
3232     Node*    n = ideal_nodes.at(i);
3233     Node* nmem = get_map(n->_idx);
3234     assert(nmem != NULL, "sanity");
3235     if (n->is_Mem()) {
3236 #if 0 // ifdef ASSERT
3237       Node* old_mem = n->in(MemNode::Memory);
3238       if (!visited.test_set(old_mem->_idx)) {
3239         old_mems.push(old_mem, old_mem->outcnt());
3240       }
3241 #endif
3242       assert(n->in(MemNode::Memory) != nmem, "sanity");
3243       if (!n->is_Load()) {
3244         // Move memory users of a store first.
3245         move_inst_mem(n, orig_phis);
3246       }
3247       // Now update memory input
3248       igvn->hash_delete(n);
3249       n->set_req(MemNode::Memory, nmem);
3250       igvn->hash_insert(n);
3251       record_for_optimizer(n);
3252     } else {
3253       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3254              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3255     }
3256   }
3257 #if 0 // ifdef ASSERT
3258   // Verify that memory was split correctly
3259   while (old_mems.is_nonempty()) {
3260     Node* old_mem = old_mems.node();
3261     uint  old_cnt = old_mems.index();
3262     old_mems.pop();
3263     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3264   }
3265 #endif
3266 }
3267 
3268 #ifndef PRODUCT
3269 static const char *node_type_names[] = {
3270   "UnknownType",
3271   "JavaObject",
3272   "LocalVar",
3273   "Field",
3274   "Arraycopy"
3275 };
3276 
3277 static const char *esc_names[] = {
3278   "UnknownEscape",
3279   "NoEscape",
3280   "ArgEscape",
3281   "GlobalEscape"
3282 };
3283 
3284 void PointsToNode::dump(bool print_state) const {
3285   NodeType nt = node_type();
3286   tty->print("%s ", node_type_names[(int) nt]);
3287   if (print_state) {
3288     EscapeState es = escape_state();
3289     EscapeState fields_es = fields_escape_state();
3290     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3291     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3292       tty->print("NSR ");
3293   }
3294   if (is_Field()) {
3295     FieldNode* f = (FieldNode*)this;
3296     if (f->is_oop())
3297       tty->print("oop ");
3298     if (f->offset() > 0)
3299       tty->print("+%d ", f->offset());
3300     tty->print("(");
3301     for (BaseIterator i(f); i.has_next(); i.next()) {
3302       PointsToNode* b = i.get();
3303       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3304     }
3305     tty->print(" )");
3306   }
3307   tty->print("[");
3308   for (EdgeIterator i(this); i.has_next(); i.next()) {
3309     PointsToNode* e = i.get();
3310     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3311   }
3312   tty->print(" [");
3313   for (UseIterator i(this); i.has_next(); i.next()) {
3314     PointsToNode* u = i.get();
3315     bool is_base = false;
3316     if (PointsToNode::is_base_use(u)) {
3317       is_base = true;
3318       u = PointsToNode::get_use_node(u)->as_Field();
3319     }
3320     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3321   }
3322   tty->print(" ]]  ");
3323   if (_node == NULL)
3324     tty->print_cr("<null>");
3325   else
3326     _node->dump();
3327 }
3328 
3329 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3330   bool first = true;
3331   int ptnodes_length = ptnodes_worklist.length();
3332   for (int i = 0; i < ptnodes_length; i++) {
3333     PointsToNode *ptn = ptnodes_worklist.at(i);
3334     if (ptn == NULL || !ptn->is_JavaObject())
3335       continue;
3336     PointsToNode::EscapeState es = ptn->escape_state();
3337     if ((es != PointsToNode::NoEscape) && !Verbose) {
3338       continue;
3339     }
3340     Node* n = ptn->ideal_node();
3341     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3342                              n->as_CallStaticJava()->is_boxing_method())) {
3343       if (first) {
3344         tty->cr();
3345         tty->print("======== Connection graph for ");
3346         _compile->method()->print_short_name();
3347         tty->cr();
3348         first = false;
3349       }
3350       ptn->dump();
3351       // Print all locals and fields which reference this allocation
3352       for (UseIterator j(ptn); j.has_next(); j.next()) {
3353         PointsToNode* use = j.get();
3354         if (use->is_LocalVar()) {
3355           use->dump(Verbose);
3356         } else if (Verbose) {
3357           use->dump();
3358         }
3359       }
3360       tty->cr();
3361     }
3362   }
3363 }
3364 #endif