1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/divnode.hpp"
  46 #include "opto/escape.hpp"
  47 #include "opto/idealGraphPrinter.hpp"
  48 #include "opto/loopnode.hpp"
  49 #include "opto/machnode.hpp"
  50 #include "opto/macro.hpp"
  51 #include "opto/matcher.hpp"
  52 #include "opto/mathexactnode.hpp"
  53 #include "opto/memnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/node.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/output.hpp"
  59 #include "opto/parse.hpp"
  60 #include "opto/phaseX.hpp"
  61 #include "opto/rootnode.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/stringopts.hpp"
  64 #include "opto/type.hpp"
  65 #include "opto/vectornode.hpp"
  66 #include "runtime/arguments.hpp"
  67 #include "runtime/signature.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "utilities/copy.hpp"
  71 
  72 
  73 // -------------------- Compile::mach_constant_base_node -----------------------
  74 // Constant table base node singleton.
  75 MachConstantBaseNode* Compile::mach_constant_base_node() {
  76   if (_mach_constant_base_node == NULL) {
  77     _mach_constant_base_node = new MachConstantBaseNode();
  78     _mach_constant_base_node->add_req(C->root());
  79   }
  80   return _mach_constant_base_node;
  81 }
  82 
  83 
  84 /// Support for intrinsics.
  85 
  86 // Return the index at which m must be inserted (or already exists).
  87 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  88 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  89 #ifdef ASSERT
  90   for (int i = 1; i < _intrinsics->length(); i++) {
  91     CallGenerator* cg1 = _intrinsics->at(i-1);
  92     CallGenerator* cg2 = _intrinsics->at(i);
  93     assert(cg1->method() != cg2->method()
  94            ? cg1->method()     < cg2->method()
  95            : cg1->is_virtual() < cg2->is_virtual(),
  96            "compiler intrinsics list must stay sorted");
  97   }
  98 #endif
  99   // Binary search sorted list, in decreasing intervals [lo, hi].
 100   int lo = 0, hi = _intrinsics->length()-1;
 101   while (lo <= hi) {
 102     int mid = (uint)(hi + lo) / 2;
 103     ciMethod* mid_m = _intrinsics->at(mid)->method();
 104     if (m < mid_m) {
 105       hi = mid-1;
 106     } else if (m > mid_m) {
 107       lo = mid+1;
 108     } else {
 109       // look at minor sort key
 110       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 111       if (is_virtual < mid_virt) {
 112         hi = mid-1;
 113       } else if (is_virtual > mid_virt) {
 114         lo = mid+1;
 115       } else {
 116         return mid;  // exact match
 117       }
 118     }
 119   }
 120   return lo;  // inexact match
 121 }
 122 
 123 void Compile::register_intrinsic(CallGenerator* cg) {
 124   if (_intrinsics == NULL) {
 125     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 126   }
 127   // This code is stolen from ciObjectFactory::insert.
 128   // Really, GrowableArray should have methods for
 129   // insert_at, remove_at, and binary_search.
 130   int len = _intrinsics->length();
 131   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 132   if (index == len) {
 133     _intrinsics->append(cg);
 134   } else {
 135 #ifdef ASSERT
 136     CallGenerator* oldcg = _intrinsics->at(index);
 137     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 138 #endif
 139     _intrinsics->append(_intrinsics->at(len-1));
 140     int pos;
 141     for (pos = len-2; pos >= index; pos--) {
 142       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 143     }
 144     _intrinsics->at_put(index, cg);
 145   }
 146   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 147 }
 148 
 149 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 150   assert(m->is_loaded(), "don't try this on unloaded methods");
 151   if (_intrinsics != NULL) {
 152     int index = intrinsic_insertion_index(m, is_virtual);
 153     if (index < _intrinsics->length()
 154         && _intrinsics->at(index)->method() == m
 155         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 156       return _intrinsics->at(index);
 157     }
 158   }
 159   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 160   if (m->intrinsic_id() != vmIntrinsics::_none &&
 161       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 162     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 163     if (cg != NULL) {
 164       // Save it for next time:
 165       register_intrinsic(cg);
 166       return cg;
 167     } else {
 168       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 169     }
 170   }
 171   return NULL;
 172 }
 173 
 174 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 175 // in library_call.cpp.
 176 
 177 
 178 #ifndef PRODUCT
 179 // statistics gathering...
 180 
 181 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 182 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 183 
 184 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 185   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 186   int oflags = _intrinsic_hist_flags[id];
 187   assert(flags != 0, "what happened?");
 188   if (is_virtual) {
 189     flags |= _intrinsic_virtual;
 190   }
 191   bool changed = (flags != oflags);
 192   if ((flags & _intrinsic_worked) != 0) {
 193     juint count = (_intrinsic_hist_count[id] += 1);
 194     if (count == 1) {
 195       changed = true;           // first time
 196     }
 197     // increment the overall count also:
 198     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 199   }
 200   if (changed) {
 201     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 202       // Something changed about the intrinsic's virtuality.
 203       if ((flags & _intrinsic_virtual) != 0) {
 204         // This is the first use of this intrinsic as a virtual call.
 205         if (oflags != 0) {
 206           // We already saw it as a non-virtual, so note both cases.
 207           flags |= _intrinsic_both;
 208         }
 209       } else if ((oflags & _intrinsic_both) == 0) {
 210         // This is the first use of this intrinsic as a non-virtual
 211         flags |= _intrinsic_both;
 212       }
 213     }
 214     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 215   }
 216   // update the overall flags also:
 217   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 218   return changed;
 219 }
 220 
 221 static char* format_flags(int flags, char* buf) {
 222   buf[0] = 0;
 223   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 224   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 225   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 226   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 227   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 228   if (buf[0] == 0)  strcat(buf, ",");
 229   assert(buf[0] == ',', "must be");
 230   return &buf[1];
 231 }
 232 
 233 void Compile::print_intrinsic_statistics() {
 234   char flagsbuf[100];
 235   ttyLocker ttyl;
 236   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 237   tty->print_cr("Compiler intrinsic usage:");
 238   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 239   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 240   #define PRINT_STAT_LINE(name, c, f) \
 241     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 242   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 243     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 244     int   flags = _intrinsic_hist_flags[id];
 245     juint count = _intrinsic_hist_count[id];
 246     if ((flags | count) != 0) {
 247       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 248     }
 249   }
 250   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 251   if (xtty != NULL)  xtty->tail("statistics");
 252 }
 253 
 254 void Compile::print_statistics() {
 255   { ttyLocker ttyl;
 256     if (xtty != NULL)  xtty->head("statistics type='opto'");
 257     Parse::print_statistics();
 258     PhaseCCP::print_statistics();
 259     PhaseRegAlloc::print_statistics();
 260     Scheduling::print_statistics();
 261     PhasePeephole::print_statistics();
 262     PhaseIdealLoop::print_statistics();
 263     if (xtty != NULL)  xtty->tail("statistics");
 264   }
 265   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 266     // put this under its own <statistics> element.
 267     print_intrinsic_statistics();
 268   }
 269 }
 270 #endif //PRODUCT
 271 
 272 // Support for bundling info
 273 Bundle* Compile::node_bundling(const Node *n) {
 274   assert(valid_bundle_info(n), "oob");
 275   return &_node_bundling_base[n->_idx];
 276 }
 277 
 278 bool Compile::valid_bundle_info(const Node *n) {
 279   return (_node_bundling_limit > n->_idx);
 280 }
 281 
 282 
 283 void Compile::gvn_replace_by(Node* n, Node* nn) {
 284   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 285     Node* use = n->last_out(i);
 286     bool is_in_table = initial_gvn()->hash_delete(use);
 287     uint uses_found = 0;
 288     for (uint j = 0; j < use->len(); j++) {
 289       if (use->in(j) == n) {
 290         if (j < use->req())
 291           use->set_req(j, nn);
 292         else
 293           use->set_prec(j, nn);
 294         uses_found++;
 295       }
 296     }
 297     if (is_in_table) {
 298       // reinsert into table
 299       initial_gvn()->hash_find_insert(use);
 300     }
 301     record_for_igvn(use);
 302     i -= uses_found;    // we deleted 1 or more copies of this edge
 303   }
 304 }
 305 
 306 
 307 static inline bool not_a_node(const Node* n) {
 308   if (n == NULL)                   return true;
 309   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 310   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 311   return false;
 312 }
 313 
 314 // Identify all nodes that are reachable from below, useful.
 315 // Use breadth-first pass that records state in a Unique_Node_List,
 316 // recursive traversal is slower.
 317 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 318   int estimated_worklist_size = unique();
 319   useful.map( estimated_worklist_size, NULL );  // preallocate space
 320 
 321   // Initialize worklist
 322   if (root() != NULL)     { useful.push(root()); }
 323   // If 'top' is cached, declare it useful to preserve cached node
 324   if( cached_top_node() ) { useful.push(cached_top_node()); }
 325 
 326   // Push all useful nodes onto the list, breadthfirst
 327   for( uint next = 0; next < useful.size(); ++next ) {
 328     assert( next < unique(), "Unique useful nodes < total nodes");
 329     Node *n  = useful.at(next);
 330     uint max = n->len();
 331     for( uint i = 0; i < max; ++i ) {
 332       Node *m = n->in(i);
 333       if (not_a_node(m))  continue;
 334       useful.push(m);
 335     }
 336   }
 337 }
 338 
 339 // Update dead_node_list with any missing dead nodes using useful
 340 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 341 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 342   uint max_idx = unique();
 343   VectorSet& useful_node_set = useful.member_set();
 344 
 345   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 346     // If node with index node_idx is not in useful set,
 347     // mark it as dead in dead node list.
 348     if (! useful_node_set.test(node_idx) ) {
 349       record_dead_node(node_idx);
 350     }
 351   }
 352 }
 353 
 354 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 355   int shift = 0;
 356   for (int i = 0; i < inlines->length(); i++) {
 357     CallGenerator* cg = inlines->at(i);
 358     CallNode* call = cg->call_node();
 359     if (shift > 0) {
 360       inlines->at_put(i-shift, cg);
 361     }
 362     if (!useful.member(call)) {
 363       shift++;
 364     }
 365   }
 366   inlines->trunc_to(inlines->length()-shift);
 367 }
 368 
 369 // Disconnect all useless nodes by disconnecting those at the boundary.
 370 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 371   uint next = 0;
 372   while (next < useful.size()) {
 373     Node *n = useful.at(next++);
 374     if (n->is_SafePoint()) {
 375       // We're done with a parsing phase. Replaced nodes are not valid
 376       // beyond that point.
 377       n->as_SafePoint()->delete_replaced_nodes();
 378     }
 379     // Use raw traversal of out edges since this code removes out edges
 380     int max = n->outcnt();
 381     for (int j = 0; j < max; ++j) {
 382       Node* child = n->raw_out(j);
 383       if (! useful.member(child)) {
 384         assert(!child->is_top() || child != top(),
 385                "If top is cached in Compile object it is in useful list");
 386         // Only need to remove this out-edge to the useless node
 387         n->raw_del_out(j);
 388         --j;
 389         --max;
 390       }
 391     }
 392     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 393       record_for_igvn(n->unique_out());
 394     }
 395   }
 396   // Remove useless macro and predicate opaq nodes
 397   for (int i = C->macro_count()-1; i >= 0; i--) {
 398     Node* n = C->macro_node(i);
 399     if (!useful.member(n)) {
 400       remove_macro_node(n);
 401     }
 402   }
 403   // Remove useless expensive node
 404   for (int i = C->expensive_count()-1; i >= 0; i--) {
 405     Node* n = C->expensive_node(i);
 406     if (!useful.member(n)) {
 407       remove_expensive_node(n);
 408     }
 409   }
 410   // clean up the late inline lists
 411   remove_useless_late_inlines(&_string_late_inlines, useful);
 412   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 413   remove_useless_late_inlines(&_late_inlines, useful);
 414   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 415 }
 416 
 417 //------------------------------frame_size_in_words-----------------------------
 418 // frame_slots in units of words
 419 int Compile::frame_size_in_words() const {
 420   // shift is 0 in LP32 and 1 in LP64
 421   const int shift = (LogBytesPerWord - LogBytesPerInt);
 422   int words = _frame_slots >> shift;
 423   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 424   return words;
 425 }
 426 
 427 // To bang the stack of this compiled method we use the stack size
 428 // that the interpreter would need in case of a deoptimization. This
 429 // removes the need to bang the stack in the deoptimization blob which
 430 // in turn simplifies stack overflow handling.
 431 int Compile::bang_size_in_bytes() const {
 432   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 433 }
 434 
 435 // ============================================================================
 436 //------------------------------CompileWrapper---------------------------------
 437 class CompileWrapper : public StackObj {
 438   Compile *const _compile;
 439  public:
 440   CompileWrapper(Compile* compile);
 441 
 442   ~CompileWrapper();
 443 };
 444 
 445 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 446   // the Compile* pointer is stored in the current ciEnv:
 447   ciEnv* env = compile->env();
 448   assert(env == ciEnv::current(), "must already be a ciEnv active");
 449   assert(env->compiler_data() == NULL, "compile already active?");
 450   env->set_compiler_data(compile);
 451   assert(compile == Compile::current(), "sanity");
 452 
 453   compile->set_type_dict(NULL);
 454   compile->set_type_hwm(NULL);
 455   compile->set_type_last_size(0);
 456   compile->set_last_tf(NULL, NULL);
 457   compile->set_indexSet_arena(NULL);
 458   compile->set_indexSet_free_block_list(NULL);
 459   compile->init_type_arena();
 460   Type::Initialize(compile);
 461   _compile->set_scratch_buffer_blob(NULL);
 462   _compile->begin_method();
 463 }
 464 CompileWrapper::~CompileWrapper() {
 465   _compile->end_method();
 466   if (_compile->scratch_buffer_blob() != NULL)
 467     BufferBlob::free(_compile->scratch_buffer_blob());
 468   _compile->env()->set_compiler_data(NULL);
 469 }
 470 
 471 
 472 //----------------------------print_compile_messages---------------------------
 473 void Compile::print_compile_messages() {
 474 #ifndef PRODUCT
 475   // Check if recompiling
 476   if (_subsume_loads == false && PrintOpto) {
 477     // Recompiling without allowing machine instructions to subsume loads
 478     tty->print_cr("*********************************************************");
 479     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 480     tty->print_cr("*********************************************************");
 481   }
 482   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 483     // Recompiling without escape analysis
 484     tty->print_cr("*********************************************************");
 485     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 486     tty->print_cr("*********************************************************");
 487   }
 488   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 489     // Recompiling without boxing elimination
 490     tty->print_cr("*********************************************************");
 491     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 492     tty->print_cr("*********************************************************");
 493   }
 494   if (env()->break_at_compile()) {
 495     // Open the debugger when compiling this method.
 496     tty->print("### Breaking when compiling: ");
 497     method()->print_short_name();
 498     tty->cr();
 499     BREAKPOINT;
 500   }
 501 
 502   if( PrintOpto ) {
 503     if (is_osr_compilation()) {
 504       tty->print("[OSR]%3d", _compile_id);
 505     } else {
 506       tty->print("%3d", _compile_id);
 507     }
 508   }
 509 #endif
 510 }
 511 
 512 
 513 //-----------------------init_scratch_buffer_blob------------------------------
 514 // Construct a temporary BufferBlob and cache it for this compile.
 515 void Compile::init_scratch_buffer_blob(int const_size) {
 516   // If there is already a scratch buffer blob allocated and the
 517   // constant section is big enough, use it.  Otherwise free the
 518   // current and allocate a new one.
 519   BufferBlob* blob = scratch_buffer_blob();
 520   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 521     // Use the current blob.
 522   } else {
 523     if (blob != NULL) {
 524       BufferBlob::free(blob);
 525     }
 526 
 527     ResourceMark rm;
 528     _scratch_const_size = const_size;
 529     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 530     blob = BufferBlob::create("Compile::scratch_buffer", size);
 531     // Record the buffer blob for next time.
 532     set_scratch_buffer_blob(blob);
 533     // Have we run out of code space?
 534     if (scratch_buffer_blob() == NULL) {
 535       // Let CompilerBroker disable further compilations.
 536       record_failure("Not enough space for scratch buffer in CodeCache");
 537       return;
 538     }
 539   }
 540 
 541   // Initialize the relocation buffers
 542   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 543   set_scratch_locs_memory(locs_buf);
 544 }
 545 
 546 
 547 //-----------------------scratch_emit_size-------------------------------------
 548 // Helper function that computes size by emitting code
 549 uint Compile::scratch_emit_size(const Node* n) {
 550   // Start scratch_emit_size section.
 551   set_in_scratch_emit_size(true);
 552 
 553   // Emit into a trash buffer and count bytes emitted.
 554   // This is a pretty expensive way to compute a size,
 555   // but it works well enough if seldom used.
 556   // All common fixed-size instructions are given a size
 557   // method by the AD file.
 558   // Note that the scratch buffer blob and locs memory are
 559   // allocated at the beginning of the compile task, and
 560   // may be shared by several calls to scratch_emit_size.
 561   // The allocation of the scratch buffer blob is particularly
 562   // expensive, since it has to grab the code cache lock.
 563   BufferBlob* blob = this->scratch_buffer_blob();
 564   assert(blob != NULL, "Initialize BufferBlob at start");
 565   assert(blob->size() > MAX_inst_size, "sanity");
 566   relocInfo* locs_buf = scratch_locs_memory();
 567   address blob_begin = blob->content_begin();
 568   address blob_end   = (address)locs_buf;
 569   assert(blob->content_contains(blob_end), "sanity");
 570   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 571   buf.initialize_consts_size(_scratch_const_size);
 572   buf.initialize_stubs_size(MAX_stubs_size);
 573   assert(locs_buf != NULL, "sanity");
 574   int lsize = MAX_locs_size / 3;
 575   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 576   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 577   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 578 
 579   // Do the emission.
 580 
 581   Label fakeL; // Fake label for branch instructions.
 582   Label*   saveL = NULL;
 583   uint save_bnum = 0;
 584   bool is_branch = n->is_MachBranch();
 585   if (is_branch) {
 586     MacroAssembler masm(&buf);
 587     masm.bind(fakeL);
 588     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 589     n->as_MachBranch()->label_set(&fakeL, 0);
 590   }
 591   n->emit(buf, this->regalloc());
 592   if (is_branch) // Restore label.
 593     n->as_MachBranch()->label_set(saveL, save_bnum);
 594 
 595   // End scratch_emit_size section.
 596   set_in_scratch_emit_size(false);
 597 
 598   return buf.insts_size();
 599 }
 600 
 601 
 602 // ============================================================================
 603 //------------------------------Compile standard-------------------------------
 604 debug_only( int Compile::_debug_idx = 100000; )
 605 
 606 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 607 // the continuation bci for on stack replacement.
 608 
 609 
 610 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 611                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 612                 : Phase(Compiler),
 613                   _env(ci_env),
 614                   _log(ci_env->log()),
 615                   _compile_id(ci_env->compile_id()),
 616                   _save_argument_registers(false),
 617                   _stub_name(NULL),
 618                   _stub_function(NULL),
 619                   _stub_entry_point(NULL),
 620                   _method(target),
 621                   _entry_bci(osr_bci),
 622                   _initial_gvn(NULL),
 623                   _for_igvn(NULL),
 624                   _warm_calls(NULL),
 625                   _subsume_loads(subsume_loads),
 626                   _do_escape_analysis(do_escape_analysis),
 627                   _eliminate_boxing(eliminate_boxing),
 628                   _failure_reason(NULL),
 629                   _code_buffer("Compile::Fill_buffer"),
 630                   _orig_pc_slot(0),
 631                   _orig_pc_slot_offset_in_bytes(0),
 632                   _has_method_handle_invokes(false),
 633                   _mach_constant_base_node(NULL),
 634                   _node_bundling_limit(0),
 635                   _node_bundling_base(NULL),
 636                   _java_calls(0),
 637                   _inner_loops(0),
 638                   _scratch_const_size(-1),
 639                   _in_scratch_emit_size(false),
 640                   _dead_node_list(comp_arena()),
 641                   _dead_node_count(0),
 642 #ifndef PRODUCT
 643                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 644                   _in_dump_cnt(0),
 645                   _printer(IdealGraphPrinter::printer()),
 646 #endif
 647                   _congraph(NULL),
 648                   _comp_arena(mtCompiler),
 649                   _node_arena(mtCompiler),
 650                   _old_arena(mtCompiler),
 651                   _Compile_types(mtCompiler),
 652                   _replay_inline_data(NULL),
 653                   _late_inlines(comp_arena(), 2, 0, NULL),
 654                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 655                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 656                   _late_inlines_pos(0),
 657                   _number_of_mh_late_inlines(0),
 658                   _inlining_progress(false),
 659                   _inlining_incrementally(false),
 660                   _print_inlining_list(NULL),
 661                   _print_inlining_stream(NULL),
 662                   _print_inlining_idx(0),
 663                   _print_inlining_output(NULL),
 664                   _interpreter_frame_size(0) {
 665   C = this;
 666 
 667   CompileWrapper cw(this);
 668 
 669   if (CITimeVerbose) {
 670     tty->print(" ");
 671     target->holder()->name()->print();
 672     tty->print(".");
 673     target->print_short_name();
 674     tty->print("  ");
 675   }
 676   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 677   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 678 
 679 #ifndef PRODUCT
 680   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 681   if (!print_opto_assembly) {
 682     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 683     if (print_assembly && !Disassembler::can_decode()) {
 684       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 685       print_opto_assembly = true;
 686     }
 687   }
 688   set_print_assembly(print_opto_assembly);
 689   set_parsed_irreducible_loop(false);
 690 
 691   if (method()->has_option("ReplayInline")) {
 692     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 693   }
 694 #endif
 695   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 696   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 697   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 698 
 699   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 700     // Make sure the method being compiled gets its own MDO,
 701     // so we can at least track the decompile_count().
 702     // Need MDO to record RTM code generation state.
 703     method()->ensure_method_data();
 704   }
 705 
 706   Init(::AliasLevel);
 707 
 708 
 709   print_compile_messages();
 710 
 711   _ilt = InlineTree::build_inline_tree_root();
 712 
 713   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 714   assert(num_alias_types() >= AliasIdxRaw, "");
 715 
 716 #define MINIMUM_NODE_HASH  1023
 717   // Node list that Iterative GVN will start with
 718   Unique_Node_List for_igvn(comp_arena());
 719   set_for_igvn(&for_igvn);
 720 
 721   // GVN that will be run immediately on new nodes
 722   uint estimated_size = method()->code_size()*4+64;
 723   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 724   PhaseGVN gvn(node_arena(), estimated_size);
 725   set_initial_gvn(&gvn);
 726 
 727   print_inlining_init();
 728   { // Scope for timing the parser
 729     TracePhase tp("parse", &timers[_t_parser]);
 730 
 731     // Put top into the hash table ASAP.
 732     initial_gvn()->transform_no_reclaim(top());
 733 
 734     // Set up tf(), start(), and find a CallGenerator.
 735     CallGenerator* cg = NULL;
 736     if (is_osr_compilation()) {
 737       const TypeTuple *domain = StartOSRNode::osr_domain();
 738       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 739       init_tf(TypeFunc::make(domain, range));
 740       StartNode* s = new StartOSRNode(root(), domain);
 741       initial_gvn()->set_type_bottom(s);
 742       init_start(s);
 743       cg = CallGenerator::for_osr(method(), entry_bci());
 744     } else {
 745       // Normal case.
 746       init_tf(TypeFunc::make(method()));
 747       StartNode* s = new StartNode(root(), tf()->domain());
 748       initial_gvn()->set_type_bottom(s);
 749       init_start(s);
 750       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 751         // With java.lang.ref.reference.get() we must go through the
 752         // intrinsic when G1 is enabled - even when get() is the root
 753         // method of the compile - so that, if necessary, the value in
 754         // the referent field of the reference object gets recorded by
 755         // the pre-barrier code.
 756         // Specifically, if G1 is enabled, the value in the referent
 757         // field is recorded by the G1 SATB pre barrier. This will
 758         // result in the referent being marked live and the reference
 759         // object removed from the list of discovered references during
 760         // reference processing.
 761         cg = find_intrinsic(method(), false);
 762       }
 763       if (cg == NULL) {
 764         float past_uses = method()->interpreter_invocation_count();
 765         float expected_uses = past_uses;
 766         cg = CallGenerator::for_inline(method(), expected_uses);
 767       }
 768     }
 769     if (failing())  return;
 770     if (cg == NULL) {
 771       record_method_not_compilable_all_tiers("cannot parse method");
 772       return;
 773     }
 774     JVMState* jvms = build_start_state(start(), tf());
 775     if ((jvms = cg->generate(jvms)) == NULL) {
 776       record_method_not_compilable("method parse failed");
 777       return;
 778     }
 779     GraphKit kit(jvms);
 780 
 781     if (!kit.stopped()) {
 782       // Accept return values, and transfer control we know not where.
 783       // This is done by a special, unique ReturnNode bound to root.
 784       return_values(kit.jvms());
 785     }
 786 
 787     if (kit.has_exceptions()) {
 788       // Any exceptions that escape from this call must be rethrown
 789       // to whatever caller is dynamically above us on the stack.
 790       // This is done by a special, unique RethrowNode bound to root.
 791       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 792     }
 793 
 794     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 795 
 796     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 797       inline_string_calls(true);
 798     }
 799 
 800     if (failing())  return;
 801 
 802     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 803 
 804     // Remove clutter produced by parsing.
 805     if (!failing()) {
 806       ResourceMark rm;
 807       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 808     }
 809   }
 810 
 811   // Note:  Large methods are capped off in do_one_bytecode().
 812   if (failing())  return;
 813 
 814   // After parsing, node notes are no longer automagic.
 815   // They must be propagated by register_new_node_with_optimizer(),
 816   // clone(), or the like.
 817   set_default_node_notes(NULL);
 818 
 819   for (;;) {
 820     int successes = Inline_Warm();
 821     if (failing())  return;
 822     if (successes == 0)  break;
 823   }
 824 
 825   // Drain the list.
 826   Finish_Warm();
 827 #ifndef PRODUCT
 828   if (_printer && _printer->should_print(_method)) {
 829     _printer->print_inlining(this);
 830   }
 831 #endif
 832 
 833   if (failing())  return;
 834   NOT_PRODUCT( verify_graph_edges(); )
 835 
 836   // Now optimize
 837   Optimize();
 838   if (failing())  return;
 839   NOT_PRODUCT( verify_graph_edges(); )
 840 
 841 #ifndef PRODUCT
 842   if (PrintIdeal) {
 843     ttyLocker ttyl;  // keep the following output all in one block
 844     // This output goes directly to the tty, not the compiler log.
 845     // To enable tools to match it up with the compilation activity,
 846     // be sure to tag this tty output with the compile ID.
 847     if (xtty != NULL) {
 848       xtty->head("ideal compile_id='%d'%s", compile_id(),
 849                  is_osr_compilation()    ? " compile_kind='osr'" :
 850                  "");
 851     }
 852     root()->dump(9999);
 853     if (xtty != NULL) {
 854       xtty->tail("ideal");
 855     }
 856   }
 857 #endif
 858 
 859   NOT_PRODUCT( verify_barriers(); )
 860 
 861   // Dump compilation data to replay it.
 862   if (method()->has_option("DumpReplay")) {
 863     env()->dump_replay_data(_compile_id);
 864   }
 865   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 866     env()->dump_inline_data(_compile_id);
 867   }
 868 
 869   // Now that we know the size of all the monitors we can add a fixed slot
 870   // for the original deopt pc.
 871 
 872   _orig_pc_slot =  fixed_slots();
 873   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 874   set_fixed_slots(next_slot);
 875 
 876   // Compute when to use implicit null checks. Used by matching trap based
 877   // nodes and NullCheck optimization.
 878   set_allowed_deopt_reasons();
 879 
 880   // Now generate code
 881   Code_Gen();
 882   if (failing())  return;
 883 
 884   // Check if we want to skip execution of all compiled code.
 885   {
 886 #ifndef PRODUCT
 887     if (OptoNoExecute) {
 888       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 889       return;
 890     }
 891 #endif
 892     TracePhase tp("install_code", &timers[_t_registerMethod]);
 893 
 894     if (is_osr_compilation()) {
 895       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 896       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 897     } else {
 898       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 899       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 900     }
 901 
 902     env()->register_method(_method, _entry_bci,
 903                            &_code_offsets,
 904                            _orig_pc_slot_offset_in_bytes,
 905                            code_buffer(),
 906                            frame_size_in_words(), _oop_map_set,
 907                            &_handler_table, &_inc_table,
 908                            compiler,
 909                            env()->comp_level(),
 910                            has_unsafe_access(),
 911                            SharedRuntime::is_wide_vector(max_vector_size()),
 912                            rtm_state()
 913                            );
 914 
 915     if (log() != NULL) // Print code cache state into compiler log
 916       log()->code_cache_state();
 917   }
 918 }
 919 
 920 //------------------------------Compile----------------------------------------
 921 // Compile a runtime stub
 922 Compile::Compile( ciEnv* ci_env,
 923                   TypeFunc_generator generator,
 924                   address stub_function,
 925                   const char *stub_name,
 926                   int is_fancy_jump,
 927                   bool pass_tls,
 928                   bool save_arg_registers,
 929                   bool return_pc )
 930   : Phase(Compiler),
 931     _env(ci_env),
 932     _log(ci_env->log()),
 933     _compile_id(0),
 934     _save_argument_registers(save_arg_registers),
 935     _method(NULL),
 936     _stub_name(stub_name),
 937     _stub_function(stub_function),
 938     _stub_entry_point(NULL),
 939     _entry_bci(InvocationEntryBci),
 940     _initial_gvn(NULL),
 941     _for_igvn(NULL),
 942     _warm_calls(NULL),
 943     _orig_pc_slot(0),
 944     _orig_pc_slot_offset_in_bytes(0),
 945     _subsume_loads(true),
 946     _do_escape_analysis(false),
 947     _eliminate_boxing(false),
 948     _failure_reason(NULL),
 949     _code_buffer("Compile::Fill_buffer"),
 950     _has_method_handle_invokes(false),
 951     _mach_constant_base_node(NULL),
 952     _node_bundling_limit(0),
 953     _node_bundling_base(NULL),
 954     _java_calls(0),
 955     _inner_loops(0),
 956 #ifndef PRODUCT
 957     _trace_opto_output(TraceOptoOutput),
 958     _in_dump_cnt(0),
 959     _printer(NULL),
 960 #endif
 961     _comp_arena(mtCompiler),
 962     _node_arena(mtCompiler),
 963     _old_arena(mtCompiler),
 964     _Compile_types(mtCompiler),
 965     _dead_node_list(comp_arena()),
 966     _dead_node_count(0),
 967     _congraph(NULL),
 968     _replay_inline_data(NULL),
 969     _number_of_mh_late_inlines(0),
 970     _inlining_progress(false),
 971     _inlining_incrementally(false),
 972     _print_inlining_list(NULL),
 973     _print_inlining_stream(NULL),
 974     _print_inlining_idx(0),
 975     _print_inlining_output(NULL),
 976     _allowed_reasons(0),
 977     _interpreter_frame_size(0) {
 978   C = this;
 979 
 980   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 981   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 982 
 983 #ifndef PRODUCT
 984   set_print_assembly(PrintFrameConverterAssembly);
 985   set_parsed_irreducible_loop(false);
 986 #endif
 987   set_has_irreducible_loop(false); // no loops
 988 
 989   CompileWrapper cw(this);
 990   Init(/*AliasLevel=*/ 0);
 991   init_tf((*generator)());
 992 
 993   {
 994     // The following is a dummy for the sake of GraphKit::gen_stub
 995     Unique_Node_List for_igvn(comp_arena());
 996     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 997     PhaseGVN gvn(Thread::current()->resource_area(),255);
 998     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 999     gvn.transform_no_reclaim(top());
1000 
1001     GraphKit kit;
1002     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1003   }
1004 
1005   NOT_PRODUCT( verify_graph_edges(); )
1006   Code_Gen();
1007   if (failing())  return;
1008 
1009 
1010   // Entry point will be accessed using compile->stub_entry_point();
1011   if (code_buffer() == NULL) {
1012     Matcher::soft_match_failure();
1013   } else {
1014     if (PrintAssembly && (WizardMode || Verbose))
1015       tty->print_cr("### Stub::%s", stub_name);
1016 
1017     if (!failing()) {
1018       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1019 
1020       // Make the NMethod
1021       // For now we mark the frame as never safe for profile stackwalking
1022       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1023                                                       code_buffer(),
1024                                                       CodeOffsets::frame_never_safe,
1025                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1026                                                       frame_size_in_words(),
1027                                                       _oop_map_set,
1028                                                       save_arg_registers);
1029       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1030 
1031       _stub_entry_point = rs->entry_point();
1032     }
1033   }
1034 }
1035 
1036 //------------------------------Init-------------------------------------------
1037 // Prepare for a single compilation
1038 void Compile::Init(int aliaslevel) {
1039   _unique  = 0;
1040   _regalloc = NULL;
1041 
1042   _tf      = NULL;  // filled in later
1043   _top     = NULL;  // cached later
1044   _matcher = NULL;  // filled in later
1045   _cfg     = NULL;  // filled in later
1046 
1047   set_24_bit_selection_and_mode(Use24BitFP, false);
1048 
1049   _node_note_array = NULL;
1050   _default_node_notes = NULL;
1051   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1052 
1053   _immutable_memory = NULL; // filled in at first inquiry
1054 
1055   // Globally visible Nodes
1056   // First set TOP to NULL to give safe behavior during creation of RootNode
1057   set_cached_top_node(NULL);
1058   set_root(new RootNode());
1059   // Now that you have a Root to point to, create the real TOP
1060   set_cached_top_node( new ConNode(Type::TOP) );
1061   set_recent_alloc(NULL, NULL);
1062 
1063   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1064   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1065   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1066   env()->set_dependencies(new Dependencies(env()));
1067 
1068   _fixed_slots = 0;
1069   set_has_split_ifs(false);
1070   set_has_loops(has_method() && method()->has_loops()); // first approximation
1071   set_has_stringbuilder(false);
1072   set_has_boxed_value(false);
1073   _trap_can_recompile = false;  // no traps emitted yet
1074   _major_progress = true; // start out assuming good things will happen
1075   set_has_unsafe_access(false);
1076   set_max_vector_size(0);
1077   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1078   set_decompile_count(0);
1079 
1080   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1081   set_num_loop_opts(LoopOptsCount);
1082   set_do_inlining(Inline);
1083   set_max_inline_size(MaxInlineSize);
1084   set_freq_inline_size(FreqInlineSize);
1085   set_do_scheduling(OptoScheduling);
1086   set_do_count_invocations(false);
1087   set_do_method_data_update(false);
1088   set_age_code(has_method() && method()->profile_aging());
1089   set_rtm_state(NoRTM); // No RTM lock eliding by default
1090 #if INCLUDE_RTM_OPT
1091   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1092     int rtm_state = method()->method_data()->rtm_state();
1093     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1094       // Don't generate RTM lock eliding code.
1095       set_rtm_state(NoRTM);
1096     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1097       // Generate RTM lock eliding code without abort ratio calculation code.
1098       set_rtm_state(UseRTM);
1099     } else if (UseRTMDeopt) {
1100       // Generate RTM lock eliding code and include abort ratio calculation
1101       // code if UseRTMDeopt is on.
1102       set_rtm_state(ProfileRTM);
1103     }
1104   }
1105 #endif
1106   if (debug_info()->recording_non_safepoints()) {
1107     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1108                         (comp_arena(), 8, 0, NULL));
1109     set_default_node_notes(Node_Notes::make(this));
1110   }
1111 
1112   // // -- Initialize types before each compile --
1113   // // Update cached type information
1114   // if( _method && _method->constants() )
1115   //   Type::update_loaded_types(_method, _method->constants());
1116 
1117   // Init alias_type map.
1118   if (!_do_escape_analysis && aliaslevel == 3)
1119     aliaslevel = 2;  // No unique types without escape analysis
1120   _AliasLevel = aliaslevel;
1121   const int grow_ats = 16;
1122   _max_alias_types = grow_ats;
1123   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1124   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1125   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1126   {
1127     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1128   }
1129   // Initialize the first few types.
1130   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1131   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1132   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1133   _num_alias_types = AliasIdxRaw+1;
1134   // Zero out the alias type cache.
1135   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1136   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1137   probe_alias_cache(NULL)->_index = AliasIdxTop;
1138 
1139   _intrinsics = NULL;
1140   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1141   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1142   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1143   register_library_intrinsics();
1144 }
1145 
1146 //---------------------------init_start----------------------------------------
1147 // Install the StartNode on this compile object.
1148 void Compile::init_start(StartNode* s) {
1149   if (failing())
1150     return; // already failing
1151   assert(s == start(), "");
1152 }
1153 
1154 /**
1155  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1156  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1157  * the ideal graph.
1158  */
1159 StartNode* Compile::start() const {
1160   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
1161   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1162     Node* start = root()->fast_out(i);
1163     if (start->is_Start()) {
1164       return start->as_Start();
1165     }
1166   }
1167   fatal("Did not find Start node!");
1168   return NULL;
1169 }
1170 
1171 //-------------------------------immutable_memory-------------------------------------
1172 // Access immutable memory
1173 Node* Compile::immutable_memory() {
1174   if (_immutable_memory != NULL) {
1175     return _immutable_memory;
1176   }
1177   StartNode* s = start();
1178   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1179     Node *p = s->fast_out(i);
1180     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1181       _immutable_memory = p;
1182       return _immutable_memory;
1183     }
1184   }
1185   ShouldNotReachHere();
1186   return NULL;
1187 }
1188 
1189 //----------------------set_cached_top_node------------------------------------
1190 // Install the cached top node, and make sure Node::is_top works correctly.
1191 void Compile::set_cached_top_node(Node* tn) {
1192   if (tn != NULL)  verify_top(tn);
1193   Node* old_top = _top;
1194   _top = tn;
1195   // Calling Node::setup_is_top allows the nodes the chance to adjust
1196   // their _out arrays.
1197   if (_top != NULL)     _top->setup_is_top();
1198   if (old_top != NULL)  old_top->setup_is_top();
1199   assert(_top == NULL || top()->is_top(), "");
1200 }
1201 
1202 #ifdef ASSERT
1203 uint Compile::count_live_nodes_by_graph_walk() {
1204   Unique_Node_List useful(comp_arena());
1205   // Get useful node list by walking the graph.
1206   identify_useful_nodes(useful);
1207   return useful.size();
1208 }
1209 
1210 void Compile::print_missing_nodes() {
1211 
1212   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1213   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1214     return;
1215   }
1216 
1217   // This is an expensive function. It is executed only when the user
1218   // specifies VerifyIdealNodeCount option or otherwise knows the
1219   // additional work that needs to be done to identify reachable nodes
1220   // by walking the flow graph and find the missing ones using
1221   // _dead_node_list.
1222 
1223   Unique_Node_List useful(comp_arena());
1224   // Get useful node list by walking the graph.
1225   identify_useful_nodes(useful);
1226 
1227   uint l_nodes = C->live_nodes();
1228   uint l_nodes_by_walk = useful.size();
1229 
1230   if (l_nodes != l_nodes_by_walk) {
1231     if (_log != NULL) {
1232       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1233       _log->stamp();
1234       _log->end_head();
1235     }
1236     VectorSet& useful_member_set = useful.member_set();
1237     int last_idx = l_nodes_by_walk;
1238     for (int i = 0; i < last_idx; i++) {
1239       if (useful_member_set.test(i)) {
1240         if (_dead_node_list.test(i)) {
1241           if (_log != NULL) {
1242             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1243           }
1244           if (PrintIdealNodeCount) {
1245             // Print the log message to tty
1246               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1247               useful.at(i)->dump();
1248           }
1249         }
1250       }
1251       else if (! _dead_node_list.test(i)) {
1252         if (_log != NULL) {
1253           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1254         }
1255         if (PrintIdealNodeCount) {
1256           // Print the log message to tty
1257           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1258         }
1259       }
1260     }
1261     if (_log != NULL) {
1262       _log->tail("mismatched_nodes");
1263     }
1264   }
1265 }
1266 void Compile::record_modified_node(Node* n) {
1267   if (_modified_nodes != NULL && !_inlining_incrementally &&
1268       n->outcnt() != 0 && !n->is_Con()) {
1269     _modified_nodes->push(n);
1270   }
1271 }
1272 
1273 void Compile::remove_modified_node(Node* n) {
1274   if (_modified_nodes != NULL) {
1275     _modified_nodes->remove(n);
1276   }
1277 }
1278 #endif
1279 
1280 #ifndef PRODUCT
1281 void Compile::verify_top(Node* tn) const {
1282   if (tn != NULL) {
1283     assert(tn->is_Con(), "top node must be a constant");
1284     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1285     assert(tn->in(0) != NULL, "must have live top node");
1286   }
1287 }
1288 #endif
1289 
1290 
1291 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1292 
1293 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1294   guarantee(arr != NULL, "");
1295   int num_blocks = arr->length();
1296   if (grow_by < num_blocks)  grow_by = num_blocks;
1297   int num_notes = grow_by * _node_notes_block_size;
1298   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1299   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1300   while (num_notes > 0) {
1301     arr->append(notes);
1302     notes     += _node_notes_block_size;
1303     num_notes -= _node_notes_block_size;
1304   }
1305   assert(num_notes == 0, "exact multiple, please");
1306 }
1307 
1308 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1309   if (source == NULL || dest == NULL)  return false;
1310 
1311   if (dest->is_Con())
1312     return false;               // Do not push debug info onto constants.
1313 
1314 #ifdef ASSERT
1315   // Leave a bread crumb trail pointing to the original node:
1316   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1317     dest->set_debug_orig(source);
1318   }
1319 #endif
1320 
1321   if (node_note_array() == NULL)
1322     return false;               // Not collecting any notes now.
1323 
1324   // This is a copy onto a pre-existing node, which may already have notes.
1325   // If both nodes have notes, do not overwrite any pre-existing notes.
1326   Node_Notes* source_notes = node_notes_at(source->_idx);
1327   if (source_notes == NULL || source_notes->is_clear())  return false;
1328   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1329   if (dest_notes == NULL || dest_notes->is_clear()) {
1330     return set_node_notes_at(dest->_idx, source_notes);
1331   }
1332 
1333   Node_Notes merged_notes = (*source_notes);
1334   // The order of operations here ensures that dest notes will win...
1335   merged_notes.update_from(dest_notes);
1336   return set_node_notes_at(dest->_idx, &merged_notes);
1337 }
1338 
1339 
1340 //--------------------------allow_range_check_smearing-------------------------
1341 // Gating condition for coalescing similar range checks.
1342 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1343 // single covering check that is at least as strong as any of them.
1344 // If the optimization succeeds, the simplified (strengthened) range check
1345 // will always succeed.  If it fails, we will deopt, and then give up
1346 // on the optimization.
1347 bool Compile::allow_range_check_smearing() const {
1348   // If this method has already thrown a range-check,
1349   // assume it was because we already tried range smearing
1350   // and it failed.
1351   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1352   return !already_trapped;
1353 }
1354 
1355 
1356 //------------------------------flatten_alias_type-----------------------------
1357 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1358   int offset = tj->offset();
1359   TypePtr::PTR ptr = tj->ptr();
1360 
1361   // Known instance (scalarizable allocation) alias only with itself.
1362   bool is_known_inst = tj->isa_oopptr() != NULL &&
1363                        tj->is_oopptr()->is_known_instance();
1364 
1365   // Process weird unsafe references.
1366   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1367     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1368     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1369     tj = TypeOopPtr::BOTTOM;
1370     ptr = tj->ptr();
1371     offset = tj->offset();
1372   }
1373 
1374   // Array pointers need some flattening
1375   const TypeAryPtr *ta = tj->isa_aryptr();
1376   if (ta && ta->is_stable()) {
1377     // Erase stability property for alias analysis.
1378     tj = ta = ta->cast_to_stable(false);
1379   }
1380   if( ta && is_known_inst ) {
1381     if ( offset != Type::OffsetBot &&
1382          offset > arrayOopDesc::length_offset_in_bytes() ) {
1383       offset = Type::OffsetBot; // Flatten constant access into array body only
1384       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1385     }
1386   } else if( ta && _AliasLevel >= 2 ) {
1387     // For arrays indexed by constant indices, we flatten the alias
1388     // space to include all of the array body.  Only the header, klass
1389     // and array length can be accessed un-aliased.
1390     if( offset != Type::OffsetBot ) {
1391       if( ta->const_oop() ) { // MethodData* or Method*
1392         offset = Type::OffsetBot;   // Flatten constant access into array body
1393         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1394       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1395         // range is OK as-is.
1396         tj = ta = TypeAryPtr::RANGE;
1397       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1398         tj = TypeInstPtr::KLASS; // all klass loads look alike
1399         ta = TypeAryPtr::RANGE; // generic ignored junk
1400         ptr = TypePtr::BotPTR;
1401       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1402         tj = TypeInstPtr::MARK;
1403         ta = TypeAryPtr::RANGE; // generic ignored junk
1404         ptr = TypePtr::BotPTR;
1405       } else {                  // Random constant offset into array body
1406         offset = Type::OffsetBot;   // Flatten constant access into array body
1407         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1408       }
1409     }
1410     // Arrays of fixed size alias with arrays of unknown size.
1411     if (ta->size() != TypeInt::POS) {
1412       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1413       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1414     }
1415     // Arrays of known objects become arrays of unknown objects.
1416     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1417       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1418       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1419     }
1420     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1421       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1422       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1423     }
1424     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1425     // cannot be distinguished by bytecode alone.
1426     if (ta->elem() == TypeInt::BOOL) {
1427       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1428       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1429       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1430     }
1431     // During the 2nd round of IterGVN, NotNull castings are removed.
1432     // Make sure the Bottom and NotNull variants alias the same.
1433     // Also, make sure exact and non-exact variants alias the same.
1434     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1435       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1436     }
1437   }
1438 
1439   // Oop pointers need some flattening
1440   const TypeInstPtr *to = tj->isa_instptr();
1441   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1442     ciInstanceKlass *k = to->klass()->as_instance_klass();
1443     if( ptr == TypePtr::Constant ) {
1444       if (to->klass() != ciEnv::current()->Class_klass() ||
1445           offset < k->size_helper() * wordSize) {
1446         // No constant oop pointers (such as Strings); they alias with
1447         // unknown strings.
1448         assert(!is_known_inst, "not scalarizable allocation");
1449         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1450       }
1451     } else if( is_known_inst ) {
1452       tj = to; // Keep NotNull and klass_is_exact for instance type
1453     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1454       // During the 2nd round of IterGVN, NotNull castings are removed.
1455       // Make sure the Bottom and NotNull variants alias the same.
1456       // Also, make sure exact and non-exact variants alias the same.
1457       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1458     }
1459     if (to->speculative() != NULL) {
1460       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1461     }
1462     // Canonicalize the holder of this field
1463     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1464       // First handle header references such as a LoadKlassNode, even if the
1465       // object's klass is unloaded at compile time (4965979).
1466       if (!is_known_inst) { // Do it only for non-instance types
1467         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1468       }
1469     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1470       // Static fields are in the space above the normal instance
1471       // fields in the java.lang.Class instance.
1472       if (to->klass() != ciEnv::current()->Class_klass()) {
1473         to = NULL;
1474         tj = TypeOopPtr::BOTTOM;
1475         offset = tj->offset();
1476       }
1477     } else {
1478       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1479       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1480         if( is_known_inst ) {
1481           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1482         } else {
1483           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1484         }
1485       }
1486     }
1487   }
1488 
1489   // Klass pointers to object array klasses need some flattening
1490   const TypeKlassPtr *tk = tj->isa_klassptr();
1491   if( tk ) {
1492     // If we are referencing a field within a Klass, we need
1493     // to assume the worst case of an Object.  Both exact and
1494     // inexact types must flatten to the same alias class so
1495     // use NotNull as the PTR.
1496     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1497 
1498       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1499                                    TypeKlassPtr::OBJECT->klass(),
1500                                    offset);
1501     }
1502 
1503     ciKlass* klass = tk->klass();
1504     if( klass->is_obj_array_klass() ) {
1505       ciKlass* k = TypeAryPtr::OOPS->klass();
1506       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1507         k = TypeInstPtr::BOTTOM->klass();
1508       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1509     }
1510 
1511     // Check for precise loads from the primary supertype array and force them
1512     // to the supertype cache alias index.  Check for generic array loads from
1513     // the primary supertype array and also force them to the supertype cache
1514     // alias index.  Since the same load can reach both, we need to merge
1515     // these 2 disparate memories into the same alias class.  Since the
1516     // primary supertype array is read-only, there's no chance of confusion
1517     // where we bypass an array load and an array store.
1518     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1519     if (offset == Type::OffsetBot ||
1520         (offset >= primary_supers_offset &&
1521          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1522         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1523       offset = in_bytes(Klass::secondary_super_cache_offset());
1524       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1525     }
1526   }
1527 
1528   // Flatten all Raw pointers together.
1529   if (tj->base() == Type::RawPtr)
1530     tj = TypeRawPtr::BOTTOM;
1531 
1532   if (tj->base() == Type::AnyPtr)
1533     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1534 
1535   // Flatten all to bottom for now
1536   switch( _AliasLevel ) {
1537   case 0:
1538     tj = TypePtr::BOTTOM;
1539     break;
1540   case 1:                       // Flatten to: oop, static, field or array
1541     switch (tj->base()) {
1542     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1543     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1544     case Type::AryPtr:   // do not distinguish arrays at all
1545     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1546     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1547     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1548     default: ShouldNotReachHere();
1549     }
1550     break;
1551   case 2:                       // No collapsing at level 2; keep all splits
1552   case 3:                       // No collapsing at level 3; keep all splits
1553     break;
1554   default:
1555     Unimplemented();
1556   }
1557 
1558   offset = tj->offset();
1559   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1560 
1561   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1562           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1563           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1564           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1565           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1566           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1567           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1568           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1569   assert( tj->ptr() != TypePtr::TopPTR &&
1570           tj->ptr() != TypePtr::AnyNull &&
1571           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1572 //    assert( tj->ptr() != TypePtr::Constant ||
1573 //            tj->base() == Type::RawPtr ||
1574 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1575 
1576   return tj;
1577 }
1578 
1579 void Compile::AliasType::Init(int i, const TypePtr* at) {
1580   _index = i;
1581   _adr_type = at;
1582   _field = NULL;
1583   _element = NULL;
1584   _is_rewritable = true; // default
1585   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1586   if (atoop != NULL && atoop->is_known_instance()) {
1587     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1588     _general_index = Compile::current()->get_alias_index(gt);
1589   } else {
1590     _general_index = 0;
1591   }
1592 }
1593 
1594 //---------------------------------print_on------------------------------------
1595 #ifndef PRODUCT
1596 void Compile::AliasType::print_on(outputStream* st) {
1597   if (index() < 10)
1598         st->print("@ <%d> ", index());
1599   else  st->print("@ <%d>",  index());
1600   st->print(is_rewritable() ? "   " : " RO");
1601   int offset = adr_type()->offset();
1602   if (offset == Type::OffsetBot)
1603         st->print(" +any");
1604   else  st->print(" +%-3d", offset);
1605   st->print(" in ");
1606   adr_type()->dump_on(st);
1607   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1608   if (field() != NULL && tjp) {
1609     if (tjp->klass()  != field()->holder() ||
1610         tjp->offset() != field()->offset_in_bytes()) {
1611       st->print(" != ");
1612       field()->print();
1613       st->print(" ***");
1614     }
1615   }
1616 }
1617 
1618 void print_alias_types() {
1619   Compile* C = Compile::current();
1620   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1621   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1622     C->alias_type(idx)->print_on(tty);
1623     tty->cr();
1624   }
1625 }
1626 #endif
1627 
1628 
1629 //----------------------------probe_alias_cache--------------------------------
1630 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1631   intptr_t key = (intptr_t) adr_type;
1632   key ^= key >> logAliasCacheSize;
1633   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1634 }
1635 
1636 
1637 //-----------------------------grow_alias_types--------------------------------
1638 void Compile::grow_alias_types() {
1639   const int old_ats  = _max_alias_types; // how many before?
1640   const int new_ats  = old_ats;          // how many more?
1641   const int grow_ats = old_ats+new_ats;  // how many now?
1642   _max_alias_types = grow_ats;
1643   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1644   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1645   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1646   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1647 }
1648 
1649 
1650 //--------------------------------find_alias_type------------------------------
1651 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1652   if (_AliasLevel == 0)
1653     return alias_type(AliasIdxBot);
1654 
1655   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1656   if (ace->_adr_type == adr_type) {
1657     return alias_type(ace->_index);
1658   }
1659 
1660   // Handle special cases.
1661   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1662   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1663 
1664   // Do it the slow way.
1665   const TypePtr* flat = flatten_alias_type(adr_type);
1666 
1667 #ifdef ASSERT
1668   assert(flat == flatten_alias_type(flat), "idempotent");
1669   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1670   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1671     const TypeOopPtr* foop = flat->is_oopptr();
1672     // Scalarizable allocations have exact klass always.
1673     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1674     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1675     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1676   }
1677   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1678 #endif
1679 
1680   int idx = AliasIdxTop;
1681   for (int i = 0; i < num_alias_types(); i++) {
1682     if (alias_type(i)->adr_type() == flat) {
1683       idx = i;
1684       break;
1685     }
1686   }
1687 
1688   if (idx == AliasIdxTop) {
1689     if (no_create)  return NULL;
1690     // Grow the array if necessary.
1691     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1692     // Add a new alias type.
1693     idx = _num_alias_types++;
1694     _alias_types[idx]->Init(idx, flat);
1695     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1696     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1697     if (flat->isa_instptr()) {
1698       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1699           && flat->is_instptr()->klass() == env()->Class_klass())
1700         alias_type(idx)->set_rewritable(false);
1701     }
1702     if (flat->isa_aryptr()) {
1703 #ifdef ASSERT
1704       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1705       // (T_BYTE has the weakest alignment and size restrictions...)
1706       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1707 #endif
1708       if (flat->offset() == TypePtr::OffsetBot) {
1709         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1710       }
1711     }
1712     if (flat->isa_klassptr()) {
1713       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1714         alias_type(idx)->set_rewritable(false);
1715       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1716         alias_type(idx)->set_rewritable(false);
1717       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1718         alias_type(idx)->set_rewritable(false);
1719       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1720         alias_type(idx)->set_rewritable(false);
1721     }
1722     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1723     // but the base pointer type is not distinctive enough to identify
1724     // references into JavaThread.)
1725 
1726     // Check for final fields.
1727     const TypeInstPtr* tinst = flat->isa_instptr();
1728     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1729       ciField* field;
1730       if (tinst->const_oop() != NULL &&
1731           tinst->klass() == ciEnv::current()->Class_klass() &&
1732           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1733         // static field
1734         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1735         field = k->get_field_by_offset(tinst->offset(), true);
1736       } else {
1737         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1738         field = k->get_field_by_offset(tinst->offset(), false);
1739       }
1740       assert(field == NULL ||
1741              original_field == NULL ||
1742              (field->holder() == original_field->holder() &&
1743               field->offset() == original_field->offset() &&
1744               field->is_static() == original_field->is_static()), "wrong field?");
1745       // Set field() and is_rewritable() attributes.
1746       if (field != NULL)  alias_type(idx)->set_field(field);
1747     }
1748   }
1749 
1750   // Fill the cache for next time.
1751   ace->_adr_type = adr_type;
1752   ace->_index    = idx;
1753   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1754 
1755   // Might as well try to fill the cache for the flattened version, too.
1756   AliasCacheEntry* face = probe_alias_cache(flat);
1757   if (face->_adr_type == NULL) {
1758     face->_adr_type = flat;
1759     face->_index    = idx;
1760     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1761   }
1762 
1763   return alias_type(idx);
1764 }
1765 
1766 
1767 Compile::AliasType* Compile::alias_type(ciField* field) {
1768   const TypeOopPtr* t;
1769   if (field->is_static())
1770     t = TypeInstPtr::make(field->holder()->java_mirror());
1771   else
1772     t = TypeOopPtr::make_from_klass_raw(field->holder());
1773   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1774   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1775   return atp;
1776 }
1777 
1778 
1779 //------------------------------have_alias_type--------------------------------
1780 bool Compile::have_alias_type(const TypePtr* adr_type) {
1781   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1782   if (ace->_adr_type == adr_type) {
1783     return true;
1784   }
1785 
1786   // Handle special cases.
1787   if (adr_type == NULL)             return true;
1788   if (adr_type == TypePtr::BOTTOM)  return true;
1789 
1790   return find_alias_type(adr_type, true, NULL) != NULL;
1791 }
1792 
1793 //-----------------------------must_alias--------------------------------------
1794 // True if all values of the given address type are in the given alias category.
1795 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1796   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1797   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1798   if (alias_idx == AliasIdxTop)         return false; // the empty category
1799   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1800 
1801   // the only remaining possible overlap is identity
1802   int adr_idx = get_alias_index(adr_type);
1803   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1804   assert(adr_idx == alias_idx ||
1805          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1806           && adr_type                       != TypeOopPtr::BOTTOM),
1807          "should not be testing for overlap with an unsafe pointer");
1808   return adr_idx == alias_idx;
1809 }
1810 
1811 //------------------------------can_alias--------------------------------------
1812 // True if any values of the given address type are in the given alias category.
1813 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1814   if (alias_idx == AliasIdxTop)         return false; // the empty category
1815   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1816   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1817   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1818 
1819   // the only remaining possible overlap is identity
1820   int adr_idx = get_alias_index(adr_type);
1821   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1822   return adr_idx == alias_idx;
1823 }
1824 
1825 
1826 
1827 //---------------------------pop_warm_call-------------------------------------
1828 WarmCallInfo* Compile::pop_warm_call() {
1829   WarmCallInfo* wci = _warm_calls;
1830   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1831   return wci;
1832 }
1833 
1834 //----------------------------Inline_Warm--------------------------------------
1835 int Compile::Inline_Warm() {
1836   // If there is room, try to inline some more warm call sites.
1837   // %%% Do a graph index compaction pass when we think we're out of space?
1838   if (!InlineWarmCalls)  return 0;
1839 
1840   int calls_made_hot = 0;
1841   int room_to_grow   = NodeCountInliningCutoff - unique();
1842   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1843   int amount_grown   = 0;
1844   WarmCallInfo* call;
1845   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1846     int est_size = (int)call->size();
1847     if (est_size > (room_to_grow - amount_grown)) {
1848       // This one won't fit anyway.  Get rid of it.
1849       call->make_cold();
1850       continue;
1851     }
1852     call->make_hot();
1853     calls_made_hot++;
1854     amount_grown   += est_size;
1855     amount_to_grow -= est_size;
1856   }
1857 
1858   if (calls_made_hot > 0)  set_major_progress();
1859   return calls_made_hot;
1860 }
1861 
1862 
1863 //----------------------------Finish_Warm--------------------------------------
1864 void Compile::Finish_Warm() {
1865   if (!InlineWarmCalls)  return;
1866   if (failing())  return;
1867   if (warm_calls() == NULL)  return;
1868 
1869   // Clean up loose ends, if we are out of space for inlining.
1870   WarmCallInfo* call;
1871   while ((call = pop_warm_call()) != NULL) {
1872     call->make_cold();
1873   }
1874 }
1875 
1876 //---------------------cleanup_loop_predicates-----------------------
1877 // Remove the opaque nodes that protect the predicates so that all unused
1878 // checks and uncommon_traps will be eliminated from the ideal graph
1879 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1880   if (predicate_count()==0) return;
1881   for (int i = predicate_count(); i > 0; i--) {
1882     Node * n = predicate_opaque1_node(i-1);
1883     assert(n->Opcode() == Op_Opaque1, "must be");
1884     igvn.replace_node(n, n->in(1));
1885   }
1886   assert(predicate_count()==0, "should be clean!");
1887 }
1888 
1889 // StringOpts and late inlining of string methods
1890 void Compile::inline_string_calls(bool parse_time) {
1891   {
1892     // remove useless nodes to make the usage analysis simpler
1893     ResourceMark rm;
1894     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1895   }
1896 
1897   {
1898     ResourceMark rm;
1899     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1900     PhaseStringOpts pso(initial_gvn(), for_igvn());
1901     print_method(PHASE_AFTER_STRINGOPTS, 3);
1902   }
1903 
1904   // now inline anything that we skipped the first time around
1905   if (!parse_time) {
1906     _late_inlines_pos = _late_inlines.length();
1907   }
1908 
1909   while (_string_late_inlines.length() > 0) {
1910     CallGenerator* cg = _string_late_inlines.pop();
1911     cg->do_late_inline();
1912     if (failing())  return;
1913   }
1914   _string_late_inlines.trunc_to(0);
1915 }
1916 
1917 // Late inlining of boxing methods
1918 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1919   if (_boxing_late_inlines.length() > 0) {
1920     assert(has_boxed_value(), "inconsistent");
1921 
1922     PhaseGVN* gvn = initial_gvn();
1923     set_inlining_incrementally(true);
1924 
1925     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1926     for_igvn()->clear();
1927     gvn->replace_with(&igvn);
1928 
1929     _late_inlines_pos = _late_inlines.length();
1930 
1931     while (_boxing_late_inlines.length() > 0) {
1932       CallGenerator* cg = _boxing_late_inlines.pop();
1933       cg->do_late_inline();
1934       if (failing())  return;
1935     }
1936     _boxing_late_inlines.trunc_to(0);
1937 
1938     {
1939       ResourceMark rm;
1940       PhaseRemoveUseless pru(gvn, for_igvn());
1941     }
1942 
1943     igvn = PhaseIterGVN(gvn);
1944     igvn.optimize();
1945 
1946     set_inlining_progress(false);
1947     set_inlining_incrementally(false);
1948   }
1949 }
1950 
1951 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1952   assert(IncrementalInline, "incremental inlining should be on");
1953   PhaseGVN* gvn = initial_gvn();
1954 
1955   set_inlining_progress(false);
1956   for_igvn()->clear();
1957   gvn->replace_with(&igvn);
1958 
1959   {
1960     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1961     int i = 0;
1962     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1963       CallGenerator* cg = _late_inlines.at(i);
1964       _late_inlines_pos = i+1;
1965       cg->do_late_inline();
1966       if (failing())  return;
1967     }
1968     int j = 0;
1969     for (; i < _late_inlines.length(); i++, j++) {
1970       _late_inlines.at_put(j, _late_inlines.at(i));
1971     }
1972     _late_inlines.trunc_to(j);
1973   }
1974 
1975   {
1976     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
1977     ResourceMark rm;
1978     PhaseRemoveUseless pru(gvn, for_igvn());
1979   }
1980 
1981   {
1982     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
1983     igvn = PhaseIterGVN(gvn);
1984   }
1985 }
1986 
1987 // Perform incremental inlining until bound on number of live nodes is reached
1988 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1989   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
1990 
1991   PhaseGVN* gvn = initial_gvn();
1992 
1993   set_inlining_incrementally(true);
1994   set_inlining_progress(true);
1995   uint low_live_nodes = 0;
1996 
1997   while(inlining_progress() && _late_inlines.length() > 0) {
1998 
1999     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2000       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2001         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2002         // PhaseIdealLoop is expensive so we only try it once we are
2003         // out of live nodes and we only try it again if the previous
2004         // helped got the number of nodes down significantly
2005         PhaseIdealLoop ideal_loop( igvn, false, true );
2006         if (failing())  return;
2007         low_live_nodes = live_nodes();
2008         _major_progress = true;
2009       }
2010 
2011       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2012         break;
2013       }
2014     }
2015 
2016     inline_incrementally_one(igvn);
2017 
2018     if (failing())  return;
2019 
2020     {
2021       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2022       igvn.optimize();
2023     }
2024 
2025     if (failing())  return;
2026   }
2027 
2028   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2029 
2030   if (_string_late_inlines.length() > 0) {
2031     assert(has_stringbuilder(), "inconsistent");
2032     for_igvn()->clear();
2033     initial_gvn()->replace_with(&igvn);
2034 
2035     inline_string_calls(false);
2036 
2037     if (failing())  return;
2038 
2039     {
2040       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2041       ResourceMark rm;
2042       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2043     }
2044 
2045     {
2046       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2047       igvn = PhaseIterGVN(gvn);
2048       igvn.optimize();
2049     }
2050   }
2051 
2052   set_inlining_incrementally(false);
2053 }
2054 
2055 
2056 //------------------------------Optimize---------------------------------------
2057 // Given a graph, optimize it.
2058 void Compile::Optimize() {
2059   TracePhase tp("optimizer", &timers[_t_optimizer]);
2060 
2061 #ifndef PRODUCT
2062   if (env()->break_at_compile()) {
2063     BREAKPOINT;
2064   }
2065 
2066 #endif
2067 
2068   ResourceMark rm;
2069   int          loop_opts_cnt;
2070 
2071   print_inlining_reinit();
2072 
2073   NOT_PRODUCT( verify_graph_edges(); )
2074 
2075   print_method(PHASE_AFTER_PARSING);
2076 
2077  {
2078   // Iterative Global Value Numbering, including ideal transforms
2079   // Initialize IterGVN with types and values from parse-time GVN
2080   PhaseIterGVN igvn(initial_gvn());
2081 #ifdef ASSERT
2082   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2083 #endif
2084   {
2085     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2086     igvn.optimize();
2087   }
2088 
2089   print_method(PHASE_ITER_GVN1, 2);
2090 
2091   if (failing())  return;
2092 
2093   inline_incrementally(igvn);
2094 
2095   print_method(PHASE_INCREMENTAL_INLINE, 2);
2096 
2097   if (failing())  return;
2098 
2099   if (eliminate_boxing()) {
2100     // Inline valueOf() methods now.
2101     inline_boxing_calls(igvn);
2102 
2103     if (AlwaysIncrementalInline) {
2104       inline_incrementally(igvn);
2105     }
2106 
2107     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2108 
2109     if (failing())  return;
2110   }
2111 
2112   // Remove the speculative part of types and clean up the graph from
2113   // the extra CastPP nodes whose only purpose is to carry them. Do
2114   // that early so that optimizations are not disrupted by the extra
2115   // CastPP nodes.
2116   remove_speculative_types(igvn);
2117 
2118   // No more new expensive nodes will be added to the list from here
2119   // so keep only the actual candidates for optimizations.
2120   cleanup_expensive_nodes(igvn);
2121 
2122   // Perform escape analysis
2123   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2124     if (has_loops()) {
2125       // Cleanup graph (remove dead nodes).
2126       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2127       PhaseIdealLoop ideal_loop( igvn, false, true );
2128       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2129       if (failing())  return;
2130     }
2131     ConnectionGraph::do_analysis(this, &igvn);
2132 
2133     if (failing())  return;
2134 
2135     // Optimize out fields loads from scalar replaceable allocations.
2136     igvn.optimize();
2137     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2138 
2139     if (failing())  return;
2140 
2141     if (congraph() != NULL && macro_count() > 0) {
2142       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2143       PhaseMacroExpand mexp(igvn);
2144       mexp.eliminate_macro_nodes();
2145       igvn.set_delay_transform(false);
2146 
2147       igvn.optimize();
2148       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2149 
2150       if (failing())  return;
2151     }
2152   }
2153 
2154   // Loop transforms on the ideal graph.  Range Check Elimination,
2155   // peeling, unrolling, etc.
2156 
2157   // Set loop opts counter
2158   loop_opts_cnt = num_loop_opts();
2159   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2160     {
2161       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2162       PhaseIdealLoop ideal_loop( igvn, true );
2163       loop_opts_cnt--;
2164       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2165       if (failing())  return;
2166     }
2167     // Loop opts pass if partial peeling occurred in previous pass
2168     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2169       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2170       PhaseIdealLoop ideal_loop( igvn, false );
2171       loop_opts_cnt--;
2172       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2173       if (failing())  return;
2174     }
2175     // Loop opts pass for loop-unrolling before CCP
2176     if(major_progress() && (loop_opts_cnt > 0)) {
2177       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2178       PhaseIdealLoop ideal_loop( igvn, false );
2179       loop_opts_cnt--;
2180       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2181     }
2182     if (!failing()) {
2183       // Verify that last round of loop opts produced a valid graph
2184       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2185       PhaseIdealLoop::verify(igvn);
2186     }
2187   }
2188   if (failing())  return;
2189 
2190   // Conditional Constant Propagation;
2191   PhaseCCP ccp( &igvn );
2192   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2193   {
2194     TracePhase tp("ccp", &timers[_t_ccp]);
2195     ccp.do_transform();
2196   }
2197   print_method(PHASE_CPP1, 2);
2198 
2199   assert( true, "Break here to ccp.dump_old2new_map()");
2200 
2201   // Iterative Global Value Numbering, including ideal transforms
2202   {
2203     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2204     igvn = ccp;
2205     igvn.optimize();
2206   }
2207 
2208   print_method(PHASE_ITER_GVN2, 2);
2209 
2210   if (failing())  return;
2211 
2212   // Loop transforms on the ideal graph.  Range Check Elimination,
2213   // peeling, unrolling, etc.
2214   if(loop_opts_cnt > 0) {
2215     debug_only( int cnt = 0; );
2216     while(major_progress() && (loop_opts_cnt > 0)) {
2217       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2218       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2219       PhaseIdealLoop ideal_loop( igvn, true);
2220       loop_opts_cnt--;
2221       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2222       if (failing())  return;
2223     }
2224   }
2225 
2226   {
2227     // Verify that all previous optimizations produced a valid graph
2228     // at least to this point, even if no loop optimizations were done.
2229     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2230     PhaseIdealLoop::verify(igvn);
2231   }
2232 
2233   {
2234     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2235     PhaseMacroExpand  mex(igvn);
2236     if (mex.expand_macro_nodes()) {
2237       assert(failing(), "must bail out w/ explicit message");
2238       return;
2239     }
2240   }
2241 
2242   DEBUG_ONLY( _modified_nodes = NULL; )
2243  } // (End scope of igvn; run destructor if necessary for asserts.)
2244 
2245   process_print_inlining();
2246   // A method with only infinite loops has no edges entering loops from root
2247   {
2248     TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2249     if (final_graph_reshaping()) {
2250       assert(failing(), "must bail out w/ explicit message");
2251       return;
2252     }
2253   }
2254 
2255   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2256 }
2257 
2258 
2259 //------------------------------Code_Gen---------------------------------------
2260 // Given a graph, generate code for it
2261 void Compile::Code_Gen() {
2262   if (failing()) {
2263     return;
2264   }
2265 
2266   // Perform instruction selection.  You might think we could reclaim Matcher
2267   // memory PDQ, but actually the Matcher is used in generating spill code.
2268   // Internals of the Matcher (including some VectorSets) must remain live
2269   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2270   // set a bit in reclaimed memory.
2271 
2272   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2273   // nodes.  Mapping is only valid at the root of each matched subtree.
2274   NOT_PRODUCT( verify_graph_edges(); )
2275 
2276   Matcher matcher;
2277   _matcher = &matcher;
2278   {
2279     TracePhase tp("matcher", &timers[_t_matcher]);
2280     matcher.match();
2281   }
2282   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2283   // nodes.  Mapping is only valid at the root of each matched subtree.
2284   NOT_PRODUCT( verify_graph_edges(); )
2285 
2286   // If you have too many nodes, or if matching has failed, bail out
2287   check_node_count(0, "out of nodes matching instructions");
2288   if (failing()) {
2289     return;
2290   }
2291 
2292   // Build a proper-looking CFG
2293   PhaseCFG cfg(node_arena(), root(), matcher);
2294   _cfg = &cfg;
2295   {
2296     TracePhase tp("scheduler", &timers[_t_scheduler]);
2297     bool success = cfg.do_global_code_motion();
2298     if (!success) {
2299       return;
2300     }
2301 
2302     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2303     NOT_PRODUCT( verify_graph_edges(); )
2304     debug_only( cfg.verify(); )
2305   }
2306 
2307   PhaseChaitin regalloc(unique(), cfg, matcher);
2308   _regalloc = &regalloc;
2309   {
2310     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2311     // Perform register allocation.  After Chaitin, use-def chains are
2312     // no longer accurate (at spill code) and so must be ignored.
2313     // Node->LRG->reg mappings are still accurate.
2314     _regalloc->Register_Allocate();
2315 
2316     // Bail out if the allocator builds too many nodes
2317     if (failing()) {
2318       return;
2319     }
2320   }
2321 
2322   // Prior to register allocation we kept empty basic blocks in case the
2323   // the allocator needed a place to spill.  After register allocation we
2324   // are not adding any new instructions.  If any basic block is empty, we
2325   // can now safely remove it.
2326   {
2327     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2328     cfg.remove_empty_blocks();
2329     if (do_freq_based_layout()) {
2330       PhaseBlockLayout layout(cfg);
2331     } else {
2332       cfg.set_loop_alignment();
2333     }
2334     cfg.fixup_flow();
2335   }
2336 
2337   // Apply peephole optimizations
2338   if( OptoPeephole ) {
2339     TracePhase tp("peephole", &timers[_t_peephole]);
2340     PhasePeephole peep( _regalloc, cfg);
2341     peep.do_transform();
2342   }
2343 
2344   // Do late expand if CPU requires this.
2345   if (Matcher::require_postalloc_expand) {
2346     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2347     cfg.postalloc_expand(_regalloc);
2348   }
2349 
2350   // Convert Nodes to instruction bits in a buffer
2351   {
2352     TraceTime tp("output", &timers[_t_output], CITime);
2353     Output();
2354   }
2355 
2356   print_method(PHASE_FINAL_CODE);
2357 
2358   // He's dead, Jim.
2359   _cfg     = (PhaseCFG*)0xdeadbeef;
2360   _regalloc = (PhaseChaitin*)0xdeadbeef;
2361 }
2362 
2363 
2364 //------------------------------dump_asm---------------------------------------
2365 // Dump formatted assembly
2366 #ifndef PRODUCT
2367 void Compile::dump_asm(int *pcs, uint pc_limit) {
2368   bool cut_short = false;
2369   tty->print_cr("#");
2370   tty->print("#  ");  _tf->dump();  tty->cr();
2371   tty->print_cr("#");
2372 
2373   // For all blocks
2374   int pc = 0x0;                 // Program counter
2375   char starts_bundle = ' ';
2376   _regalloc->dump_frame();
2377 
2378   Node *n = NULL;
2379   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2380     if (VMThread::should_terminate()) {
2381       cut_short = true;
2382       break;
2383     }
2384     Block* block = _cfg->get_block(i);
2385     if (block->is_connector() && !Verbose) {
2386       continue;
2387     }
2388     n = block->head();
2389     if (pcs && n->_idx < pc_limit) {
2390       tty->print("%3.3x   ", pcs[n->_idx]);
2391     } else {
2392       tty->print("      ");
2393     }
2394     block->dump_head(_cfg);
2395     if (block->is_connector()) {
2396       tty->print_cr("        # Empty connector block");
2397     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2398       tty->print_cr("        # Block is sole successor of call");
2399     }
2400 
2401     // For all instructions
2402     Node *delay = NULL;
2403     for (uint j = 0; j < block->number_of_nodes(); j++) {
2404       if (VMThread::should_terminate()) {
2405         cut_short = true;
2406         break;
2407       }
2408       n = block->get_node(j);
2409       if (valid_bundle_info(n)) {
2410         Bundle* bundle = node_bundling(n);
2411         if (bundle->used_in_unconditional_delay()) {
2412           delay = n;
2413           continue;
2414         }
2415         if (bundle->starts_bundle()) {
2416           starts_bundle = '+';
2417         }
2418       }
2419 
2420       if (WizardMode) {
2421         n->dump();
2422       }
2423 
2424       if( !n->is_Region() &&    // Dont print in the Assembly
2425           !n->is_Phi() &&       // a few noisely useless nodes
2426           !n->is_Proj() &&
2427           !n->is_MachTemp() &&
2428           !n->is_SafePointScalarObject() &&
2429           !n->is_Catch() &&     // Would be nice to print exception table targets
2430           !n->is_MergeMem() &&  // Not very interesting
2431           !n->is_top() &&       // Debug info table constants
2432           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2433           ) {
2434         if (pcs && n->_idx < pc_limit)
2435           tty->print("%3.3x", pcs[n->_idx]);
2436         else
2437           tty->print("   ");
2438         tty->print(" %c ", starts_bundle);
2439         starts_bundle = ' ';
2440         tty->print("\t");
2441         n->format(_regalloc, tty);
2442         tty->cr();
2443       }
2444 
2445       // If we have an instruction with a delay slot, and have seen a delay,
2446       // then back up and print it
2447       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2448         assert(delay != NULL, "no unconditional delay instruction");
2449         if (WizardMode) delay->dump();
2450 
2451         if (node_bundling(delay)->starts_bundle())
2452           starts_bundle = '+';
2453         if (pcs && n->_idx < pc_limit)
2454           tty->print("%3.3x", pcs[n->_idx]);
2455         else
2456           tty->print("   ");
2457         tty->print(" %c ", starts_bundle);
2458         starts_bundle = ' ';
2459         tty->print("\t");
2460         delay->format(_regalloc, tty);
2461         tty->cr();
2462         delay = NULL;
2463       }
2464 
2465       // Dump the exception table as well
2466       if( n->is_Catch() && (Verbose || WizardMode) ) {
2467         // Print the exception table for this offset
2468         _handler_table.print_subtable_for(pc);
2469       }
2470     }
2471 
2472     if (pcs && n->_idx < pc_limit)
2473       tty->print_cr("%3.3x", pcs[n->_idx]);
2474     else
2475       tty->cr();
2476 
2477     assert(cut_short || delay == NULL, "no unconditional delay branch");
2478 
2479   } // End of per-block dump
2480   tty->cr();
2481 
2482   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2483 }
2484 #endif
2485 
2486 //------------------------------Final_Reshape_Counts---------------------------
2487 // This class defines counters to help identify when a method
2488 // may/must be executed using hardware with only 24-bit precision.
2489 struct Final_Reshape_Counts : public StackObj {
2490   int  _call_count;             // count non-inlined 'common' calls
2491   int  _float_count;            // count float ops requiring 24-bit precision
2492   int  _double_count;           // count double ops requiring more precision
2493   int  _java_call_count;        // count non-inlined 'java' calls
2494   int  _inner_loop_count;       // count loops which need alignment
2495   VectorSet _visited;           // Visitation flags
2496   Node_List _tests;             // Set of IfNodes & PCTableNodes
2497 
2498   Final_Reshape_Counts() :
2499     _call_count(0), _float_count(0), _double_count(0),
2500     _java_call_count(0), _inner_loop_count(0),
2501     _visited( Thread::current()->resource_area() ) { }
2502 
2503   void inc_call_count  () { _call_count  ++; }
2504   void inc_float_count () { _float_count ++; }
2505   void inc_double_count() { _double_count++; }
2506   void inc_java_call_count() { _java_call_count++; }
2507   void inc_inner_loop_count() { _inner_loop_count++; }
2508 
2509   int  get_call_count  () const { return _call_count  ; }
2510   int  get_float_count () const { return _float_count ; }
2511   int  get_double_count() const { return _double_count; }
2512   int  get_java_call_count() const { return _java_call_count; }
2513   int  get_inner_loop_count() const { return _inner_loop_count; }
2514 };
2515 
2516 #ifdef ASSERT
2517 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2518   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2519   // Make sure the offset goes inside the instance layout.
2520   return k->contains_field_offset(tp->offset());
2521   // Note that OffsetBot and OffsetTop are very negative.
2522 }
2523 #endif
2524 
2525 // Eliminate trivially redundant StoreCMs and accumulate their
2526 // precedence edges.
2527 void Compile::eliminate_redundant_card_marks(Node* n) {
2528   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2529   if (n->in(MemNode::Address)->outcnt() > 1) {
2530     // There are multiple users of the same address so it might be
2531     // possible to eliminate some of the StoreCMs
2532     Node* mem = n->in(MemNode::Memory);
2533     Node* adr = n->in(MemNode::Address);
2534     Node* val = n->in(MemNode::ValueIn);
2535     Node* prev = n;
2536     bool done = false;
2537     // Walk the chain of StoreCMs eliminating ones that match.  As
2538     // long as it's a chain of single users then the optimization is
2539     // safe.  Eliminating partially redundant StoreCMs would require
2540     // cloning copies down the other paths.
2541     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2542       if (adr == mem->in(MemNode::Address) &&
2543           val == mem->in(MemNode::ValueIn)) {
2544         // redundant StoreCM
2545         if (mem->req() > MemNode::OopStore) {
2546           // Hasn't been processed by this code yet.
2547           n->add_prec(mem->in(MemNode::OopStore));
2548         } else {
2549           // Already converted to precedence edge
2550           for (uint i = mem->req(); i < mem->len(); i++) {
2551             // Accumulate any precedence edges
2552             if (mem->in(i) != NULL) {
2553               n->add_prec(mem->in(i));
2554             }
2555           }
2556           // Everything above this point has been processed.
2557           done = true;
2558         }
2559         // Eliminate the previous StoreCM
2560         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2561         assert(mem->outcnt() == 0, "should be dead");
2562         mem->disconnect_inputs(NULL, this);
2563       } else {
2564         prev = mem;
2565       }
2566       mem = prev->in(MemNode::Memory);
2567     }
2568   }
2569 }
2570 
2571 //------------------------------final_graph_reshaping_impl----------------------
2572 // Implement items 1-5 from final_graph_reshaping below.
2573 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2574 
2575   if ( n->outcnt() == 0 ) return; // dead node
2576   uint nop = n->Opcode();
2577 
2578   // Check for 2-input instruction with "last use" on right input.
2579   // Swap to left input.  Implements item (2).
2580   if( n->req() == 3 &&          // two-input instruction
2581       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2582       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2583       n->in(2)->outcnt() == 1 &&// right use IS a last use
2584       !n->in(2)->is_Con() ) {   // right use is not a constant
2585     // Check for commutative opcode
2586     switch( nop ) {
2587     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2588     case Op_MaxI:  case Op_MinI:
2589     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2590     case Op_AndL:  case Op_XorL:  case Op_OrL:
2591     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2592       // Move "last use" input to left by swapping inputs
2593       n->swap_edges(1, 2);
2594       break;
2595     }
2596     default:
2597       break;
2598     }
2599   }
2600 
2601 #ifdef ASSERT
2602   if( n->is_Mem() ) {
2603     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2604     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2605             // oop will be recorded in oop map if load crosses safepoint
2606             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2607                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2608             "raw memory operations should have control edge");
2609   }
2610 #endif
2611   // Count FPU ops and common calls, implements item (3)
2612   switch( nop ) {
2613   // Count all float operations that may use FPU
2614   case Op_AddF:
2615   case Op_SubF:
2616   case Op_MulF:
2617   case Op_DivF:
2618   case Op_NegF:
2619   case Op_ModF:
2620   case Op_ConvI2F:
2621   case Op_ConF:
2622   case Op_CmpF:
2623   case Op_CmpF3:
2624   // case Op_ConvL2F: // longs are split into 32-bit halves
2625     frc.inc_float_count();
2626     break;
2627 
2628   case Op_ConvF2D:
2629   case Op_ConvD2F:
2630     frc.inc_float_count();
2631     frc.inc_double_count();
2632     break;
2633 
2634   // Count all double operations that may use FPU
2635   case Op_AddD:
2636   case Op_SubD:
2637   case Op_MulD:
2638   case Op_DivD:
2639   case Op_NegD:
2640   case Op_ModD:
2641   case Op_ConvI2D:
2642   case Op_ConvD2I:
2643   // case Op_ConvL2D: // handled by leaf call
2644   // case Op_ConvD2L: // handled by leaf call
2645   case Op_ConD:
2646   case Op_CmpD:
2647   case Op_CmpD3:
2648     frc.inc_double_count();
2649     break;
2650   case Op_Opaque1:              // Remove Opaque Nodes before matching
2651   case Op_Opaque2:              // Remove Opaque Nodes before matching
2652   case Op_Opaque3:
2653     n->subsume_by(n->in(1), this);
2654     break;
2655   case Op_CallStaticJava:
2656   case Op_CallJava:
2657   case Op_CallDynamicJava:
2658     frc.inc_java_call_count(); // Count java call site;
2659   case Op_CallRuntime:
2660   case Op_CallLeaf:
2661   case Op_CallLeafNoFP: {
2662     assert( n->is_Call(), "" );
2663     CallNode *call = n->as_Call();
2664     // Count call sites where the FP mode bit would have to be flipped.
2665     // Do not count uncommon runtime calls:
2666     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2667     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2668     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2669       frc.inc_call_count();   // Count the call site
2670     } else {                  // See if uncommon argument is shared
2671       Node *n = call->in(TypeFunc::Parms);
2672       int nop = n->Opcode();
2673       // Clone shared simple arguments to uncommon calls, item (1).
2674       if( n->outcnt() > 1 &&
2675           !n->is_Proj() &&
2676           nop != Op_CreateEx &&
2677           nop != Op_CheckCastPP &&
2678           nop != Op_DecodeN &&
2679           nop != Op_DecodeNKlass &&
2680           !n->is_Mem() ) {
2681         Node *x = n->clone();
2682         call->set_req( TypeFunc::Parms, x );
2683       }
2684     }
2685     break;
2686   }
2687 
2688   case Op_StoreD:
2689   case Op_LoadD:
2690   case Op_LoadD_unaligned:
2691     frc.inc_double_count();
2692     goto handle_mem;
2693   case Op_StoreF:
2694   case Op_LoadF:
2695     frc.inc_float_count();
2696     goto handle_mem;
2697 
2698   case Op_StoreCM:
2699     {
2700       // Convert OopStore dependence into precedence edge
2701       Node* prec = n->in(MemNode::OopStore);
2702       n->del_req(MemNode::OopStore);
2703       n->add_prec(prec);
2704       eliminate_redundant_card_marks(n);
2705     }
2706 
2707     // fall through
2708 
2709   case Op_StoreB:
2710   case Op_StoreC:
2711   case Op_StorePConditional:
2712   case Op_StoreI:
2713   case Op_StoreL:
2714   case Op_StoreIConditional:
2715   case Op_StoreLConditional:
2716   case Op_CompareAndSwapI:
2717   case Op_CompareAndSwapL:
2718   case Op_CompareAndSwapP:
2719   case Op_CompareAndSwapN:
2720   case Op_GetAndAddI:
2721   case Op_GetAndAddL:
2722   case Op_GetAndSetI:
2723   case Op_GetAndSetL:
2724   case Op_GetAndSetP:
2725   case Op_GetAndSetN:
2726   case Op_StoreP:
2727   case Op_StoreN:
2728   case Op_StoreNKlass:
2729   case Op_LoadB:
2730   case Op_LoadUB:
2731   case Op_LoadUS:
2732   case Op_LoadI:
2733   case Op_LoadKlass:
2734   case Op_LoadNKlass:
2735   case Op_LoadL:
2736   case Op_LoadL_unaligned:
2737   case Op_LoadPLocked:
2738   case Op_LoadP:
2739   case Op_LoadN:
2740   case Op_LoadRange:
2741   case Op_LoadS: {
2742   handle_mem:
2743 #ifdef ASSERT
2744     if( VerifyOptoOopOffsets ) {
2745       assert( n->is_Mem(), "" );
2746       MemNode *mem  = (MemNode*)n;
2747       // Check to see if address types have grounded out somehow.
2748       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2749       assert( !tp || oop_offset_is_sane(tp), "" );
2750     }
2751 #endif
2752     break;
2753   }
2754 
2755   case Op_AddP: {               // Assert sane base pointers
2756     Node *addp = n->in(AddPNode::Address);
2757     assert( !addp->is_AddP() ||
2758             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2759             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2760             "Base pointers must match" );
2761 #ifdef _LP64
2762     if ((UseCompressedOops || UseCompressedClassPointers) &&
2763         addp->Opcode() == Op_ConP &&
2764         addp == n->in(AddPNode::Base) &&
2765         n->in(AddPNode::Offset)->is_Con()) {
2766       // Use addressing with narrow klass to load with offset on x86.
2767       // On sparc loading 32-bits constant and decoding it have less
2768       // instructions (4) then load 64-bits constant (7).
2769       // Do this transformation here since IGVN will convert ConN back to ConP.
2770       const Type* t = addp->bottom_type();
2771       if (t->isa_oopptr() || t->isa_klassptr()) {
2772         Node* nn = NULL;
2773 
2774         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2775 
2776         // Look for existing ConN node of the same exact type.
2777         Node* r  = root();
2778         uint cnt = r->outcnt();
2779         for (uint i = 0; i < cnt; i++) {
2780           Node* m = r->raw_out(i);
2781           if (m!= NULL && m->Opcode() == op &&
2782               m->bottom_type()->make_ptr() == t) {
2783             nn = m;
2784             break;
2785           }
2786         }
2787         if (nn != NULL) {
2788           // Decode a narrow oop to match address
2789           // [R12 + narrow_oop_reg<<3 + offset]
2790           if (t->isa_oopptr()) {
2791             nn = new DecodeNNode(nn, t);
2792           } else {
2793             nn = new DecodeNKlassNode(nn, t);
2794           }
2795           n->set_req(AddPNode::Base, nn);
2796           n->set_req(AddPNode::Address, nn);
2797           if (addp->outcnt() == 0) {
2798             addp->disconnect_inputs(NULL, this);
2799           }
2800         }
2801       }
2802     }
2803 #endif
2804     break;
2805   }
2806 
2807 #ifdef _LP64
2808   case Op_CastPP:
2809     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2810       Node* in1 = n->in(1);
2811       const Type* t = n->bottom_type();
2812       Node* new_in1 = in1->clone();
2813       new_in1->as_DecodeN()->set_type(t);
2814 
2815       if (!Matcher::narrow_oop_use_complex_address()) {
2816         //
2817         // x86, ARM and friends can handle 2 adds in addressing mode
2818         // and Matcher can fold a DecodeN node into address by using
2819         // a narrow oop directly and do implicit NULL check in address:
2820         //
2821         // [R12 + narrow_oop_reg<<3 + offset]
2822         // NullCheck narrow_oop_reg
2823         //
2824         // On other platforms (Sparc) we have to keep new DecodeN node and
2825         // use it to do implicit NULL check in address:
2826         //
2827         // decode_not_null narrow_oop_reg, base_reg
2828         // [base_reg + offset]
2829         // NullCheck base_reg
2830         //
2831         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2832         // to keep the information to which NULL check the new DecodeN node
2833         // corresponds to use it as value in implicit_null_check().
2834         //
2835         new_in1->set_req(0, n->in(0));
2836       }
2837 
2838       n->subsume_by(new_in1, this);
2839       if (in1->outcnt() == 0) {
2840         in1->disconnect_inputs(NULL, this);
2841       }
2842     }
2843     break;
2844 
2845   case Op_CmpP:
2846     // Do this transformation here to preserve CmpPNode::sub() and
2847     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2848     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2849       Node* in1 = n->in(1);
2850       Node* in2 = n->in(2);
2851       if (!in1->is_DecodeNarrowPtr()) {
2852         in2 = in1;
2853         in1 = n->in(2);
2854       }
2855       assert(in1->is_DecodeNarrowPtr(), "sanity");
2856 
2857       Node* new_in2 = NULL;
2858       if (in2->is_DecodeNarrowPtr()) {
2859         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2860         new_in2 = in2->in(1);
2861       } else if (in2->Opcode() == Op_ConP) {
2862         const Type* t = in2->bottom_type();
2863         if (t == TypePtr::NULL_PTR) {
2864           assert(in1->is_DecodeN(), "compare klass to null?");
2865           // Don't convert CmpP null check into CmpN if compressed
2866           // oops implicit null check is not generated.
2867           // This will allow to generate normal oop implicit null check.
2868           if (Matcher::gen_narrow_oop_implicit_null_checks())
2869             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2870           //
2871           // This transformation together with CastPP transformation above
2872           // will generated code for implicit NULL checks for compressed oops.
2873           //
2874           // The original code after Optimize()
2875           //
2876           //    LoadN memory, narrow_oop_reg
2877           //    decode narrow_oop_reg, base_reg
2878           //    CmpP base_reg, NULL
2879           //    CastPP base_reg // NotNull
2880           //    Load [base_reg + offset], val_reg
2881           //
2882           // after these transformations will be
2883           //
2884           //    LoadN memory, narrow_oop_reg
2885           //    CmpN narrow_oop_reg, NULL
2886           //    decode_not_null narrow_oop_reg, base_reg
2887           //    Load [base_reg + offset], val_reg
2888           //
2889           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2890           // since narrow oops can be used in debug info now (see the code in
2891           // final_graph_reshaping_walk()).
2892           //
2893           // At the end the code will be matched to
2894           // on x86:
2895           //
2896           //    Load_narrow_oop memory, narrow_oop_reg
2897           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2898           //    NullCheck narrow_oop_reg
2899           //
2900           // and on sparc:
2901           //
2902           //    Load_narrow_oop memory, narrow_oop_reg
2903           //    decode_not_null narrow_oop_reg, base_reg
2904           //    Load [base_reg + offset], val_reg
2905           //    NullCheck base_reg
2906           //
2907         } else if (t->isa_oopptr()) {
2908           new_in2 = ConNode::make(t->make_narrowoop());
2909         } else if (t->isa_klassptr()) {
2910           new_in2 = ConNode::make(t->make_narrowklass());
2911         }
2912       }
2913       if (new_in2 != NULL) {
2914         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2915         n->subsume_by(cmpN, this);
2916         if (in1->outcnt() == 0) {
2917           in1->disconnect_inputs(NULL, this);
2918         }
2919         if (in2->outcnt() == 0) {
2920           in2->disconnect_inputs(NULL, this);
2921         }
2922       }
2923     }
2924     break;
2925 
2926   case Op_DecodeN:
2927   case Op_DecodeNKlass:
2928     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2929     // DecodeN could be pinned when it can't be fold into
2930     // an address expression, see the code for Op_CastPP above.
2931     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2932     break;
2933 
2934   case Op_EncodeP:
2935   case Op_EncodePKlass: {
2936     Node* in1 = n->in(1);
2937     if (in1->is_DecodeNarrowPtr()) {
2938       n->subsume_by(in1->in(1), this);
2939     } else if (in1->Opcode() == Op_ConP) {
2940       const Type* t = in1->bottom_type();
2941       if (t == TypePtr::NULL_PTR) {
2942         assert(t->isa_oopptr(), "null klass?");
2943         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
2944       } else if (t->isa_oopptr()) {
2945         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
2946       } else if (t->isa_klassptr()) {
2947         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
2948       }
2949     }
2950     if (in1->outcnt() == 0) {
2951       in1->disconnect_inputs(NULL, this);
2952     }
2953     break;
2954   }
2955 
2956   case Op_Proj: {
2957     if (OptimizeStringConcat) {
2958       ProjNode* p = n->as_Proj();
2959       if (p->_is_io_use) {
2960         // Separate projections were used for the exception path which
2961         // are normally removed by a late inline.  If it wasn't inlined
2962         // then they will hang around and should just be replaced with
2963         // the original one.
2964         Node* proj = NULL;
2965         // Replace with just one
2966         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2967           Node *use = i.get();
2968           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2969             proj = use;
2970             break;
2971           }
2972         }
2973         assert(proj != NULL, "must be found");
2974         p->subsume_by(proj, this);
2975       }
2976     }
2977     break;
2978   }
2979 
2980   case Op_Phi:
2981     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2982       // The EncodeP optimization may create Phi with the same edges
2983       // for all paths. It is not handled well by Register Allocator.
2984       Node* unique_in = n->in(1);
2985       assert(unique_in != NULL, "");
2986       uint cnt = n->req();
2987       for (uint i = 2; i < cnt; i++) {
2988         Node* m = n->in(i);
2989         assert(m != NULL, "");
2990         if (unique_in != m)
2991           unique_in = NULL;
2992       }
2993       if (unique_in != NULL) {
2994         n->subsume_by(unique_in, this);
2995       }
2996     }
2997     break;
2998 
2999 #endif
3000 
3001   case Op_ModI:
3002     if (UseDivMod) {
3003       // Check if a%b and a/b both exist
3004       Node* d = n->find_similar(Op_DivI);
3005       if (d) {
3006         // Replace them with a fused divmod if supported
3007         if (Matcher::has_match_rule(Op_DivModI)) {
3008           DivModINode* divmod = DivModINode::make(n);
3009           d->subsume_by(divmod->div_proj(), this);
3010           n->subsume_by(divmod->mod_proj(), this);
3011         } else {
3012           // replace a%b with a-((a/b)*b)
3013           Node* mult = new MulINode(d, d->in(2));
3014           Node* sub  = new SubINode(d->in(1), mult);
3015           n->subsume_by(sub, this);
3016         }
3017       }
3018     }
3019     break;
3020 
3021   case Op_ModL:
3022     if (UseDivMod) {
3023       // Check if a%b and a/b both exist
3024       Node* d = n->find_similar(Op_DivL);
3025       if (d) {
3026         // Replace them with a fused divmod if supported
3027         if (Matcher::has_match_rule(Op_DivModL)) {
3028           DivModLNode* divmod = DivModLNode::make(n);
3029           d->subsume_by(divmod->div_proj(), this);
3030           n->subsume_by(divmod->mod_proj(), this);
3031         } else {
3032           // replace a%b with a-((a/b)*b)
3033           Node* mult = new MulLNode(d, d->in(2));
3034           Node* sub  = new SubLNode(d->in(1), mult);
3035           n->subsume_by(sub, this);
3036         }
3037       }
3038     }
3039     break;
3040 
3041   case Op_LoadVector:
3042   case Op_StoreVector:
3043     break;
3044 
3045   case Op_PackB:
3046   case Op_PackS:
3047   case Op_PackI:
3048   case Op_PackF:
3049   case Op_PackL:
3050   case Op_PackD:
3051     if (n->req()-1 > 2) {
3052       // Replace many operand PackNodes with a binary tree for matching
3053       PackNode* p = (PackNode*) n;
3054       Node* btp = p->binary_tree_pack(1, n->req());
3055       n->subsume_by(btp, this);
3056     }
3057     break;
3058   case Op_Loop:
3059   case Op_CountedLoop:
3060     if (n->as_Loop()->is_inner_loop()) {
3061       frc.inc_inner_loop_count();
3062     }
3063     break;
3064   case Op_LShiftI:
3065   case Op_RShiftI:
3066   case Op_URShiftI:
3067   case Op_LShiftL:
3068   case Op_RShiftL:
3069   case Op_URShiftL:
3070     if (Matcher::need_masked_shift_count) {
3071       // The cpu's shift instructions don't restrict the count to the
3072       // lower 5/6 bits. We need to do the masking ourselves.
3073       Node* in2 = n->in(2);
3074       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3075       const TypeInt* t = in2->find_int_type();
3076       if (t != NULL && t->is_con()) {
3077         juint shift = t->get_con();
3078         if (shift > mask) { // Unsigned cmp
3079           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3080         }
3081       } else {
3082         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3083           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3084           n->set_req(2, shift);
3085         }
3086       }
3087       if (in2->outcnt() == 0) { // Remove dead node
3088         in2->disconnect_inputs(NULL, this);
3089       }
3090     }
3091     break;
3092   case Op_MemBarStoreStore:
3093   case Op_MemBarRelease:
3094     // Break the link with AllocateNode: it is no longer useful and
3095     // confuses register allocation.
3096     if (n->req() > MemBarNode::Precedent) {
3097       n->set_req(MemBarNode::Precedent, top());
3098     }
3099     break;
3100   default:
3101     assert( !n->is_Call(), "" );
3102     assert( !n->is_Mem(), "" );
3103     break;
3104   }
3105 
3106   // Collect CFG split points
3107   if (n->is_MultiBranch())
3108     frc._tests.push(n);
3109 }
3110 
3111 //------------------------------final_graph_reshaping_walk---------------------
3112 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3113 // requires that the walk visits a node's inputs before visiting the node.
3114 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3115   ResourceArea *area = Thread::current()->resource_area();
3116   Unique_Node_List sfpt(area);
3117 
3118   frc._visited.set(root->_idx); // first, mark node as visited
3119   uint cnt = root->req();
3120   Node *n = root;
3121   uint  i = 0;
3122   while (true) {
3123     if (i < cnt) {
3124       // Place all non-visited non-null inputs onto stack
3125       Node* m = n->in(i);
3126       ++i;
3127       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3128         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3129           // compute worst case interpreter size in case of a deoptimization
3130           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3131 
3132           sfpt.push(m);
3133         }
3134         cnt = m->req();
3135         nstack.push(n, i); // put on stack parent and next input's index
3136         n = m;
3137         i = 0;
3138       }
3139     } else {
3140       // Now do post-visit work
3141       final_graph_reshaping_impl( n, frc );
3142       if (nstack.is_empty())
3143         break;             // finished
3144       n = nstack.node();   // Get node from stack
3145       cnt = n->req();
3146       i = nstack.index();
3147       nstack.pop();        // Shift to the next node on stack
3148     }
3149   }
3150 
3151   // Skip next transformation if compressed oops are not used.
3152   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3153       (!UseCompressedOops && !UseCompressedClassPointers))
3154     return;
3155 
3156   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3157   // It could be done for an uncommon traps or any safepoints/calls
3158   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3159   while (sfpt.size() > 0) {
3160     n = sfpt.pop();
3161     JVMState *jvms = n->as_SafePoint()->jvms();
3162     assert(jvms != NULL, "sanity");
3163     int start = jvms->debug_start();
3164     int end   = n->req();
3165     bool is_uncommon = (n->is_CallStaticJava() &&
3166                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3167     for (int j = start; j < end; j++) {
3168       Node* in = n->in(j);
3169       if (in->is_DecodeNarrowPtr()) {
3170         bool safe_to_skip = true;
3171         if (!is_uncommon ) {
3172           // Is it safe to skip?
3173           for (uint i = 0; i < in->outcnt(); i++) {
3174             Node* u = in->raw_out(i);
3175             if (!u->is_SafePoint() ||
3176                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3177               safe_to_skip = false;
3178             }
3179           }
3180         }
3181         if (safe_to_skip) {
3182           n->set_req(j, in->in(1));
3183         }
3184         if (in->outcnt() == 0) {
3185           in->disconnect_inputs(NULL, this);
3186         }
3187       }
3188     }
3189   }
3190 }
3191 
3192 //------------------------------final_graph_reshaping--------------------------
3193 // Final Graph Reshaping.
3194 //
3195 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3196 //     and not commoned up and forced early.  Must come after regular
3197 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3198 //     inputs to Loop Phis; these will be split by the allocator anyways.
3199 //     Remove Opaque nodes.
3200 // (2) Move last-uses by commutative operations to the left input to encourage
3201 //     Intel update-in-place two-address operations and better register usage
3202 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3203 //     calls canonicalizing them back.
3204 // (3) Count the number of double-precision FP ops, single-precision FP ops
3205 //     and call sites.  On Intel, we can get correct rounding either by
3206 //     forcing singles to memory (requires extra stores and loads after each
3207 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3208 //     clearing the mode bit around call sites).  The mode bit is only used
3209 //     if the relative frequency of single FP ops to calls is low enough.
3210 //     This is a key transform for SPEC mpeg_audio.
3211 // (4) Detect infinite loops; blobs of code reachable from above but not
3212 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3213 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3214 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3215 //     Detection is by looking for IfNodes where only 1 projection is
3216 //     reachable from below or CatchNodes missing some targets.
3217 // (5) Assert for insane oop offsets in debug mode.
3218 
3219 bool Compile::final_graph_reshaping() {
3220   // an infinite loop may have been eliminated by the optimizer,
3221   // in which case the graph will be empty.
3222   if (root()->req() == 1) {
3223     record_method_not_compilable("trivial infinite loop");
3224     return true;
3225   }
3226 
3227   // Expensive nodes have their control input set to prevent the GVN
3228   // from freely commoning them. There's no GVN beyond this point so
3229   // no need to keep the control input. We want the expensive nodes to
3230   // be freely moved to the least frequent code path by gcm.
3231   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3232   for (int i = 0; i < expensive_count(); i++) {
3233     _expensive_nodes->at(i)->set_req(0, NULL);
3234   }
3235 
3236   Final_Reshape_Counts frc;
3237 
3238   // Visit everybody reachable!
3239   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3240   Node_Stack nstack(unique() >> 1);
3241   final_graph_reshaping_walk(nstack, root(), frc);
3242 
3243   // Check for unreachable (from below) code (i.e., infinite loops).
3244   for( uint i = 0; i < frc._tests.size(); i++ ) {
3245     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3246     // Get number of CFG targets.
3247     // Note that PCTables include exception targets after calls.
3248     uint required_outcnt = n->required_outcnt();
3249     if (n->outcnt() != required_outcnt) {
3250       // Check for a few special cases.  Rethrow Nodes never take the
3251       // 'fall-thru' path, so expected kids is 1 less.
3252       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3253         if (n->in(0)->in(0)->is_Call()) {
3254           CallNode *call = n->in(0)->in(0)->as_Call();
3255           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3256             required_outcnt--;      // Rethrow always has 1 less kid
3257           } else if (call->req() > TypeFunc::Parms &&
3258                      call->is_CallDynamicJava()) {
3259             // Check for null receiver. In such case, the optimizer has
3260             // detected that the virtual call will always result in a null
3261             // pointer exception. The fall-through projection of this CatchNode
3262             // will not be populated.
3263             Node *arg0 = call->in(TypeFunc::Parms);
3264             if (arg0->is_Type() &&
3265                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3266               required_outcnt--;
3267             }
3268           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3269                      call->req() > TypeFunc::Parms+1 &&
3270                      call->is_CallStaticJava()) {
3271             // Check for negative array length. In such case, the optimizer has
3272             // detected that the allocation attempt will always result in an
3273             // exception. There is no fall-through projection of this CatchNode .
3274             Node *arg1 = call->in(TypeFunc::Parms+1);
3275             if (arg1->is_Type() &&
3276                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3277               required_outcnt--;
3278             }
3279           }
3280         }
3281       }
3282       // Recheck with a better notion of 'required_outcnt'
3283       if (n->outcnt() != required_outcnt) {
3284         record_method_not_compilable("malformed control flow");
3285         return true;            // Not all targets reachable!
3286       }
3287     }
3288     // Check that I actually visited all kids.  Unreached kids
3289     // must be infinite loops.
3290     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3291       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3292         record_method_not_compilable("infinite loop");
3293         return true;            // Found unvisited kid; must be unreach
3294       }
3295   }
3296 
3297   // If original bytecodes contained a mixture of floats and doubles
3298   // check if the optimizer has made it homogenous, item (3).
3299   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3300       frc.get_float_count() > 32 &&
3301       frc.get_double_count() == 0 &&
3302       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3303     set_24_bit_selection_and_mode( false,  true );
3304   }
3305 
3306   set_java_calls(frc.get_java_call_count());
3307   set_inner_loops(frc.get_inner_loop_count());
3308 
3309   // No infinite loops, no reason to bail out.
3310   return false;
3311 }
3312 
3313 //-----------------------------too_many_traps----------------------------------
3314 // Report if there are too many traps at the current method and bci.
3315 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3316 bool Compile::too_many_traps(ciMethod* method,
3317                              int bci,
3318                              Deoptimization::DeoptReason reason) {
3319   ciMethodData* md = method->method_data();
3320   if (md->is_empty()) {
3321     // Assume the trap has not occurred, or that it occurred only
3322     // because of a transient condition during start-up in the interpreter.
3323     return false;
3324   }
3325   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3326   if (md->has_trap_at(bci, m, reason) != 0) {
3327     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3328     // Also, if there are multiple reasons, or if there is no per-BCI record,
3329     // assume the worst.
3330     if (log())
3331       log()->elem("observe trap='%s' count='%d'",
3332                   Deoptimization::trap_reason_name(reason),
3333                   md->trap_count(reason));
3334     return true;
3335   } else {
3336     // Ignore method/bci and see if there have been too many globally.
3337     return too_many_traps(reason, md);
3338   }
3339 }
3340 
3341 // Less-accurate variant which does not require a method and bci.
3342 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3343                              ciMethodData* logmd) {
3344   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3345     // Too many traps globally.
3346     // Note that we use cumulative trap_count, not just md->trap_count.
3347     if (log()) {
3348       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3349       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3350                   Deoptimization::trap_reason_name(reason),
3351                   mcount, trap_count(reason));
3352     }
3353     return true;
3354   } else {
3355     // The coast is clear.
3356     return false;
3357   }
3358 }
3359 
3360 //--------------------------too_many_recompiles--------------------------------
3361 // Report if there are too many recompiles at the current method and bci.
3362 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3363 // Is not eager to return true, since this will cause the compiler to use
3364 // Action_none for a trap point, to avoid too many recompilations.
3365 bool Compile::too_many_recompiles(ciMethod* method,
3366                                   int bci,
3367                                   Deoptimization::DeoptReason reason) {
3368   ciMethodData* md = method->method_data();
3369   if (md->is_empty()) {
3370     // Assume the trap has not occurred, or that it occurred only
3371     // because of a transient condition during start-up in the interpreter.
3372     return false;
3373   }
3374   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3375   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3376   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3377   Deoptimization::DeoptReason per_bc_reason
3378     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3379   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3380   if ((per_bc_reason == Deoptimization::Reason_none
3381        || md->has_trap_at(bci, m, reason) != 0)
3382       // The trap frequency measure we care about is the recompile count:
3383       && md->trap_recompiled_at(bci, m)
3384       && md->overflow_recompile_count() >= bc_cutoff) {
3385     // Do not emit a trap here if it has already caused recompilations.
3386     // Also, if there are multiple reasons, or if there is no per-BCI record,
3387     // assume the worst.
3388     if (log())
3389       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3390                   Deoptimization::trap_reason_name(reason),
3391                   md->trap_count(reason),
3392                   md->overflow_recompile_count());
3393     return true;
3394   } else if (trap_count(reason) != 0
3395              && decompile_count() >= m_cutoff) {
3396     // Too many recompiles globally, and we have seen this sort of trap.
3397     // Use cumulative decompile_count, not just md->decompile_count.
3398     if (log())
3399       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3400                   Deoptimization::trap_reason_name(reason),
3401                   md->trap_count(reason), trap_count(reason),
3402                   md->decompile_count(), decompile_count());
3403     return true;
3404   } else {
3405     // The coast is clear.
3406     return false;
3407   }
3408 }
3409 
3410 // Compute when not to trap. Used by matching trap based nodes and
3411 // NullCheck optimization.
3412 void Compile::set_allowed_deopt_reasons() {
3413   _allowed_reasons = 0;
3414   if (is_method_compilation()) {
3415     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3416       assert(rs < BitsPerInt, "recode bit map");
3417       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3418         _allowed_reasons |= nth_bit(rs);
3419       }
3420     }
3421   }
3422 }
3423 
3424 #ifndef PRODUCT
3425 //------------------------------verify_graph_edges---------------------------
3426 // Walk the Graph and verify that there is a one-to-one correspondence
3427 // between Use-Def edges and Def-Use edges in the graph.
3428 void Compile::verify_graph_edges(bool no_dead_code) {
3429   if (VerifyGraphEdges) {
3430     ResourceArea *area = Thread::current()->resource_area();
3431     Unique_Node_List visited(area);
3432     // Call recursive graph walk to check edges
3433     _root->verify_edges(visited);
3434     if (no_dead_code) {
3435       // Now make sure that no visited node is used by an unvisited node.
3436       bool dead_nodes = false;
3437       Unique_Node_List checked(area);
3438       while (visited.size() > 0) {
3439         Node* n = visited.pop();
3440         checked.push(n);
3441         for (uint i = 0; i < n->outcnt(); i++) {
3442           Node* use = n->raw_out(i);
3443           if (checked.member(use))  continue;  // already checked
3444           if (visited.member(use))  continue;  // already in the graph
3445           if (use->is_Con())        continue;  // a dead ConNode is OK
3446           // At this point, we have found a dead node which is DU-reachable.
3447           if (!dead_nodes) {
3448             tty->print_cr("*** Dead nodes reachable via DU edges:");
3449             dead_nodes = true;
3450           }
3451           use->dump(2);
3452           tty->print_cr("---");
3453           checked.push(use);  // No repeats; pretend it is now checked.
3454         }
3455       }
3456       assert(!dead_nodes, "using nodes must be reachable from root");
3457     }
3458   }
3459 }
3460 
3461 // Verify GC barriers consistency
3462 // Currently supported:
3463 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3464 void Compile::verify_barriers() {
3465   if (UseG1GC) {
3466     // Verify G1 pre-barriers
3467     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3468 
3469     ResourceArea *area = Thread::current()->resource_area();
3470     Unique_Node_List visited(area);
3471     Node_List worklist(area);
3472     // We're going to walk control flow backwards starting from the Root
3473     worklist.push(_root);
3474     while (worklist.size() > 0) {
3475       Node* x = worklist.pop();
3476       if (x == NULL || x == top()) continue;
3477       if (visited.member(x)) {
3478         continue;
3479       } else {
3480         visited.push(x);
3481       }
3482 
3483       if (x->is_Region()) {
3484         for (uint i = 1; i < x->req(); i++) {
3485           worklist.push(x->in(i));
3486         }
3487       } else {
3488         worklist.push(x->in(0));
3489         // We are looking for the pattern:
3490         //                            /->ThreadLocal
3491         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3492         //              \->ConI(0)
3493         // We want to verify that the If and the LoadB have the same control
3494         // See GraphKit::g1_write_barrier_pre()
3495         if (x->is_If()) {
3496           IfNode *iff = x->as_If();
3497           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3498             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3499             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3500                 && cmp->in(1)->is_Load()) {
3501               LoadNode* load = cmp->in(1)->as_Load();
3502               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3503                   && load->in(2)->in(3)->is_Con()
3504                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3505 
3506                 Node* if_ctrl = iff->in(0);
3507                 Node* load_ctrl = load->in(0);
3508 
3509                 if (if_ctrl != load_ctrl) {
3510                   // Skip possible CProj->NeverBranch in infinite loops
3511                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3512                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3513                     if_ctrl = if_ctrl->in(0)->in(0);
3514                   }
3515                 }
3516                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3517               }
3518             }
3519           }
3520         }
3521       }
3522     }
3523   }
3524 }
3525 
3526 #endif
3527 
3528 // The Compile object keeps track of failure reasons separately from the ciEnv.
3529 // This is required because there is not quite a 1-1 relation between the
3530 // ciEnv and its compilation task and the Compile object.  Note that one
3531 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3532 // to backtrack and retry without subsuming loads.  Other than this backtracking
3533 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3534 // by the logic in C2Compiler.
3535 void Compile::record_failure(const char* reason) {
3536   if (log() != NULL) {
3537     log()->elem("failure reason='%s' phase='compile'", reason);
3538   }
3539   if (_failure_reason == NULL) {
3540     // Record the first failure reason.
3541     _failure_reason = reason;
3542   }
3543 
3544   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3545     C->print_method(PHASE_FAILURE);
3546   }
3547   _root = NULL;  // flush the graph, too
3548 }
3549 
3550 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3551   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3552     _phase_name(name), _dolog(CITimeVerbose)
3553 {
3554   if (_dolog) {
3555     C = Compile::current();
3556     _log = C->log();
3557   } else {
3558     C = NULL;
3559     _log = NULL;
3560   }
3561   if (_log != NULL) {
3562     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3563     _log->stamp();
3564     _log->end_head();
3565   }
3566 }
3567 
3568 Compile::TracePhase::~TracePhase() {
3569 
3570   C = Compile::current();
3571   if (_dolog) {
3572     _log = C->log();
3573   } else {
3574     _log = NULL;
3575   }
3576 
3577 #ifdef ASSERT
3578   if (PrintIdealNodeCount) {
3579     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3580                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3581   }
3582 
3583   if (VerifyIdealNodeCount) {
3584     Compile::current()->print_missing_nodes();
3585   }
3586 #endif
3587 
3588   if (_log != NULL) {
3589     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3590   }
3591 }
3592 
3593 //=============================================================================
3594 // Two Constant's are equal when the type and the value are equal.
3595 bool Compile::Constant::operator==(const Constant& other) {
3596   if (type()          != other.type()         )  return false;
3597   if (can_be_reused() != other.can_be_reused())  return false;
3598   // For floating point values we compare the bit pattern.
3599   switch (type()) {
3600   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3601   case T_LONG:
3602   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3603   case T_OBJECT:
3604   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3605   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3606   case T_METADATA: return (_v._metadata == other._v._metadata);
3607   default: ShouldNotReachHere();
3608   }
3609   return false;
3610 }
3611 
3612 static int type_to_size_in_bytes(BasicType t) {
3613   switch (t) {
3614   case T_LONG:    return sizeof(jlong  );
3615   case T_FLOAT:   return sizeof(jfloat );
3616   case T_DOUBLE:  return sizeof(jdouble);
3617   case T_METADATA: return sizeof(Metadata*);
3618     // We use T_VOID as marker for jump-table entries (labels) which
3619     // need an internal word relocation.
3620   case T_VOID:
3621   case T_ADDRESS:
3622   case T_OBJECT:  return sizeof(jobject);
3623   }
3624 
3625   ShouldNotReachHere();
3626   return -1;
3627 }
3628 
3629 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3630   // sort descending
3631   if (a->freq() > b->freq())  return -1;
3632   if (a->freq() < b->freq())  return  1;
3633   return 0;
3634 }
3635 
3636 void Compile::ConstantTable::calculate_offsets_and_size() {
3637   // First, sort the array by frequencies.
3638   _constants.sort(qsort_comparator);
3639 
3640 #ifdef ASSERT
3641   // Make sure all jump-table entries were sorted to the end of the
3642   // array (they have a negative frequency).
3643   bool found_void = false;
3644   for (int i = 0; i < _constants.length(); i++) {
3645     Constant con = _constants.at(i);
3646     if (con.type() == T_VOID)
3647       found_void = true;  // jump-tables
3648     else
3649       assert(!found_void, "wrong sorting");
3650   }
3651 #endif
3652 
3653   int offset = 0;
3654   for (int i = 0; i < _constants.length(); i++) {
3655     Constant* con = _constants.adr_at(i);
3656 
3657     // Align offset for type.
3658     int typesize = type_to_size_in_bytes(con->type());
3659     offset = align_size_up(offset, typesize);
3660     con->set_offset(offset);   // set constant's offset
3661 
3662     if (con->type() == T_VOID) {
3663       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3664       offset = offset + typesize * n->outcnt();  // expand jump-table
3665     } else {
3666       offset = offset + typesize;
3667     }
3668   }
3669 
3670   // Align size up to the next section start (which is insts; see
3671   // CodeBuffer::align_at_start).
3672   assert(_size == -1, "already set?");
3673   _size = align_size_up(offset, CodeEntryAlignment);
3674 }
3675 
3676 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3677   MacroAssembler _masm(&cb);
3678   for (int i = 0; i < _constants.length(); i++) {
3679     Constant con = _constants.at(i);
3680     address constant_addr;
3681     switch (con.type()) {
3682     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3683     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3684     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3685     case T_OBJECT: {
3686       jobject obj = con.get_jobject();
3687       int oop_index = _masm.oop_recorder()->find_index(obj);
3688       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3689       break;
3690     }
3691     case T_ADDRESS: {
3692       address addr = (address) con.get_jobject();
3693       constant_addr = _masm.address_constant(addr);
3694       break;
3695     }
3696     // We use T_VOID as marker for jump-table entries (labels) which
3697     // need an internal word relocation.
3698     case T_VOID: {
3699       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3700       // Fill the jump-table with a dummy word.  The real value is
3701       // filled in later in fill_jump_table.
3702       address dummy = (address) n;
3703       constant_addr = _masm.address_constant(dummy);
3704       // Expand jump-table
3705       for (uint i = 1; i < n->outcnt(); i++) {
3706         address temp_addr = _masm.address_constant(dummy + i);
3707         assert(temp_addr, "consts section too small");
3708       }
3709       break;
3710     }
3711     case T_METADATA: {
3712       Metadata* obj = con.get_metadata();
3713       int metadata_index = _masm.oop_recorder()->find_index(obj);
3714       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3715       break;
3716     }
3717     default: ShouldNotReachHere();
3718     }
3719     assert(constant_addr, "consts section too small");
3720     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3721             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3722   }
3723 }
3724 
3725 int Compile::ConstantTable::find_offset(Constant& con) const {
3726   int idx = _constants.find(con);
3727   assert(idx != -1, "constant must be in constant table");
3728   int offset = _constants.at(idx).offset();
3729   assert(offset != -1, "constant table not emitted yet?");
3730   return offset;
3731 }
3732 
3733 void Compile::ConstantTable::add(Constant& con) {
3734   if (con.can_be_reused()) {
3735     int idx = _constants.find(con);
3736     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3737       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3738       return;
3739     }
3740   }
3741   (void) _constants.append(con);
3742 }
3743 
3744 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3745   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3746   Constant con(type, value, b->_freq);
3747   add(con);
3748   return con;
3749 }
3750 
3751 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3752   Constant con(metadata);
3753   add(con);
3754   return con;
3755 }
3756 
3757 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3758   jvalue value;
3759   BasicType type = oper->type()->basic_type();
3760   switch (type) {
3761   case T_LONG:    value.j = oper->constantL(); break;
3762   case T_FLOAT:   value.f = oper->constantF(); break;
3763   case T_DOUBLE:  value.d = oper->constantD(); break;
3764   case T_OBJECT:
3765   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3766   case T_METADATA: return add((Metadata*)oper->constant()); break;
3767   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3768   }
3769   return add(n, type, value);
3770 }
3771 
3772 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3773   jvalue value;
3774   // We can use the node pointer here to identify the right jump-table
3775   // as this method is called from Compile::Fill_buffer right before
3776   // the MachNodes are emitted and the jump-table is filled (means the
3777   // MachNode pointers do not change anymore).
3778   value.l = (jobject) n;
3779   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3780   add(con);
3781   return con;
3782 }
3783 
3784 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3785   // If called from Compile::scratch_emit_size do nothing.
3786   if (Compile::current()->in_scratch_emit_size())  return;
3787 
3788   assert(labels.is_nonempty(), "must be");
3789   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3790 
3791   // Since MachConstantNode::constant_offset() also contains
3792   // table_base_offset() we need to subtract the table_base_offset()
3793   // to get the plain offset into the constant table.
3794   int offset = n->constant_offset() - table_base_offset();
3795 
3796   MacroAssembler _masm(&cb);
3797   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3798 
3799   for (uint i = 0; i < n->outcnt(); i++) {
3800     address* constant_addr = &jump_table_base[i];
3801     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3802     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3803     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3804   }
3805 }
3806 
3807 //----------------------------static_subtype_check-----------------------------
3808 // Shortcut important common cases when superklass is exact:
3809 // (0) superklass is java.lang.Object (can occur in reflective code)
3810 // (1) subklass is already limited to a subtype of superklass => always ok
3811 // (2) subklass does not overlap with superklass => always fail
3812 // (3) superklass has NO subtypes and we can check with a simple compare.
3813 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3814   if (StressReflectiveCode) {
3815     return SSC_full_test;       // Let caller generate the general case.
3816   }
3817 
3818   if (superk == env()->Object_klass()) {
3819     return SSC_always_true;     // (0) this test cannot fail
3820   }
3821 
3822   ciType* superelem = superk;
3823   if (superelem->is_array_klass())
3824     superelem = superelem->as_array_klass()->base_element_type();
3825 
3826   if (!subk->is_interface()) {  // cannot trust static interface types yet
3827     if (subk->is_subtype_of(superk)) {
3828       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3829     }
3830     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3831         !superk->is_subtype_of(subk)) {
3832       return SSC_always_false;
3833     }
3834   }
3835 
3836   // If casting to an instance klass, it must have no subtypes
3837   if (superk->is_interface()) {
3838     // Cannot trust interfaces yet.
3839     // %%% S.B. superk->nof_implementors() == 1
3840   } else if (superelem->is_instance_klass()) {
3841     ciInstanceKlass* ik = superelem->as_instance_klass();
3842     if (!ik->has_subklass() && !ik->is_interface()) {
3843       if (!ik->is_final()) {
3844         // Add a dependency if there is a chance of a later subclass.
3845         dependencies()->assert_leaf_type(ik);
3846       }
3847       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
3848     }
3849   } else {
3850     // A primitive array type has no subtypes.
3851     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
3852   }
3853 
3854   return SSC_full_test;
3855 }
3856 
3857 // The message about the current inlining is accumulated in
3858 // _print_inlining_stream and transfered into the _print_inlining_list
3859 // once we know whether inlining succeeds or not. For regular
3860 // inlining, messages are appended to the buffer pointed by
3861 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3862 // a new buffer is added after _print_inlining_idx in the list. This
3863 // way we can update the inlining message for late inlining call site
3864 // when the inlining is attempted again.
3865 void Compile::print_inlining_init() {
3866   if (print_inlining() || print_intrinsics()) {
3867     _print_inlining_stream = new stringStream();
3868     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3869   }
3870 }
3871 
3872 void Compile::print_inlining_reinit() {
3873   if (print_inlining() || print_intrinsics()) {
3874     // Re allocate buffer when we change ResourceMark
3875     _print_inlining_stream = new stringStream();
3876   }
3877 }
3878 
3879 void Compile::print_inlining_reset() {
3880   _print_inlining_stream->reset();
3881 }
3882 
3883 void Compile::print_inlining_commit() {
3884   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3885   // Transfer the message from _print_inlining_stream to the current
3886   // _print_inlining_list buffer and clear _print_inlining_stream.
3887   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3888   print_inlining_reset();
3889 }
3890 
3891 void Compile::print_inlining_push() {
3892   // Add new buffer to the _print_inlining_list at current position
3893   _print_inlining_idx++;
3894   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3895 }
3896 
3897 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3898   return _print_inlining_list->at(_print_inlining_idx);
3899 }
3900 
3901 void Compile::print_inlining_update(CallGenerator* cg) {
3902   if (print_inlining() || print_intrinsics()) {
3903     if (!cg->is_late_inline()) {
3904       if (print_inlining_current().cg() != NULL) {
3905         print_inlining_push();
3906       }
3907       print_inlining_commit();
3908     } else {
3909       if (print_inlining_current().cg() != cg &&
3910           (print_inlining_current().cg() != NULL ||
3911            print_inlining_current().ss()->size() != 0)) {
3912         print_inlining_push();
3913       }
3914       print_inlining_commit();
3915       print_inlining_current().set_cg(cg);
3916     }
3917   }
3918 }
3919 
3920 void Compile::print_inlining_move_to(CallGenerator* cg) {
3921   // We resume inlining at a late inlining call site. Locate the
3922   // corresponding inlining buffer so that we can update it.
3923   if (print_inlining()) {
3924     for (int i = 0; i < _print_inlining_list->length(); i++) {
3925       if (_print_inlining_list->adr_at(i)->cg() == cg) {
3926         _print_inlining_idx = i;
3927         return;
3928       }
3929     }
3930     ShouldNotReachHere();
3931   }
3932 }
3933 
3934 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
3935   if (print_inlining()) {
3936     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
3937     assert(print_inlining_current().cg() == cg, "wrong entry");
3938     // replace message with new message
3939     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
3940     print_inlining_commit();
3941     print_inlining_current().set_cg(cg);
3942   }
3943 }
3944 
3945 void Compile::print_inlining_assert_ready() {
3946   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
3947 }
3948 
3949 void Compile::process_print_inlining() {
3950   bool do_print_inlining = print_inlining() || print_intrinsics();
3951   if (do_print_inlining || log() != NULL) {
3952     // Print inlining message for candidates that we couldn't inline
3953     // for lack of space
3954     for (int i = 0; i < _late_inlines.length(); i++) {
3955       CallGenerator* cg = _late_inlines.at(i);
3956       if (!cg->is_mh_late_inline()) {
3957         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
3958         if (do_print_inlining) {
3959           cg->print_inlining_late(msg);
3960         }
3961         log_late_inline_failure(cg, msg);
3962       }
3963     }
3964   }
3965   if (do_print_inlining) {
3966     ResourceMark rm;
3967     stringStream ss;
3968     for (int i = 0; i < _print_inlining_list->length(); i++) {
3969       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3970     }
3971     size_t end = ss.size();
3972     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
3973     strncpy(_print_inlining_output, ss.base(), end+1);
3974     _print_inlining_output[end] = 0;
3975   }
3976 }
3977 
3978 void Compile::dump_print_inlining() {
3979   if (_print_inlining_output != NULL) {
3980     tty->print_raw(_print_inlining_output);
3981   }
3982 }
3983 
3984 void Compile::log_late_inline(CallGenerator* cg) {
3985   if (log() != NULL) {
3986     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
3987                 cg->unique_id());
3988     JVMState* p = cg->call_node()->jvms();
3989     while (p != NULL) {
3990       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
3991       p = p->caller();
3992     }
3993     log()->tail("late_inline");
3994   }
3995 }
3996 
3997 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
3998   log_late_inline(cg);
3999   if (log() != NULL) {
4000     log()->inline_fail(msg);
4001   }
4002 }
4003 
4004 void Compile::log_inline_id(CallGenerator* cg) {
4005   if (log() != NULL) {
4006     // The LogCompilation tool needs a unique way to identify late
4007     // inline call sites. This id must be unique for this call site in
4008     // this compilation. Try to have it unique across compilations as
4009     // well because it can be convenient when grepping through the log
4010     // file.
4011     // Distinguish OSR compilations from others in case CICountOSR is
4012     // on.
4013     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4014     cg->set_unique_id(id);
4015     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4016   }
4017 }
4018 
4019 void Compile::log_inline_failure(const char* msg) {
4020   if (C->log() != NULL) {
4021     C->log()->inline_fail(msg);
4022   }
4023 }
4024 
4025 
4026 // Dump inlining replay data to the stream.
4027 // Don't change thread state and acquire any locks.
4028 void Compile::dump_inline_data(outputStream* out) {
4029   InlineTree* inl_tree = ilt();
4030   if (inl_tree != NULL) {
4031     out->print(" inline %d", inl_tree->count());
4032     inl_tree->dump_replay_data(out);
4033   }
4034 }
4035 
4036 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4037   if (n1->Opcode() < n2->Opcode())      return -1;
4038   else if (n1->Opcode() > n2->Opcode()) return 1;
4039 
4040   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
4041   for (uint i = 1; i < n1->req(); i++) {
4042     if (n1->in(i) < n2->in(i))      return -1;
4043     else if (n1->in(i) > n2->in(i)) return 1;
4044   }
4045 
4046   return 0;
4047 }
4048 
4049 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4050   Node* n1 = *n1p;
4051   Node* n2 = *n2p;
4052 
4053   return cmp_expensive_nodes(n1, n2);
4054 }
4055 
4056 void Compile::sort_expensive_nodes() {
4057   if (!expensive_nodes_sorted()) {
4058     _expensive_nodes->sort(cmp_expensive_nodes);
4059   }
4060 }
4061 
4062 bool Compile::expensive_nodes_sorted() const {
4063   for (int i = 1; i < _expensive_nodes->length(); i++) {
4064     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4065       return false;
4066     }
4067   }
4068   return true;
4069 }
4070 
4071 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4072   if (_expensive_nodes->length() == 0) {
4073     return false;
4074   }
4075 
4076   assert(OptimizeExpensiveOps, "optimization off?");
4077 
4078   // Take this opportunity to remove dead nodes from the list
4079   int j = 0;
4080   for (int i = 0; i < _expensive_nodes->length(); i++) {
4081     Node* n = _expensive_nodes->at(i);
4082     if (!n->is_unreachable(igvn)) {
4083       assert(n->is_expensive(), "should be expensive");
4084       _expensive_nodes->at_put(j, n);
4085       j++;
4086     }
4087   }
4088   _expensive_nodes->trunc_to(j);
4089 
4090   // Then sort the list so that similar nodes are next to each other
4091   // and check for at least two nodes of identical kind with same data
4092   // inputs.
4093   sort_expensive_nodes();
4094 
4095   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4096     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4097       return true;
4098     }
4099   }
4100 
4101   return false;
4102 }
4103 
4104 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4105   if (_expensive_nodes->length() == 0) {
4106     return;
4107   }
4108 
4109   assert(OptimizeExpensiveOps, "optimization off?");
4110 
4111   // Sort to bring similar nodes next to each other and clear the
4112   // control input of nodes for which there's only a single copy.
4113   sort_expensive_nodes();
4114 
4115   int j = 0;
4116   int identical = 0;
4117   int i = 0;
4118   bool modified = false;
4119   for (; i < _expensive_nodes->length()-1; i++) {
4120     assert(j <= i, "can't write beyond current index");
4121     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4122       identical++;
4123       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4124       continue;
4125     }
4126     if (identical > 0) {
4127       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4128       identical = 0;
4129     } else {
4130       Node* n = _expensive_nodes->at(i);
4131       igvn.replace_input_of(n, 0, NULL);
4132       igvn.hash_insert(n);
4133       modified = true;
4134     }
4135   }
4136   if (identical > 0) {
4137     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4138   } else if (_expensive_nodes->length() >= 1) {
4139     Node* n = _expensive_nodes->at(i);
4140     igvn.replace_input_of(n, 0, NULL);
4141     igvn.hash_insert(n);
4142     modified = true;
4143   }
4144   _expensive_nodes->trunc_to(j);
4145   if (modified) {
4146     igvn.optimize();
4147   }
4148 }
4149 
4150 void Compile::add_expensive_node(Node * n) {
4151   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4152   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4153   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4154   if (OptimizeExpensiveOps) {
4155     _expensive_nodes->append(n);
4156   } else {
4157     // Clear control input and let IGVN optimize expensive nodes if
4158     // OptimizeExpensiveOps is off.
4159     n->set_req(0, NULL);
4160   }
4161 }
4162 
4163 /**
4164  * Remove the speculative part of types and clean up the graph
4165  */
4166 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4167   if (UseTypeSpeculation) {
4168     Unique_Node_List worklist;
4169     worklist.push(root());
4170     int modified = 0;
4171     // Go over all type nodes that carry a speculative type, drop the
4172     // speculative part of the type and enqueue the node for an igvn
4173     // which may optimize it out.
4174     for (uint next = 0; next < worklist.size(); ++next) {
4175       Node *n  = worklist.at(next);
4176       if (n->is_Type()) {
4177         TypeNode* tn = n->as_Type();
4178         const Type* t = tn->type();
4179         const Type* t_no_spec = t->remove_speculative();
4180         if (t_no_spec != t) {
4181           bool in_hash = igvn.hash_delete(n);
4182           assert(in_hash, "node should be in igvn hash table");
4183           tn->set_type(t_no_spec);
4184           igvn.hash_insert(n);
4185           igvn._worklist.push(n); // give it a chance to go away
4186           modified++;
4187         }
4188       }
4189       uint max = n->len();
4190       for( uint i = 0; i < max; ++i ) {
4191         Node *m = n->in(i);
4192         if (not_a_node(m))  continue;
4193         worklist.push(m);
4194       }
4195     }
4196     // Drop the speculative part of all types in the igvn's type table
4197     igvn.remove_speculative_types();
4198     if (modified > 0) {
4199       igvn.optimize();
4200     }
4201 #ifdef ASSERT
4202     // Verify that after the IGVN is over no speculative type has resurfaced
4203     worklist.clear();
4204     worklist.push(root());
4205     for (uint next = 0; next < worklist.size(); ++next) {
4206       Node *n  = worklist.at(next);
4207       const Type* t = igvn.type_or_null(n);
4208       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4209       if (n->is_Type()) {
4210         t = n->as_Type()->type();
4211         assert(t == t->remove_speculative(), "no more speculative types");
4212       }
4213       uint max = n->len();
4214       for( uint i = 0; i < max; ++i ) {
4215         Node *m = n->in(i);
4216         if (not_a_node(m))  continue;
4217         worklist.push(m);
4218       }
4219     }
4220     igvn.check_no_speculative_types();
4221 #endif
4222   }
4223 }
4224 
4225 // Auxiliary method to support randomized stressing/fuzzing.
4226 //
4227 // This method can be called the arbitrary number of times, with current count
4228 // as the argument. The logic allows selecting a single candidate from the
4229 // running list of candidates as follows:
4230 //    int count = 0;
4231 //    Cand* selected = null;
4232 //    while(cand = cand->next()) {
4233 //      if (randomized_select(++count)) {
4234 //        selected = cand;
4235 //      }
4236 //    }
4237 //
4238 // Including count equalizes the chances any candidate is "selected".
4239 // This is useful when we don't have the complete list of candidates to choose
4240 // from uniformly. In this case, we need to adjust the randomicity of the
4241 // selection, or else we will end up biasing the selection towards the latter
4242 // candidates.
4243 //
4244 // Quick back-envelope calculation shows that for the list of n candidates
4245 // the equal probability for the candidate to persist as "best" can be
4246 // achieved by replacing it with "next" k-th candidate with the probability
4247 // of 1/k. It can be easily shown that by the end of the run, the
4248 // probability for any candidate is converged to 1/n, thus giving the
4249 // uniform distribution among all the candidates.
4250 //
4251 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4252 #define RANDOMIZED_DOMAIN_POW 29
4253 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4254 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4255 bool Compile::randomized_select(int count) {
4256   assert(count > 0, "only positive");
4257   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4258 }