1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/countbitsnode.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/idealKit.hpp"
  40 #include "opto/mathexactnode.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/mulnode.hpp"
  43 #include "opto/narrowptrnode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subnode.hpp"
  47 #include "prims/nativeLookup.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "trace/traceMacros.hpp"
  50 
  51 class LibraryIntrinsic : public InlineCallGenerator {
  52   // Extend the set of intrinsics known to the runtime:
  53  public:
  54  private:
  55   bool             _is_virtual;
  56   bool             _does_virtual_dispatch;
  57   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  58   int8_t           _last_predicate; // Last generated predicate
  59   vmIntrinsics::ID _intrinsic_id;
  60 
  61  public:
  62   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  63     : InlineCallGenerator(m),
  64       _is_virtual(is_virtual),
  65       _does_virtual_dispatch(does_virtual_dispatch),
  66       _predicates_count((int8_t)predicates_count),
  67       _last_predicate((int8_t)-1),
  68       _intrinsic_id(id)
  69   {
  70   }
  71   virtual bool is_intrinsic() const { return true; }
  72   virtual bool is_virtual()   const { return _is_virtual; }
  73   virtual bool is_predicated() const { return _predicates_count > 0; }
  74   virtual int  predicates_count() const { return _predicates_count; }
  75   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  76   virtual JVMState* generate(JVMState* jvms);
  77   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  78   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  79 };
  80 
  81 
  82 // Local helper class for LibraryIntrinsic:
  83 class LibraryCallKit : public GraphKit {
  84  private:
  85   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  86   Node*             _result;        // the result node, if any
  87   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  88 
  89   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  90 
  91  public:
  92   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  93     : GraphKit(jvms),
  94       _intrinsic(intrinsic),
  95       _result(NULL)
  96   {
  97     // Check if this is a root compile.  In that case we don't have a caller.
  98     if (!jvms->has_method()) {
  99       _reexecute_sp = sp();
 100     } else {
 101       // Find out how many arguments the interpreter needs when deoptimizing
 102       // and save the stack pointer value so it can used by uncommon_trap.
 103       // We find the argument count by looking at the declared signature.
 104       bool ignored_will_link;
 105       ciSignature* declared_signature = NULL;
 106       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 107       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 108       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 109     }
 110   }
 111 
 112   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 113 
 114   ciMethod*         caller()    const    { return jvms()->method(); }
 115   int               bci()       const    { return jvms()->bci(); }
 116   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 117   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 118   ciMethod*         callee()    const    { return _intrinsic->method(); }
 119 
 120   bool  try_to_inline(int predicate);
 121   Node* try_to_predicate(int predicate);
 122 
 123   void push_result() {
 124     // Push the result onto the stack.
 125     if (!stopped() && result() != NULL) {
 126       BasicType bt = result()->bottom_type()->basic_type();
 127       push_node(bt, result());
 128     }
 129   }
 130 
 131  private:
 132   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 133     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 134   }
 135 
 136   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 137   void  set_result(RegionNode* region, PhiNode* value);
 138   Node*     result() { return _result; }
 139 
 140   virtual int reexecute_sp() { return _reexecute_sp; }
 141 
 142   // Helper functions to inline natives
 143   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 144   Node* generate_slow_guard(Node* test, RegionNode* region);
 145   Node* generate_fair_guard(Node* test, RegionNode* region);
 146   Node* generate_negative_guard(Node* index, RegionNode* region,
 147                                 // resulting CastII of index:
 148                                 Node* *pos_index = NULL);
 149   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 150                                    // resulting CastII of index:
 151                                    Node* *pos_index = NULL);
 152   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 153                              Node* array_length,
 154                              RegionNode* region);
 155   Node* generate_current_thread(Node* &tls_output);
 156   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 157                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 158   Node* load_mirror_from_klass(Node* klass);
 159   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 160                                       RegionNode* region, int null_path,
 161                                       int offset);
 162   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 163                                RegionNode* region, int null_path) {
 164     int offset = java_lang_Class::klass_offset_in_bytes();
 165     return load_klass_from_mirror_common(mirror, never_see_null,
 166                                          region, null_path,
 167                                          offset);
 168   }
 169   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 170                                      RegionNode* region, int null_path) {
 171     int offset = java_lang_Class::array_klass_offset_in_bytes();
 172     return load_klass_from_mirror_common(mirror, never_see_null,
 173                                          region, null_path,
 174                                          offset);
 175   }
 176   Node* generate_access_flags_guard(Node* kls,
 177                                     int modifier_mask, int modifier_bits,
 178                                     RegionNode* region);
 179   Node* generate_interface_guard(Node* kls, RegionNode* region);
 180   Node* generate_array_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, false, false);
 182   }
 183   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, false, true);
 185   }
 186   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, true, false);
 188   }
 189   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, true, true);
 191   }
 192   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 193                                     bool obj_array, bool not_array);
 194   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 195   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 196                                      bool is_virtual = false, bool is_static = false);
 197   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 198     return generate_method_call(method_id, false, true);
 199   }
 200   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 201     return generate_method_call(method_id, true, false);
 202   }
 203   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 204 
 205   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 206   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 207   bool inline_string_compareTo();
 208   bool inline_string_indexOf();
 209   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 210   bool inline_string_equals();
 211   Node* round_double_node(Node* n);
 212   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 213   bool inline_math_native(vmIntrinsics::ID id);
 214   bool inline_trig(vmIntrinsics::ID id);
 215   bool inline_math(vmIntrinsics::ID id);
 216   template <typename OverflowOp>
 217   bool inline_math_overflow(Node* arg1, Node* arg2);
 218   void inline_math_mathExact(Node* math, Node* test);
 219   bool inline_math_addExactI(bool is_increment);
 220   bool inline_math_addExactL(bool is_increment);
 221   bool inline_math_multiplyExactI();
 222   bool inline_math_multiplyExactL();
 223   bool inline_math_negateExactI();
 224   bool inline_math_negateExactL();
 225   bool inline_math_subtractExactI(bool is_decrement);
 226   bool inline_math_subtractExactL(bool is_decrement);
 227   bool inline_exp();
 228   bool inline_pow();
 229   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 230   bool inline_min_max(vmIntrinsics::ID id);
 231   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 232   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 233   int classify_unsafe_addr(Node* &base, Node* &offset);
 234   Node* make_unsafe_address(Node* base, Node* offset);
 235   // Helper for inline_unsafe_access.
 236   // Generates the guards that check whether the result of
 237   // Unsafe.getObject should be recorded in an SATB log buffer.
 238   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 239   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 240   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 241   static bool klass_needs_init_guard(Node* kls);
 242   bool inline_unsafe_allocate();
 243   bool inline_unsafe_copyMemory();
 244   bool inline_native_currentThread();
 245 #ifdef TRACE_HAVE_INTRINSICS
 246   bool inline_native_classID();
 247   bool inline_native_threadID();
 248 #endif
 249   bool inline_native_time_funcs(address method, const char* funcName);
 250   bool inline_native_isInterrupted();
 251   bool inline_native_Class_query(vmIntrinsics::ID id);
 252   bool inline_native_subtype_check();
 253 
 254   bool inline_native_newArray();
 255   bool inline_native_getLength();
 256   bool inline_array_copyOf(bool is_copyOfRange);
 257   bool inline_array_equals();
 258   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 259   bool inline_native_clone(bool is_virtual);
 260   bool inline_native_Reflection_getCallerClass();
 261   // Helper function for inlining native object hash method
 262   bool inline_native_hashcode(bool is_virtual, bool is_static);
 263   bool inline_native_getClass();
 264 
 265   // Helper functions for inlining arraycopy
 266   bool inline_arraycopy();
 267   void generate_arraycopy(const TypePtr* adr_type,
 268                           BasicType basic_elem_type,
 269                           Node* src,  Node* src_offset,
 270                           Node* dest, Node* dest_offset,
 271                           Node* copy_length,
 272                           bool disjoint_bases = false,
 273                           bool length_never_negative = false,
 274                           RegionNode* slow_region = NULL);
 275   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 276                                                 RegionNode* slow_region);
 277   void generate_clear_array(const TypePtr* adr_type,
 278                             Node* dest,
 279                             BasicType basic_elem_type,
 280                             Node* slice_off,
 281                             Node* slice_len,
 282                             Node* slice_end);
 283   bool generate_block_arraycopy(const TypePtr* adr_type,
 284                                 BasicType basic_elem_type,
 285                                 AllocateNode* alloc,
 286                                 Node* src,  Node* src_offset,
 287                                 Node* dest, Node* dest_offset,
 288                                 Node* dest_size, bool dest_uninitialized);
 289   void generate_slow_arraycopy(const TypePtr* adr_type,
 290                                Node* src,  Node* src_offset,
 291                                Node* dest, Node* dest_offset,
 292                                Node* copy_length, bool dest_uninitialized);
 293   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 294                                      Node* dest_elem_klass,
 295                                      Node* src,  Node* src_offset,
 296                                      Node* dest, Node* dest_offset,
 297                                      Node* copy_length, bool dest_uninitialized);
 298   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 299                                    Node* src,  Node* src_offset,
 300                                    Node* dest, Node* dest_offset,
 301                                    Node* copy_length, bool dest_uninitialized);
 302   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 303                                     BasicType basic_elem_type,
 304                                     bool disjoint_bases,
 305                                     Node* src,  Node* src_offset,
 306                                     Node* dest, Node* dest_offset,
 307                                     Node* copy_length, bool dest_uninitialized);
 308   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 309   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 310   bool inline_unsafe_ordered_store(BasicType type);
 311   bool inline_unsafe_fence(vmIntrinsics::ID id);
 312   bool inline_fp_conversions(vmIntrinsics::ID id);
 313   bool inline_number_methods(vmIntrinsics::ID id);
 314   bool inline_reference_get();
 315   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 316   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 317   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 318   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 319   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 320   bool inline_sha_implCompress(vmIntrinsics::ID id);
 321   bool inline_digestBase_implCompressMB(int predicate);
 322   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 323                                  bool long_state, address stubAddr, const char *stubName,
 324                                  Node* src_start, Node* ofs, Node* limit);
 325   Node* get_state_from_sha_object(Node *sha_object);
 326   Node* get_state_from_sha5_object(Node *sha_object);
 327   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 328   bool inline_encodeISOArray();
 329   bool inline_updateCRC32();
 330   bool inline_updateBytesCRC32();
 331   bool inline_updateByteBufferCRC32();
 332 };
 333 
 334 
 335 //---------------------------make_vm_intrinsic----------------------------
 336 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 337   vmIntrinsics::ID id = m->intrinsic_id();
 338   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 339 
 340   if (DisableIntrinsic[0] != '\0'
 341       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 342     // disabled by a user request on the command line:
 343     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 344     return NULL;
 345   }
 346 
 347   if (!m->is_loaded()) {
 348     // do not attempt to inline unloaded methods
 349     return NULL;
 350   }
 351 
 352   // Only a few intrinsics implement a virtual dispatch.
 353   // They are expensive calls which are also frequently overridden.
 354   if (is_virtual) {
 355     switch (id) {
 356     case vmIntrinsics::_hashCode:
 357     case vmIntrinsics::_clone:
 358       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 359       break;
 360     default:
 361       return NULL;
 362     }
 363   }
 364 
 365   // -XX:-InlineNatives disables nearly all intrinsics:
 366   if (!InlineNatives) {
 367     switch (id) {
 368     case vmIntrinsics::_indexOf:
 369     case vmIntrinsics::_compareTo:
 370     case vmIntrinsics::_equals:
 371     case vmIntrinsics::_equalsC:
 372     case vmIntrinsics::_getAndAddInt:
 373     case vmIntrinsics::_getAndAddLong:
 374     case vmIntrinsics::_getAndSetInt:
 375     case vmIntrinsics::_getAndSetLong:
 376     case vmIntrinsics::_getAndSetObject:
 377     case vmIntrinsics::_loadFence:
 378     case vmIntrinsics::_storeFence:
 379     case vmIntrinsics::_fullFence:
 380       break;  // InlineNatives does not control String.compareTo
 381     case vmIntrinsics::_Reference_get:
 382       break;  // InlineNatives does not control Reference.get
 383     default:
 384       return NULL;
 385     }
 386   }
 387 
 388   int predicates = 0;
 389   bool does_virtual_dispatch = false;
 390 
 391   switch (id) {
 392   case vmIntrinsics::_compareTo:
 393     if (!SpecialStringCompareTo)  return NULL;
 394     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 395     break;
 396   case vmIntrinsics::_indexOf:
 397     if (!SpecialStringIndexOf)  return NULL;
 398     break;
 399   case vmIntrinsics::_equals:
 400     if (!SpecialStringEquals)  return NULL;
 401     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 402     break;
 403   case vmIntrinsics::_equalsC:
 404     if (!SpecialArraysEquals)  return NULL;
 405     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 406     break;
 407   case vmIntrinsics::_arraycopy:
 408     if (!InlineArrayCopy)  return NULL;
 409     break;
 410   case vmIntrinsics::_copyMemory:
 411     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 412     if (!InlineArrayCopy)  return NULL;
 413     break;
 414   case vmIntrinsics::_hashCode:
 415     if (!InlineObjectHash)  return NULL;
 416     does_virtual_dispatch = true;
 417     break;
 418   case vmIntrinsics::_clone:
 419     does_virtual_dispatch = true;
 420   case vmIntrinsics::_copyOf:
 421   case vmIntrinsics::_copyOfRange:
 422     if (!InlineObjectCopy)  return NULL;
 423     // These also use the arraycopy intrinsic mechanism:
 424     if (!InlineArrayCopy)  return NULL;
 425     break;
 426   case vmIntrinsics::_encodeISOArray:
 427     if (!SpecialEncodeISOArray)  return NULL;
 428     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 429     break;
 430   case vmIntrinsics::_checkIndex:
 431     // We do not intrinsify this.  The optimizer does fine with it.
 432     return NULL;
 433 
 434   case vmIntrinsics::_getCallerClass:
 435     if (!InlineReflectionGetCallerClass)  return NULL;
 436     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 437     break;
 438 
 439   case vmIntrinsics::_bitCount_i:
 440     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 441     break;
 442 
 443   case vmIntrinsics::_bitCount_l:
 444     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 445     break;
 446 
 447   case vmIntrinsics::_numberOfLeadingZeros_i:
 448     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 449     break;
 450 
 451   case vmIntrinsics::_numberOfLeadingZeros_l:
 452     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 453     break;
 454 
 455   case vmIntrinsics::_numberOfTrailingZeros_i:
 456     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 457     break;
 458 
 459   case vmIntrinsics::_numberOfTrailingZeros_l:
 460     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 461     break;
 462 
 463   case vmIntrinsics::_reverseBytes_c:
 464     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 465     break;
 466   case vmIntrinsics::_reverseBytes_s:
 467     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 468     break;
 469   case vmIntrinsics::_reverseBytes_i:
 470     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 471     break;
 472   case vmIntrinsics::_reverseBytes_l:
 473     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 474     break;
 475 
 476   case vmIntrinsics::_Reference_get:
 477     // Use the intrinsic version of Reference.get() so that the value in
 478     // the referent field can be registered by the G1 pre-barrier code.
 479     // Also add memory barrier to prevent commoning reads from this field
 480     // across safepoint since GC can change it value.
 481     break;
 482 
 483   case vmIntrinsics::_compareAndSwapObject:
 484 #ifdef _LP64
 485     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 486 #endif
 487     break;
 488 
 489   case vmIntrinsics::_compareAndSwapLong:
 490     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 491     break;
 492 
 493   case vmIntrinsics::_getAndAddInt:
 494     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 495     break;
 496 
 497   case vmIntrinsics::_getAndAddLong:
 498     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 499     break;
 500 
 501   case vmIntrinsics::_getAndSetInt:
 502     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 503     break;
 504 
 505   case vmIntrinsics::_getAndSetLong:
 506     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 507     break;
 508 
 509   case vmIntrinsics::_getAndSetObject:
 510 #ifdef _LP64
 511     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 512     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 513     break;
 514 #else
 515     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 516     break;
 517 #endif
 518 
 519   case vmIntrinsics::_aescrypt_encryptBlock:
 520   case vmIntrinsics::_aescrypt_decryptBlock:
 521     if (!UseAESIntrinsics) return NULL;
 522     break;
 523 
 524   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 525   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 526     if (!UseAESIntrinsics) return NULL;
 527     // these two require the predicated logic
 528     predicates = 1;
 529     break;
 530 
 531   case vmIntrinsics::_sha_implCompress:
 532     if (!UseSHA1Intrinsics) return NULL;
 533     break;
 534 
 535   case vmIntrinsics::_sha2_implCompress:
 536     if (!UseSHA256Intrinsics) return NULL;
 537     break;
 538 
 539   case vmIntrinsics::_sha5_implCompress:
 540     if (!UseSHA512Intrinsics) return NULL;
 541     break;
 542 
 543   case vmIntrinsics::_digestBase_implCompressMB:
 544     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 545     predicates = 3;
 546     break;
 547 
 548   case vmIntrinsics::_updateCRC32:
 549   case vmIntrinsics::_updateBytesCRC32:
 550   case vmIntrinsics::_updateByteBufferCRC32:
 551     if (!UseCRC32Intrinsics) return NULL;
 552     break;
 553 
 554   case vmIntrinsics::_incrementExactI:
 555   case vmIntrinsics::_addExactI:
 556     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 557     break;
 558   case vmIntrinsics::_incrementExactL:
 559   case vmIntrinsics::_addExactL:
 560     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 561     break;
 562   case vmIntrinsics::_decrementExactI:
 563   case vmIntrinsics::_subtractExactI:
 564     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 565     break;
 566   case vmIntrinsics::_decrementExactL:
 567   case vmIntrinsics::_subtractExactL:
 568     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 569     break;
 570   case vmIntrinsics::_negateExactI:
 571     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 572     break;
 573   case vmIntrinsics::_negateExactL:
 574     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 575     break;
 576   case vmIntrinsics::_multiplyExactI:
 577     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 578     break;
 579   case vmIntrinsics::_multiplyExactL:
 580     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 581     break;
 582 
 583  default:
 584     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 585     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 586     break;
 587   }
 588 
 589   // -XX:-InlineClassNatives disables natives from the Class class.
 590   // The flag applies to all reflective calls, notably Array.newArray
 591   // (visible to Java programmers as Array.newInstance).
 592   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 593       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 594     if (!InlineClassNatives)  return NULL;
 595   }
 596 
 597   // -XX:-InlineThreadNatives disables natives from the Thread class.
 598   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 599     if (!InlineThreadNatives)  return NULL;
 600   }
 601 
 602   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 603   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 604       m->holder()->name() == ciSymbol::java_lang_Float() ||
 605       m->holder()->name() == ciSymbol::java_lang_Double()) {
 606     if (!InlineMathNatives)  return NULL;
 607   }
 608 
 609   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 610   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 611     if (!InlineUnsafeOps)  return NULL;
 612   }
 613 
 614   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 615 }
 616 
 617 //----------------------register_library_intrinsics-----------------------
 618 // Initialize this file's data structures, for each Compile instance.
 619 void Compile::register_library_intrinsics() {
 620   // Nothing to do here.
 621 }
 622 
 623 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 624   LibraryCallKit kit(jvms, this);
 625   Compile* C = kit.C;
 626   int nodes = C->unique();
 627 #ifndef PRODUCT
 628   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 629     char buf[1000];
 630     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 631     tty->print_cr("Intrinsic %s", str);
 632   }
 633 #endif
 634   ciMethod* callee = kit.callee();
 635   const int bci    = kit.bci();
 636 
 637   // Try to inline the intrinsic.
 638   if (kit.try_to_inline(_last_predicate)) {
 639     if (C->print_intrinsics() || C->print_inlining()) {
 640       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 641     }
 642     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 643     if (C->log()) {
 644       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 645                      vmIntrinsics::name_at(intrinsic_id()),
 646                      (is_virtual() ? " virtual='1'" : ""),
 647                      C->unique() - nodes);
 648     }
 649     // Push the result from the inlined method onto the stack.
 650     kit.push_result();
 651     C->print_inlining_update(this);
 652     return kit.transfer_exceptions_into_jvms();
 653   }
 654 
 655   // The intrinsic bailed out
 656   if (C->print_intrinsics() || C->print_inlining()) {
 657     if (jvms->has_method()) {
 658       // Not a root compile.
 659       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 660       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 661     } else {
 662       // Root compile
 663       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 664                vmIntrinsics::name_at(intrinsic_id()),
 665                (is_virtual() ? " (virtual)" : ""), bci);
 666     }
 667   }
 668   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 669   C->print_inlining_update(this);
 670   return NULL;
 671 }
 672 
 673 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 674   LibraryCallKit kit(jvms, this);
 675   Compile* C = kit.C;
 676   int nodes = C->unique();
 677   _last_predicate = predicate;
 678 #ifndef PRODUCT
 679   assert(is_predicated() && predicate < predicates_count(), "sanity");
 680   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 681     char buf[1000];
 682     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 683     tty->print_cr("Predicate for intrinsic %s", str);
 684   }
 685 #endif
 686   ciMethod* callee = kit.callee();
 687   const int bci    = kit.bci();
 688 
 689   Node* slow_ctl = kit.try_to_predicate(predicate);
 690   if (!kit.failing()) {
 691     if (C->print_intrinsics() || C->print_inlining()) {
 692       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 693     }
 694     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 695     if (C->log()) {
 696       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 697                      vmIntrinsics::name_at(intrinsic_id()),
 698                      (is_virtual() ? " virtual='1'" : ""),
 699                      C->unique() - nodes);
 700     }
 701     return slow_ctl; // Could be NULL if the check folds.
 702   }
 703 
 704   // The intrinsic bailed out
 705   if (C->print_intrinsics() || C->print_inlining()) {
 706     if (jvms->has_method()) {
 707       // Not a root compile.
 708       const char* msg = "failed to generate predicate for intrinsic";
 709       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 710     } else {
 711       // Root compile
 712       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 713                                         vmIntrinsics::name_at(intrinsic_id()),
 714                                         (is_virtual() ? " (virtual)" : ""), bci);
 715     }
 716   }
 717   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 718   return NULL;
 719 }
 720 
 721 bool LibraryCallKit::try_to_inline(int predicate) {
 722   // Handle symbolic names for otherwise undistinguished boolean switches:
 723   const bool is_store       = true;
 724   const bool is_native_ptr  = true;
 725   const bool is_static      = true;
 726   const bool is_volatile    = true;
 727 
 728   if (!jvms()->has_method()) {
 729     // Root JVMState has a null method.
 730     assert(map()->memory()->Opcode() == Op_Parm, "");
 731     // Insert the memory aliasing node
 732     set_all_memory(reset_memory());
 733   }
 734   assert(merged_memory(), "");
 735 
 736 
 737   switch (intrinsic_id()) {
 738   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 739   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 740   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 741 
 742   case vmIntrinsics::_dsin:
 743   case vmIntrinsics::_dcos:
 744   case vmIntrinsics::_dtan:
 745   case vmIntrinsics::_dabs:
 746   case vmIntrinsics::_datan2:
 747   case vmIntrinsics::_dsqrt:
 748   case vmIntrinsics::_dexp:
 749   case vmIntrinsics::_dlog:
 750   case vmIntrinsics::_dlog10:
 751   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 752 
 753   case vmIntrinsics::_min:
 754   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 755 
 756   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 757   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 758   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 759   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 760   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 761   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 762   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 763   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 764   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 765   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 766   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 767   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 768 
 769   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 770 
 771   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 772   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 773   case vmIntrinsics::_equals:                   return inline_string_equals();
 774 
 775   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 776   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 777   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 778   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 779   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 780   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 781   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 782   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 783   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 784 
 785   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 786   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 787   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 788   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 789   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 790   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 791   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 792   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 793   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 794 
 795   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 796   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 797   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 798   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 799   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 800   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 801   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 802   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 803 
 804   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 805   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 806   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 807   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 808   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 809   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 810   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 811   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 812 
 813   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 814   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 815   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 816   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 817   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 818   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 819   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 820   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 821   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 822 
 823   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 824   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 825   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 826   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 827   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 828   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 829   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 830   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 831   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 832 
 833   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 834   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 835   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 836   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 837 
 838   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 839   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 840   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 841 
 842   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 843   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 844   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 845 
 846   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 847   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 848   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 849   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 850   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 851 
 852   case vmIntrinsics::_loadFence:
 853   case vmIntrinsics::_storeFence:
 854   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 855 
 856   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 857   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 858 
 859 #ifdef TRACE_HAVE_INTRINSICS
 860   case vmIntrinsics::_classID:                  return inline_native_classID();
 861   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 862   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 863 #endif
 864   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 865   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 866   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 867   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 868   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 869   case vmIntrinsics::_getLength:                return inline_native_getLength();
 870   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 871   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 872   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 873   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 874 
 875   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 876 
 877   case vmIntrinsics::_isInstance:
 878   case vmIntrinsics::_getModifiers:
 879   case vmIntrinsics::_isInterface:
 880   case vmIntrinsics::_isArray:
 881   case vmIntrinsics::_isPrimitive:
 882   case vmIntrinsics::_getSuperclass:
 883   case vmIntrinsics::_getComponentType:
 884   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 885 
 886   case vmIntrinsics::_floatToRawIntBits:
 887   case vmIntrinsics::_floatToIntBits:
 888   case vmIntrinsics::_intBitsToFloat:
 889   case vmIntrinsics::_doubleToRawLongBits:
 890   case vmIntrinsics::_doubleToLongBits:
 891   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 892 
 893   case vmIntrinsics::_numberOfLeadingZeros_i:
 894   case vmIntrinsics::_numberOfLeadingZeros_l:
 895   case vmIntrinsics::_numberOfTrailingZeros_i:
 896   case vmIntrinsics::_numberOfTrailingZeros_l:
 897   case vmIntrinsics::_bitCount_i:
 898   case vmIntrinsics::_bitCount_l:
 899   case vmIntrinsics::_reverseBytes_i:
 900   case vmIntrinsics::_reverseBytes_l:
 901   case vmIntrinsics::_reverseBytes_s:
 902   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 903 
 904   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 905 
 906   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 907 
 908   case vmIntrinsics::_aescrypt_encryptBlock:
 909   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 910 
 911   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 912   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 913     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 914 
 915   case vmIntrinsics::_sha_implCompress:
 916   case vmIntrinsics::_sha2_implCompress:
 917   case vmIntrinsics::_sha5_implCompress:
 918     return inline_sha_implCompress(intrinsic_id());
 919 
 920   case vmIntrinsics::_digestBase_implCompressMB:
 921     return inline_digestBase_implCompressMB(predicate);
 922 
 923   case vmIntrinsics::_encodeISOArray:
 924     return inline_encodeISOArray();
 925 
 926   case vmIntrinsics::_updateCRC32:
 927     return inline_updateCRC32();
 928   case vmIntrinsics::_updateBytesCRC32:
 929     return inline_updateBytesCRC32();
 930   case vmIntrinsics::_updateByteBufferCRC32:
 931     return inline_updateByteBufferCRC32();
 932 
 933   default:
 934     // If you get here, it may be that someone has added a new intrinsic
 935     // to the list in vmSymbols.hpp without implementing it here.
 936 #ifndef PRODUCT
 937     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 938       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 939                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 940     }
 941 #endif
 942     return false;
 943   }
 944 }
 945 
 946 Node* LibraryCallKit::try_to_predicate(int predicate) {
 947   if (!jvms()->has_method()) {
 948     // Root JVMState has a null method.
 949     assert(map()->memory()->Opcode() == Op_Parm, "");
 950     // Insert the memory aliasing node
 951     set_all_memory(reset_memory());
 952   }
 953   assert(merged_memory(), "");
 954 
 955   switch (intrinsic_id()) {
 956   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 957     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 958   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 959     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 960   case vmIntrinsics::_digestBase_implCompressMB:
 961     return inline_digestBase_implCompressMB_predicate(predicate);
 962 
 963   default:
 964     // If you get here, it may be that someone has added a new intrinsic
 965     // to the list in vmSymbols.hpp without implementing it here.
 966 #ifndef PRODUCT
 967     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 968       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 969                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 970     }
 971 #endif
 972     Node* slow_ctl = control();
 973     set_control(top()); // No fast path instrinsic
 974     return slow_ctl;
 975   }
 976 }
 977 
 978 //------------------------------set_result-------------------------------
 979 // Helper function for finishing intrinsics.
 980 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 981   record_for_igvn(region);
 982   set_control(_gvn.transform(region));
 983   set_result( _gvn.transform(value));
 984   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 985 }
 986 
 987 //------------------------------generate_guard---------------------------
 988 // Helper function for generating guarded fast-slow graph structures.
 989 // The given 'test', if true, guards a slow path.  If the test fails
 990 // then a fast path can be taken.  (We generally hope it fails.)
 991 // In all cases, GraphKit::control() is updated to the fast path.
 992 // The returned value represents the control for the slow path.
 993 // The return value is never 'top'; it is either a valid control
 994 // or NULL if it is obvious that the slow path can never be taken.
 995 // Also, if region and the slow control are not NULL, the slow edge
 996 // is appended to the region.
 997 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 998   if (stopped()) {
 999     // Already short circuited.
1000     return NULL;
1001   }
1002 
1003   // Build an if node and its projections.
1004   // If test is true we take the slow path, which we assume is uncommon.
1005   if (_gvn.type(test) == TypeInt::ZERO) {
1006     // The slow branch is never taken.  No need to build this guard.
1007     return NULL;
1008   }
1009 
1010   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1011 
1012   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
1013   if (if_slow == top()) {
1014     // The slow branch is never taken.  No need to build this guard.
1015     return NULL;
1016   }
1017 
1018   if (region != NULL)
1019     region->add_req(if_slow);
1020 
1021   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
1022   set_control(if_fast);
1023 
1024   return if_slow;
1025 }
1026 
1027 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1028   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1029 }
1030 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1031   return generate_guard(test, region, PROB_FAIR);
1032 }
1033 
1034 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1035                                                      Node* *pos_index) {
1036   if (stopped())
1037     return NULL;                // already stopped
1038   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1039     return NULL;                // index is already adequately typed
1040   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1041   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1042   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1043   if (is_neg != NULL && pos_index != NULL) {
1044     // Emulate effect of Parse::adjust_map_after_if.
1045     Node* ccast = new CastIINode(index, TypeInt::POS);
1046     ccast->set_req(0, control());
1047     (*pos_index) = _gvn.transform(ccast);
1048   }
1049   return is_neg;
1050 }
1051 
1052 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1053                                                         Node* *pos_index) {
1054   if (stopped())
1055     return NULL;                // already stopped
1056   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1057     return NULL;                // index is already adequately typed
1058   Node* cmp_le = _gvn.transform(new CmpINode(index, intcon(0)));
1059   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1060   Node* bol_le = _gvn.transform(new BoolNode(cmp_le, le_or_eq));
1061   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1062   if (is_notp != NULL && pos_index != NULL) {
1063     // Emulate effect of Parse::adjust_map_after_if.
1064     Node* ccast = new CastIINode(index, TypeInt::POS1);
1065     ccast->set_req(0, control());
1066     (*pos_index) = _gvn.transform(ccast);
1067   }
1068   return is_notp;
1069 }
1070 
1071 // Make sure that 'position' is a valid limit index, in [0..length].
1072 // There are two equivalent plans for checking this:
1073 //   A. (offset + copyLength)  unsigned<=  arrayLength
1074 //   B. offset  <=  (arrayLength - copyLength)
1075 // We require that all of the values above, except for the sum and
1076 // difference, are already known to be non-negative.
1077 // Plan A is robust in the face of overflow, if offset and copyLength
1078 // are both hugely positive.
1079 //
1080 // Plan B is less direct and intuitive, but it does not overflow at
1081 // all, since the difference of two non-negatives is always
1082 // representable.  Whenever Java methods must perform the equivalent
1083 // check they generally use Plan B instead of Plan A.
1084 // For the moment we use Plan A.
1085 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1086                                                   Node* subseq_length,
1087                                                   Node* array_length,
1088                                                   RegionNode* region) {
1089   if (stopped())
1090     return NULL;                // already stopped
1091   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1092   if (zero_offset && subseq_length->eqv_uncast(array_length))
1093     return NULL;                // common case of whole-array copy
1094   Node* last = subseq_length;
1095   if (!zero_offset)             // last += offset
1096     last = _gvn.transform(new AddINode(last, offset));
1097   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1098   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1099   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1100   return is_over;
1101 }
1102 
1103 
1104 //--------------------------generate_current_thread--------------------
1105 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1106   ciKlass*    thread_klass = env()->Thread_klass();
1107   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1108   Node* thread = _gvn.transform(new ThreadLocalNode());
1109   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1110   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1111   tls_output = thread;
1112   return threadObj;
1113 }
1114 
1115 
1116 //------------------------------make_string_method_node------------------------
1117 // Helper method for String intrinsic functions. This version is called
1118 // with str1 and str2 pointing to String object nodes.
1119 //
1120 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1121   Node* no_ctrl = NULL;
1122 
1123   // Get start addr of string
1124   Node* str1_value   = load_String_value(no_ctrl, str1);
1125   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1126   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1127 
1128   // Get length of string 1
1129   Node* str1_len  = load_String_length(no_ctrl, str1);
1130 
1131   Node* str2_value   = load_String_value(no_ctrl, str2);
1132   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1133   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1134 
1135   Node* str2_len = NULL;
1136   Node* result = NULL;
1137 
1138   switch (opcode) {
1139   case Op_StrIndexOf:
1140     // Get length of string 2
1141     str2_len = load_String_length(no_ctrl, str2);
1142 
1143     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1144                                 str1_start, str1_len, str2_start, str2_len);
1145     break;
1146   case Op_StrComp:
1147     // Get length of string 2
1148     str2_len = load_String_length(no_ctrl, str2);
1149 
1150     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1151                              str1_start, str1_len, str2_start, str2_len);
1152     break;
1153   case Op_StrEquals:
1154     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1155                                str1_start, str2_start, str1_len);
1156     break;
1157   default:
1158     ShouldNotReachHere();
1159     return NULL;
1160   }
1161 
1162   // All these intrinsics have checks.
1163   C->set_has_split_ifs(true); // Has chance for split-if optimization
1164 
1165   return _gvn.transform(result);
1166 }
1167 
1168 // Helper method for String intrinsic functions. This version is called
1169 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1170 // to Int nodes containing the lenghts of str1 and str2.
1171 //
1172 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1173   Node* result = NULL;
1174   switch (opcode) {
1175   case Op_StrIndexOf:
1176     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1177                                 str1_start, cnt1, str2_start, cnt2);
1178     break;
1179   case Op_StrComp:
1180     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1181                              str1_start, cnt1, str2_start, cnt2);
1182     break;
1183   case Op_StrEquals:
1184     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1185                                str1_start, str2_start, cnt1);
1186     break;
1187   default:
1188     ShouldNotReachHere();
1189     return NULL;
1190   }
1191 
1192   // All these intrinsics have checks.
1193   C->set_has_split_ifs(true); // Has chance for split-if optimization
1194 
1195   return _gvn.transform(result);
1196 }
1197 
1198 //------------------------------inline_string_compareTo------------------------
1199 // public int java.lang.String.compareTo(String anotherString);
1200 bool LibraryCallKit::inline_string_compareTo() {
1201   Node* receiver = null_check(argument(0));
1202   Node* arg      = null_check(argument(1));
1203   if (stopped()) {
1204     return true;
1205   }
1206   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1207   return true;
1208 }
1209 
1210 //------------------------------inline_string_equals------------------------
1211 bool LibraryCallKit::inline_string_equals() {
1212   Node* receiver = null_check_receiver();
1213   // NOTE: Do not null check argument for String.equals() because spec
1214   // allows to specify NULL as argument.
1215   Node* argument = this->argument(1);
1216   if (stopped()) {
1217     return true;
1218   }
1219 
1220   // paths (plus control) merge
1221   RegionNode* region = new RegionNode(5);
1222   Node* phi = new PhiNode(region, TypeInt::BOOL);
1223 
1224   // does source == target string?
1225   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1226   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1227 
1228   Node* if_eq = generate_slow_guard(bol, NULL);
1229   if (if_eq != NULL) {
1230     // receiver == argument
1231     phi->init_req(2, intcon(1));
1232     region->init_req(2, if_eq);
1233   }
1234 
1235   // get String klass for instanceOf
1236   ciInstanceKlass* klass = env()->String_klass();
1237 
1238   if (!stopped()) {
1239     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1240     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1241     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1242 
1243     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1244     //instanceOf == true, fallthrough
1245 
1246     if (inst_false != NULL) {
1247       phi->init_req(3, intcon(0));
1248       region->init_req(3, inst_false);
1249     }
1250   }
1251 
1252   if (!stopped()) {
1253     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1254 
1255     // Properly cast the argument to String
1256     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1257     // This path is taken only when argument's type is String:NotNull.
1258     argument = cast_not_null(argument, false);
1259 
1260     Node* no_ctrl = NULL;
1261 
1262     // Get start addr of receiver
1263     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1264     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1265     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1266 
1267     // Get length of receiver
1268     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1269 
1270     // Get start addr of argument
1271     Node* argument_val    = load_String_value(no_ctrl, argument);
1272     Node* argument_offset = load_String_offset(no_ctrl, argument);
1273     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1274 
1275     // Get length of argument
1276     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1277 
1278     // Check for receiver count != argument count
1279     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1280     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1281     Node* if_ne = generate_slow_guard(bol, NULL);
1282     if (if_ne != NULL) {
1283       phi->init_req(4, intcon(0));
1284       region->init_req(4, if_ne);
1285     }
1286 
1287     // Check for count == 0 is done by assembler code for StrEquals.
1288 
1289     if (!stopped()) {
1290       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1291       phi->init_req(1, equals);
1292       region->init_req(1, control());
1293     }
1294   }
1295 
1296   // post merge
1297   set_control(_gvn.transform(region));
1298   record_for_igvn(region);
1299 
1300   set_result(_gvn.transform(phi));
1301   return true;
1302 }
1303 
1304 //------------------------------inline_array_equals----------------------------
1305 bool LibraryCallKit::inline_array_equals() {
1306   Node* arg1 = argument(0);
1307   Node* arg2 = argument(1);
1308   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1309   return true;
1310 }
1311 
1312 // Java version of String.indexOf(constant string)
1313 // class StringDecl {
1314 //   StringDecl(char[] ca) {
1315 //     offset = 0;
1316 //     count = ca.length;
1317 //     value = ca;
1318 //   }
1319 //   int offset;
1320 //   int count;
1321 //   char[] value;
1322 // }
1323 //
1324 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1325 //                             int targetOffset, int cache_i, int md2) {
1326 //   int cache = cache_i;
1327 //   int sourceOffset = string_object.offset;
1328 //   int sourceCount = string_object.count;
1329 //   int targetCount = target_object.length;
1330 //
1331 //   int targetCountLess1 = targetCount - 1;
1332 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1333 //
1334 //   char[] source = string_object.value;
1335 //   char[] target = target_object;
1336 //   int lastChar = target[targetCountLess1];
1337 //
1338 //  outer_loop:
1339 //   for (int i = sourceOffset; i < sourceEnd; ) {
1340 //     int src = source[i + targetCountLess1];
1341 //     if (src == lastChar) {
1342 //       // With random strings and a 4-character alphabet,
1343 //       // reverse matching at this point sets up 0.8% fewer
1344 //       // frames, but (paradoxically) makes 0.3% more probes.
1345 //       // Since those probes are nearer the lastChar probe,
1346 //       // there is may be a net D$ win with reverse matching.
1347 //       // But, reversing loop inhibits unroll of inner loop
1348 //       // for unknown reason.  So, does running outer loop from
1349 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1350 //       for (int j = 0; j < targetCountLess1; j++) {
1351 //         if (target[targetOffset + j] != source[i+j]) {
1352 //           if ((cache & (1 << source[i+j])) == 0) {
1353 //             if (md2 < j+1) {
1354 //               i += j+1;
1355 //               continue outer_loop;
1356 //             }
1357 //           }
1358 //           i += md2;
1359 //           continue outer_loop;
1360 //         }
1361 //       }
1362 //       return i - sourceOffset;
1363 //     }
1364 //     if ((cache & (1 << src)) == 0) {
1365 //       i += targetCountLess1;
1366 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1367 //     i++;
1368 //   }
1369 //   return -1;
1370 // }
1371 
1372 //------------------------------string_indexOf------------------------
1373 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1374                                      jint cache_i, jint md2_i) {
1375 
1376   Node* no_ctrl  = NULL;
1377   float likely   = PROB_LIKELY(0.9);
1378   float unlikely = PROB_UNLIKELY(0.9);
1379 
1380   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1381 
1382   Node* source        = load_String_value(no_ctrl, string_object);
1383   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1384   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1385 
1386   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1387   jint target_length = target_array->length();
1388   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1389   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1390 
1391   // String.value field is known to be @Stable.
1392   if (UseImplicitStableValues) {
1393     target = cast_array_to_stable(target, target_type);
1394   }
1395 
1396   IdealKit kit(this, false, true);
1397 #define __ kit.
1398   Node* zero             = __ ConI(0);
1399   Node* one              = __ ConI(1);
1400   Node* cache            = __ ConI(cache_i);
1401   Node* md2              = __ ConI(md2_i);
1402   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1403   Node* targetCount      = __ ConI(target_length);
1404   Node* targetCountLess1 = __ ConI(target_length - 1);
1405   Node* targetOffset     = __ ConI(targetOffset_i);
1406   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1407 
1408   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1409   Node* outer_loop = __ make_label(2 /* goto */);
1410   Node* return_    = __ make_label(1);
1411 
1412   __ set(rtn,__ ConI(-1));
1413   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1414        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1415        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1416        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1417        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1418          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1419               Node* tpj = __ AddI(targetOffset, __ value(j));
1420               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1421               Node* ipj  = __ AddI(__ value(i), __ value(j));
1422               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1423               __ if_then(targ, BoolTest::ne, src2); {
1424                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1425                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1426                     __ increment(i, __ AddI(__ value(j), one));
1427                     __ goto_(outer_loop);
1428                   } __ end_if(); __ dead(j);
1429                 }__ end_if(); __ dead(j);
1430                 __ increment(i, md2);
1431                 __ goto_(outer_loop);
1432               }__ end_if();
1433               __ increment(j, one);
1434          }__ end_loop(); __ dead(j);
1435          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1436          __ goto_(return_);
1437        }__ end_if();
1438        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1439          __ increment(i, targetCountLess1);
1440        }__ end_if();
1441        __ increment(i, one);
1442        __ bind(outer_loop);
1443   }__ end_loop(); __ dead(i);
1444   __ bind(return_);
1445 
1446   // Final sync IdealKit and GraphKit.
1447   final_sync(kit);
1448   Node* result = __ value(rtn);
1449 #undef __
1450   C->set_has_loops(true);
1451   return result;
1452 }
1453 
1454 //------------------------------inline_string_indexOf------------------------
1455 bool LibraryCallKit::inline_string_indexOf() {
1456   Node* receiver = argument(0);
1457   Node* arg      = argument(1);
1458 
1459   Node* result;
1460   // Disable the use of pcmpestri until it can be guaranteed that
1461   // the load doesn't cross into the uncommited space.
1462   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1463       UseSSE42Intrinsics) {
1464     // Generate SSE4.2 version of indexOf
1465     // We currently only have match rules that use SSE4.2
1466 
1467     receiver = null_check(receiver);
1468     arg      = null_check(arg);
1469     if (stopped()) {
1470       return true;
1471     }
1472 
1473     ciInstanceKlass* str_klass = env()->String_klass();
1474     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1475 
1476     // Make the merge point
1477     RegionNode* result_rgn = new RegionNode(4);
1478     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1479     Node* no_ctrl  = NULL;
1480 
1481     // Get start addr of source string
1482     Node* source = load_String_value(no_ctrl, receiver);
1483     Node* source_offset = load_String_offset(no_ctrl, receiver);
1484     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1485 
1486     // Get length of source string
1487     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1488 
1489     // Get start addr of substring
1490     Node* substr = load_String_value(no_ctrl, arg);
1491     Node* substr_offset = load_String_offset(no_ctrl, arg);
1492     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1493 
1494     // Get length of source string
1495     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1496 
1497     // Check for substr count > string count
1498     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1499     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1500     Node* if_gt = generate_slow_guard(bol, NULL);
1501     if (if_gt != NULL) {
1502       result_phi->init_req(2, intcon(-1));
1503       result_rgn->init_req(2, if_gt);
1504     }
1505 
1506     if (!stopped()) {
1507       // Check for substr count == 0
1508       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1509       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1510       Node* if_zero = generate_slow_guard(bol, NULL);
1511       if (if_zero != NULL) {
1512         result_phi->init_req(3, intcon(0));
1513         result_rgn->init_req(3, if_zero);
1514       }
1515     }
1516 
1517     if (!stopped()) {
1518       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1519       result_phi->init_req(1, result);
1520       result_rgn->init_req(1, control());
1521     }
1522     set_control(_gvn.transform(result_rgn));
1523     record_for_igvn(result_rgn);
1524     result = _gvn.transform(result_phi);
1525 
1526   } else { // Use LibraryCallKit::string_indexOf
1527     // don't intrinsify if argument isn't a constant string.
1528     if (!arg->is_Con()) {
1529      return false;
1530     }
1531     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1532     if (str_type == NULL) {
1533       return false;
1534     }
1535     ciInstanceKlass* klass = env()->String_klass();
1536     ciObject* str_const = str_type->const_oop();
1537     if (str_const == NULL || str_const->klass() != klass) {
1538       return false;
1539     }
1540     ciInstance* str = str_const->as_instance();
1541     assert(str != NULL, "must be instance");
1542 
1543     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1544     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1545 
1546     int o;
1547     int c;
1548     if (java_lang_String::has_offset_field()) {
1549       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1550       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1551     } else {
1552       o = 0;
1553       c = pat->length();
1554     }
1555 
1556     // constant strings have no offset and count == length which
1557     // simplifies the resulting code somewhat so lets optimize for that.
1558     if (o != 0 || c != pat->length()) {
1559      return false;
1560     }
1561 
1562     receiver = null_check(receiver, T_OBJECT);
1563     // NOTE: No null check on the argument is needed since it's a constant String oop.
1564     if (stopped()) {
1565       return true;
1566     }
1567 
1568     // The null string as a pattern always returns 0 (match at beginning of string)
1569     if (c == 0) {
1570       set_result(intcon(0));
1571       return true;
1572     }
1573 
1574     // Generate default indexOf
1575     jchar lastChar = pat->char_at(o + (c - 1));
1576     int cache = 0;
1577     int i;
1578     for (i = 0; i < c - 1; i++) {
1579       assert(i < pat->length(), "out of range");
1580       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1581     }
1582 
1583     int md2 = c;
1584     for (i = 0; i < c - 1; i++) {
1585       assert(i < pat->length(), "out of range");
1586       if (pat->char_at(o + i) == lastChar) {
1587         md2 = (c - 1) - i;
1588       }
1589     }
1590 
1591     result = string_indexOf(receiver, pat, o, cache, md2);
1592   }
1593   set_result(result);
1594   return true;
1595 }
1596 
1597 //--------------------------round_double_node--------------------------------
1598 // Round a double node if necessary.
1599 Node* LibraryCallKit::round_double_node(Node* n) {
1600   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1601     n = _gvn.transform(new RoundDoubleNode(0, n));
1602   return n;
1603 }
1604 
1605 //------------------------------inline_math-----------------------------------
1606 // public static double Math.abs(double)
1607 // public static double Math.sqrt(double)
1608 // public static double Math.log(double)
1609 // public static double Math.log10(double)
1610 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1611   Node* arg = round_double_node(argument(0));
1612   Node* n;
1613   switch (id) {
1614   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1615   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1616   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1617   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1618   default:  fatal_unexpected_iid(id);  break;
1619   }
1620   set_result(_gvn.transform(n));
1621   return true;
1622 }
1623 
1624 //------------------------------inline_trig----------------------------------
1625 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1626 // argument reduction which will turn into a fast/slow diamond.
1627 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1628   Node* arg = round_double_node(argument(0));
1629   Node* n = NULL;
1630 
1631   switch (id) {
1632   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1633   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1634   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1635   default:  fatal_unexpected_iid(id);  break;
1636   }
1637   n = _gvn.transform(n);
1638 
1639   // Rounding required?  Check for argument reduction!
1640   if (Matcher::strict_fp_requires_explicit_rounding) {
1641     static const double     pi_4 =  0.7853981633974483;
1642     static const double neg_pi_4 = -0.7853981633974483;
1643     // pi/2 in 80-bit extended precision
1644     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1645     // -pi/2 in 80-bit extended precision
1646     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1647     // Cutoff value for using this argument reduction technique
1648     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1649     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1650 
1651     // Pseudocode for sin:
1652     // if (x <= Math.PI / 4.0) {
1653     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1654     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1655     // } else {
1656     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1657     // }
1658     // return StrictMath.sin(x);
1659 
1660     // Pseudocode for cos:
1661     // if (x <= Math.PI / 4.0) {
1662     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1663     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1664     // } else {
1665     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1666     // }
1667     // return StrictMath.cos(x);
1668 
1669     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1670     // requires a special machine instruction to load it.  Instead we'll try
1671     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1672     // probably do the math inside the SIN encoding.
1673 
1674     // Make the merge point
1675     RegionNode* r = new RegionNode(3);
1676     Node* phi = new PhiNode(r, Type::DOUBLE);
1677 
1678     // Flatten arg so we need only 1 test
1679     Node *abs = _gvn.transform(new AbsDNode(arg));
1680     // Node for PI/4 constant
1681     Node *pi4 = makecon(TypeD::make(pi_4));
1682     // Check PI/4 : abs(arg)
1683     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1684     // Check: If PI/4 < abs(arg) then go slow
1685     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1686     // Branch either way
1687     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1688     set_control(opt_iff(r,iff));
1689 
1690     // Set fast path result
1691     phi->init_req(2, n);
1692 
1693     // Slow path - non-blocking leaf call
1694     Node* call = NULL;
1695     switch (id) {
1696     case vmIntrinsics::_dsin:
1697       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1698                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1699                                "Sin", NULL, arg, top());
1700       break;
1701     case vmIntrinsics::_dcos:
1702       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1703                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1704                                "Cos", NULL, arg, top());
1705       break;
1706     case vmIntrinsics::_dtan:
1707       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1708                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1709                                "Tan", NULL, arg, top());
1710       break;
1711     }
1712     assert(control()->in(0) == call, "");
1713     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1714     r->init_req(1, control());
1715     phi->init_req(1, slow_result);
1716 
1717     // Post-merge
1718     set_control(_gvn.transform(r));
1719     record_for_igvn(r);
1720     n = _gvn.transform(phi);
1721 
1722     C->set_has_split_ifs(true); // Has chance for split-if optimization
1723   }
1724   set_result(n);
1725   return true;
1726 }
1727 
1728 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1729   //-------------------
1730   //result=(result.isNaN())? funcAddr():result;
1731   // Check: If isNaN() by checking result!=result? then either trap
1732   // or go to runtime
1733   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1734   // Build the boolean node
1735   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1736 
1737   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1738     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1739       // The pow or exp intrinsic returned a NaN, which requires a call
1740       // to the runtime.  Recompile with the runtime call.
1741       uncommon_trap(Deoptimization::Reason_intrinsic,
1742                     Deoptimization::Action_make_not_entrant);
1743     }
1744     return result;
1745   } else {
1746     // If this inlining ever returned NaN in the past, we compile a call
1747     // to the runtime to properly handle corner cases
1748 
1749     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1750     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1751     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1752 
1753     if (!if_slow->is_top()) {
1754       RegionNode* result_region = new RegionNode(3);
1755       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1756 
1757       result_region->init_req(1, if_fast);
1758       result_val->init_req(1, result);
1759 
1760       set_control(if_slow);
1761 
1762       const TypePtr* no_memory_effects = NULL;
1763       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1764                                    no_memory_effects,
1765                                    x, top(), y, y ? top() : NULL);
1766       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1767 #ifdef ASSERT
1768       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1769       assert(value_top == top(), "second value must be top");
1770 #endif
1771 
1772       result_region->init_req(2, control());
1773       result_val->init_req(2, value);
1774       set_control(_gvn.transform(result_region));
1775       return _gvn.transform(result_val);
1776     } else {
1777       return result;
1778     }
1779   }
1780 }
1781 
1782 //------------------------------inline_exp-------------------------------------
1783 // Inline exp instructions, if possible.  The Intel hardware only misses
1784 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1785 bool LibraryCallKit::inline_exp() {
1786   Node* arg = round_double_node(argument(0));
1787   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1788 
1789   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1790   set_result(n);
1791 
1792   C->set_has_split_ifs(true); // Has chance for split-if optimization
1793   return true;
1794 }
1795 
1796 //------------------------------inline_pow-------------------------------------
1797 // Inline power instructions, if possible.
1798 bool LibraryCallKit::inline_pow() {
1799   // Pseudocode for pow
1800   // if (y == 2) {
1801   //   return x * x;
1802   // } else {
1803   //   if (x <= 0.0) {
1804   //     long longy = (long)y;
1805   //     if ((double)longy == y) { // if y is long
1806   //       if (y + 1 == y) longy = 0; // huge number: even
1807   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1808   //     } else {
1809   //       result = NaN;
1810   //     }
1811   //   } else {
1812   //     result = DPow(x,y);
1813   //   }
1814   //   if (result != result)?  {
1815   //     result = uncommon_trap() or runtime_call();
1816   //   }
1817   //   return result;
1818   // }
1819 
1820   Node* x = round_double_node(argument(0));
1821   Node* y = round_double_node(argument(2));
1822 
1823   Node* result = NULL;
1824 
1825   Node*   const_two_node = makecon(TypeD::make(2.0));
1826   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1827   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1828   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1829   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1830   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1831 
1832   RegionNode* region_node = new RegionNode(3);
1833   region_node->init_req(1, if_true);
1834 
1835   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1836   // special case for x^y where y == 2, we can convert it to x * x
1837   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1838 
1839   // set control to if_false since we will now process the false branch
1840   set_control(if_false);
1841 
1842   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1843     // Short form: skip the fancy tests and just check for NaN result.
1844     result = _gvn.transform(new PowDNode(C, control(), x, y));
1845   } else {
1846     // If this inlining ever returned NaN in the past, include all
1847     // checks + call to the runtime.
1848 
1849     // Set the merge point for If node with condition of (x <= 0.0)
1850     // There are four possible paths to region node and phi node
1851     RegionNode *r = new RegionNode(4);
1852     Node *phi = new PhiNode(r, Type::DOUBLE);
1853 
1854     // Build the first if node: if (x <= 0.0)
1855     // Node for 0 constant
1856     Node *zeronode = makecon(TypeD::ZERO);
1857     // Check x:0
1858     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1859     // Check: If (x<=0) then go complex path
1860     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1861     // Branch either way
1862     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1863     // Fast path taken; set region slot 3
1864     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1865     r->init_req(3,fast_taken); // Capture fast-control
1866 
1867     // Fast path not-taken, i.e. slow path
1868     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1869 
1870     // Set fast path result
1871     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1872     phi->init_req(3, fast_result);
1873 
1874     // Complex path
1875     // Build the second if node (if y is long)
1876     // Node for (long)y
1877     Node *longy = _gvn.transform(new ConvD2LNode(y));
1878     // Node for (double)((long) y)
1879     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1880     // Check (double)((long) y) : y
1881     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1882     // Check if (y isn't long) then go to slow path
1883 
1884     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1885     // Branch either way
1886     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1887     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1888 
1889     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1890 
1891     // Calculate DPow(abs(x), y)*(1 & (long)y)
1892     // Node for constant 1
1893     Node *conone = longcon(1);
1894     // 1& (long)y
1895     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1896 
1897     // A huge number is always even. Detect a huge number by checking
1898     // if y + 1 == y and set integer to be tested for parity to 0.
1899     // Required for corner case:
1900     // (long)9.223372036854776E18 = max_jlong
1901     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1902     // max_jlong is odd but 9.223372036854776E18 is even
1903     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1904     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1905     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1906     Node* correctedsign = NULL;
1907     if (ConditionalMoveLimit != 0) {
1908       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1909     } else {
1910       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1911       RegionNode *r = new RegionNode(3);
1912       Node *phi = new PhiNode(r, TypeLong::LONG);
1913       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1914       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1915       phi->init_req(1, signnode);
1916       phi->init_req(2, longcon(0));
1917       correctedsign = _gvn.transform(phi);
1918       ylong_path = _gvn.transform(r);
1919       record_for_igvn(r);
1920     }
1921 
1922     // zero node
1923     Node *conzero = longcon(0);
1924     // Check (1&(long)y)==0?
1925     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1926     // Check if (1&(long)y)!=0?, if so the result is negative
1927     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1928     // abs(x)
1929     Node *absx=_gvn.transform(new AbsDNode(x));
1930     // abs(x)^y
1931     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1932     // -abs(x)^y
1933     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1934     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1935     Node *signresult = NULL;
1936     if (ConditionalMoveLimit != 0) {
1937       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1938     } else {
1939       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1940       RegionNode *r = new RegionNode(3);
1941       Node *phi = new PhiNode(r, Type::DOUBLE);
1942       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1943       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1944       phi->init_req(1, absxpowy);
1945       phi->init_req(2, negabsxpowy);
1946       signresult = _gvn.transform(phi);
1947       ylong_path = _gvn.transform(r);
1948       record_for_igvn(r);
1949     }
1950     // Set complex path fast result
1951     r->init_req(2, ylong_path);
1952     phi->init_req(2, signresult);
1953 
1954     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1955     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1956     r->init_req(1,slow_path);
1957     phi->init_req(1,slow_result);
1958 
1959     // Post merge
1960     set_control(_gvn.transform(r));
1961     record_for_igvn(r);
1962     result = _gvn.transform(phi);
1963   }
1964 
1965   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1966 
1967   // control from finish_pow_exp is now input to the region node
1968   region_node->set_req(2, control());
1969   // the result from finish_pow_exp is now input to the phi node
1970   phi_node->init_req(2, result);
1971   set_control(_gvn.transform(region_node));
1972   record_for_igvn(region_node);
1973   set_result(_gvn.transform(phi_node));
1974 
1975   C->set_has_split_ifs(true); // Has chance for split-if optimization
1976   return true;
1977 }
1978 
1979 //------------------------------runtime_math-----------------------------
1980 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1981   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1982          "must be (DD)D or (D)D type");
1983 
1984   // Inputs
1985   Node* a = round_double_node(argument(0));
1986   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1987 
1988   const TypePtr* no_memory_effects = NULL;
1989   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1990                                  no_memory_effects,
1991                                  a, top(), b, b ? top() : NULL);
1992   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1993 #ifdef ASSERT
1994   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1995   assert(value_top == top(), "second value must be top");
1996 #endif
1997 
1998   set_result(value);
1999   return true;
2000 }
2001 
2002 //------------------------------inline_math_native-----------------------------
2003 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2004 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2005   switch (id) {
2006     // These intrinsics are not properly supported on all hardware
2007   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2008     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2009   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2010     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2011   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2012     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2013 
2014   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2015     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2016   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2017     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2018 
2019     // These intrinsics are supported on all hardware
2020   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2021   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2022 
2023   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2024     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2025   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2026     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2027 #undef FN_PTR
2028 
2029    // These intrinsics are not yet correctly implemented
2030   case vmIntrinsics::_datan2:
2031     return false;
2032 
2033   default:
2034     fatal_unexpected_iid(id);
2035     return false;
2036   }
2037 }
2038 
2039 static bool is_simple_name(Node* n) {
2040   return (n->req() == 1         // constant
2041           || (n->is_Type() && n->as_Type()->type()->singleton())
2042           || n->is_Proj()       // parameter or return value
2043           || n->is_Phi()        // local of some sort
2044           );
2045 }
2046 
2047 //----------------------------inline_min_max-----------------------------------
2048 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2049   set_result(generate_min_max(id, argument(0), argument(1)));
2050   return true;
2051 }
2052 
2053 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2054   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2055   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2056   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2057   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2058 
2059   {
2060     PreserveJVMState pjvms(this);
2061     PreserveReexecuteState preexecs(this);
2062     jvms()->set_should_reexecute(true);
2063 
2064     set_control(slow_path);
2065     set_i_o(i_o());
2066 
2067     uncommon_trap(Deoptimization::Reason_intrinsic,
2068                   Deoptimization::Action_none);
2069   }
2070 
2071   set_control(fast_path);
2072   set_result(math);
2073 }
2074 
2075 template <typename OverflowOp>
2076 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2077   typedef typename OverflowOp::MathOp MathOp;
2078 
2079   MathOp* mathOp = new MathOp(arg1, arg2);
2080   Node* operation = _gvn.transform( mathOp );
2081   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2082   inline_math_mathExact(operation, ofcheck);
2083   return true;
2084 }
2085 
2086 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2087   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2088 }
2089 
2090 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2091   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2092 }
2093 
2094 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2095   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2096 }
2097 
2098 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2099   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2100 }
2101 
2102 bool LibraryCallKit::inline_math_negateExactI() {
2103   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2104 }
2105 
2106 bool LibraryCallKit::inline_math_negateExactL() {
2107   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2108 }
2109 
2110 bool LibraryCallKit::inline_math_multiplyExactI() {
2111   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2112 }
2113 
2114 bool LibraryCallKit::inline_math_multiplyExactL() {
2115   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2116 }
2117 
2118 Node*
2119 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2120   // These are the candidate return value:
2121   Node* xvalue = x0;
2122   Node* yvalue = y0;
2123 
2124   if (xvalue == yvalue) {
2125     return xvalue;
2126   }
2127 
2128   bool want_max = (id == vmIntrinsics::_max);
2129 
2130   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2131   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2132   if (txvalue == NULL || tyvalue == NULL)  return top();
2133   // This is not really necessary, but it is consistent with a
2134   // hypothetical MaxINode::Value method:
2135   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2136 
2137   // %%% This folding logic should (ideally) be in a different place.
2138   // Some should be inside IfNode, and there to be a more reliable
2139   // transformation of ?: style patterns into cmoves.  We also want
2140   // more powerful optimizations around cmove and min/max.
2141 
2142   // Try to find a dominating comparison of these guys.
2143   // It can simplify the index computation for Arrays.copyOf
2144   // and similar uses of System.arraycopy.
2145   // First, compute the normalized version of CmpI(x, y).
2146   int   cmp_op = Op_CmpI;
2147   Node* xkey = xvalue;
2148   Node* ykey = yvalue;
2149   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2150   if (ideal_cmpxy->is_Cmp()) {
2151     // E.g., if we have CmpI(length - offset, count),
2152     // it might idealize to CmpI(length, count + offset)
2153     cmp_op = ideal_cmpxy->Opcode();
2154     xkey = ideal_cmpxy->in(1);
2155     ykey = ideal_cmpxy->in(2);
2156   }
2157 
2158   // Start by locating any relevant comparisons.
2159   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2160   Node* cmpxy = NULL;
2161   Node* cmpyx = NULL;
2162   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2163     Node* cmp = start_from->fast_out(k);
2164     if (cmp->outcnt() > 0 &&            // must have prior uses
2165         cmp->in(0) == NULL &&           // must be context-independent
2166         cmp->Opcode() == cmp_op) {      // right kind of compare
2167       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2168       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2169     }
2170   }
2171 
2172   const int NCMPS = 2;
2173   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2174   int cmpn;
2175   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2176     if (cmps[cmpn] != NULL)  break;     // find a result
2177   }
2178   if (cmpn < NCMPS) {
2179     // Look for a dominating test that tells us the min and max.
2180     int depth = 0;                // Limit search depth for speed
2181     Node* dom = control();
2182     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2183       if (++depth >= 100)  break;
2184       Node* ifproj = dom;
2185       if (!ifproj->is_Proj())  continue;
2186       Node* iff = ifproj->in(0);
2187       if (!iff->is_If())  continue;
2188       Node* bol = iff->in(1);
2189       if (!bol->is_Bool())  continue;
2190       Node* cmp = bol->in(1);
2191       if (cmp == NULL)  continue;
2192       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2193         if (cmps[cmpn] == cmp)  break;
2194       if (cmpn == NCMPS)  continue;
2195       BoolTest::mask btest = bol->as_Bool()->_test._test;
2196       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2197       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2198       // At this point, we know that 'x btest y' is true.
2199       switch (btest) {
2200       case BoolTest::eq:
2201         // They are proven equal, so we can collapse the min/max.
2202         // Either value is the answer.  Choose the simpler.
2203         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2204           return yvalue;
2205         return xvalue;
2206       case BoolTest::lt:          // x < y
2207       case BoolTest::le:          // x <= y
2208         return (want_max ? yvalue : xvalue);
2209       case BoolTest::gt:          // x > y
2210       case BoolTest::ge:          // x >= y
2211         return (want_max ? xvalue : yvalue);
2212       }
2213     }
2214   }
2215 
2216   // We failed to find a dominating test.
2217   // Let's pick a test that might GVN with prior tests.
2218   Node*          best_bol   = NULL;
2219   BoolTest::mask best_btest = BoolTest::illegal;
2220   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2221     Node* cmp = cmps[cmpn];
2222     if (cmp == NULL)  continue;
2223     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2224       Node* bol = cmp->fast_out(j);
2225       if (!bol->is_Bool())  continue;
2226       BoolTest::mask btest = bol->as_Bool()->_test._test;
2227       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2228       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2229       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2230         best_bol   = bol->as_Bool();
2231         best_btest = btest;
2232       }
2233     }
2234   }
2235 
2236   Node* answer_if_true  = NULL;
2237   Node* answer_if_false = NULL;
2238   switch (best_btest) {
2239   default:
2240     if (cmpxy == NULL)
2241       cmpxy = ideal_cmpxy;
2242     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2243     // and fall through:
2244   case BoolTest::lt:          // x < y
2245   case BoolTest::le:          // x <= y
2246     answer_if_true  = (want_max ? yvalue : xvalue);
2247     answer_if_false = (want_max ? xvalue : yvalue);
2248     break;
2249   case BoolTest::gt:          // x > y
2250   case BoolTest::ge:          // x >= y
2251     answer_if_true  = (want_max ? xvalue : yvalue);
2252     answer_if_false = (want_max ? yvalue : xvalue);
2253     break;
2254   }
2255 
2256   jint hi, lo;
2257   if (want_max) {
2258     // We can sharpen the minimum.
2259     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2260     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2261   } else {
2262     // We can sharpen the maximum.
2263     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2264     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2265   }
2266 
2267   // Use a flow-free graph structure, to avoid creating excess control edges
2268   // which could hinder other optimizations.
2269   // Since Math.min/max is often used with arraycopy, we want
2270   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2271   Node* cmov = CMoveNode::make(NULL, best_bol,
2272                                answer_if_false, answer_if_true,
2273                                TypeInt::make(lo, hi, widen));
2274 
2275   return _gvn.transform(cmov);
2276 
2277   /*
2278   // This is not as desirable as it may seem, since Min and Max
2279   // nodes do not have a full set of optimizations.
2280   // And they would interfere, anyway, with 'if' optimizations
2281   // and with CMoveI canonical forms.
2282   switch (id) {
2283   case vmIntrinsics::_min:
2284     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2285   case vmIntrinsics::_max:
2286     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2287   default:
2288     ShouldNotReachHere();
2289   }
2290   */
2291 }
2292 
2293 inline int
2294 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2295   const TypePtr* base_type = TypePtr::NULL_PTR;
2296   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2297   if (base_type == NULL) {
2298     // Unknown type.
2299     return Type::AnyPtr;
2300   } else if (base_type == TypePtr::NULL_PTR) {
2301     // Since this is a NULL+long form, we have to switch to a rawptr.
2302     base   = _gvn.transform(new CastX2PNode(offset));
2303     offset = MakeConX(0);
2304     return Type::RawPtr;
2305   } else if (base_type->base() == Type::RawPtr) {
2306     return Type::RawPtr;
2307   } else if (base_type->isa_oopptr()) {
2308     // Base is never null => always a heap address.
2309     if (base_type->ptr() == TypePtr::NotNull) {
2310       return Type::OopPtr;
2311     }
2312     // Offset is small => always a heap address.
2313     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2314     if (offset_type != NULL &&
2315         base_type->offset() == 0 &&     // (should always be?)
2316         offset_type->_lo >= 0 &&
2317         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2318       return Type::OopPtr;
2319     }
2320     // Otherwise, it might either be oop+off or NULL+addr.
2321     return Type::AnyPtr;
2322   } else {
2323     // No information:
2324     return Type::AnyPtr;
2325   }
2326 }
2327 
2328 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2329   int kind = classify_unsafe_addr(base, offset);
2330   if (kind == Type::RawPtr) {
2331     return basic_plus_adr(top(), base, offset);
2332   } else {
2333     return basic_plus_adr(base, offset);
2334   }
2335 }
2336 
2337 //--------------------------inline_number_methods-----------------------------
2338 // inline int     Integer.numberOfLeadingZeros(int)
2339 // inline int        Long.numberOfLeadingZeros(long)
2340 //
2341 // inline int     Integer.numberOfTrailingZeros(int)
2342 // inline int        Long.numberOfTrailingZeros(long)
2343 //
2344 // inline int     Integer.bitCount(int)
2345 // inline int        Long.bitCount(long)
2346 //
2347 // inline char  Character.reverseBytes(char)
2348 // inline short     Short.reverseBytes(short)
2349 // inline int     Integer.reverseBytes(int)
2350 // inline long       Long.reverseBytes(long)
2351 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2352   Node* arg = argument(0);
2353   Node* n;
2354   switch (id) {
2355   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2356   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2357   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2358   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2359   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2360   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2361   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2362   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2363   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2364   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2365   default:  fatal_unexpected_iid(id);  break;
2366   }
2367   set_result(_gvn.transform(n));
2368   return true;
2369 }
2370 
2371 //----------------------------inline_unsafe_access----------------------------
2372 
2373 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2374 
2375 // Helper that guards and inserts a pre-barrier.
2376 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2377                                         Node* pre_val, bool need_mem_bar) {
2378   // We could be accessing the referent field of a reference object. If so, when G1
2379   // is enabled, we need to log the value in the referent field in an SATB buffer.
2380   // This routine performs some compile time filters and generates suitable
2381   // runtime filters that guard the pre-barrier code.
2382   // Also add memory barrier for non volatile load from the referent field
2383   // to prevent commoning of loads across safepoint.
2384   if (!UseG1GC && !need_mem_bar)
2385     return;
2386 
2387   // Some compile time checks.
2388 
2389   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2390   const TypeX* otype = offset->find_intptr_t_type();
2391   if (otype != NULL && otype->is_con() &&
2392       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2393     // Constant offset but not the reference_offset so just return
2394     return;
2395   }
2396 
2397   // We only need to generate the runtime guards for instances.
2398   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2399   if (btype != NULL) {
2400     if (btype->isa_aryptr()) {
2401       // Array type so nothing to do
2402       return;
2403     }
2404 
2405     const TypeInstPtr* itype = btype->isa_instptr();
2406     if (itype != NULL) {
2407       // Can the klass of base_oop be statically determined to be
2408       // _not_ a sub-class of Reference and _not_ Object?
2409       ciKlass* klass = itype->klass();
2410       if ( klass->is_loaded() &&
2411           !klass->is_subtype_of(env()->Reference_klass()) &&
2412           !env()->Object_klass()->is_subtype_of(klass)) {
2413         return;
2414       }
2415     }
2416   }
2417 
2418   // The compile time filters did not reject base_oop/offset so
2419   // we need to generate the following runtime filters
2420   //
2421   // if (offset == java_lang_ref_Reference::_reference_offset) {
2422   //   if (instance_of(base, java.lang.ref.Reference)) {
2423   //     pre_barrier(_, pre_val, ...);
2424   //   }
2425   // }
2426 
2427   float likely   = PROB_LIKELY(  0.999);
2428   float unlikely = PROB_UNLIKELY(0.999);
2429 
2430   IdealKit ideal(this);
2431 #define __ ideal.
2432 
2433   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2434 
2435   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2436       // Update graphKit memory and control from IdealKit.
2437       sync_kit(ideal);
2438 
2439       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2440       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2441 
2442       // Update IdealKit memory and control from graphKit.
2443       __ sync_kit(this);
2444 
2445       Node* one = __ ConI(1);
2446       // is_instof == 0 if base_oop == NULL
2447       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2448 
2449         // Update graphKit from IdeakKit.
2450         sync_kit(ideal);
2451 
2452         // Use the pre-barrier to record the value in the referent field
2453         pre_barrier(false /* do_load */,
2454                     __ ctrl(),
2455                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2456                     pre_val /* pre_val */,
2457                     T_OBJECT);
2458         if (need_mem_bar) {
2459           // Add memory barrier to prevent commoning reads from this field
2460           // across safepoint since GC can change its value.
2461           insert_mem_bar(Op_MemBarCPUOrder);
2462         }
2463         // Update IdealKit from graphKit.
2464         __ sync_kit(this);
2465 
2466       } __ end_if(); // _ref_type != ref_none
2467   } __ end_if(); // offset == referent_offset
2468 
2469   // Final sync IdealKit and GraphKit.
2470   final_sync(ideal);
2471 #undef __
2472 }
2473 
2474 
2475 // Interpret Unsafe.fieldOffset cookies correctly:
2476 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2477 
2478 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2479   // Attempt to infer a sharper value type from the offset and base type.
2480   ciKlass* sharpened_klass = NULL;
2481 
2482   // See if it is an instance field, with an object type.
2483   if (alias_type->field() != NULL) {
2484     assert(!is_native_ptr, "native pointer op cannot use a java address");
2485     if (alias_type->field()->type()->is_klass()) {
2486       sharpened_klass = alias_type->field()->type()->as_klass();
2487     }
2488   }
2489 
2490   // See if it is a narrow oop array.
2491   if (adr_type->isa_aryptr()) {
2492     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2493       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2494       if (elem_type != NULL) {
2495         sharpened_klass = elem_type->klass();
2496       }
2497     }
2498   }
2499 
2500   // The sharpened class might be unloaded if there is no class loader
2501   // contraint in place.
2502   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2503     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2504 
2505 #ifndef PRODUCT
2506     if (C->print_intrinsics() || C->print_inlining()) {
2507       tty->print("  from base type: ");  adr_type->dump();
2508       tty->print("  sharpened value: ");  tjp->dump();
2509     }
2510 #endif
2511     // Sharpen the value type.
2512     return tjp;
2513   }
2514   return NULL;
2515 }
2516 
2517 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2518   if (callee()->is_static())  return false;  // caller must have the capability!
2519 
2520 #ifndef PRODUCT
2521   {
2522     ResourceMark rm;
2523     // Check the signatures.
2524     ciSignature* sig = callee()->signature();
2525 #ifdef ASSERT
2526     if (!is_store) {
2527       // Object getObject(Object base, int/long offset), etc.
2528       BasicType rtype = sig->return_type()->basic_type();
2529       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2530           rtype = T_ADDRESS;  // it is really a C void*
2531       assert(rtype == type, "getter must return the expected value");
2532       if (!is_native_ptr) {
2533         assert(sig->count() == 2, "oop getter has 2 arguments");
2534         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2535         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2536       } else {
2537         assert(sig->count() == 1, "native getter has 1 argument");
2538         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2539       }
2540     } else {
2541       // void putObject(Object base, int/long offset, Object x), etc.
2542       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2543       if (!is_native_ptr) {
2544         assert(sig->count() == 3, "oop putter has 3 arguments");
2545         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2546         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2547       } else {
2548         assert(sig->count() == 2, "native putter has 2 arguments");
2549         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2550       }
2551       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2552       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2553         vtype = T_ADDRESS;  // it is really a C void*
2554       assert(vtype == type, "putter must accept the expected value");
2555     }
2556 #endif // ASSERT
2557  }
2558 #endif //PRODUCT
2559 
2560   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2561 
2562   Node* receiver = argument(0);  // type: oop
2563 
2564   // Build address expression.  See the code in inline_unsafe_prefetch.
2565   Node* adr;
2566   Node* heap_base_oop = top();
2567   Node* offset = top();
2568   Node* val;
2569 
2570   if (!is_native_ptr) {
2571     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2572     Node* base = argument(1);  // type: oop
2573     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2574     offset = argument(2);  // type: long
2575     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2576     // to be plain byte offsets, which are also the same as those accepted
2577     // by oopDesc::field_base.
2578     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2579            "fieldOffset must be byte-scaled");
2580     // 32-bit machines ignore the high half!
2581     offset = ConvL2X(offset);
2582     adr = make_unsafe_address(base, offset);
2583     heap_base_oop = base;
2584     val = is_store ? argument(4) : NULL;
2585   } else {
2586     Node* ptr = argument(1);  // type: long
2587     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2588     adr = make_unsafe_address(NULL, ptr);
2589     val = is_store ? argument(3) : NULL;
2590   }
2591 
2592   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2593 
2594   // First guess at the value type.
2595   const Type *value_type = Type::get_const_basic_type(type);
2596 
2597   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2598   // there was not enough information to nail it down.
2599   Compile::AliasType* alias_type = C->alias_type(adr_type);
2600   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2601 
2602   // We will need memory barriers unless we can determine a unique
2603   // alias category for this reference.  (Note:  If for some reason
2604   // the barriers get omitted and the unsafe reference begins to "pollute"
2605   // the alias analysis of the rest of the graph, either Compile::can_alias
2606   // or Compile::must_alias will throw a diagnostic assert.)
2607   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2608 
2609   // If we are reading the value of the referent field of a Reference
2610   // object (either by using Unsafe directly or through reflection)
2611   // then, if G1 is enabled, we need to record the referent in an
2612   // SATB log buffer using the pre-barrier mechanism.
2613   // Also we need to add memory barrier to prevent commoning reads
2614   // from this field across safepoint since GC can change its value.
2615   bool need_read_barrier = !is_native_ptr && !is_store &&
2616                            offset != top() && heap_base_oop != top();
2617 
2618   if (!is_store && type == T_OBJECT) {
2619     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2620     if (tjp != NULL) {
2621       value_type = tjp;
2622     }
2623   }
2624 
2625   receiver = null_check(receiver);
2626   if (stopped()) {
2627     return true;
2628   }
2629   // Heap pointers get a null-check from the interpreter,
2630   // as a courtesy.  However, this is not guaranteed by Unsafe,
2631   // and it is not possible to fully distinguish unintended nulls
2632   // from intended ones in this API.
2633 
2634   if (is_volatile) {
2635     // We need to emit leading and trailing CPU membars (see below) in
2636     // addition to memory membars when is_volatile. This is a little
2637     // too strong, but avoids the need to insert per-alias-type
2638     // volatile membars (for stores; compare Parse::do_put_xxx), which
2639     // we cannot do effectively here because we probably only have a
2640     // rough approximation of type.
2641     need_mem_bar = true;
2642     // For Stores, place a memory ordering barrier now.
2643     if (is_store) {
2644       insert_mem_bar(Op_MemBarRelease);
2645     } else {
2646       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2647         insert_mem_bar(Op_MemBarVolatile);
2648       }
2649     }
2650   }
2651 
2652   // Memory barrier to prevent normal and 'unsafe' accesses from
2653   // bypassing each other.  Happens after null checks, so the
2654   // exception paths do not take memory state from the memory barrier,
2655   // so there's no problems making a strong assert about mixing users
2656   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2657   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2658   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2659 
2660   if (!is_store) {
2661     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
2662     // load value
2663     switch (type) {
2664     case T_BOOLEAN:
2665     case T_CHAR:
2666     case T_BYTE:
2667     case T_SHORT:
2668     case T_INT:
2669     case T_LONG:
2670     case T_FLOAT:
2671     case T_DOUBLE:
2672       break;
2673     case T_OBJECT:
2674       if (need_read_barrier) {
2675         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2676       }
2677       break;
2678     case T_ADDRESS:
2679       // Cast to an int type.
2680       p = _gvn.transform(new CastP2XNode(NULL, p));
2681       p = ConvX2UL(p);
2682       break;
2683     default:
2684       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2685       break;
2686     }
2687     // The load node has the control of the preceding MemBarCPUOrder.  All
2688     // following nodes will have the control of the MemBarCPUOrder inserted at
2689     // the end of this method.  So, pushing the load onto the stack at a later
2690     // point is fine.
2691     set_result(p);
2692   } else {
2693     // place effect of store into memory
2694     switch (type) {
2695     case T_DOUBLE:
2696       val = dstore_rounding(val);
2697       break;
2698     case T_ADDRESS:
2699       // Repackage the long as a pointer.
2700       val = ConvL2X(val);
2701       val = _gvn.transform(new CastX2PNode(val));
2702       break;
2703     }
2704 
2705     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2706     if (type != T_OBJECT ) {
2707       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2708     } else {
2709       // Possibly an oop being stored to Java heap or native memory
2710       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2711         // oop to Java heap.
2712         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2713       } else {
2714         // We can't tell at compile time if we are storing in the Java heap or outside
2715         // of it. So we need to emit code to conditionally do the proper type of
2716         // store.
2717 
2718         IdealKit ideal(this);
2719 #define __ ideal.
2720         // QQQ who knows what probability is here??
2721         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2722           // Sync IdealKit and graphKit.
2723           sync_kit(ideal);
2724           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2725           // Update IdealKit memory.
2726           __ sync_kit(this);
2727         } __ else_(); {
2728           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2729         } __ end_if();
2730         // Final sync IdealKit and GraphKit.
2731         final_sync(ideal);
2732 #undef __
2733       }
2734     }
2735   }
2736 
2737   if (is_volatile) {
2738     if (!is_store) {
2739       insert_mem_bar(Op_MemBarAcquire);
2740     } else {
2741       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2742         insert_mem_bar(Op_MemBarVolatile);
2743       }
2744     }
2745   }
2746 
2747   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2748 
2749   return true;
2750 }
2751 
2752 //----------------------------inline_unsafe_prefetch----------------------------
2753 
2754 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2755 #ifndef PRODUCT
2756   {
2757     ResourceMark rm;
2758     // Check the signatures.
2759     ciSignature* sig = callee()->signature();
2760 #ifdef ASSERT
2761     // Object getObject(Object base, int/long offset), etc.
2762     BasicType rtype = sig->return_type()->basic_type();
2763     if (!is_native_ptr) {
2764       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2765       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2766       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2767     } else {
2768       assert(sig->count() == 1, "native prefetch has 1 argument");
2769       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2770     }
2771 #endif // ASSERT
2772   }
2773 #endif // !PRODUCT
2774 
2775   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2776 
2777   const int idx = is_static ? 0 : 1;
2778   if (!is_static) {
2779     null_check_receiver();
2780     if (stopped()) {
2781       return true;
2782     }
2783   }
2784 
2785   // Build address expression.  See the code in inline_unsafe_access.
2786   Node *adr;
2787   if (!is_native_ptr) {
2788     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2789     Node* base   = argument(idx + 0);  // type: oop
2790     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2791     Node* offset = argument(idx + 1);  // type: long
2792     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2793     // to be plain byte offsets, which are also the same as those accepted
2794     // by oopDesc::field_base.
2795     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2796            "fieldOffset must be byte-scaled");
2797     // 32-bit machines ignore the high half!
2798     offset = ConvL2X(offset);
2799     adr = make_unsafe_address(base, offset);
2800   } else {
2801     Node* ptr = argument(idx + 0);  // type: long
2802     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2803     adr = make_unsafe_address(NULL, ptr);
2804   }
2805 
2806   // Generate the read or write prefetch
2807   Node *prefetch;
2808   if (is_store) {
2809     prefetch = new PrefetchWriteNode(i_o(), adr);
2810   } else {
2811     prefetch = new PrefetchReadNode(i_o(), adr);
2812   }
2813   prefetch->init_req(0, control());
2814   set_i_o(_gvn.transform(prefetch));
2815 
2816   return true;
2817 }
2818 
2819 //----------------------------inline_unsafe_load_store----------------------------
2820 // This method serves a couple of different customers (depending on LoadStoreKind):
2821 //
2822 // LS_cmpxchg:
2823 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2824 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2825 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2826 //
2827 // LS_xadd:
2828 //   public int  getAndAddInt( Object o, long offset, int  delta)
2829 //   public long getAndAddLong(Object o, long offset, long delta)
2830 //
2831 // LS_xchg:
2832 //   int    getAndSet(Object o, long offset, int    newValue)
2833 //   long   getAndSet(Object o, long offset, long   newValue)
2834 //   Object getAndSet(Object o, long offset, Object newValue)
2835 //
2836 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2837   // This basic scheme here is the same as inline_unsafe_access, but
2838   // differs in enough details that combining them would make the code
2839   // overly confusing.  (This is a true fact! I originally combined
2840   // them, but even I was confused by it!) As much code/comments as
2841   // possible are retained from inline_unsafe_access though to make
2842   // the correspondences clearer. - dl
2843 
2844   if (callee()->is_static())  return false;  // caller must have the capability!
2845 
2846 #ifndef PRODUCT
2847   BasicType rtype;
2848   {
2849     ResourceMark rm;
2850     // Check the signatures.
2851     ciSignature* sig = callee()->signature();
2852     rtype = sig->return_type()->basic_type();
2853     if (kind == LS_xadd || kind == LS_xchg) {
2854       // Check the signatures.
2855 #ifdef ASSERT
2856       assert(rtype == type, "get and set must return the expected type");
2857       assert(sig->count() == 3, "get and set has 3 arguments");
2858       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2859       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2860       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2861 #endif // ASSERT
2862     } else if (kind == LS_cmpxchg) {
2863       // Check the signatures.
2864 #ifdef ASSERT
2865       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2866       assert(sig->count() == 4, "CAS has 4 arguments");
2867       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2868       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2869 #endif // ASSERT
2870     } else {
2871       ShouldNotReachHere();
2872     }
2873   }
2874 #endif //PRODUCT
2875 
2876   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2877 
2878   // Get arguments:
2879   Node* receiver = NULL;
2880   Node* base     = NULL;
2881   Node* offset   = NULL;
2882   Node* oldval   = NULL;
2883   Node* newval   = NULL;
2884   if (kind == LS_cmpxchg) {
2885     const bool two_slot_type = type2size[type] == 2;
2886     receiver = argument(0);  // type: oop
2887     base     = argument(1);  // type: oop
2888     offset   = argument(2);  // type: long
2889     oldval   = argument(4);  // type: oop, int, or long
2890     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2891   } else if (kind == LS_xadd || kind == LS_xchg){
2892     receiver = argument(0);  // type: oop
2893     base     = argument(1);  // type: oop
2894     offset   = argument(2);  // type: long
2895     oldval   = NULL;
2896     newval   = argument(4);  // type: oop, int, or long
2897   }
2898 
2899   // Null check receiver.
2900   receiver = null_check(receiver);
2901   if (stopped()) {
2902     return true;
2903   }
2904 
2905   // Build field offset expression.
2906   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2907   // to be plain byte offsets, which are also the same as those accepted
2908   // by oopDesc::field_base.
2909   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2910   // 32-bit machines ignore the high half of long offsets
2911   offset = ConvL2X(offset);
2912   Node* adr = make_unsafe_address(base, offset);
2913   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2914 
2915   // For CAS, unlike inline_unsafe_access, there seems no point in
2916   // trying to refine types. Just use the coarse types here.
2917   const Type *value_type = Type::get_const_basic_type(type);
2918   Compile::AliasType* alias_type = C->alias_type(adr_type);
2919   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2920 
2921   if (kind == LS_xchg && type == T_OBJECT) {
2922     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2923     if (tjp != NULL) {
2924       value_type = tjp;
2925     }
2926   }
2927 
2928   int alias_idx = C->get_alias_index(adr_type);
2929 
2930   // Memory-model-wise, a LoadStore acts like a little synchronized
2931   // block, so needs barriers on each side.  These don't translate
2932   // into actual barriers on most machines, but we still need rest of
2933   // compiler to respect ordering.
2934 
2935   insert_mem_bar(Op_MemBarRelease);
2936   insert_mem_bar(Op_MemBarCPUOrder);
2937 
2938   // 4984716: MemBars must be inserted before this
2939   //          memory node in order to avoid a false
2940   //          dependency which will confuse the scheduler.
2941   Node *mem = memory(alias_idx);
2942 
2943   // For now, we handle only those cases that actually exist: ints,
2944   // longs, and Object. Adding others should be straightforward.
2945   Node* load_store;
2946   switch(type) {
2947   case T_INT:
2948     if (kind == LS_xadd) {
2949       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2950     } else if (kind == LS_xchg) {
2951       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2952     } else if (kind == LS_cmpxchg) {
2953       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2954     } else {
2955       ShouldNotReachHere();
2956     }
2957     break;
2958   case T_LONG:
2959     if (kind == LS_xadd) {
2960       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2961     } else if (kind == LS_xchg) {
2962       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2963     } else if (kind == LS_cmpxchg) {
2964       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2965     } else {
2966       ShouldNotReachHere();
2967     }
2968     break;
2969   case T_OBJECT:
2970     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2971     // could be delayed during Parse (for example, in adjust_map_after_if()).
2972     // Execute transformation here to avoid barrier generation in such case.
2973     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2974       newval = _gvn.makecon(TypePtr::NULL_PTR);
2975 
2976     // Reference stores need a store barrier.
2977     if (kind == LS_xchg) {
2978       // If pre-barrier must execute before the oop store, old value will require do_load here.
2979       if (!can_move_pre_barrier()) {
2980         pre_barrier(true /* do_load*/,
2981                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2982                     NULL /* pre_val*/,
2983                     T_OBJECT);
2984       } // Else move pre_barrier to use load_store value, see below.
2985     } else if (kind == LS_cmpxchg) {
2986       // Same as for newval above:
2987       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2988         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2989       }
2990       // The only known value which might get overwritten is oldval.
2991       pre_barrier(false /* do_load */,
2992                   control(), NULL, NULL, max_juint, NULL, NULL,
2993                   oldval /* pre_val */,
2994                   T_OBJECT);
2995     } else {
2996       ShouldNotReachHere();
2997     }
2998 
2999 #ifdef _LP64
3000     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3001       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3002       if (kind == LS_xchg) {
3003         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
3004                                                        newval_enc, adr_type, value_type->make_narrowoop()));
3005       } else {
3006         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3007         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3008         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
3009                                                                 newval_enc, oldval_enc));
3010       }
3011     } else
3012 #endif
3013     {
3014       if (kind == LS_xchg) {
3015         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3016       } else {
3017         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3018         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
3019       }
3020     }
3021     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3022     break;
3023   default:
3024     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3025     break;
3026   }
3027 
3028   // SCMemProjNodes represent the memory state of a LoadStore. Their
3029   // main role is to prevent LoadStore nodes from being optimized away
3030   // when their results aren't used.
3031   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3032   set_memory(proj, alias_idx);
3033 
3034   if (type == T_OBJECT && kind == LS_xchg) {
3035 #ifdef _LP64
3036     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3037       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3038     }
3039 #endif
3040     if (can_move_pre_barrier()) {
3041       // Don't need to load pre_val. The old value is returned by load_store.
3042       // The pre_barrier can execute after the xchg as long as no safepoint
3043       // gets inserted between them.
3044       pre_barrier(false /* do_load */,
3045                   control(), NULL, NULL, max_juint, NULL, NULL,
3046                   load_store /* pre_val */,
3047                   T_OBJECT);
3048     }
3049   }
3050 
3051   // Add the trailing membar surrounding the access
3052   insert_mem_bar(Op_MemBarCPUOrder);
3053   insert_mem_bar(Op_MemBarAcquire);
3054 
3055   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3056   set_result(load_store);
3057   return true;
3058 }
3059 
3060 //----------------------------inline_unsafe_ordered_store----------------------
3061 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3062 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3063 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3064 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3065   // This is another variant of inline_unsafe_access, differing in
3066   // that it always issues store-store ("release") barrier and ensures
3067   // store-atomicity (which only matters for "long").
3068 
3069   if (callee()->is_static())  return false;  // caller must have the capability!
3070 
3071 #ifndef PRODUCT
3072   {
3073     ResourceMark rm;
3074     // Check the signatures.
3075     ciSignature* sig = callee()->signature();
3076 #ifdef ASSERT
3077     BasicType rtype = sig->return_type()->basic_type();
3078     assert(rtype == T_VOID, "must return void");
3079     assert(sig->count() == 3, "has 3 arguments");
3080     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3081     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3082 #endif // ASSERT
3083   }
3084 #endif //PRODUCT
3085 
3086   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3087 
3088   // Get arguments:
3089   Node* receiver = argument(0);  // type: oop
3090   Node* base     = argument(1);  // type: oop
3091   Node* offset   = argument(2);  // type: long
3092   Node* val      = argument(4);  // type: oop, int, or long
3093 
3094   // Null check receiver.
3095   receiver = null_check(receiver);
3096   if (stopped()) {
3097     return true;
3098   }
3099 
3100   // Build field offset expression.
3101   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3102   // 32-bit machines ignore the high half of long offsets
3103   offset = ConvL2X(offset);
3104   Node* adr = make_unsafe_address(base, offset);
3105   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3106   const Type *value_type = Type::get_const_basic_type(type);
3107   Compile::AliasType* alias_type = C->alias_type(adr_type);
3108 
3109   insert_mem_bar(Op_MemBarRelease);
3110   insert_mem_bar(Op_MemBarCPUOrder);
3111   // Ensure that the store is atomic for longs:
3112   const bool require_atomic_access = true;
3113   Node* store;
3114   if (type == T_OBJECT) // reference stores need a store barrier.
3115     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3116   else {
3117     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3118   }
3119   insert_mem_bar(Op_MemBarCPUOrder);
3120   return true;
3121 }
3122 
3123 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3124   // Regardless of form, don't allow previous ld/st to move down,
3125   // then issue acquire, release, or volatile mem_bar.
3126   insert_mem_bar(Op_MemBarCPUOrder);
3127   switch(id) {
3128     case vmIntrinsics::_loadFence:
3129       insert_mem_bar(Op_LoadFence);
3130       return true;
3131     case vmIntrinsics::_storeFence:
3132       insert_mem_bar(Op_StoreFence);
3133       return true;
3134     case vmIntrinsics::_fullFence:
3135       insert_mem_bar(Op_MemBarVolatile);
3136       return true;
3137     default:
3138       fatal_unexpected_iid(id);
3139       return false;
3140   }
3141 }
3142 
3143 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3144   if (!kls->is_Con()) {
3145     return true;
3146   }
3147   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3148   if (klsptr == NULL) {
3149     return true;
3150   }
3151   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3152   // don't need a guard for a klass that is already initialized
3153   return !ik->is_initialized();
3154 }
3155 
3156 //----------------------------inline_unsafe_allocate---------------------------
3157 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3158 bool LibraryCallKit::inline_unsafe_allocate() {
3159   if (callee()->is_static())  return false;  // caller must have the capability!
3160 
3161   null_check_receiver();  // null-check, then ignore
3162   Node* cls = null_check(argument(1));
3163   if (stopped())  return true;
3164 
3165   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3166   kls = null_check(kls);
3167   if (stopped())  return true;  // argument was like int.class
3168 
3169   Node* test = NULL;
3170   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3171     // Note:  The argument might still be an illegal value like
3172     // Serializable.class or Object[].class.   The runtime will handle it.
3173     // But we must make an explicit check for initialization.
3174     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3175     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3176     // can generate code to load it as unsigned byte.
3177     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3178     Node* bits = intcon(InstanceKlass::fully_initialized);
3179     test = _gvn.transform(new SubINode(inst, bits));
3180     // The 'test' is non-zero if we need to take a slow path.
3181   }
3182 
3183   Node* obj = new_instance(kls, test);
3184   set_result(obj);
3185   return true;
3186 }
3187 
3188 #ifdef TRACE_HAVE_INTRINSICS
3189 /*
3190  * oop -> myklass
3191  * myklass->trace_id |= USED
3192  * return myklass->trace_id & ~0x3
3193  */
3194 bool LibraryCallKit::inline_native_classID() {
3195   null_check_receiver();  // null-check, then ignore
3196   Node* cls = null_check(argument(1), T_OBJECT);
3197   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3198   kls = null_check(kls, T_OBJECT);
3199   ByteSize offset = TRACE_ID_OFFSET;
3200   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3201   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3202   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3203   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3204   Node* clsused = longcon(0x01l); // set the class bit
3205   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3206 
3207   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3208   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3209   set_result(andl);
3210   return true;
3211 }
3212 
3213 bool LibraryCallKit::inline_native_threadID() {
3214   Node* tls_ptr = NULL;
3215   Node* cur_thr = generate_current_thread(tls_ptr);
3216   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3217   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3218   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3219 
3220   Node* threadid = NULL;
3221   size_t thread_id_size = OSThread::thread_id_size();
3222   if (thread_id_size == (size_t) BytesPerLong) {
3223     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3224   } else if (thread_id_size == (size_t) BytesPerInt) {
3225     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3226   } else {
3227     ShouldNotReachHere();
3228   }
3229   set_result(threadid);
3230   return true;
3231 }
3232 #endif
3233 
3234 //------------------------inline_native_time_funcs--------------
3235 // inline code for System.currentTimeMillis() and System.nanoTime()
3236 // these have the same type and signature
3237 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3238   const TypeFunc* tf = OptoRuntime::void_long_Type();
3239   const TypePtr* no_memory_effects = NULL;
3240   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3241   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3242 #ifdef ASSERT
3243   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3244   assert(value_top == top(), "second value must be top");
3245 #endif
3246   set_result(value);
3247   return true;
3248 }
3249 
3250 //------------------------inline_native_currentThread------------------
3251 bool LibraryCallKit::inline_native_currentThread() {
3252   Node* junk = NULL;
3253   set_result(generate_current_thread(junk));
3254   return true;
3255 }
3256 
3257 //------------------------inline_native_isInterrupted------------------
3258 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3259 bool LibraryCallKit::inline_native_isInterrupted() {
3260   // Add a fast path to t.isInterrupted(clear_int):
3261   //   (t == Thread.current() &&
3262   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3263   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3264   // So, in the common case that the interrupt bit is false,
3265   // we avoid making a call into the VM.  Even if the interrupt bit
3266   // is true, if the clear_int argument is false, we avoid the VM call.
3267   // However, if the receiver is not currentThread, we must call the VM,
3268   // because there must be some locking done around the operation.
3269 
3270   // We only go to the fast case code if we pass two guards.
3271   // Paths which do not pass are accumulated in the slow_region.
3272 
3273   enum {
3274     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3275     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3276     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3277     PATH_LIMIT
3278   };
3279 
3280   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3281   // out of the function.
3282   insert_mem_bar(Op_MemBarCPUOrder);
3283 
3284   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3285   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3286 
3287   RegionNode* slow_region = new RegionNode(1);
3288   record_for_igvn(slow_region);
3289 
3290   // (a) Receiving thread must be the current thread.
3291   Node* rec_thr = argument(0);
3292   Node* tls_ptr = NULL;
3293   Node* cur_thr = generate_current_thread(tls_ptr);
3294   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3295   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3296 
3297   generate_slow_guard(bol_thr, slow_region);
3298 
3299   // (b) Interrupt bit on TLS must be false.
3300   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3301   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3302   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3303 
3304   // Set the control input on the field _interrupted read to prevent it floating up.
3305   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3306   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3307   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3308 
3309   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3310 
3311   // First fast path:  if (!TLS._interrupted) return false;
3312   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3313   result_rgn->init_req(no_int_result_path, false_bit);
3314   result_val->init_req(no_int_result_path, intcon(0));
3315 
3316   // drop through to next case
3317   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3318 
3319 #ifndef TARGET_OS_FAMILY_windows
3320   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3321   Node* clr_arg = argument(1);
3322   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3323   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3324   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3325 
3326   // Second fast path:  ... else if (!clear_int) return true;
3327   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3328   result_rgn->init_req(no_clear_result_path, false_arg);
3329   result_val->init_req(no_clear_result_path, intcon(1));
3330 
3331   // drop through to next case
3332   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3333 #else
3334   // To return true on Windows you must read the _interrupted field
3335   // and check the the event state i.e. take the slow path.
3336 #endif // TARGET_OS_FAMILY_windows
3337 
3338   // (d) Otherwise, go to the slow path.
3339   slow_region->add_req(control());
3340   set_control( _gvn.transform(slow_region));
3341 
3342   if (stopped()) {
3343     // There is no slow path.
3344     result_rgn->init_req(slow_result_path, top());
3345     result_val->init_req(slow_result_path, top());
3346   } else {
3347     // non-virtual because it is a private non-static
3348     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3349 
3350     Node* slow_val = set_results_for_java_call(slow_call);
3351     // this->control() comes from set_results_for_java_call
3352 
3353     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3354     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3355 
3356     // These two phis are pre-filled with copies of of the fast IO and Memory
3357     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3358     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3359 
3360     result_rgn->init_req(slow_result_path, control());
3361     result_io ->init_req(slow_result_path, i_o());
3362     result_mem->init_req(slow_result_path, reset_memory());
3363     result_val->init_req(slow_result_path, slow_val);
3364 
3365     set_all_memory(_gvn.transform(result_mem));
3366     set_i_o(       _gvn.transform(result_io));
3367   }
3368 
3369   C->set_has_split_ifs(true); // Has chance for split-if optimization
3370   set_result(result_rgn, result_val);
3371   return true;
3372 }
3373 
3374 //---------------------------load_mirror_from_klass----------------------------
3375 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3376 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3377   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3378   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3379 }
3380 
3381 //-----------------------load_klass_from_mirror_common-------------------------
3382 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3383 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3384 // and branch to the given path on the region.
3385 // If never_see_null, take an uncommon trap on null, so we can optimistically
3386 // compile for the non-null case.
3387 // If the region is NULL, force never_see_null = true.
3388 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3389                                                     bool never_see_null,
3390                                                     RegionNode* region,
3391                                                     int null_path,
3392                                                     int offset) {
3393   if (region == NULL)  never_see_null = true;
3394   Node* p = basic_plus_adr(mirror, offset);
3395   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3396   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3397   Node* null_ctl = top();
3398   kls = null_check_oop(kls, &null_ctl, never_see_null);
3399   if (region != NULL) {
3400     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3401     region->init_req(null_path, null_ctl);
3402   } else {
3403     assert(null_ctl == top(), "no loose ends");
3404   }
3405   return kls;
3406 }
3407 
3408 //--------------------(inline_native_Class_query helpers)---------------------
3409 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3410 // Fall through if (mods & mask) == bits, take the guard otherwise.
3411 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3412   // Branch around if the given klass has the given modifier bit set.
3413   // Like generate_guard, adds a new path onto the region.
3414   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3415   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3416   Node* mask = intcon(modifier_mask);
3417   Node* bits = intcon(modifier_bits);
3418   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3419   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3420   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3421   return generate_fair_guard(bol, region);
3422 }
3423 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3424   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3425 }
3426 
3427 //-------------------------inline_native_Class_query-------------------
3428 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3429   const Type* return_type = TypeInt::BOOL;
3430   Node* prim_return_value = top();  // what happens if it's a primitive class?
3431   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3432   bool expect_prim = false;     // most of these guys expect to work on refs
3433 
3434   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3435 
3436   Node* mirror = argument(0);
3437   Node* obj    = top();
3438 
3439   switch (id) {
3440   case vmIntrinsics::_isInstance:
3441     // nothing is an instance of a primitive type
3442     prim_return_value = intcon(0);
3443     obj = argument(1);
3444     break;
3445   case vmIntrinsics::_getModifiers:
3446     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3447     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3448     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3449     break;
3450   case vmIntrinsics::_isInterface:
3451     prim_return_value = intcon(0);
3452     break;
3453   case vmIntrinsics::_isArray:
3454     prim_return_value = intcon(0);
3455     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3456     break;
3457   case vmIntrinsics::_isPrimitive:
3458     prim_return_value = intcon(1);
3459     expect_prim = true;  // obviously
3460     break;
3461   case vmIntrinsics::_getSuperclass:
3462     prim_return_value = null();
3463     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3464     break;
3465   case vmIntrinsics::_getComponentType:
3466     prim_return_value = null();
3467     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3468     break;
3469   case vmIntrinsics::_getClassAccessFlags:
3470     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3471     return_type = TypeInt::INT;  // not bool!  6297094
3472     break;
3473   default:
3474     fatal_unexpected_iid(id);
3475     break;
3476   }
3477 
3478   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3479   if (mirror_con == NULL)  return false;  // cannot happen?
3480 
3481 #ifndef PRODUCT
3482   if (C->print_intrinsics() || C->print_inlining()) {
3483     ciType* k = mirror_con->java_mirror_type();
3484     if (k) {
3485       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3486       k->print_name();
3487       tty->cr();
3488     }
3489   }
3490 #endif
3491 
3492   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3493   RegionNode* region = new RegionNode(PATH_LIMIT);
3494   record_for_igvn(region);
3495   PhiNode* phi = new PhiNode(region, return_type);
3496 
3497   // The mirror will never be null of Reflection.getClassAccessFlags, however
3498   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3499   // if it is. See bug 4774291.
3500 
3501   // For Reflection.getClassAccessFlags(), the null check occurs in
3502   // the wrong place; see inline_unsafe_access(), above, for a similar
3503   // situation.
3504   mirror = null_check(mirror);
3505   // If mirror or obj is dead, only null-path is taken.
3506   if (stopped())  return true;
3507 
3508   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3509 
3510   // Now load the mirror's klass metaobject, and null-check it.
3511   // Side-effects region with the control path if the klass is null.
3512   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3513   // If kls is null, we have a primitive mirror.
3514   phi->init_req(_prim_path, prim_return_value);
3515   if (stopped()) { set_result(region, phi); return true; }
3516   bool safe_for_replace = (region->in(_prim_path) == top());
3517 
3518   Node* p;  // handy temp
3519   Node* null_ctl;
3520 
3521   // Now that we have the non-null klass, we can perform the real query.
3522   // For constant classes, the query will constant-fold in LoadNode::Value.
3523   Node* query_value = top();
3524   switch (id) {
3525   case vmIntrinsics::_isInstance:
3526     // nothing is an instance of a primitive type
3527     query_value = gen_instanceof(obj, kls, safe_for_replace);
3528     break;
3529 
3530   case vmIntrinsics::_getModifiers:
3531     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3532     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3533     break;
3534 
3535   case vmIntrinsics::_isInterface:
3536     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3537     if (generate_interface_guard(kls, region) != NULL)
3538       // A guard was added.  If the guard is taken, it was an interface.
3539       phi->add_req(intcon(1));
3540     // If we fall through, it's a plain class.
3541     query_value = intcon(0);
3542     break;
3543 
3544   case vmIntrinsics::_isArray:
3545     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3546     if (generate_array_guard(kls, region) != NULL)
3547       // A guard was added.  If the guard is taken, it was an array.
3548       phi->add_req(intcon(1));
3549     // If we fall through, it's a plain class.
3550     query_value = intcon(0);
3551     break;
3552 
3553   case vmIntrinsics::_isPrimitive:
3554     query_value = intcon(0); // "normal" path produces false
3555     break;
3556 
3557   case vmIntrinsics::_getSuperclass:
3558     // The rules here are somewhat unfortunate, but we can still do better
3559     // with random logic than with a JNI call.
3560     // Interfaces store null or Object as _super, but must report null.
3561     // Arrays store an intermediate super as _super, but must report Object.
3562     // Other types can report the actual _super.
3563     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3564     if (generate_interface_guard(kls, region) != NULL)
3565       // A guard was added.  If the guard is taken, it was an interface.
3566       phi->add_req(null());
3567     if (generate_array_guard(kls, region) != NULL)
3568       // A guard was added.  If the guard is taken, it was an array.
3569       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3570     // If we fall through, it's a plain class.  Get its _super.
3571     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3572     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3573     null_ctl = top();
3574     kls = null_check_oop(kls, &null_ctl);
3575     if (null_ctl != top()) {
3576       // If the guard is taken, Object.superClass is null (both klass and mirror).
3577       region->add_req(null_ctl);
3578       phi   ->add_req(null());
3579     }
3580     if (!stopped()) {
3581       query_value = load_mirror_from_klass(kls);
3582     }
3583     break;
3584 
3585   case vmIntrinsics::_getComponentType:
3586     if (generate_array_guard(kls, region) != NULL) {
3587       // Be sure to pin the oop load to the guard edge just created:
3588       Node* is_array_ctrl = region->in(region->req()-1);
3589       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3590       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3591       phi->add_req(cmo);
3592     }
3593     query_value = null();  // non-array case is null
3594     break;
3595 
3596   case vmIntrinsics::_getClassAccessFlags:
3597     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3598     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3599     break;
3600 
3601   default:
3602     fatal_unexpected_iid(id);
3603     break;
3604   }
3605 
3606   // Fall-through is the normal case of a query to a real class.
3607   phi->init_req(1, query_value);
3608   region->init_req(1, control());
3609 
3610   C->set_has_split_ifs(true); // Has chance for split-if optimization
3611   set_result(region, phi);
3612   return true;
3613 }
3614 
3615 //--------------------------inline_native_subtype_check------------------------
3616 // This intrinsic takes the JNI calls out of the heart of
3617 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3618 bool LibraryCallKit::inline_native_subtype_check() {
3619   // Pull both arguments off the stack.
3620   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3621   args[0] = argument(0);
3622   args[1] = argument(1);
3623   Node* klasses[2];             // corresponding Klasses: superk, subk
3624   klasses[0] = klasses[1] = top();
3625 
3626   enum {
3627     // A full decision tree on {superc is prim, subc is prim}:
3628     _prim_0_path = 1,           // {P,N} => false
3629                                 // {P,P} & superc!=subc => false
3630     _prim_same_path,            // {P,P} & superc==subc => true
3631     _prim_1_path,               // {N,P} => false
3632     _ref_subtype_path,          // {N,N} & subtype check wins => true
3633     _both_ref_path,             // {N,N} & subtype check loses => false
3634     PATH_LIMIT
3635   };
3636 
3637   RegionNode* region = new RegionNode(PATH_LIMIT);
3638   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3639   record_for_igvn(region);
3640 
3641   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3642   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3643   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3644 
3645   // First null-check both mirrors and load each mirror's klass metaobject.
3646   int which_arg;
3647   for (which_arg = 0; which_arg <= 1; which_arg++) {
3648     Node* arg = args[which_arg];
3649     arg = null_check(arg);
3650     if (stopped())  break;
3651     args[which_arg] = arg;
3652 
3653     Node* p = basic_plus_adr(arg, class_klass_offset);
3654     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3655     klasses[which_arg] = _gvn.transform(kls);
3656   }
3657 
3658   // Having loaded both klasses, test each for null.
3659   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3660   for (which_arg = 0; which_arg <= 1; which_arg++) {
3661     Node* kls = klasses[which_arg];
3662     Node* null_ctl = top();
3663     kls = null_check_oop(kls, &null_ctl, never_see_null);
3664     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3665     region->init_req(prim_path, null_ctl);
3666     if (stopped())  break;
3667     klasses[which_arg] = kls;
3668   }
3669 
3670   if (!stopped()) {
3671     // now we have two reference types, in klasses[0..1]
3672     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3673     Node* superk = klasses[0];  // the receiver
3674     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3675     // now we have a successful reference subtype check
3676     region->set_req(_ref_subtype_path, control());
3677   }
3678 
3679   // If both operands are primitive (both klasses null), then
3680   // we must return true when they are identical primitives.
3681   // It is convenient to test this after the first null klass check.
3682   set_control(region->in(_prim_0_path)); // go back to first null check
3683   if (!stopped()) {
3684     // Since superc is primitive, make a guard for the superc==subc case.
3685     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3686     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3687     generate_guard(bol_eq, region, PROB_FAIR);
3688     if (region->req() == PATH_LIMIT+1) {
3689       // A guard was added.  If the added guard is taken, superc==subc.
3690       region->swap_edges(PATH_LIMIT, _prim_same_path);
3691       region->del_req(PATH_LIMIT);
3692     }
3693     region->set_req(_prim_0_path, control()); // Not equal after all.
3694   }
3695 
3696   // these are the only paths that produce 'true':
3697   phi->set_req(_prim_same_path,   intcon(1));
3698   phi->set_req(_ref_subtype_path, intcon(1));
3699 
3700   // pull together the cases:
3701   assert(region->req() == PATH_LIMIT, "sane region");
3702   for (uint i = 1; i < region->req(); i++) {
3703     Node* ctl = region->in(i);
3704     if (ctl == NULL || ctl == top()) {
3705       region->set_req(i, top());
3706       phi   ->set_req(i, top());
3707     } else if (phi->in(i) == NULL) {
3708       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3709     }
3710   }
3711 
3712   set_control(_gvn.transform(region));
3713   set_result(_gvn.transform(phi));
3714   return true;
3715 }
3716 
3717 //---------------------generate_array_guard_common------------------------
3718 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3719                                                   bool obj_array, bool not_array) {
3720   // If obj_array/non_array==false/false:
3721   // Branch around if the given klass is in fact an array (either obj or prim).
3722   // If obj_array/non_array==false/true:
3723   // Branch around if the given klass is not an array klass of any kind.
3724   // If obj_array/non_array==true/true:
3725   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3726   // If obj_array/non_array==true/false:
3727   // Branch around if the kls is an oop array (Object[] or subtype)
3728   //
3729   // Like generate_guard, adds a new path onto the region.
3730   jint  layout_con = 0;
3731   Node* layout_val = get_layout_helper(kls, layout_con);
3732   if (layout_val == NULL) {
3733     bool query = (obj_array
3734                   ? Klass::layout_helper_is_objArray(layout_con)
3735                   : Klass::layout_helper_is_array(layout_con));
3736     if (query == not_array) {
3737       return NULL;                       // never a branch
3738     } else {                             // always a branch
3739       Node* always_branch = control();
3740       if (region != NULL)
3741         region->add_req(always_branch);
3742       set_control(top());
3743       return always_branch;
3744     }
3745   }
3746   // Now test the correct condition.
3747   jint  nval = (obj_array
3748                 ? ((jint)Klass::_lh_array_tag_type_value
3749                    <<    Klass::_lh_array_tag_shift)
3750                 : Klass::_lh_neutral_value);
3751   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3752   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3753   // invert the test if we are looking for a non-array
3754   if (not_array)  btest = BoolTest(btest).negate();
3755   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3756   return generate_fair_guard(bol, region);
3757 }
3758 
3759 
3760 //-----------------------inline_native_newArray--------------------------
3761 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3762 bool LibraryCallKit::inline_native_newArray() {
3763   Node* mirror    = argument(0);
3764   Node* count_val = argument(1);
3765 
3766   mirror = null_check(mirror);
3767   // If mirror or obj is dead, only null-path is taken.
3768   if (stopped())  return true;
3769 
3770   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3771   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3772   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3773   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3774   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3775 
3776   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3777   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3778                                                   result_reg, _slow_path);
3779   Node* normal_ctl   = control();
3780   Node* no_array_ctl = result_reg->in(_slow_path);
3781 
3782   // Generate code for the slow case.  We make a call to newArray().
3783   set_control(no_array_ctl);
3784   if (!stopped()) {
3785     // Either the input type is void.class, or else the
3786     // array klass has not yet been cached.  Either the
3787     // ensuing call will throw an exception, or else it
3788     // will cache the array klass for next time.
3789     PreserveJVMState pjvms(this);
3790     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3791     Node* slow_result = set_results_for_java_call(slow_call);
3792     // this->control() comes from set_results_for_java_call
3793     result_reg->set_req(_slow_path, control());
3794     result_val->set_req(_slow_path, slow_result);
3795     result_io ->set_req(_slow_path, i_o());
3796     result_mem->set_req(_slow_path, reset_memory());
3797   }
3798 
3799   set_control(normal_ctl);
3800   if (!stopped()) {
3801     // Normal case:  The array type has been cached in the java.lang.Class.
3802     // The following call works fine even if the array type is polymorphic.
3803     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3804     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3805     result_reg->init_req(_normal_path, control());
3806     result_val->init_req(_normal_path, obj);
3807     result_io ->init_req(_normal_path, i_o());
3808     result_mem->init_req(_normal_path, reset_memory());
3809   }
3810 
3811   // Return the combined state.
3812   set_i_o(        _gvn.transform(result_io)  );
3813   set_all_memory( _gvn.transform(result_mem));
3814 
3815   C->set_has_split_ifs(true); // Has chance for split-if optimization
3816   set_result(result_reg, result_val);
3817   return true;
3818 }
3819 
3820 //----------------------inline_native_getLength--------------------------
3821 // public static native int java.lang.reflect.Array.getLength(Object array);
3822 bool LibraryCallKit::inline_native_getLength() {
3823   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3824 
3825   Node* array = null_check(argument(0));
3826   // If array is dead, only null-path is taken.
3827   if (stopped())  return true;
3828 
3829   // Deoptimize if it is a non-array.
3830   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3831 
3832   if (non_array != NULL) {
3833     PreserveJVMState pjvms(this);
3834     set_control(non_array);
3835     uncommon_trap(Deoptimization::Reason_intrinsic,
3836                   Deoptimization::Action_maybe_recompile);
3837   }
3838 
3839   // If control is dead, only non-array-path is taken.
3840   if (stopped())  return true;
3841 
3842   // The works fine even if the array type is polymorphic.
3843   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3844   Node* result = load_array_length(array);
3845 
3846   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3847   set_result(result);
3848   return true;
3849 }
3850 
3851 //------------------------inline_array_copyOf----------------------------
3852 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3853 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3854 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3855   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3856 
3857   // Get the arguments.
3858   Node* original          = argument(0);
3859   Node* start             = is_copyOfRange? argument(1): intcon(0);
3860   Node* end               = is_copyOfRange? argument(2): argument(1);
3861   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3862 
3863   Node* newcopy;
3864 
3865   // Set the original stack and the reexecute bit for the interpreter to reexecute
3866   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3867   { PreserveReexecuteState preexecs(this);
3868     jvms()->set_should_reexecute(true);
3869 
3870     array_type_mirror = null_check(array_type_mirror);
3871     original          = null_check(original);
3872 
3873     // Check if a null path was taken unconditionally.
3874     if (stopped())  return true;
3875 
3876     Node* orig_length = load_array_length(original);
3877 
3878     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3879     klass_node = null_check(klass_node);
3880 
3881     RegionNode* bailout = new RegionNode(1);
3882     record_for_igvn(bailout);
3883 
3884     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3885     // Bail out if that is so.
3886     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3887     if (not_objArray != NULL) {
3888       // Improve the klass node's type from the new optimistic assumption:
3889       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3890       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3891       Node* cast = new CastPPNode(klass_node, akls);
3892       cast->init_req(0, control());
3893       klass_node = _gvn.transform(cast);
3894     }
3895 
3896     // Bail out if either start or end is negative.
3897     generate_negative_guard(start, bailout, &start);
3898     generate_negative_guard(end,   bailout, &end);
3899 
3900     Node* length = end;
3901     if (_gvn.type(start) != TypeInt::ZERO) {
3902       length = _gvn.transform(new SubINode(end, start));
3903     }
3904 
3905     // Bail out if length is negative.
3906     // Without this the new_array would throw
3907     // NegativeArraySizeException but IllegalArgumentException is what
3908     // should be thrown
3909     generate_negative_guard(length, bailout, &length);
3910 
3911     if (bailout->req() > 1) {
3912       PreserveJVMState pjvms(this);
3913       set_control(_gvn.transform(bailout));
3914       uncommon_trap(Deoptimization::Reason_intrinsic,
3915                     Deoptimization::Action_maybe_recompile);
3916     }
3917 
3918     if (!stopped()) {
3919       // How many elements will we copy from the original?
3920       // The answer is MinI(orig_length - start, length).
3921       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3922       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3923 
3924       newcopy = new_array(klass_node, length, 0);  // no argments to push
3925 
3926       // Generate a direct call to the right arraycopy function(s).
3927       // We know the copy is disjoint but we might not know if the
3928       // oop stores need checking.
3929       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3930       // This will fail a store-check if x contains any non-nulls.
3931       bool disjoint_bases = true;
3932       // if start > orig_length then the length of the copy may be
3933       // negative.
3934       bool length_never_negative = !is_copyOfRange;
3935       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3936                          original, start, newcopy, intcon(0), moved,
3937                          disjoint_bases, length_never_negative);
3938     }
3939   } // original reexecute is set back here
3940 
3941   C->set_has_split_ifs(true); // Has chance for split-if optimization
3942   if (!stopped()) {
3943     set_result(newcopy);
3944   }
3945   return true;
3946 }
3947 
3948 
3949 //----------------------generate_virtual_guard---------------------------
3950 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3951 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3952                                              RegionNode* slow_region) {
3953   ciMethod* method = callee();
3954   int vtable_index = method->vtable_index();
3955   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3956          err_msg_res("bad index %d", vtable_index));
3957   // Get the Method* out of the appropriate vtable entry.
3958   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3959                      vtable_index*vtableEntry::size()) * wordSize +
3960                      vtableEntry::method_offset_in_bytes();
3961   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3962   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3963 
3964   // Compare the target method with the expected method (e.g., Object.hashCode).
3965   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3966 
3967   Node* native_call = makecon(native_call_addr);
3968   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3969   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3970 
3971   return generate_slow_guard(test_native, slow_region);
3972 }
3973 
3974 //-----------------------generate_method_call----------------------------
3975 // Use generate_method_call to make a slow-call to the real
3976 // method if the fast path fails.  An alternative would be to
3977 // use a stub like OptoRuntime::slow_arraycopy_Java.
3978 // This only works for expanding the current library call,
3979 // not another intrinsic.  (E.g., don't use this for making an
3980 // arraycopy call inside of the copyOf intrinsic.)
3981 CallJavaNode*
3982 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3983   // When compiling the intrinsic method itself, do not use this technique.
3984   guarantee(callee() != C->method(), "cannot make slow-call to self");
3985 
3986   ciMethod* method = callee();
3987   // ensure the JVMS we have will be correct for this call
3988   guarantee(method_id == method->intrinsic_id(), "must match");
3989 
3990   const TypeFunc* tf = TypeFunc::make(method);
3991   CallJavaNode* slow_call;
3992   if (is_static) {
3993     assert(!is_virtual, "");
3994     slow_call = new CallStaticJavaNode(C, tf,
3995                            SharedRuntime::get_resolve_static_call_stub(),
3996                            method, bci());
3997   } else if (is_virtual) {
3998     null_check_receiver();
3999     int vtable_index = Method::invalid_vtable_index;
4000     if (UseInlineCaches) {
4001       // Suppress the vtable call
4002     } else {
4003       // hashCode and clone are not a miranda methods,
4004       // so the vtable index is fixed.
4005       // No need to use the linkResolver to get it.
4006        vtable_index = method->vtable_index();
4007        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4008               err_msg_res("bad index %d", vtable_index));
4009     }
4010     slow_call = new CallDynamicJavaNode(tf,
4011                           SharedRuntime::get_resolve_virtual_call_stub(),
4012                           method, vtable_index, bci());
4013   } else {  // neither virtual nor static:  opt_virtual
4014     null_check_receiver();
4015     slow_call = new CallStaticJavaNode(C, tf,
4016                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4017                                 method, bci());
4018     slow_call->set_optimized_virtual(true);
4019   }
4020   set_arguments_for_java_call(slow_call);
4021   set_edges_for_java_call(slow_call);
4022   return slow_call;
4023 }
4024 
4025 
4026 /**
4027  * Build special case code for calls to hashCode on an object. This call may
4028  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4029  * slightly different code.
4030  */
4031 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4032   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4033   assert(!(is_virtual && is_static), "either virtual, special, or static");
4034 
4035   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4036 
4037   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4038   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4039   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4040   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4041   Node* obj = NULL;
4042   if (!is_static) {
4043     // Check for hashing null object
4044     obj = null_check_receiver();
4045     if (stopped())  return true;        // unconditionally null
4046     result_reg->init_req(_null_path, top());
4047     result_val->init_req(_null_path, top());
4048   } else {
4049     // Do a null check, and return zero if null.
4050     // System.identityHashCode(null) == 0
4051     obj = argument(0);
4052     Node* null_ctl = top();
4053     obj = null_check_oop(obj, &null_ctl);
4054     result_reg->init_req(_null_path, null_ctl);
4055     result_val->init_req(_null_path, _gvn.intcon(0));
4056   }
4057 
4058   // Unconditionally null?  Then return right away.
4059   if (stopped()) {
4060     set_control( result_reg->in(_null_path));
4061     if (!stopped())
4062       set_result(result_val->in(_null_path));
4063     return true;
4064   }
4065 
4066   // We only go to the fast case code if we pass a number of guards.  The
4067   // paths which do not pass are accumulated in the slow_region.
4068   RegionNode* slow_region = new RegionNode(1);
4069   record_for_igvn(slow_region);
4070 
4071   // If this is a virtual call, we generate a funny guard.  We pull out
4072   // the vtable entry corresponding to hashCode() from the target object.
4073   // If the target method which we are calling happens to be the native
4074   // Object hashCode() method, we pass the guard.  We do not need this
4075   // guard for non-virtual calls -- the caller is known to be the native
4076   // Object hashCode().
4077   if (is_virtual) {
4078     // After null check, get the object's klass.
4079     Node* obj_klass = load_object_klass(obj);
4080     generate_virtual_guard(obj_klass, slow_region);
4081   }
4082 
4083   // Get the header out of the object, use LoadMarkNode when available
4084   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4085   // The control of the load must be NULL. Otherwise, the load can move before
4086   // the null check after castPP removal.
4087   Node* no_ctrl = NULL;
4088   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4089 
4090   // Test the header to see if it is unlocked.
4091   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4092   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4093   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4094   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4095   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4096 
4097   generate_slow_guard(test_unlocked, slow_region);
4098 
4099   // Get the hash value and check to see that it has been properly assigned.
4100   // We depend on hash_mask being at most 32 bits and avoid the use of
4101   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4102   // vm: see markOop.hpp.
4103   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4104   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4105   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4106   // This hack lets the hash bits live anywhere in the mark object now, as long
4107   // as the shift drops the relevant bits into the low 32 bits.  Note that
4108   // Java spec says that HashCode is an int so there's no point in capturing
4109   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4110   hshifted_header      = ConvX2I(hshifted_header);
4111   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4112 
4113   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4114   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4115   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4116 
4117   generate_slow_guard(test_assigned, slow_region);
4118 
4119   Node* init_mem = reset_memory();
4120   // fill in the rest of the null path:
4121   result_io ->init_req(_null_path, i_o());
4122   result_mem->init_req(_null_path, init_mem);
4123 
4124   result_val->init_req(_fast_path, hash_val);
4125   result_reg->init_req(_fast_path, control());
4126   result_io ->init_req(_fast_path, i_o());
4127   result_mem->init_req(_fast_path, init_mem);
4128 
4129   // Generate code for the slow case.  We make a call to hashCode().
4130   set_control(_gvn.transform(slow_region));
4131   if (!stopped()) {
4132     // No need for PreserveJVMState, because we're using up the present state.
4133     set_all_memory(init_mem);
4134     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4135     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4136     Node* slow_result = set_results_for_java_call(slow_call);
4137     // this->control() comes from set_results_for_java_call
4138     result_reg->init_req(_slow_path, control());
4139     result_val->init_req(_slow_path, slow_result);
4140     result_io  ->set_req(_slow_path, i_o());
4141     result_mem ->set_req(_slow_path, reset_memory());
4142   }
4143 
4144   // Return the combined state.
4145   set_i_o(        _gvn.transform(result_io)  );
4146   set_all_memory( _gvn.transform(result_mem));
4147 
4148   set_result(result_reg, result_val);
4149   return true;
4150 }
4151 
4152 //---------------------------inline_native_getClass----------------------------
4153 // public final native Class<?> java.lang.Object.getClass();
4154 //
4155 // Build special case code for calls to getClass on an object.
4156 bool LibraryCallKit::inline_native_getClass() {
4157   Node* obj = null_check_receiver();
4158   if (stopped())  return true;
4159   set_result(load_mirror_from_klass(load_object_klass(obj)));
4160   return true;
4161 }
4162 
4163 //-----------------inline_native_Reflection_getCallerClass---------------------
4164 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4165 //
4166 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4167 //
4168 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4169 // in that it must skip particular security frames and checks for
4170 // caller sensitive methods.
4171 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4172 #ifndef PRODUCT
4173   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4174     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4175   }
4176 #endif
4177 
4178   if (!jvms()->has_method()) {
4179 #ifndef PRODUCT
4180     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4181       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4182     }
4183 #endif
4184     return false;
4185   }
4186 
4187   // Walk back up the JVM state to find the caller at the required
4188   // depth.
4189   JVMState* caller_jvms = jvms();
4190 
4191   // Cf. JVM_GetCallerClass
4192   // NOTE: Start the loop at depth 1 because the current JVM state does
4193   // not include the Reflection.getCallerClass() frame.
4194   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4195     ciMethod* m = caller_jvms->method();
4196     switch (n) {
4197     case 0:
4198       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4199       break;
4200     case 1:
4201       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4202       if (!m->caller_sensitive()) {
4203 #ifndef PRODUCT
4204         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4205           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4206         }
4207 #endif
4208         return false;  // bail-out; let JVM_GetCallerClass do the work
4209       }
4210       break;
4211     default:
4212       if (!m->is_ignored_by_security_stack_walk()) {
4213         // We have reached the desired frame; return the holder class.
4214         // Acquire method holder as java.lang.Class and push as constant.
4215         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4216         ciInstance* caller_mirror = caller_klass->java_mirror();
4217         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4218 
4219 #ifndef PRODUCT
4220         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4221           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4222           tty->print_cr("  JVM state at this point:");
4223           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4224             ciMethod* m = jvms()->of_depth(i)->method();
4225             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4226           }
4227         }
4228 #endif
4229         return true;
4230       }
4231       break;
4232     }
4233   }
4234 
4235 #ifndef PRODUCT
4236   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4237     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4238     tty->print_cr("  JVM state at this point:");
4239     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4240       ciMethod* m = jvms()->of_depth(i)->method();
4241       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4242     }
4243   }
4244 #endif
4245 
4246   return false;  // bail-out; let JVM_GetCallerClass do the work
4247 }
4248 
4249 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4250   Node* arg = argument(0);
4251   Node* result;
4252 
4253   switch (id) {
4254   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4255   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4256   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4257   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4258 
4259   case vmIntrinsics::_doubleToLongBits: {
4260     // two paths (plus control) merge in a wood
4261     RegionNode *r = new RegionNode(3);
4262     Node *phi = new PhiNode(r, TypeLong::LONG);
4263 
4264     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4265     // Build the boolean node
4266     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4267 
4268     // Branch either way.
4269     // NaN case is less traveled, which makes all the difference.
4270     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4271     Node *opt_isnan = _gvn.transform(ifisnan);
4272     assert( opt_isnan->is_If(), "Expect an IfNode");
4273     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4274     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4275 
4276     set_control(iftrue);
4277 
4278     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4279     Node *slow_result = longcon(nan_bits); // return NaN
4280     phi->init_req(1, _gvn.transform( slow_result ));
4281     r->init_req(1, iftrue);
4282 
4283     // Else fall through
4284     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4285     set_control(iffalse);
4286 
4287     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4288     r->init_req(2, iffalse);
4289 
4290     // Post merge
4291     set_control(_gvn.transform(r));
4292     record_for_igvn(r);
4293 
4294     C->set_has_split_ifs(true); // Has chance for split-if optimization
4295     result = phi;
4296     assert(result->bottom_type()->isa_long(), "must be");
4297     break;
4298   }
4299 
4300   case vmIntrinsics::_floatToIntBits: {
4301     // two paths (plus control) merge in a wood
4302     RegionNode *r = new RegionNode(3);
4303     Node *phi = new PhiNode(r, TypeInt::INT);
4304 
4305     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4306     // Build the boolean node
4307     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4308 
4309     // Branch either way.
4310     // NaN case is less traveled, which makes all the difference.
4311     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4312     Node *opt_isnan = _gvn.transform(ifisnan);
4313     assert( opt_isnan->is_If(), "Expect an IfNode");
4314     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4315     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4316 
4317     set_control(iftrue);
4318 
4319     static const jint nan_bits = 0x7fc00000;
4320     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4321     phi->init_req(1, _gvn.transform( slow_result ));
4322     r->init_req(1, iftrue);
4323 
4324     // Else fall through
4325     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4326     set_control(iffalse);
4327 
4328     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4329     r->init_req(2, iffalse);
4330 
4331     // Post merge
4332     set_control(_gvn.transform(r));
4333     record_for_igvn(r);
4334 
4335     C->set_has_split_ifs(true); // Has chance for split-if optimization
4336     result = phi;
4337     assert(result->bottom_type()->isa_int(), "must be");
4338     break;
4339   }
4340 
4341   default:
4342     fatal_unexpected_iid(id);
4343     break;
4344   }
4345   set_result(_gvn.transform(result));
4346   return true;
4347 }
4348 
4349 #ifdef _LP64
4350 #define XTOP ,top() /*additional argument*/
4351 #else  //_LP64
4352 #define XTOP        /*no additional argument*/
4353 #endif //_LP64
4354 
4355 //----------------------inline_unsafe_copyMemory-------------------------
4356 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4357 bool LibraryCallKit::inline_unsafe_copyMemory() {
4358   if (callee()->is_static())  return false;  // caller must have the capability!
4359   null_check_receiver();  // null-check receiver
4360   if (stopped())  return true;
4361 
4362   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4363 
4364   Node* src_ptr =         argument(1);   // type: oop
4365   Node* src_off = ConvL2X(argument(2));  // type: long
4366   Node* dst_ptr =         argument(4);   // type: oop
4367   Node* dst_off = ConvL2X(argument(5));  // type: long
4368   Node* size    = ConvL2X(argument(7));  // type: long
4369 
4370   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4371          "fieldOffset must be byte-scaled");
4372 
4373   Node* src = make_unsafe_address(src_ptr, src_off);
4374   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4375 
4376   // Conservatively insert a memory barrier on all memory slices.
4377   // Do not let writes of the copy source or destination float below the copy.
4378   insert_mem_bar(Op_MemBarCPUOrder);
4379 
4380   // Call it.  Note that the length argument is not scaled.
4381   make_runtime_call(RC_LEAF|RC_NO_FP,
4382                     OptoRuntime::fast_arraycopy_Type(),
4383                     StubRoutines::unsafe_arraycopy(),
4384                     "unsafe_arraycopy",
4385                     TypeRawPtr::BOTTOM,
4386                     src, dst, size XTOP);
4387 
4388   // Do not let reads of the copy destination float above the copy.
4389   insert_mem_bar(Op_MemBarCPUOrder);
4390 
4391   return true;
4392 }
4393 
4394 //------------------------clone_coping-----------------------------------
4395 // Helper function for inline_native_clone.
4396 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4397   assert(obj_size != NULL, "");
4398   Node* raw_obj = alloc_obj->in(1);
4399   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4400 
4401   AllocateNode* alloc = NULL;
4402   if (ReduceBulkZeroing) {
4403     // We will be completely responsible for initializing this object -
4404     // mark Initialize node as complete.
4405     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4406     // The object was just allocated - there should be no any stores!
4407     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4408     // Mark as complete_with_arraycopy so that on AllocateNode
4409     // expansion, we know this AllocateNode is initialized by an array
4410     // copy and a StoreStore barrier exists after the array copy.
4411     alloc->initialization()->set_complete_with_arraycopy();
4412   }
4413 
4414   // Copy the fastest available way.
4415   // TODO: generate fields copies for small objects instead.
4416   Node* src  = obj;
4417   Node* dest = alloc_obj;
4418   Node* size = _gvn.transform(obj_size);
4419 
4420   // Exclude the header but include array length to copy by 8 bytes words.
4421   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4422   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4423                             instanceOopDesc::base_offset_in_bytes();
4424   // base_off:
4425   // 8  - 32-bit VM
4426   // 12 - 64-bit VM, compressed klass
4427   // 16 - 64-bit VM, normal klass
4428   if (base_off % BytesPerLong != 0) {
4429     assert(UseCompressedClassPointers, "");
4430     if (is_array) {
4431       // Exclude length to copy by 8 bytes words.
4432       base_off += sizeof(int);
4433     } else {
4434       // Include klass to copy by 8 bytes words.
4435       base_off = instanceOopDesc::klass_offset_in_bytes();
4436     }
4437     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4438   }
4439   src  = basic_plus_adr(src,  base_off);
4440   dest = basic_plus_adr(dest, base_off);
4441 
4442   // Compute the length also, if needed:
4443   Node* countx = size;
4444   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4445   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4446 
4447   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4448   bool disjoint_bases = true;
4449   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4450                                src, NULL, dest, NULL, countx,
4451                                /*dest_uninitialized*/true);
4452 
4453   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4454   if (card_mark) {
4455     assert(!is_array, "");
4456     // Put in store barrier for any and all oops we are sticking
4457     // into this object.  (We could avoid this if we could prove
4458     // that the object type contains no oop fields at all.)
4459     Node* no_particular_value = NULL;
4460     Node* no_particular_field = NULL;
4461     int raw_adr_idx = Compile::AliasIdxRaw;
4462     post_barrier(control(),
4463                  memory(raw_adr_type),
4464                  alloc_obj,
4465                  no_particular_field,
4466                  raw_adr_idx,
4467                  no_particular_value,
4468                  T_OBJECT,
4469                  false);
4470   }
4471 
4472   // Do not let reads from the cloned object float above the arraycopy.
4473   if (alloc != NULL) {
4474     // Do not let stores that initialize this object be reordered with
4475     // a subsequent store that would make this object accessible by
4476     // other threads.
4477     // Record what AllocateNode this StoreStore protects so that
4478     // escape analysis can go from the MemBarStoreStoreNode to the
4479     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4480     // based on the escape status of the AllocateNode.
4481     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4482   } else {
4483     insert_mem_bar(Op_MemBarCPUOrder);
4484   }
4485 }
4486 
4487 //------------------------inline_native_clone----------------------------
4488 // protected native Object java.lang.Object.clone();
4489 //
4490 // Here are the simple edge cases:
4491 //  null receiver => normal trap
4492 //  virtual and clone was overridden => slow path to out-of-line clone
4493 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4494 //
4495 // The general case has two steps, allocation and copying.
4496 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4497 //
4498 // Copying also has two cases, oop arrays and everything else.
4499 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4500 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4501 //
4502 // These steps fold up nicely if and when the cloned object's klass
4503 // can be sharply typed as an object array, a type array, or an instance.
4504 //
4505 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4506   PhiNode* result_val;
4507 
4508   // Set the reexecute bit for the interpreter to reexecute
4509   // the bytecode that invokes Object.clone if deoptimization happens.
4510   { PreserveReexecuteState preexecs(this);
4511     jvms()->set_should_reexecute(true);
4512 
4513     Node* obj = null_check_receiver();
4514     if (stopped())  return true;
4515 
4516     Node* obj_klass = load_object_klass(obj);
4517     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4518     const TypeOopPtr*   toop   = ((tklass != NULL)
4519                                 ? tklass->as_instance_type()
4520                                 : TypeInstPtr::NOTNULL);
4521 
4522     // Conservatively insert a memory barrier on all memory slices.
4523     // Do not let writes into the original float below the clone.
4524     insert_mem_bar(Op_MemBarCPUOrder);
4525 
4526     // paths into result_reg:
4527     enum {
4528       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4529       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4530       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4531       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4532       PATH_LIMIT
4533     };
4534     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4535     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4536     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4537     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4538     record_for_igvn(result_reg);
4539 
4540     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4541     int raw_adr_idx = Compile::AliasIdxRaw;
4542 
4543     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4544     if (array_ctl != NULL) {
4545       // It's an array.
4546       PreserveJVMState pjvms(this);
4547       set_control(array_ctl);
4548       Node* obj_length = load_array_length(obj);
4549       Node* obj_size  = NULL;
4550       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4551 
4552       if (!use_ReduceInitialCardMarks()) {
4553         // If it is an oop array, it requires very special treatment,
4554         // because card marking is required on each card of the array.
4555         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4556         if (is_obja != NULL) {
4557           PreserveJVMState pjvms2(this);
4558           set_control(is_obja);
4559           // Generate a direct call to the right arraycopy function(s).
4560           bool disjoint_bases = true;
4561           bool length_never_negative = true;
4562           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4563                              obj, intcon(0), alloc_obj, intcon(0),
4564                              obj_length,
4565                              disjoint_bases, length_never_negative);
4566           result_reg->init_req(_objArray_path, control());
4567           result_val->init_req(_objArray_path, alloc_obj);
4568           result_i_o ->set_req(_objArray_path, i_o());
4569           result_mem ->set_req(_objArray_path, reset_memory());
4570         }
4571       }
4572       // Otherwise, there are no card marks to worry about.
4573       // (We can dispense with card marks if we know the allocation
4574       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4575       //  causes the non-eden paths to take compensating steps to
4576       //  simulate a fresh allocation, so that no further
4577       //  card marks are required in compiled code to initialize
4578       //  the object.)
4579 
4580       if (!stopped()) {
4581         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4582 
4583         // Present the results of the copy.
4584         result_reg->init_req(_array_path, control());
4585         result_val->init_req(_array_path, alloc_obj);
4586         result_i_o ->set_req(_array_path, i_o());
4587         result_mem ->set_req(_array_path, reset_memory());
4588       }
4589     }
4590 
4591     // We only go to the instance fast case code if we pass a number of guards.
4592     // The paths which do not pass are accumulated in the slow_region.
4593     RegionNode* slow_region = new RegionNode(1);
4594     record_for_igvn(slow_region);
4595     if (!stopped()) {
4596       // It's an instance (we did array above).  Make the slow-path tests.
4597       // If this is a virtual call, we generate a funny guard.  We grab
4598       // the vtable entry corresponding to clone() from the target object.
4599       // If the target method which we are calling happens to be the
4600       // Object clone() method, we pass the guard.  We do not need this
4601       // guard for non-virtual calls; the caller is known to be the native
4602       // Object clone().
4603       if (is_virtual) {
4604         generate_virtual_guard(obj_klass, slow_region);
4605       }
4606 
4607       // The object must be cloneable and must not have a finalizer.
4608       // Both of these conditions may be checked in a single test.
4609       // We could optimize the cloneable test further, but we don't care.
4610       generate_access_flags_guard(obj_klass,
4611                                   // Test both conditions:
4612                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4613                                   // Must be cloneable but not finalizer:
4614                                   JVM_ACC_IS_CLONEABLE,
4615                                   slow_region);
4616     }
4617 
4618     if (!stopped()) {
4619       // It's an instance, and it passed the slow-path tests.
4620       PreserveJVMState pjvms(this);
4621       Node* obj_size  = NULL;
4622       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4623       // is reexecuted if deoptimization occurs and there could be problems when merging
4624       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4625       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4626 
4627       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4628 
4629       // Present the results of the slow call.
4630       result_reg->init_req(_instance_path, control());
4631       result_val->init_req(_instance_path, alloc_obj);
4632       result_i_o ->set_req(_instance_path, i_o());
4633       result_mem ->set_req(_instance_path, reset_memory());
4634     }
4635 
4636     // Generate code for the slow case.  We make a call to clone().
4637     set_control(_gvn.transform(slow_region));
4638     if (!stopped()) {
4639       PreserveJVMState pjvms(this);
4640       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4641       Node* slow_result = set_results_for_java_call(slow_call);
4642       // this->control() comes from set_results_for_java_call
4643       result_reg->init_req(_slow_path, control());
4644       result_val->init_req(_slow_path, slow_result);
4645       result_i_o ->set_req(_slow_path, i_o());
4646       result_mem ->set_req(_slow_path, reset_memory());
4647     }
4648 
4649     // Return the combined state.
4650     set_control(    _gvn.transform(result_reg));
4651     set_i_o(        _gvn.transform(result_i_o));
4652     set_all_memory( _gvn.transform(result_mem));
4653   } // original reexecute is set back here
4654 
4655   set_result(_gvn.transform(result_val));
4656   return true;
4657 }
4658 
4659 //------------------------------basictype2arraycopy----------------------------
4660 address LibraryCallKit::basictype2arraycopy(BasicType t,
4661                                             Node* src_offset,
4662                                             Node* dest_offset,
4663                                             bool disjoint_bases,
4664                                             const char* &name,
4665                                             bool dest_uninitialized) {
4666   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4667   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4668 
4669   bool aligned = false;
4670   bool disjoint = disjoint_bases;
4671 
4672   // if the offsets are the same, we can treat the memory regions as
4673   // disjoint, because either the memory regions are in different arrays,
4674   // or they are identical (which we can treat as disjoint.)  We can also
4675   // treat a copy with a destination index  less that the source index
4676   // as disjoint since a low->high copy will work correctly in this case.
4677   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4678       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4679     // both indices are constants
4680     int s_offs = src_offset_inttype->get_con();
4681     int d_offs = dest_offset_inttype->get_con();
4682     int element_size = type2aelembytes(t);
4683     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4684               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4685     if (s_offs >= d_offs)  disjoint = true;
4686   } else if (src_offset == dest_offset && src_offset != NULL) {
4687     // This can occur if the offsets are identical non-constants.
4688     disjoint = true;
4689   }
4690 
4691   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4692 }
4693 
4694 
4695 //------------------------------inline_arraycopy-----------------------
4696 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4697 //                                                      Object dest, int destPos,
4698 //                                                      int length);
4699 bool LibraryCallKit::inline_arraycopy() {
4700   // Get the arguments.
4701   Node* src         = argument(0);  // type: oop
4702   Node* src_offset  = argument(1);  // type: int
4703   Node* dest        = argument(2);  // type: oop
4704   Node* dest_offset = argument(3);  // type: int
4705   Node* length      = argument(4);  // type: int
4706 
4707   // Compile time checks.  If any of these checks cannot be verified at compile time,
4708   // we do not make a fast path for this call.  Instead, we let the call remain as it
4709   // is.  The checks we choose to mandate at compile time are:
4710   //
4711   // (1) src and dest are arrays.
4712   const Type* src_type  = src->Value(&_gvn);
4713   const Type* dest_type = dest->Value(&_gvn);
4714   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4715   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4716 
4717   // Do we have the type of src?
4718   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4719   // Do we have the type of dest?
4720   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4721   // Is the type for src from speculation?
4722   bool src_spec = false;
4723   // Is the type for dest from speculation?
4724   bool dest_spec = false;
4725 
4726   if (!has_src || !has_dest) {
4727     // We don't have sufficient type information, let's see if
4728     // speculative types can help. We need to have types for both src
4729     // and dest so that it pays off.
4730 
4731     // Do we already have or could we have type information for src
4732     bool could_have_src = has_src;
4733     // Do we already have or could we have type information for dest
4734     bool could_have_dest = has_dest;
4735 
4736     ciKlass* src_k = NULL;
4737     if (!has_src) {
4738       src_k = src_type->speculative_type_not_null();
4739       if (src_k != NULL && src_k->is_array_klass()) {
4740         could_have_src = true;
4741       }
4742     }
4743 
4744     ciKlass* dest_k = NULL;
4745     if (!has_dest) {
4746       dest_k = dest_type->speculative_type_not_null();
4747       if (dest_k != NULL && dest_k->is_array_klass()) {
4748         could_have_dest = true;
4749       }
4750     }
4751 
4752     if (could_have_src && could_have_dest) {
4753       // This is going to pay off so emit the required guards
4754       if (!has_src) {
4755         src = maybe_cast_profiled_obj(src, src_k);
4756         src_type  = _gvn.type(src);
4757         top_src  = src_type->isa_aryptr();
4758         has_src = (top_src != NULL && top_src->klass() != NULL);
4759         src_spec = true;
4760       }
4761       if (!has_dest) {
4762         dest = maybe_cast_profiled_obj(dest, dest_k);
4763         dest_type  = _gvn.type(dest);
4764         top_dest  = dest_type->isa_aryptr();
4765         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4766         dest_spec = true;
4767       }
4768     }
4769   }
4770 
4771   if (!has_src || !has_dest) {
4772     // Conservatively insert a memory barrier on all memory slices.
4773     // Do not let writes into the source float below the arraycopy.
4774     insert_mem_bar(Op_MemBarCPUOrder);
4775 
4776     // Call StubRoutines::generic_arraycopy stub.
4777     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4778                        src, src_offset, dest, dest_offset, length);
4779 
4780     // Do not let reads from the destination float above the arraycopy.
4781     // Since we cannot type the arrays, we don't know which slices
4782     // might be affected.  We could restrict this barrier only to those
4783     // memory slices which pertain to array elements--but don't bother.
4784     if (!InsertMemBarAfterArraycopy)
4785       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4786       insert_mem_bar(Op_MemBarCPUOrder);
4787     return true;
4788   }
4789 
4790   // (2) src and dest arrays must have elements of the same BasicType
4791   // Figure out the size and type of the elements we will be copying.
4792   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4793   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4794   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4795   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4796 
4797   if (src_elem != dest_elem || dest_elem == T_VOID) {
4798     // The component types are not the same or are not recognized.  Punt.
4799     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4800     generate_slow_arraycopy(TypePtr::BOTTOM,
4801                             src, src_offset, dest, dest_offset, length,
4802                             /*dest_uninitialized*/false);
4803     return true;
4804   }
4805 
4806   if (src_elem == T_OBJECT) {
4807     // If both arrays are object arrays then having the exact types
4808     // for both will remove the need for a subtype check at runtime
4809     // before the call and may make it possible to pick a faster copy
4810     // routine (without a subtype check on every element)
4811     // Do we have the exact type of src?
4812     bool could_have_src = src_spec;
4813     // Do we have the exact type of dest?
4814     bool could_have_dest = dest_spec;
4815     ciKlass* src_k = top_src->klass();
4816     ciKlass* dest_k = top_dest->klass();
4817     if (!src_spec) {
4818       src_k = src_type->speculative_type_not_null();
4819       if (src_k != NULL && src_k->is_array_klass()) {
4820           could_have_src = true;
4821       }
4822     }
4823     if (!dest_spec) {
4824       dest_k = dest_type->speculative_type_not_null();
4825       if (dest_k != NULL && dest_k->is_array_klass()) {
4826         could_have_dest = true;
4827       }
4828     }
4829     if (could_have_src && could_have_dest) {
4830       // If we can have both exact types, emit the missing guards
4831       if (could_have_src && !src_spec) {
4832         src = maybe_cast_profiled_obj(src, src_k);
4833       }
4834       if (could_have_dest && !dest_spec) {
4835         dest = maybe_cast_profiled_obj(dest, dest_k);
4836       }
4837     }
4838   }
4839 
4840   //---------------------------------------------------------------------------
4841   // We will make a fast path for this call to arraycopy.
4842 
4843   // We have the following tests left to perform:
4844   //
4845   // (3) src and dest must not be null.
4846   // (4) src_offset must not be negative.
4847   // (5) dest_offset must not be negative.
4848   // (6) length must not be negative.
4849   // (7) src_offset + length must not exceed length of src.
4850   // (8) dest_offset + length must not exceed length of dest.
4851   // (9) each element of an oop array must be assignable
4852 
4853   RegionNode* slow_region = new RegionNode(1);
4854   record_for_igvn(slow_region);
4855 
4856   // (3) operands must not be null
4857   // We currently perform our null checks with the null_check routine.
4858   // This means that the null exceptions will be reported in the caller
4859   // rather than (correctly) reported inside of the native arraycopy call.
4860   // This should be corrected, given time.  We do our null check with the
4861   // stack pointer restored.
4862   src  = null_check(src,  T_ARRAY);
4863   dest = null_check(dest, T_ARRAY);
4864 
4865   // (4) src_offset must not be negative.
4866   generate_negative_guard(src_offset, slow_region);
4867 
4868   // (5) dest_offset must not be negative.
4869   generate_negative_guard(dest_offset, slow_region);
4870 
4871   // (6) length must not be negative (moved to generate_arraycopy()).
4872   // generate_negative_guard(length, slow_region);
4873 
4874   // (7) src_offset + length must not exceed length of src.
4875   generate_limit_guard(src_offset, length,
4876                        load_array_length(src),
4877                        slow_region);
4878 
4879   // (8) dest_offset + length must not exceed length of dest.
4880   generate_limit_guard(dest_offset, length,
4881                        load_array_length(dest),
4882                        slow_region);
4883 
4884   // (9) each element of an oop array must be assignable
4885   // The generate_arraycopy subroutine checks this.
4886 
4887   // This is where the memory effects are placed:
4888   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4889   generate_arraycopy(adr_type, dest_elem,
4890                      src, src_offset, dest, dest_offset, length,
4891                      false, false, slow_region);
4892 
4893   return true;
4894 }
4895 
4896 //-----------------------------generate_arraycopy----------------------
4897 // Generate an optimized call to arraycopy.
4898 // Caller must guard against non-arrays.
4899 // Caller must determine a common array basic-type for both arrays.
4900 // Caller must validate offsets against array bounds.
4901 // The slow_region has already collected guard failure paths
4902 // (such as out of bounds length or non-conformable array types).
4903 // The generated code has this shape, in general:
4904 //
4905 //     if (length == 0)  return   // via zero_path
4906 //     slowval = -1
4907 //     if (types unknown) {
4908 //       slowval = call generic copy loop
4909 //       if (slowval == 0)  return  // via checked_path
4910 //     } else if (indexes in bounds) {
4911 //       if ((is object array) && !(array type check)) {
4912 //         slowval = call checked copy loop
4913 //         if (slowval == 0)  return  // via checked_path
4914 //       } else {
4915 //         call bulk copy loop
4916 //         return  // via fast_path
4917 //       }
4918 //     }
4919 //     // adjust params for remaining work:
4920 //     if (slowval != -1) {
4921 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4922 //     }
4923 //   slow_region:
4924 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4925 //     return  // via slow_call_path
4926 //
4927 // This routine is used from several intrinsics:  System.arraycopy,
4928 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4929 //
4930 void
4931 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4932                                    BasicType basic_elem_type,
4933                                    Node* src,  Node* src_offset,
4934                                    Node* dest, Node* dest_offset,
4935                                    Node* copy_length,
4936                                    bool disjoint_bases,
4937                                    bool length_never_negative,
4938                                    RegionNode* slow_region) {
4939 
4940   if (slow_region == NULL) {
4941     slow_region = new RegionNode(1);
4942     record_for_igvn(slow_region);
4943   }
4944 
4945   Node* original_dest      = dest;
4946   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4947   bool  dest_uninitialized = false;
4948 
4949   // See if this is the initialization of a newly-allocated array.
4950   // If so, we will take responsibility here for initializing it to zero.
4951   // (Note:  Because tightly_coupled_allocation performs checks on the
4952   // out-edges of the dest, we need to avoid making derived pointers
4953   // from it until we have checked its uses.)
4954   if (ReduceBulkZeroing
4955       && !ZeroTLAB              // pointless if already zeroed
4956       && basic_elem_type != T_CONFLICT // avoid corner case
4957       && !src->eqv_uncast(dest)
4958       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4959           != NULL)
4960       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4961       && alloc->maybe_set_complete(&_gvn)) {
4962     // "You break it, you buy it."
4963     InitializeNode* init = alloc->initialization();
4964     assert(init->is_complete(), "we just did this");
4965     init->set_complete_with_arraycopy();
4966     assert(dest->is_CheckCastPP(), "sanity");
4967     assert(dest->in(0)->in(0) == init, "dest pinned");
4968     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4969     // From this point on, every exit path is responsible for
4970     // initializing any non-copied parts of the object to zero.
4971     // Also, if this flag is set we make sure that arraycopy interacts properly
4972     // with G1, eliding pre-barriers. See CR 6627983.
4973     dest_uninitialized = true;
4974   } else {
4975     // No zeroing elimination here.
4976     alloc             = NULL;
4977     //original_dest   = dest;
4978     //dest_uninitialized = false;
4979   }
4980 
4981   // Results are placed here:
4982   enum { fast_path        = 1,  // normal void-returning assembly stub
4983          checked_path     = 2,  // special assembly stub with cleanup
4984          slow_call_path   = 3,  // something went wrong; call the VM
4985          zero_path        = 4,  // bypass when length of copy is zero
4986          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4987          PATH_LIMIT       = 6
4988   };
4989   RegionNode* result_region = new RegionNode(PATH_LIMIT);
4990   PhiNode*    result_i_o    = new PhiNode(result_region, Type::ABIO);
4991   PhiNode*    result_memory = new PhiNode(result_region, Type::MEMORY, adr_type);
4992   record_for_igvn(result_region);
4993   _gvn.set_type_bottom(result_i_o);
4994   _gvn.set_type_bottom(result_memory);
4995   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4996 
4997   // The slow_control path:
4998   Node* slow_control;
4999   Node* slow_i_o = i_o();
5000   Node* slow_mem = memory(adr_type);
5001   debug_only(slow_control = (Node*) badAddress);
5002 
5003   // Checked control path:
5004   Node* checked_control = top();
5005   Node* checked_mem     = NULL;
5006   Node* checked_i_o     = NULL;
5007   Node* checked_value   = NULL;
5008 
5009   if (basic_elem_type == T_CONFLICT) {
5010     assert(!dest_uninitialized, "");
5011     Node* cv = generate_generic_arraycopy(adr_type,
5012                                           src, src_offset, dest, dest_offset,
5013                                           copy_length, dest_uninitialized);
5014     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5015     checked_control = control();
5016     checked_i_o     = i_o();
5017     checked_mem     = memory(adr_type);
5018     checked_value   = cv;
5019     set_control(top());         // no fast path
5020   }
5021 
5022   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
5023   if (not_pos != NULL) {
5024     PreserveJVMState pjvms(this);
5025     set_control(not_pos);
5026 
5027     // (6) length must not be negative.
5028     if (!length_never_negative) {
5029       generate_negative_guard(copy_length, slow_region);
5030     }
5031 
5032     // copy_length is 0.
5033     if (!stopped() && dest_uninitialized) {
5034       Node* dest_length = alloc->in(AllocateNode::ALength);
5035       if (copy_length->eqv_uncast(dest_length)
5036           || _gvn.find_int_con(dest_length, 1) <= 0) {
5037         // There is no zeroing to do. No need for a secondary raw memory barrier.
5038       } else {
5039         // Clear the whole thing since there are no source elements to copy.
5040         generate_clear_array(adr_type, dest, basic_elem_type,
5041                              intcon(0), NULL,
5042                              alloc->in(AllocateNode::AllocSize));
5043         // Use a secondary InitializeNode as raw memory barrier.
5044         // Currently it is needed only on this path since other
5045         // paths have stub or runtime calls as raw memory barriers.
5046         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5047                                                        Compile::AliasIdxRaw,
5048                                                        top())->as_Initialize();
5049         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5050       }
5051     }
5052 
5053     // Present the results of the fast call.
5054     result_region->init_req(zero_path, control());
5055     result_i_o   ->init_req(zero_path, i_o());
5056     result_memory->init_req(zero_path, memory(adr_type));
5057   }
5058 
5059   if (!stopped() && dest_uninitialized) {
5060     // We have to initialize the *uncopied* part of the array to zero.
5061     // The copy destination is the slice dest[off..off+len].  The other slices
5062     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5063     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5064     Node* dest_length = alloc->in(AllocateNode::ALength);
5065     Node* dest_tail   = _gvn.transform(new AddINode(dest_offset, copy_length));
5066 
5067     // If there is a head section that needs zeroing, do it now.
5068     if (find_int_con(dest_offset, -1) != 0) {
5069       generate_clear_array(adr_type, dest, basic_elem_type,
5070                            intcon(0), dest_offset,
5071                            NULL);
5072     }
5073 
5074     // Next, perform a dynamic check on the tail length.
5075     // It is often zero, and we can win big if we prove this.
5076     // There are two wins:  Avoid generating the ClearArray
5077     // with its attendant messy index arithmetic, and upgrade
5078     // the copy to a more hardware-friendly word size of 64 bits.
5079     Node* tail_ctl = NULL;
5080     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5081       Node* cmp_lt   = _gvn.transform(new CmpINode(dest_tail, dest_length));
5082       Node* bol_lt   = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
5083       tail_ctl = generate_slow_guard(bol_lt, NULL);
5084       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5085     }
5086 
5087     // At this point, let's assume there is no tail.
5088     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5089       // There is no tail.  Try an upgrade to a 64-bit copy.
5090       bool didit = false;
5091       { PreserveJVMState pjvms(this);
5092         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5093                                          src, src_offset, dest, dest_offset,
5094                                          dest_size, dest_uninitialized);
5095         if (didit) {
5096           // Present the results of the block-copying fast call.
5097           result_region->init_req(bcopy_path, control());
5098           result_i_o   ->init_req(bcopy_path, i_o());
5099           result_memory->init_req(bcopy_path, memory(adr_type));
5100         }
5101       }
5102       if (didit)
5103         set_control(top());     // no regular fast path
5104     }
5105 
5106     // Clear the tail, if any.
5107     if (tail_ctl != NULL) {
5108       Node* notail_ctl = stopped() ? NULL : control();
5109       set_control(tail_ctl);
5110       if (notail_ctl == NULL) {
5111         generate_clear_array(adr_type, dest, basic_elem_type,
5112                              dest_tail, NULL,
5113                              dest_size);
5114       } else {
5115         // Make a local merge.
5116         Node* done_ctl = new RegionNode(3);
5117         Node* done_mem = new PhiNode(done_ctl, Type::MEMORY, adr_type);
5118         done_ctl->init_req(1, notail_ctl);
5119         done_mem->init_req(1, memory(adr_type));
5120         generate_clear_array(adr_type, dest, basic_elem_type,
5121                              dest_tail, NULL,
5122                              dest_size);
5123         done_ctl->init_req(2, control());
5124         done_mem->init_req(2, memory(adr_type));
5125         set_control( _gvn.transform(done_ctl));
5126         set_memory(  _gvn.transform(done_mem), adr_type );
5127       }
5128     }
5129   }
5130 
5131   BasicType copy_type = basic_elem_type;
5132   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5133   if (!stopped() && copy_type == T_OBJECT) {
5134     // If src and dest have compatible element types, we can copy bits.
5135     // Types S[] and D[] are compatible if D is a supertype of S.
5136     //
5137     // If they are not, we will use checked_oop_disjoint_arraycopy,
5138     // which performs a fast optimistic per-oop check, and backs off
5139     // further to JVM_ArrayCopy on the first per-oop check that fails.
5140     // (Actually, we don't move raw bits only; the GC requires card marks.)
5141 
5142     // Get the Klass* for both src and dest
5143     Node* src_klass  = load_object_klass(src);
5144     Node* dest_klass = load_object_klass(dest);
5145 
5146     // Generate the subtype check.
5147     // This might fold up statically, or then again it might not.
5148     //
5149     // Non-static example:  Copying List<String>.elements to a new String[].
5150     // The backing store for a List<String> is always an Object[],
5151     // but its elements are always type String, if the generic types
5152     // are correct at the source level.
5153     //
5154     // Test S[] against D[], not S against D, because (probably)
5155     // the secondary supertype cache is less busy for S[] than S.
5156     // This usually only matters when D is an interface.
5157     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5158     // Plug failing path into checked_oop_disjoint_arraycopy
5159     if (not_subtype_ctrl != top()) {
5160       PreserveJVMState pjvms(this);
5161       set_control(not_subtype_ctrl);
5162       // (At this point we can assume disjoint_bases, since types differ.)
5163       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5164       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5165       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5166       Node* dest_elem_klass = _gvn.transform(n1);
5167       Node* cv = generate_checkcast_arraycopy(adr_type,
5168                                               dest_elem_klass,
5169                                               src, src_offset, dest, dest_offset,
5170                                               ConvI2X(copy_length), dest_uninitialized);
5171       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5172       checked_control = control();
5173       checked_i_o     = i_o();
5174       checked_mem     = memory(adr_type);
5175       checked_value   = cv;
5176     }
5177     // At this point we know we do not need type checks on oop stores.
5178 
5179     // Let's see if we need card marks:
5180     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5181       // If we do not need card marks, copy using the jint or jlong stub.
5182       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5183       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5184              "sizes agree");
5185     }
5186   }
5187 
5188   if (!stopped()) {
5189     // Generate the fast path, if possible.
5190     PreserveJVMState pjvms(this);
5191     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5192                                  src, src_offset, dest, dest_offset,
5193                                  ConvI2X(copy_length), dest_uninitialized);
5194 
5195     // Present the results of the fast call.
5196     result_region->init_req(fast_path, control());
5197     result_i_o   ->init_req(fast_path, i_o());
5198     result_memory->init_req(fast_path, memory(adr_type));
5199   }
5200 
5201   // Here are all the slow paths up to this point, in one bundle:
5202   slow_control = top();
5203   if (slow_region != NULL)
5204     slow_control = _gvn.transform(slow_region);
5205   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5206 
5207   set_control(checked_control);
5208   if (!stopped()) {
5209     // Clean up after the checked call.
5210     // The returned value is either 0 or -1^K,
5211     // where K = number of partially transferred array elements.
5212     Node* cmp = _gvn.transform(new CmpINode(checked_value, intcon(0)));
5213     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
5214     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5215 
5216     // If it is 0, we are done, so transfer to the end.
5217     Node* checks_done = _gvn.transform(new IfTrueNode(iff));
5218     result_region->init_req(checked_path, checks_done);
5219     result_i_o   ->init_req(checked_path, checked_i_o);
5220     result_memory->init_req(checked_path, checked_mem);
5221 
5222     // If it is not zero, merge into the slow call.
5223     set_control( _gvn.transform(new IfFalseNode(iff) ));
5224     RegionNode* slow_reg2 = new RegionNode(3);
5225     PhiNode*    slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO);
5226     PhiNode*    slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type);
5227     record_for_igvn(slow_reg2);
5228     slow_reg2  ->init_req(1, slow_control);
5229     slow_i_o2  ->init_req(1, slow_i_o);
5230     slow_mem2  ->init_req(1, slow_mem);
5231     slow_reg2  ->init_req(2, control());
5232     slow_i_o2  ->init_req(2, checked_i_o);
5233     slow_mem2  ->init_req(2, checked_mem);
5234 
5235     slow_control = _gvn.transform(slow_reg2);
5236     slow_i_o     = _gvn.transform(slow_i_o2);
5237     slow_mem     = _gvn.transform(slow_mem2);
5238 
5239     if (alloc != NULL) {
5240       // We'll restart from the very beginning, after zeroing the whole thing.
5241       // This can cause double writes, but that's OK since dest is brand new.
5242       // So we ignore the low 31 bits of the value returned from the stub.
5243     } else {
5244       // We must continue the copy exactly where it failed, or else
5245       // another thread might see the wrong number of writes to dest.
5246       Node* checked_offset = _gvn.transform(new XorINode(checked_value, intcon(-1)));
5247       Node* slow_offset    = new PhiNode(slow_reg2, TypeInt::INT);
5248       slow_offset->init_req(1, intcon(0));
5249       slow_offset->init_req(2, checked_offset);
5250       slow_offset  = _gvn.transform(slow_offset);
5251 
5252       // Adjust the arguments by the conditionally incoming offset.
5253       Node* src_off_plus  = _gvn.transform(new AddINode(src_offset,  slow_offset));
5254       Node* dest_off_plus = _gvn.transform(new AddINode(dest_offset, slow_offset));
5255       Node* length_minus  = _gvn.transform(new SubINode(copy_length, slow_offset));
5256 
5257       // Tweak the node variables to adjust the code produced below:
5258       src_offset  = src_off_plus;
5259       dest_offset = dest_off_plus;
5260       copy_length = length_minus;
5261     }
5262   }
5263 
5264   set_control(slow_control);
5265   if (!stopped()) {
5266     // Generate the slow path, if needed.
5267     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5268 
5269     set_memory(slow_mem, adr_type);
5270     set_i_o(slow_i_o);
5271 
5272     if (dest_uninitialized) {
5273       generate_clear_array(adr_type, dest, basic_elem_type,
5274                            intcon(0), NULL,
5275                            alloc->in(AllocateNode::AllocSize));
5276     }
5277 
5278     generate_slow_arraycopy(adr_type,
5279                             src, src_offset, dest, dest_offset,
5280                             copy_length, /*dest_uninitialized*/false);
5281 
5282     result_region->init_req(slow_call_path, control());
5283     result_i_o   ->init_req(slow_call_path, i_o());
5284     result_memory->init_req(slow_call_path, memory(adr_type));
5285   }
5286 
5287   // Remove unused edges.
5288   for (uint i = 1; i < result_region->req(); i++) {
5289     if (result_region->in(i) == NULL)
5290       result_region->init_req(i, top());
5291   }
5292 
5293   // Finished; return the combined state.
5294   set_control( _gvn.transform(result_region));
5295   set_i_o(     _gvn.transform(result_i_o)    );
5296   set_memory(  _gvn.transform(result_memory), adr_type );
5297 
5298   // The memory edges above are precise in order to model effects around
5299   // array copies accurately to allow value numbering of field loads around
5300   // arraycopy.  Such field loads, both before and after, are common in Java
5301   // collections and similar classes involving header/array data structures.
5302   //
5303   // But with low number of register or when some registers are used or killed
5304   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5305   // The next memory barrier is added to avoid it. If the arraycopy can be
5306   // optimized away (which it can, sometimes) then we can manually remove
5307   // the membar also.
5308   //
5309   // Do not let reads from the cloned object float above the arraycopy.
5310   if (alloc != NULL) {
5311     // Do not let stores that initialize this object be reordered with
5312     // a subsequent store that would make this object accessible by
5313     // other threads.
5314     // Record what AllocateNode this StoreStore protects so that
5315     // escape analysis can go from the MemBarStoreStoreNode to the
5316     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5317     // based on the escape status of the AllocateNode.
5318     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5319   } else if (InsertMemBarAfterArraycopy)
5320     insert_mem_bar(Op_MemBarCPUOrder);
5321 }
5322 
5323 
5324 // Helper function which determines if an arraycopy immediately follows
5325 // an allocation, with no intervening tests or other escapes for the object.
5326 AllocateArrayNode*
5327 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5328                                            RegionNode* slow_region) {
5329   if (stopped())             return NULL;  // no fast path
5330   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5331 
5332   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5333   if (alloc == NULL)  return NULL;
5334 
5335   Node* rawmem = memory(Compile::AliasIdxRaw);
5336   // Is the allocation's memory state untouched?
5337   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5338     // Bail out if there have been raw-memory effects since the allocation.
5339     // (Example:  There might have been a call or safepoint.)
5340     return NULL;
5341   }
5342   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5343   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5344     return NULL;
5345   }
5346 
5347   // There must be no unexpected observers of this allocation.
5348   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5349     Node* obs = ptr->fast_out(i);
5350     if (obs != this->map()) {
5351       return NULL;
5352     }
5353   }
5354 
5355   // This arraycopy must unconditionally follow the allocation of the ptr.
5356   Node* alloc_ctl = ptr->in(0);
5357   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5358 
5359   Node* ctl = control();
5360   while (ctl != alloc_ctl) {
5361     // There may be guards which feed into the slow_region.
5362     // Any other control flow means that we might not get a chance
5363     // to finish initializing the allocated object.
5364     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5365       IfNode* iff = ctl->in(0)->as_If();
5366       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5367       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5368       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5369         ctl = iff->in(0);       // This test feeds the known slow_region.
5370         continue;
5371       }
5372       // One more try:  Various low-level checks bottom out in
5373       // uncommon traps.  If the debug-info of the trap omits
5374       // any reference to the allocation, as we've already
5375       // observed, then there can be no objection to the trap.
5376       bool found_trap = false;
5377       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5378         Node* obs = not_ctl->fast_out(j);
5379         if (obs->in(0) == not_ctl && obs->is_Call() &&
5380             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5381           found_trap = true; break;
5382         }
5383       }
5384       if (found_trap) {
5385         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5386         continue;
5387       }
5388     }
5389     return NULL;
5390   }
5391 
5392   // If we get this far, we have an allocation which immediately
5393   // precedes the arraycopy, and we can take over zeroing the new object.
5394   // The arraycopy will finish the initialization, and provide
5395   // a new control state to which we will anchor the destination pointer.
5396 
5397   return alloc;
5398 }
5399 
5400 // Helper for initialization of arrays, creating a ClearArray.
5401 // It writes zero bits in [start..end), within the body of an array object.
5402 // The memory effects are all chained onto the 'adr_type' alias category.
5403 //
5404 // Since the object is otherwise uninitialized, we are free
5405 // to put a little "slop" around the edges of the cleared area,
5406 // as long as it does not go back into the array's header,
5407 // or beyond the array end within the heap.
5408 //
5409 // The lower edge can be rounded down to the nearest jint and the
5410 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5411 //
5412 // Arguments:
5413 //   adr_type           memory slice where writes are generated
5414 //   dest               oop of the destination array
5415 //   basic_elem_type    element type of the destination
5416 //   slice_idx          array index of first element to store
5417 //   slice_len          number of elements to store (or NULL)
5418 //   dest_size          total size in bytes of the array object
5419 //
5420 // Exactly one of slice_len or dest_size must be non-NULL.
5421 // If dest_size is non-NULL, zeroing extends to the end of the object.
5422 // If slice_len is non-NULL, the slice_idx value must be a constant.
5423 void
5424 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5425                                      Node* dest,
5426                                      BasicType basic_elem_type,
5427                                      Node* slice_idx,
5428                                      Node* slice_len,
5429                                      Node* dest_size) {
5430   // one or the other but not both of slice_len and dest_size:
5431   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5432   if (slice_len == NULL)  slice_len = top();
5433   if (dest_size == NULL)  dest_size = top();
5434 
5435   // operate on this memory slice:
5436   Node* mem = memory(adr_type); // memory slice to operate on
5437 
5438   // scaling and rounding of indexes:
5439   int scale = exact_log2(type2aelembytes(basic_elem_type));
5440   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5441   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5442   int bump_bit  = (-1 << scale) & BytesPerInt;
5443 
5444   // determine constant starts and ends
5445   const intptr_t BIG_NEG = -128;
5446   assert(BIG_NEG + 2*abase < 0, "neg enough");
5447   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5448   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5449   if (slice_len_con == 0) {
5450     return;                     // nothing to do here
5451   }
5452   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5453   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5454   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5455     assert(end_con < 0, "not two cons");
5456     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5457                        BytesPerLong);
5458   }
5459 
5460   if (start_con >= 0 && end_con >= 0) {
5461     // Constant start and end.  Simple.
5462     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5463                                        start_con, end_con, &_gvn);
5464   } else if (start_con >= 0 && dest_size != top()) {
5465     // Constant start, pre-rounded end after the tail of the array.
5466     Node* end = dest_size;
5467     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5468                                        start_con, end, &_gvn);
5469   } else if (start_con >= 0 && slice_len != top()) {
5470     // Constant start, non-constant end.  End needs rounding up.
5471     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5472     intptr_t end_base  = abase + (slice_idx_con << scale);
5473     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5474     Node*    end       = ConvI2X(slice_len);
5475     if (scale != 0)
5476       end = _gvn.transform(new LShiftXNode(end, intcon(scale) ));
5477     end_base += end_round;
5478     end = _gvn.transform(new AddXNode(end, MakeConX(end_base)));
5479     end = _gvn.transform(new AndXNode(end, MakeConX(~end_round)));
5480     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5481                                        start_con, end, &_gvn);
5482   } else if (start_con < 0 && dest_size != top()) {
5483     // Non-constant start, pre-rounded end after the tail of the array.
5484     // This is almost certainly a "round-to-end" operation.
5485     Node* start = slice_idx;
5486     start = ConvI2X(start);
5487     if (scale != 0)
5488       start = _gvn.transform(new LShiftXNode( start, intcon(scale) ));
5489     start = _gvn.transform(new AddXNode(start, MakeConX(abase)));
5490     if ((bump_bit | clear_low) != 0) {
5491       int to_clear = (bump_bit | clear_low);
5492       // Align up mod 8, then store a jint zero unconditionally
5493       // just before the mod-8 boundary.
5494       if (((abase + bump_bit) & ~to_clear) - bump_bit
5495           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5496         bump_bit = 0;
5497         assert((abase & to_clear) == 0, "array base must be long-aligned");
5498       } else {
5499         // Bump 'start' up to (or past) the next jint boundary:
5500         start = _gvn.transform(new AddXNode(start, MakeConX(bump_bit)));
5501         assert((abase & clear_low) == 0, "array base must be int-aligned");
5502       }
5503       // Round bumped 'start' down to jlong boundary in body of array.
5504       start = _gvn.transform(new AndXNode(start, MakeConX(~to_clear)));
5505       if (bump_bit != 0) {
5506         // Store a zero to the immediately preceding jint:
5507         Node* x1 = _gvn.transform(new AddXNode(start, MakeConX(-bump_bit)));
5508         Node* p1 = basic_plus_adr(dest, x1);
5509         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5510         mem = _gvn.transform(mem);
5511       }
5512     }
5513     Node* end = dest_size; // pre-rounded
5514     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5515                                        start, end, &_gvn);
5516   } else {
5517     // Non-constant start, unrounded non-constant end.
5518     // (Nobody zeroes a random midsection of an array using this routine.)
5519     ShouldNotReachHere();       // fix caller
5520   }
5521 
5522   // Done.
5523   set_memory(mem, adr_type);
5524 }
5525 
5526 
5527 bool
5528 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5529                                          BasicType basic_elem_type,
5530                                          AllocateNode* alloc,
5531                                          Node* src,  Node* src_offset,
5532                                          Node* dest, Node* dest_offset,
5533                                          Node* dest_size, bool dest_uninitialized) {
5534   // See if there is an advantage from block transfer.
5535   int scale = exact_log2(type2aelembytes(basic_elem_type));
5536   if (scale >= LogBytesPerLong)
5537     return false;               // it is already a block transfer
5538 
5539   // Look at the alignment of the starting offsets.
5540   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5541 
5542   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5543   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5544   if (src_off_con < 0 || dest_off_con < 0)
5545     // At present, we can only understand constants.
5546     return false;
5547 
5548   intptr_t src_off  = abase + (src_off_con  << scale);
5549   intptr_t dest_off = abase + (dest_off_con << scale);
5550 
5551   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5552     // Non-aligned; too bad.
5553     // One more chance:  Pick off an initial 32-bit word.
5554     // This is a common case, since abase can be odd mod 8.
5555     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5556         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5557       Node* sptr = basic_plus_adr(src,  src_off);
5558       Node* dptr = basic_plus_adr(dest, dest_off);
5559       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5560       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5561       src_off += BytesPerInt;
5562       dest_off += BytesPerInt;
5563     } else {
5564       return false;
5565     }
5566   }
5567   assert(src_off % BytesPerLong == 0, "");
5568   assert(dest_off % BytesPerLong == 0, "");
5569 
5570   // Do this copy by giant steps.
5571   Node* sptr  = basic_plus_adr(src,  src_off);
5572   Node* dptr  = basic_plus_adr(dest, dest_off);
5573   Node* countx = dest_size;
5574   countx = _gvn.transform(new SubXNode(countx, MakeConX(dest_off)));
5575   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong)));
5576 
5577   bool disjoint_bases = true;   // since alloc != NULL
5578   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5579                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5580 
5581   return true;
5582 }
5583 
5584 
5585 // Helper function; generates code for the slow case.
5586 // We make a call to a runtime method which emulates the native method,
5587 // but without the native wrapper overhead.
5588 void
5589 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5590                                         Node* src,  Node* src_offset,
5591                                         Node* dest, Node* dest_offset,
5592                                         Node* copy_length, bool dest_uninitialized) {
5593   assert(!dest_uninitialized, "Invariant");
5594   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5595                                  OptoRuntime::slow_arraycopy_Type(),
5596                                  OptoRuntime::slow_arraycopy_Java(),
5597                                  "slow_arraycopy", adr_type,
5598                                  src, src_offset, dest, dest_offset,
5599                                  copy_length);
5600 
5601   // Handle exceptions thrown by this fellow:
5602   make_slow_call_ex(call, env()->Throwable_klass(), false);
5603 }
5604 
5605 // Helper function; generates code for cases requiring runtime checks.
5606 Node*
5607 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5608                                              Node* dest_elem_klass,
5609                                              Node* src,  Node* src_offset,
5610                                              Node* dest, Node* dest_offset,
5611                                              Node* copy_length, bool dest_uninitialized) {
5612   if (stopped())  return NULL;
5613 
5614   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5615   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5616     return NULL;
5617   }
5618 
5619   // Pick out the parameters required to perform a store-check
5620   // for the target array.  This is an optimistic check.  It will
5621   // look in each non-null element's class, at the desired klass's
5622   // super_check_offset, for the desired klass.
5623   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5624   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5625   Node* n3 = new LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5626   Node* check_offset = ConvI2X(_gvn.transform(n3));
5627   Node* check_value  = dest_elem_klass;
5628 
5629   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5630   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5631 
5632   // (We know the arrays are never conjoint, because their types differ.)
5633   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5634                                  OptoRuntime::checkcast_arraycopy_Type(),
5635                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5636                                  // five arguments, of which two are
5637                                  // intptr_t (jlong in LP64)
5638                                  src_start, dest_start,
5639                                  copy_length XTOP,
5640                                  check_offset XTOP,
5641                                  check_value);
5642 
5643   return _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5644 }
5645 
5646 
5647 // Helper function; generates code for cases requiring runtime checks.
5648 Node*
5649 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5650                                            Node* src,  Node* src_offset,
5651                                            Node* dest, Node* dest_offset,
5652                                            Node* copy_length, bool dest_uninitialized) {
5653   assert(!dest_uninitialized, "Invariant");
5654   if (stopped())  return NULL;
5655   address copyfunc_addr = StubRoutines::generic_arraycopy();
5656   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5657     return NULL;
5658   }
5659 
5660   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5661                     OptoRuntime::generic_arraycopy_Type(),
5662                     copyfunc_addr, "generic_arraycopy", adr_type,
5663                     src, src_offset, dest, dest_offset, copy_length);
5664 
5665   return _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5666 }
5667 
5668 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5669 void
5670 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5671                                              BasicType basic_elem_type,
5672                                              bool disjoint_bases,
5673                                              Node* src,  Node* src_offset,
5674                                              Node* dest, Node* dest_offset,
5675                                              Node* copy_length, bool dest_uninitialized) {
5676   if (stopped())  return;               // nothing to do
5677 
5678   Node* src_start  = src;
5679   Node* dest_start = dest;
5680   if (src_offset != NULL || dest_offset != NULL) {
5681     assert(src_offset != NULL && dest_offset != NULL, "");
5682     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5683     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5684   }
5685 
5686   // Figure out which arraycopy runtime method to call.
5687   const char* copyfunc_name = "arraycopy";
5688   address     copyfunc_addr =
5689       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5690                           disjoint_bases, copyfunc_name, dest_uninitialized);
5691 
5692   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5693   make_runtime_call(RC_LEAF|RC_NO_FP,
5694                     OptoRuntime::fast_arraycopy_Type(),
5695                     copyfunc_addr, copyfunc_name, adr_type,
5696                     src_start, dest_start, copy_length XTOP);
5697 }
5698 
5699 //-------------inline_encodeISOArray-----------------------------------
5700 // encode char[] to byte[] in ISO_8859_1
5701 bool LibraryCallKit::inline_encodeISOArray() {
5702   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5703   // no receiver since it is static method
5704   Node *src         = argument(0);
5705   Node *src_offset  = argument(1);
5706   Node *dst         = argument(2);
5707   Node *dst_offset  = argument(3);
5708   Node *length      = argument(4);
5709 
5710   const Type* src_type = src->Value(&_gvn);
5711   const Type* dst_type = dst->Value(&_gvn);
5712   const TypeAryPtr* top_src = src_type->isa_aryptr();
5713   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5714   if (top_src  == NULL || top_src->klass()  == NULL ||
5715       top_dest == NULL || top_dest->klass() == NULL) {
5716     // failed array check
5717     return false;
5718   }
5719 
5720   // Figure out the size and type of the elements we will be copying.
5721   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5722   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5723   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5724     return false;
5725   }
5726   Node* src_start = array_element_address(src, src_offset, src_elem);
5727   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5728   // 'src_start' points to src array + scaled offset
5729   // 'dst_start' points to dst array + scaled offset
5730 
5731   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5732   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5733   enc = _gvn.transform(enc);
5734   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5735   set_memory(res_mem, mtype);
5736   set_result(enc);
5737   return true;
5738 }
5739 
5740 /**
5741  * Calculate CRC32 for byte.
5742  * int java.util.zip.CRC32.update(int crc, int b)
5743  */
5744 bool LibraryCallKit::inline_updateCRC32() {
5745   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5746   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5747   // no receiver since it is static method
5748   Node* crc  = argument(0); // type: int
5749   Node* b    = argument(1); // type: int
5750 
5751   /*
5752    *    int c = ~ crc;
5753    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5754    *    b = b ^ (c >>> 8);
5755    *    crc = ~b;
5756    */
5757 
5758   Node* M1 = intcon(-1);
5759   crc = _gvn.transform(new XorINode(crc, M1));
5760   Node* result = _gvn.transform(new XorINode(crc, b));
5761   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5762 
5763   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5764   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5765   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5766   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5767 
5768   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5769   result = _gvn.transform(new XorINode(crc, result));
5770   result = _gvn.transform(new XorINode(result, M1));
5771   set_result(result);
5772   return true;
5773 }
5774 
5775 /**
5776  * Calculate CRC32 for byte[] array.
5777  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5778  */
5779 bool LibraryCallKit::inline_updateBytesCRC32() {
5780   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5781   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5782   // no receiver since it is static method
5783   Node* crc     = argument(0); // type: int
5784   Node* src     = argument(1); // type: oop
5785   Node* offset  = argument(2); // type: int
5786   Node* length  = argument(3); // type: int
5787 
5788   const Type* src_type = src->Value(&_gvn);
5789   const TypeAryPtr* top_src = src_type->isa_aryptr();
5790   if (top_src  == NULL || top_src->klass()  == NULL) {
5791     // failed array check
5792     return false;
5793   }
5794 
5795   // Figure out the size and type of the elements we will be copying.
5796   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5797   if (src_elem != T_BYTE) {
5798     return false;
5799   }
5800 
5801   // 'src_start' points to src array + scaled offset
5802   Node* src_start = array_element_address(src, offset, src_elem);
5803 
5804   // We assume that range check is done by caller.
5805   // TODO: generate range check (offset+length < src.length) in debug VM.
5806 
5807   // Call the stub.
5808   address stubAddr = StubRoutines::updateBytesCRC32();
5809   const char *stubName = "updateBytesCRC32";
5810 
5811   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5812                                  stubAddr, stubName, TypePtr::BOTTOM,
5813                                  crc, src_start, length);
5814   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5815   set_result(result);
5816   return true;
5817 }
5818 
5819 /**
5820  * Calculate CRC32 for ByteBuffer.
5821  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5822  */
5823 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5824   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5825   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5826   // no receiver since it is static method
5827   Node* crc     = argument(0); // type: int
5828   Node* src     = argument(1); // type: long
5829   Node* offset  = argument(3); // type: int
5830   Node* length  = argument(4); // type: int
5831 
5832   src = ConvL2X(src);  // adjust Java long to machine word
5833   Node* base = _gvn.transform(new CastX2PNode(src));
5834   offset = ConvI2X(offset);
5835 
5836   // 'src_start' points to src array + scaled offset
5837   Node* src_start = basic_plus_adr(top(), base, offset);
5838 
5839   // Call the stub.
5840   address stubAddr = StubRoutines::updateBytesCRC32();
5841   const char *stubName = "updateBytesCRC32";
5842 
5843   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5844                                  stubAddr, stubName, TypePtr::BOTTOM,
5845                                  crc, src_start, length);
5846   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5847   set_result(result);
5848   return true;
5849 }
5850 
5851 //----------------------------inline_reference_get----------------------------
5852 // public T java.lang.ref.Reference.get();
5853 bool LibraryCallKit::inline_reference_get() {
5854   const int referent_offset = java_lang_ref_Reference::referent_offset;
5855   guarantee(referent_offset > 0, "should have already been set");
5856 
5857   // Get the argument:
5858   Node* reference_obj = null_check_receiver();
5859   if (stopped()) return true;
5860 
5861   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5862 
5863   ciInstanceKlass* klass = env()->Object_klass();
5864   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5865 
5866   Node* no_ctrl = NULL;
5867   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5868 
5869   // Use the pre-barrier to record the value in the referent field
5870   pre_barrier(false /* do_load */,
5871               control(),
5872               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5873               result /* pre_val */,
5874               T_OBJECT);
5875 
5876   // Add memory barrier to prevent commoning reads from this field
5877   // across safepoint since GC can change its value.
5878   insert_mem_bar(Op_MemBarCPUOrder);
5879 
5880   set_result(result);
5881   return true;
5882 }
5883 
5884 
5885 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5886                                               bool is_exact=true, bool is_static=false) {
5887 
5888   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5889   assert(tinst != NULL, "obj is null");
5890   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5891   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5892 
5893   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5894                                                                           ciSymbol::make(fieldTypeString),
5895                                                                           is_static);
5896   if (field == NULL) return (Node *) NULL;
5897   assert (field != NULL, "undefined field");
5898 
5899   // Next code  copied from Parse::do_get_xxx():
5900 
5901   // Compute address and memory type.
5902   int offset  = field->offset_in_bytes();
5903   bool is_vol = field->is_volatile();
5904   ciType* field_klass = field->type();
5905   assert(field_klass->is_loaded(), "should be loaded");
5906   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5907   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5908   BasicType bt = field->layout_type();
5909 
5910   // Build the resultant type of the load
5911   const Type *type;
5912   if (bt == T_OBJECT) {
5913     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5914   } else {
5915     type = Type::get_const_basic_type(bt);
5916   }
5917 
5918   // Build the load.
5919   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
5920   return loadedField;
5921 }
5922 
5923 
5924 //------------------------------inline_aescrypt_Block-----------------------
5925 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5926   address stubAddr;
5927   const char *stubName;
5928   assert(UseAES, "need AES instruction support");
5929 
5930   switch(id) {
5931   case vmIntrinsics::_aescrypt_encryptBlock:
5932     stubAddr = StubRoutines::aescrypt_encryptBlock();
5933     stubName = "aescrypt_encryptBlock";
5934     break;
5935   case vmIntrinsics::_aescrypt_decryptBlock:
5936     stubAddr = StubRoutines::aescrypt_decryptBlock();
5937     stubName = "aescrypt_decryptBlock";
5938     break;
5939   }
5940   if (stubAddr == NULL) return false;
5941 
5942   Node* aescrypt_object = argument(0);
5943   Node* src             = argument(1);
5944   Node* src_offset      = argument(2);
5945   Node* dest            = argument(3);
5946   Node* dest_offset     = argument(4);
5947 
5948   // (1) src and dest are arrays.
5949   const Type* src_type = src->Value(&_gvn);
5950   const Type* dest_type = dest->Value(&_gvn);
5951   const TypeAryPtr* top_src = src_type->isa_aryptr();
5952   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5953   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5954 
5955   // for the quick and dirty code we will skip all the checks.
5956   // we are just trying to get the call to be generated.
5957   Node* src_start  = src;
5958   Node* dest_start = dest;
5959   if (src_offset != NULL || dest_offset != NULL) {
5960     assert(src_offset != NULL && dest_offset != NULL, "");
5961     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5962     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5963   }
5964 
5965   // now need to get the start of its expanded key array
5966   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5967   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5968   if (k_start == NULL) return false;
5969 
5970   if (Matcher::pass_original_key_for_aes()) {
5971     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5972     // compatibility issues between Java key expansion and SPARC crypto instructions
5973     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5974     if (original_k_start == NULL) return false;
5975 
5976     // Call the stub.
5977     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5978                       stubAddr, stubName, TypePtr::BOTTOM,
5979                       src_start, dest_start, k_start, original_k_start);
5980   } else {
5981     // Call the stub.
5982     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5983                       stubAddr, stubName, TypePtr::BOTTOM,
5984                       src_start, dest_start, k_start);
5985   }
5986 
5987   return true;
5988 }
5989 
5990 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5991 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5992   address stubAddr;
5993   const char *stubName;
5994 
5995   assert(UseAES, "need AES instruction support");
5996 
5997   switch(id) {
5998   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5999     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6000     stubName = "cipherBlockChaining_encryptAESCrypt";
6001     break;
6002   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6003     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6004     stubName = "cipherBlockChaining_decryptAESCrypt";
6005     break;
6006   }
6007   if (stubAddr == NULL) return false;
6008 
6009   Node* cipherBlockChaining_object = argument(0);
6010   Node* src                        = argument(1);
6011   Node* src_offset                 = argument(2);
6012   Node* len                        = argument(3);
6013   Node* dest                       = argument(4);
6014   Node* dest_offset                = argument(5);
6015 
6016   // (1) src and dest are arrays.
6017   const Type* src_type = src->Value(&_gvn);
6018   const Type* dest_type = dest->Value(&_gvn);
6019   const TypeAryPtr* top_src = src_type->isa_aryptr();
6020   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6021   assert (top_src  != NULL && top_src->klass()  != NULL
6022           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6023 
6024   // checks are the responsibility of the caller
6025   Node* src_start  = src;
6026   Node* dest_start = dest;
6027   if (src_offset != NULL || dest_offset != NULL) {
6028     assert(src_offset != NULL && dest_offset != NULL, "");
6029     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6030     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6031   }
6032 
6033   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6034   // (because of the predicated logic executed earlier).
6035   // so we cast it here safely.
6036   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6037 
6038   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6039   if (embeddedCipherObj == NULL) return false;
6040 
6041   // cast it to what we know it will be at runtime
6042   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6043   assert(tinst != NULL, "CBC obj is null");
6044   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6045   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6046   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6047 
6048   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6049   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6050   const TypeOopPtr* xtype = aklass->as_instance_type();
6051   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6052   aescrypt_object = _gvn.transform(aescrypt_object);
6053 
6054   // we need to get the start of the aescrypt_object's expanded key array
6055   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6056   if (k_start == NULL) return false;
6057 
6058   // similarly, get the start address of the r vector
6059   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6060   if (objRvec == NULL) return false;
6061   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6062 
6063   Node* cbcCrypt;
6064   if (Matcher::pass_original_key_for_aes()) {
6065     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6066     // compatibility issues between Java key expansion and SPARC crypto instructions
6067     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6068     if (original_k_start == NULL) return false;
6069 
6070     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6071     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6072                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6073                                  stubAddr, stubName, TypePtr::BOTTOM,
6074                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6075   } else {
6076     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6077     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6078                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6079                                  stubAddr, stubName, TypePtr::BOTTOM,
6080                                  src_start, dest_start, k_start, r_start, len);
6081   }
6082 
6083   // return cipher length (int)
6084   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6085   set_result(retvalue);
6086   return true;
6087 }
6088 
6089 //------------------------------get_key_start_from_aescrypt_object-----------------------
6090 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6091   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6092   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6093   if (objAESCryptKey == NULL) return (Node *) NULL;
6094 
6095   // now have the array, need to get the start address of the K array
6096   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6097   return k_start;
6098 }
6099 
6100 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6101 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6102   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6103   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6104   if (objAESCryptKey == NULL) return (Node *) NULL;
6105 
6106   // now have the array, need to get the start address of the lastKey array
6107   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6108   return original_k_start;
6109 }
6110 
6111 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6112 // Return node representing slow path of predicate check.
6113 // the pseudo code we want to emulate with this predicate is:
6114 // for encryption:
6115 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6116 // for decryption:
6117 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6118 //    note cipher==plain is more conservative than the original java code but that's OK
6119 //
6120 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6121   // The receiver was checked for NULL already.
6122   Node* objCBC = argument(0);
6123 
6124   // Load embeddedCipher field of CipherBlockChaining object.
6125   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6126 
6127   // get AESCrypt klass for instanceOf check
6128   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6129   // will have same classloader as CipherBlockChaining object
6130   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6131   assert(tinst != NULL, "CBCobj is null");
6132   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6133 
6134   // we want to do an instanceof comparison against the AESCrypt class
6135   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6136   if (!klass_AESCrypt->is_loaded()) {
6137     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6138     Node* ctrl = control();
6139     set_control(top()); // no regular fast path
6140     return ctrl;
6141   }
6142   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6143 
6144   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6145   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6146   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6147 
6148   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6149 
6150   // for encryption, we are done
6151   if (!decrypting)
6152     return instof_false;  // even if it is NULL
6153 
6154   // for decryption, we need to add a further check to avoid
6155   // taking the intrinsic path when cipher and plain are the same
6156   // see the original java code for why.
6157   RegionNode* region = new RegionNode(3);
6158   region->init_req(1, instof_false);
6159   Node* src = argument(1);
6160   Node* dest = argument(4);
6161   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6162   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6163   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6164   region->init_req(2, src_dest_conjoint);
6165 
6166   record_for_igvn(region);
6167   return _gvn.transform(region);
6168 }
6169 
6170 //------------------------------inline_sha_implCompress-----------------------
6171 //
6172 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6173 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6174 //
6175 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6176 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6177 //
6178 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6179 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6180 //
6181 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6182   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6183 
6184   Node* sha_obj = argument(0);
6185   Node* src     = argument(1); // type oop
6186   Node* ofs     = argument(2); // type int
6187 
6188   const Type* src_type = src->Value(&_gvn);
6189   const TypeAryPtr* top_src = src_type->isa_aryptr();
6190   if (top_src  == NULL || top_src->klass()  == NULL) {
6191     // failed array check
6192     return false;
6193   }
6194   // Figure out the size and type of the elements we will be copying.
6195   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6196   if (src_elem != T_BYTE) {
6197     return false;
6198   }
6199   // 'src_start' points to src array + offset
6200   Node* src_start = array_element_address(src, ofs, src_elem);
6201   Node* state = NULL;
6202   address stubAddr;
6203   const char *stubName;
6204 
6205   switch(id) {
6206   case vmIntrinsics::_sha_implCompress:
6207     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6208     state = get_state_from_sha_object(sha_obj);
6209     stubAddr = StubRoutines::sha1_implCompress();
6210     stubName = "sha1_implCompress";
6211     break;
6212   case vmIntrinsics::_sha2_implCompress:
6213     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6214     state = get_state_from_sha_object(sha_obj);
6215     stubAddr = StubRoutines::sha256_implCompress();
6216     stubName = "sha256_implCompress";
6217     break;
6218   case vmIntrinsics::_sha5_implCompress:
6219     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6220     state = get_state_from_sha5_object(sha_obj);
6221     stubAddr = StubRoutines::sha512_implCompress();
6222     stubName = "sha512_implCompress";
6223     break;
6224   default:
6225     fatal_unexpected_iid(id);
6226     return false;
6227   }
6228   if (state == NULL) return false;
6229 
6230   // Call the stub.
6231   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6232                                  stubAddr, stubName, TypePtr::BOTTOM,
6233                                  src_start, state);
6234 
6235   return true;
6236 }
6237 
6238 //------------------------------inline_digestBase_implCompressMB-----------------------
6239 //
6240 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6241 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6242 //
6243 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6244   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6245          "need SHA1/SHA256/SHA512 instruction support");
6246   assert((uint)predicate < 3, "sanity");
6247   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6248 
6249   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6250   Node* src            = argument(1); // byte[] array
6251   Node* ofs            = argument(2); // type int
6252   Node* limit          = argument(3); // type int
6253 
6254   const Type* src_type = src->Value(&_gvn);
6255   const TypeAryPtr* top_src = src_type->isa_aryptr();
6256   if (top_src  == NULL || top_src->klass()  == NULL) {
6257     // failed array check
6258     return false;
6259   }
6260   // Figure out the size and type of the elements we will be copying.
6261   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6262   if (src_elem != T_BYTE) {
6263     return false;
6264   }
6265   // 'src_start' points to src array + offset
6266   Node* src_start = array_element_address(src, ofs, src_elem);
6267 
6268   const char* klass_SHA_name = NULL;
6269   const char* stub_name = NULL;
6270   address     stub_addr = NULL;
6271   bool        long_state = false;
6272 
6273   switch (predicate) {
6274   case 0:
6275     if (UseSHA1Intrinsics) {
6276       klass_SHA_name = "sun/security/provider/SHA";
6277       stub_name = "sha1_implCompressMB";
6278       stub_addr = StubRoutines::sha1_implCompressMB();
6279     }
6280     break;
6281   case 1:
6282     if (UseSHA256Intrinsics) {
6283       klass_SHA_name = "sun/security/provider/SHA2";
6284       stub_name = "sha256_implCompressMB";
6285       stub_addr = StubRoutines::sha256_implCompressMB();
6286     }
6287     break;
6288   case 2:
6289     if (UseSHA512Intrinsics) {
6290       klass_SHA_name = "sun/security/provider/SHA5";
6291       stub_name = "sha512_implCompressMB";
6292       stub_addr = StubRoutines::sha512_implCompressMB();
6293       long_state = true;
6294     }
6295     break;
6296   default:
6297     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6298   }
6299   if (klass_SHA_name != NULL) {
6300     // get DigestBase klass to lookup for SHA klass
6301     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6302     assert(tinst != NULL, "digestBase_obj is not instance???");
6303     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6304 
6305     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6306     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6307     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6308     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6309   }
6310   return false;
6311 }
6312 //------------------------------inline_sha_implCompressMB-----------------------
6313 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6314                                                bool long_state, address stubAddr, const char *stubName,
6315                                                Node* src_start, Node* ofs, Node* limit) {
6316   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6317   const TypeOopPtr* xtype = aklass->as_instance_type();
6318   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6319   sha_obj = _gvn.transform(sha_obj);
6320 
6321   Node* state;
6322   if (long_state) {
6323     state = get_state_from_sha5_object(sha_obj);
6324   } else {
6325     state = get_state_from_sha_object(sha_obj);
6326   }
6327   if (state == NULL) return false;
6328 
6329   // Call the stub.
6330   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6331                                  OptoRuntime::digestBase_implCompressMB_Type(),
6332                                  stubAddr, stubName, TypePtr::BOTTOM,
6333                                  src_start, state, ofs, limit);
6334   // return ofs (int)
6335   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6336   set_result(result);
6337 
6338   return true;
6339 }
6340 
6341 //------------------------------get_state_from_sha_object-----------------------
6342 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6343   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6344   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6345   if (sha_state == NULL) return (Node *) NULL;
6346 
6347   // now have the array, need to get the start address of the state array
6348   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6349   return state;
6350 }
6351 
6352 //------------------------------get_state_from_sha5_object-----------------------
6353 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6354   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6355   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6356   if (sha_state == NULL) return (Node *) NULL;
6357 
6358   // now have the array, need to get the start address of the state array
6359   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6360   return state;
6361 }
6362 
6363 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6364 // Return node representing slow path of predicate check.
6365 // the pseudo code we want to emulate with this predicate is:
6366 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6367 //
6368 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6369   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6370          "need SHA1/SHA256/SHA512 instruction support");
6371   assert((uint)predicate < 3, "sanity");
6372 
6373   // The receiver was checked for NULL already.
6374   Node* digestBaseObj = argument(0);
6375 
6376   // get DigestBase klass for instanceOf check
6377   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6378   assert(tinst != NULL, "digestBaseObj is null");
6379   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6380 
6381   const char* klass_SHA_name = NULL;
6382   switch (predicate) {
6383   case 0:
6384     if (UseSHA1Intrinsics) {
6385       // we want to do an instanceof comparison against the SHA class
6386       klass_SHA_name = "sun/security/provider/SHA";
6387     }
6388     break;
6389   case 1:
6390     if (UseSHA256Intrinsics) {
6391       // we want to do an instanceof comparison against the SHA2 class
6392       klass_SHA_name = "sun/security/provider/SHA2";
6393     }
6394     break;
6395   case 2:
6396     if (UseSHA512Intrinsics) {
6397       // we want to do an instanceof comparison against the SHA5 class
6398       klass_SHA_name = "sun/security/provider/SHA5";
6399     }
6400     break;
6401   default:
6402     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6403   }
6404 
6405   ciKlass* klass_SHA = NULL;
6406   if (klass_SHA_name != NULL) {
6407     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6408   }
6409   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6410     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6411     Node* ctrl = control();
6412     set_control(top()); // no intrinsic path
6413     return ctrl;
6414   }
6415   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6416 
6417   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6418   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6419   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6420   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6421 
6422   return instof_false;  // even if it is NULL
6423 }