1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "oops/method.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/locknode.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/opaquenode.hpp"
  35 #include "opto/parse.hpp"
  36 #include "opto/rootnode.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "utilities/copy.hpp"
  42 
  43 // Static array so we can figure out which bytecodes stop us from compiling
  44 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  45 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  46 
  47 int nodes_created              = 0;
  48 int methods_parsed             = 0;
  49 int methods_seen               = 0;
  50 int blocks_parsed              = 0;
  51 int blocks_seen                = 0;
  52 
  53 int explicit_null_checks_inserted = 0;
  54 int explicit_null_checks_elided   = 0;
  55 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  56 int implicit_null_throws          = 0;
  57 
  58 int reclaim_idx  = 0;
  59 int reclaim_in   = 0;
  60 int reclaim_node = 0;
  61 
  62 #ifndef PRODUCT
  63 bool Parse::BytecodeParseHistogram::_initialized = false;
  64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  67 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  68 #endif
  69 
  70 //------------------------------print_statistics-------------------------------
  71 #ifndef PRODUCT
  72 void Parse::print_statistics() {
  73   tty->print_cr("--- Compiler Statistics ---");
  74   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  75   tty->print("  Nodes created: %d", nodes_created);
  76   tty->cr();
  77   if (methods_seen != methods_parsed)
  78     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  79   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  80 
  81   if( explicit_null_checks_inserted )
  82     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  83   if( all_null_checks_found )
  84     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  85                   (100*implicit_null_checks)/all_null_checks_found);
  86   if( implicit_null_throws )
  87     tty->print_cr("%d implicit null exceptions at runtime",
  88                   implicit_null_throws);
  89 
  90   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  91     BytecodeParseHistogram::print();
  92   }
  93 }
  94 #endif
  95 
  96 //------------------------------ON STACK REPLACEMENT---------------------------
  97 
  98 // Construct a node which can be used to get incoming state for
  99 // on stack replacement.
 100 Node *Parse::fetch_interpreter_state(int index,
 101                                      BasicType bt,
 102                                      Node *local_addrs,
 103                                      Node *local_addrs_base) {
 104   Node *mem = memory(Compile::AliasIdxRaw);
 105   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 106   Node *ctl = control();
 107 
 108   // Very similar to LoadNode::make, except we handle un-aligned longs and
 109   // doubles on Sparc.  Intel can handle them just fine directly.
 110   Node *l;
 111   switch (bt) {                // Signature is flattened
 112   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 113   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 114   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 115   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 116   case T_LONG:
 117   case T_DOUBLE: {
 118     // Since arguments are in reverse order, the argument address 'adr'
 119     // refers to the back half of the long/double.  Recompute adr.
 120     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 121     if (Matcher::misaligned_doubles_ok) {
 122       l = (bt == T_DOUBLE)
 123         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 124         : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 125     } else {
 126       l = (bt == T_DOUBLE)
 127         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 128         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 129     }
 130     break;
 131   }
 132   default: ShouldNotReachHere();
 133   }
 134   return _gvn.transform(l);
 135 }
 136 
 137 // Helper routine to prevent the interpreter from handing
 138 // unexpected typestate to an OSR method.
 139 // The Node l is a value newly dug out of the interpreter frame.
 140 // The type is the type predicted by ciTypeFlow.  Note that it is
 141 // not a general type, but can only come from Type::get_typeflow_type.
 142 // The safepoint is a map which will feed an uncommon trap.
 143 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 144                                     SafePointNode* &bad_type_exit) {
 145 
 146   const TypeOopPtr* tp = type->isa_oopptr();
 147 
 148   // TypeFlow may assert null-ness if a type appears unloaded.
 149   if (type == TypePtr::NULL_PTR ||
 150       (tp != NULL && !tp->klass()->is_loaded())) {
 151     // Value must be null, not a real oop.
 152     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 153     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 154     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 155     set_control(_gvn.transform( new IfTrueNode(iff) ));
 156     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 157     bad_type_exit->control()->add_req(bad_type);
 158     l = null();
 159   }
 160 
 161   // Typeflow can also cut off paths from the CFG, based on
 162   // types which appear unloaded, or call sites which appear unlinked.
 163   // When paths are cut off, values at later merge points can rise
 164   // toward more specific classes.  Make sure these specific classes
 165   // are still in effect.
 166   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 167     // TypeFlow asserted a specific object type.  Value must have that type.
 168     Node* bad_type_ctrl = NULL;
 169     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 170     bad_type_exit->control()->add_req(bad_type_ctrl);
 171   }
 172 
 173   BasicType bt_l = _gvn.type(l)->basic_type();
 174   BasicType bt_t = type->basic_type();
 175   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 176   return l;
 177 }
 178 
 179 // Helper routine which sets up elements of the initial parser map when
 180 // performing a parse for on stack replacement.  Add values into map.
 181 // The only parameter contains the address of a interpreter arguments.
 182 void Parse::load_interpreter_state(Node* osr_buf) {
 183   int index;
 184   int max_locals = jvms()->loc_size();
 185   int max_stack  = jvms()->stk_size();
 186 
 187 
 188   // Mismatch between method and jvms can occur since map briefly held
 189   // an OSR entry state (which takes up one RawPtr word).
 190   assert(max_locals == method()->max_locals(), "sanity");
 191   assert(max_stack  >= method()->max_stack(),  "sanity");
 192   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 193   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 194 
 195   // Find the start block.
 196   Block* osr_block = start_block();
 197   assert(osr_block->start() == osr_bci(), "sanity");
 198 
 199   // Set initial BCI.
 200   set_parse_bci(osr_block->start());
 201 
 202   // Set initial stack depth.
 203   set_sp(osr_block->start_sp());
 204 
 205   // Check bailouts.  We currently do not perform on stack replacement
 206   // of loops in catch blocks or loops which branch with a non-empty stack.
 207   if (sp() != 0) {
 208     C->record_method_not_compilable("OSR starts with non-empty stack");
 209     return;
 210   }
 211   // Do not OSR inside finally clauses:
 212   if (osr_block->has_trap_at(osr_block->start())) {
 213     C->record_method_not_compilable("OSR starts with an immediate trap");
 214     return;
 215   }
 216 
 217   // Commute monitors from interpreter frame to compiler frame.
 218   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 219   int mcnt = osr_block->flow()->monitor_count();
 220   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 221   for (index = 0; index < mcnt; index++) {
 222     // Make a BoxLockNode for the monitor.
 223     Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
 224 
 225 
 226     // Displaced headers and locked objects are interleaved in the
 227     // temp OSR buffer.  We only copy the locked objects out here.
 228     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 229     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 230     // Try and copy the displaced header to the BoxNode
 231     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 232 
 233 
 234     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 235 
 236     // Build a bogus FastLockNode (no code will be generated) and push the
 237     // monitor into our debug info.
 238     const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
 239     map()->push_monitor(flock);
 240 
 241     // If the lock is our method synchronization lock, tuck it away in
 242     // _sync_lock for return and rethrow exit paths.
 243     if (index == 0 && method()->is_synchronized()) {
 244       _synch_lock = flock;
 245     }
 246   }
 247 
 248   // Use the raw liveness computation to make sure that unexpected
 249   // values don't propagate into the OSR frame.
 250   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 251   if (!live_locals.is_valid()) {
 252     // Degenerate or breakpointed method.
 253     C->record_method_not_compilable("OSR in empty or breakpointed method");
 254     return;
 255   }
 256 
 257   // Extract the needed locals from the interpreter frame.
 258   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 259 
 260   // find all the locals that the interpreter thinks contain live oops
 261   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 262   for (index = 0; index < max_locals; index++) {
 263 
 264     if (!live_locals.at(index)) {
 265       continue;
 266     }
 267 
 268     const Type *type = osr_block->local_type_at(index);
 269 
 270     if (type->isa_oopptr() != NULL) {
 271 
 272       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 273       // else we might load a stale oop if the MethodLiveness disagrees with the
 274       // result of the interpreter. If the interpreter says it is dead we agree
 275       // by making the value go to top.
 276       //
 277 
 278       if (!live_oops.at(index)) {
 279         if (C->log() != NULL) {
 280           C->log()->elem("OSR_mismatch local_index='%d'",index);
 281         }
 282         set_local(index, null());
 283         // and ignore it for the loads
 284         continue;
 285       }
 286     }
 287 
 288     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 289     if (type == Type::TOP || type == Type::HALF) {
 290       continue;
 291     }
 292     // If the type falls to bottom, then this must be a local that
 293     // is mixing ints and oops or some such.  Forcing it to top
 294     // makes it go dead.
 295     if (type == Type::BOTTOM) {
 296       continue;
 297     }
 298     // Construct code to access the appropriate local.
 299     BasicType bt = type->basic_type();
 300     if (type == TypePtr::NULL_PTR) {
 301       // Ptr types are mixed together with T_ADDRESS but NULL is
 302       // really for T_OBJECT types so correct it.
 303       bt = T_OBJECT;
 304     }
 305     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 306     set_local(index, value);
 307   }
 308 
 309   // Extract the needed stack entries from the interpreter frame.
 310   for (index = 0; index < sp(); index++) {
 311     const Type *type = osr_block->stack_type_at(index);
 312     if (type != Type::TOP) {
 313       // Currently the compiler bails out when attempting to on stack replace
 314       // at a bci with a non-empty stack.  We should not reach here.
 315       ShouldNotReachHere();
 316     }
 317   }
 318 
 319   // End the OSR migration
 320   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 321                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 322                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 323                     osr_buf);
 324 
 325   // Now that the interpreter state is loaded, make sure it will match
 326   // at execution time what the compiler is expecting now:
 327   SafePointNode* bad_type_exit = clone_map();
 328   bad_type_exit->set_control(new RegionNode(1));
 329 
 330   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 331   for (index = 0; index < max_locals; index++) {
 332     if (stopped())  break;
 333     Node* l = local(index);
 334     if (l->is_top())  continue;  // nothing here
 335     const Type *type = osr_block->local_type_at(index);
 336     if (type->isa_oopptr() != NULL) {
 337       if (!live_oops.at(index)) {
 338         // skip type check for dead oops
 339         continue;
 340       }
 341     }
 342     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 343       // In our current system it's illegal for jsr addresses to be
 344       // live into an OSR entry point because the compiler performs
 345       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 346       // case and aborts the compile if addresses are live into an OSR
 347       // entry point.  Because of that we can assume that any address
 348       // locals at the OSR entry point are dead.  Method liveness
 349       // isn't precise enought to figure out that they are dead in all
 350       // cases so simply skip checking address locals all
 351       // together. Any type check is guaranteed to fail since the
 352       // interpreter type is the result of a load which might have any
 353       // value and the expected type is a constant.
 354       continue;
 355     }
 356     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 357   }
 358 
 359   for (index = 0; index < sp(); index++) {
 360     if (stopped())  break;
 361     Node* l = stack(index);
 362     if (l->is_top())  continue;  // nothing here
 363     const Type *type = osr_block->stack_type_at(index);
 364     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 365   }
 366 
 367   if (bad_type_exit->control()->req() > 1) {
 368     // Build an uncommon trap here, if any inputs can be unexpected.
 369     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 370     record_for_igvn(bad_type_exit->control());
 371     SafePointNode* types_are_good = map();
 372     set_map(bad_type_exit);
 373     // The unexpected type happens because a new edge is active
 374     // in the CFG, which typeflow had previously ignored.
 375     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 376     // This x will be typed as Integer if notReached is not yet linked.
 377     // It could also happen due to a problem in ciTypeFlow analysis.
 378     uncommon_trap(Deoptimization::Reason_constraint,
 379                   Deoptimization::Action_reinterpret);
 380     set_map(types_are_good);
 381   }
 382 }
 383 
 384 //------------------------------Parse------------------------------------------
 385 // Main parser constructor.
 386 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 387   : _exits(caller)
 388 {
 389   // Init some variables
 390   _caller = caller;
 391   _method = parse_method;
 392   _expected_uses = expected_uses;
 393   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 394   _wrote_final = false;
 395   _wrote_volatile = false;
 396   _wrote_stable = false;
 397   _wrote_fields = false;
 398   _alloc_with_final = NULL;
 399   _entry_bci = InvocationEntryBci;
 400   _tf = NULL;
 401   _block = NULL;
 402   _first_return = true;
 403   _replaced_nodes_for_exceptions = false;
 404   _new_idx = C->unique();
 405   debug_only(_block_count = -1);
 406   debug_only(_blocks = (Block*)-1);
 407 #ifndef PRODUCT
 408   if (PrintCompilation || PrintOpto) {
 409     // Make sure I have an inline tree, so I can print messages about it.
 410     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 411     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 412   }
 413   _max_switch_depth = 0;
 414   _est_switch_depth = 0;
 415 #endif
 416 
 417   _tf = TypeFunc::make(method());
 418   _iter.reset_to_method(method());
 419   _flow = method()->get_flow_analysis();
 420   if (_flow->failing()) {
 421     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 422   }
 423 
 424 #ifndef PRODUCT
 425   if (_flow->has_irreducible_entry()) {
 426     C->set_parsed_irreducible_loop(true);
 427   }
 428 #endif
 429 
 430   if (_expected_uses <= 0) {
 431     _prof_factor = 1;
 432   } else {
 433     float prof_total = parse_method->interpreter_invocation_count();
 434     if (prof_total <= _expected_uses) {
 435       _prof_factor = 1;
 436     } else {
 437       _prof_factor = _expected_uses / prof_total;
 438     }
 439   }
 440 
 441   CompileLog* log = C->log();
 442   if (log != NULL) {
 443     log->begin_head("parse method='%d' uses='%g'",
 444                     log->identify(parse_method), expected_uses);
 445     if (depth() == 1 && C->is_osr_compilation()) {
 446       log->print(" osr_bci='%d'", C->entry_bci());
 447     }
 448     log->stamp();
 449     log->end_head();
 450   }
 451 
 452   // Accumulate deoptimization counts.
 453   // (The range_check and store_check counts are checked elsewhere.)
 454   ciMethodData* md = method()->method_data();
 455   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 456     uint md_count = md->trap_count(reason);
 457     if (md_count != 0) {
 458       if (md_count == md->trap_count_limit())
 459         md_count += md->overflow_trap_count();
 460       uint total_count = C->trap_count(reason);
 461       uint old_count   = total_count;
 462       total_count += md_count;
 463       // Saturate the add if it overflows.
 464       if (total_count < old_count || total_count < md_count)
 465         total_count = (uint)-1;
 466       C->set_trap_count(reason, total_count);
 467       if (log != NULL)
 468         log->elem("observe trap='%s' count='%d' total='%d'",
 469                   Deoptimization::trap_reason_name(reason),
 470                   md_count, total_count);
 471     }
 472   }
 473   // Accumulate total sum of decompilations, also.
 474   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 475 
 476   _count_invocations = C->do_count_invocations();
 477   _method_data_update = C->do_method_data_update();
 478 
 479   if (log != NULL && method()->has_exception_handlers()) {
 480     log->elem("observe that='has_exception_handlers'");
 481   }
 482 
 483   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 484   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 485 
 486   // Always register dependence if JVMTI is enabled, because
 487   // either breakpoint setting or hotswapping of methods may
 488   // cause deoptimization.
 489   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 490     C->dependencies()->assert_evol_method(method());
 491   }
 492 
 493   methods_seen++;
 494 
 495   // Do some special top-level things.
 496   if (depth() == 1 && C->is_osr_compilation()) {
 497     _entry_bci = C->entry_bci();
 498     _flow = method()->get_osr_flow_analysis(osr_bci());
 499     if (_flow->failing()) {
 500       C->record_method_not_compilable(_flow->failure_reason());
 501 #ifndef PRODUCT
 502       if (PrintOpto && (Verbose || WizardMode)) {
 503         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 504         if (Verbose) {
 505           method()->print();
 506           method()->print_codes();
 507           _flow->print();
 508         }
 509       }
 510 #endif
 511     }
 512     _tf = C->tf();     // the OSR entry type is different
 513   }
 514 
 515 #ifdef ASSERT
 516   if (depth() == 1) {
 517     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 518     if (C->tf() != tf()) {
 519       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 520       assert(C->env()->system_dictionary_modification_counter_changed(),
 521              "Must invalidate if TypeFuncs differ");
 522     }
 523   } else {
 524     assert(!this->is_osr_parse(), "no recursive OSR");
 525   }
 526 #endif
 527 
 528   methods_parsed++;
 529 #ifndef PRODUCT
 530   // add method size here to guarantee that inlined methods are added too
 531   if (TimeCompiler)
 532     _total_bytes_compiled += method()->code_size();
 533 
 534   show_parse_info();
 535 #endif
 536 
 537   if (failing()) {
 538     if (log)  log->done("parse");
 539     return;
 540   }
 541 
 542   gvn().set_type(root(), root()->bottom_type());
 543   gvn().transform(top());
 544 
 545   // Import the results of the ciTypeFlow.
 546   init_blocks();
 547 
 548   // Merge point for all normal exits
 549   build_exits();
 550 
 551   // Setup the initial JVM state map.
 552   SafePointNode* entry_map = create_entry_map();
 553 
 554   // Check for bailouts during map initialization
 555   if (failing() || entry_map == NULL) {
 556     if (log)  log->done("parse");
 557     return;
 558   }
 559 
 560   Node_Notes* caller_nn = C->default_node_notes();
 561   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 562   if (DebugInlinedCalls || depth() == 1) {
 563     C->set_default_node_notes(make_node_notes(caller_nn));
 564   }
 565 
 566   if (is_osr_parse()) {
 567     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 568     entry_map->set_req(TypeFunc::Parms+0, top());
 569     set_map(entry_map);
 570     load_interpreter_state(osr_buf);
 571   } else {
 572     set_map(entry_map);
 573     do_method_entry();
 574     if (depth() == 1 && C->age_code()) {
 575       decrement_age();
 576     }
 577   }
 578 
 579   if (depth() == 1 && !failing()) {
 580     // Add check to deoptimize the nmethod if RTM state was changed
 581     rtm_deopt();
 582   }
 583 
 584   // Check for bailouts during method entry or RTM state check setup.
 585   if (failing()) {
 586     if (log)  log->done("parse");
 587     C->set_default_node_notes(caller_nn);
 588     return;
 589   }
 590 
 591   entry_map = map();  // capture any changes performed by method setup code
 592   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 593 
 594   // We begin parsing as if we have just encountered a jump to the
 595   // method entry.
 596   Block* entry_block = start_block();
 597   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 598   set_map_clone(entry_map);
 599   merge_common(entry_block, entry_block->next_path_num());
 600 
 601 #ifndef PRODUCT
 602   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 603   set_parse_histogram( parse_histogram_obj );
 604 #endif
 605 
 606   // Parse all the basic blocks.
 607   do_all_blocks();
 608 
 609   C->set_default_node_notes(caller_nn);
 610 
 611   // Check for bailouts during conversion to graph
 612   if (failing()) {
 613     if (log)  log->done("parse");
 614     return;
 615   }
 616 
 617   // Fix up all exiting control flow.
 618   set_map(entry_map);
 619   do_exits();
 620 
 621   if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
 622                       C->unique(), C->live_nodes(), C->node_arena()->used());
 623 }
 624 
 625 //---------------------------do_all_blocks-------------------------------------
 626 void Parse::do_all_blocks() {
 627   bool has_irreducible = flow()->has_irreducible_entry();
 628 
 629   // Walk over all blocks in Reverse Post-Order.
 630   while (true) {
 631     bool progress = false;
 632     for (int rpo = 0; rpo < block_count(); rpo++) {
 633       Block* block = rpo_at(rpo);
 634 
 635       if (block->is_parsed()) continue;
 636 
 637       if (!block->is_merged()) {
 638         // Dead block, no state reaches this block
 639         continue;
 640       }
 641 
 642       // Prepare to parse this block.
 643       load_state_from(block);
 644 
 645       if (stopped()) {
 646         // Block is dead.
 647         continue;
 648       }
 649 
 650       blocks_parsed++;
 651 
 652       progress = true;
 653       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 654         // Not all preds have been parsed.  We must build phis everywhere.
 655         // (Note that dead locals do not get phis built, ever.)
 656         ensure_phis_everywhere();
 657 
 658         if (block->is_SEL_head() &&
 659             (UseLoopPredicate || LoopLimitCheck)) {
 660           // Add predicate to single entry (not irreducible) loop head.
 661           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 662           // Need correct bci for predicate.
 663           // It is fine to set it here since do_one_block() will set it anyway.
 664           set_parse_bci(block->start());
 665           add_predicate();
 666           // Add new region for back branches.
 667           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 668           RegionNode *r = new RegionNode(edges+1);
 669           _gvn.set_type(r, Type::CONTROL);
 670           record_for_igvn(r);
 671           r->init_req(edges, control());
 672           set_control(r);
 673           // Add new phis.
 674           ensure_phis_everywhere();
 675         }
 676 
 677         // Leave behind an undisturbed copy of the map, for future merges.
 678         set_map(clone_map());
 679       }
 680 
 681       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 682         // In the absence of irreducible loops, the Region and Phis
 683         // associated with a merge that doesn't involve a backedge can
 684         // be simplified now since the RPO parsing order guarantees
 685         // that any path which was supposed to reach here has already
 686         // been parsed or must be dead.
 687         Node* c = control();
 688         Node* result = _gvn.transform_no_reclaim(control());
 689         if (c != result && TraceOptoParse) {
 690           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 691         }
 692         if (result != top()) {
 693           record_for_igvn(result);
 694         }
 695       }
 696 
 697       // Parse the block.
 698       do_one_block();
 699 
 700       // Check for bailouts.
 701       if (failing())  return;
 702     }
 703 
 704     // with irreducible loops multiple passes might be necessary to parse everything
 705     if (!has_irreducible || !progress) {
 706       break;
 707     }
 708   }
 709 
 710   blocks_seen += block_count();
 711 
 712 #ifndef PRODUCT
 713   // Make sure there are no half-processed blocks remaining.
 714   // Every remaining unprocessed block is dead and may be ignored now.
 715   for (int rpo = 0; rpo < block_count(); rpo++) {
 716     Block* block = rpo_at(rpo);
 717     if (!block->is_parsed()) {
 718       if (TraceOptoParse) {
 719         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 720       }
 721       assert(!block->is_merged(), "no half-processed blocks");
 722     }
 723   }
 724 #endif
 725 }
 726 
 727 //-------------------------------build_exits----------------------------------
 728 // Build normal and exceptional exit merge points.
 729 void Parse::build_exits() {
 730   // make a clone of caller to prevent sharing of side-effects
 731   _exits.set_map(_exits.clone_map());
 732   _exits.clean_stack(_exits.sp());
 733   _exits.sync_jvms();
 734 
 735   RegionNode* region = new RegionNode(1);
 736   record_for_igvn(region);
 737   gvn().set_type_bottom(region);
 738   _exits.set_control(region);
 739 
 740   // Note:  iophi and memphi are not transformed until do_exits.
 741   Node* iophi  = new PhiNode(region, Type::ABIO);
 742   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 743   gvn().set_type_bottom(iophi);
 744   gvn().set_type_bottom(memphi);
 745   _exits.set_i_o(iophi);
 746   _exits.set_all_memory(memphi);
 747 
 748   // Add a return value to the exit state.  (Do not push it yet.)
 749   if (tf()->range()->cnt() > TypeFunc::Parms) {
 750     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 751     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 752     // becomes loaded during the subsequent parsing, the loaded and unloaded
 753     // types will not join when we transform and push in do_exits().
 754     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 755     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 756       ret_type = TypeOopPtr::BOTTOM;
 757     }
 758     int         ret_size = type2size[ret_type->basic_type()];
 759     Node*       ret_phi  = new PhiNode(region, ret_type);
 760     gvn().set_type_bottom(ret_phi);
 761     _exits.ensure_stack(ret_size);
 762     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 763     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 764     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 765     // Note:  ret_phi is not yet pushed, until do_exits.
 766   }
 767 }
 768 
 769 
 770 //----------------------------build_start_state-------------------------------
 771 // Construct a state which contains only the incoming arguments from an
 772 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 773 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 774   int        arg_size = tf->domain()->cnt();
 775   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 776   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 777   SafePointNode* map  = new SafePointNode(max_size, NULL);
 778   record_for_igvn(map);
 779   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 780   Node_Notes* old_nn = default_node_notes();
 781   if (old_nn != NULL && has_method()) {
 782     Node_Notes* entry_nn = old_nn->clone(this);
 783     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 784     entry_jvms->set_offsets(0);
 785     entry_jvms->set_bci(entry_bci());
 786     entry_nn->set_jvms(entry_jvms);
 787     set_default_node_notes(entry_nn);
 788   }
 789   uint i;
 790   for (i = 0; i < (uint)arg_size; i++) {
 791     Node* parm = initial_gvn()->transform(new ParmNode(start, i));
 792     map->init_req(i, parm);
 793     // Record all these guys for later GVN.
 794     record_for_igvn(parm);
 795   }
 796   for (; i < map->req(); i++) {
 797     map->init_req(i, top());
 798   }
 799   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 800   set_default_node_notes(old_nn);
 801   map->set_jvms(jvms);
 802   jvms->set_map(map);
 803   return jvms;
 804 }
 805 
 806 //-----------------------------make_node_notes---------------------------------
 807 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 808   if (caller_nn == NULL)  return NULL;
 809   Node_Notes* nn = caller_nn->clone(C);
 810   JVMState* caller_jvms = nn->jvms();
 811   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 812   jvms->set_offsets(0);
 813   jvms->set_bci(_entry_bci);
 814   nn->set_jvms(jvms);
 815   return nn;
 816 }
 817 
 818 
 819 //--------------------------return_values--------------------------------------
 820 void Compile::return_values(JVMState* jvms) {
 821   GraphKit kit(jvms);
 822   Node* ret = new ReturnNode(TypeFunc::Parms,
 823                              kit.control(),
 824                              kit.i_o(),
 825                              kit.reset_memory(),
 826                              kit.frameptr(),
 827                              kit.returnadr());
 828   // Add zero or 1 return values
 829   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 830   if (ret_size > 0) {
 831     kit.inc_sp(-ret_size);  // pop the return value(s)
 832     kit.sync_jvms();
 833     ret->add_req(kit.argument(0));
 834     // Note:  The second dummy edge is not needed by a ReturnNode.
 835   }
 836   // bind it to root
 837   root()->add_req(ret);
 838   record_for_igvn(ret);
 839   initial_gvn()->transform_no_reclaim(ret);
 840 }
 841 
 842 //------------------------rethrow_exceptions-----------------------------------
 843 // Bind all exception states in the list into a single RethrowNode.
 844 void Compile::rethrow_exceptions(JVMState* jvms) {
 845   GraphKit kit(jvms);
 846   if (!kit.has_exceptions())  return;  // nothing to generate
 847   // Load my combined exception state into the kit, with all phis transformed:
 848   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 849   Node* ex_oop = kit.use_exception_state(ex_map);
 850   RethrowNode* exit = new RethrowNode(kit.control(),
 851                                       kit.i_o(), kit.reset_memory(),
 852                                       kit.frameptr(), kit.returnadr(),
 853                                       // like a return but with exception input
 854                                       ex_oop);
 855   // bind to root
 856   root()->add_req(exit);
 857   record_for_igvn(exit);
 858   initial_gvn()->transform_no_reclaim(exit);
 859 }
 860 
 861 //---------------------------do_exceptions-------------------------------------
 862 // Process exceptions arising from the current bytecode.
 863 // Send caught exceptions to the proper handler within this method.
 864 // Unhandled exceptions feed into _exit.
 865 void Parse::do_exceptions() {
 866   if (!has_exceptions())  return;
 867 
 868   if (failing()) {
 869     // Pop them all off and throw them away.
 870     while (pop_exception_state() != NULL) ;
 871     return;
 872   }
 873 
 874   PreserveJVMState pjvms(this, false);
 875 
 876   SafePointNode* ex_map;
 877   while ((ex_map = pop_exception_state()) != NULL) {
 878     if (!method()->has_exception_handlers()) {
 879       // Common case:  Transfer control outward.
 880       // Doing it this early allows the exceptions to common up
 881       // even between adjacent method calls.
 882       throw_to_exit(ex_map);
 883     } else {
 884       // Have to look at the exception first.
 885       assert(stopped(), "catch_inline_exceptions trashes the map");
 886       catch_inline_exceptions(ex_map);
 887       stop_and_kill_map();      // we used up this exception state; kill it
 888     }
 889   }
 890 
 891   // We now return to our regularly scheduled program:
 892 }
 893 
 894 //---------------------------throw_to_exit-------------------------------------
 895 // Merge the given map into an exception exit from this method.
 896 // The exception exit will handle any unlocking of receiver.
 897 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 898 void Parse::throw_to_exit(SafePointNode* ex_map) {
 899   // Pop the JVMS to (a copy of) the caller.
 900   GraphKit caller;
 901   caller.set_map_clone(_caller->map());
 902   caller.set_bci(_caller->bci());
 903   caller.set_sp(_caller->sp());
 904   // Copy out the standard machine state:
 905   for (uint i = 0; i < TypeFunc::Parms; i++) {
 906     caller.map()->set_req(i, ex_map->in(i));
 907   }
 908   if (ex_map->has_replaced_nodes()) {
 909     _replaced_nodes_for_exceptions = true;
 910   }
 911   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
 912   // ...and the exception:
 913   Node*          ex_oop        = saved_ex_oop(ex_map);
 914   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 915   // Finally, collect the new exception state in my exits:
 916   _exits.add_exception_state(caller_ex_map);
 917 }
 918 
 919 //------------------------------do_exits---------------------------------------
 920 void Parse::do_exits() {
 921   set_parse_bci(InvocationEntryBci);
 922 
 923   // Now peephole on the return bits
 924   Node* region = _exits.control();
 925   _exits.set_control(gvn().transform(region));
 926 
 927   Node* iophi = _exits.i_o();
 928   _exits.set_i_o(gvn().transform(iophi));
 929 
 930   // Figure out if we need to emit the trailing barrier. The barrier is only
 931   // needed in the constructors, and only in three cases:
 932   //
 933   // 1. The constructor wrote a final. The effects of all initializations
 934   //    must be committed to memory before any code after the constructor
 935   //    publishes the reference to the newly constructed object. Rather
 936   //    than wait for the publication, we simply block the writes here.
 937   //    Rather than put a barrier on only those writes which are required
 938   //    to complete, we force all writes to complete.
 939   //
 940   // 2. On PPC64, also add MemBarRelease for constructors which write
 941   //    volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
 942   //    is set on PPC64, no sync instruction is issued after volatile
 943   //    stores. We want to guarantee the same behavior as on platforms
 944   //    with total store order, although this is not required by the Java
 945   //    memory model. So as with finals, we add a barrier here.
 946   //
 947   // 3. Experimental VM option is used to force the barrier if any field
 948   //    was written out in the constructor.
 949   //
 950   // "All bets are off" unless the first publication occurs after a
 951   // normal return from the constructor.  We do not attempt to detect
 952   // such unusual early publications.  But no barrier is needed on
 953   // exceptional returns, since they cannot publish normally.
 954   //
 955   if (method()->is_initializer() &&
 956         (wrote_final() ||
 957            PPC64_ONLY(wrote_volatile() ||)
 958            (AlwaysSafeConstructors && wrote_fields()))) {
 959     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 960 #ifndef PRODUCT
 961     if (PrintOpto && (Verbose || WizardMode)) {
 962       method()->print_name();
 963       tty->print_cr(" writes finals and needs a memory barrier");
 964     }
 965 #endif
 966   }
 967 
 968   // Any method can write a @Stable field; insert memory barriers after
 969   // those also. If there is a predecessor allocation node, bind the
 970   // barrier there.
 971   if (wrote_stable()) {
 972     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 973 #ifndef PRODUCT
 974     if (PrintOpto && (Verbose || WizardMode)) {
 975       method()->print_name();
 976       tty->print_cr(" writes @Stable and needs a memory barrier");
 977     }
 978 #endif
 979   }
 980 
 981   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 982     // transform each slice of the original memphi:
 983     mms.set_memory(_gvn.transform(mms.memory()));
 984   }
 985 
 986   if (tf()->range()->cnt() > TypeFunc::Parms) {
 987     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 988     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 989     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
 990     _exits.push_node(ret_type->basic_type(), ret_phi);
 991   }
 992 
 993   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
 994 
 995   // Unlock along the exceptional paths.
 996   // This is done late so that we can common up equivalent exceptions
 997   // (e.g., null checks) arising from multiple points within this method.
 998   // See GraphKit::add_exception_state, which performs the commoning.
 999   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
1000 
1001   // record exit from a method if compiled while Dtrace is turned on.
1002   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1003     // First move the exception list out of _exits:
1004     GraphKit kit(_exits.transfer_exceptions_into_jvms());
1005     SafePointNode* normal_map = kit.map();  // keep this guy safe
1006     // Now re-collect the exceptions into _exits:
1007     SafePointNode* ex_map;
1008     while ((ex_map = kit.pop_exception_state()) != NULL) {
1009       Node* ex_oop = kit.use_exception_state(ex_map);
1010       // Force the exiting JVM state to have this method at InvocationEntryBci.
1011       // The exiting JVM state is otherwise a copy of the calling JVMS.
1012       JVMState* caller = kit.jvms();
1013       JVMState* ex_jvms = caller->clone_shallow(C);
1014       ex_jvms->set_map(kit.clone_map());
1015       ex_jvms->map()->set_jvms(ex_jvms);
1016       ex_jvms->set_bci(   InvocationEntryBci);
1017       kit.set_jvms(ex_jvms);
1018       if (do_synch) {
1019         // Add on the synchronized-method box/object combo
1020         kit.map()->push_monitor(_synch_lock);
1021         // Unlock!
1022         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1023       }
1024       if (C->env()->dtrace_method_probes()) {
1025         kit.make_dtrace_method_exit(method());
1026       }
1027       if (_replaced_nodes_for_exceptions) {
1028         kit.map()->apply_replaced_nodes();
1029       }
1030       // Done with exception-path processing.
1031       ex_map = kit.make_exception_state(ex_oop);
1032       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1033       // Pop the last vestige of this method:
1034       ex_map->set_jvms(caller->clone_shallow(C));
1035       ex_map->jvms()->set_map(ex_map);
1036       _exits.push_exception_state(ex_map);
1037     }
1038     assert(_exits.map() == normal_map, "keep the same return state");
1039   }
1040 
1041   {
1042     // Capture very early exceptions (receiver null checks) from caller JVMS
1043     GraphKit caller(_caller);
1044     SafePointNode* ex_map;
1045     while ((ex_map = caller.pop_exception_state()) != NULL) {
1046       _exits.add_exception_state(ex_map);
1047     }
1048   }
1049   _exits.map()->apply_replaced_nodes();
1050 }
1051 
1052 //-----------------------------create_entry_map-------------------------------
1053 // Initialize our parser map to contain the types at method entry.
1054 // For OSR, the map contains a single RawPtr parameter.
1055 // Initial monitor locking for sync. methods is performed by do_method_entry.
1056 SafePointNode* Parse::create_entry_map() {
1057   // Check for really stupid bail-out cases.
1058   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1059   if (len >= 32760) {
1060     C->record_method_not_compilable_all_tiers("too many local variables");
1061     return NULL;
1062   }
1063 
1064   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1065   _caller->map()->delete_replaced_nodes();
1066 
1067   // If this is an inlined method, we may have to do a receiver null check.
1068   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1069     GraphKit kit(_caller);
1070     kit.null_check_receiver_before_call(method());
1071     _caller = kit.transfer_exceptions_into_jvms();
1072     if (kit.stopped()) {
1073       _exits.add_exception_states_from(_caller);
1074       _exits.set_jvms(_caller);
1075       return NULL;
1076     }
1077   }
1078 
1079   assert(method() != NULL, "parser must have a method");
1080 
1081   // Create an initial safepoint to hold JVM state during parsing
1082   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1083   set_map(new SafePointNode(len, jvms));
1084   jvms->set_map(map());
1085   record_for_igvn(map());
1086   assert(jvms->endoff() == len, "correct jvms sizing");
1087 
1088   SafePointNode* inmap = _caller->map();
1089   assert(inmap != NULL, "must have inmap");
1090   // In case of null check on receiver above
1091   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1092 
1093   uint i;
1094 
1095   // Pass thru the predefined input parameters.
1096   for (i = 0; i < TypeFunc::Parms; i++) {
1097     map()->init_req(i, inmap->in(i));
1098   }
1099 
1100   if (depth() == 1) {
1101     assert(map()->memory()->Opcode() == Op_Parm, "");
1102     // Insert the memory aliasing node
1103     set_all_memory(reset_memory());
1104   }
1105   assert(merged_memory(), "");
1106 
1107   // Now add the locals which are initially bound to arguments:
1108   uint arg_size = tf()->domain()->cnt();
1109   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1110   for (i = TypeFunc::Parms; i < arg_size; i++) {
1111     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1112   }
1113 
1114   // Clear out the rest of the map (locals and stack)
1115   for (i = arg_size; i < len; i++) {
1116     map()->init_req(i, top());
1117   }
1118 
1119   SafePointNode* entry_map = stop();
1120   return entry_map;
1121 }
1122 
1123 //-----------------------------do_method_entry--------------------------------
1124 // Emit any code needed in the pseudo-block before BCI zero.
1125 // The main thing to do is lock the receiver of a synchronized method.
1126 void Parse::do_method_entry() {
1127   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1128   set_sp(0);                      // Java Stack Pointer
1129 
1130   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1131 
1132   if (C->env()->dtrace_method_probes()) {
1133     make_dtrace_method_entry(method());
1134   }
1135 
1136   // If the method is synchronized, we need to construct a lock node, attach
1137   // it to the Start node, and pin it there.
1138   if (method()->is_synchronized()) {
1139     // Insert a FastLockNode right after the Start which takes as arguments
1140     // the current thread pointer, the "this" pointer & the address of the
1141     // stack slot pair used for the lock.  The "this" pointer is a projection
1142     // off the start node, but the locking spot has to be constructed by
1143     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1144     // becomes the second argument to the FastLockNode call.  The
1145     // FastLockNode becomes the new control parent to pin it to the start.
1146 
1147     // Setup Object Pointer
1148     Node *lock_obj = NULL;
1149     if(method()->is_static()) {
1150       ciInstance* mirror = _method->holder()->java_mirror();
1151       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1152       lock_obj = makecon(t_lock);
1153     } else {                  // Else pass the "this" pointer,
1154       lock_obj = local(0);    // which is Parm0 from StartNode
1155     }
1156     // Clear out dead values from the debug info.
1157     kill_dead_locals();
1158     // Build the FastLockNode
1159     _synch_lock = shared_lock(lock_obj);
1160   }
1161 
1162   // Feed profiling data for parameters to the type system so it can
1163   // propagate it as speculative types
1164   record_profiled_parameters_for_speculation();
1165 
1166   if (depth() == 1) {
1167     increment_and_test_invocation_counter(Tier2CompileThreshold);
1168   }
1169 }
1170 
1171 //------------------------------init_blocks------------------------------------
1172 // Initialize our parser map to contain the types/monitors at method entry.
1173 void Parse::init_blocks() {
1174   // Create the blocks.
1175   _block_count = flow()->block_count();
1176   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1177   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1178 
1179   int rpo;
1180 
1181   // Initialize the structs.
1182   for (rpo = 0; rpo < block_count(); rpo++) {
1183     Block* block = rpo_at(rpo);
1184     block->init_node(this, rpo);
1185   }
1186 
1187   // Collect predecessor and successor information.
1188   for (rpo = 0; rpo < block_count(); rpo++) {
1189     Block* block = rpo_at(rpo);
1190     block->init_graph(this);
1191   }
1192 }
1193 
1194 //-------------------------------init_node-------------------------------------
1195 void Parse::Block::init_node(Parse* outer, int rpo) {
1196   _flow = outer->flow()->rpo_at(rpo);
1197   _pred_count = 0;
1198   _preds_parsed = 0;
1199   _count = 0;
1200   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1201   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1202   assert(_live_locals.size() == 0, "sanity");
1203 
1204   // entry point has additional predecessor
1205   if (flow()->is_start())  _pred_count++;
1206   assert(flow()->is_start() == (this == outer->start_block()), "");
1207 }
1208 
1209 //-------------------------------init_graph------------------------------------
1210 void Parse::Block::init_graph(Parse* outer) {
1211   // Create the successor list for this parser block.
1212   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1213   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1214   int ns = tfs->length();
1215   int ne = tfe->length();
1216   _num_successors = ns;
1217   _all_successors = ns+ne;
1218   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1219   int p = 0;
1220   for (int i = 0; i < ns+ne; i++) {
1221     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1222     Block* block2 = outer->rpo_at(tf2->rpo());
1223     _successors[i] = block2;
1224 
1225     // Accumulate pred info for the other block, too.
1226     if (i < ns) {
1227       block2->_pred_count++;
1228     } else {
1229       block2->_is_handler = true;
1230     }
1231 
1232     #ifdef ASSERT
1233     // A block's successors must be distinguishable by BCI.
1234     // That is, no bytecode is allowed to branch to two different
1235     // clones of the same code location.
1236     for (int j = 0; j < i; j++) {
1237       Block* block1 = _successors[j];
1238       if (block1 == block2)  continue;  // duplicates are OK
1239       assert(block1->start() != block2->start(), "successors have unique bcis");
1240     }
1241     #endif
1242   }
1243 
1244   // Note: We never call next_path_num along exception paths, so they
1245   // never get processed as "ready".  Also, the input phis of exception
1246   // handlers get specially processed, so that
1247 }
1248 
1249 //---------------------------successor_for_bci---------------------------------
1250 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1251   for (int i = 0; i < all_successors(); i++) {
1252     Block* block2 = successor_at(i);
1253     if (block2->start() == bci)  return block2;
1254   }
1255   // We can actually reach here if ciTypeFlow traps out a block
1256   // due to an unloaded class, and concurrently with compilation the
1257   // class is then loaded, so that a later phase of the parser is
1258   // able to see more of the bytecode CFG.  Or, the flow pass and
1259   // the parser can have a minor difference of opinion about executability
1260   // of bytecodes.  For example, "obj.field = null" is executable even
1261   // if the field's type is an unloaded class; the flow pass used to
1262   // make a trap for such code.
1263   return NULL;
1264 }
1265 
1266 
1267 //-----------------------------stack_type_at-----------------------------------
1268 const Type* Parse::Block::stack_type_at(int i) const {
1269   return get_type(flow()->stack_type_at(i));
1270 }
1271 
1272 
1273 //-----------------------------local_type_at-----------------------------------
1274 const Type* Parse::Block::local_type_at(int i) const {
1275   // Make dead locals fall to bottom.
1276   if (_live_locals.size() == 0) {
1277     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1278     // This bitmap can be zero length if we saw a breakpoint.
1279     // In such cases, pretend they are all live.
1280     ((Block*)this)->_live_locals = live_locals;
1281   }
1282   if (_live_locals.size() > 0 && !_live_locals.at(i))
1283     return Type::BOTTOM;
1284 
1285   return get_type(flow()->local_type_at(i));
1286 }
1287 
1288 
1289 #ifndef PRODUCT
1290 
1291 //----------------------------name_for_bc--------------------------------------
1292 // helper method for BytecodeParseHistogram
1293 static const char* name_for_bc(int i) {
1294   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1295 }
1296 
1297 //----------------------------BytecodeParseHistogram------------------------------------
1298 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1299   _parser   = p;
1300   _compiler = c;
1301   if( ! _initialized ) { _initialized = true; reset(); }
1302 }
1303 
1304 //----------------------------current_count------------------------------------
1305 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1306   switch( bph_type ) {
1307   case BPH_transforms: { return _parser->gvn().made_progress(); }
1308   case BPH_values:     { return _parser->gvn().made_new_values(); }
1309   default: { ShouldNotReachHere(); return 0; }
1310   }
1311 }
1312 
1313 //----------------------------initialized--------------------------------------
1314 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1315 
1316 //----------------------------reset--------------------------------------------
1317 void Parse::BytecodeParseHistogram::reset() {
1318   int i = Bytecodes::number_of_codes;
1319   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1320 }
1321 
1322 //----------------------------set_initial_state--------------------------------
1323 // Record info when starting to parse one bytecode
1324 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1325   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1326     _initial_bytecode    = bc;
1327     _initial_node_count  = _compiler->unique();
1328     _initial_transforms  = current_count(BPH_transforms);
1329     _initial_values      = current_count(BPH_values);
1330   }
1331 }
1332 
1333 //----------------------------record_change--------------------------------
1334 // Record results of parsing one bytecode
1335 void Parse::BytecodeParseHistogram::record_change() {
1336   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1337     ++_bytecodes_parsed[_initial_bytecode];
1338     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1339     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1340     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1341   }
1342 }
1343 
1344 
1345 //----------------------------print--------------------------------------------
1346 void Parse::BytecodeParseHistogram::print(float cutoff) {
1347   ResourceMark rm;
1348   // print profile
1349   int total  = 0;
1350   int i      = 0;
1351   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1352   int abs_sum = 0;
1353   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1354   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1355   if( total == 0 ) { return; }
1356   tty->cr();
1357   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1358   tty->print_cr("relative:  percentage contribution to compiled nodes");
1359   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1360   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1361   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1362   tty->print_cr("values  :  Average number of node values improved per bytecode");
1363   tty->print_cr("name    :  Bytecode name");
1364   tty->cr();
1365   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1366   tty->print_cr("----------------------------------------------------------------------");
1367   while (--i > 0) {
1368     int       abs = _bytecodes_parsed[i];
1369     float     rel = abs * 100.0F / total;
1370     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1371     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1372     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1373     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1374     if (cutoff <= rel) {
1375       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1376       abs_sum += abs;
1377     }
1378   }
1379   tty->print_cr("----------------------------------------------------------------------");
1380   float rel_sum = abs_sum * 100.0F / total;
1381   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1382   tty->print_cr("----------------------------------------------------------------------");
1383   tty->cr();
1384 }
1385 #endif
1386 
1387 //----------------------------load_state_from----------------------------------
1388 // Load block/map/sp.  But not do not touch iter/bci.
1389 void Parse::load_state_from(Block* block) {
1390   set_block(block);
1391   // load the block's JVM state:
1392   set_map(block->start_map());
1393   set_sp( block->start_sp());
1394 }
1395 
1396 
1397 //-----------------------------record_state------------------------------------
1398 void Parse::Block::record_state(Parse* p) {
1399   assert(!is_merged(), "can only record state once, on 1st inflow");
1400   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1401   set_start_map(p->stop());
1402 }
1403 
1404 
1405 //------------------------------do_one_block-----------------------------------
1406 void Parse::do_one_block() {
1407   if (TraceOptoParse) {
1408     Block *b = block();
1409     int ns = b->num_successors();
1410     int nt = b->all_successors();
1411 
1412     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1413                   block()->rpo(), block()->start(), block()->limit());
1414     for (int i = 0; i < nt; i++) {
1415       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1416     }
1417     if (b->is_loop_head()) tty->print("  lphd");
1418     tty->cr();
1419   }
1420 
1421   assert(block()->is_merged(), "must be merged before being parsed");
1422   block()->mark_parsed();
1423   ++_blocks_parsed;
1424 
1425   // Set iterator to start of block.
1426   iter().reset_to_bci(block()->start());
1427 
1428   CompileLog* log = C->log();
1429 
1430   // Parse bytecodes
1431   while (!stopped() && !failing()) {
1432     iter().next();
1433 
1434     // Learn the current bci from the iterator:
1435     set_parse_bci(iter().cur_bci());
1436 
1437     if (bci() == block()->limit()) {
1438       // Do not walk into the next block until directed by do_all_blocks.
1439       merge(bci());
1440       break;
1441     }
1442     assert(bci() < block()->limit(), "bci still in block");
1443 
1444     if (log != NULL) {
1445       // Output an optional context marker, to help place actions
1446       // that occur during parsing of this BC.  If there is no log
1447       // output until the next context string, this context string
1448       // will be silently ignored.
1449       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1450     }
1451 
1452     if (block()->has_trap_at(bci())) {
1453       // We must respect the flow pass's traps, because it will refuse
1454       // to produce successors for trapping blocks.
1455       int trap_index = block()->flow()->trap_index();
1456       assert(trap_index != 0, "trap index must be valid");
1457       uncommon_trap(trap_index);
1458       break;
1459     }
1460 
1461     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1462 
1463 #ifdef ASSERT
1464     int pre_bc_sp = sp();
1465     int inputs, depth;
1466     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1467     assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs));
1468 #endif //ASSERT
1469 
1470     do_one_bytecode();
1471 
1472     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1473            err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth));
1474 
1475     do_exceptions();
1476 
1477     NOT_PRODUCT( parse_histogram()->record_change(); );
1478 
1479     if (log != NULL)
1480       log->clear_context();  // skip marker if nothing was printed
1481 
1482     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1483     // successor which is typically made ready by visiting this bytecode.
1484     // If the successor has several predecessors, then it is a merge
1485     // point, starts a new basic block, and is handled like other basic blocks.
1486   }
1487 }
1488 
1489 
1490 //------------------------------merge------------------------------------------
1491 void Parse::set_parse_bci(int bci) {
1492   set_bci(bci);
1493   Node_Notes* nn = C->default_node_notes();
1494   if (nn == NULL)  return;
1495 
1496   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1497   if (!DebugInlinedCalls && depth() > 1) {
1498     return;
1499   }
1500 
1501   // Update the JVMS annotation, if present.
1502   JVMState* jvms = nn->jvms();
1503   if (jvms != NULL && jvms->bci() != bci) {
1504     // Update the JVMS.
1505     jvms = jvms->clone_shallow(C);
1506     jvms->set_bci(bci);
1507     nn->set_jvms(jvms);
1508   }
1509 }
1510 
1511 //------------------------------merge------------------------------------------
1512 // Merge the current mapping into the basic block starting at bci
1513 void Parse::merge(int target_bci) {
1514   Block* target = successor_for_bci(target_bci);
1515   if (target == NULL) { handle_missing_successor(target_bci); return; }
1516   assert(!target->is_ready(), "our arrival must be expected");
1517   int pnum = target->next_path_num();
1518   merge_common(target, pnum);
1519 }
1520 
1521 //-------------------------merge_new_path--------------------------------------
1522 // Merge the current mapping into the basic block, using a new path
1523 void Parse::merge_new_path(int target_bci) {
1524   Block* target = successor_for_bci(target_bci);
1525   if (target == NULL) { handle_missing_successor(target_bci); return; }
1526   assert(!target->is_ready(), "new path into frozen graph");
1527   int pnum = target->add_new_path();
1528   merge_common(target, pnum);
1529 }
1530 
1531 //-------------------------merge_exception-------------------------------------
1532 // Merge the current mapping into the basic block starting at bci
1533 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1534 void Parse::merge_exception(int target_bci) {
1535   assert(sp() == 1, "must have only the throw exception on the stack");
1536   Block* target = successor_for_bci(target_bci);
1537   if (target == NULL) { handle_missing_successor(target_bci); return; }
1538   assert(target->is_handler(), "exceptions are handled by special blocks");
1539   int pnum = target->add_new_path();
1540   merge_common(target, pnum);
1541 }
1542 
1543 //--------------------handle_missing_successor---------------------------------
1544 void Parse::handle_missing_successor(int target_bci) {
1545 #ifndef PRODUCT
1546   Block* b = block();
1547   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1548   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1549 #endif
1550   ShouldNotReachHere();
1551 }
1552 
1553 //--------------------------merge_common---------------------------------------
1554 void Parse::merge_common(Parse::Block* target, int pnum) {
1555   if (TraceOptoParse) {
1556     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1557   }
1558 
1559   // Zap extra stack slots to top
1560   assert(sp() == target->start_sp(), "");
1561   clean_stack(sp());
1562 
1563   if (!target->is_merged()) {   // No prior mapping at this bci
1564     if (TraceOptoParse) { tty->print(" with empty state");  }
1565 
1566     // If this path is dead, do not bother capturing it as a merge.
1567     // It is "as if" we had 1 fewer predecessors from the beginning.
1568     if (stopped()) {
1569       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1570       return;
1571     }
1572 
1573     // Record that a new block has been merged.
1574     ++_blocks_merged;
1575 
1576     // Make a region if we know there are multiple or unpredictable inputs.
1577     // (Also, if this is a plain fall-through, we might see another region,
1578     // which must not be allowed into this block's map.)
1579     if (pnum > PhiNode::Input         // Known multiple inputs.
1580         || target->is_handler()       // These have unpredictable inputs.
1581         || target->is_loop_head()     // Known multiple inputs
1582         || control()->is_Region()) {  // We must hide this guy.
1583 
1584       int current_bci = bci();
1585       set_parse_bci(target->start()); // Set target bci
1586       if (target->is_SEL_head()) {
1587         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1588         if (target->start() == 0) {
1589           // Add loop predicate for the special case when
1590           // there are backbranches to the method entry.
1591           add_predicate();
1592         }
1593       }
1594       // Add a Region to start the new basic block.  Phis will be added
1595       // later lazily.
1596       int edges = target->pred_count();
1597       if (edges < pnum)  edges = pnum;  // might be a new path!
1598       RegionNode *r = new RegionNode(edges+1);
1599       gvn().set_type(r, Type::CONTROL);
1600       record_for_igvn(r);
1601       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1602       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1603       r->init_req(pnum, control());
1604       set_control(r);
1605       set_parse_bci(current_bci); // Restore bci
1606     }
1607 
1608     // Convert the existing Parser mapping into a mapping at this bci.
1609     store_state_to(target);
1610     assert(target->is_merged(), "do not come here twice");
1611 
1612   } else {                      // Prior mapping at this bci
1613     if (TraceOptoParse) {  tty->print(" with previous state"); }
1614 #ifdef ASSERT
1615     if (target->is_SEL_head()) {
1616       target->mark_merged_backedge(block());
1617     }
1618 #endif
1619     // We must not manufacture more phis if the target is already parsed.
1620     bool nophi = target->is_parsed();
1621 
1622     SafePointNode* newin = map();// Hang on to incoming mapping
1623     Block* save_block = block(); // Hang on to incoming block;
1624     load_state_from(target);    // Get prior mapping
1625 
1626     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1627     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1628     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1629     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1630 
1631     // Iterate over my current mapping and the old mapping.
1632     // Where different, insert Phi functions.
1633     // Use any existing Phi functions.
1634     assert(control()->is_Region(), "must be merging to a region");
1635     RegionNode* r = control()->as_Region();
1636 
1637     // Compute where to merge into
1638     // Merge incoming control path
1639     r->init_req(pnum, newin->control());
1640 
1641     if (pnum == 1) {            // Last merge for this Region?
1642       if (!block()->flow()->is_irreducible_entry()) {
1643         Node* result = _gvn.transform_no_reclaim(r);
1644         if (r != result && TraceOptoParse) {
1645           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1646         }
1647       }
1648       record_for_igvn(r);
1649     }
1650 
1651     // Update all the non-control inputs to map:
1652     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1653     bool check_elide_phi = target->is_SEL_backedge(save_block);
1654     for (uint j = 1; j < newin->req(); j++) {
1655       Node* m = map()->in(j);   // Current state of target.
1656       Node* n = newin->in(j);   // Incoming change to target state.
1657       PhiNode* phi;
1658       if (m->is_Phi() && m->as_Phi()->region() == r)
1659         phi = m->as_Phi();
1660       else
1661         phi = NULL;
1662       if (m != n) {             // Different; must merge
1663         switch (j) {
1664         // Frame pointer and Return Address never changes
1665         case TypeFunc::FramePtr:// Drop m, use the original value
1666         case TypeFunc::ReturnAdr:
1667           break;
1668         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1669           assert(phi == NULL, "the merge contains phis, not vice versa");
1670           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1671           continue;
1672         default:                // All normal stuff
1673           if (phi == NULL) {
1674             const JVMState* jvms = map()->jvms();
1675             if (EliminateNestedLocks &&
1676                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1677               // BoxLock nodes are not commoning.
1678               // Use old BoxLock node as merged box.
1679               assert(newin->jvms()->is_monitor_box(j), "sanity");
1680               // This assert also tests that nodes are BoxLock.
1681               assert(BoxLockNode::same_slot(n, m), "sanity");
1682               C->gvn_replace_by(n, m);
1683             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1684               phi = ensure_phi(j, nophi);
1685             }
1686           }
1687           break;
1688         }
1689       }
1690       // At this point, n might be top if:
1691       //  - there is no phi (because TypeFlow detected a conflict), or
1692       //  - the corresponding control edges is top (a dead incoming path)
1693       // It is a bug if we create a phi which sees a garbage value on a live path.
1694 
1695       if (phi != NULL) {
1696         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1697         assert(phi->region() == r, "");
1698         phi->set_req(pnum, n);  // Then add 'n' to the merge
1699         if (pnum == PhiNode::Input) {
1700           // Last merge for this Phi.
1701           // So far, Phis have had a reasonable type from ciTypeFlow.
1702           // Now _gvn will join that with the meet of current inputs.
1703           // BOTTOM is never permissible here, 'cause pessimistically
1704           // Phis of pointers cannot lose the basic pointer type.
1705           debug_only(const Type* bt1 = phi->bottom_type());
1706           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1707           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1708           debug_only(const Type* bt2 = phi->bottom_type());
1709           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1710           record_for_igvn(phi);
1711         }
1712       }
1713     } // End of for all values to be merged
1714 
1715     if (pnum == PhiNode::Input &&
1716         !r->in(0)) {         // The occasional useless Region
1717       assert(control() == r, "");
1718       set_control(r->nonnull_req());
1719     }
1720 
1721     map()->merge_replaced_nodes_with(newin);
1722 
1723     // newin has been subsumed into the lazy merge, and is now dead.
1724     set_block(save_block);
1725 
1726     stop();                     // done with this guy, for now
1727   }
1728 
1729   if (TraceOptoParse) {
1730     tty->print_cr(" on path %d", pnum);
1731   }
1732 
1733   // Done with this parser state.
1734   assert(stopped(), "");
1735 }
1736 
1737 
1738 //--------------------------merge_memory_edges---------------------------------
1739 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1740   // (nophi means we must not create phis, because we already parsed here)
1741   assert(n != NULL, "");
1742   // Merge the inputs to the MergeMems
1743   MergeMemNode* m = merged_memory();
1744 
1745   assert(control()->is_Region(), "must be merging to a region");
1746   RegionNode* r = control()->as_Region();
1747 
1748   PhiNode* base = NULL;
1749   MergeMemNode* remerge = NULL;
1750   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1751     Node *p = mms.force_memory();
1752     Node *q = mms.memory2();
1753     if (mms.is_empty() && nophi) {
1754       // Trouble:  No new splits allowed after a loop body is parsed.
1755       // Instead, wire the new split into a MergeMem on the backedge.
1756       // The optimizer will sort it out, slicing the phi.
1757       if (remerge == NULL) {
1758         assert(base != NULL, "");
1759         assert(base->in(0) != NULL, "should not be xformed away");
1760         remerge = MergeMemNode::make(base->in(pnum));
1761         gvn().set_type(remerge, Type::MEMORY);
1762         base->set_req(pnum, remerge);
1763       }
1764       remerge->set_memory_at(mms.alias_idx(), q);
1765       continue;
1766     }
1767     assert(!q->is_MergeMem(), "");
1768     PhiNode* phi;
1769     if (p != q) {
1770       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1771     } else {
1772       if (p->is_Phi() && p->as_Phi()->region() == r)
1773         phi = p->as_Phi();
1774       else
1775         phi = NULL;
1776     }
1777     // Insert q into local phi
1778     if (phi != NULL) {
1779       assert(phi->region() == r, "");
1780       p = phi;
1781       phi->set_req(pnum, q);
1782       if (mms.at_base_memory()) {
1783         base = phi;  // delay transforming it
1784       } else if (pnum == 1) {
1785         record_for_igvn(phi);
1786         p = _gvn.transform_no_reclaim(phi);
1787       }
1788       mms.set_memory(p);// store back through the iterator
1789     }
1790   }
1791   // Transform base last, in case we must fiddle with remerging.
1792   if (base != NULL && pnum == 1) {
1793     record_for_igvn(base);
1794     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1795   }
1796 }
1797 
1798 
1799 //------------------------ensure_phis_everywhere-------------------------------
1800 void Parse::ensure_phis_everywhere() {
1801   ensure_phi(TypeFunc::I_O);
1802 
1803   // Ensure a phi on all currently known memories.
1804   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1805     ensure_memory_phi(mms.alias_idx());
1806     debug_only(mms.set_memory());  // keep the iterator happy
1807   }
1808 
1809   // Note:  This is our only chance to create phis for memory slices.
1810   // If we miss a slice that crops up later, it will have to be
1811   // merged into the base-memory phi that we are building here.
1812   // Later, the optimizer will comb out the knot, and build separate
1813   // phi-loops for each memory slice that matters.
1814 
1815   // Monitors must nest nicely and not get confused amongst themselves.
1816   // Phi-ify everything up to the monitors, though.
1817   uint monoff = map()->jvms()->monoff();
1818   uint nof_monitors = map()->jvms()->nof_monitors();
1819 
1820   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1821   bool check_elide_phi = block()->is_SEL_head();
1822   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1823     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1824       ensure_phi(i);
1825     }
1826   }
1827 
1828   // Even monitors need Phis, though they are well-structured.
1829   // This is true for OSR methods, and also for the rare cases where
1830   // a monitor object is the subject of a replace_in_map operation.
1831   // See bugs 4426707 and 5043395.
1832   for (uint m = 0; m < nof_monitors; m++) {
1833     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1834   }
1835 }
1836 
1837 
1838 //-----------------------------add_new_path------------------------------------
1839 // Add a previously unaccounted predecessor to this block.
1840 int Parse::Block::add_new_path() {
1841   // If there is no map, return the lowest unused path number.
1842   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1843 
1844   SafePointNode* map = start_map();
1845   if (!map->control()->is_Region())
1846     return pred_count()+1;  // there may be a region some day
1847   RegionNode* r = map->control()->as_Region();
1848 
1849   // Add new path to the region.
1850   uint pnum = r->req();
1851   r->add_req(NULL);
1852 
1853   for (uint i = 1; i < map->req(); i++) {
1854     Node* n = map->in(i);
1855     if (i == TypeFunc::Memory) {
1856       // Ensure a phi on all currently known memories.
1857       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1858         Node* phi = mms.memory();
1859         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1860           assert(phi->req() == pnum, "must be same size as region");
1861           phi->add_req(NULL);
1862         }
1863       }
1864     } else {
1865       if (n->is_Phi() && n->as_Phi()->region() == r) {
1866         assert(n->req() == pnum, "must be same size as region");
1867         n->add_req(NULL);
1868       }
1869     }
1870   }
1871 
1872   return pnum;
1873 }
1874 
1875 //------------------------------ensure_phi-------------------------------------
1876 // Turn the idx'th entry of the current map into a Phi
1877 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1878   SafePointNode* map = this->map();
1879   Node* region = map->control();
1880   assert(region->is_Region(), "");
1881 
1882   Node* o = map->in(idx);
1883   assert(o != NULL, "");
1884 
1885   if (o == top())  return NULL; // TOP always merges into TOP
1886 
1887   if (o->is_Phi() && o->as_Phi()->region() == region) {
1888     return o->as_Phi();
1889   }
1890 
1891   // Now use a Phi here for merging
1892   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1893   const JVMState* jvms = map->jvms();
1894   const Type* t;
1895   if (jvms->is_loc(idx)) {
1896     t = block()->local_type_at(idx - jvms->locoff());
1897   } else if (jvms->is_stk(idx)) {
1898     t = block()->stack_type_at(idx - jvms->stkoff());
1899   } else if (jvms->is_mon(idx)) {
1900     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1901     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1902   } else if ((uint)idx < TypeFunc::Parms) {
1903     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1904   } else {
1905     assert(false, "no type information for this phi");
1906   }
1907 
1908   // If the type falls to bottom, then this must be a local that
1909   // is mixing ints and oops or some such.  Forcing it to top
1910   // makes it go dead.
1911   if (t == Type::BOTTOM) {
1912     map->set_req(idx, top());
1913     return NULL;
1914   }
1915 
1916   // Do not create phis for top either.
1917   // A top on a non-null control flow must be an unused even after the.phi.
1918   if (t == Type::TOP || t == Type::HALF) {
1919     map->set_req(idx, top());
1920     return NULL;
1921   }
1922 
1923   PhiNode* phi = PhiNode::make(region, o, t);
1924   gvn().set_type(phi, t);
1925   if (C->do_escape_analysis()) record_for_igvn(phi);
1926   map->set_req(idx, phi);
1927   return phi;
1928 }
1929 
1930 //--------------------------ensure_memory_phi----------------------------------
1931 // Turn the idx'th slice of the current memory into a Phi
1932 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1933   MergeMemNode* mem = merged_memory();
1934   Node* region = control();
1935   assert(region->is_Region(), "");
1936 
1937   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1938   assert(o != NULL && o != top(), "");
1939 
1940   PhiNode* phi;
1941   if (o->is_Phi() && o->as_Phi()->region() == region) {
1942     phi = o->as_Phi();
1943     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1944       // clone the shared base memory phi to make a new memory split
1945       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1946       const Type* t = phi->bottom_type();
1947       const TypePtr* adr_type = C->get_adr_type(idx);
1948       phi = phi->slice_memory(adr_type);
1949       gvn().set_type(phi, t);
1950     }
1951     return phi;
1952   }
1953 
1954   // Now use a Phi here for merging
1955   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1956   const Type* t = o->bottom_type();
1957   const TypePtr* adr_type = C->get_adr_type(idx);
1958   phi = PhiNode::make(region, o, t, adr_type);
1959   gvn().set_type(phi, t);
1960   if (idx == Compile::AliasIdxBot)
1961     mem->set_base_memory(phi);
1962   else
1963     mem->set_memory_at(idx, phi);
1964   return phi;
1965 }
1966 
1967 //------------------------------call_register_finalizer-----------------------
1968 // Check the klass of the receiver and call register_finalizer if the
1969 // class need finalization.
1970 void Parse::call_register_finalizer() {
1971   Node* receiver = local(0);
1972   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1973          "must have non-null instance type");
1974 
1975   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1976   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1977     // The type isn't known exactly so see if CHA tells us anything.
1978     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1979     if (!Dependencies::has_finalizable_subclass(ik)) {
1980       // No finalizable subclasses so skip the dynamic check.
1981       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1982       return;
1983     }
1984   }
1985 
1986   // Insert a dynamic test for whether the instance needs
1987   // finalization.  In general this will fold up since the concrete
1988   // class is often visible so the access flags are constant.
1989   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1990   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
1991 
1992   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
1993   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
1994 
1995   Node* mask  = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1996   Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
1997   Node* test  = _gvn.transform(new BoolNode(check, BoolTest::ne));
1998 
1999   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2000 
2001   RegionNode* result_rgn = new RegionNode(3);
2002   record_for_igvn(result_rgn);
2003 
2004   Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2005   result_rgn->init_req(1, skip_register);
2006 
2007   Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2008   set_control(needs_register);
2009   if (stopped()) {
2010     // There is no slow path.
2011     result_rgn->init_req(2, top());
2012   } else {
2013     Node *call = make_runtime_call(RC_NO_LEAF,
2014                                    OptoRuntime::register_finalizer_Type(),
2015                                    OptoRuntime::register_finalizer_Java(),
2016                                    NULL, TypePtr::BOTTOM,
2017                                    receiver);
2018     make_slow_call_ex(call, env()->Throwable_klass(), true);
2019 
2020     Node* fast_io  = call->in(TypeFunc::I_O);
2021     Node* fast_mem = call->in(TypeFunc::Memory);
2022     // These two phis are pre-filled with copies of of the fast IO and Memory
2023     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2024     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2025 
2026     result_rgn->init_req(2, control());
2027     io_phi    ->init_req(2, i_o());
2028     mem_phi   ->init_req(2, reset_memory());
2029 
2030     set_all_memory( _gvn.transform(mem_phi) );
2031     set_i_o(        _gvn.transform(io_phi) );
2032   }
2033 
2034   set_control( _gvn.transform(result_rgn) );
2035 }
2036 
2037 // Add check to deoptimize if RTM state is not ProfileRTM
2038 void Parse::rtm_deopt() {
2039 #if INCLUDE_RTM_OPT
2040   if (C->profile_rtm()) {
2041     assert(C->method() != NULL, "only for normal compilations");
2042     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2043     assert(depth() == 1, "generate check only for main compiled method");
2044 
2045     // Set starting bci for uncommon trap.
2046     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2047 
2048     // Load the rtm_state from the MethodData.
2049     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2050     Node* mdo = makecon(adr_type);
2051     int offset = MethodData::rtm_state_offset_in_bytes();
2052     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2053     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2054 
2055     // Separate Load from Cmp by Opaque.
2056     // In expand_macro_nodes() it will be replaced either
2057     // with this load when there are locks in the code
2058     // or with ProfileRTM (cmp->in(2)) otherwise so that
2059     // the check will fold.
2060     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2061     Node* opq   = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2062     Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2063     Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2064     // Branch to failure if state was changed
2065     { BuildCutout unless(this, tst, PROB_ALWAYS);
2066       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2067                     Deoptimization::Action_make_not_entrant);
2068     }
2069   }
2070 #endif
2071 }
2072 
2073 void Parse::decrement_age() {
2074   MethodCounters* mc = method()->ensure_method_counters();
2075   if (mc == NULL) {
2076     C->record_failure("Must have MCs");
2077     return;
2078   }
2079   assert(!is_osr_parse(), "Not doing this for OSRs");
2080 
2081   // Set starting bci for uncommon trap.
2082   set_parse_bci(0);
2083 
2084   const TypePtr* adr_type = TypeRawPtr::make((address)mc);
2085   Node* mc_adr = makecon(adr_type);
2086   Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset()));
2087   Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2088   Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE)));
2089   store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered);
2090   Node *chk   = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO)));
2091   Node* tst   = _gvn.transform(new BoolNode(chk, BoolTest::gt));
2092   { BuildCutout unless(this, tst, PROB_ALWAYS);
2093     uncommon_trap(Deoptimization::Reason_tenured,
2094                   Deoptimization::Action_make_not_entrant);
2095   }
2096 }
2097 
2098 //------------------------------return_current---------------------------------
2099 // Append current _map to _exit_return
2100 void Parse::return_current(Node* value) {
2101   if (RegisterFinalizersAtInit &&
2102       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2103     call_register_finalizer();
2104   }
2105 
2106   // Do not set_parse_bci, so that return goo is credited to the return insn.
2107   set_bci(InvocationEntryBci);
2108   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2109     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2110   }
2111   if (C->env()->dtrace_method_probes()) {
2112     make_dtrace_method_exit(method());
2113   }
2114   SafePointNode* exit_return = _exits.map();
2115   exit_return->in( TypeFunc::Control  )->add_req( control() );
2116   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2117   Node *mem = exit_return->in( TypeFunc::Memory   );
2118   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2119     if (mms.is_empty()) {
2120       // get a copy of the base memory, and patch just this one input
2121       const TypePtr* adr_type = mms.adr_type(C);
2122       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2123       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2124       gvn().set_type_bottom(phi);
2125       phi->del_req(phi->req()-1);  // prepare to re-patch
2126       mms.set_memory(phi);
2127     }
2128     mms.memory()->add_req(mms.memory2());
2129   }
2130 
2131   // frame pointer is always same, already captured
2132   if (value != NULL) {
2133     // If returning oops to an interface-return, there is a silent free
2134     // cast from oop to interface allowed by the Verifier.  Make it explicit
2135     // here.
2136     Node* phi = _exits.argument(0);
2137     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2138     if( tr && tr->klass()->is_loaded() &&
2139         tr->klass()->is_interface() ) {
2140       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2141       if (tp && tp->klass()->is_loaded() &&
2142           !tp->klass()->is_interface()) {
2143         // sharpen the type eagerly; this eases certain assert checking
2144         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2145           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2146         value = _gvn.transform(new CheckCastPPNode(0,value,tr));
2147       }
2148     }
2149     phi->add_req(value);
2150   }
2151 
2152   if (_first_return) {
2153     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2154     _first_return = false;
2155   } else {
2156     _exits.map()->merge_replaced_nodes_with(map());
2157   }
2158 
2159   stop_and_kill_map();          // This CFG path dies here
2160 }
2161 
2162 
2163 //------------------------------add_safepoint----------------------------------
2164 void Parse::add_safepoint() {
2165   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2166   // after a Call (except Leaf Call) or another SafePoint.
2167   Node *proj = control();
2168   bool add_poll_param = SafePointNode::needs_polling_address_input();
2169   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2170   if( proj->is_Proj() ) {
2171     Node *n0 = proj->in(0);
2172     if( n0->is_Catch() ) {
2173       n0 = n0->in(0)->in(0);
2174       assert( n0->is_Call(), "expect a call here" );
2175     }
2176     if( n0->is_Call() ) {
2177       if( n0->as_Call()->guaranteed_safepoint() )
2178         return;
2179     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2180       return;
2181     }
2182   }
2183 
2184   // Clear out dead values from the debug info.
2185   kill_dead_locals();
2186 
2187   // Clone the JVM State
2188   SafePointNode *sfpnt = new SafePointNode(parms, NULL);
2189 
2190   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2191   // SafePoint we need our GC state to be safe; i.e. we need all our current
2192   // write barriers (card marks) to not float down after the SafePoint so we
2193   // must read raw memory.  Likewise we need all oop stores to match the card
2194   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2195   // state on a deopt).
2196 
2197   // We do not need to WRITE the memory state after a SafePoint.  The control
2198   // edge will keep card-marks and oop-stores from floating up from below a
2199   // SafePoint and our true dependency added here will keep them from floating
2200   // down below a SafePoint.
2201 
2202   // Clone the current memory state
2203   Node* mem = MergeMemNode::make(map()->memory());
2204 
2205   mem = _gvn.transform(mem);
2206 
2207   // Pass control through the safepoint
2208   sfpnt->init_req(TypeFunc::Control  , control());
2209   // Fix edges normally used by a call
2210   sfpnt->init_req(TypeFunc::I_O      , top() );
2211   sfpnt->init_req(TypeFunc::Memory   , mem   );
2212   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2213   sfpnt->init_req(TypeFunc::FramePtr , top() );
2214 
2215   // Create a node for the polling address
2216   if( add_poll_param ) {
2217     Node *polladr = ConPNode::make((address)os::get_polling_page());
2218     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2219   }
2220 
2221   // Fix up the JVM State edges
2222   add_safepoint_edges(sfpnt);
2223   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2224   set_control(transformed_sfpnt);
2225 
2226   // Provide an edge from root to safepoint.  This makes the safepoint
2227   // appear useful until the parse has completed.
2228   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2229     assert(C->root() != NULL, "Expect parse is still valid");
2230     C->root()->add_prec(transformed_sfpnt);
2231   }
2232 }
2233 
2234 #ifndef PRODUCT
2235 //------------------------show_parse_info--------------------------------------
2236 void Parse::show_parse_info() {
2237   InlineTree* ilt = NULL;
2238   if (C->ilt() != NULL) {
2239     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2240     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2241   }
2242   if (PrintCompilation && Verbose) {
2243     if (depth() == 1) {
2244       if( ilt->count_inlines() ) {
2245         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2246                      ilt->count_inline_bcs());
2247         tty->cr();
2248       }
2249     } else {
2250       if (method()->is_synchronized())         tty->print("s");
2251       if (method()->has_exception_handlers())  tty->print("!");
2252       // Check this is not the final compiled version
2253       if (C->trap_can_recompile()) {
2254         tty->print("-");
2255       } else {
2256         tty->print(" ");
2257       }
2258       method()->print_short_name();
2259       if (is_osr_parse()) {
2260         tty->print(" @ %d", osr_bci());
2261       }
2262       tty->print(" (%d bytes)",method()->code_size());
2263       if (ilt->count_inlines()) {
2264         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2265                    ilt->count_inline_bcs());
2266       }
2267       tty->cr();
2268     }
2269   }
2270   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2271     // Print that we succeeded; suppress this message on the first osr parse.
2272 
2273     if (method()->is_synchronized())         tty->print("s");
2274     if (method()->has_exception_handlers())  tty->print("!");
2275     // Check this is not the final compiled version
2276     if (C->trap_can_recompile() && depth() == 1) {
2277       tty->print("-");
2278     } else {
2279       tty->print(" ");
2280     }
2281     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2282     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2283     method()->print_short_name();
2284     if (is_osr_parse()) {
2285       tty->print(" @ %d", osr_bci());
2286     }
2287     if (ilt->caller_bci() != -1) {
2288       tty->print(" @ %d", ilt->caller_bci());
2289     }
2290     tty->print(" (%d bytes)",method()->code_size());
2291     if (ilt->count_inlines()) {
2292       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2293                  ilt->count_inline_bcs());
2294     }
2295     tty->cr();
2296   }
2297 }
2298 
2299 
2300 //------------------------------dump-------------------------------------------
2301 // Dump information associated with the bytecodes of current _method
2302 void Parse::dump() {
2303   if( method() != NULL ) {
2304     // Iterate over bytecodes
2305     ciBytecodeStream iter(method());
2306     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2307       dump_bci( iter.cur_bci() );
2308       tty->cr();
2309     }
2310   }
2311 }
2312 
2313 // Dump information associated with a byte code index, 'bci'
2314 void Parse::dump_bci(int bci) {
2315   // Output info on merge-points, cloning, and within _jsr..._ret
2316   // NYI
2317   tty->print(" bci:%d", bci);
2318 }
2319 
2320 #endif