1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "code/compiledIC.hpp"
  28 #include "code/debugInfo.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "memory/allocation.inline.hpp"
  33 #include "opto/ad.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/locknode.hpp"
  37 #include "opto/machnode.hpp"
  38 #include "opto/optoreg.hpp"
  39 #include "opto/output.hpp"
  40 #include "opto/regalloc.hpp"
  41 #include "opto/runtime.hpp"
  42 #include "opto/subnode.hpp"
  43 #include "opto/type.hpp"
  44 #include "runtime/handles.inline.hpp"
  45 #include "utilities/xmlstream.hpp"
  46 
  47 #ifndef PRODUCT
  48 #define DEBUG_ARG(x) , x
  49 #else
  50 #define DEBUG_ARG(x)
  51 #endif
  52 
  53 // Convert Nodes to instruction bits and pass off to the VM
  54 void Compile::Output() {
  55   // RootNode goes
  56   assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
  57 
  58   // The number of new nodes (mostly MachNop) is proportional to
  59   // the number of java calls and inner loops which are aligned.
  60   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  61                             C->inner_loops()*(OptoLoopAlignment-1)),
  62                            "out of nodes before code generation" ) ) {
  63     return;
  64   }
  65   // Make sure I can find the Start Node
  66   Block *entry = _cfg->get_block(1);
  67   Block *broot = _cfg->get_root_block();
  68 
  69   const StartNode *start = entry->head()->as_Start();
  70 
  71   // Replace StartNode with prolog
  72   MachPrologNode *prolog = new MachPrologNode();
  73   entry->map_node(prolog, 0);
  74   _cfg->map_node_to_block(prolog, entry);
  75   _cfg->unmap_node_from_block(start); // start is no longer in any block
  76 
  77   // Virtual methods need an unverified entry point
  78 
  79   if( is_osr_compilation() ) {
  80     if( PoisonOSREntry ) {
  81       // TODO: Should use a ShouldNotReachHereNode...
  82       _cfg->insert( broot, 0, new MachBreakpointNode() );
  83     }
  84   } else {
  85     if( _method && !_method->flags().is_static() ) {
  86       // Insert unvalidated entry point
  87       _cfg->insert( broot, 0, new MachUEPNode() );
  88     }
  89 
  90   }
  91 
  92 
  93   // Break before main entry point
  94   if( (_method && _method->break_at_execute())
  95 #ifndef PRODUCT
  96     ||(OptoBreakpoint && is_method_compilation())
  97     ||(OptoBreakpointOSR && is_osr_compilation())
  98     ||(OptoBreakpointC2R && !_method)
  99 #endif
 100     ) {
 101     // checking for _method means that OptoBreakpoint does not apply to
 102     // runtime stubs or frame converters
 103     _cfg->insert( entry, 1, new MachBreakpointNode() );
 104   }
 105 
 106   // Insert epilogs before every return
 107   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
 108     Block* block = _cfg->get_block(i);
 109     if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
 110       Node* m = block->end();
 111       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
 112         MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 113         block->add_inst(epilog);
 114         _cfg->map_node_to_block(epilog, block);
 115       }
 116     }
 117   }
 118 
 119 # ifdef ENABLE_ZAP_DEAD_LOCALS
 120   if (ZapDeadCompiledLocals) {
 121     Insert_zap_nodes();
 122   }
 123 # endif
 124 
 125   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
 126   blk_starts[0] = 0;
 127 
 128   // Initialize code buffer and process short branches.
 129   CodeBuffer* cb = init_buffer(blk_starts);
 130 
 131   if (cb == NULL || failing()) {
 132     return;
 133   }
 134 
 135   ScheduleAndBundle();
 136 
 137 #ifndef PRODUCT
 138   if (trace_opto_output()) {
 139     tty->print("\n---- After ScheduleAndBundle ----\n");
 140     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
 141       tty->print("\nBB#%03d:\n", i);
 142       Block* block = _cfg->get_block(i);
 143       for (uint j = 0; j < block->number_of_nodes(); j++) {
 144         Node* n = block->get_node(j);
 145         OptoReg::Name reg = _regalloc->get_reg_first(n);
 146         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 147         n->dump();
 148       }
 149     }
 150   }
 151 #endif
 152 
 153   if (failing()) {
 154     return;
 155   }
 156 
 157   BuildOopMaps();
 158 
 159   if (failing())  {
 160     return;
 161   }
 162 
 163   fill_buffer(cb, blk_starts);
 164 }
 165 
 166 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 167   // Determine if we need to generate a stack overflow check.
 168   // Do it if the method is not a stub function and
 169   // has java calls or has frame size > vm_page_size/8.
 170   // The debug VM checks that deoptimization doesn't trigger an
 171   // unexpected stack overflow (compiled method stack banging should
 172   // guarantee it doesn't happen) so we always need the stack bang in
 173   // a debug VM.
 174   return (UseStackBanging && stub_function() == NULL &&
 175           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
 176            DEBUG_ONLY(|| true)));
 177 }
 178 
 179 bool Compile::need_register_stack_bang() const {
 180   // Determine if we need to generate a register stack overflow check.
 181   // This is only used on architectures which have split register
 182   // and memory stacks (ie. IA64).
 183   // Bang if the method is not a stub function and has java calls
 184   return (stub_function() == NULL && has_java_calls());
 185 }
 186 
 187 # ifdef ENABLE_ZAP_DEAD_LOCALS
 188 
 189 
 190 // In order to catch compiler oop-map bugs, we have implemented
 191 // a debugging mode called ZapDeadCompilerLocals.
 192 // This mode causes the compiler to insert a call to a runtime routine,
 193 // "zap_dead_locals", right before each place in compiled code
 194 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 195 // The runtime routine checks that locations mapped as oops are really
 196 // oops, that locations mapped as values do not look like oops,
 197 // and that locations mapped as dead are not used later
 198 // (by zapping them to an invalid address).
 199 
 200 int Compile::_CompiledZap_count = 0;
 201 
 202 void Compile::Insert_zap_nodes() {
 203   bool skip = false;
 204 
 205 
 206   // Dink with static counts because code code without the extra
 207   // runtime calls is MUCH faster for debugging purposes
 208 
 209        if ( CompileZapFirst  ==  0  ) ; // nothing special
 210   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 211   else if ( CompileZapFirst  == CompiledZap_count() )
 212     warning("starting zap compilation after skipping");
 213 
 214        if ( CompileZapLast  ==  -1  ) ; // nothing special
 215   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 216   else if ( CompileZapLast  ==  CompiledZap_count() )
 217     warning("about to compile last zap");
 218 
 219   ++_CompiledZap_count; // counts skipped zaps, too
 220 
 221   if ( skip )  return;
 222 
 223 
 224   if ( _method == NULL )
 225     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 226 
 227   // Insert call to zap runtime stub before every node with an oop map
 228   for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
 229     Block *b = _cfg->get_block(i);
 230     for ( uint j = 0;  j < b->number_of_nodes();  ++j ) {
 231       Node *n = b->get_node(j);
 232 
 233       // Determining if we should insert a zap-a-lot node in output.
 234       // We do that for all nodes that has oopmap info, except for calls
 235       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 236       // and expect the C code to reset it.  Hence, there can be no safepoints between
 237       // the inlined-allocation and the call to new_Java, etc.
 238       // We also cannot zap monitor calls, as they must hold the microlock
 239       // during the call to Zap, which also wants to grab the microlock.
 240       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 241       if ( insert ) { // it is MachSafePoint
 242         if ( !n->is_MachCall() ) {
 243           insert = false;
 244         } else if ( n->is_MachCall() ) {
 245           MachCallNode* call = n->as_MachCall();
 246           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 247               call->entry_point() == OptoRuntime::new_array_Java() ||
 248               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 249               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 250               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 251               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 252               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 253               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 254               ) {
 255             insert = false;
 256           }
 257         }
 258         if (insert) {
 259           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 260           b->insert_node(zap, j);
 261           _cfg->map_node_to_block(zap, b);
 262           ++j;
 263         }
 264       }
 265     }
 266   }
 267 }
 268 
 269 
 270 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 271   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 272   CallStaticJavaNode* ideal_node =
 273     new CallStaticJavaNode( tf,
 274          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 275                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
 276   // We need to copy the OopMap from the site we're zapping at.
 277   // We have to make a copy, because the zap site might not be
 278   // a call site, and zap_dead is a call site.
 279   OopMap* clone = node_to_check->oop_map()->deep_copy();
 280 
 281   // Add the cloned OopMap to the zap node
 282   ideal_node->set_oop_map(clone);
 283   return _matcher->match_sfpt(ideal_node);
 284 }
 285 
 286 bool Compile::is_node_getting_a_safepoint( Node* n) {
 287   // This code duplicates the logic prior to the call of add_safepoint
 288   // below in this file.
 289   if( n->is_MachSafePoint() ) return true;
 290   return false;
 291 }
 292 
 293 # endif // ENABLE_ZAP_DEAD_LOCALS
 294 
 295 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 296 // of a loop. When aligning a loop we need to provide enough instructions
 297 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 298 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 299 // By default, the size is set to 999999 by Block's constructor so that
 300 // a loop will be aligned if the size is not reset here.
 301 //
 302 // Note: Mach instructions could contain several HW instructions
 303 // so the size is estimated only.
 304 //
 305 void Compile::compute_loop_first_inst_sizes() {
 306   // The next condition is used to gate the loop alignment optimization.
 307   // Don't aligned a loop if there are enough instructions at the head of a loop
 308   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 309   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 310   // equal to 11 bytes which is the largest address NOP instruction.
 311   if (MaxLoopPad < OptoLoopAlignment - 1) {
 312     uint last_block = _cfg->number_of_blocks() - 1;
 313     for (uint i = 1; i <= last_block; i++) {
 314       Block* block = _cfg->get_block(i);
 315       // Check the first loop's block which requires an alignment.
 316       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
 317         uint sum_size = 0;
 318         uint inst_cnt = NumberOfLoopInstrToAlign;
 319         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 320 
 321         // Check subsequent fallthrough blocks if the loop's first
 322         // block(s) does not have enough instructions.
 323         Block *nb = block;
 324         while(inst_cnt > 0 &&
 325               i < last_block &&
 326               !_cfg->get_block(i + 1)->has_loop_alignment() &&
 327               !nb->has_successor(block)) {
 328           i++;
 329           nb = _cfg->get_block(i);
 330           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 331         } // while( inst_cnt > 0 && i < last_block  )
 332 
 333         block->set_first_inst_size(sum_size);
 334       } // f( b->head()->is_Loop() )
 335     } // for( i <= last_block )
 336   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 337 }
 338 
 339 // The architecture description provides short branch variants for some long
 340 // branch instructions. Replace eligible long branches with short branches.
 341 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
 342   // Compute size of each block, method size, and relocation information size
 343   uint nblocks  = _cfg->number_of_blocks();
 344 
 345   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 346   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 347   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 348 
 349   // Collect worst case block paddings
 350   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
 351   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
 352 
 353   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 354   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 355 
 356   bool has_short_branch_candidate = false;
 357 
 358   // Initialize the sizes to 0
 359   code_size  = 0;          // Size in bytes of generated code
 360   stub_size  = 0;          // Size in bytes of all stub entries
 361   // Size in bytes of all relocation entries, including those in local stubs.
 362   // Start with 2-bytes of reloc info for the unvalidated entry point
 363   reloc_size = 1;          // Number of relocation entries
 364 
 365   // Make three passes.  The first computes pessimistic blk_starts,
 366   // relative jmp_offset and reloc_size information.  The second performs
 367   // short branch substitution using the pessimistic sizing.  The
 368   // third inserts nops where needed.
 369 
 370   // Step one, perform a pessimistic sizing pass.
 371   uint last_call_adr = max_juint;
 372   uint last_avoid_back_to_back_adr = max_juint;
 373   uint nop_size = (new MachNopNode())->size(_regalloc);
 374   for (uint i = 0; i < nblocks; i++) { // For all blocks
 375     Block* block = _cfg->get_block(i);
 376 
 377     // During short branch replacement, we store the relative (to blk_starts)
 378     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 379     // This is so that we do not need to recompute sizes of all nodes when
 380     // we compute correct blk_starts in our next sizing pass.
 381     jmp_offset[i] = 0;
 382     jmp_size[i]   = 0;
 383     jmp_nidx[i]   = -1;
 384     DEBUG_ONLY( jmp_target[i] = 0; )
 385     DEBUG_ONLY( jmp_rule[i]   = 0; )
 386 
 387     // Sum all instruction sizes to compute block size
 388     uint last_inst = block->number_of_nodes();
 389     uint blk_size = 0;
 390     for (uint j = 0; j < last_inst; j++) {
 391       Node* nj = block->get_node(j);
 392       // Handle machine instruction nodes
 393       if (nj->is_Mach()) {
 394         MachNode *mach = nj->as_Mach();
 395         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 396         reloc_size += mach->reloc();
 397         if (mach->is_MachCall()) {
 398           // add size information for trampoline stub
 399           // class CallStubImpl is platform-specific and defined in the *.ad files.
 400           stub_size  += CallStubImpl::size_call_trampoline();
 401           reloc_size += CallStubImpl::reloc_call_trampoline();
 402 
 403           MachCallNode *mcall = mach->as_MachCall();
 404           // This destination address is NOT PC-relative
 405 
 406           mcall->method_set((intptr_t)mcall->entry_point());
 407 
 408           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 409             stub_size  += CompiledStaticCall::to_interp_stub_size();
 410             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 411           }
 412         } else if (mach->is_MachSafePoint()) {
 413           // If call/safepoint are adjacent, account for possible
 414           // nop to disambiguate the two safepoints.
 415           // ScheduleAndBundle() can rearrange nodes in a block,
 416           // check for all offsets inside this block.
 417           if (last_call_adr >= blk_starts[i]) {
 418             blk_size += nop_size;
 419           }
 420         }
 421         if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 422           // Nop is inserted between "avoid back to back" instructions.
 423           // ScheduleAndBundle() can rearrange nodes in a block,
 424           // check for all offsets inside this block.
 425           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 426             blk_size += nop_size;
 427           }
 428         }
 429         if (mach->may_be_short_branch()) {
 430           if (!nj->is_MachBranch()) {
 431 #ifndef PRODUCT
 432             nj->dump(3);
 433 #endif
 434             Unimplemented();
 435           }
 436           assert(jmp_nidx[i] == -1, "block should have only one branch");
 437           jmp_offset[i] = blk_size;
 438           jmp_size[i]   = nj->size(_regalloc);
 439           jmp_nidx[i]   = j;
 440           has_short_branch_candidate = true;
 441         }
 442       }
 443       blk_size += nj->size(_regalloc);
 444       // Remember end of call offset
 445       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 446         last_call_adr = blk_starts[i]+blk_size;
 447       }
 448       // Remember end of avoid_back_to_back offset
 449       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
 450         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 451       }
 452     }
 453 
 454     // When the next block starts a loop, we may insert pad NOP
 455     // instructions.  Since we cannot know our future alignment,
 456     // assume the worst.
 457     if (i < nblocks - 1) {
 458       Block* nb = _cfg->get_block(i + 1);
 459       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 460       if (max_loop_pad > 0) {
 461         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 462         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 463         // If either is the last instruction in this block, bump by
 464         // max_loop_pad in lock-step with blk_size, so sizing
 465         // calculations in subsequent blocks still can conservatively
 466         // detect that it may the last instruction in this block.
 467         if (last_call_adr == blk_starts[i]+blk_size) {
 468           last_call_adr += max_loop_pad;
 469         }
 470         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 471           last_avoid_back_to_back_adr += max_loop_pad;
 472         }
 473         blk_size += max_loop_pad;
 474         block_worst_case_pad[i + 1] = max_loop_pad;
 475       }
 476     }
 477 
 478     // Save block size; update total method size
 479     blk_starts[i+1] = blk_starts[i]+blk_size;
 480   }
 481 
 482   // Step two, replace eligible long jumps.
 483   bool progress = true;
 484   uint last_may_be_short_branch_adr = max_juint;
 485   while (has_short_branch_candidate && progress) {
 486     progress = false;
 487     has_short_branch_candidate = false;
 488     int adjust_block_start = 0;
 489     for (uint i = 0; i < nblocks; i++) {
 490       Block* block = _cfg->get_block(i);
 491       int idx = jmp_nidx[i];
 492       MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
 493       if (mach != NULL && mach->may_be_short_branch()) {
 494 #ifdef ASSERT
 495         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 496         int j;
 497         // Find the branch; ignore trailing NOPs.
 498         for (j = block->number_of_nodes()-1; j>=0; j--) {
 499           Node* n = block->get_node(j);
 500           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 501             break;
 502         }
 503         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 504 #endif
 505         int br_size = jmp_size[i];
 506         int br_offs = blk_starts[i] + jmp_offset[i];
 507 
 508         // This requires the TRUE branch target be in succs[0]
 509         uint bnum = block->non_connector_successor(0)->_pre_order;
 510         int offset = blk_starts[bnum] - br_offs;
 511         if (bnum > i) { // adjust following block's offset
 512           offset -= adjust_block_start;
 513         }
 514 
 515         // This block can be a loop header, account for the padding
 516         // in the previous block.
 517         int block_padding = block_worst_case_pad[i];
 518         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
 519         // In the following code a nop could be inserted before
 520         // the branch which will increase the backward distance.
 521         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
 522         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
 523 
 524         if (needs_padding && offset <= 0)
 525           offset -= nop_size;
 526 
 527         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
 528           // We've got a winner.  Replace this branch.
 529           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
 530 
 531           // Update the jmp_size.
 532           int new_size = replacement->size(_regalloc);
 533           int diff     = br_size - new_size;
 534           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 535           // Conservatively take into account padding between
 536           // avoid_back_to_back branches. Previous branch could be
 537           // converted into avoid_back_to_back branch during next
 538           // rounds.
 539           if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 540             jmp_offset[i] += nop_size;
 541             diff -= nop_size;
 542           }
 543           adjust_block_start += diff;
 544           block->map_node(replacement, idx);
 545           mach->subsume_by(replacement, C);
 546           mach = replacement;
 547           progress = true;
 548 
 549           jmp_size[i] = new_size;
 550           DEBUG_ONLY( jmp_target[i] = bnum; );
 551           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 552         } else {
 553           // The jump distance is not short, try again during next iteration.
 554           has_short_branch_candidate = true;
 555         }
 556       } // (mach->may_be_short_branch())
 557       if (mach != NULL && (mach->may_be_short_branch() ||
 558                            mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
 559         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 560       }
 561       blk_starts[i+1] -= adjust_block_start;
 562     }
 563   }
 564 
 565 #ifdef ASSERT
 566   for (uint i = 0; i < nblocks; i++) { // For all blocks
 567     if (jmp_target[i] != 0) {
 568       int br_size = jmp_size[i];
 569       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 570       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 571         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 572       }
 573       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 574     }
 575   }
 576 #endif
 577 
 578   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 579   // after ScheduleAndBundle().
 580 
 581   // ------------------
 582   // Compute size for code buffer
 583   code_size = blk_starts[nblocks];
 584 
 585   // Relocation records
 586   reloc_size += 1;              // Relo entry for exception handler
 587 
 588   // Adjust reloc_size to number of record of relocation info
 589   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 590   // a relocation index.
 591   // The CodeBuffer will expand the locs array if this estimate is too low.
 592   reloc_size *= 10 / sizeof(relocInfo);
 593 }
 594 
 595 //------------------------------FillLocArray-----------------------------------
 596 // Create a bit of debug info and append it to the array.  The mapping is from
 597 // Java local or expression stack to constant, register or stack-slot.  For
 598 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 599 // entry has been taken care of and caller should skip it).
 600 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 601   // This should never have accepted Bad before
 602   assert(OptoReg::is_valid(regnum), "location must be valid");
 603   return (OptoReg::is_reg(regnum))
 604     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 605     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 606 }
 607 
 608 
 609 ObjectValue*
 610 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 611   for (int i = 0; i < objs->length(); i++) {
 612     assert(objs->at(i)->is_object(), "corrupt object cache");
 613     ObjectValue* sv = (ObjectValue*) objs->at(i);
 614     if (sv->id() == id) {
 615       return sv;
 616     }
 617   }
 618   // Otherwise..
 619   return NULL;
 620 }
 621 
 622 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 623                                      ObjectValue* sv ) {
 624   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 625   objs->append(sv);
 626 }
 627 
 628 
 629 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 630                             GrowableArray<ScopeValue*> *array,
 631                             GrowableArray<ScopeValue*> *objs ) {
 632   assert( local, "use _top instead of null" );
 633   if (array->length() != idx) {
 634     assert(array->length() == idx + 1, "Unexpected array count");
 635     // Old functionality:
 636     //   return
 637     // New functionality:
 638     //   Assert if the local is not top. In product mode let the new node
 639     //   override the old entry.
 640     assert(local == top(), "LocArray collision");
 641     if (local == top()) {
 642       return;
 643     }
 644     array->pop();
 645   }
 646   const Type *t = local->bottom_type();
 647 
 648   // Is it a safepoint scalar object node?
 649   if (local->is_SafePointScalarObject()) {
 650     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 651 
 652     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 653     if (sv == NULL) {
 654       ciKlass* cik = t->is_oopptr()->klass();
 655       assert(cik->is_instance_klass() ||
 656              cik->is_array_klass(), "Not supported allocation.");
 657       sv = new ObjectValue(spobj->_idx,
 658                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 659       Compile::set_sv_for_object_node(objs, sv);
 660 
 661       uint first_ind = spobj->first_index(sfpt->jvms());
 662       for (uint i = 0; i < spobj->n_fields(); i++) {
 663         Node* fld_node = sfpt->in(first_ind+i);
 664         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 665       }
 666     }
 667     array->append(sv);
 668     return;
 669   }
 670 
 671   // Grab the register number for the local
 672   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 673   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 674     // Record the double as two float registers.
 675     // The register mask for such a value always specifies two adjacent
 676     // float registers, with the lower register number even.
 677     // Normally, the allocation of high and low words to these registers
 678     // is irrelevant, because nearly all operations on register pairs
 679     // (e.g., StoreD) treat them as a single unit.
 680     // Here, we assume in addition that the words in these two registers
 681     // stored "naturally" (by operations like StoreD and double stores
 682     // within the interpreter) such that the lower-numbered register
 683     // is written to the lower memory address.  This may seem like
 684     // a machine dependency, but it is not--it is a requirement on
 685     // the author of the <arch>.ad file to ensure that, for every
 686     // even/odd double-register pair to which a double may be allocated,
 687     // the word in the even single-register is stored to the first
 688     // memory word.  (Note that register numbers are completely
 689     // arbitrary, and are not tied to any machine-level encodings.)
 690 #ifdef _LP64
 691     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 692       array->append(new ConstantIntValue(0));
 693       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 694     } else if ( t->base() == Type::Long ) {
 695       array->append(new ConstantIntValue(0));
 696       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 697     } else if ( t->base() == Type::RawPtr ) {
 698       // jsr/ret return address which must be restored into a the full
 699       // width 64-bit stack slot.
 700       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 701     }
 702 #else //_LP64
 703 #ifdef SPARC
 704     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 705       // For SPARC we have to swap high and low words for
 706       // long values stored in a single-register (g0-g7).
 707       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 708       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 709     } else
 710 #endif //SPARC
 711     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 712       // Repack the double/long as two jints.
 713       // The convention the interpreter uses is that the second local
 714       // holds the first raw word of the native double representation.
 715       // This is actually reasonable, since locals and stack arrays
 716       // grow downwards in all implementations.
 717       // (If, on some machine, the interpreter's Java locals or stack
 718       // were to grow upwards, the embedded doubles would be word-swapped.)
 719       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 720       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 721     }
 722 #endif //_LP64
 723     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 724                OptoReg::is_reg(regnum) ) {
 725       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 726                                    ? Location::float_in_dbl : Location::normal ));
 727     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 728       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 729                                    ? Location::int_in_long : Location::normal ));
 730     } else if( t->base() == Type::NarrowOop ) {
 731       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 732     } else {
 733       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 734     }
 735     return;
 736   }
 737 
 738   // No register.  It must be constant data.
 739   switch (t->base()) {
 740   case Type::Half:              // Second half of a double
 741     ShouldNotReachHere();       // Caller should skip 2nd halves
 742     break;
 743   case Type::AnyPtr:
 744     array->append(new ConstantOopWriteValue(NULL));
 745     break;
 746   case Type::AryPtr:
 747   case Type::InstPtr:          // fall through
 748     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 749     break;
 750   case Type::NarrowOop:
 751     if (t == TypeNarrowOop::NULL_PTR) {
 752       array->append(new ConstantOopWriteValue(NULL));
 753     } else {
 754       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 755     }
 756     break;
 757   case Type::Int:
 758     array->append(new ConstantIntValue(t->is_int()->get_con()));
 759     break;
 760   case Type::RawPtr:
 761     // A return address (T_ADDRESS).
 762     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 763 #ifdef _LP64
 764     // Must be restored to the full-width 64-bit stack slot.
 765     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 766 #else
 767     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 768 #endif
 769     break;
 770   case Type::FloatCon: {
 771     float f = t->is_float_constant()->getf();
 772     array->append(new ConstantIntValue(jint_cast(f)));
 773     break;
 774   }
 775   case Type::DoubleCon: {
 776     jdouble d = t->is_double_constant()->getd();
 777 #ifdef _LP64
 778     array->append(new ConstantIntValue(0));
 779     array->append(new ConstantDoubleValue(d));
 780 #else
 781     // Repack the double as two jints.
 782     // The convention the interpreter uses is that the second local
 783     // holds the first raw word of the native double representation.
 784     // This is actually reasonable, since locals and stack arrays
 785     // grow downwards in all implementations.
 786     // (If, on some machine, the interpreter's Java locals or stack
 787     // were to grow upwards, the embedded doubles would be word-swapped.)
 788     jlong_accessor acc = { jlong_cast(d) };
 789     array->append(new ConstantIntValue(acc.words[1]));
 790     array->append(new ConstantIntValue(acc.words[0]));
 791 #endif
 792     break;
 793   }
 794   case Type::Long: {
 795     jlong d = t->is_long()->get_con();
 796 #ifdef _LP64
 797     array->append(new ConstantIntValue(0));
 798     array->append(new ConstantLongValue(d));
 799 #else
 800     // Repack the long as two jints.
 801     // The convention the interpreter uses is that the second local
 802     // holds the first raw word of the native double representation.
 803     // This is actually reasonable, since locals and stack arrays
 804     // grow downwards in all implementations.
 805     // (If, on some machine, the interpreter's Java locals or stack
 806     // were to grow upwards, the embedded doubles would be word-swapped.)
 807     jlong_accessor acc = { d };
 808     array->append(new ConstantIntValue(acc.words[1]));
 809     array->append(new ConstantIntValue(acc.words[0]));
 810 #endif
 811     break;
 812   }
 813   case Type::Top:               // Add an illegal value here
 814     array->append(new LocationValue(Location()));
 815     break;
 816   default:
 817     ShouldNotReachHere();
 818     break;
 819   }
 820 }
 821 
 822 // Determine if this node starts a bundle
 823 bool Compile::starts_bundle(const Node *n) const {
 824   return (_node_bundling_limit > n->_idx &&
 825           _node_bundling_base[n->_idx].starts_bundle());
 826 }
 827 
 828 //--------------------------Process_OopMap_Node--------------------------------
 829 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 830 
 831   // Handle special safepoint nodes for synchronization
 832   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 833   MachCallNode      *mcall;
 834 
 835 #ifdef ENABLE_ZAP_DEAD_LOCALS
 836   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 837 #endif
 838 
 839   int safepoint_pc_offset = current_offset;
 840   bool is_method_handle_invoke = false;
 841   bool return_oop = false;
 842 
 843   // Add the safepoint in the DebugInfoRecorder
 844   if( !mach->is_MachCall() ) {
 845     mcall = NULL;
 846     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 847   } else {
 848     mcall = mach->as_MachCall();
 849 
 850     // Is the call a MethodHandle call?
 851     if (mcall->is_MachCallJava()) {
 852       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 853         assert(has_method_handle_invokes(), "must have been set during call generation");
 854         is_method_handle_invoke = true;
 855       }
 856     }
 857 
 858     // Check if a call returns an object.
 859     if (mcall->returns_pointer()) {
 860       return_oop = true;
 861     }
 862     safepoint_pc_offset += mcall->ret_addr_offset();
 863     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 864   }
 865 
 866   // Loop over the JVMState list to add scope information
 867   // Do not skip safepoints with a NULL method, they need monitor info
 868   JVMState* youngest_jvms = sfn->jvms();
 869   int max_depth = youngest_jvms->depth();
 870 
 871   // Allocate the object pool for scalar-replaced objects -- the map from
 872   // small-integer keys (which can be recorded in the local and ostack
 873   // arrays) to descriptions of the object state.
 874   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 875 
 876   // Visit scopes from oldest to youngest.
 877   for (int depth = 1; depth <= max_depth; depth++) {
 878     JVMState* jvms = youngest_jvms->of_depth(depth);
 879     int idx;
 880     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 881     // Safepoints that do not have method() set only provide oop-map and monitor info
 882     // to support GC; these do not support deoptimization.
 883     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 884     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 885     int num_mon  = jvms->nof_monitors();
 886     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 887            "JVMS local count must match that of the method");
 888 
 889     // Add Local and Expression Stack Information
 890 
 891     // Insert locals into the locarray
 892     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 893     for( idx = 0; idx < num_locs; idx++ ) {
 894       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 895     }
 896 
 897     // Insert expression stack entries into the exparray
 898     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 899     for( idx = 0; idx < num_exps; idx++ ) {
 900       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 901     }
 902 
 903     // Add in mappings of the monitors
 904     assert( !method ||
 905             !method->is_synchronized() ||
 906             method->is_native() ||
 907             num_mon > 0 ||
 908             !GenerateSynchronizationCode,
 909             "monitors must always exist for synchronized methods");
 910 
 911     // Build the growable array of ScopeValues for exp stack
 912     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 913 
 914     // Loop over monitors and insert into array
 915     for (idx = 0; idx < num_mon; idx++) {
 916       // Grab the node that defines this monitor
 917       Node* box_node = sfn->monitor_box(jvms, idx);
 918       Node* obj_node = sfn->monitor_obj(jvms, idx);
 919 
 920       // Create ScopeValue for object
 921       ScopeValue *scval = NULL;
 922 
 923       if (obj_node->is_SafePointScalarObject()) {
 924         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 925         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 926         if (scval == NULL) {
 927           const Type *t = spobj->bottom_type();
 928           ciKlass* cik = t->is_oopptr()->klass();
 929           assert(cik->is_instance_klass() ||
 930                  cik->is_array_klass(), "Not supported allocation.");
 931           ObjectValue* sv = new ObjectValue(spobj->_idx,
 932                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 933           Compile::set_sv_for_object_node(objs, sv);
 934 
 935           uint first_ind = spobj->first_index(youngest_jvms);
 936           for (uint i = 0; i < spobj->n_fields(); i++) {
 937             Node* fld_node = sfn->in(first_ind+i);
 938             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 939           }
 940           scval = sv;
 941         }
 942       } else if (!obj_node->is_Con()) {
 943         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 944         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 945           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 946         } else {
 947           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 948         }
 949       } else {
 950         const TypePtr *tp = obj_node->get_ptr_type();
 951         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
 952       }
 953 
 954       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
 955       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 956       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
 957       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
 958     }
 959 
 960     // We dump the object pool first, since deoptimization reads it in first.
 961     debug_info()->dump_object_pool(objs);
 962 
 963     // Build first class objects to pass to scope
 964     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 965     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 966     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 967 
 968     // Make method available for all Safepoints
 969     ciMethod* scope_method = method ? method : _method;
 970     // Describe the scope here
 971     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 972     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 973     // Now we can describe the scope.
 974     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 975   } // End jvms loop
 976 
 977   // Mark the end of the scope set.
 978   debug_info()->end_safepoint(safepoint_pc_offset);
 979 }
 980 
 981 
 982 
 983 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 984 class NonSafepointEmitter {
 985   Compile*  C;
 986   JVMState* _pending_jvms;
 987   int       _pending_offset;
 988 
 989   void emit_non_safepoint();
 990 
 991  public:
 992   NonSafepointEmitter(Compile* compile) {
 993     this->C = compile;
 994     _pending_jvms = NULL;
 995     _pending_offset = 0;
 996   }
 997 
 998   void observe_instruction(Node* n, int pc_offset) {
 999     if (!C->debug_info()->recording_non_safepoints())  return;
1000 
1001     Node_Notes* nn = C->node_notes_at(n->_idx);
1002     if (nn == NULL || nn->jvms() == NULL)  return;
1003     if (_pending_jvms != NULL &&
1004         _pending_jvms->same_calls_as(nn->jvms())) {
1005       // Repeated JVMS?  Stretch it up here.
1006       _pending_offset = pc_offset;
1007     } else {
1008       if (_pending_jvms != NULL &&
1009           _pending_offset < pc_offset) {
1010         emit_non_safepoint();
1011       }
1012       _pending_jvms = NULL;
1013       if (pc_offset > C->debug_info()->last_pc_offset()) {
1014         // This is the only way _pending_jvms can become non-NULL:
1015         _pending_jvms = nn->jvms();
1016         _pending_offset = pc_offset;
1017       }
1018     }
1019   }
1020 
1021   // Stay out of the way of real safepoints:
1022   void observe_safepoint(JVMState* jvms, int pc_offset) {
1023     if (_pending_jvms != NULL &&
1024         !_pending_jvms->same_calls_as(jvms) &&
1025         _pending_offset < pc_offset) {
1026       emit_non_safepoint();
1027     }
1028     _pending_jvms = NULL;
1029   }
1030 
1031   void flush_at_end() {
1032     if (_pending_jvms != NULL) {
1033       emit_non_safepoint();
1034     }
1035     _pending_jvms = NULL;
1036   }
1037 };
1038 
1039 void NonSafepointEmitter::emit_non_safepoint() {
1040   JVMState* youngest_jvms = _pending_jvms;
1041   int       pc_offset     = _pending_offset;
1042 
1043   // Clear it now:
1044   _pending_jvms = NULL;
1045 
1046   DebugInformationRecorder* debug_info = C->debug_info();
1047   assert(debug_info->recording_non_safepoints(), "sanity");
1048 
1049   debug_info->add_non_safepoint(pc_offset);
1050   int max_depth = youngest_jvms->depth();
1051 
1052   // Visit scopes from oldest to youngest.
1053   for (int depth = 1; depth <= max_depth; depth++) {
1054     JVMState* jvms = youngest_jvms->of_depth(depth);
1055     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1056     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1057     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1058   }
1059 
1060   // Mark the end of the scope set.
1061   debug_info->end_non_safepoint(pc_offset);
1062 }
1063 
1064 //------------------------------init_buffer------------------------------------
1065 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1066 
1067   // Set the initially allocated size
1068   int  code_req   = initial_code_capacity;
1069   int  locs_req   = initial_locs_capacity;
1070   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1071   int  const_req  = initial_const_capacity;
1072 
1073   int  pad_req    = NativeCall::instruction_size;
1074   // The extra spacing after the code is necessary on some platforms.
1075   // Sometimes we need to patch in a jump after the last instruction,
1076   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1077 
1078   // Compute the byte offset where we can store the deopt pc.
1079   if (fixed_slots() != 0) {
1080     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1081   }
1082 
1083   // Compute prolog code size
1084   _method_size = 0;
1085   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1086 #if defined(IA64) && !defined(AIX)
1087   if (save_argument_registers()) {
1088     // 4815101: this is a stub with implicit and unknown precision fp args.
1089     // The usual spill mechanism can only generate stfd's in this case, which
1090     // doesn't work if the fp reg to spill contains a single-precision denorm.
1091     // Instead, we hack around the normal spill mechanism using stfspill's and
1092     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1093     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1094     //
1095     // If we ever implement 16-byte 'registers' == stack slots, we can
1096     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1097     // instead of stfd/stfs/ldfd/ldfs.
1098     _frame_slots += 8*(16/BytesPerInt);
1099   }
1100 #endif
1101   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1102 
1103   if (has_mach_constant_base_node()) {
1104     uint add_size = 0;
1105     // Fill the constant table.
1106     // Note:  This must happen before shorten_branches.
1107     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1108       Block* b = _cfg->get_block(i);
1109 
1110       for (uint j = 0; j < b->number_of_nodes(); j++) {
1111         Node* n = b->get_node(j);
1112 
1113         // If the node is a MachConstantNode evaluate the constant
1114         // value section.
1115         if (n->is_MachConstant()) {
1116           MachConstantNode* machcon = n->as_MachConstant();
1117           machcon->eval_constant(C);
1118         } else if (n->is_Mach()) {
1119           // On Power there are more nodes that issue constants.
1120           add_size += (n->as_Mach()->ins_num_consts() * 8);
1121         }
1122       }
1123     }
1124 
1125     // Calculate the offsets of the constants and the size of the
1126     // constant table (including the padding to the next section).
1127     constant_table().calculate_offsets_and_size();
1128     const_req = constant_table().size() + add_size;
1129   }
1130 
1131   // Initialize the space for the BufferBlob used to find and verify
1132   // instruction size in MachNode::emit_size()
1133   init_scratch_buffer_blob(const_req);
1134   if (failing())  return NULL; // Out of memory
1135 
1136   // Pre-compute the length of blocks and replace
1137   // long branches with short if machine supports it.
1138   shorten_branches(blk_starts, code_req, locs_req, stub_req);
1139 
1140   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1141   // class HandlerImpl is platform-specific and defined in the *.ad files.
1142   int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1143   int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
1144   stub_req += MAX_stubs_size;   // ensure per-stub margin
1145   code_req += MAX_inst_size;    // ensure per-instruction margin
1146 
1147   if (StressCodeBuffers)
1148     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1149 
1150   int total_req =
1151     const_req +
1152     code_req +
1153     pad_req +
1154     stub_req +
1155     exception_handler_req +
1156     deopt_handler_req;               // deopt handler
1157 
1158   if (has_method_handle_invokes())
1159     total_req += deopt_handler_req;  // deopt MH handler
1160 
1161   CodeBuffer* cb = code_buffer();
1162   cb->initialize(total_req, locs_req);
1163 
1164   // Have we run out of code space?
1165   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1166     C->record_failure("CodeCache is full");
1167     CompileBroker::handle_full_code_cache();
1168     return NULL;
1169   }
1170   // Configure the code buffer.
1171   cb->initialize_consts_size(const_req);
1172   cb->initialize_stubs_size(stub_req);
1173   cb->initialize_oop_recorder(env()->oop_recorder());
1174 
1175   // fill in the nop array for bundling computations
1176   MachNode *_nop_list[Bundle::_nop_count];
1177   Bundle::initialize_nops(_nop_list, this);
1178 
1179   return cb;
1180 }
1181 
1182 //------------------------------fill_buffer------------------------------------
1183 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1184   // blk_starts[] contains offsets calculated during short branches processing,
1185   // offsets should not be increased during following steps.
1186 
1187   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1188   // of a loop. It is used to determine the padding for loop alignment.
1189   compute_loop_first_inst_sizes();
1190 
1191   // Create oopmap set.
1192   _oop_map_set = new OopMapSet();
1193 
1194   // !!!!! This preserves old handling of oopmaps for now
1195   debug_info()->set_oopmaps(_oop_map_set);
1196 
1197   uint nblocks  = _cfg->number_of_blocks();
1198   // Count and start of implicit null check instructions
1199   uint inct_cnt = 0;
1200   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1201 
1202   // Count and start of calls
1203   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1204 
1205   uint  return_offset = 0;
1206   int nop_size = (new MachNopNode())->size(_regalloc);
1207 
1208   int previous_offset = 0;
1209   int current_offset  = 0;
1210   int last_call_offset = -1;
1211   int last_avoid_back_to_back_offset = -1;
1212 #ifdef ASSERT
1213   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1214   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1215   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1216   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1217 #endif
1218 
1219   // Create an array of unused labels, one for each basic block, if printing is enabled
1220 #ifndef PRODUCT
1221   int *node_offsets      = NULL;
1222   uint node_offset_limit = unique();
1223 
1224   if (print_assembly())
1225     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1226 #endif
1227 
1228   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1229 
1230   // Emit the constant table.
1231   if (has_mach_constant_base_node()) {
1232     constant_table().emit(*cb);
1233   }
1234 
1235   // Create an array of labels, one for each basic block
1236   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1237   for (uint i=0; i <= nblocks; i++) {
1238     blk_labels[i].init();
1239   }
1240 
1241   // ------------------
1242   // Now fill in the code buffer
1243   Node *delay_slot = NULL;
1244 
1245   for (uint i = 0; i < nblocks; i++) {
1246     Block* block = _cfg->get_block(i);
1247     Node* head = block->head();
1248 
1249     // If this block needs to start aligned (i.e, can be reached other
1250     // than by falling-thru from the previous block), then force the
1251     // start of a new bundle.
1252     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1253       cb->flush_bundle(true);
1254     }
1255 
1256 #ifdef ASSERT
1257     if (!block->is_connector()) {
1258       stringStream st;
1259       block->dump_head(_cfg, &st);
1260       MacroAssembler(cb).block_comment(st.as_string());
1261     }
1262     jmp_target[i] = 0;
1263     jmp_offset[i] = 0;
1264     jmp_size[i]   = 0;
1265     jmp_rule[i]   = 0;
1266 #endif
1267     int blk_offset = current_offset;
1268 
1269     // Define the label at the beginning of the basic block
1270     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1271 
1272     uint last_inst = block->number_of_nodes();
1273 
1274     // Emit block normally, except for last instruction.
1275     // Emit means "dump code bits into code buffer".
1276     for (uint j = 0; j<last_inst; j++) {
1277 
1278       // Get the node
1279       Node* n = block->get_node(j);
1280 
1281       // See if delay slots are supported
1282       if (valid_bundle_info(n) &&
1283           node_bundling(n)->used_in_unconditional_delay()) {
1284         assert(delay_slot == NULL, "no use of delay slot node");
1285         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1286 
1287         delay_slot = n;
1288         continue;
1289       }
1290 
1291       // If this starts a new instruction group, then flush the current one
1292       // (but allow split bundles)
1293       if (Pipeline::requires_bundling() && starts_bundle(n))
1294         cb->flush_bundle(false);
1295 
1296       // The following logic is duplicated in the code ifdeffed for
1297       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1298       // should be factored out.  Or maybe dispersed to the nodes?
1299 
1300       // Special handling for SafePoint/Call Nodes
1301       bool is_mcall = false;
1302       if (n->is_Mach()) {
1303         MachNode *mach = n->as_Mach();
1304         is_mcall = n->is_MachCall();
1305         bool is_sfn = n->is_MachSafePoint();
1306 
1307         // If this requires all previous instructions be flushed, then do so
1308         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1309           cb->flush_bundle(true);
1310           current_offset = cb->insts_size();
1311         }
1312 
1313         // A padding may be needed again since a previous instruction
1314         // could be moved to delay slot.
1315 
1316         // align the instruction if necessary
1317         int padding = mach->compute_padding(current_offset);
1318         // Make sure safepoint node for polling is distinct from a call's
1319         // return by adding a nop if needed.
1320         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1321           padding = nop_size;
1322         }
1323         if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1324             current_offset == last_avoid_back_to_back_offset) {
1325           // Avoid back to back some instructions.
1326           padding = nop_size;
1327         }
1328 
1329         if(padding > 0) {
1330           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1331           int nops_cnt = padding / nop_size;
1332           MachNode *nop = new MachNopNode(nops_cnt);
1333           block->insert_node(nop, j++);
1334           last_inst++;
1335           _cfg->map_node_to_block(nop, block);
1336           nop->emit(*cb, _regalloc);
1337           cb->flush_bundle(true);
1338           current_offset = cb->insts_size();
1339         }
1340 
1341         // Remember the start of the last call in a basic block
1342         if (is_mcall) {
1343           MachCallNode *mcall = mach->as_MachCall();
1344 
1345           // This destination address is NOT PC-relative
1346           mcall->method_set((intptr_t)mcall->entry_point());
1347 
1348           // Save the return address
1349           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1350 
1351           if (mcall->is_MachCallLeaf()) {
1352             is_mcall = false;
1353             is_sfn = false;
1354           }
1355         }
1356 
1357         // sfn will be valid whenever mcall is valid now because of inheritance
1358         if (is_sfn || is_mcall) {
1359 
1360           // Handle special safepoint nodes for synchronization
1361           if (!is_mcall) {
1362             MachSafePointNode *sfn = mach->as_MachSafePoint();
1363             // !!!!! Stubs only need an oopmap right now, so bail out
1364             if (sfn->jvms()->method() == NULL) {
1365               // Write the oopmap directly to the code blob??!!
1366 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1367               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1368 #             endif
1369               continue;
1370             }
1371           } // End synchronization
1372 
1373           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1374                                            current_offset);
1375           Process_OopMap_Node(mach, current_offset);
1376         } // End if safepoint
1377 
1378         // If this is a null check, then add the start of the previous instruction to the list
1379         else if( mach->is_MachNullCheck() ) {
1380           inct_starts[inct_cnt++] = previous_offset;
1381         }
1382 
1383         // If this is a branch, then fill in the label with the target BB's label
1384         else if (mach->is_MachBranch()) {
1385           // This requires the TRUE branch target be in succs[0]
1386           uint block_num = block->non_connector_successor(0)->_pre_order;
1387 
1388           // Try to replace long branch if delay slot is not used,
1389           // it is mostly for back branches since forward branch's
1390           // distance is not updated yet.
1391           bool delay_slot_is_used = valid_bundle_info(n) &&
1392                                     node_bundling(n)->use_unconditional_delay();
1393           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1394            assert(delay_slot == NULL, "not expecting delay slot node");
1395            int br_size = n->size(_regalloc);
1396             int offset = blk_starts[block_num] - current_offset;
1397             if (block_num >= i) {
1398               // Current and following block's offset are not
1399               // finalized yet, adjust distance by the difference
1400               // between calculated and final offsets of current block.
1401               offset -= (blk_starts[i] - blk_offset);
1402             }
1403             // In the following code a nop could be inserted before
1404             // the branch which will increase the backward distance.
1405             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1406             if (needs_padding && offset <= 0)
1407               offset -= nop_size;
1408 
1409             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1410               // We've got a winner.  Replace this branch.
1411               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1412 
1413               // Update the jmp_size.
1414               int new_size = replacement->size(_regalloc);
1415               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1416               // Insert padding between avoid_back_to_back branches.
1417               if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1418                 MachNode *nop = new MachNopNode();
1419                 block->insert_node(nop, j++);
1420                 _cfg->map_node_to_block(nop, block);
1421                 last_inst++;
1422                 nop->emit(*cb, _regalloc);
1423                 cb->flush_bundle(true);
1424                 current_offset = cb->insts_size();
1425               }
1426 #ifdef ASSERT
1427               jmp_target[i] = block_num;
1428               jmp_offset[i] = current_offset - blk_offset;
1429               jmp_size[i]   = new_size;
1430               jmp_rule[i]   = mach->rule();
1431 #endif
1432               block->map_node(replacement, j);
1433               mach->subsume_by(replacement, C);
1434               n    = replacement;
1435               mach = replacement;
1436             }
1437           }
1438           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1439         } else if (mach->ideal_Opcode() == Op_Jump) {
1440           for (uint h = 0; h < block->_num_succs; h++) {
1441             Block* succs_block = block->_succs[h];
1442             for (uint j = 1; j < succs_block->num_preds(); j++) {
1443               Node* jpn = succs_block->pred(j);
1444               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1445                 uint block_num = succs_block->non_connector()->_pre_order;
1446                 Label *blkLabel = &blk_labels[block_num];
1447                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1448               }
1449             }
1450           }
1451         }
1452 #ifdef ASSERT
1453         // Check that oop-store precedes the card-mark
1454         else if (mach->ideal_Opcode() == Op_StoreCM) {
1455           uint storeCM_idx = j;
1456           int count = 0;
1457           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1458             Node *oop_store = mach->in(prec);  // Precedence edge
1459             if (oop_store == NULL) continue;
1460             count++;
1461             uint i4;
1462             for (i4 = 0; i4 < last_inst; ++i4) {
1463               if (block->get_node(i4) == oop_store) {
1464                 break;
1465               }
1466             }
1467             // Note: This test can provide a false failure if other precedence
1468             // edges have been added to the storeCMNode.
1469             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1470           }
1471           assert(count > 0, "storeCM expects at least one precedence edge");
1472         }
1473 #endif
1474         else if (!n->is_Proj()) {
1475           // Remember the beginning of the previous instruction, in case
1476           // it's followed by a flag-kill and a null-check.  Happens on
1477           // Intel all the time, with add-to-memory kind of opcodes.
1478           previous_offset = current_offset;
1479         }
1480 
1481         // Not an else-if!
1482         // If this is a trap based cmp then add its offset to the list.
1483         if (mach->is_TrapBasedCheckNode()) {
1484           inct_starts[inct_cnt++] = current_offset;
1485         }
1486       }
1487 
1488       // Verify that there is sufficient space remaining
1489       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1490       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1491         C->record_failure("CodeCache is full");
1492         CompileBroker::handle_full_code_cache();
1493         return;
1494       }
1495 
1496       // Save the offset for the listing
1497 #ifndef PRODUCT
1498       if (node_offsets && n->_idx < node_offset_limit)
1499         node_offsets[n->_idx] = cb->insts_size();
1500 #endif
1501 
1502       // "Normal" instruction case
1503       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1504       n->emit(*cb, _regalloc);
1505       current_offset  = cb->insts_size();
1506 
1507 #ifdef ASSERT
1508       if (n->size(_regalloc) < (current_offset-instr_offset)) {
1509         n->dump();
1510         assert(false, "wrong size of mach node");
1511       }
1512 #endif
1513       non_safepoints.observe_instruction(n, current_offset);
1514 
1515       // mcall is last "call" that can be a safepoint
1516       // record it so we can see if a poll will directly follow it
1517       // in which case we'll need a pad to make the PcDesc sites unique
1518       // see  5010568. This can be slightly inaccurate but conservative
1519       // in the case that return address is not actually at current_offset.
1520       // This is a small price to pay.
1521 
1522       if (is_mcall) {
1523         last_call_offset = current_offset;
1524       }
1525 
1526       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1527         // Avoid back to back some instructions.
1528         last_avoid_back_to_back_offset = current_offset;
1529       }
1530 
1531       // See if this instruction has a delay slot
1532       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1533         assert(delay_slot != NULL, "expecting delay slot node");
1534 
1535         // Back up 1 instruction
1536         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1537 
1538         // Save the offset for the listing
1539 #ifndef PRODUCT
1540         if (node_offsets && delay_slot->_idx < node_offset_limit)
1541           node_offsets[delay_slot->_idx] = cb->insts_size();
1542 #endif
1543 
1544         // Support a SafePoint in the delay slot
1545         if (delay_slot->is_MachSafePoint()) {
1546           MachNode *mach = delay_slot->as_Mach();
1547           // !!!!! Stubs only need an oopmap right now, so bail out
1548           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1549             // Write the oopmap directly to the code blob??!!
1550 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1551             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1552 #           endif
1553             delay_slot = NULL;
1554             continue;
1555           }
1556 
1557           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1558           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1559                                            adjusted_offset);
1560           // Generate an OopMap entry
1561           Process_OopMap_Node(mach, adjusted_offset);
1562         }
1563 
1564         // Insert the delay slot instruction
1565         delay_slot->emit(*cb, _regalloc);
1566 
1567         // Don't reuse it
1568         delay_slot = NULL;
1569       }
1570 
1571     } // End for all instructions in block
1572 
1573     // If the next block is the top of a loop, pad this block out to align
1574     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1575     if (i < nblocks-1) {
1576       Block *nb = _cfg->get_block(i + 1);
1577       int padding = nb->alignment_padding(current_offset);
1578       if( padding > 0 ) {
1579         MachNode *nop = new MachNopNode(padding / nop_size);
1580         block->insert_node(nop, block->number_of_nodes());
1581         _cfg->map_node_to_block(nop, block);
1582         nop->emit(*cb, _regalloc);
1583         current_offset = cb->insts_size();
1584       }
1585     }
1586     // Verify that the distance for generated before forward
1587     // short branches is still valid.
1588     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1589 
1590     // Save new block start offset
1591     blk_starts[i] = blk_offset;
1592   } // End of for all blocks
1593   blk_starts[nblocks] = current_offset;
1594 
1595   non_safepoints.flush_at_end();
1596 
1597   // Offset too large?
1598   if (failing())  return;
1599 
1600   // Define a pseudo-label at the end of the code
1601   MacroAssembler(cb).bind( blk_labels[nblocks] );
1602 
1603   // Compute the size of the first block
1604   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1605 
1606   assert(cb->insts_size() < 500000, "method is unreasonably large");
1607 
1608 #ifdef ASSERT
1609   for (uint i = 0; i < nblocks; i++) { // For all blocks
1610     if (jmp_target[i] != 0) {
1611       int br_size = jmp_size[i];
1612       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1613       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1614         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1615         assert(false, "Displacement too large for short jmp");
1616       }
1617     }
1618   }
1619 #endif
1620 
1621 #ifndef PRODUCT
1622   // Information on the size of the method, without the extraneous code
1623   Scheduling::increment_method_size(cb->insts_size());
1624 #endif
1625 
1626   // ------------------
1627   // Fill in exception table entries.
1628   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1629 
1630   // Only java methods have exception handlers and deopt handlers
1631   // class HandlerImpl is platform-specific and defined in the *.ad files.
1632   if (_method) {
1633     // Emit the exception handler code.
1634     _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
1635     // Emit the deopt handler code.
1636     _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
1637 
1638     // Emit the MethodHandle deopt handler code (if required).
1639     if (has_method_handle_invokes()) {
1640       // We can use the same code as for the normal deopt handler, we
1641       // just need a different entry point address.
1642       _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
1643     }
1644   }
1645 
1646   // One last check for failed CodeBuffer::expand:
1647   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1648     C->record_failure("CodeCache is full");
1649     CompileBroker::handle_full_code_cache();
1650     return;
1651   }
1652 
1653 #ifndef PRODUCT
1654   // Dump the assembly code, including basic-block numbers
1655   if (print_assembly()) {
1656     ttyLocker ttyl;  // keep the following output all in one block
1657     if (!VMThread::should_terminate()) {  // test this under the tty lock
1658       // This output goes directly to the tty, not the compiler log.
1659       // To enable tools to match it up with the compilation activity,
1660       // be sure to tag this tty output with the compile ID.
1661       if (xtty != NULL) {
1662         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1663                    is_osr_compilation()    ? " compile_kind='osr'" :
1664                    "");
1665       }
1666       if (method() != NULL) {
1667         method()->print_metadata();
1668       }
1669       dump_asm(node_offsets, node_offset_limit);
1670       if (xtty != NULL) {
1671         xtty->tail("opto_assembly");
1672       }
1673     }
1674   }
1675 #endif
1676 
1677 }
1678 
1679 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1680   _inc_table.set_size(cnt);
1681 
1682   uint inct_cnt = 0;
1683   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1684     Block* block = _cfg->get_block(i);
1685     Node *n = NULL;
1686     int j;
1687 
1688     // Find the branch; ignore trailing NOPs.
1689     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1690       n = block->get_node(j);
1691       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1692         break;
1693       }
1694     }
1695 
1696     // If we didn't find anything, continue
1697     if (j < 0) {
1698       continue;
1699     }
1700 
1701     // Compute ExceptionHandlerTable subtable entry and add it
1702     // (skip empty blocks)
1703     if (n->is_Catch()) {
1704 
1705       // Get the offset of the return from the call
1706       uint call_return = call_returns[block->_pre_order];
1707 #ifdef ASSERT
1708       assert( call_return > 0, "no call seen for this basic block" );
1709       while (block->get_node(--j)->is_MachProj()) ;
1710       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1711 #endif
1712       // last instruction is a CatchNode, find it's CatchProjNodes
1713       int nof_succs = block->_num_succs;
1714       // allocate space
1715       GrowableArray<intptr_t> handler_bcis(nof_succs);
1716       GrowableArray<intptr_t> handler_pcos(nof_succs);
1717       // iterate through all successors
1718       for (int j = 0; j < nof_succs; j++) {
1719         Block* s = block->_succs[j];
1720         bool found_p = false;
1721         for (uint k = 1; k < s->num_preds(); k++) {
1722           Node* pk = s->pred(k);
1723           if (pk->is_CatchProj() && pk->in(0) == n) {
1724             const CatchProjNode* p = pk->as_CatchProj();
1725             found_p = true;
1726             // add the corresponding handler bci & pco information
1727             if (p->_con != CatchProjNode::fall_through_index) {
1728               // p leads to an exception handler (and is not fall through)
1729               assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
1730               // no duplicates, please
1731               if (!handler_bcis.contains(p->handler_bci())) {
1732                 uint block_num = s->non_connector()->_pre_order;
1733                 handler_bcis.append(p->handler_bci());
1734                 handler_pcos.append(blk_labels[block_num].loc_pos());
1735               }
1736             }
1737           }
1738         }
1739         assert(found_p, "no matching predecessor found");
1740         // Note:  Due to empty block removal, one block may have
1741         // several CatchProj inputs, from the same Catch.
1742       }
1743 
1744       // Set the offset of the return from the call
1745       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1746       continue;
1747     }
1748 
1749     // Handle implicit null exception table updates
1750     if (n->is_MachNullCheck()) {
1751       uint block_num = block->non_connector_successor(0)->_pre_order;
1752       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1753       continue;
1754     }
1755     // Handle implicit exception table updates: trap instructions.
1756     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1757       uint block_num = block->non_connector_successor(0)->_pre_order;
1758       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1759       continue;
1760     }
1761   } // End of for all blocks fill in exception table entries
1762 }
1763 
1764 // Static Variables
1765 #ifndef PRODUCT
1766 uint Scheduling::_total_nop_size = 0;
1767 uint Scheduling::_total_method_size = 0;
1768 uint Scheduling::_total_branches = 0;
1769 uint Scheduling::_total_unconditional_delays = 0;
1770 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1771 #endif
1772 
1773 // Initializer for class Scheduling
1774 
1775 Scheduling::Scheduling(Arena *arena, Compile &compile)
1776   : _arena(arena),
1777     _cfg(compile.cfg()),
1778     _regalloc(compile.regalloc()),
1779     _reg_node(arena),
1780     _bundle_instr_count(0),
1781     _bundle_cycle_number(0),
1782     _scheduled(arena),
1783     _available(arena),
1784     _next_node(NULL),
1785     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1786     _pinch_free_list(arena)
1787 #ifndef PRODUCT
1788   , _branches(0)
1789   , _unconditional_delays(0)
1790 #endif
1791 {
1792   // Create a MachNopNode
1793   _nop = new MachNopNode();
1794 
1795   // Now that the nops are in the array, save the count
1796   // (but allow entries for the nops)
1797   _node_bundling_limit = compile.unique();
1798   uint node_max = _regalloc->node_regs_max_index();
1799 
1800   compile.set_node_bundling_limit(_node_bundling_limit);
1801 
1802   // This one is persistent within the Compile class
1803   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1804 
1805   // Allocate space for fixed-size arrays
1806   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1807   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1808   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1809 
1810   // Clear the arrays
1811   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1812   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1813   memset(_uses,               0, node_max * sizeof(short));
1814   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1815 
1816   // Clear the bundling information
1817   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1818 
1819   // Get the last node
1820   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1821 
1822   _next_node = block->get_node(block->number_of_nodes() - 1);
1823 }
1824 
1825 #ifndef PRODUCT
1826 // Scheduling destructor
1827 Scheduling::~Scheduling() {
1828   _total_branches             += _branches;
1829   _total_unconditional_delays += _unconditional_delays;
1830 }
1831 #endif
1832 
1833 // Step ahead "i" cycles
1834 void Scheduling::step(uint i) {
1835 
1836   Bundle *bundle = node_bundling(_next_node);
1837   bundle->set_starts_bundle();
1838 
1839   // Update the bundle record, but leave the flags information alone
1840   if (_bundle_instr_count > 0) {
1841     bundle->set_instr_count(_bundle_instr_count);
1842     bundle->set_resources_used(_bundle_use.resourcesUsed());
1843   }
1844 
1845   // Update the state information
1846   _bundle_instr_count = 0;
1847   _bundle_cycle_number += i;
1848   _bundle_use.step(i);
1849 }
1850 
1851 void Scheduling::step_and_clear() {
1852   Bundle *bundle = node_bundling(_next_node);
1853   bundle->set_starts_bundle();
1854 
1855   // Update the bundle record
1856   if (_bundle_instr_count > 0) {
1857     bundle->set_instr_count(_bundle_instr_count);
1858     bundle->set_resources_used(_bundle_use.resourcesUsed());
1859 
1860     _bundle_cycle_number += 1;
1861   }
1862 
1863   // Clear the bundling information
1864   _bundle_instr_count = 0;
1865   _bundle_use.reset();
1866 
1867   memcpy(_bundle_use_elements,
1868     Pipeline_Use::elaborated_elements,
1869     sizeof(Pipeline_Use::elaborated_elements));
1870 }
1871 
1872 // Perform instruction scheduling and bundling over the sequence of
1873 // instructions in backwards order.
1874 void Compile::ScheduleAndBundle() {
1875 
1876   // Don't optimize this if it isn't a method
1877   if (!_method)
1878     return;
1879 
1880   // Don't optimize this if scheduling is disabled
1881   if (!do_scheduling())
1882     return;
1883 
1884   // Scheduling code works only with pairs (8 bytes) maximum.
1885   if (max_vector_size() > 8)
1886     return;
1887 
1888   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1889 
1890   // Create a data structure for all the scheduling information
1891   Scheduling scheduling(Thread::current()->resource_area(), *this);
1892 
1893   // Walk backwards over each basic block, computing the needed alignment
1894   // Walk over all the basic blocks
1895   scheduling.DoScheduling();
1896 }
1897 
1898 // Compute the latency of all the instructions.  This is fairly simple,
1899 // because we already have a legal ordering.  Walk over the instructions
1900 // from first to last, and compute the latency of the instruction based
1901 // on the latency of the preceding instruction(s).
1902 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1903 #ifndef PRODUCT
1904   if (_cfg->C->trace_opto_output())
1905     tty->print("# -> ComputeLocalLatenciesForward\n");
1906 #endif
1907 
1908   // Walk over all the schedulable instructions
1909   for( uint j=_bb_start; j < _bb_end; j++ ) {
1910 
1911     // This is a kludge, forcing all latency calculations to start at 1.
1912     // Used to allow latency 0 to force an instruction to the beginning
1913     // of the bb
1914     uint latency = 1;
1915     Node *use = bb->get_node(j);
1916     uint nlen = use->len();
1917 
1918     // Walk over all the inputs
1919     for ( uint k=0; k < nlen; k++ ) {
1920       Node *def = use->in(k);
1921       if (!def)
1922         continue;
1923 
1924       uint l = _node_latency[def->_idx] + use->latency(k);
1925       if (latency < l)
1926         latency = l;
1927     }
1928 
1929     _node_latency[use->_idx] = latency;
1930 
1931 #ifndef PRODUCT
1932     if (_cfg->C->trace_opto_output()) {
1933       tty->print("# latency %4d: ", latency);
1934       use->dump();
1935     }
1936 #endif
1937   }
1938 
1939 #ifndef PRODUCT
1940   if (_cfg->C->trace_opto_output())
1941     tty->print("# <- ComputeLocalLatenciesForward\n");
1942 #endif
1943 
1944 } // end ComputeLocalLatenciesForward
1945 
1946 // See if this node fits into the present instruction bundle
1947 bool Scheduling::NodeFitsInBundle(Node *n) {
1948   uint n_idx = n->_idx;
1949 
1950   // If this is the unconditional delay instruction, then it fits
1951   if (n == _unconditional_delay_slot) {
1952 #ifndef PRODUCT
1953     if (_cfg->C->trace_opto_output())
1954       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1955 #endif
1956     return (true);
1957   }
1958 
1959   // If the node cannot be scheduled this cycle, skip it
1960   if (_current_latency[n_idx] > _bundle_cycle_number) {
1961 #ifndef PRODUCT
1962     if (_cfg->C->trace_opto_output())
1963       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1964         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1965 #endif
1966     return (false);
1967   }
1968 
1969   const Pipeline *node_pipeline = n->pipeline();
1970 
1971   uint instruction_count = node_pipeline->instructionCount();
1972   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1973     instruction_count = 0;
1974   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1975     instruction_count++;
1976 
1977   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1978 #ifndef PRODUCT
1979     if (_cfg->C->trace_opto_output())
1980       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1981         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1982 #endif
1983     return (false);
1984   }
1985 
1986   // Don't allow non-machine nodes to be handled this way
1987   if (!n->is_Mach() && instruction_count == 0)
1988     return (false);
1989 
1990   // See if there is any overlap
1991   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1992 
1993   if (delay > 0) {
1994 #ifndef PRODUCT
1995     if (_cfg->C->trace_opto_output())
1996       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1997 #endif
1998     return false;
1999   }
2000 
2001 #ifndef PRODUCT
2002   if (_cfg->C->trace_opto_output())
2003     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2004 #endif
2005 
2006   return true;
2007 }
2008 
2009 Node * Scheduling::ChooseNodeToBundle() {
2010   uint siz = _available.size();
2011 
2012   if (siz == 0) {
2013 
2014 #ifndef PRODUCT
2015     if (_cfg->C->trace_opto_output())
2016       tty->print("#   ChooseNodeToBundle: NULL\n");
2017 #endif
2018     return (NULL);
2019   }
2020 
2021   // Fast path, if only 1 instruction in the bundle
2022   if (siz == 1) {
2023 #ifndef PRODUCT
2024     if (_cfg->C->trace_opto_output()) {
2025       tty->print("#   ChooseNodeToBundle (only 1): ");
2026       _available[0]->dump();
2027     }
2028 #endif
2029     return (_available[0]);
2030   }
2031 
2032   // Don't bother, if the bundle is already full
2033   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2034     for ( uint i = 0; i < siz; i++ ) {
2035       Node *n = _available[i];
2036 
2037       // Skip projections, we'll handle them another way
2038       if (n->is_Proj())
2039         continue;
2040 
2041       // This presupposed that instructions are inserted into the
2042       // available list in a legality order; i.e. instructions that
2043       // must be inserted first are at the head of the list
2044       if (NodeFitsInBundle(n)) {
2045 #ifndef PRODUCT
2046         if (_cfg->C->trace_opto_output()) {
2047           tty->print("#   ChooseNodeToBundle: ");
2048           n->dump();
2049         }
2050 #endif
2051         return (n);
2052       }
2053     }
2054   }
2055 
2056   // Nothing fits in this bundle, choose the highest priority
2057 #ifndef PRODUCT
2058   if (_cfg->C->trace_opto_output()) {
2059     tty->print("#   ChooseNodeToBundle: ");
2060     _available[0]->dump();
2061   }
2062 #endif
2063 
2064   return _available[0];
2065 }
2066 
2067 void Scheduling::AddNodeToAvailableList(Node *n) {
2068   assert( !n->is_Proj(), "projections never directly made available" );
2069 #ifndef PRODUCT
2070   if (_cfg->C->trace_opto_output()) {
2071     tty->print("#   AddNodeToAvailableList: ");
2072     n->dump();
2073   }
2074 #endif
2075 
2076   int latency = _current_latency[n->_idx];
2077 
2078   // Insert in latency order (insertion sort)
2079   uint i;
2080   for ( i=0; i < _available.size(); i++ )
2081     if (_current_latency[_available[i]->_idx] > latency)
2082       break;
2083 
2084   // Special Check for compares following branches
2085   if( n->is_Mach() && _scheduled.size() > 0 ) {
2086     int op = n->as_Mach()->ideal_Opcode();
2087     Node *last = _scheduled[0];
2088     if( last->is_MachIf() && last->in(1) == n &&
2089         ( op == Op_CmpI ||
2090           op == Op_CmpU ||
2091           op == Op_CmpP ||
2092           op == Op_CmpF ||
2093           op == Op_CmpD ||
2094           op == Op_CmpL ) ) {
2095 
2096       // Recalculate position, moving to front of same latency
2097       for ( i=0 ; i < _available.size(); i++ )
2098         if (_current_latency[_available[i]->_idx] >= latency)
2099           break;
2100     }
2101   }
2102 
2103   // Insert the node in the available list
2104   _available.insert(i, n);
2105 
2106 #ifndef PRODUCT
2107   if (_cfg->C->trace_opto_output())
2108     dump_available();
2109 #endif
2110 }
2111 
2112 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2113   for ( uint i=0; i < n->len(); i++ ) {
2114     Node *def = n->in(i);
2115     if (!def) continue;
2116     if( def->is_Proj() )        // If this is a machine projection, then
2117       def = def->in(0);         // propagate usage thru to the base instruction
2118 
2119     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2120       continue;
2121     }
2122 
2123     // Compute the latency
2124     uint l = _bundle_cycle_number + n->latency(i);
2125     if (_current_latency[def->_idx] < l)
2126       _current_latency[def->_idx] = l;
2127 
2128     // If this does not have uses then schedule it
2129     if ((--_uses[def->_idx]) == 0)
2130       AddNodeToAvailableList(def);
2131   }
2132 }
2133 
2134 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2135 #ifndef PRODUCT
2136   if (_cfg->C->trace_opto_output()) {
2137     tty->print("#   AddNodeToBundle: ");
2138     n->dump();
2139   }
2140 #endif
2141 
2142   // Remove this from the available list
2143   uint i;
2144   for (i = 0; i < _available.size(); i++)
2145     if (_available[i] == n)
2146       break;
2147   assert(i < _available.size(), "entry in _available list not found");
2148   _available.remove(i);
2149 
2150   // See if this fits in the current bundle
2151   const Pipeline *node_pipeline = n->pipeline();
2152   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2153 
2154   // Check for instructions to be placed in the delay slot. We
2155   // do this before we actually schedule the current instruction,
2156   // because the delay slot follows the current instruction.
2157   if (Pipeline::_branch_has_delay_slot &&
2158       node_pipeline->hasBranchDelay() &&
2159       !_unconditional_delay_slot) {
2160 
2161     uint siz = _available.size();
2162 
2163     // Conditional branches can support an instruction that
2164     // is unconditionally executed and not dependent by the
2165     // branch, OR a conditionally executed instruction if
2166     // the branch is taken.  In practice, this means that
2167     // the first instruction at the branch target is
2168     // copied to the delay slot, and the branch goes to
2169     // the instruction after that at the branch target
2170     if ( n->is_MachBranch() ) {
2171 
2172       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2173       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2174 
2175 #ifndef PRODUCT
2176       _branches++;
2177 #endif
2178 
2179       // At least 1 instruction is on the available list
2180       // that is not dependent on the branch
2181       for (uint i = 0; i < siz; i++) {
2182         Node *d = _available[i];
2183         const Pipeline *avail_pipeline = d->pipeline();
2184 
2185         // Don't allow safepoints in the branch shadow, that will
2186         // cause a number of difficulties
2187         if ( avail_pipeline->instructionCount() == 1 &&
2188             !avail_pipeline->hasMultipleBundles() &&
2189             !avail_pipeline->hasBranchDelay() &&
2190             Pipeline::instr_has_unit_size() &&
2191             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2192             NodeFitsInBundle(d) &&
2193             !node_bundling(d)->used_in_delay()) {
2194 
2195           if (d->is_Mach() && !d->is_MachSafePoint()) {
2196             // A node that fits in the delay slot was found, so we need to
2197             // set the appropriate bits in the bundle pipeline information so
2198             // that it correctly indicates resource usage.  Later, when we
2199             // attempt to add this instruction to the bundle, we will skip
2200             // setting the resource usage.
2201             _unconditional_delay_slot = d;
2202             node_bundling(n)->set_use_unconditional_delay();
2203             node_bundling(d)->set_used_in_unconditional_delay();
2204             _bundle_use.add_usage(avail_pipeline->resourceUse());
2205             _current_latency[d->_idx] = _bundle_cycle_number;
2206             _next_node = d;
2207             ++_bundle_instr_count;
2208 #ifndef PRODUCT
2209             _unconditional_delays++;
2210 #endif
2211             break;
2212           }
2213         }
2214       }
2215     }
2216 
2217     // No delay slot, add a nop to the usage
2218     if (!_unconditional_delay_slot) {
2219       // See if adding an instruction in the delay slot will overflow
2220       // the bundle.
2221       if (!NodeFitsInBundle(_nop)) {
2222 #ifndef PRODUCT
2223         if (_cfg->C->trace_opto_output())
2224           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2225 #endif
2226         step(1);
2227       }
2228 
2229       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2230       _next_node = _nop;
2231       ++_bundle_instr_count;
2232     }
2233 
2234     // See if the instruction in the delay slot requires a
2235     // step of the bundles
2236     if (!NodeFitsInBundle(n)) {
2237 #ifndef PRODUCT
2238         if (_cfg->C->trace_opto_output())
2239           tty->print("#  *** STEP(branch won't fit) ***\n");
2240 #endif
2241         // Update the state information
2242         _bundle_instr_count = 0;
2243         _bundle_cycle_number += 1;
2244         _bundle_use.step(1);
2245     }
2246   }
2247 
2248   // Get the number of instructions
2249   uint instruction_count = node_pipeline->instructionCount();
2250   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2251     instruction_count = 0;
2252 
2253   // Compute the latency information
2254   uint delay = 0;
2255 
2256   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2257     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2258     if (relative_latency < 0)
2259       relative_latency = 0;
2260 
2261     delay = _bundle_use.full_latency(relative_latency, node_usage);
2262 
2263     // Does not fit in this bundle, start a new one
2264     if (delay > 0) {
2265       step(delay);
2266 
2267 #ifndef PRODUCT
2268       if (_cfg->C->trace_opto_output())
2269         tty->print("#  *** STEP(%d) ***\n", delay);
2270 #endif
2271     }
2272   }
2273 
2274   // If this was placed in the delay slot, ignore it
2275   if (n != _unconditional_delay_slot) {
2276 
2277     if (delay == 0) {
2278       if (node_pipeline->hasMultipleBundles()) {
2279 #ifndef PRODUCT
2280         if (_cfg->C->trace_opto_output())
2281           tty->print("#  *** STEP(multiple instructions) ***\n");
2282 #endif
2283         step(1);
2284       }
2285 
2286       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2287 #ifndef PRODUCT
2288         if (_cfg->C->trace_opto_output())
2289           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2290             instruction_count + _bundle_instr_count,
2291             Pipeline::_max_instrs_per_cycle);
2292 #endif
2293         step(1);
2294       }
2295     }
2296 
2297     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2298       _bundle_instr_count++;
2299 
2300     // Set the node's latency
2301     _current_latency[n->_idx] = _bundle_cycle_number;
2302 
2303     // Now merge the functional unit information
2304     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2305       _bundle_use.add_usage(node_usage);
2306 
2307     // Increment the number of instructions in this bundle
2308     _bundle_instr_count += instruction_count;
2309 
2310     // Remember this node for later
2311     if (n->is_Mach())
2312       _next_node = n;
2313   }
2314 
2315   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2316   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2317   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2318   // into the block.  All other scheduled nodes get put in the schedule here.
2319   int op = n->Opcode();
2320   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2321       (op != Op_Node &&         // Not an unused antidepedence node and
2322        // not an unallocated boxlock
2323        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2324 
2325     // Push any trailing projections
2326     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2327       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2328         Node *foi = n->fast_out(i);
2329         if( foi->is_Proj() )
2330           _scheduled.push(foi);
2331       }
2332     }
2333 
2334     // Put the instruction in the schedule list
2335     _scheduled.push(n);
2336   }
2337 
2338 #ifndef PRODUCT
2339   if (_cfg->C->trace_opto_output())
2340     dump_available();
2341 #endif
2342 
2343   // Walk all the definitions, decrementing use counts, and
2344   // if a definition has a 0 use count, place it in the available list.
2345   DecrementUseCounts(n,bb);
2346 }
2347 
2348 // This method sets the use count within a basic block.  We will ignore all
2349 // uses outside the current basic block.  As we are doing a backwards walk,
2350 // any node we reach that has a use count of 0 may be scheduled.  This also
2351 // avoids the problem of cyclic references from phi nodes, as long as phi
2352 // nodes are at the front of the basic block.  This method also initializes
2353 // the available list to the set of instructions that have no uses within this
2354 // basic block.
2355 void Scheduling::ComputeUseCount(const Block *bb) {
2356 #ifndef PRODUCT
2357   if (_cfg->C->trace_opto_output())
2358     tty->print("# -> ComputeUseCount\n");
2359 #endif
2360 
2361   // Clear the list of available and scheduled instructions, just in case
2362   _available.clear();
2363   _scheduled.clear();
2364 
2365   // No delay slot specified
2366   _unconditional_delay_slot = NULL;
2367 
2368 #ifdef ASSERT
2369   for( uint i=0; i < bb->number_of_nodes(); i++ )
2370     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2371 #endif
2372 
2373   // Force the _uses count to never go to zero for unscheduable pieces
2374   // of the block
2375   for( uint k = 0; k < _bb_start; k++ )
2376     _uses[bb->get_node(k)->_idx] = 1;
2377   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2378     _uses[bb->get_node(l)->_idx] = 1;
2379 
2380   // Iterate backwards over the instructions in the block.  Don't count the
2381   // branch projections at end or the block header instructions.
2382   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2383     Node *n = bb->get_node(j);
2384     if( n->is_Proj() ) continue; // Projections handled another way
2385 
2386     // Account for all uses
2387     for ( uint k = 0; k < n->len(); k++ ) {
2388       Node *inp = n->in(k);
2389       if (!inp) continue;
2390       assert(inp != n, "no cycles allowed" );
2391       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2392         if (inp->is_Proj()) { // Skip through Proj's
2393           inp = inp->in(0);
2394         }
2395         ++_uses[inp->_idx];     // Count 1 block-local use
2396       }
2397     }
2398 
2399     // If this instruction has a 0 use count, then it is available
2400     if (!_uses[n->_idx]) {
2401       _current_latency[n->_idx] = _bundle_cycle_number;
2402       AddNodeToAvailableList(n);
2403     }
2404 
2405 #ifndef PRODUCT
2406     if (_cfg->C->trace_opto_output()) {
2407       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2408       n->dump();
2409     }
2410 #endif
2411   }
2412 
2413 #ifndef PRODUCT
2414   if (_cfg->C->trace_opto_output())
2415     tty->print("# <- ComputeUseCount\n");
2416 #endif
2417 }
2418 
2419 // This routine performs scheduling on each basic block in reverse order,
2420 // using instruction latencies and taking into account function unit
2421 // availability.
2422 void Scheduling::DoScheduling() {
2423 #ifndef PRODUCT
2424   if (_cfg->C->trace_opto_output())
2425     tty->print("# -> DoScheduling\n");
2426 #endif
2427 
2428   Block *succ_bb = NULL;
2429   Block *bb;
2430 
2431   // Walk over all the basic blocks in reverse order
2432   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2433     bb = _cfg->get_block(i);
2434 
2435 #ifndef PRODUCT
2436     if (_cfg->C->trace_opto_output()) {
2437       tty->print("#  Schedule BB#%03d (initial)\n", i);
2438       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2439         bb->get_node(j)->dump();
2440       }
2441     }
2442 #endif
2443 
2444     // On the head node, skip processing
2445     if (bb == _cfg->get_root_block()) {
2446       continue;
2447     }
2448 
2449     // Skip empty, connector blocks
2450     if (bb->is_connector())
2451       continue;
2452 
2453     // If the following block is not the sole successor of
2454     // this one, then reset the pipeline information
2455     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2456 #ifndef PRODUCT
2457       if (_cfg->C->trace_opto_output()) {
2458         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2459                    _next_node->_idx, _bundle_instr_count);
2460       }
2461 #endif
2462       step_and_clear();
2463     }
2464 
2465     // Leave untouched the starting instruction, any Phis, a CreateEx node
2466     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2467     _bb_end = bb->number_of_nodes()-1;
2468     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2469       Node *n = bb->get_node(_bb_start);
2470       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2471       // Also, MachIdealNodes do not get scheduled
2472       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2473       MachNode *mach = n->as_Mach();
2474       int iop = mach->ideal_Opcode();
2475       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2476       if( iop == Op_Con ) continue;      // Do not schedule Top
2477       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2478           mach->pipeline() == MachNode::pipeline_class() &&
2479           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2480         continue;
2481       break;                    // Funny loop structure to be sure...
2482     }
2483     // Compute last "interesting" instruction in block - last instruction we
2484     // might schedule.  _bb_end points just after last schedulable inst.  We
2485     // normally schedule conditional branches (despite them being forced last
2486     // in the block), because they have delay slots we can fill.  Calls all
2487     // have their delay slots filled in the template expansions, so we don't
2488     // bother scheduling them.
2489     Node *last = bb->get_node(_bb_end);
2490     // Ignore trailing NOPs.
2491     while (_bb_end > 0 && last->is_Mach() &&
2492            last->as_Mach()->ideal_Opcode() == Op_Con) {
2493       last = bb->get_node(--_bb_end);
2494     }
2495     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2496     if( last->is_Catch() ||
2497        // Exclude unreachable path case when Halt node is in a separate block.
2498        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2499       // There must be a prior call.  Skip it.
2500       while( !bb->get_node(--_bb_end)->is_MachCall() ) {
2501         assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
2502       }
2503     } else if( last->is_MachNullCheck() ) {
2504       // Backup so the last null-checked memory instruction is
2505       // outside the schedulable range. Skip over the nullcheck,
2506       // projection, and the memory nodes.
2507       Node *mem = last->in(1);
2508       do {
2509         _bb_end--;
2510       } while (mem != bb->get_node(_bb_end));
2511     } else {
2512       // Set _bb_end to point after last schedulable inst.
2513       _bb_end++;
2514     }
2515 
2516     assert( _bb_start <= _bb_end, "inverted block ends" );
2517 
2518     // Compute the register antidependencies for the basic block
2519     ComputeRegisterAntidependencies(bb);
2520     if (_cfg->C->failing())  return;  // too many D-U pinch points
2521 
2522     // Compute intra-bb latencies for the nodes
2523     ComputeLocalLatenciesForward(bb);
2524 
2525     // Compute the usage within the block, and set the list of all nodes
2526     // in the block that have no uses within the block.
2527     ComputeUseCount(bb);
2528 
2529     // Schedule the remaining instructions in the block
2530     while ( _available.size() > 0 ) {
2531       Node *n = ChooseNodeToBundle();
2532       guarantee(n != NULL, "no nodes available");
2533       AddNodeToBundle(n,bb);
2534     }
2535 
2536     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2537 #ifdef ASSERT
2538     for( uint l = _bb_start; l < _bb_end; l++ ) {
2539       Node *n = bb->get_node(l);
2540       uint m;
2541       for( m = 0; m < _bb_end-_bb_start; m++ )
2542         if( _scheduled[m] == n )
2543           break;
2544       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2545     }
2546 #endif
2547 
2548     // Now copy the instructions (in reverse order) back to the block
2549     for ( uint k = _bb_start; k < _bb_end; k++ )
2550       bb->map_node(_scheduled[_bb_end-k-1], k);
2551 
2552 #ifndef PRODUCT
2553     if (_cfg->C->trace_opto_output()) {
2554       tty->print("#  Schedule BB#%03d (final)\n", i);
2555       uint current = 0;
2556       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2557         Node *n = bb->get_node(j);
2558         if( valid_bundle_info(n) ) {
2559           Bundle *bundle = node_bundling(n);
2560           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2561             tty->print("*** Bundle: ");
2562             bundle->dump();
2563           }
2564           n->dump();
2565         }
2566       }
2567     }
2568 #endif
2569 #ifdef ASSERT
2570   verify_good_schedule(bb,"after block local scheduling");
2571 #endif
2572   }
2573 
2574 #ifndef PRODUCT
2575   if (_cfg->C->trace_opto_output())
2576     tty->print("# <- DoScheduling\n");
2577 #endif
2578 
2579   // Record final node-bundling array location
2580   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2581 
2582 } // end DoScheduling
2583 
2584 // Verify that no live-range used in the block is killed in the block by a
2585 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2586 
2587 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2588 static bool edge_from_to( Node *from, Node *to ) {
2589   for( uint i=0; i<from->len(); i++ )
2590     if( from->in(i) == to )
2591       return true;
2592   return false;
2593 }
2594 
2595 #ifdef ASSERT
2596 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2597   // Check for bad kills
2598   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2599     Node *prior_use = _reg_node[def];
2600     if( prior_use && !edge_from_to(prior_use,n) ) {
2601       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2602       n->dump();
2603       tty->print_cr("...");
2604       prior_use->dump();
2605       assert(edge_from_to(prior_use,n),msg);
2606     }
2607     _reg_node.map(def,NULL); // Kill live USEs
2608   }
2609 }
2610 
2611 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2612 
2613   // Zap to something reasonable for the verify code
2614   _reg_node.clear();
2615 
2616   // Walk over the block backwards.  Check to make sure each DEF doesn't
2617   // kill a live value (other than the one it's supposed to).  Add each
2618   // USE to the live set.
2619   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2620     Node *n = b->get_node(i);
2621     int n_op = n->Opcode();
2622     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2623       // Fat-proj kills a slew of registers
2624       RegMask rm = n->out_RegMask();// Make local copy
2625       while( rm.is_NotEmpty() ) {
2626         OptoReg::Name kill = rm.find_first_elem();
2627         rm.Remove(kill);
2628         verify_do_def( n, kill, msg );
2629       }
2630     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2631       // Get DEF'd registers the normal way
2632       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2633       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2634     }
2635 
2636     // Now make all USEs live
2637     for( uint i=1; i<n->req(); i++ ) {
2638       Node *def = n->in(i);
2639       assert(def != 0, "input edge required");
2640       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2641       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2642       if( OptoReg::is_valid(reg_lo) ) {
2643         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2644         _reg_node.map(reg_lo,n);
2645       }
2646       if( OptoReg::is_valid(reg_hi) ) {
2647         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2648         _reg_node.map(reg_hi,n);
2649       }
2650     }
2651 
2652   }
2653 
2654   // Zap to something reasonable for the Antidependence code
2655   _reg_node.clear();
2656 }
2657 #endif
2658 
2659 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2660 static void add_prec_edge_from_to( Node *from, Node *to ) {
2661   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2662     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2663     from = from->in(0);
2664   }
2665   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2666       !edge_from_to( from, to ) ) // Avoid duplicate edge
2667     from->add_prec(to);
2668 }
2669 
2670 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2671   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2672     return;
2673 
2674   Node *pinch = _reg_node[def_reg]; // Get pinch point
2675   if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2676       is_def ) {    // Check for a true def (not a kill)
2677     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2678     return;
2679   }
2680 
2681   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2682   debug_only( def = (Node*)0xdeadbeef; )
2683 
2684   // After some number of kills there _may_ be a later def
2685   Node *later_def = NULL;
2686 
2687   // Finding a kill requires a real pinch-point.
2688   // Check for not already having a pinch-point.
2689   // Pinch points are Op_Node's.
2690   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2691     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2692     if ( _pinch_free_list.size() > 0) {
2693       pinch = _pinch_free_list.pop();
2694     } else {
2695       pinch = new Node(1); // Pinch point to-be
2696     }
2697     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2698       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2699       return;
2700     }
2701     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2702     _reg_node.map(def_reg,pinch); // Record pinch-point
2703     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2704     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2705       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2706       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2707       later_def = NULL;           // and no later def
2708     }
2709     pinch->set_req(0,later_def);  // Hook later def so we can find it
2710   } else {                        // Else have valid pinch point
2711     if( pinch->in(0) )            // If there is a later-def
2712       later_def = pinch->in(0);   // Get it
2713   }
2714 
2715   // Add output-dependence edge from later def to kill
2716   if( later_def )               // If there is some original def
2717     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2718 
2719   // See if current kill is also a use, and so is forced to be the pinch-point.
2720   if( pinch->Opcode() == Op_Node ) {
2721     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2722     for( uint i=1; i<uses->req(); i++ ) {
2723       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2724           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2725         // Yes, found a use/kill pinch-point
2726         pinch->set_req(0,NULL);  //
2727         pinch->replace_by(kill); // Move anti-dep edges up
2728         pinch = kill;
2729         _reg_node.map(def_reg,pinch);
2730         return;
2731       }
2732     }
2733   }
2734 
2735   // Add edge from kill to pinch-point
2736   add_prec_edge_from_to(kill,pinch);
2737 }
2738 
2739 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2740   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2741     return;
2742   Node *pinch = _reg_node[use_reg]; // Get pinch point
2743   // Check for no later def_reg/kill in block
2744   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2745       // Use has to be block-local as well
2746       _cfg->get_block_for_node(use) == b) {
2747     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2748         pinch->req() == 1 ) {   // pinch not yet in block?
2749       pinch->del_req(0);        // yank pointer to later-def, also set flag
2750       // Insert the pinch-point in the block just after the last use
2751       b->insert_node(pinch, b->find_node(use) + 1);
2752       _bb_end++;                // Increase size scheduled region in block
2753     }
2754 
2755     add_prec_edge_from_to(pinch,use);
2756   }
2757 }
2758 
2759 // We insert antidependences between the reads and following write of
2760 // allocated registers to prevent illegal code motion. Hopefully, the
2761 // number of added references should be fairly small, especially as we
2762 // are only adding references within the current basic block.
2763 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2764 
2765 #ifdef ASSERT
2766   verify_good_schedule(b,"before block local scheduling");
2767 #endif
2768 
2769   // A valid schedule, for each register independently, is an endless cycle
2770   // of: a def, then some uses (connected to the def by true dependencies),
2771   // then some kills (defs with no uses), finally the cycle repeats with a new
2772   // def.  The uses are allowed to float relative to each other, as are the
2773   // kills.  No use is allowed to slide past a kill (or def).  This requires
2774   // antidependencies between all uses of a single def and all kills that
2775   // follow, up to the next def.  More edges are redundant, because later defs
2776   // & kills are already serialized with true or antidependencies.  To keep
2777   // the edge count down, we add a 'pinch point' node if there's more than
2778   // one use or more than one kill/def.
2779 
2780   // We add dependencies in one bottom-up pass.
2781 
2782   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2783 
2784   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2785   // register.  If not, we record the DEF/KILL in _reg_node, the
2786   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2787   // "pinch point", a new Node that's in the graph but not in the block.
2788   // We put edges from the prior and current DEF/KILLs to the pinch point.
2789   // We put the pinch point in _reg_node.  If there's already a pinch point
2790   // we merely add an edge from the current DEF/KILL to the pinch point.
2791 
2792   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2793   // put an edge from the pinch point to the USE.
2794 
2795   // To be expedient, the _reg_node array is pre-allocated for the whole
2796   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2797   // or a valid def/kill/pinch-point, or a leftover node from some prior
2798   // block.  Leftover node from some prior block is treated like a NULL (no
2799   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2800   // it being in the current block.
2801   bool fat_proj_seen = false;
2802   uint last_safept = _bb_end-1;
2803   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2804   Node* last_safept_node = end_node;
2805   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2806     Node *n = b->get_node(i);
2807     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2808     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2809       // Fat-proj kills a slew of registers
2810       // This can add edges to 'n' and obscure whether or not it was a def,
2811       // hence the is_def flag.
2812       fat_proj_seen = true;
2813       RegMask rm = n->out_RegMask();// Make local copy
2814       while( rm.is_NotEmpty() ) {
2815         OptoReg::Name kill = rm.find_first_elem();
2816         rm.Remove(kill);
2817         anti_do_def( b, n, kill, is_def );
2818       }
2819     } else {
2820       // Get DEF'd registers the normal way
2821       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2822       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2823     }
2824 
2825     // Kill projections on a branch should appear to occur on the
2826     // branch, not afterwards, so grab the masks from the projections
2827     // and process them.
2828     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2829       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2830         Node* use = n->fast_out(i);
2831         if (use->is_Proj()) {
2832           RegMask rm = use->out_RegMask();// Make local copy
2833           while( rm.is_NotEmpty() ) {
2834             OptoReg::Name kill = rm.find_first_elem();
2835             rm.Remove(kill);
2836             anti_do_def( b, n, kill, false );
2837           }
2838         }
2839       }
2840     }
2841 
2842     // Check each register used by this instruction for a following DEF/KILL
2843     // that must occur afterward and requires an anti-dependence edge.
2844     for( uint j=0; j<n->req(); j++ ) {
2845       Node *def = n->in(j);
2846       if( def ) {
2847         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2848         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2849         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2850       }
2851     }
2852     // Do not allow defs of new derived values to float above GC
2853     // points unless the base is definitely available at the GC point.
2854 
2855     Node *m = b->get_node(i);
2856 
2857     // Add precedence edge from following safepoint to use of derived pointer
2858     if( last_safept_node != end_node &&
2859         m != last_safept_node) {
2860       for (uint k = 1; k < m->req(); k++) {
2861         const Type *t = m->in(k)->bottom_type();
2862         if( t->isa_oop_ptr() &&
2863             t->is_ptr()->offset() != 0 ) {
2864           last_safept_node->add_prec( m );
2865           break;
2866         }
2867       }
2868     }
2869 
2870     if( n->jvms() ) {           // Precedence edge from derived to safept
2871       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2872       if( b->get_node(last_safept) != last_safept_node ) {
2873         last_safept = b->find_node(last_safept_node);
2874       }
2875       for( uint j=last_safept; j > i; j-- ) {
2876         Node *mach = b->get_node(j);
2877         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2878           mach->add_prec( n );
2879       }
2880       last_safept = i;
2881       last_safept_node = m;
2882     }
2883   }
2884 
2885   if (fat_proj_seen) {
2886     // Garbage collect pinch nodes that were not consumed.
2887     // They are usually created by a fat kill MachProj for a call.
2888     garbage_collect_pinch_nodes();
2889   }
2890 }
2891 
2892 // Garbage collect pinch nodes for reuse by other blocks.
2893 //
2894 // The block scheduler's insertion of anti-dependence
2895 // edges creates many pinch nodes when the block contains
2896 // 2 or more Calls.  A pinch node is used to prevent a
2897 // combinatorial explosion of edges.  If a set of kills for a
2898 // register is anti-dependent on a set of uses (or defs), rather
2899 // than adding an edge in the graph between each pair of kill
2900 // and use (or def), a pinch is inserted between them:
2901 //
2902 //            use1   use2  use3
2903 //                \   |   /
2904 //                 \  |  /
2905 //                  pinch
2906 //                 /  |  \
2907 //                /   |   \
2908 //            kill1 kill2 kill3
2909 //
2910 // One pinch node is created per register killed when
2911 // the second call is encountered during a backwards pass
2912 // over the block.  Most of these pinch nodes are never
2913 // wired into the graph because the register is never
2914 // used or def'ed in the block.
2915 //
2916 void Scheduling::garbage_collect_pinch_nodes() {
2917 #ifndef PRODUCT
2918     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2919 #endif
2920     int trace_cnt = 0;
2921     for (uint k = 0; k < _reg_node.Size(); k++) {
2922       Node* pinch = _reg_node[k];
2923       if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
2924           // no predecence input edges
2925           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2926         cleanup_pinch(pinch);
2927         _pinch_free_list.push(pinch);
2928         _reg_node.map(k, NULL);
2929 #ifndef PRODUCT
2930         if (_cfg->C->trace_opto_output()) {
2931           trace_cnt++;
2932           if (trace_cnt > 40) {
2933             tty->print("\n");
2934             trace_cnt = 0;
2935           }
2936           tty->print(" %d", pinch->_idx);
2937         }
2938 #endif
2939       }
2940     }
2941 #ifndef PRODUCT
2942     if (_cfg->C->trace_opto_output()) tty->print("\n");
2943 #endif
2944 }
2945 
2946 // Clean up a pinch node for reuse.
2947 void Scheduling::cleanup_pinch( Node *pinch ) {
2948   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2949 
2950   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2951     Node* use = pinch->last_out(i);
2952     uint uses_found = 0;
2953     for (uint j = use->req(); j < use->len(); j++) {
2954       if (use->in(j) == pinch) {
2955         use->rm_prec(j);
2956         uses_found++;
2957       }
2958     }
2959     assert(uses_found > 0, "must be a precedence edge");
2960     i -= uses_found;    // we deleted 1 or more copies of this edge
2961   }
2962   // May have a later_def entry
2963   pinch->set_req(0, NULL);
2964 }
2965 
2966 #ifndef PRODUCT
2967 
2968 void Scheduling::dump_available() const {
2969   tty->print("#Availist  ");
2970   for (uint i = 0; i < _available.size(); i++)
2971     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2972   tty->cr();
2973 }
2974 
2975 // Print Scheduling Statistics
2976 void Scheduling::print_statistics() {
2977   // Print the size added by nops for bundling
2978   tty->print("Nops added %d bytes to total of %d bytes",
2979     _total_nop_size, _total_method_size);
2980   if (_total_method_size > 0)
2981     tty->print(", for %.2f%%",
2982       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2983   tty->print("\n");
2984 
2985   // Print the number of branch shadows filled
2986   if (Pipeline::_branch_has_delay_slot) {
2987     tty->print("Of %d branches, %d had unconditional delay slots filled",
2988       _total_branches, _total_unconditional_delays);
2989     if (_total_branches > 0)
2990       tty->print(", for %.2f%%",
2991         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2992     tty->print("\n");
2993   }
2994 
2995   uint total_instructions = 0, total_bundles = 0;
2996 
2997   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2998     uint bundle_count   = _total_instructions_per_bundle[i];
2999     total_instructions += bundle_count * i;
3000     total_bundles      += bundle_count;
3001   }
3002 
3003   if (total_bundles > 0)
3004     tty->print("Average ILP (excluding nops) is %.2f\n",
3005       ((double)total_instructions) / ((double)total_bundles));
3006 }
3007 #endif