1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/matcher.hpp"
  38 #include "opto/memnode.hpp"
  39 #include "opto/mulnode.hpp"
  40 #include "opto/narrowptrnode.hpp"
  41 #include "opto/phaseX.hpp"
  42 #include "opto/regmask.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  49 
  50 //=============================================================================
  51 uint MemNode::size_of() const { return sizeof(*this); }
  52 
  53 const TypePtr *MemNode::adr_type() const {
  54   Node* adr = in(Address);
  55   const TypePtr* cross_check = NULL;
  56   DEBUG_ONLY(cross_check = _adr_type);
  57   return calculate_adr_type(adr->bottom_type(), cross_check);
  58 }
  59 
  60 #ifndef PRODUCT
  61 void MemNode::dump_spec(outputStream *st) const {
  62   if (in(Address) == NULL)  return; // node is dead
  63 #ifndef ASSERT
  64   // fake the missing field
  65   const TypePtr* _adr_type = NULL;
  66   if (in(Address) != NULL)
  67     _adr_type = in(Address)->bottom_type()->isa_ptr();
  68 #endif
  69   dump_adr_type(this, _adr_type, st);
  70 
  71   Compile* C = Compile::current();
  72   if( C->alias_type(_adr_type)->is_volatile() )
  73     st->print(" Volatile!");
  74 }
  75 
  76 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  77   st->print(" @");
  78   if (adr_type == NULL) {
  79     st->print("NULL");
  80   } else {
  81     adr_type->dump_on(st);
  82     Compile* C = Compile::current();
  83     Compile::AliasType* atp = NULL;
  84     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  85     if (atp == NULL)
  86       st->print(", idx=?\?;");
  87     else if (atp->index() == Compile::AliasIdxBot)
  88       st->print(", idx=Bot;");
  89     else if (atp->index() == Compile::AliasIdxTop)
  90       st->print(", idx=Top;");
  91     else if (atp->index() == Compile::AliasIdxRaw)
  92       st->print(", idx=Raw;");
  93     else {
  94       ciField* field = atp->field();
  95       if (field) {
  96         st->print(", name=");
  97         field->print_name_on(st);
  98       }
  99       st->print(", idx=%d;", atp->index());
 100     }
 101   }
 102 }
 103 
 104 extern void print_alias_types();
 105 
 106 #endif
 107 
 108 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 109   assert((t_oop != NULL), "sanity");
 110   bool is_instance = t_oop->is_known_instance_field();
 111   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 112                              (load != NULL) && load->is_Load() &&
 113                              (phase->is_IterGVN() != NULL);
 114   if (!(is_instance || is_boxed_value_load))
 115     return mchain;  // don't try to optimize non-instance types
 116   uint instance_id = t_oop->instance_id();
 117   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 118   Node *prev = NULL;
 119   Node *result = mchain;
 120   while (prev != result) {
 121     prev = result;
 122     if (result == start_mem)
 123       break;  // hit one of our sentinels
 124     // skip over a call which does not affect this memory slice
 125     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 126       Node *proj_in = result->in(0);
 127       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 128         break;  // hit one of our sentinels
 129       } else if (proj_in->is_Call()) {
 130         CallNode *call = proj_in->as_Call();
 131         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 132           result = call->in(TypeFunc::Memory);
 133         }
 134       } else if (proj_in->is_Initialize()) {
 135         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 136         // Stop if this is the initialization for the object instance which
 137         // which contains this memory slice, otherwise skip over it.
 138         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 139           break;
 140         }
 141         if (is_instance) {
 142           result = proj_in->in(TypeFunc::Memory);
 143         } else if (is_boxed_value_load) {
 144           Node* klass = alloc->in(AllocateNode::KlassNode);
 145           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 146           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 147             result = proj_in->in(TypeFunc::Memory); // not related allocation
 148           }
 149         }
 150       } else if (proj_in->is_MemBar()) {
 151         result = proj_in->in(TypeFunc::Memory);
 152       } else {
 153         assert(false, "unexpected projection");
 154       }
 155     } else if (result->is_ClearArray()) {
 156       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 157         // Can not bypass initialization of the instance
 158         // we are looking for.
 159         break;
 160       }
 161       // Otherwise skip it (the call updated 'result' value).
 162     } else if (result->is_MergeMem()) {
 163       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 164     }
 165   }
 166   return result;
 167 }
 168 
 169 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 170   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 171   if (t_oop == NULL)
 172     return mchain;  // don't try to optimize non-oop types
 173   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 174   bool is_instance = t_oop->is_known_instance_field();
 175   PhaseIterGVN *igvn = phase->is_IterGVN();
 176   if (is_instance && igvn != NULL  && result->is_Phi()) {
 177     PhiNode *mphi = result->as_Phi();
 178     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 179     const TypePtr *t = mphi->adr_type();
 180     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 181         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 182         t->is_oopptr()->cast_to_exactness(true)
 183          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 184          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 185       // clone the Phi with our address type
 186       result = mphi->split_out_instance(t_adr, igvn);
 187     } else {
 188       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 189     }
 190   }
 191   return result;
 192 }
 193 
 194 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 195   uint alias_idx = phase->C->get_alias_index(tp);
 196   Node *mem = mmem;
 197 #ifdef ASSERT
 198   {
 199     // Check that current type is consistent with the alias index used during graph construction
 200     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 201     bool consistent =  adr_check == NULL || adr_check->empty() ||
 202                        phase->C->must_alias(adr_check, alias_idx );
 203     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 204     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 205                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 206         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 207         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 208           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 209           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 210       // don't assert if it is dead code.
 211       consistent = true;
 212     }
 213     if( !consistent ) {
 214       st->print("alias_idx==%d, adr_check==", alias_idx);
 215       if( adr_check == NULL ) {
 216         st->print("NULL");
 217       } else {
 218         adr_check->dump();
 219       }
 220       st->cr();
 221       print_alias_types();
 222       assert(consistent, "adr_check must match alias idx");
 223     }
 224   }
 225 #endif
 226   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 227   // means an array I have not precisely typed yet.  Do not do any
 228   // alias stuff with it any time soon.
 229   const TypeOopPtr *toop = tp->isa_oopptr();
 230   if( tp->base() != Type::AnyPtr &&
 231       !(toop &&
 232         toop->klass() != NULL &&
 233         toop->klass()->is_java_lang_Object() &&
 234         toop->offset() == Type::OffsetBot) ) {
 235     // compress paths and change unreachable cycles to TOP
 236     // If not, we can update the input infinitely along a MergeMem cycle
 237     // Equivalent code in PhiNode::Ideal
 238     Node* m  = phase->transform(mmem);
 239     // If transformed to a MergeMem, get the desired slice
 240     // Otherwise the returned node represents memory for every slice
 241     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 242     // Update input if it is progress over what we have now
 243   }
 244   return mem;
 245 }
 246 
 247 //--------------------------Ideal_common---------------------------------------
 248 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 249 // Unhook non-raw memories from complete (macro-expanded) initializations.
 250 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 251   // If our control input is a dead region, kill all below the region
 252   Node *ctl = in(MemNode::Control);
 253   if (ctl && remove_dead_region(phase, can_reshape))
 254     return this;
 255   ctl = in(MemNode::Control);
 256   // Don't bother trying to transform a dead node
 257   if (ctl && ctl->is_top())  return NodeSentinel;
 258 
 259   PhaseIterGVN *igvn = phase->is_IterGVN();
 260   // Wait if control on the worklist.
 261   if (ctl && can_reshape && igvn != NULL) {
 262     Node* bol = NULL;
 263     Node* cmp = NULL;
 264     if (ctl->in(0)->is_If()) {
 265       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 266       bol = ctl->in(0)->in(1);
 267       if (bol->is_Bool())
 268         cmp = ctl->in(0)->in(1)->in(1);
 269     }
 270     if (igvn->_worklist.member(ctl) ||
 271         (bol != NULL && igvn->_worklist.member(bol)) ||
 272         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 273       // This control path may be dead.
 274       // Delay this memory node transformation until the control is processed.
 275       phase->is_IterGVN()->_worklist.push(this);
 276       return NodeSentinel; // caller will return NULL
 277     }
 278   }
 279   // Ignore if memory is dead, or self-loop
 280   Node *mem = in(MemNode::Memory);
 281   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 282   assert(mem != this, "dead loop in MemNode::Ideal");
 283 
 284   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 285     // This memory slice may be dead.
 286     // Delay this mem node transformation until the memory is processed.
 287     phase->is_IterGVN()->_worklist.push(this);
 288     return NodeSentinel; // caller will return NULL
 289   }
 290 
 291   Node *address = in(MemNode::Address);
 292   const Type *t_adr = phase->type(address);
 293   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 294 
 295   if (can_reshape && igvn != NULL &&
 296       (igvn->_worklist.member(address) ||
 297        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
 298     // The address's base and type may change when the address is processed.
 299     // Delay this mem node transformation until the address is processed.
 300     phase->is_IterGVN()->_worklist.push(this);
 301     return NodeSentinel; // caller will return NULL
 302   }
 303 
 304   // Do NOT remove or optimize the next lines: ensure a new alias index
 305   // is allocated for an oop pointer type before Escape Analysis.
 306   // Note: C++ will not remove it since the call has side effect.
 307   if (t_adr->isa_oopptr()) {
 308     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 309   }
 310 
 311   Node* base = NULL;
 312   if (address->is_AddP()) {
 313     base = address->in(AddPNode::Base);
 314   }
 315   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 316       !t_adr->isa_rawptr()) {
 317     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 318     // Skip this node optimization if its address has TOP base.
 319     return NodeSentinel; // caller will return NULL
 320   }
 321 
 322   // Avoid independent memory operations
 323   Node* old_mem = mem;
 324 
 325   // The code which unhooks non-raw memories from complete (macro-expanded)
 326   // initializations was removed. After macro-expansion all stores catched
 327   // by Initialize node became raw stores and there is no information
 328   // which memory slices they modify. So it is unsafe to move any memory
 329   // operation above these stores. Also in most cases hooked non-raw memories
 330   // were already unhooked by using information from detect_ptr_independence()
 331   // and find_previous_store().
 332 
 333   if (mem->is_MergeMem()) {
 334     MergeMemNode* mmem = mem->as_MergeMem();
 335     const TypePtr *tp = t_adr->is_ptr();
 336 
 337     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 338   }
 339 
 340   if (mem != old_mem) {
 341     set_req(MemNode::Memory, mem);
 342     if (can_reshape && old_mem->outcnt() == 0) {
 343         igvn->_worklist.push(old_mem);
 344     }
 345     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 346     return this;
 347   }
 348 
 349   // let the subclass continue analyzing...
 350   return NULL;
 351 }
 352 
 353 // Helper function for proving some simple control dominations.
 354 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 355 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 356 // is not a constant (dominated by the method's StartNode).
 357 // Used by MemNode::find_previous_store to prove that the
 358 // control input of a memory operation predates (dominates)
 359 // an allocation it wants to look past.
 360 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 361   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 362     return false; // Conservative answer for dead code
 363 
 364   // Check 'dom'. Skip Proj and CatchProj nodes.
 365   dom = dom->find_exact_control(dom);
 366   if (dom == NULL || dom->is_top())
 367     return false; // Conservative answer for dead code
 368 
 369   if (dom == sub) {
 370     // For the case when, for example, 'sub' is Initialize and the original
 371     // 'dom' is Proj node of the 'sub'.
 372     return false;
 373   }
 374 
 375   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 376     return true;
 377 
 378   // 'dom' dominates 'sub' if its control edge and control edges
 379   // of all its inputs dominate or equal to sub's control edge.
 380 
 381   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 382   // Or Region for the check in LoadNode::Ideal();
 383   // 'sub' should have sub->in(0) != NULL.
 384   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 385          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 386 
 387   // Get control edge of 'sub'.
 388   Node* orig_sub = sub;
 389   sub = sub->find_exact_control(sub->in(0));
 390   if (sub == NULL || sub->is_top())
 391     return false; // Conservative answer for dead code
 392 
 393   assert(sub->is_CFG(), "expecting control");
 394 
 395   if (sub == dom)
 396     return true;
 397 
 398   if (sub->is_Start() || sub->is_Root())
 399     return false;
 400 
 401   {
 402     // Check all control edges of 'dom'.
 403 
 404     ResourceMark rm;
 405     Arena* arena = Thread::current()->resource_area();
 406     Node_List nlist(arena);
 407     Unique_Node_List dom_list(arena);
 408 
 409     dom_list.push(dom);
 410     bool only_dominating_controls = false;
 411 
 412     for (uint next = 0; next < dom_list.size(); next++) {
 413       Node* n = dom_list.at(next);
 414       if (n == orig_sub)
 415         return false; // One of dom's inputs dominated by sub.
 416       if (!n->is_CFG() && n->pinned()) {
 417         // Check only own control edge for pinned non-control nodes.
 418         n = n->find_exact_control(n->in(0));
 419         if (n == NULL || n->is_top())
 420           return false; // Conservative answer for dead code
 421         assert(n->is_CFG(), "expecting control");
 422         dom_list.push(n);
 423       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 424         only_dominating_controls = true;
 425       } else if (n->is_CFG()) {
 426         if (n->dominates(sub, nlist))
 427           only_dominating_controls = true;
 428         else
 429           return false;
 430       } else {
 431         // First, own control edge.
 432         Node* m = n->find_exact_control(n->in(0));
 433         if (m != NULL) {
 434           if (m->is_top())
 435             return false; // Conservative answer for dead code
 436           dom_list.push(m);
 437         }
 438         // Now, the rest of edges.
 439         uint cnt = n->req();
 440         for (uint i = 1; i < cnt; i++) {
 441           m = n->find_exact_control(n->in(i));
 442           if (m == NULL || m->is_top())
 443             continue;
 444           dom_list.push(m);
 445         }
 446       }
 447     }
 448     return only_dominating_controls;
 449   }
 450 }
 451 
 452 //---------------------detect_ptr_independence---------------------------------
 453 // Used by MemNode::find_previous_store to prove that two base
 454 // pointers are never equal.
 455 // The pointers are accompanied by their associated allocations,
 456 // if any, which have been previously discovered by the caller.
 457 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 458                                       Node* p2, AllocateNode* a2,
 459                                       PhaseTransform* phase) {
 460   // Attempt to prove that these two pointers cannot be aliased.
 461   // They may both manifestly be allocations, and they should differ.
 462   // Or, if they are not both allocations, they can be distinct constants.
 463   // Otherwise, one is an allocation and the other a pre-existing value.
 464   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 465     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 466   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 467     return (a1 != a2);
 468   } else if (a1 != NULL) {                  // one allocation a1
 469     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 470     return all_controls_dominate(p2, a1);
 471   } else { //(a2 != NULL)                   // one allocation a2
 472     return all_controls_dominate(p1, a2);
 473   }
 474   return false;
 475 }
 476 
 477 
 478 // The logic for reordering loads and stores uses four steps:
 479 // (a) Walk carefully past stores and initializations which we
 480 //     can prove are independent of this load.
 481 // (b) Observe that the next memory state makes an exact match
 482 //     with self (load or store), and locate the relevant store.
 483 // (c) Ensure that, if we were to wire self directly to the store,
 484 //     the optimizer would fold it up somehow.
 485 // (d) Do the rewiring, and return, depending on some other part of
 486 //     the optimizer to fold up the load.
 487 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 488 // specific to loads and stores, so they are handled by the callers.
 489 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 490 //
 491 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 492   Node*         ctrl   = in(MemNode::Control);
 493   Node*         adr    = in(MemNode::Address);
 494   intptr_t      offset = 0;
 495   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 496   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 497 
 498   if (offset == Type::OffsetBot)
 499     return NULL;            // cannot unalias unless there are precise offsets
 500 
 501   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 502 
 503   intptr_t size_in_bytes = memory_size();
 504 
 505   Node* mem = in(MemNode::Memory);   // start searching here...
 506 
 507   int cnt = 50;             // Cycle limiter
 508   for (;;) {                // While we can dance past unrelated stores...
 509     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 510 
 511     if (mem->is_Store()) {
 512       Node* st_adr = mem->in(MemNode::Address);
 513       intptr_t st_offset = 0;
 514       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 515       if (st_base == NULL)
 516         break;              // inscrutable pointer
 517       if (st_offset != offset && st_offset != Type::OffsetBot) {
 518         const int MAX_STORE = BytesPerLong;
 519         if (st_offset >= offset + size_in_bytes ||
 520             st_offset <= offset - MAX_STORE ||
 521             st_offset <= offset - mem->as_Store()->memory_size()) {
 522           // Success:  The offsets are provably independent.
 523           // (You may ask, why not just test st_offset != offset and be done?
 524           // The answer is that stores of different sizes can co-exist
 525           // in the same sequence of RawMem effects.  We sometimes initialize
 526           // a whole 'tile' of array elements with a single jint or jlong.)
 527           mem = mem->in(MemNode::Memory);
 528           continue;           // (a) advance through independent store memory
 529         }
 530       }
 531       if (st_base != base &&
 532           detect_ptr_independence(base, alloc,
 533                                   st_base,
 534                                   AllocateNode::Ideal_allocation(st_base, phase),
 535                                   phase)) {
 536         // Success:  The bases are provably independent.
 537         mem = mem->in(MemNode::Memory);
 538         continue;           // (a) advance through independent store memory
 539       }
 540 
 541       // (b) At this point, if the bases or offsets do not agree, we lose,
 542       // since we have not managed to prove 'this' and 'mem' independent.
 543       if (st_base == base && st_offset == offset) {
 544         return mem;         // let caller handle steps (c), (d)
 545       }
 546 
 547     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 548       InitializeNode* st_init = mem->in(0)->as_Initialize();
 549       AllocateNode*  st_alloc = st_init->allocation();
 550       if (st_alloc == NULL)
 551         break;              // something degenerated
 552       bool known_identical = false;
 553       bool known_independent = false;
 554       if (alloc == st_alloc)
 555         known_identical = true;
 556       else if (alloc != NULL)
 557         known_independent = true;
 558       else if (all_controls_dominate(this, st_alloc))
 559         known_independent = true;
 560 
 561       if (known_independent) {
 562         // The bases are provably independent: Either they are
 563         // manifestly distinct allocations, or else the control
 564         // of this load dominates the store's allocation.
 565         int alias_idx = phase->C->get_alias_index(adr_type());
 566         if (alias_idx == Compile::AliasIdxRaw) {
 567           mem = st_alloc->in(TypeFunc::Memory);
 568         } else {
 569           mem = st_init->memory(alias_idx);
 570         }
 571         continue;           // (a) advance through independent store memory
 572       }
 573 
 574       // (b) at this point, if we are not looking at a store initializing
 575       // the same allocation we are loading from, we lose.
 576       if (known_identical) {
 577         // From caller, can_see_stored_value will consult find_captured_store.
 578         return mem;         // let caller handle steps (c), (d)
 579       }
 580 
 581     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 582       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 583       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 584         CallNode *call = mem->in(0)->as_Call();
 585         if (!call->may_modify(addr_t, phase)) {
 586           mem = call->in(TypeFunc::Memory);
 587           continue;         // (a) advance through independent call memory
 588         }
 589       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 590         mem = mem->in(0)->in(TypeFunc::Memory);
 591         continue;           // (a) advance through independent MemBar memory
 592       } else if (mem->is_ClearArray()) {
 593         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 594           // (the call updated 'mem' value)
 595           continue;         // (a) advance through independent allocation memory
 596         } else {
 597           // Can not bypass initialization of the instance
 598           // we are looking for.
 599           return mem;
 600         }
 601       } else if (mem->is_MergeMem()) {
 602         int alias_idx = phase->C->get_alias_index(adr_type());
 603         mem = mem->as_MergeMem()->memory_at(alias_idx);
 604         continue;           // (a) advance through independent MergeMem memory
 605       }
 606     }
 607 
 608     // Unless there is an explicit 'continue', we must bail out here,
 609     // because 'mem' is an inscrutable memory state (e.g., a call).
 610     break;
 611   }
 612 
 613   return NULL;              // bail out
 614 }
 615 
 616 //----------------------calculate_adr_type-------------------------------------
 617 // Helper function.  Notices when the given type of address hits top or bottom.
 618 // Also, asserts a cross-check of the type against the expected address type.
 619 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 620   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 621   #ifdef PRODUCT
 622   cross_check = NULL;
 623   #else
 624   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 625   #endif
 626   const TypePtr* tp = t->isa_ptr();
 627   if (tp == NULL) {
 628     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 629     return TypePtr::BOTTOM;           // touches lots of memory
 630   } else {
 631     #ifdef ASSERT
 632     // %%%% [phh] We don't check the alias index if cross_check is
 633     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 634     if (cross_check != NULL &&
 635         cross_check != TypePtr::BOTTOM &&
 636         cross_check != TypeRawPtr::BOTTOM) {
 637       // Recheck the alias index, to see if it has changed (due to a bug).
 638       Compile* C = Compile::current();
 639       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 640              "must stay in the original alias category");
 641       // The type of the address must be contained in the adr_type,
 642       // disregarding "null"-ness.
 643       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 644       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 645       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 646              "real address must not escape from expected memory type");
 647     }
 648     #endif
 649     return tp;
 650   }
 651 }
 652 
 653 //------------------------adr_phi_is_loop_invariant----------------------------
 654 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 655 // loop is loop invariant. Make a quick traversal of Phi and associated
 656 // CastPP nodes, looking to see if they are a closed group within the loop.
 657 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 658   // The idea is that the phi-nest must boil down to only CastPP nodes
 659   // with the same data. This implies that any path into the loop already
 660   // includes such a CastPP, and so the original cast, whatever its input,
 661   // must be covered by an equivalent cast, with an earlier control input.
 662   ResourceMark rm;
 663 
 664   // The loop entry input of the phi should be the unique dominating
 665   // node for every Phi/CastPP in the loop.
 666   Unique_Node_List closure;
 667   closure.push(adr_phi->in(LoopNode::EntryControl));
 668 
 669   // Add the phi node and the cast to the worklist.
 670   Unique_Node_List worklist;
 671   worklist.push(adr_phi);
 672   if( cast != NULL ){
 673     if( !cast->is_ConstraintCast() ) return false;
 674     worklist.push(cast);
 675   }
 676 
 677   // Begin recursive walk of phi nodes.
 678   while( worklist.size() ){
 679     // Take a node off the worklist
 680     Node *n = worklist.pop();
 681     if( !closure.member(n) ){
 682       // Add it to the closure.
 683       closure.push(n);
 684       // Make a sanity check to ensure we don't waste too much time here.
 685       if( closure.size() > 20) return false;
 686       // This node is OK if:
 687       //  - it is a cast of an identical value
 688       //  - or it is a phi node (then we add its inputs to the worklist)
 689       // Otherwise, the node is not OK, and we presume the cast is not invariant
 690       if( n->is_ConstraintCast() ){
 691         worklist.push(n->in(1));
 692       } else if( n->is_Phi() ) {
 693         for( uint i = 1; i < n->req(); i++ ) {
 694           worklist.push(n->in(i));
 695         }
 696       } else {
 697         return false;
 698       }
 699     }
 700   }
 701 
 702   // Quit when the worklist is empty, and we've found no offending nodes.
 703   return true;
 704 }
 705 
 706 //------------------------------Ideal_DU_postCCP-------------------------------
 707 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 708 // going away in this pass and we need to make this memory op depend on the
 709 // gating null check.
 710 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 711   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 712 }
 713 
 714 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 715 // some sense; we get to keep around the knowledge that an oop is not-null
 716 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 717 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 718 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 719 // some of the more trivial cases in the optimizer.  Removing more useless
 720 // Phi's started allowing Loads to illegally float above null checks.  I gave
 721 // up on this approach.  CNC 10/20/2000
 722 // This static method may be called not from MemNode (EncodePNode calls it).
 723 // Only the control edge of the node 'n' might be updated.
 724 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 725   Node *skipped_cast = NULL;
 726   // Need a null check?  Regular static accesses do not because they are
 727   // from constant addresses.  Array ops are gated by the range check (which
 728   // always includes a NULL check).  Just check field ops.
 729   if( n->in(MemNode::Control) == NULL ) {
 730     // Scan upwards for the highest location we can place this memory op.
 731     while( true ) {
 732       switch( adr->Opcode() ) {
 733 
 734       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 735         adr = adr->in(AddPNode::Base);
 736         continue;
 737 
 738       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 739       case Op_DecodeNKlass:
 740         adr = adr->in(1);
 741         continue;
 742 
 743       case Op_EncodeP:
 744       case Op_EncodePKlass:
 745         // EncodeP node's control edge could be set by this method
 746         // when EncodeP node depends on CastPP node.
 747         //
 748         // Use its control edge for memory op because EncodeP may go away
 749         // later when it is folded with following or preceding DecodeN node.
 750         if (adr->in(0) == NULL) {
 751           // Keep looking for cast nodes.
 752           adr = adr->in(1);
 753           continue;
 754         }
 755         ccp->hash_delete(n);
 756         n->set_req(MemNode::Control, adr->in(0));
 757         ccp->hash_insert(n);
 758         return n;
 759 
 760       case Op_CastPP:
 761         // If the CastPP is useless, just peek on through it.
 762         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 763           // Remember the cast that we've peeked though. If we peek
 764           // through more than one, then we end up remembering the highest
 765           // one, that is, if in a loop, the one closest to the top.
 766           skipped_cast = adr;
 767           adr = adr->in(1);
 768           continue;
 769         }
 770         // CastPP is going away in this pass!  We need this memory op to be
 771         // control-dependent on the test that is guarding the CastPP.
 772         ccp->hash_delete(n);
 773         n->set_req(MemNode::Control, adr->in(0));
 774         ccp->hash_insert(n);
 775         return n;
 776 
 777       case Op_Phi:
 778         // Attempt to float above a Phi to some dominating point.
 779         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 780           // If we've already peeked through a Cast (which could have set the
 781           // control), we can't float above a Phi, because the skipped Cast
 782           // may not be loop invariant.
 783           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 784             adr = adr->in(1);
 785             continue;
 786           }
 787         }
 788 
 789         // Intentional fallthrough!
 790 
 791         // No obvious dominating point.  The mem op is pinned below the Phi
 792         // by the Phi itself.  If the Phi goes away (no true value is merged)
 793         // then the mem op can float, but not indefinitely.  It must be pinned
 794         // behind the controls leading to the Phi.
 795       case Op_CheckCastPP:
 796         // These usually stick around to change address type, however a
 797         // useless one can be elided and we still need to pick up a control edge
 798         if (adr->in(0) == NULL) {
 799           // This CheckCastPP node has NO control and is likely useless. But we
 800           // need check further up the ancestor chain for a control input to keep
 801           // the node in place. 4959717.
 802           skipped_cast = adr;
 803           adr = adr->in(1);
 804           continue;
 805         }
 806         ccp->hash_delete(n);
 807         n->set_req(MemNode::Control, adr->in(0));
 808         ccp->hash_insert(n);
 809         return n;
 810 
 811         // List of "safe" opcodes; those that implicitly block the memory
 812         // op below any null check.
 813       case Op_CastX2P:          // no null checks on native pointers
 814       case Op_Parm:             // 'this' pointer is not null
 815       case Op_LoadP:            // Loading from within a klass
 816       case Op_LoadN:            // Loading from within a klass
 817       case Op_LoadKlass:        // Loading from within a klass
 818       case Op_LoadNKlass:       // Loading from within a klass
 819       case Op_ConP:             // Loading from a klass
 820       case Op_ConN:             // Loading from a klass
 821       case Op_ConNKlass:        // Loading from a klass
 822       case Op_CreateEx:         // Sucking up the guts of an exception oop
 823       case Op_Con:              // Reading from TLS
 824       case Op_CMoveP:           // CMoveP is pinned
 825       case Op_CMoveN:           // CMoveN is pinned
 826         break;                  // No progress
 827 
 828       case Op_Proj:             // Direct call to an allocation routine
 829       case Op_SCMemProj:        // Memory state from store conditional ops
 830 #ifdef ASSERT
 831         {
 832           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 833           const Node* call = adr->in(0);
 834           if (call->is_CallJava()) {
 835             const CallJavaNode* call_java = call->as_CallJava();
 836             const TypeTuple *r = call_java->tf()->range();
 837             assert(r->cnt() > TypeFunc::Parms, "must return value");
 838             const Type* ret_type = r->field_at(TypeFunc::Parms);
 839             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 840             // We further presume that this is one of
 841             // new_instance_Java, new_array_Java, or
 842             // the like, but do not assert for this.
 843           } else if (call->is_Allocate()) {
 844             // similar case to new_instance_Java, etc.
 845           } else if (!call->is_CallLeaf()) {
 846             // Projections from fetch_oop (OSR) are allowed as well.
 847             ShouldNotReachHere();
 848           }
 849         }
 850 #endif
 851         break;
 852       default:
 853         ShouldNotReachHere();
 854       }
 855       break;
 856     }
 857   }
 858 
 859   return  NULL;               // No progress
 860 }
 861 
 862 
 863 //=============================================================================
 864 uint LoadNode::size_of() const { return sizeof(*this); }
 865 uint LoadNode::cmp( const Node &n ) const
 866 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 867 const Type *LoadNode::bottom_type() const { return _type; }
 868 uint LoadNode::ideal_reg() const {
 869   return _type->ideal_reg();
 870 }
 871 
 872 #ifndef PRODUCT
 873 void LoadNode::dump_spec(outputStream *st) const {
 874   MemNode::dump_spec(st);
 875   if( !Verbose && !WizardMode ) {
 876     // standard dump does this in Verbose and WizardMode
 877     st->print(" #"); _type->dump_on(st);
 878   }
 879 }
 880 #endif
 881 
 882 #ifdef ASSERT
 883 //----------------------------is_immutable_value-------------------------------
 884 // Helper function to allow a raw load without control edge for some cases
 885 bool LoadNode::is_immutable_value(Node* adr) {
 886   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 887           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 888           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 889            in_bytes(JavaThread::osthread_offset())));
 890 }
 891 #endif
 892 
 893 //----------------------------LoadNode::make-----------------------------------
 894 // Polymorphic factory method:
 895 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo) {
 896   Compile* C = gvn.C;
 897 
 898   // sanity check the alias category against the created node type
 899   assert(!(adr_type->isa_oopptr() &&
 900            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 901          "use LoadKlassNode instead");
 902   assert(!(adr_type->isa_aryptr() &&
 903            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 904          "use LoadRangeNode instead");
 905   // Check control edge of raw loads
 906   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 907           // oop will be recorded in oop map if load crosses safepoint
 908           rt->isa_oopptr() || is_immutable_value(adr),
 909           "raw memory operations should have control edge");
 910   switch (bt) {
 911   case T_BOOLEAN: return new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
 912   case T_BYTE:    return new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
 913   case T_INT:     return new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
 914   case T_CHAR:    return new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
 915   case T_SHORT:   return new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
 916   case T_LONG:    return new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo);
 917   case T_FLOAT:   return new LoadFNode (ctl, mem, adr, adr_type, rt,            mo);
 918   case T_DOUBLE:  return new LoadDNode (ctl, mem, adr, adr_type, rt,            mo);
 919   case T_ADDRESS: return new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo);
 920   case T_OBJECT:
 921 #ifdef _LP64
 922     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 923       Node* load  = gvn.transform(new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo));
 924       return new DecodeNNode(load, load->bottom_type()->make_ptr());
 925     } else
 926 #endif
 927     {
 928       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 929       return new LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo);
 930     }
 931   }
 932   ShouldNotReachHere();
 933   return (LoadNode*)NULL;
 934 }
 935 
 936 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo) {
 937   bool require_atomic = true;
 938   return new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, require_atomic);
 939 }
 940 
 941 LoadDNode* LoadDNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo) {
 942   bool require_atomic = true;
 943   return new LoadDNode(ctl, mem, adr, adr_type, rt, mo, require_atomic);
 944 }
 945 
 946 
 947 
 948 //------------------------------hash-------------------------------------------
 949 uint LoadNode::hash() const {
 950   // unroll addition of interesting fields
 951   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 952 }
 953 
 954 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 955   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 956     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 957     bool is_stable_ary = FoldStableValues &&
 958                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 959                          tp->isa_aryptr()->is_stable();
 960 
 961     return (eliminate_boxing && non_volatile) || is_stable_ary;
 962   }
 963 
 964   return false;
 965 }
 966 
 967 //---------------------------can_see_stored_value------------------------------
 968 // This routine exists to make sure this set of tests is done the same
 969 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 970 // will change the graph shape in a way which makes memory alive twice at the
 971 // same time (uses the Oracle model of aliasing), then some
 972 // LoadXNode::Identity will fold things back to the equivalence-class model
 973 // of aliasing.
 974 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 975   Node* ld_adr = in(MemNode::Address);
 976   intptr_t ld_off = 0;
 977   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 978   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 979   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 980   // This is more general than load from boxing objects.
 981   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 982     uint alias_idx = atp->index();
 983     bool final = !atp->is_rewritable();
 984     Node* result = NULL;
 985     Node* current = st;
 986     // Skip through chains of MemBarNodes checking the MergeMems for
 987     // new states for the slice of this load.  Stop once any other
 988     // kind of node is encountered.  Loads from final memory can skip
 989     // through any kind of MemBar but normal loads shouldn't skip
 990     // through MemBarAcquire since the could allow them to move out of
 991     // a synchronized region.
 992     while (current->is_Proj()) {
 993       int opc = current->in(0)->Opcode();
 994       if ((final && (opc == Op_MemBarAcquire ||
 995                      opc == Op_MemBarAcquireLock ||
 996                      opc == Op_LoadFence)) ||
 997           opc == Op_MemBarRelease ||
 998           opc == Op_StoreFence ||
 999           opc == Op_MemBarReleaseLock ||
1000           opc == Op_MemBarCPUOrder) {
1001         Node* mem = current->in(0)->in(TypeFunc::Memory);
1002         if (mem->is_MergeMem()) {
1003           MergeMemNode* merge = mem->as_MergeMem();
1004           Node* new_st = merge->memory_at(alias_idx);
1005           if (new_st == merge->base_memory()) {
1006             // Keep searching
1007             current = new_st;
1008             continue;
1009           }
1010           // Save the new memory state for the slice and fall through
1011           // to exit.
1012           result = new_st;
1013         }
1014       }
1015       break;
1016     }
1017     if (result != NULL) {
1018       st = result;
1019     }
1020   }
1021 
1022   // Loop around twice in the case Load -> Initialize -> Store.
1023   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1024   for (int trip = 0; trip <= 1; trip++) {
1025 
1026     if (st->is_Store()) {
1027       Node* st_adr = st->in(MemNode::Address);
1028       if (!phase->eqv(st_adr, ld_adr)) {
1029         // Try harder before giving up...  Match raw and non-raw pointers.
1030         intptr_t st_off = 0;
1031         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1032         if (alloc == NULL)       return NULL;
1033         if (alloc != ld_alloc)   return NULL;
1034         if (ld_off != st_off)    return NULL;
1035         // At this point we have proven something like this setup:
1036         //  A = Allocate(...)
1037         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1038         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1039         // (Actually, we haven't yet proven the Q's are the same.)
1040         // In other words, we are loading from a casted version of
1041         // the same pointer-and-offset that we stored to.
1042         // Thus, we are able to replace L by V.
1043       }
1044       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1045       if (store_Opcode() != st->Opcode())
1046         return NULL;
1047       return st->in(MemNode::ValueIn);
1048     }
1049 
1050     // A load from a freshly-created object always returns zero.
1051     // (This can happen after LoadNode::Ideal resets the load's memory input
1052     // to find_captured_store, which returned InitializeNode::zero_memory.)
1053     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1054         (st->in(0) == ld_alloc) &&
1055         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1056       // return a zero value for the load's basic type
1057       // (This is one of the few places where a generic PhaseTransform
1058       // can create new nodes.  Think of it as lazily manifesting
1059       // virtually pre-existing constants.)
1060       return phase->zerocon(memory_type());
1061     }
1062 
1063     // A load from an initialization barrier can match a captured store.
1064     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1065       InitializeNode* init = st->in(0)->as_Initialize();
1066       AllocateNode* alloc = init->allocation();
1067       if ((alloc != NULL) && (alloc == ld_alloc)) {
1068         // examine a captured store value
1069         st = init->find_captured_store(ld_off, memory_size(), phase);
1070         if (st != NULL)
1071           continue;             // take one more trip around
1072       }
1073     }
1074 
1075     // Load boxed value from result of valueOf() call is input parameter.
1076     if (this->is_Load() && ld_adr->is_AddP() &&
1077         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1078       intptr_t ignore = 0;
1079       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1080       if (base != NULL && base->is_Proj() &&
1081           base->as_Proj()->_con == TypeFunc::Parms &&
1082           base->in(0)->is_CallStaticJava() &&
1083           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1084         return base->in(0)->in(TypeFunc::Parms);
1085       }
1086     }
1087 
1088     break;
1089   }
1090 
1091   return NULL;
1092 }
1093 
1094 //----------------------is_instance_field_load_with_local_phi------------------
1095 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1096   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1097       in(Address)->is_AddP() ) {
1098     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1099     // Only instances and boxed values.
1100     if( t_oop != NULL &&
1101         (t_oop->is_ptr_to_boxed_value() ||
1102          t_oop->is_known_instance_field()) &&
1103         t_oop->offset() != Type::OffsetBot &&
1104         t_oop->offset() != Type::OffsetTop) {
1105       return true;
1106     }
1107   }
1108   return false;
1109 }
1110 
1111 //------------------------------Identity---------------------------------------
1112 // Loads are identity if previous store is to same address
1113 Node *LoadNode::Identity( PhaseTransform *phase ) {
1114   // If the previous store-maker is the right kind of Store, and the store is
1115   // to the same address, then we are equal to the value stored.
1116   Node* mem = in(Memory);
1117   Node* value = can_see_stored_value(mem, phase);
1118   if( value ) {
1119     // byte, short & char stores truncate naturally.
1120     // A load has to load the truncated value which requires
1121     // some sort of masking operation and that requires an
1122     // Ideal call instead of an Identity call.
1123     if (memory_size() < BytesPerInt) {
1124       // If the input to the store does not fit with the load's result type,
1125       // it must be truncated via an Ideal call.
1126       if (!phase->type(value)->higher_equal(phase->type(this)))
1127         return this;
1128     }
1129     // (This works even when value is a Con, but LoadNode::Value
1130     // usually runs first, producing the singleton type of the Con.)
1131     return value;
1132   }
1133 
1134   // Search for an existing data phi which was generated before for the same
1135   // instance's field to avoid infinite generation of phis in a loop.
1136   Node *region = mem->in(0);
1137   if (is_instance_field_load_with_local_phi(region)) {
1138     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1139     int this_index  = phase->C->get_alias_index(addr_t);
1140     int this_offset = addr_t->offset();
1141     int this_iid    = addr_t->instance_id();
1142     if (!addr_t->is_known_instance() &&
1143          addr_t->is_ptr_to_boxed_value()) {
1144       // Use _idx of address base (could be Phi node) for boxed values.
1145       intptr_t   ignore = 0;
1146       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1147       this_iid = base->_idx;
1148     }
1149     const Type* this_type = bottom_type();
1150     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1151       Node* phi = region->fast_out(i);
1152       if (phi->is_Phi() && phi != mem &&
1153           phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
1154         return phi;
1155       }
1156     }
1157   }
1158 
1159   return this;
1160 }
1161 
1162 // We're loading from an object which has autobox behaviour.
1163 // If this object is result of a valueOf call we'll have a phi
1164 // merging a newly allocated object and a load from the cache.
1165 // We want to replace this load with the original incoming
1166 // argument to the valueOf call.
1167 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1168   assert(phase->C->eliminate_boxing(), "sanity");
1169   intptr_t ignore = 0;
1170   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1171   if ((base == NULL) || base->is_Phi()) {
1172     // Push the loads from the phi that comes from valueOf up
1173     // through it to allow elimination of the loads and the recovery
1174     // of the original value. It is done in split_through_phi().
1175     return NULL;
1176   } else if (base->is_Load() ||
1177              base->is_DecodeN() && base->in(1)->is_Load()) {
1178     // Eliminate the load of boxed value for integer types from the cache
1179     // array by deriving the value from the index into the array.
1180     // Capture the offset of the load and then reverse the computation.
1181 
1182     // Get LoadN node which loads a boxing object from 'cache' array.
1183     if (base->is_DecodeN()) {
1184       base = base->in(1);
1185     }
1186     if (!base->in(Address)->is_AddP()) {
1187       return NULL; // Complex address
1188     }
1189     AddPNode* address = base->in(Address)->as_AddP();
1190     Node* cache_base = address->in(AddPNode::Base);
1191     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1192       // Get ConP node which is static 'cache' field.
1193       cache_base = cache_base->in(1);
1194     }
1195     if ((cache_base != NULL) && cache_base->is_Con()) {
1196       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1197       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1198         Node* elements[4];
1199         int shift = exact_log2(type2aelembytes(T_OBJECT));
1200         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1201         if ((count >  0) && elements[0]->is_Con() &&
1202             ((count == 1) ||
1203              (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1204                              elements[1]->in(2) == phase->intcon(shift))) {
1205           ciObjArray* array = base_type->const_oop()->as_obj_array();
1206           // Fetch the box object cache[0] at the base of the array and get its value
1207           ciInstance* box = array->obj_at(0)->as_instance();
1208           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1209           assert(ik->is_box_klass(), "sanity");
1210           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1211           if (ik->nof_nonstatic_fields() == 1) {
1212             // This should be true nonstatic_field_at requires calling
1213             // nof_nonstatic_fields so check it anyway
1214             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1215             BasicType bt = c.basic_type();
1216             // Only integer types have boxing cache.
1217             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1218                    bt == T_BYTE    || bt == T_SHORT ||
1219                    bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
1220             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1221             if (cache_low != (int)cache_low) {
1222               return NULL; // should not happen since cache is array indexed by value
1223             }
1224             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1225             if (offset != (int)offset) {
1226               return NULL; // should not happen since cache is array indexed by value
1227             }
1228            // Add up all the offsets making of the address of the load
1229             Node* result = elements[0];
1230             for (int i = 1; i < count; i++) {
1231               result = phase->transform(new AddXNode(result, elements[i]));
1232             }
1233             // Remove the constant offset from the address and then
1234             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1235             // remove the scaling of the offset to recover the original index.
1236             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1237               // Peel the shift off directly but wrap it in a dummy node
1238               // since Ideal can't return existing nodes
1239               result = new RShiftXNode(result->in(1), phase->intcon(0));
1240             } else if (result->is_Add() && result->in(2)->is_Con() &&
1241                        result->in(1)->Opcode() == Op_LShiftX &&
1242                        result->in(1)->in(2) == phase->intcon(shift)) {
1243               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1244               // but for boxing cache access we know that X<<Z will not overflow
1245               // (there is range check) so we do this optimizatrion by hand here.
1246               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1247               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1248             } else {
1249               result = new RShiftXNode(result, phase->intcon(shift));
1250             }
1251 #ifdef _LP64
1252             if (bt != T_LONG) {
1253               result = new ConvL2INode(phase->transform(result));
1254             }
1255 #else
1256             if (bt == T_LONG) {
1257               result = new ConvI2LNode(phase->transform(result));
1258             }
1259 #endif
1260             return result;
1261           }
1262         }
1263       }
1264     }
1265   }
1266   return NULL;
1267 }
1268 
1269 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1270   Node* region = phi->in(0);
1271   if (region == NULL) {
1272     return false; // Wait stable graph
1273   }
1274   uint cnt = phi->req();
1275   for (uint i = 1; i < cnt; i++) {
1276     Node* rc = region->in(i);
1277     if (rc == NULL || phase->type(rc) == Type::TOP)
1278       return false; // Wait stable graph
1279     Node* in = phi->in(i);
1280     if (in == NULL || phase->type(in) == Type::TOP)
1281       return false; // Wait stable graph
1282   }
1283   return true;
1284 }
1285 //------------------------------split_through_phi------------------------------
1286 // Split instance or boxed field load through Phi.
1287 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1288   Node* mem     = in(Memory);
1289   Node* address = in(Address);
1290   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1291 
1292   assert((t_oop != NULL) &&
1293          (t_oop->is_known_instance_field() ||
1294           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1295 
1296   Compile* C = phase->C;
1297   intptr_t ignore = 0;
1298   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1299   bool base_is_phi = (base != NULL) && base->is_Phi();
1300   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1301                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1302                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1303 
1304   if (!((mem->is_Phi() || base_is_phi) &&
1305         (load_boxed_values || t_oop->is_known_instance_field()))) {
1306     return NULL; // memory is not Phi
1307   }
1308 
1309   if (mem->is_Phi()) {
1310     if (!stable_phi(mem->as_Phi(), phase)) {
1311       return NULL; // Wait stable graph
1312     }
1313     uint cnt = mem->req();
1314     // Check for loop invariant memory.
1315     if (cnt == 3) {
1316       for (uint i = 1; i < cnt; i++) {
1317         Node* in = mem->in(i);
1318         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1319         if (m == mem) {
1320           set_req(Memory, mem->in(cnt - i));
1321           return this; // made change
1322         }
1323       }
1324     }
1325   }
1326   if (base_is_phi) {
1327     if (!stable_phi(base->as_Phi(), phase)) {
1328       return NULL; // Wait stable graph
1329     }
1330     uint cnt = base->req();
1331     // Check for loop invariant memory.
1332     if (cnt == 3) {
1333       for (uint i = 1; i < cnt; i++) {
1334         if (base->in(i) == base) {
1335           return NULL; // Wait stable graph
1336         }
1337       }
1338     }
1339   }
1340 
1341   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1342 
1343   // Split through Phi (see original code in loopopts.cpp).
1344   assert(C->have_alias_type(t_oop), "instance should have alias type");
1345 
1346   // Do nothing here if Identity will find a value
1347   // (to avoid infinite chain of value phis generation).
1348   if (!phase->eqv(this, this->Identity(phase)))
1349     return NULL;
1350 
1351   // Select Region to split through.
1352   Node* region;
1353   if (!base_is_phi) {
1354     assert(mem->is_Phi(), "sanity");
1355     region = mem->in(0);
1356     // Skip if the region dominates some control edge of the address.
1357     if (!MemNode::all_controls_dominate(address, region))
1358       return NULL;
1359   } else if (!mem->is_Phi()) {
1360     assert(base_is_phi, "sanity");
1361     region = base->in(0);
1362     // Skip if the region dominates some control edge of the memory.
1363     if (!MemNode::all_controls_dominate(mem, region))
1364       return NULL;
1365   } else if (base->in(0) != mem->in(0)) {
1366     assert(base_is_phi && mem->is_Phi(), "sanity");
1367     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1368       region = base->in(0);
1369     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1370       region = mem->in(0);
1371     } else {
1372       return NULL; // complex graph
1373     }
1374   } else {
1375     assert(base->in(0) == mem->in(0), "sanity");
1376     region = mem->in(0);
1377   }
1378 
1379   const Type* this_type = this->bottom_type();
1380   int this_index  = C->get_alias_index(t_oop);
1381   int this_offset = t_oop->offset();
1382   int this_iid    = t_oop->instance_id();
1383   if (!t_oop->is_known_instance() && load_boxed_values) {
1384     // Use _idx of address base for boxed values.
1385     this_iid = base->_idx;
1386   }
1387   PhaseIterGVN* igvn = phase->is_IterGVN();
1388   Node* phi = new PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1389   for (uint i = 1; i < region->req(); i++) {
1390     Node* x;
1391     Node* the_clone = NULL;
1392     if (region->in(i) == C->top()) {
1393       x = C->top();      // Dead path?  Use a dead data op
1394     } else {
1395       x = this->clone();        // Else clone up the data op
1396       the_clone = x;            // Remember for possible deletion.
1397       // Alter data node to use pre-phi inputs
1398       if (this->in(0) == region) {
1399         x->set_req(0, region->in(i));
1400       } else {
1401         x->set_req(0, NULL);
1402       }
1403       if (mem->is_Phi() && (mem->in(0) == region)) {
1404         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1405       }
1406       if (address->is_Phi() && address->in(0) == region) {
1407         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1408       }
1409       if (base_is_phi && (base->in(0) == region)) {
1410         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1411         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1412         x->set_req(Address, adr_x);
1413       }
1414     }
1415     // Check for a 'win' on some paths
1416     const Type *t = x->Value(igvn);
1417 
1418     bool singleton = t->singleton();
1419 
1420     // See comments in PhaseIdealLoop::split_thru_phi().
1421     if (singleton && t == Type::TOP) {
1422       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1423     }
1424 
1425     if (singleton) {
1426       x = igvn->makecon(t);
1427     } else {
1428       // We now call Identity to try to simplify the cloned node.
1429       // Note that some Identity methods call phase->type(this).
1430       // Make sure that the type array is big enough for
1431       // our new node, even though we may throw the node away.
1432       // (This tweaking with igvn only works because x is a new node.)
1433       igvn->set_type(x, t);
1434       // If x is a TypeNode, capture any more-precise type permanently into Node
1435       // otherwise it will be not updated during igvn->transform since
1436       // igvn->type(x) is set to x->Value() already.
1437       x->raise_bottom_type(t);
1438       Node *y = x->Identity(igvn);
1439       if (y != x) {
1440         x = y;
1441       } else {
1442         y = igvn->hash_find_insert(x);
1443         if (y) {
1444           x = y;
1445         } else {
1446           // Else x is a new node we are keeping
1447           // We do not need register_new_node_with_optimizer
1448           // because set_type has already been called.
1449           igvn->_worklist.push(x);
1450         }
1451       }
1452     }
1453     if (x != the_clone && the_clone != NULL) {
1454       igvn->remove_dead_node(the_clone);
1455     }
1456     phi->set_req(i, x);
1457   }
1458   // Record Phi
1459   igvn->register_new_node_with_optimizer(phi);
1460   return phi;
1461 }
1462 
1463 //------------------------------Ideal------------------------------------------
1464 // If the load is from Field memory and the pointer is non-null, we can
1465 // zero out the control input.
1466 // If the offset is constant and the base is an object allocation,
1467 // try to hook me up to the exact initializing store.
1468 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1469   Node* p = MemNode::Ideal_common(phase, can_reshape);
1470   if (p)  return (p == NodeSentinel) ? NULL : p;
1471 
1472   Node* ctrl    = in(MemNode::Control);
1473   Node* address = in(MemNode::Address);
1474   bool progress = false;
1475 
1476   // Skip up past a SafePoint control.  Cannot do this for Stores because
1477   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1478   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1479       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1480     ctrl = ctrl->in(0);
1481     set_req(MemNode::Control,ctrl);
1482     progress = true;
1483   }
1484 
1485   intptr_t ignore = 0;
1486   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1487   if (base != NULL
1488       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1489     // Check for useless control edge in some common special cases
1490     if (in(MemNode::Control) != NULL
1491         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1492         && all_controls_dominate(base, phase->C->start())) {
1493       // A method-invariant, non-null address (constant or 'this' argument).
1494       set_req(MemNode::Control, NULL);
1495       progress = true;
1496     }
1497   }
1498 
1499   Node* mem = in(MemNode::Memory);
1500   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1501 
1502   if (can_reshape && (addr_t != NULL)) {
1503     // try to optimize our memory input
1504     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1505     if (opt_mem != mem) {
1506       set_req(MemNode::Memory, opt_mem);
1507       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1508       return this;
1509     }
1510     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1511     if ((t_oop != NULL) &&
1512         (t_oop->is_known_instance_field() ||
1513          t_oop->is_ptr_to_boxed_value())) {
1514       PhaseIterGVN *igvn = phase->is_IterGVN();
1515       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1516         // Delay this transformation until memory Phi is processed.
1517         phase->is_IterGVN()->_worklist.push(this);
1518         return NULL;
1519       }
1520       // Split instance field load through Phi.
1521       Node* result = split_through_phi(phase);
1522       if (result != NULL) return result;
1523 
1524       if (t_oop->is_ptr_to_boxed_value()) {
1525         Node* result = eliminate_autobox(phase);
1526         if (result != NULL) return result;
1527       }
1528     }
1529   }
1530 
1531   // Check for prior store with a different base or offset; make Load
1532   // independent.  Skip through any number of them.  Bail out if the stores
1533   // are in an endless dead cycle and report no progress.  This is a key
1534   // transform for Reflection.  However, if after skipping through the Stores
1535   // we can't then fold up against a prior store do NOT do the transform as
1536   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1537   // array memory alive twice: once for the hoisted Load and again after the
1538   // bypassed Store.  This situation only works if EVERYBODY who does
1539   // anti-dependence work knows how to bypass.  I.e. we need all
1540   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1541   // the alias index stuff.  So instead, peek through Stores and IFF we can
1542   // fold up, do so.
1543   Node* prev_mem = find_previous_store(phase);
1544   // Steps (a), (b):  Walk past independent stores to find an exact match.
1545   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1546     // (c) See if we can fold up on the spot, but don't fold up here.
1547     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1548     // just return a prior value, which is done by Identity calls.
1549     if (can_see_stored_value(prev_mem, phase)) {
1550       // Make ready for step (d):
1551       set_req(MemNode::Memory, prev_mem);
1552       return this;
1553     }
1554   }
1555 
1556   return progress ? this : NULL;
1557 }
1558 
1559 // Helper to recognize certain Klass fields which are invariant across
1560 // some group of array types (e.g., int[] or all T[] where T < Object).
1561 const Type*
1562 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1563                                  ciKlass* klass) const {
1564   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1565     // The field is Klass::_modifier_flags.  Return its (constant) value.
1566     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1567     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1568     return TypeInt::make(klass->modifier_flags());
1569   }
1570   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1571     // The field is Klass::_access_flags.  Return its (constant) value.
1572     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1573     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1574     return TypeInt::make(klass->access_flags());
1575   }
1576   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1577     // The field is Klass::_layout_helper.  Return its constant value if known.
1578     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1579     return TypeInt::make(klass->layout_helper());
1580   }
1581 
1582   // No match.
1583   return NULL;
1584 }
1585 
1586 // Try to constant-fold a stable array element.
1587 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
1588   assert(ary->const_oop(), "array should be constant");
1589   assert(ary->is_stable(), "array should be stable");
1590 
1591   // Decode the results of GraphKit::array_element_address.
1592   ciArray* aobj = ary->const_oop()->as_array();
1593   ciConstant con = aobj->element_value_by_offset(off);
1594 
1595   if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
1596     const Type* con_type = Type::make_from_constant(con);
1597     if (con_type != NULL) {
1598       if (con_type->isa_aryptr()) {
1599         // Join with the array element type, in case it is also stable.
1600         int dim = ary->stable_dimension();
1601         con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
1602       }
1603       if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
1604         con_type = con_type->make_narrowoop();
1605       }
1606 #ifndef PRODUCT
1607       if (TraceIterativeGVN) {
1608         tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
1609         con_type->dump(); tty->cr();
1610       }
1611 #endif //PRODUCT
1612       return con_type;
1613     }
1614   }
1615   return NULL;
1616 }
1617 
1618 //------------------------------Value-----------------------------------------
1619 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1620   // Either input is TOP ==> the result is TOP
1621   Node* mem = in(MemNode::Memory);
1622   const Type *t1 = phase->type(mem);
1623   if (t1 == Type::TOP)  return Type::TOP;
1624   Node* adr = in(MemNode::Address);
1625   const TypePtr* tp = phase->type(adr)->isa_ptr();
1626   if (tp == NULL || tp->empty())  return Type::TOP;
1627   int off = tp->offset();
1628   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1629   Compile* C = phase->C;
1630 
1631   // Try to guess loaded type from pointer type
1632   if (tp->isa_aryptr()) {
1633     const TypeAryPtr* ary = tp->is_aryptr();
1634     const Type* t = ary->elem();
1635 
1636     // Determine whether the reference is beyond the header or not, by comparing
1637     // the offset against the offset of the start of the array's data.
1638     // Different array types begin at slightly different offsets (12 vs. 16).
1639     // We choose T_BYTE as an example base type that is least restrictive
1640     // as to alignment, which will therefore produce the smallest
1641     // possible base offset.
1642     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1643     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1644 
1645     // Try to constant-fold a stable array element.
1646     if (FoldStableValues && ary->is_stable() && ary->const_oop() != NULL) {
1647       // Make sure the reference is not into the header and the offset is constant
1648       if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1649         const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
1650         if (con_type != NULL) {
1651           return con_type;
1652         }
1653       }
1654     }
1655 
1656     // Don't do this for integer types. There is only potential profit if
1657     // the element type t is lower than _type; that is, for int types, if _type is
1658     // more restrictive than t.  This only happens here if one is short and the other
1659     // char (both 16 bits), and in those cases we've made an intentional decision
1660     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1661     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1662     //
1663     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1664     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1665     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1666     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1667     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1668     // In fact, that could have been the original type of p1, and p1 could have
1669     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1670     // expression (LShiftL quux 3) independently optimized to the constant 8.
1671     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1672         && (_type->isa_vect() == NULL)
1673         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1674       // t might actually be lower than _type, if _type is a unique
1675       // concrete subclass of abstract class t.
1676       if (off_beyond_header) {  // is the offset beyond the header?
1677         const Type* jt = t->join_speculative(_type);
1678         // In any case, do not allow the join, per se, to empty out the type.
1679         if (jt->empty() && !t->empty()) {
1680           // This can happen if a interface-typed array narrows to a class type.
1681           jt = _type;
1682         }
1683 #ifdef ASSERT
1684         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1685           // The pointers in the autobox arrays are always non-null
1686           Node* base = adr->in(AddPNode::Base);
1687           if ((base != NULL) && base->is_DecodeN()) {
1688             // Get LoadN node which loads IntegerCache.cache field
1689             base = base->in(1);
1690           }
1691           if ((base != NULL) && base->is_Con()) {
1692             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1693             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1694               // It could be narrow oop
1695               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1696             }
1697           }
1698         }
1699 #endif
1700         return jt;
1701       }
1702     }
1703   } else if (tp->base() == Type::InstPtr) {
1704     ciEnv* env = C->env();
1705     const TypeInstPtr* tinst = tp->is_instptr();
1706     ciKlass* klass = tinst->klass();
1707     assert( off != Type::OffsetBot ||
1708             // arrays can be cast to Objects
1709             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1710             // unsafe field access may not have a constant offset
1711             C->has_unsafe_access(),
1712             "Field accesses must be precise" );
1713     // For oop loads, we expect the _type to be precise
1714     if (klass == env->String_klass() &&
1715         adr->is_AddP() && off != Type::OffsetBot) {
1716       // For constant Strings treat the final fields as compile time constants.
1717       Node* base = adr->in(AddPNode::Base);
1718       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1719       if (t != NULL && t->singleton()) {
1720         ciField* field = env->String_klass()->get_field_by_offset(off, false);
1721         if (field != NULL && field->is_final()) {
1722           ciObject* string = t->const_oop();
1723           ciConstant constant = string->as_instance()->field_value(field);
1724           if (constant.basic_type() == T_INT) {
1725             return TypeInt::make(constant.as_int());
1726           } else if (constant.basic_type() == T_ARRAY) {
1727             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1728               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1729             } else {
1730               return TypeOopPtr::make_from_constant(constant.as_object(), true);
1731             }
1732           }
1733         }
1734       }
1735     }
1736     // Optimizations for constant objects
1737     ciObject* const_oop = tinst->const_oop();
1738     if (const_oop != NULL) {
1739       // For constant Boxed value treat the target field as a compile time constant.
1740       if (tinst->is_ptr_to_boxed_value()) {
1741         return tinst->get_const_boxed_value();
1742       } else
1743       // For constant CallSites treat the target field as a compile time constant.
1744       if (const_oop->is_call_site()) {
1745         ciCallSite* call_site = const_oop->as_call_site();
1746         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1747         if (field != NULL && field->is_call_site_target()) {
1748           ciMethodHandle* target = call_site->get_target();
1749           if (target != NULL) {  // just in case
1750             ciConstant constant(T_OBJECT, target);
1751             const Type* t;
1752             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1753               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1754             } else {
1755               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1756             }
1757             // Add a dependence for invalidation of the optimization.
1758             if (!call_site->is_constant_call_site()) {
1759               C->dependencies()->assert_call_site_target_value(call_site, target);
1760             }
1761             return t;
1762           }
1763         }
1764       }
1765     }
1766   } else if (tp->base() == Type::KlassPtr) {
1767     assert( off != Type::OffsetBot ||
1768             // arrays can be cast to Objects
1769             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1770             // also allow array-loading from the primary supertype
1771             // array during subtype checks
1772             Opcode() == Op_LoadKlass,
1773             "Field accesses must be precise" );
1774     // For klass/static loads, we expect the _type to be precise
1775   }
1776 
1777   const TypeKlassPtr *tkls = tp->isa_klassptr();
1778   if (tkls != NULL && !StressReflectiveCode) {
1779     ciKlass* klass = tkls->klass();
1780     if (klass->is_loaded() && tkls->klass_is_exact()) {
1781       // We are loading a field from a Klass metaobject whose identity
1782       // is known at compile time (the type is "exact" or "precise").
1783       // Check for fields we know are maintained as constants by the VM.
1784       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1785         // The field is Klass::_super_check_offset.  Return its (constant) value.
1786         // (Folds up type checking code.)
1787         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1788         return TypeInt::make(klass->super_check_offset());
1789       }
1790       // Compute index into primary_supers array
1791       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1792       // Check for overflowing; use unsigned compare to handle the negative case.
1793       if( depth < ciKlass::primary_super_limit() ) {
1794         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1795         // (Folds up type checking code.)
1796         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1797         ciKlass *ss = klass->super_of_depth(depth);
1798         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1799       }
1800       const Type* aift = load_array_final_field(tkls, klass);
1801       if (aift != NULL)  return aift;
1802       if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
1803           && klass->is_array_klass()) {
1804         // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
1805         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1806         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1807         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1808       }
1809       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1810         // The field is Klass::_java_mirror.  Return its (constant) value.
1811         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1812         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1813         return TypeInstPtr::make(klass->java_mirror());
1814       }
1815     }
1816 
1817     // We can still check if we are loading from the primary_supers array at a
1818     // shallow enough depth.  Even though the klass is not exact, entries less
1819     // than or equal to its super depth are correct.
1820     if (klass->is_loaded() ) {
1821       ciType *inner = klass;
1822       while( inner->is_obj_array_klass() )
1823         inner = inner->as_obj_array_klass()->base_element_type();
1824       if( inner->is_instance_klass() &&
1825           !inner->as_instance_klass()->flags().is_interface() ) {
1826         // Compute index into primary_supers array
1827         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1828         // Check for overflowing; use unsigned compare to handle the negative case.
1829         if( depth < ciKlass::primary_super_limit() &&
1830             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1831           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1832           // (Folds up type checking code.)
1833           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1834           ciKlass *ss = klass->super_of_depth(depth);
1835           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1836         }
1837       }
1838     }
1839 
1840     // If the type is enough to determine that the thing is not an array,
1841     // we can give the layout_helper a positive interval type.
1842     // This will help short-circuit some reflective code.
1843     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1844         && !klass->is_array_klass() // not directly typed as an array
1845         && !klass->is_interface()  // specifically not Serializable & Cloneable
1846         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1847         ) {
1848       // Note:  When interfaces are reliable, we can narrow the interface
1849       // test to (klass != Serializable && klass != Cloneable).
1850       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1851       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1852       // The key property of this type is that it folds up tests
1853       // for array-ness, since it proves that the layout_helper is positive.
1854       // Thus, a generic value like the basic object layout helper works fine.
1855       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1856     }
1857   }
1858 
1859   // If we are loading from a freshly-allocated object, produce a zero,
1860   // if the load is provably beyond the header of the object.
1861   // (Also allow a variable load from a fresh array to produce zero.)
1862   const TypeOopPtr *tinst = tp->isa_oopptr();
1863   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1864   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1865   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1866     Node* value = can_see_stored_value(mem,phase);
1867     if (value != NULL && value->is_Con()) {
1868       assert(value->bottom_type()->higher_equal(_type),"sanity");
1869       return value->bottom_type();
1870     }
1871   }
1872 
1873   if (is_instance) {
1874     // If we have an instance type and our memory input is the
1875     // programs's initial memory state, there is no matching store,
1876     // so just return a zero of the appropriate type
1877     Node *mem = in(MemNode::Memory);
1878     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1879       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1880       return Type::get_zero_type(_type->basic_type());
1881     }
1882   }
1883   return _type;
1884 }
1885 
1886 //------------------------------match_edge-------------------------------------
1887 // Do we Match on this edge index or not?  Match only the address.
1888 uint LoadNode::match_edge(uint idx) const {
1889   return idx == MemNode::Address;
1890 }
1891 
1892 //--------------------------LoadBNode::Ideal--------------------------------------
1893 //
1894 //  If the previous store is to the same address as this load,
1895 //  and the value stored was larger than a byte, replace this load
1896 //  with the value stored truncated to a byte.  If no truncation is
1897 //  needed, the replacement is done in LoadNode::Identity().
1898 //
1899 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1900   Node* mem = in(MemNode::Memory);
1901   Node* value = can_see_stored_value(mem,phase);
1902   if( value && !phase->type(value)->higher_equal( _type ) ) {
1903     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1904     return new RShiftINode(result, phase->intcon(24));
1905   }
1906   // Identity call will handle the case where truncation is not needed.
1907   return LoadNode::Ideal(phase, can_reshape);
1908 }
1909 
1910 const Type* LoadBNode::Value(PhaseTransform *phase) const {
1911   Node* mem = in(MemNode::Memory);
1912   Node* value = can_see_stored_value(mem,phase);
1913   if (value != NULL && value->is_Con() &&
1914       !value->bottom_type()->higher_equal(_type)) {
1915     // If the input to the store does not fit with the load's result type,
1916     // it must be truncated. We can't delay until Ideal call since
1917     // a singleton Value is needed for split_thru_phi optimization.
1918     int con = value->get_int();
1919     return TypeInt::make((con << 24) >> 24);
1920   }
1921   return LoadNode::Value(phase);
1922 }
1923 
1924 //--------------------------LoadUBNode::Ideal-------------------------------------
1925 //
1926 //  If the previous store is to the same address as this load,
1927 //  and the value stored was larger than a byte, replace this load
1928 //  with the value stored truncated to a byte.  If no truncation is
1929 //  needed, the replacement is done in LoadNode::Identity().
1930 //
1931 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1932   Node* mem = in(MemNode::Memory);
1933   Node* value = can_see_stored_value(mem, phase);
1934   if (value && !phase->type(value)->higher_equal(_type))
1935     return new AndINode(value, phase->intcon(0xFF));
1936   // Identity call will handle the case where truncation is not needed.
1937   return LoadNode::Ideal(phase, can_reshape);
1938 }
1939 
1940 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1941   Node* mem = in(MemNode::Memory);
1942   Node* value = can_see_stored_value(mem,phase);
1943   if (value != NULL && value->is_Con() &&
1944       !value->bottom_type()->higher_equal(_type)) {
1945     // If the input to the store does not fit with the load's result type,
1946     // it must be truncated. We can't delay until Ideal call since
1947     // a singleton Value is needed for split_thru_phi optimization.
1948     int con = value->get_int();
1949     return TypeInt::make(con & 0xFF);
1950   }
1951   return LoadNode::Value(phase);
1952 }
1953 
1954 //--------------------------LoadUSNode::Ideal-------------------------------------
1955 //
1956 //  If the previous store is to the same address as this load,
1957 //  and the value stored was larger than a char, replace this load
1958 //  with the value stored truncated to a char.  If no truncation is
1959 //  needed, the replacement is done in LoadNode::Identity().
1960 //
1961 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1962   Node* mem = in(MemNode::Memory);
1963   Node* value = can_see_stored_value(mem,phase);
1964   if( value && !phase->type(value)->higher_equal( _type ) )
1965     return new AndINode(value,phase->intcon(0xFFFF));
1966   // Identity call will handle the case where truncation is not needed.
1967   return LoadNode::Ideal(phase, can_reshape);
1968 }
1969 
1970 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1971   Node* mem = in(MemNode::Memory);
1972   Node* value = can_see_stored_value(mem,phase);
1973   if (value != NULL && value->is_Con() &&
1974       !value->bottom_type()->higher_equal(_type)) {
1975     // If the input to the store does not fit with the load's result type,
1976     // it must be truncated. We can't delay until Ideal call since
1977     // a singleton Value is needed for split_thru_phi optimization.
1978     int con = value->get_int();
1979     return TypeInt::make(con & 0xFFFF);
1980   }
1981   return LoadNode::Value(phase);
1982 }
1983 
1984 //--------------------------LoadSNode::Ideal--------------------------------------
1985 //
1986 //  If the previous store is to the same address as this load,
1987 //  and the value stored was larger than a short, replace this load
1988 //  with the value stored truncated to a short.  If no truncation is
1989 //  needed, the replacement is done in LoadNode::Identity().
1990 //
1991 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1992   Node* mem = in(MemNode::Memory);
1993   Node* value = can_see_stored_value(mem,phase);
1994   if( value && !phase->type(value)->higher_equal( _type ) ) {
1995     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
1996     return new RShiftINode(result, phase->intcon(16));
1997   }
1998   // Identity call will handle the case where truncation is not needed.
1999   return LoadNode::Ideal(phase, can_reshape);
2000 }
2001 
2002 const Type* LoadSNode::Value(PhaseTransform *phase) const {
2003   Node* mem = in(MemNode::Memory);
2004   Node* value = can_see_stored_value(mem,phase);
2005   if (value != NULL && value->is_Con() &&
2006       !value->bottom_type()->higher_equal(_type)) {
2007     // If the input to the store does not fit with the load's result type,
2008     // it must be truncated. We can't delay until Ideal call since
2009     // a singleton Value is needed for split_thru_phi optimization.
2010     int con = value->get_int();
2011     return TypeInt::make((con << 16) >> 16);
2012   }
2013   return LoadNode::Value(phase);
2014 }
2015 
2016 //=============================================================================
2017 //----------------------------LoadKlassNode::make------------------------------
2018 // Polymorphic factory method:
2019 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
2020   Compile* C = gvn.C;
2021   Node *ctl = NULL;
2022   // sanity check the alias category against the created node type
2023   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2024   assert(adr_type != NULL, "expecting TypeKlassPtr");
2025 #ifdef _LP64
2026   if (adr_type->is_ptr_to_narrowklass()) {
2027     assert(UseCompressedClassPointers, "no compressed klasses");
2028     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2029     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2030   }
2031 #endif
2032   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2033   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2034 }
2035 
2036 //------------------------------Value------------------------------------------
2037 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
2038   return klass_value_common(phase);
2039 }
2040 
2041 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
2042   // Either input is TOP ==> the result is TOP
2043   const Type *t1 = phase->type( in(MemNode::Memory) );
2044   if (t1 == Type::TOP)  return Type::TOP;
2045   Node *adr = in(MemNode::Address);
2046   const Type *t2 = phase->type( adr );
2047   if (t2 == Type::TOP)  return Type::TOP;
2048   const TypePtr *tp = t2->is_ptr();
2049   if (TypePtr::above_centerline(tp->ptr()) ||
2050       tp->ptr() == TypePtr::Null)  return Type::TOP;
2051 
2052   // Return a more precise klass, if possible
2053   const TypeInstPtr *tinst = tp->isa_instptr();
2054   if (tinst != NULL) {
2055     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2056     int offset = tinst->offset();
2057     if (ik == phase->C->env()->Class_klass()
2058         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2059             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2060       // We are loading a special hidden field from a Class mirror object,
2061       // the field which points to the VM's Klass metaobject.
2062       ciType* t = tinst->java_mirror_type();
2063       // java_mirror_type returns non-null for compile-time Class constants.
2064       if (t != NULL) {
2065         // constant oop => constant klass
2066         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2067           if (t->is_void()) {
2068             // We cannot create a void array.  Since void is a primitive type return null
2069             // klass.  Users of this result need to do a null check on the returned klass.
2070             return TypePtr::NULL_PTR;
2071           }
2072           return TypeKlassPtr::make(ciArrayKlass::make(t));
2073         }
2074         if (!t->is_klass()) {
2075           // a primitive Class (e.g., int.class) has NULL for a klass field
2076           return TypePtr::NULL_PTR;
2077         }
2078         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2079         return TypeKlassPtr::make(t->as_klass());
2080       }
2081       // non-constant mirror, so we can't tell what's going on
2082     }
2083     if( !ik->is_loaded() )
2084       return _type;             // Bail out if not loaded
2085     if (offset == oopDesc::klass_offset_in_bytes()) {
2086       if (tinst->klass_is_exact()) {
2087         return TypeKlassPtr::make(ik);
2088       }
2089       // See if we can become precise: no subklasses and no interface
2090       // (Note:  We need to support verified interfaces.)
2091       if (!ik->is_interface() && !ik->has_subklass()) {
2092         //assert(!UseExactTypes, "this code should be useless with exact types");
2093         // Add a dependence; if any subclass added we need to recompile
2094         if (!ik->is_final()) {
2095           // %%% should use stronger assert_unique_concrete_subtype instead
2096           phase->C->dependencies()->assert_leaf_type(ik);
2097         }
2098         // Return precise klass
2099         return TypeKlassPtr::make(ik);
2100       }
2101 
2102       // Return root of possible klass
2103       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2104     }
2105   }
2106 
2107   // Check for loading klass from an array
2108   const TypeAryPtr *tary = tp->isa_aryptr();
2109   if( tary != NULL ) {
2110     ciKlass *tary_klass = tary->klass();
2111     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2112         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2113       if (tary->klass_is_exact()) {
2114         return TypeKlassPtr::make(tary_klass);
2115       }
2116       ciArrayKlass *ak = tary->klass()->as_array_klass();
2117       // If the klass is an object array, we defer the question to the
2118       // array component klass.
2119       if( ak->is_obj_array_klass() ) {
2120         assert( ak->is_loaded(), "" );
2121         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2122         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2123           ciInstanceKlass* ik = base_k->as_instance_klass();
2124           // See if we can become precise: no subklasses and no interface
2125           if (!ik->is_interface() && !ik->has_subklass()) {
2126             //assert(!UseExactTypes, "this code should be useless with exact types");
2127             // Add a dependence; if any subclass added we need to recompile
2128             if (!ik->is_final()) {
2129               phase->C->dependencies()->assert_leaf_type(ik);
2130             }
2131             // Return precise array klass
2132             return TypeKlassPtr::make(ak);
2133           }
2134         }
2135         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2136       } else {                  // Found a type-array?
2137         //assert(!UseExactTypes, "this code should be useless with exact types");
2138         assert( ak->is_type_array_klass(), "" );
2139         return TypeKlassPtr::make(ak); // These are always precise
2140       }
2141     }
2142   }
2143 
2144   // Check for loading klass from an array klass
2145   const TypeKlassPtr *tkls = tp->isa_klassptr();
2146   if (tkls != NULL && !StressReflectiveCode) {
2147     ciKlass* klass = tkls->klass();
2148     if( !klass->is_loaded() )
2149       return _type;             // Bail out if not loaded
2150     if( klass->is_obj_array_klass() &&
2151         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2152       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2153       // // Always returning precise element type is incorrect,
2154       // // e.g., element type could be object and array may contain strings
2155       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2156 
2157       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2158       // according to the element type's subclassing.
2159       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2160     }
2161     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2162         tkls->offset() == in_bytes(Klass::super_offset())) {
2163       ciKlass* sup = klass->as_instance_klass()->super();
2164       // The field is Klass::_super.  Return its (constant) value.
2165       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2166       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2167     }
2168   }
2169 
2170   // Bailout case
2171   return LoadNode::Value(phase);
2172 }
2173 
2174 //------------------------------Identity---------------------------------------
2175 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2176 // Also feed through the klass in Allocate(...klass...)._klass.
2177 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2178   return klass_identity_common(phase);
2179 }
2180 
2181 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2182   Node* x = LoadNode::Identity(phase);
2183   if (x != this)  return x;
2184 
2185   // Take apart the address into an oop and and offset.
2186   // Return 'this' if we cannot.
2187   Node*    adr    = in(MemNode::Address);
2188   intptr_t offset = 0;
2189   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2190   if (base == NULL)     return this;
2191   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2192   if (toop == NULL)     return this;
2193 
2194   // We can fetch the klass directly through an AllocateNode.
2195   // This works even if the klass is not constant (clone or newArray).
2196   if (offset == oopDesc::klass_offset_in_bytes()) {
2197     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2198     if (allocated_klass != NULL) {
2199       return allocated_klass;
2200     }
2201   }
2202 
2203   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2204   // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
2205   // See inline_native_Class_query for occurrences of these patterns.
2206   // Java Example:  x.getClass().isAssignableFrom(y)
2207   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2208   //
2209   // This improves reflective code, often making the Class
2210   // mirror go completely dead.  (Current exception:  Class
2211   // mirrors may appear in debug info, but we could clean them out by
2212   // introducing a new debug info operator for Klass*.java_mirror).
2213   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2214       && (offset == java_lang_Class::klass_offset_in_bytes() ||
2215           offset == java_lang_Class::array_klass_offset_in_bytes())) {
2216     // We are loading a special hidden field from a Class mirror,
2217     // the field which points to its Klass or ArrayKlass metaobject.
2218     if (base->is_Load()) {
2219       Node* adr2 = base->in(MemNode::Address);
2220       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2221       if (tkls != NULL && !tkls->empty()
2222           && (tkls->klass()->is_instance_klass() ||
2223               tkls->klass()->is_array_klass())
2224           && adr2->is_AddP()
2225           ) {
2226         int mirror_field = in_bytes(Klass::java_mirror_offset());
2227         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2228           mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
2229         }
2230         if (tkls->offset() == mirror_field) {
2231           return adr2->in(AddPNode::Base);
2232         }
2233       }
2234     }
2235   }
2236 
2237   return this;
2238 }
2239 
2240 
2241 //------------------------------Value------------------------------------------
2242 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2243   const Type *t = klass_value_common(phase);
2244   if (t == Type::TOP)
2245     return t;
2246 
2247   return t->make_narrowklass();
2248 }
2249 
2250 //------------------------------Identity---------------------------------------
2251 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2252 // Also feed through the klass in Allocate(...klass...)._klass.
2253 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2254   Node *x = klass_identity_common(phase);
2255 
2256   const Type *t = phase->type( x );
2257   if( t == Type::TOP ) return x;
2258   if( t->isa_narrowklass()) return x;
2259   assert (!t->isa_narrowoop(), "no narrow oop here");
2260 
2261   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2262 }
2263 
2264 //------------------------------Value-----------------------------------------
2265 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2266   // Either input is TOP ==> the result is TOP
2267   const Type *t1 = phase->type( in(MemNode::Memory) );
2268   if( t1 == Type::TOP ) return Type::TOP;
2269   Node *adr = in(MemNode::Address);
2270   const Type *t2 = phase->type( adr );
2271   if( t2 == Type::TOP ) return Type::TOP;
2272   const TypePtr *tp = t2->is_ptr();
2273   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2274   const TypeAryPtr *tap = tp->isa_aryptr();
2275   if( !tap ) return _type;
2276   return tap->size();
2277 }
2278 
2279 //-------------------------------Ideal---------------------------------------
2280 // Feed through the length in AllocateArray(...length...)._length.
2281 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2282   Node* p = MemNode::Ideal_common(phase, can_reshape);
2283   if (p)  return (p == NodeSentinel) ? NULL : p;
2284 
2285   // Take apart the address into an oop and and offset.
2286   // Return 'this' if we cannot.
2287   Node*    adr    = in(MemNode::Address);
2288   intptr_t offset = 0;
2289   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2290   if (base == NULL)     return NULL;
2291   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2292   if (tary == NULL)     return NULL;
2293 
2294   // We can fetch the length directly through an AllocateArrayNode.
2295   // This works even if the length is not constant (clone or newArray).
2296   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2297     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2298     if (alloc != NULL) {
2299       Node* allocated_length = alloc->Ideal_length();
2300       Node* len = alloc->make_ideal_length(tary, phase);
2301       if (allocated_length != len) {
2302         // New CastII improves on this.
2303         return len;
2304       }
2305     }
2306   }
2307 
2308   return NULL;
2309 }
2310 
2311 //------------------------------Identity---------------------------------------
2312 // Feed through the length in AllocateArray(...length...)._length.
2313 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2314   Node* x = LoadINode::Identity(phase);
2315   if (x != this)  return x;
2316 
2317   // Take apart the address into an oop and and offset.
2318   // Return 'this' if we cannot.
2319   Node*    adr    = in(MemNode::Address);
2320   intptr_t offset = 0;
2321   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2322   if (base == NULL)     return this;
2323   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2324   if (tary == NULL)     return this;
2325 
2326   // We can fetch the length directly through an AllocateArrayNode.
2327   // This works even if the length is not constant (clone or newArray).
2328   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2329     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2330     if (alloc != NULL) {
2331       Node* allocated_length = alloc->Ideal_length();
2332       // Do not allow make_ideal_length to allocate a CastII node.
2333       Node* len = alloc->make_ideal_length(tary, phase, false);
2334       if (allocated_length == len) {
2335         // Return allocated_length only if it would not be improved by a CastII.
2336         return allocated_length;
2337       }
2338     }
2339   }
2340 
2341   return this;
2342 
2343 }
2344 
2345 //=============================================================================
2346 //---------------------------StoreNode::make-----------------------------------
2347 // Polymorphic factory method:
2348 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2349   assert((mo == unordered || mo == release), "unexpected");
2350   Compile* C = gvn.C;
2351   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2352          ctl != NULL, "raw memory operations should have control edge");
2353 
2354   switch (bt) {
2355   case T_BOOLEAN:
2356   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2357   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2358   case T_CHAR:
2359   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2360   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2361   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2362   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2363   case T_METADATA:
2364   case T_ADDRESS:
2365   case T_OBJECT:
2366 #ifdef _LP64
2367     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2368       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2369       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2370     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2371                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2372                 adr->bottom_type()->isa_rawptr())) {
2373       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2374       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2375     }
2376 #endif
2377     {
2378       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2379     }
2380   }
2381   ShouldNotReachHere();
2382   return (StoreNode*)NULL;
2383 }
2384 
2385 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2386   bool require_atomic = true;
2387   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2388 }
2389 
2390 StoreDNode* StoreDNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2391   bool require_atomic = true;
2392   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2393 }
2394 
2395 
2396 //--------------------------bottom_type----------------------------------------
2397 const Type *StoreNode::bottom_type() const {
2398   return Type::MEMORY;
2399 }
2400 
2401 //------------------------------hash-------------------------------------------
2402 uint StoreNode::hash() const {
2403   // unroll addition of interesting fields
2404   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2405 
2406   // Since they are not commoned, do not hash them:
2407   return NO_HASH;
2408 }
2409 
2410 //------------------------------Ideal------------------------------------------
2411 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2412 // When a store immediately follows a relevant allocation/initialization,
2413 // try to capture it into the initialization, or hoist it above.
2414 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2415   Node* p = MemNode::Ideal_common(phase, can_reshape);
2416   if (p)  return (p == NodeSentinel) ? NULL : p;
2417 
2418   Node* mem     = in(MemNode::Memory);
2419   Node* address = in(MemNode::Address);
2420 
2421   // Back-to-back stores to same address?  Fold em up.  Generally
2422   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2423   // since they must follow each StoreP operation.  Redundant StoreCMs
2424   // are eliminated just before matching in final_graph_reshape.
2425   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2426       mem->Opcode() != Op_StoreCM) {
2427     // Looking at a dead closed cycle of memory?
2428     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2429 
2430     assert(Opcode() == mem->Opcode() ||
2431            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2432            "no mismatched stores, except on raw memory");
2433 
2434     if (mem->outcnt() == 1 &&           // check for intervening uses
2435         mem->as_Store()->memory_size() <= this->memory_size()) {
2436       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2437       // For example, 'mem' might be the final state at a conditional return.
2438       // Or, 'mem' might be used by some node which is live at the same time
2439       // 'this' is live, which might be unschedulable.  So, require exactly
2440       // ONE user, the 'this' store, until such time as we clone 'mem' for
2441       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2442       if (can_reshape) {  // (%%% is this an anachronism?)
2443         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2444                   phase->is_IterGVN());
2445       } else {
2446         // It's OK to do this in the parser, since DU info is always accurate,
2447         // and the parser always refers to nodes via SafePointNode maps.
2448         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2449       }
2450       return this;
2451     }
2452   }
2453 
2454   // Capture an unaliased, unconditional, simple store into an initializer.
2455   // Or, if it is independent of the allocation, hoist it above the allocation.
2456   if (ReduceFieldZeroing && /*can_reshape &&*/
2457       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2458     InitializeNode* init = mem->in(0)->as_Initialize();
2459     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2460     if (offset > 0) {
2461       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2462       // If the InitializeNode captured me, it made a raw copy of me,
2463       // and I need to disappear.
2464       if (moved != NULL) {
2465         // %%% hack to ensure that Ideal returns a new node:
2466         mem = MergeMemNode::make(phase->C, mem);
2467         return mem;             // fold me away
2468       }
2469     }
2470   }
2471 
2472   return NULL;                  // No further progress
2473 }
2474 
2475 //------------------------------Value-----------------------------------------
2476 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2477   // Either input is TOP ==> the result is TOP
2478   const Type *t1 = phase->type( in(MemNode::Memory) );
2479   if( t1 == Type::TOP ) return Type::TOP;
2480   const Type *t2 = phase->type( in(MemNode::Address) );
2481   if( t2 == Type::TOP ) return Type::TOP;
2482   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2483   if( t3 == Type::TOP ) return Type::TOP;
2484   return Type::MEMORY;
2485 }
2486 
2487 //------------------------------Identity---------------------------------------
2488 // Remove redundant stores:
2489 //   Store(m, p, Load(m, p)) changes to m.
2490 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2491 Node *StoreNode::Identity( PhaseTransform *phase ) {
2492   Node* mem = in(MemNode::Memory);
2493   Node* adr = in(MemNode::Address);
2494   Node* val = in(MemNode::ValueIn);
2495 
2496   // Load then Store?  Then the Store is useless
2497   if (val->is_Load() &&
2498       val->in(MemNode::Address)->eqv_uncast(adr) &&
2499       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2500       val->as_Load()->store_Opcode() == Opcode()) {
2501     return mem;
2502   }
2503 
2504   // Two stores in a row of the same value?
2505   if (mem->is_Store() &&
2506       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2507       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2508       mem->Opcode() == Opcode()) {
2509     return mem;
2510   }
2511 
2512   // Store of zero anywhere into a freshly-allocated object?
2513   // Then the store is useless.
2514   // (It must already have been captured by the InitializeNode.)
2515   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2516     // a newly allocated object is already all-zeroes everywhere
2517     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2518       return mem;
2519     }
2520 
2521     // the store may also apply to zero-bits in an earlier object
2522     Node* prev_mem = find_previous_store(phase);
2523     // Steps (a), (b):  Walk past independent stores to find an exact match.
2524     if (prev_mem != NULL) {
2525       Node* prev_val = can_see_stored_value(prev_mem, phase);
2526       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2527         // prev_val and val might differ by a cast; it would be good
2528         // to keep the more informative of the two.
2529         return mem;
2530       }
2531     }
2532   }
2533 
2534   return this;
2535 }
2536 
2537 //------------------------------match_edge-------------------------------------
2538 // Do we Match on this edge index or not?  Match only memory & value
2539 uint StoreNode::match_edge(uint idx) const {
2540   return idx == MemNode::Address || idx == MemNode::ValueIn;
2541 }
2542 
2543 //------------------------------cmp--------------------------------------------
2544 // Do not common stores up together.  They generally have to be split
2545 // back up anyways, so do not bother.
2546 uint StoreNode::cmp( const Node &n ) const {
2547   return (&n == this);          // Always fail except on self
2548 }
2549 
2550 //------------------------------Ideal_masked_input-----------------------------
2551 // Check for a useless mask before a partial-word store
2552 // (StoreB ... (AndI valIn conIa) )
2553 // If (conIa & mask == mask) this simplifies to
2554 // (StoreB ... (valIn) )
2555 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2556   Node *val = in(MemNode::ValueIn);
2557   if( val->Opcode() == Op_AndI ) {
2558     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2559     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2560       set_req(MemNode::ValueIn, val->in(1));
2561       return this;
2562     }
2563   }
2564   return NULL;
2565 }
2566 
2567 
2568 //------------------------------Ideal_sign_extended_input----------------------
2569 // Check for useless sign-extension before a partial-word store
2570 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2571 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2572 // (StoreB ... (valIn) )
2573 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2574   Node *val = in(MemNode::ValueIn);
2575   if( val->Opcode() == Op_RShiftI ) {
2576     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2577     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2578       Node *shl = val->in(1);
2579       if( shl->Opcode() == Op_LShiftI ) {
2580         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2581         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2582           set_req(MemNode::ValueIn, shl->in(1));
2583           return this;
2584         }
2585       }
2586     }
2587   }
2588   return NULL;
2589 }
2590 
2591 //------------------------------value_never_loaded-----------------------------------
2592 // Determine whether there are any possible loads of the value stored.
2593 // For simplicity, we actually check if there are any loads from the
2594 // address stored to, not just for loads of the value stored by this node.
2595 //
2596 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2597   Node *adr = in(Address);
2598   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2599   if (adr_oop == NULL)
2600     return false;
2601   if (!adr_oop->is_known_instance_field())
2602     return false; // if not a distinct instance, there may be aliases of the address
2603   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2604     Node *use = adr->fast_out(i);
2605     int opc = use->Opcode();
2606     if (use->is_Load() || use->is_LoadStore()) {
2607       return false;
2608     }
2609   }
2610   return true;
2611 }
2612 
2613 //=============================================================================
2614 //------------------------------Ideal------------------------------------------
2615 // If the store is from an AND mask that leaves the low bits untouched, then
2616 // we can skip the AND operation.  If the store is from a sign-extension
2617 // (a left shift, then right shift) we can skip both.
2618 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2619   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2620   if( progress != NULL ) return progress;
2621 
2622   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2623   if( progress != NULL ) return progress;
2624 
2625   // Finally check the default case
2626   return StoreNode::Ideal(phase, can_reshape);
2627 }
2628 
2629 //=============================================================================
2630 //------------------------------Ideal------------------------------------------
2631 // If the store is from an AND mask that leaves the low bits untouched, then
2632 // we can skip the AND operation
2633 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2634   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2635   if( progress != NULL ) return progress;
2636 
2637   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2638   if( progress != NULL ) return progress;
2639 
2640   // Finally check the default case
2641   return StoreNode::Ideal(phase, can_reshape);
2642 }
2643 
2644 //=============================================================================
2645 //------------------------------Identity---------------------------------------
2646 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2647   // No need to card mark when storing a null ptr
2648   Node* my_store = in(MemNode::OopStore);
2649   if (my_store->is_Store()) {
2650     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2651     if( t1 == TypePtr::NULL_PTR ) {
2652       return in(MemNode::Memory);
2653     }
2654   }
2655   return this;
2656 }
2657 
2658 //=============================================================================
2659 //------------------------------Ideal---------------------------------------
2660 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2661   Node* progress = StoreNode::Ideal(phase, can_reshape);
2662   if (progress != NULL) return progress;
2663 
2664   Node* my_store = in(MemNode::OopStore);
2665   if (my_store->is_MergeMem()) {
2666     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2667     set_req(MemNode::OopStore, mem);
2668     return this;
2669   }
2670 
2671   return NULL;
2672 }
2673 
2674 //------------------------------Value-----------------------------------------
2675 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2676   // Either input is TOP ==> the result is TOP
2677   const Type *t = phase->type( in(MemNode::Memory) );
2678   if( t == Type::TOP ) return Type::TOP;
2679   t = phase->type( in(MemNode::Address) );
2680   if( t == Type::TOP ) return Type::TOP;
2681   t = phase->type( in(MemNode::ValueIn) );
2682   if( t == Type::TOP ) return Type::TOP;
2683   // If extra input is TOP ==> the result is TOP
2684   t = phase->type( in(MemNode::OopStore) );
2685   if( t == Type::TOP ) return Type::TOP;
2686 
2687   return StoreNode::Value( phase );
2688 }
2689 
2690 
2691 //=============================================================================
2692 //----------------------------------SCMemProjNode------------------------------
2693 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2694 {
2695   return bottom_type();
2696 }
2697 
2698 //=============================================================================
2699 //----------------------------------LoadStoreNode------------------------------
2700 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2701   : Node(required),
2702     _type(rt),
2703     _adr_type(at)
2704 {
2705   init_req(MemNode::Control, c  );
2706   init_req(MemNode::Memory , mem);
2707   init_req(MemNode::Address, adr);
2708   init_req(MemNode::ValueIn, val);
2709   init_class_id(Class_LoadStore);
2710 }
2711 
2712 uint LoadStoreNode::ideal_reg() const {
2713   return _type->ideal_reg();
2714 }
2715 
2716 bool LoadStoreNode::result_not_used() const {
2717   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2718     Node *x = fast_out(i);
2719     if (x->Opcode() == Op_SCMemProj) continue;
2720     return false;
2721   }
2722   return true;
2723 }
2724 
2725 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2726 
2727 //=============================================================================
2728 //----------------------------------LoadStoreConditionalNode--------------------
2729 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2730   init_req(ExpectedIn, ex );
2731 }
2732 
2733 //=============================================================================
2734 //-------------------------------adr_type--------------------------------------
2735 // Do we Match on this edge index or not?  Do not match memory
2736 const TypePtr* ClearArrayNode::adr_type() const {
2737   Node *adr = in(3);
2738   return MemNode::calculate_adr_type(adr->bottom_type());
2739 }
2740 
2741 //------------------------------match_edge-------------------------------------
2742 // Do we Match on this edge index or not?  Do not match memory
2743 uint ClearArrayNode::match_edge(uint idx) const {
2744   return idx > 1;
2745 }
2746 
2747 //------------------------------Identity---------------------------------------
2748 // Clearing a zero length array does nothing
2749 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2750   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2751 }
2752 
2753 //------------------------------Idealize---------------------------------------
2754 // Clearing a short array is faster with stores
2755 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2756   const int unit = BytesPerLong;
2757   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2758   if (!t)  return NULL;
2759   if (!t->is_con())  return NULL;
2760   intptr_t raw_count = t->get_con();
2761   intptr_t size = raw_count;
2762   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2763   // Clearing nothing uses the Identity call.
2764   // Negative clears are possible on dead ClearArrays
2765   // (see jck test stmt114.stmt11402.val).
2766   if (size <= 0 || size % unit != 0)  return NULL;
2767   intptr_t count = size / unit;
2768   // Length too long; use fast hardware clear
2769   if (size > Matcher::init_array_short_size)  return NULL;
2770   Node *mem = in(1);
2771   if( phase->type(mem)==Type::TOP ) return NULL;
2772   Node *adr = in(3);
2773   const Type* at = phase->type(adr);
2774   if( at==Type::TOP ) return NULL;
2775   const TypePtr* atp = at->isa_ptr();
2776   // adjust atp to be the correct array element address type
2777   if (atp == NULL)  atp = TypePtr::BOTTOM;
2778   else              atp = atp->add_offset(Type::OffsetBot);
2779   // Get base for derived pointer purposes
2780   if( adr->Opcode() != Op_AddP ) Unimplemented();
2781   Node *base = adr->in(1);
2782 
2783   Node *zero = phase->makecon(TypeLong::ZERO);
2784   Node *off  = phase->MakeConX(BytesPerLong);
2785   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2786   count--;
2787   while( count-- ) {
2788     mem = phase->transform(mem);
2789     adr = phase->transform(new AddPNode(base,adr,off));
2790     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2791   }
2792   return mem;
2793 }
2794 
2795 //----------------------------step_through----------------------------------
2796 // Return allocation input memory edge if it is different instance
2797 // or itself if it is the one we are looking for.
2798 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2799   Node* n = *np;
2800   assert(n->is_ClearArray(), "sanity");
2801   intptr_t offset;
2802   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2803   // This method is called only before Allocate nodes are expanded during
2804   // macro nodes expansion. Before that ClearArray nodes are only generated
2805   // in LibraryCallKit::generate_arraycopy() which follows allocations.
2806   assert(alloc != NULL, "should have allocation");
2807   if (alloc->_idx == instance_id) {
2808     // Can not bypass initialization of the instance we are looking for.
2809     return false;
2810   }
2811   // Otherwise skip it.
2812   InitializeNode* init = alloc->initialization();
2813   if (init != NULL)
2814     *np = init->in(TypeFunc::Memory);
2815   else
2816     *np = alloc->in(TypeFunc::Memory);
2817   return true;
2818 }
2819 
2820 //----------------------------clear_memory-------------------------------------
2821 // Generate code to initialize object storage to zero.
2822 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2823                                    intptr_t start_offset,
2824                                    Node* end_offset,
2825                                    PhaseGVN* phase) {
2826   Compile* C = phase->C;
2827   intptr_t offset = start_offset;
2828 
2829   int unit = BytesPerLong;
2830   if ((offset % unit) != 0) {
2831     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2832     adr = phase->transform(adr);
2833     const TypePtr* atp = TypeRawPtr::BOTTOM;
2834     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2835     mem = phase->transform(mem);
2836     offset += BytesPerInt;
2837   }
2838   assert((offset % unit) == 0, "");
2839 
2840   // Initialize the remaining stuff, if any, with a ClearArray.
2841   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2842 }
2843 
2844 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2845                                    Node* start_offset,
2846                                    Node* end_offset,
2847                                    PhaseGVN* phase) {
2848   if (start_offset == end_offset) {
2849     // nothing to do
2850     return mem;
2851   }
2852 
2853   Compile* C = phase->C;
2854   int unit = BytesPerLong;
2855   Node* zbase = start_offset;
2856   Node* zend  = end_offset;
2857 
2858   // Scale to the unit required by the CPU:
2859   if (!Matcher::init_array_count_is_in_bytes) {
2860     Node* shift = phase->intcon(exact_log2(unit));
2861     zbase = phase->transform(new URShiftXNode(zbase, shift) );
2862     zend  = phase->transform(new URShiftXNode(zend,  shift) );
2863   }
2864 
2865   // Bulk clear double-words
2866   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2867   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2868   mem = new ClearArrayNode(ctl, mem, zsize, adr);
2869   return phase->transform(mem);
2870 }
2871 
2872 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2873                                    intptr_t start_offset,
2874                                    intptr_t end_offset,
2875                                    PhaseGVN* phase) {
2876   if (start_offset == end_offset) {
2877     // nothing to do
2878     return mem;
2879   }
2880 
2881   Compile* C = phase->C;
2882   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2883   intptr_t done_offset = end_offset;
2884   if ((done_offset % BytesPerLong) != 0) {
2885     done_offset -= BytesPerInt;
2886   }
2887   if (done_offset > start_offset) {
2888     mem = clear_memory(ctl, mem, dest,
2889                        start_offset, phase->MakeConX(done_offset), phase);
2890   }
2891   if (done_offset < end_offset) { // emit the final 32-bit store
2892     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
2893     adr = phase->transform(adr);
2894     const TypePtr* atp = TypeRawPtr::BOTTOM;
2895     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2896     mem = phase->transform(mem);
2897     done_offset += BytesPerInt;
2898   }
2899   assert(done_offset == end_offset, "");
2900   return mem;
2901 }
2902 
2903 //=============================================================================
2904 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2905   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2906     _adr_type(C->get_adr_type(alias_idx))
2907 {
2908   init_class_id(Class_MemBar);
2909   Node* top = C->top();
2910   init_req(TypeFunc::I_O,top);
2911   init_req(TypeFunc::FramePtr,top);
2912   init_req(TypeFunc::ReturnAdr,top);
2913   if (precedent != NULL)
2914     init_req(TypeFunc::Parms, precedent);
2915 }
2916 
2917 //------------------------------cmp--------------------------------------------
2918 uint MemBarNode::hash() const { return NO_HASH; }
2919 uint MemBarNode::cmp( const Node &n ) const {
2920   return (&n == this);          // Always fail except on self
2921 }
2922 
2923 //------------------------------make-------------------------------------------
2924 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2925   switch (opcode) {
2926   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
2927   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
2928   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
2929   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
2930   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
2931   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
2932   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
2933   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
2934   case Op_Initialize:        return new InitializeNode(C, atp, pn);
2935   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
2936   default: ShouldNotReachHere(); return NULL;
2937   }
2938 }
2939 
2940 //------------------------------Ideal------------------------------------------
2941 // Return a node which is more "ideal" than the current node.  Strip out
2942 // control copies
2943 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2944   if (remove_dead_region(phase, can_reshape)) return this;
2945   // Don't bother trying to transform a dead node
2946   if (in(0) && in(0)->is_top()) {
2947     return NULL;
2948   }
2949 
2950   bool progress = false;
2951   // Eliminate volatile MemBars for scalar replaced objects.
2952   if (can_reshape && req() == (Precedent+1)) {
2953     bool eliminate = false;
2954     int opc = Opcode();
2955     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2956       // Volatile field loads and stores.
2957       Node* my_mem = in(MemBarNode::Precedent);
2958       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2959       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2960         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
2961         // replace this Precedent (decodeN) with the Load instead.
2962         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
2963           Node* load_node = my_mem->in(1);
2964           set_req(MemBarNode::Precedent, load_node);
2965           phase->is_IterGVN()->_worklist.push(my_mem);
2966           my_mem = load_node;
2967         } else {
2968           assert(my_mem->unique_out() == this, "sanity");
2969           del_req(Precedent);
2970           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
2971           my_mem = NULL;
2972         }
2973         progress = true;
2974       }
2975       if (my_mem != NULL && my_mem->is_Mem()) {
2976         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2977         // Check for scalar replaced object reference.
2978         if( t_oop != NULL && t_oop->is_known_instance_field() &&
2979             t_oop->offset() != Type::OffsetBot &&
2980             t_oop->offset() != Type::OffsetTop) {
2981           eliminate = true;
2982         }
2983       }
2984     } else if (opc == Op_MemBarRelease) {
2985       // Final field stores.
2986       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
2987       if ((alloc != NULL) && alloc->is_Allocate() &&
2988           alloc->as_Allocate()->_is_non_escaping) {
2989         // The allocated object does not escape.
2990         eliminate = true;
2991       }
2992     }
2993     if (eliminate) {
2994       // Replace MemBar projections by its inputs.
2995       PhaseIterGVN* igvn = phase->is_IterGVN();
2996       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2997       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2998       // Must return either the original node (now dead) or a new node
2999       // (Do not return a top here, since that would break the uniqueness of top.)
3000       return new ConINode(TypeInt::ZERO);
3001     }
3002   }
3003   return progress ? this : NULL;
3004 }
3005 
3006 //------------------------------Value------------------------------------------
3007 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
3008   if( !in(0) ) return Type::TOP;
3009   if( phase->type(in(0)) == Type::TOP )
3010     return Type::TOP;
3011   return TypeTuple::MEMBAR;
3012 }
3013 
3014 //------------------------------match------------------------------------------
3015 // Construct projections for memory.
3016 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3017   switch (proj->_con) {
3018   case TypeFunc::Control:
3019   case TypeFunc::Memory:
3020     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3021   }
3022   ShouldNotReachHere();
3023   return NULL;
3024 }
3025 
3026 //===========================InitializeNode====================================
3027 // SUMMARY:
3028 // This node acts as a memory barrier on raw memory, after some raw stores.
3029 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3030 // The Initialize can 'capture' suitably constrained stores as raw inits.
3031 // It can coalesce related raw stores into larger units (called 'tiles').
3032 // It can avoid zeroing new storage for memory units which have raw inits.
3033 // At macro-expansion, it is marked 'complete', and does not optimize further.
3034 //
3035 // EXAMPLE:
3036 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3037 //   ctl = incoming control; mem* = incoming memory
3038 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3039 // First allocate uninitialized memory and fill in the header:
3040 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3041 //   ctl := alloc.Control; mem* := alloc.Memory*
3042 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3043 // Then initialize to zero the non-header parts of the raw memory block:
3044 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3045 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3046 // After the initialize node executes, the object is ready for service:
3047 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3048 // Suppose its body is immediately initialized as {1,2}:
3049 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3050 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3051 //   mem.SLICE(#short[*]) := store2
3052 //
3053 // DETAILS:
3054 // An InitializeNode collects and isolates object initialization after
3055 // an AllocateNode and before the next possible safepoint.  As a
3056 // memory barrier (MemBarNode), it keeps critical stores from drifting
3057 // down past any safepoint or any publication of the allocation.
3058 // Before this barrier, a newly-allocated object may have uninitialized bits.
3059 // After this barrier, it may be treated as a real oop, and GC is allowed.
3060 //
3061 // The semantics of the InitializeNode include an implicit zeroing of
3062 // the new object from object header to the end of the object.
3063 // (The object header and end are determined by the AllocateNode.)
3064 //
3065 // Certain stores may be added as direct inputs to the InitializeNode.
3066 // These stores must update raw memory, and they must be to addresses
3067 // derived from the raw address produced by AllocateNode, and with
3068 // a constant offset.  They must be ordered by increasing offset.
3069 // The first one is at in(RawStores), the last at in(req()-1).
3070 // Unlike most memory operations, they are not linked in a chain,
3071 // but are displayed in parallel as users of the rawmem output of
3072 // the allocation.
3073 //
3074 // (See comments in InitializeNode::capture_store, which continue
3075 // the example given above.)
3076 //
3077 // When the associated Allocate is macro-expanded, the InitializeNode
3078 // may be rewritten to optimize collected stores.  A ClearArrayNode
3079 // may also be created at that point to represent any required zeroing.
3080 // The InitializeNode is then marked 'complete', prohibiting further
3081 // capturing of nearby memory operations.
3082 //
3083 // During macro-expansion, all captured initializations which store
3084 // constant values of 32 bits or smaller are coalesced (if advantageous)
3085 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3086 // initialized in fewer memory operations.  Memory words which are
3087 // covered by neither tiles nor non-constant stores are pre-zeroed
3088 // by explicit stores of zero.  (The code shape happens to do all
3089 // zeroing first, then all other stores, with both sequences occurring
3090 // in order of ascending offsets.)
3091 //
3092 // Alternatively, code may be inserted between an AllocateNode and its
3093 // InitializeNode, to perform arbitrary initialization of the new object.
3094 // E.g., the object copying intrinsics insert complex data transfers here.
3095 // The initialization must then be marked as 'complete' disable the
3096 // built-in zeroing semantics and the collection of initializing stores.
3097 //
3098 // While an InitializeNode is incomplete, reads from the memory state
3099 // produced by it are optimizable if they match the control edge and
3100 // new oop address associated with the allocation/initialization.
3101 // They return a stored value (if the offset matches) or else zero.
3102 // A write to the memory state, if it matches control and address,
3103 // and if it is to a constant offset, may be 'captured' by the
3104 // InitializeNode.  It is cloned as a raw memory operation and rewired
3105 // inside the initialization, to the raw oop produced by the allocation.
3106 // Operations on addresses which are provably distinct (e.g., to
3107 // other AllocateNodes) are allowed to bypass the initialization.
3108 //
3109 // The effect of all this is to consolidate object initialization
3110 // (both arrays and non-arrays, both piecewise and bulk) into a
3111 // single location, where it can be optimized as a unit.
3112 //
3113 // Only stores with an offset less than TrackedInitializationLimit words
3114 // will be considered for capture by an InitializeNode.  This puts a
3115 // reasonable limit on the complexity of optimized initializations.
3116 
3117 //---------------------------InitializeNode------------------------------------
3118 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3119   : _is_complete(Incomplete), _does_not_escape(false),
3120     MemBarNode(C, adr_type, rawoop)
3121 {
3122   init_class_id(Class_Initialize);
3123 
3124   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3125   assert(in(RawAddress) == rawoop, "proper init");
3126   // Note:  allocation() can be NULL, for secondary initialization barriers
3127 }
3128 
3129 // Since this node is not matched, it will be processed by the
3130 // register allocator.  Declare that there are no constraints
3131 // on the allocation of the RawAddress edge.
3132 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3133   // This edge should be set to top, by the set_complete.  But be conservative.
3134   if (idx == InitializeNode::RawAddress)
3135     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3136   return RegMask::Empty;
3137 }
3138 
3139 Node* InitializeNode::memory(uint alias_idx) {
3140   Node* mem = in(Memory);
3141   if (mem->is_MergeMem()) {
3142     return mem->as_MergeMem()->memory_at(alias_idx);
3143   } else {
3144     // incoming raw memory is not split
3145     return mem;
3146   }
3147 }
3148 
3149 bool InitializeNode::is_non_zero() {
3150   if (is_complete())  return false;
3151   remove_extra_zeroes();
3152   return (req() > RawStores);
3153 }
3154 
3155 void InitializeNode::set_complete(PhaseGVN* phase) {
3156   assert(!is_complete(), "caller responsibility");
3157   _is_complete = Complete;
3158 
3159   // After this node is complete, it contains a bunch of
3160   // raw-memory initializations.  There is no need for
3161   // it to have anything to do with non-raw memory effects.
3162   // Therefore, tell all non-raw users to re-optimize themselves,
3163   // after skipping the memory effects of this initialization.
3164   PhaseIterGVN* igvn = phase->is_IterGVN();
3165   if (igvn)  igvn->add_users_to_worklist(this);
3166 }
3167 
3168 // convenience function
3169 // return false if the init contains any stores already
3170 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3171   InitializeNode* init = initialization();
3172   if (init == NULL || init->is_complete())  return false;
3173   init->remove_extra_zeroes();
3174   // for now, if this allocation has already collected any inits, bail:
3175   if (init->is_non_zero())  return false;
3176   init->set_complete(phase);
3177   return true;
3178 }
3179 
3180 void InitializeNode::remove_extra_zeroes() {
3181   if (req() == RawStores)  return;
3182   Node* zmem = zero_memory();
3183   uint fill = RawStores;
3184   for (uint i = fill; i < req(); i++) {
3185     Node* n = in(i);
3186     if (n->is_top() || n == zmem)  continue;  // skip
3187     if (fill < i)  set_req(fill, n);          // compact
3188     ++fill;
3189   }
3190   // delete any empty spaces created:
3191   while (fill < req()) {
3192     del_req(fill);
3193   }
3194 }
3195 
3196 // Helper for remembering which stores go with which offsets.
3197 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3198   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3199   intptr_t offset = -1;
3200   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3201                                                phase, offset);
3202   if (base == NULL)     return -1;  // something is dead,
3203   if (offset < 0)       return -1;  //        dead, dead
3204   return offset;
3205 }
3206 
3207 // Helper for proving that an initialization expression is
3208 // "simple enough" to be folded into an object initialization.
3209 // Attempts to prove that a store's initial value 'n' can be captured
3210 // within the initialization without creating a vicious cycle, such as:
3211 //     { Foo p = new Foo(); p.next = p; }
3212 // True for constants and parameters and small combinations thereof.
3213 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3214   if (n == NULL)      return true;   // (can this really happen?)
3215   if (n->is_Proj())   n = n->in(0);
3216   if (n == this)      return false;  // found a cycle
3217   if (n->is_Con())    return true;
3218   if (n->is_Start())  return true;   // params, etc., are OK
3219   if (n->is_Root())   return true;   // even better
3220 
3221   Node* ctl = n->in(0);
3222   if (ctl != NULL && !ctl->is_top()) {
3223     if (ctl->is_Proj())  ctl = ctl->in(0);
3224     if (ctl == this)  return false;
3225 
3226     // If we already know that the enclosing memory op is pinned right after
3227     // the init, then any control flow that the store has picked up
3228     // must have preceded the init, or else be equal to the init.
3229     // Even after loop optimizations (which might change control edges)
3230     // a store is never pinned *before* the availability of its inputs.
3231     if (!MemNode::all_controls_dominate(n, this))
3232       return false;                  // failed to prove a good control
3233   }
3234 
3235   // Check data edges for possible dependencies on 'this'.
3236   if ((count += 1) > 20)  return false;  // complexity limit
3237   for (uint i = 1; i < n->req(); i++) {
3238     Node* m = n->in(i);
3239     if (m == NULL || m == n || m->is_top())  continue;
3240     uint first_i = n->find_edge(m);
3241     if (i != first_i)  continue;  // process duplicate edge just once
3242     if (!detect_init_independence(m, count)) {
3243       return false;
3244     }
3245   }
3246 
3247   return true;
3248 }
3249 
3250 // Here are all the checks a Store must pass before it can be moved into
3251 // an initialization.  Returns zero if a check fails.
3252 // On success, returns the (constant) offset to which the store applies,
3253 // within the initialized memory.
3254 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3255   const int FAIL = 0;
3256   if (st->req() != MemNode::ValueIn + 1)
3257     return FAIL;                // an inscrutable StoreNode (card mark?)
3258   Node* ctl = st->in(MemNode::Control);
3259   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3260     return FAIL;                // must be unconditional after the initialization
3261   Node* mem = st->in(MemNode::Memory);
3262   if (!(mem->is_Proj() && mem->in(0) == this))
3263     return FAIL;                // must not be preceded by other stores
3264   Node* adr = st->in(MemNode::Address);
3265   intptr_t offset;
3266   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3267   if (alloc == NULL)
3268     return FAIL;                // inscrutable address
3269   if (alloc != allocation())
3270     return FAIL;                // wrong allocation!  (store needs to float up)
3271   Node* val = st->in(MemNode::ValueIn);
3272   int complexity_count = 0;
3273   if (!detect_init_independence(val, complexity_count))
3274     return FAIL;                // stored value must be 'simple enough'
3275 
3276   // The Store can be captured only if nothing after the allocation
3277   // and before the Store is using the memory location that the store
3278   // overwrites.
3279   bool failed = false;
3280   // If is_complete_with_arraycopy() is true the shape of the graph is
3281   // well defined and is safe so no need for extra checks.
3282   if (!is_complete_with_arraycopy()) {
3283     // We are going to look at each use of the memory state following
3284     // the allocation to make sure nothing reads the memory that the
3285     // Store writes.
3286     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3287     int alias_idx = phase->C->get_alias_index(t_adr);
3288     ResourceMark rm;
3289     Unique_Node_List mems;
3290     mems.push(mem);
3291     Node* unique_merge = NULL;
3292     for (uint next = 0; next < mems.size(); ++next) {
3293       Node *m  = mems.at(next);
3294       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3295         Node *n = m->fast_out(j);
3296         if (n->outcnt() == 0) {
3297           continue;
3298         }
3299         if (n == st) {
3300           continue;
3301         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3302           // If the control of this use is different from the control
3303           // of the Store which is right after the InitializeNode then
3304           // this node cannot be between the InitializeNode and the
3305           // Store.
3306           continue;
3307         } else if (n->is_MergeMem()) {
3308           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3309             // We can hit a MergeMemNode (that will likely go away
3310             // later) that is a direct use of the memory state
3311             // following the InitializeNode on the same slice as the
3312             // store node that we'd like to capture. We need to check
3313             // the uses of the MergeMemNode.
3314             mems.push(n);
3315           }
3316         } else if (n->is_Mem()) {
3317           Node* other_adr = n->in(MemNode::Address);
3318           if (other_adr == adr) {
3319             failed = true;
3320             break;
3321           } else {
3322             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3323             if (other_t_adr != NULL) {
3324               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3325               if (other_alias_idx == alias_idx) {
3326                 // A load from the same memory slice as the store right
3327                 // after the InitializeNode. We check the control of the
3328                 // object/array that is loaded from. If it's the same as
3329                 // the store control then we cannot capture the store.
3330                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3331                 Node* base = other_adr;
3332                 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
3333                 base = base->in(AddPNode::Base);
3334                 if (base != NULL) {
3335                   base = base->uncast();
3336                   if (base->is_Proj() && base->in(0) == alloc) {
3337                     failed = true;
3338                     break;
3339                   }
3340                 }
3341               }
3342             }
3343           }
3344         } else {
3345           failed = true;
3346           break;
3347         }
3348       }
3349     }
3350   }
3351   if (failed) {
3352     if (!can_reshape) {
3353       // We decided we couldn't capture the store during parsing. We
3354       // should try again during the next IGVN once the graph is
3355       // cleaner.
3356       phase->C->record_for_igvn(st);
3357     }
3358     return FAIL;
3359   }
3360 
3361   return offset;                // success
3362 }
3363 
3364 // Find the captured store in(i) which corresponds to the range
3365 // [start..start+size) in the initialized object.
3366 // If there is one, return its index i.  If there isn't, return the
3367 // negative of the index where it should be inserted.
3368 // Return 0 if the queried range overlaps an initialization boundary
3369 // or if dead code is encountered.
3370 // If size_in_bytes is zero, do not bother with overlap checks.
3371 int InitializeNode::captured_store_insertion_point(intptr_t start,
3372                                                    int size_in_bytes,
3373                                                    PhaseTransform* phase) {
3374   const int FAIL = 0, MAX_STORE = BytesPerLong;
3375 
3376   if (is_complete())
3377     return FAIL;                // arraycopy got here first; punt
3378 
3379   assert(allocation() != NULL, "must be present");
3380 
3381   // no negatives, no header fields:
3382   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3383 
3384   // after a certain size, we bail out on tracking all the stores:
3385   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3386   if (start >= ti_limit)  return FAIL;
3387 
3388   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3389     if (i >= limit)  return -(int)i; // not found; here is where to put it
3390 
3391     Node*    st     = in(i);
3392     intptr_t st_off = get_store_offset(st, phase);
3393     if (st_off < 0) {
3394       if (st != zero_memory()) {
3395         return FAIL;            // bail out if there is dead garbage
3396       }
3397     } else if (st_off > start) {
3398       // ...we are done, since stores are ordered
3399       if (st_off < start + size_in_bytes) {
3400         return FAIL;            // the next store overlaps
3401       }
3402       return -(int)i;           // not found; here is where to put it
3403     } else if (st_off < start) {
3404       if (size_in_bytes != 0 &&
3405           start < st_off + MAX_STORE &&
3406           start < st_off + st->as_Store()->memory_size()) {
3407         return FAIL;            // the previous store overlaps
3408       }
3409     } else {
3410       if (size_in_bytes != 0 &&
3411           st->as_Store()->memory_size() != size_in_bytes) {
3412         return FAIL;            // mismatched store size
3413       }
3414       return i;
3415     }
3416 
3417     ++i;
3418   }
3419 }
3420 
3421 // Look for a captured store which initializes at the offset 'start'
3422 // with the given size.  If there is no such store, and no other
3423 // initialization interferes, then return zero_memory (the memory
3424 // projection of the AllocateNode).
3425 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3426                                           PhaseTransform* phase) {
3427   assert(stores_are_sane(phase), "");
3428   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3429   if (i == 0) {
3430     return NULL;                // something is dead
3431   } else if (i < 0) {
3432     return zero_memory();       // just primordial zero bits here
3433   } else {
3434     Node* st = in(i);           // here is the store at this position
3435     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3436     return st;
3437   }
3438 }
3439 
3440 // Create, as a raw pointer, an address within my new object at 'offset'.
3441 Node* InitializeNode::make_raw_address(intptr_t offset,
3442                                        PhaseTransform* phase) {
3443   Node* addr = in(RawAddress);
3444   if (offset != 0) {
3445     Compile* C = phase->C;
3446     addr = phase->transform( new AddPNode(C->top(), addr,
3447                                                  phase->MakeConX(offset)) );
3448   }
3449   return addr;
3450 }
3451 
3452 // Clone the given store, converting it into a raw store
3453 // initializing a field or element of my new object.
3454 // Caller is responsible for retiring the original store,
3455 // with subsume_node or the like.
3456 //
3457 // From the example above InitializeNode::InitializeNode,
3458 // here are the old stores to be captured:
3459 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3460 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3461 //
3462 // Here is the changed code; note the extra edges on init:
3463 //   alloc = (Allocate ...)
3464 //   rawoop = alloc.RawAddress
3465 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3466 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3467 //   init = (Initialize alloc.Control alloc.Memory rawoop
3468 //                      rawstore1 rawstore2)
3469 //
3470 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3471                                     PhaseTransform* phase, bool can_reshape) {
3472   assert(stores_are_sane(phase), "");
3473 
3474   if (start < 0)  return NULL;
3475   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3476 
3477   Compile* C = phase->C;
3478   int size_in_bytes = st->memory_size();
3479   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3480   if (i == 0)  return NULL;     // bail out
3481   Node* prev_mem = NULL;        // raw memory for the captured store
3482   if (i > 0) {
3483     prev_mem = in(i);           // there is a pre-existing store under this one
3484     set_req(i, C->top());       // temporarily disconnect it
3485     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3486   } else {
3487     i = -i;                     // no pre-existing store
3488     prev_mem = zero_memory();   // a slice of the newly allocated object
3489     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3490       set_req(--i, C->top());   // reuse this edge; it has been folded away
3491     else
3492       ins_req(i, C->top());     // build a new edge
3493   }
3494   Node* new_st = st->clone();
3495   new_st->set_req(MemNode::Control, in(Control));
3496   new_st->set_req(MemNode::Memory,  prev_mem);
3497   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3498   new_st = phase->transform(new_st);
3499 
3500   // At this point, new_st might have swallowed a pre-existing store
3501   // at the same offset, or perhaps new_st might have disappeared,
3502   // if it redundantly stored the same value (or zero to fresh memory).
3503 
3504   // In any case, wire it in:
3505   phase->igvn_rehash_node_delayed(this);
3506   set_req(i, new_st);
3507 
3508   // The caller may now kill the old guy.
3509   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3510   assert(check_st == new_st || check_st == NULL, "must be findable");
3511   assert(!is_complete(), "");
3512   return new_st;
3513 }
3514 
3515 static bool store_constant(jlong* tiles, int num_tiles,
3516                            intptr_t st_off, int st_size,
3517                            jlong con) {
3518   if ((st_off & (st_size-1)) != 0)
3519     return false;               // strange store offset (assume size==2**N)
3520   address addr = (address)tiles + st_off;
3521   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3522   switch (st_size) {
3523   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3524   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3525   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3526   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3527   default: return false;        // strange store size (detect size!=2**N here)
3528   }
3529   return true;                  // return success to caller
3530 }
3531 
3532 // Coalesce subword constants into int constants and possibly
3533 // into long constants.  The goal, if the CPU permits,
3534 // is to initialize the object with a small number of 64-bit tiles.
3535 // Also, convert floating-point constants to bit patterns.
3536 // Non-constants are not relevant to this pass.
3537 //
3538 // In terms of the running example on InitializeNode::InitializeNode
3539 // and InitializeNode::capture_store, here is the transformation
3540 // of rawstore1 and rawstore2 into rawstore12:
3541 //   alloc = (Allocate ...)
3542 //   rawoop = alloc.RawAddress
3543 //   tile12 = 0x00010002
3544 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3545 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3546 //
3547 void
3548 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3549                                         Node* size_in_bytes,
3550                                         PhaseGVN* phase) {
3551   Compile* C = phase->C;
3552 
3553   assert(stores_are_sane(phase), "");
3554   // Note:  After this pass, they are not completely sane,
3555   // since there may be some overlaps.
3556 
3557   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3558 
3559   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3560   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3561   size_limit = MIN2(size_limit, ti_limit);
3562   size_limit = align_size_up(size_limit, BytesPerLong);
3563   int num_tiles = size_limit / BytesPerLong;
3564 
3565   // allocate space for the tile map:
3566   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3567   jlong  tiles_buf[small_len];
3568   Node*  nodes_buf[small_len];
3569   jlong  inits_buf[small_len];
3570   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3571                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3572   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3573                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3574   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3575                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3576   // tiles: exact bitwise model of all primitive constants
3577   // nodes: last constant-storing node subsumed into the tiles model
3578   // inits: which bytes (in each tile) are touched by any initializations
3579 
3580   //// Pass A: Fill in the tile model with any relevant stores.
3581 
3582   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3583   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3584   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3585   Node* zmem = zero_memory(); // initially zero memory state
3586   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3587     Node* st = in(i);
3588     intptr_t st_off = get_store_offset(st, phase);
3589 
3590     // Figure out the store's offset and constant value:
3591     if (st_off < header_size)             continue; //skip (ignore header)
3592     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3593     int st_size = st->as_Store()->memory_size();
3594     if (st_off + st_size > size_limit)    break;
3595 
3596     // Record which bytes are touched, whether by constant or not.
3597     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3598       continue;                 // skip (strange store size)
3599 
3600     const Type* val = phase->type(st->in(MemNode::ValueIn));
3601     if (!val->singleton())                continue; //skip (non-con store)
3602     BasicType type = val->basic_type();
3603 
3604     jlong con = 0;
3605     switch (type) {
3606     case T_INT:    con = val->is_int()->get_con();  break;
3607     case T_LONG:   con = val->is_long()->get_con(); break;
3608     case T_FLOAT:  con = jint_cast(val->getf());    break;
3609     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3610     default:                              continue; //skip (odd store type)
3611     }
3612 
3613     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3614         st->Opcode() == Op_StoreL) {
3615       continue;                 // This StoreL is already optimal.
3616     }
3617 
3618     // Store down the constant.
3619     store_constant(tiles, num_tiles, st_off, st_size, con);
3620 
3621     intptr_t j = st_off >> LogBytesPerLong;
3622 
3623     if (type == T_INT && st_size == BytesPerInt
3624         && (st_off & BytesPerInt) == BytesPerInt) {
3625       jlong lcon = tiles[j];
3626       if (!Matcher::isSimpleConstant64(lcon) &&
3627           st->Opcode() == Op_StoreI) {
3628         // This StoreI is already optimal by itself.
3629         jint* intcon = (jint*) &tiles[j];
3630         intcon[1] = 0;  // undo the store_constant()
3631 
3632         // If the previous store is also optimal by itself, back up and
3633         // undo the action of the previous loop iteration... if we can.
3634         // But if we can't, just let the previous half take care of itself.
3635         st = nodes[j];
3636         st_off -= BytesPerInt;
3637         con = intcon[0];
3638         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3639           assert(st_off >= header_size, "still ignoring header");
3640           assert(get_store_offset(st, phase) == st_off, "must be");
3641           assert(in(i-1) == zmem, "must be");
3642           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3643           assert(con == tcon->is_int()->get_con(), "must be");
3644           // Undo the effects of the previous loop trip, which swallowed st:
3645           intcon[0] = 0;        // undo store_constant()
3646           set_req(i-1, st);     // undo set_req(i, zmem)
3647           nodes[j] = NULL;      // undo nodes[j] = st
3648           --old_subword;        // undo ++old_subword
3649         }
3650         continue;               // This StoreI is already optimal.
3651       }
3652     }
3653 
3654     // This store is not needed.
3655     set_req(i, zmem);
3656     nodes[j] = st;              // record for the moment
3657     if (st_size < BytesPerLong) // something has changed
3658           ++old_subword;        // includes int/float, but who's counting...
3659     else  ++old_long;
3660   }
3661 
3662   if ((old_subword + old_long) == 0)
3663     return;                     // nothing more to do
3664 
3665   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3666   // Be sure to insert them before overlapping non-constant stores.
3667   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3668   for (int j = 0; j < num_tiles; j++) {
3669     jlong con  = tiles[j];
3670     jlong init = inits[j];
3671     if (con == 0)  continue;
3672     jint con0,  con1;           // split the constant, address-wise
3673     jint init0, init1;          // split the init map, address-wise
3674     { union { jlong con; jint intcon[2]; } u;
3675       u.con = con;
3676       con0  = u.intcon[0];
3677       con1  = u.intcon[1];
3678       u.con = init;
3679       init0 = u.intcon[0];
3680       init1 = u.intcon[1];
3681     }
3682 
3683     Node* old = nodes[j];
3684     assert(old != NULL, "need the prior store");
3685     intptr_t offset = (j * BytesPerLong);
3686 
3687     bool split = !Matcher::isSimpleConstant64(con);
3688 
3689     if (offset < header_size) {
3690       assert(offset + BytesPerInt >= header_size, "second int counts");
3691       assert(*(jint*)&tiles[j] == 0, "junk in header");
3692       split = true;             // only the second word counts
3693       // Example:  int a[] = { 42 ... }
3694     } else if (con0 == 0 && init0 == -1) {
3695       split = true;             // first word is covered by full inits
3696       // Example:  int a[] = { ... foo(), 42 ... }
3697     } else if (con1 == 0 && init1 == -1) {
3698       split = true;             // second word is covered by full inits
3699       // Example:  int a[] = { ... 42, foo() ... }
3700     }
3701 
3702     // Here's a case where init0 is neither 0 nor -1:
3703     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3704     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3705     // In this case the tile is not split; it is (jlong)42.
3706     // The big tile is stored down, and then the foo() value is inserted.
3707     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3708 
3709     Node* ctl = old->in(MemNode::Control);
3710     Node* adr = make_raw_address(offset, phase);
3711     const TypePtr* atp = TypeRawPtr::BOTTOM;
3712 
3713     // One or two coalesced stores to plop down.
3714     Node*    st[2];
3715     intptr_t off[2];
3716     int  nst = 0;
3717     if (!split) {
3718       ++new_long;
3719       off[nst] = offset;
3720       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3721                                   phase->longcon(con), T_LONG, MemNode::unordered);
3722     } else {
3723       // Omit either if it is a zero.
3724       if (con0 != 0) {
3725         ++new_int;
3726         off[nst]  = offset;
3727         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3728                                     phase->intcon(con0), T_INT, MemNode::unordered);
3729       }
3730       if (con1 != 0) {
3731         ++new_int;
3732         offset += BytesPerInt;
3733         adr = make_raw_address(offset, phase);
3734         off[nst]  = offset;
3735         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3736                                     phase->intcon(con1), T_INT, MemNode::unordered);
3737       }
3738     }
3739 
3740     // Insert second store first, then the first before the second.
3741     // Insert each one just before any overlapping non-constant stores.
3742     while (nst > 0) {
3743       Node* st1 = st[--nst];
3744       C->copy_node_notes_to(st1, old);
3745       st1 = phase->transform(st1);
3746       offset = off[nst];
3747       assert(offset >= header_size, "do not smash header");
3748       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3749       guarantee(ins_idx != 0, "must re-insert constant store");
3750       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3751       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3752         set_req(--ins_idx, st1);
3753       else
3754         ins_req(ins_idx, st1);
3755     }
3756   }
3757 
3758   if (PrintCompilation && WizardMode)
3759     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3760                   old_subword, old_long, new_int, new_long);
3761   if (C->log() != NULL)
3762     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3763                    old_subword, old_long, new_int, new_long);
3764 
3765   // Clean up any remaining occurrences of zmem:
3766   remove_extra_zeroes();
3767 }
3768 
3769 // Explore forward from in(start) to find the first fully initialized
3770 // word, and return its offset.  Skip groups of subword stores which
3771 // together initialize full words.  If in(start) is itself part of a
3772 // fully initialized word, return the offset of in(start).  If there
3773 // are no following full-word stores, or if something is fishy, return
3774 // a negative value.
3775 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3776   int       int_map = 0;
3777   intptr_t  int_map_off = 0;
3778   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3779 
3780   for (uint i = start, limit = req(); i < limit; i++) {
3781     Node* st = in(i);
3782 
3783     intptr_t st_off = get_store_offset(st, phase);
3784     if (st_off < 0)  break;  // return conservative answer
3785 
3786     int st_size = st->as_Store()->memory_size();
3787     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3788       return st_off;            // we found a complete word init
3789     }
3790 
3791     // update the map:
3792 
3793     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3794     if (this_int_off != int_map_off) {
3795       // reset the map:
3796       int_map = 0;
3797       int_map_off = this_int_off;
3798     }
3799 
3800     int subword_off = st_off - this_int_off;
3801     int_map |= right_n_bits(st_size) << subword_off;
3802     if ((int_map & FULL_MAP) == FULL_MAP) {
3803       return this_int_off;      // we found a complete word init
3804     }
3805 
3806     // Did this store hit or cross the word boundary?
3807     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3808     if (next_int_off == this_int_off + BytesPerInt) {
3809       // We passed the current int, without fully initializing it.
3810       int_map_off = next_int_off;
3811       int_map >>= BytesPerInt;
3812     } else if (next_int_off > this_int_off + BytesPerInt) {
3813       // We passed the current and next int.
3814       return this_int_off + BytesPerInt;
3815     }
3816   }
3817 
3818   return -1;
3819 }
3820 
3821 
3822 // Called when the associated AllocateNode is expanded into CFG.
3823 // At this point, we may perform additional optimizations.
3824 // Linearize the stores by ascending offset, to make memory
3825 // activity as coherent as possible.
3826 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3827                                       intptr_t header_size,
3828                                       Node* size_in_bytes,
3829                                       PhaseGVN* phase) {
3830   assert(!is_complete(), "not already complete");
3831   assert(stores_are_sane(phase), "");
3832   assert(allocation() != NULL, "must be present");
3833 
3834   remove_extra_zeroes();
3835 
3836   if (ReduceFieldZeroing || ReduceBulkZeroing)
3837     // reduce instruction count for common initialization patterns
3838     coalesce_subword_stores(header_size, size_in_bytes, phase);
3839 
3840   Node* zmem = zero_memory();   // initially zero memory state
3841   Node* inits = zmem;           // accumulating a linearized chain of inits
3842   #ifdef ASSERT
3843   intptr_t first_offset = allocation()->minimum_header_size();
3844   intptr_t last_init_off = first_offset;  // previous init offset
3845   intptr_t last_init_end = first_offset;  // previous init offset+size
3846   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3847   #endif
3848   intptr_t zeroes_done = header_size;
3849 
3850   bool do_zeroing = true;       // we might give up if inits are very sparse
3851   int  big_init_gaps = 0;       // how many large gaps have we seen?
3852 
3853   if (ZeroTLAB)  do_zeroing = false;
3854   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3855 
3856   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3857     Node* st = in(i);
3858     intptr_t st_off = get_store_offset(st, phase);
3859     if (st_off < 0)
3860       break;                    // unknown junk in the inits
3861     if (st->in(MemNode::Memory) != zmem)
3862       break;                    // complicated store chains somehow in list
3863 
3864     int st_size = st->as_Store()->memory_size();
3865     intptr_t next_init_off = st_off + st_size;
3866 
3867     if (do_zeroing && zeroes_done < next_init_off) {
3868       // See if this store needs a zero before it or under it.
3869       intptr_t zeroes_needed = st_off;
3870 
3871       if (st_size < BytesPerInt) {
3872         // Look for subword stores which only partially initialize words.
3873         // If we find some, we must lay down some word-level zeroes first,
3874         // underneath the subword stores.
3875         //
3876         // Examples:
3877         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3878         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3879         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3880         //
3881         // Note:  coalesce_subword_stores may have already done this,
3882         // if it was prompted by constant non-zero subword initializers.
3883         // But this case can still arise with non-constant stores.
3884 
3885         intptr_t next_full_store = find_next_fullword_store(i, phase);
3886 
3887         // In the examples above:
3888         //   in(i)          p   q   r   s     x   y     z
3889         //   st_off        12  13  14  15    12  13    14
3890         //   st_size        1   1   1   1     1   1     1
3891         //   next_full_s.  12  16  16  16    16  16    16
3892         //   z's_done      12  16  16  16    12  16    12
3893         //   z's_needed    12  16  16  16    16  16    16
3894         //   zsize          0   0   0   0     4   0     4
3895         if (next_full_store < 0) {
3896           // Conservative tack:  Zero to end of current word.
3897           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3898         } else {
3899           // Zero to beginning of next fully initialized word.
3900           // Or, don't zero at all, if we are already in that word.
3901           assert(next_full_store >= zeroes_needed, "must go forward");
3902           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3903           zeroes_needed = next_full_store;
3904         }
3905       }
3906 
3907       if (zeroes_needed > zeroes_done) {
3908         intptr_t zsize = zeroes_needed - zeroes_done;
3909         // Do some incremental zeroing on rawmem, in parallel with inits.
3910         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3911         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3912                                               zeroes_done, zeroes_needed,
3913                                               phase);
3914         zeroes_done = zeroes_needed;
3915         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3916           do_zeroing = false;   // leave the hole, next time
3917       }
3918     }
3919 
3920     // Collect the store and move on:
3921     st->set_req(MemNode::Memory, inits);
3922     inits = st;                 // put it on the linearized chain
3923     set_req(i, zmem);           // unhook from previous position
3924 
3925     if (zeroes_done == st_off)
3926       zeroes_done = next_init_off;
3927 
3928     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3929 
3930     #ifdef ASSERT
3931     // Various order invariants.  Weaker than stores_are_sane because
3932     // a large constant tile can be filled in by smaller non-constant stores.
3933     assert(st_off >= last_init_off, "inits do not reverse");
3934     last_init_off = st_off;
3935     const Type* val = NULL;
3936     if (st_size >= BytesPerInt &&
3937         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3938         (int)val->basic_type() < (int)T_OBJECT) {
3939       assert(st_off >= last_tile_end, "tiles do not overlap");
3940       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3941       last_tile_end = MAX2(last_tile_end, next_init_off);
3942     } else {
3943       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3944       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3945       assert(st_off      >= last_init_end, "inits do not overlap");
3946       last_init_end = next_init_off;  // it's a non-tile
3947     }
3948     #endif //ASSERT
3949   }
3950 
3951   remove_extra_zeroes();        // clear out all the zmems left over
3952   add_req(inits);
3953 
3954   if (!ZeroTLAB) {
3955     // If anything remains to be zeroed, zero it all now.
3956     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3957     // if it is the last unused 4 bytes of an instance, forget about it
3958     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3959     if (zeroes_done + BytesPerLong >= size_limit) {
3960       assert(allocation() != NULL, "");
3961       if (allocation()->Opcode() == Op_Allocate) {
3962         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3963         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3964         if (zeroes_done == k->layout_helper())
3965           zeroes_done = size_limit;
3966       }
3967     }
3968     if (zeroes_done < size_limit) {
3969       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3970                                             zeroes_done, size_in_bytes, phase);
3971     }
3972   }
3973 
3974   set_complete(phase);
3975   return rawmem;
3976 }
3977 
3978 
3979 #ifdef ASSERT
3980 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3981   if (is_complete())
3982     return true;                // stores could be anything at this point
3983   assert(allocation() != NULL, "must be present");
3984   intptr_t last_off = allocation()->minimum_header_size();
3985   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3986     Node* st = in(i);
3987     intptr_t st_off = get_store_offset(st, phase);
3988     if (st_off < 0)  continue;  // ignore dead garbage
3989     if (last_off > st_off) {
3990       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
3991       this->dump(2);
3992       assert(false, "ascending store offsets");
3993       return false;
3994     }
3995     last_off = st_off + st->as_Store()->memory_size();
3996   }
3997   return true;
3998 }
3999 #endif //ASSERT
4000 
4001 
4002 
4003 
4004 //============================MergeMemNode=====================================
4005 //
4006 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4007 // contributing store or call operations.  Each contributor provides the memory
4008 // state for a particular "alias type" (see Compile::alias_type).  For example,
4009 // if a MergeMem has an input X for alias category #6, then any memory reference
4010 // to alias category #6 may use X as its memory state input, as an exact equivalent
4011 // to using the MergeMem as a whole.
4012 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4013 //
4014 // (Here, the <N> notation gives the index of the relevant adr_type.)
4015 //
4016 // In one special case (and more cases in the future), alias categories overlap.
4017 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4018 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4019 // it is exactly equivalent to that state W:
4020 //   MergeMem(<Bot>: W) <==> W
4021 //
4022 // Usually, the merge has more than one input.  In that case, where inputs
4023 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4024 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4025 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4026 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4027 //
4028 // A merge can take a "wide" memory state as one of its narrow inputs.
4029 // This simply means that the merge observes out only the relevant parts of
4030 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4031 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4032 //
4033 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4034 // and that memory slices "leak through":
4035 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4036 //
4037 // But, in such a cascade, repeated memory slices can "block the leak":
4038 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4039 //
4040 // In the last example, Y is not part of the combined memory state of the
4041 // outermost MergeMem.  The system must, of course, prevent unschedulable
4042 // memory states from arising, so you can be sure that the state Y is somehow
4043 // a precursor to state Y'.
4044 //
4045 //
4046 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4047 // of each MergeMemNode array are exactly the numerical alias indexes, including
4048 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4049 // Compile::alias_type (and kin) produce and manage these indexes.
4050 //
4051 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4052 // (Note that this provides quick access to the top node inside MergeMem methods,
4053 // without the need to reach out via TLS to Compile::current.)
4054 //
4055 // As a consequence of what was just described, a MergeMem that represents a full
4056 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4057 // containing all alias categories.
4058 //
4059 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4060 //
4061 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4062 // a memory state for the alias type <N>, or else the top node, meaning that
4063 // there is no particular input for that alias type.  Note that the length of
4064 // a MergeMem is variable, and may be extended at any time to accommodate new
4065 // memory states at larger alias indexes.  When merges grow, they are of course
4066 // filled with "top" in the unused in() positions.
4067 //
4068 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4069 // (Top was chosen because it works smoothly with passes like GCM.)
4070 //
4071 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4072 // the type of random VM bits like TLS references.)  Since it is always the
4073 // first non-Bot memory slice, some low-level loops use it to initialize an
4074 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4075 //
4076 //
4077 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4078 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4079 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4080 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4081 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4082 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4083 //
4084 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4085 // really that different from the other memory inputs.  An abbreviation called
4086 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4087 //
4088 //
4089 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4090 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4091 // that "emerges though" the base memory will be marked as excluding the alias types
4092 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4093 //
4094 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4095 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4096 //
4097 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4098 // (It is currently unimplemented.)  As you can see, the resulting merge is
4099 // actually a disjoint union of memory states, rather than an overlay.
4100 //
4101 
4102 //------------------------------MergeMemNode-----------------------------------
4103 Node* MergeMemNode::make_empty_memory() {
4104   Node* empty_memory = (Node*) Compile::current()->top();
4105   assert(empty_memory->is_top(), "correct sentinel identity");
4106   return empty_memory;
4107 }
4108 
4109 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4110   init_class_id(Class_MergeMem);
4111   // all inputs are nullified in Node::Node(int)
4112   // set_input(0, NULL);  // no control input
4113 
4114   // Initialize the edges uniformly to top, for starters.
4115   Node* empty_mem = make_empty_memory();
4116   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4117     init_req(i,empty_mem);
4118   }
4119   assert(empty_memory() == empty_mem, "");
4120 
4121   if( new_base != NULL && new_base->is_MergeMem() ) {
4122     MergeMemNode* mdef = new_base->as_MergeMem();
4123     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4124     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4125       mms.set_memory(mms.memory2());
4126     }
4127     assert(base_memory() == mdef->base_memory(), "");
4128   } else {
4129     set_base_memory(new_base);
4130   }
4131 }
4132 
4133 // Make a new, untransformed MergeMem with the same base as 'mem'.
4134 // If mem is itself a MergeMem, populate the result with the same edges.
4135 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
4136   return new MergeMemNode(mem);
4137 }
4138 
4139 //------------------------------cmp--------------------------------------------
4140 uint MergeMemNode::hash() const { return NO_HASH; }
4141 uint MergeMemNode::cmp( const Node &n ) const {
4142   return (&n == this);          // Always fail except on self
4143 }
4144 
4145 //------------------------------Identity---------------------------------------
4146 Node* MergeMemNode::Identity(PhaseTransform *phase) {
4147   // Identity if this merge point does not record any interesting memory
4148   // disambiguations.
4149   Node* base_mem = base_memory();
4150   Node* empty_mem = empty_memory();
4151   if (base_mem != empty_mem) {  // Memory path is not dead?
4152     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4153       Node* mem = in(i);
4154       if (mem != empty_mem && mem != base_mem) {
4155         return this;            // Many memory splits; no change
4156       }
4157     }
4158   }
4159   return base_mem;              // No memory splits; ID on the one true input
4160 }
4161 
4162 //------------------------------Ideal------------------------------------------
4163 // This method is invoked recursively on chains of MergeMem nodes
4164 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4165   // Remove chain'd MergeMems
4166   //
4167   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4168   // relative to the "in(Bot)".  Since we are patching both at the same time,
4169   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4170   // but rewrite each "in(i)" relative to the new "in(Bot)".
4171   Node *progress = NULL;
4172 
4173 
4174   Node* old_base = base_memory();
4175   Node* empty_mem = empty_memory();
4176   if (old_base == empty_mem)
4177     return NULL; // Dead memory path.
4178 
4179   MergeMemNode* old_mbase;
4180   if (old_base != NULL && old_base->is_MergeMem())
4181     old_mbase = old_base->as_MergeMem();
4182   else
4183     old_mbase = NULL;
4184   Node* new_base = old_base;
4185 
4186   // simplify stacked MergeMems in base memory
4187   if (old_mbase)  new_base = old_mbase->base_memory();
4188 
4189   // the base memory might contribute new slices beyond my req()
4190   if (old_mbase)  grow_to_match(old_mbase);
4191 
4192   // Look carefully at the base node if it is a phi.
4193   PhiNode* phi_base;
4194   if (new_base != NULL && new_base->is_Phi())
4195     phi_base = new_base->as_Phi();
4196   else
4197     phi_base = NULL;
4198 
4199   Node*    phi_reg = NULL;
4200   uint     phi_len = (uint)-1;
4201   if (phi_base != NULL && !phi_base->is_copy()) {
4202     // do not examine phi if degraded to a copy
4203     phi_reg = phi_base->region();
4204     phi_len = phi_base->req();
4205     // see if the phi is unfinished
4206     for (uint i = 1; i < phi_len; i++) {
4207       if (phi_base->in(i) == NULL) {
4208         // incomplete phi; do not look at it yet!
4209         phi_reg = NULL;
4210         phi_len = (uint)-1;
4211         break;
4212       }
4213     }
4214   }
4215 
4216   // Note:  We do not call verify_sparse on entry, because inputs
4217   // can normalize to the base_memory via subsume_node or similar
4218   // mechanisms.  This method repairs that damage.
4219 
4220   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4221 
4222   // Look at each slice.
4223   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4224     Node* old_in = in(i);
4225     // calculate the old memory value
4226     Node* old_mem = old_in;
4227     if (old_mem == empty_mem)  old_mem = old_base;
4228     assert(old_mem == memory_at(i), "");
4229 
4230     // maybe update (reslice) the old memory value
4231 
4232     // simplify stacked MergeMems
4233     Node* new_mem = old_mem;
4234     MergeMemNode* old_mmem;
4235     if (old_mem != NULL && old_mem->is_MergeMem())
4236       old_mmem = old_mem->as_MergeMem();
4237     else
4238       old_mmem = NULL;
4239     if (old_mmem == this) {
4240       // This can happen if loops break up and safepoints disappear.
4241       // A merge of BotPtr (default) with a RawPtr memory derived from a
4242       // safepoint can be rewritten to a merge of the same BotPtr with
4243       // the BotPtr phi coming into the loop.  If that phi disappears
4244       // also, we can end up with a self-loop of the mergemem.
4245       // In general, if loops degenerate and memory effects disappear,
4246       // a mergemem can be left looking at itself.  This simply means
4247       // that the mergemem's default should be used, since there is
4248       // no longer any apparent effect on this slice.
4249       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4250       //       from start.  Update the input to TOP.
4251       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4252     }
4253     else if (old_mmem != NULL) {
4254       new_mem = old_mmem->memory_at(i);
4255     }
4256     // else preceding memory was not a MergeMem
4257 
4258     // replace equivalent phis (unfortunately, they do not GVN together)
4259     if (new_mem != NULL && new_mem != new_base &&
4260         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4261       if (new_mem->is_Phi()) {
4262         PhiNode* phi_mem = new_mem->as_Phi();
4263         for (uint i = 1; i < phi_len; i++) {
4264           if (phi_base->in(i) != phi_mem->in(i)) {
4265             phi_mem = NULL;
4266             break;
4267           }
4268         }
4269         if (phi_mem != NULL) {
4270           // equivalent phi nodes; revert to the def
4271           new_mem = new_base;
4272         }
4273       }
4274     }
4275 
4276     // maybe store down a new value
4277     Node* new_in = new_mem;
4278     if (new_in == new_base)  new_in = empty_mem;
4279 
4280     if (new_in != old_in) {
4281       // Warning:  Do not combine this "if" with the previous "if"
4282       // A memory slice might have be be rewritten even if it is semantically
4283       // unchanged, if the base_memory value has changed.
4284       set_req(i, new_in);
4285       progress = this;          // Report progress
4286     }
4287   }
4288 
4289   if (new_base != old_base) {
4290     set_req(Compile::AliasIdxBot, new_base);
4291     // Don't use set_base_memory(new_base), because we need to update du.
4292     assert(base_memory() == new_base, "");
4293     progress = this;
4294   }
4295 
4296   if( base_memory() == this ) {
4297     // a self cycle indicates this memory path is dead
4298     set_req(Compile::AliasIdxBot, empty_mem);
4299   }
4300 
4301   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4302   // Recursion must occur after the self cycle check above
4303   if( base_memory()->is_MergeMem() ) {
4304     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4305     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4306     if( m != NULL && (m->is_top() ||
4307         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4308       // propagate rollup of dead cycle to self
4309       set_req(Compile::AliasIdxBot, empty_mem);
4310     }
4311   }
4312 
4313   if( base_memory() == empty_mem ) {
4314     progress = this;
4315     // Cut inputs during Parse phase only.
4316     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4317     if( !can_reshape ) {
4318       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4319         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4320       }
4321     }
4322   }
4323 
4324   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4325     // Check if PhiNode::Ideal's "Split phis through memory merges"
4326     // transform should be attempted. Look for this->phi->this cycle.
4327     uint merge_width = req();
4328     if (merge_width > Compile::AliasIdxRaw) {
4329       PhiNode* phi = base_memory()->as_Phi();
4330       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4331         if (phi->in(i) == this) {
4332           phase->is_IterGVN()->_worklist.push(phi);
4333           break;
4334         }
4335       }
4336     }
4337   }
4338 
4339   assert(progress || verify_sparse(), "please, no dups of base");
4340   return progress;
4341 }
4342 
4343 //-------------------------set_base_memory-------------------------------------
4344 void MergeMemNode::set_base_memory(Node *new_base) {
4345   Node* empty_mem = empty_memory();
4346   set_req(Compile::AliasIdxBot, new_base);
4347   assert(memory_at(req()) == new_base, "must set default memory");
4348   // Clear out other occurrences of new_base:
4349   if (new_base != empty_mem) {
4350     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4351       if (in(i) == new_base)  set_req(i, empty_mem);
4352     }
4353   }
4354 }
4355 
4356 //------------------------------out_RegMask------------------------------------
4357 const RegMask &MergeMemNode::out_RegMask() const {
4358   return RegMask::Empty;
4359 }
4360 
4361 //------------------------------dump_spec--------------------------------------
4362 #ifndef PRODUCT
4363 void MergeMemNode::dump_spec(outputStream *st) const {
4364   st->print(" {");
4365   Node* base_mem = base_memory();
4366   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4367     Node* mem = memory_at(i);
4368     if (mem == base_mem) { st->print(" -"); continue; }
4369     st->print( " N%d:", mem->_idx );
4370     Compile::current()->get_adr_type(i)->dump_on(st);
4371   }
4372   st->print(" }");
4373 }
4374 #endif // !PRODUCT
4375 
4376 
4377 #ifdef ASSERT
4378 static bool might_be_same(Node* a, Node* b) {
4379   if (a == b)  return true;
4380   if (!(a->is_Phi() || b->is_Phi()))  return false;
4381   // phis shift around during optimization
4382   return true;  // pretty stupid...
4383 }
4384 
4385 // verify a narrow slice (either incoming or outgoing)
4386 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4387   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4388   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4389   if (Node::in_dump())      return;  // muzzle asserts when printing
4390   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4391   assert(n != NULL, "");
4392   // Elide intervening MergeMem's
4393   while (n->is_MergeMem()) {
4394     n = n->as_MergeMem()->memory_at(alias_idx);
4395   }
4396   Compile* C = Compile::current();
4397   const TypePtr* n_adr_type = n->adr_type();
4398   if (n == m->empty_memory()) {
4399     // Implicit copy of base_memory()
4400   } else if (n_adr_type != TypePtr::BOTTOM) {
4401     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4402     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4403   } else {
4404     // A few places like make_runtime_call "know" that VM calls are narrow,
4405     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4406     bool expected_wide_mem = false;
4407     if (n == m->base_memory()) {
4408       expected_wide_mem = true;
4409     } else if (alias_idx == Compile::AliasIdxRaw ||
4410                n == m->memory_at(Compile::AliasIdxRaw)) {
4411       expected_wide_mem = true;
4412     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4413       // memory can "leak through" calls on channels that
4414       // are write-once.  Allow this also.
4415       expected_wide_mem = true;
4416     }
4417     assert(expected_wide_mem, "expected narrow slice replacement");
4418   }
4419 }
4420 #else // !ASSERT
4421 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4422 #endif
4423 
4424 
4425 //-----------------------------memory_at---------------------------------------
4426 Node* MergeMemNode::memory_at(uint alias_idx) const {
4427   assert(alias_idx >= Compile::AliasIdxRaw ||
4428          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4429          "must avoid base_memory and AliasIdxTop");
4430 
4431   // Otherwise, it is a narrow slice.
4432   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4433   Compile *C = Compile::current();
4434   if (is_empty_memory(n)) {
4435     // the array is sparse; empty slots are the "top" node
4436     n = base_memory();
4437     assert(Node::in_dump()
4438            || n == NULL || n->bottom_type() == Type::TOP
4439            || n->adr_type() == NULL // address is TOP
4440            || n->adr_type() == TypePtr::BOTTOM
4441            || n->adr_type() == TypeRawPtr::BOTTOM
4442            || Compile::current()->AliasLevel() == 0,
4443            "must be a wide memory");
4444     // AliasLevel == 0 if we are organizing the memory states manually.
4445     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4446   } else {
4447     // make sure the stored slice is sane
4448     #ifdef ASSERT
4449     if (is_error_reported() || Node::in_dump()) {
4450     } else if (might_be_same(n, base_memory())) {
4451       // Give it a pass:  It is a mostly harmless repetition of the base.
4452       // This can arise normally from node subsumption during optimization.
4453     } else {
4454       verify_memory_slice(this, alias_idx, n);
4455     }
4456     #endif
4457   }
4458   return n;
4459 }
4460 
4461 //---------------------------set_memory_at-------------------------------------
4462 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4463   verify_memory_slice(this, alias_idx, n);
4464   Node* empty_mem = empty_memory();
4465   if (n == base_memory())  n = empty_mem;  // collapse default
4466   uint need_req = alias_idx+1;
4467   if (req() < need_req) {
4468     if (n == empty_mem)  return;  // already the default, so do not grow me
4469     // grow the sparse array
4470     do {
4471       add_req(empty_mem);
4472     } while (req() < need_req);
4473   }
4474   set_req( alias_idx, n );
4475 }
4476 
4477 
4478 
4479 //--------------------------iteration_setup------------------------------------
4480 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4481   if (other != NULL) {
4482     grow_to_match(other);
4483     // invariant:  the finite support of mm2 is within mm->req()
4484     #ifdef ASSERT
4485     for (uint i = req(); i < other->req(); i++) {
4486       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4487     }
4488     #endif
4489   }
4490   // Replace spurious copies of base_memory by top.
4491   Node* base_mem = base_memory();
4492   if (base_mem != NULL && !base_mem->is_top()) {
4493     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4494       if (in(i) == base_mem)
4495         set_req(i, empty_memory());
4496     }
4497   }
4498 }
4499 
4500 //---------------------------grow_to_match-------------------------------------
4501 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4502   Node* empty_mem = empty_memory();
4503   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4504   // look for the finite support of the other memory
4505   for (uint i = other->req(); --i >= req(); ) {
4506     if (other->in(i) != empty_mem) {
4507       uint new_len = i+1;
4508       while (req() < new_len)  add_req(empty_mem);
4509       break;
4510     }
4511   }
4512 }
4513 
4514 //---------------------------verify_sparse-------------------------------------
4515 #ifndef PRODUCT
4516 bool MergeMemNode::verify_sparse() const {
4517   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4518   Node* base_mem = base_memory();
4519   // The following can happen in degenerate cases, since empty==top.
4520   if (is_empty_memory(base_mem))  return true;
4521   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4522     assert(in(i) != NULL, "sane slice");
4523     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4524   }
4525   return true;
4526 }
4527 
4528 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4529   Node* n;
4530   n = mm->in(idx);
4531   if (mem == n)  return true;  // might be empty_memory()
4532   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4533   if (mem == n)  return true;
4534   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4535     if (mem == n)  return true;
4536     if (n == NULL)  break;
4537   }
4538   return false;
4539 }
4540 #endif // !PRODUCT