1 //
   2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Header information of the source block.
 461 // Method declarations/definitions which are used outside
 462 // the ad-scope can conveniently be defined here.
 463 //
 464 // To keep related declarations/definitions/uses close together,
 465 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 466 
 467 // Must be visible to the DFA in dfa_sparc.cpp
 468 extern bool can_branch_register( Node *bol, Node *cmp );
 469 
 470 extern bool use_block_zeroing(Node* count);
 471 
 472 // Macros to extract hi & lo halves from a long pair.
 473 // G0 is not part of any long pair, so assert on that.
 474 // Prevents accidentally using G1 instead of G0.
 475 #define LONG_HI_REG(x) (x)
 476 #define LONG_LO_REG(x) (x)
 477 
 478 class CallStubImpl {
 479 
 480   //--------------------------------------------------------------
 481   //---<  Used for optimization in Compile::Shorten_branches  >---
 482   //--------------------------------------------------------------
 483 
 484  public:
 485   // Size of call trampoline stub.
 486   static uint size_call_trampoline() {
 487     return 0; // no call trampolines on this platform
 488   }
 489 
 490   // number of relocations needed by a call trampoline stub
 491   static uint reloc_call_trampoline() {
 492     return 0; // no call trampolines on this platform
 493   }
 494 };
 495 
 496 class HandlerImpl {
 497 
 498  public:
 499 
 500   static int emit_exception_handler(CodeBuffer &cbuf);
 501   static int emit_deopt_handler(CodeBuffer& cbuf);
 502 
 503   static uint size_exception_handler() {
 504     if (TraceJumps) {
 505       return (400); // just a guess
 506     }
 507     return ( NativeJump::instruction_size ); // sethi;jmp;nop
 508   }
 509 
 510   static uint size_deopt_handler() {
 511     if (TraceJumps) {
 512       return (400); // just a guess
 513     }
 514     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
 515   }
 516 };
 517 
 518 %}
 519 
 520 source %{
 521 #define __ _masm.
 522 
 523 // tertiary op of a LoadP or StoreP encoding
 524 #define REGP_OP true
 525 
 526 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 527 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 528 static Register reg_to_register_object(int register_encoding);
 529 
 530 // Used by the DFA in dfa_sparc.cpp.
 531 // Check for being able to use a V9 branch-on-register.  Requires a
 532 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 533 // extended.  Doesn't work following an integer ADD, for example, because of
 534 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 535 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 536 // replace them with zero, which could become sign-extension in a different OS
 537 // release.  There's no obvious reason why an interrupt will ever fill these
 538 // bits with non-zero junk (the registers are reloaded with standard LD
 539 // instructions which either zero-fill or sign-fill).
 540 bool can_branch_register( Node *bol, Node *cmp ) {
 541   if( !BranchOnRegister ) return false;
 542 #ifdef _LP64
 543   if( cmp->Opcode() == Op_CmpP )
 544     return true;  // No problems with pointer compares
 545 #endif
 546   if( cmp->Opcode() == Op_CmpL )
 547     return true;  // No problems with long compares
 548 
 549   if( !SparcV9RegsHiBitsZero ) return false;
 550   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 551       bol->as_Bool()->_test._test != BoolTest::eq )
 552      return false;
 553 
 554   // Check for comparing against a 'safe' value.  Any operation which
 555   // clears out the high word is safe.  Thus, loads and certain shifts
 556   // are safe, as are non-negative constants.  Any operation which
 557   // preserves zero bits in the high word is safe as long as each of its
 558   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 559   // inputs are safe.  At present, the only important case to recognize
 560   // seems to be loads.  Constants should fold away, and shifts &
 561   // logicals can use the 'cc' forms.
 562   Node *x = cmp->in(1);
 563   if( x->is_Load() ) return true;
 564   if( x->is_Phi() ) {
 565     for( uint i = 1; i < x->req(); i++ )
 566       if( !x->in(i)->is_Load() )
 567         return false;
 568     return true;
 569   }
 570   return false;
 571 }
 572 
 573 bool use_block_zeroing(Node* count) {
 574   // Use BIS for zeroing if count is not constant
 575   // or it is >= BlockZeroingLowLimit.
 576   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 577 }
 578 
 579 // ****************************************************************************
 580 
 581 // REQUIRED FUNCTIONALITY
 582 
 583 // !!!!! Special hack to get all type of calls to specify the byte offset
 584 //       from the start of the call to the point where the return address
 585 //       will point.
 586 //       The "return address" is the address of the call instruction, plus 8.
 587 
 588 int MachCallStaticJavaNode::ret_addr_offset() {
 589   int offset = NativeCall::instruction_size;  // call; delay slot
 590   if (_method_handle_invoke)
 591     offset += 4;  // restore SP
 592   return offset;
 593 }
 594 
 595 int MachCallDynamicJavaNode::ret_addr_offset() {
 596   int vtable_index = this->_vtable_index;
 597   if (vtable_index < 0) {
 598     // must be invalid_vtable_index, not nonvirtual_vtable_index
 599     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 600     return (NativeMovConstReg::instruction_size +
 601            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 602   } else {
 603     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 604     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 605     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 606     int klass_load_size;
 607     if (UseCompressedClassPointers) {
 608       assert(Universe::heap() != NULL, "java heap should be initialized");
 609       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 610     } else {
 611       klass_load_size = 1*BytesPerInstWord;
 612     }
 613     if (Assembler::is_simm13(v_off)) {
 614       return klass_load_size +
 615              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 616              NativeCall::instruction_size);  // call; delay slot
 617     } else {
 618       return klass_load_size +
 619              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 620              NativeCall::instruction_size);  // call; delay slot
 621     }
 622   }
 623 }
 624 
 625 int MachCallRuntimeNode::ret_addr_offset() {
 626 #ifdef _LP64
 627   if (MacroAssembler::is_far_target(entry_point())) {
 628     return NativeFarCall::instruction_size;
 629   } else {
 630     return NativeCall::instruction_size;
 631   }
 632 #else
 633   return NativeCall::instruction_size;  // call; delay slot
 634 #endif
 635 }
 636 
 637 // Indicate if the safepoint node needs the polling page as an input.
 638 // Since Sparc does not have absolute addressing, it does.
 639 bool SafePointNode::needs_polling_address_input() {
 640   return true;
 641 }
 642 
 643 // emit an interrupt that is caught by the debugger (for debugging compiler)
 644 void emit_break(CodeBuffer &cbuf) {
 645   MacroAssembler _masm(&cbuf);
 646   __ breakpoint_trap();
 647 }
 648 
 649 #ifndef PRODUCT
 650 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 651   st->print("TA");
 652 }
 653 #endif
 654 
 655 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 656   emit_break(cbuf);
 657 }
 658 
 659 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 660   return MachNode::size(ra_);
 661 }
 662 
 663 // Traceable jump
 664 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 665   MacroAssembler _masm(&cbuf);
 666   Register rdest = reg_to_register_object(jump_target);
 667   __ JMP(rdest, 0);
 668   __ delayed()->nop();
 669 }
 670 
 671 // Traceable jump and set exception pc
 672 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 673   MacroAssembler _masm(&cbuf);
 674   Register rdest = reg_to_register_object(jump_target);
 675   __ JMP(rdest, 0);
 676   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 677 }
 678 
 679 void emit_nop(CodeBuffer &cbuf) {
 680   MacroAssembler _masm(&cbuf);
 681   __ nop();
 682 }
 683 
 684 void emit_illtrap(CodeBuffer &cbuf) {
 685   MacroAssembler _masm(&cbuf);
 686   __ illtrap(0);
 687 }
 688 
 689 
 690 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 691   assert(n->rule() != loadUB_rule, "");
 692 
 693   intptr_t offset = 0;
 694   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 695   const Node* addr = n->get_base_and_disp(offset, adr_type);
 696   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 697   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 698   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 699   atype = atype->add_offset(offset);
 700   assert(disp32 == offset, "wrong disp32");
 701   return atype->_offset;
 702 }
 703 
 704 
 705 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 706   assert(n->rule() != loadUB_rule, "");
 707 
 708   intptr_t offset = 0;
 709   Node* addr = n->in(2);
 710   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 711   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 712     Node* a = addr->in(2/*AddPNode::Address*/);
 713     Node* o = addr->in(3/*AddPNode::Offset*/);
 714     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 715     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 716     assert(atype->isa_oop_ptr(), "still an oop");
 717   }
 718   offset = atype->is_ptr()->_offset;
 719   if (offset != Type::OffsetBot)  offset += disp32;
 720   return offset;
 721 }
 722 
 723 static inline jdouble replicate_immI(int con, int count, int width) {
 724   // Load a constant replicated "count" times with width "width"
 725   assert(count*width == 8 && width <= 4, "sanity");
 726   int bit_width = width * 8;
 727   jlong val = con;
 728   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 729   for (int i = 0; i < count - 1; i++) {
 730     val |= (val << bit_width);
 731   }
 732   jdouble dval = *((jdouble*) &val);  // coerce to double type
 733   return dval;
 734 }
 735 
 736 static inline jdouble replicate_immF(float con) {
 737   // Replicate float con 2 times and pack into vector.
 738   int val = *((int*)&con);
 739   jlong lval = val;
 740   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 741   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 742   return dval;
 743 }
 744 
 745 // Standard Sparc opcode form2 field breakdown
 746 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 747   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 748   int op = (f30 << 30) |
 749            (f29 << 29) |
 750            (f25 << 25) |
 751            (f22 << 22) |
 752            (f20 << 20) |
 753            (f19 << 19) |
 754            (f0  <<  0);
 755   cbuf.insts()->emit_int32(op);
 756 }
 757 
 758 // Standard Sparc opcode form2 field breakdown
 759 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 760   f0 >>= 10;           // Drop 10 bits
 761   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 762   int op = (f30 << 30) |
 763            (f25 << 25) |
 764            (f22 << 22) |
 765            (f0  <<  0);
 766   cbuf.insts()->emit_int32(op);
 767 }
 768 
 769 // Standard Sparc opcode form3 field breakdown
 770 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 771   int op = (f30 << 30) |
 772            (f25 << 25) |
 773            (f19 << 19) |
 774            (f14 << 14) |
 775            (f5  <<  5) |
 776            (f0  <<  0);
 777   cbuf.insts()->emit_int32(op);
 778 }
 779 
 780 // Standard Sparc opcode form3 field breakdown
 781 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 782   simm13 &= (1<<13)-1; // Mask to 13 bits
 783   int op = (f30 << 30) |
 784            (f25 << 25) |
 785            (f19 << 19) |
 786            (f14 << 14) |
 787            (1   << 13) | // bit to indicate immediate-mode
 788            (simm13<<0);
 789   cbuf.insts()->emit_int32(op);
 790 }
 791 
 792 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 793   simm10 &= (1<<10)-1; // Mask to 10 bits
 794   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 795 }
 796 
 797 #ifdef ASSERT
 798 // Helper function for VerifyOops in emit_form3_mem_reg
 799 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 800   warning("VerifyOops encountered unexpected instruction:");
 801   n->dump(2);
 802   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 803 }
 804 #endif
 805 
 806 
 807 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
 808                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 809 
 810 #ifdef ASSERT
 811   // The following code implements the +VerifyOops feature.
 812   // It verifies oop values which are loaded into or stored out of
 813   // the current method activation.  +VerifyOops complements techniques
 814   // like ScavengeALot, because it eagerly inspects oops in transit,
 815   // as they enter or leave the stack, as opposed to ScavengeALot,
 816   // which inspects oops "at rest", in the stack or heap, at safepoints.
 817   // For this reason, +VerifyOops can sometimes detect bugs very close
 818   // to their point of creation.  It can also serve as a cross-check
 819   // on the validity of oop maps, when used toegether with ScavengeALot.
 820 
 821   // It would be good to verify oops at other points, especially
 822   // when an oop is used as a base pointer for a load or store.
 823   // This is presently difficult, because it is hard to know when
 824   // a base address is biased or not.  (If we had such information,
 825   // it would be easy and useful to make a two-argument version of
 826   // verify_oop which unbiases the base, and performs verification.)
 827 
 828   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 829   bool is_verified_oop_base  = false;
 830   bool is_verified_oop_load  = false;
 831   bool is_verified_oop_store = false;
 832   int tmp_enc = -1;
 833   if (VerifyOops && src1_enc != R_SP_enc) {
 834     // classify the op, mainly for an assert check
 835     int st_op = 0, ld_op = 0;
 836     switch (primary) {
 837     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 838     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 839     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 840     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 841     case Assembler::std_op3:  st_op = Op_StoreL; break;
 842     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 843     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 844 
 845     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 846     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 847     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 848     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 849     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 850     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 851     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 852     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 853     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 854     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 855     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 856 
 857     default: ShouldNotReachHere();
 858     }
 859     if (tertiary == REGP_OP) {
 860       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 861       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 862       else                          ShouldNotReachHere();
 863       if (st_op) {
 864         // a store
 865         // inputs are (0:control, 1:memory, 2:address, 3:value)
 866         Node* n2 = n->in(3);
 867         if (n2 != NULL) {
 868           const Type* t = n2->bottom_type();
 869           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 870         }
 871       } else {
 872         // a load
 873         const Type* t = n->bottom_type();
 874         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 875       }
 876     }
 877 
 878     if (ld_op) {
 879       // a Load
 880       // inputs are (0:control, 1:memory, 2:address)
 881       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 882           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 883           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 884           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 885           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 886           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 887           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 888           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 889           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 890           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 891           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 892           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 893           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 894           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 895           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 896           !(n->rule() == loadUB_rule)) {
 897         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 898       }
 899     } else if (st_op) {
 900       // a Store
 901       // inputs are (0:control, 1:memory, 2:address, 3:value)
 902       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 903           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 904           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 905           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 906           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 907           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 908           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 909         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 910       }
 911     }
 912 
 913     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 914       Node* addr = n->in(2);
 915       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 916         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 917         if (atype != NULL) {
 918           intptr_t offset = get_offset_from_base(n, atype, disp32);
 919           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 920           if (offset != offset_2) {
 921             get_offset_from_base(n, atype, disp32);
 922             get_offset_from_base_2(n, atype, disp32);
 923           }
 924           assert(offset == offset_2, "different offsets");
 925           if (offset == disp32) {
 926             // we now know that src1 is a true oop pointer
 927             is_verified_oop_base = true;
 928             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 929               if( primary == Assembler::ldd_op3 ) {
 930                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 931               } else {
 932                 tmp_enc = dst_enc;
 933                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 934                 assert(src1_enc != dst_enc, "");
 935               }
 936             }
 937           }
 938           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 939                        || offset == oopDesc::mark_offset_in_bytes())) {
 940                       // loading the mark should not be allowed either, but
 941                       // we don't check this since it conflicts with InlineObjectHash
 942                       // usage of LoadINode to get the mark. We could keep the
 943                       // check if we create a new LoadMarkNode
 944             // but do not verify the object before its header is initialized
 945             ShouldNotReachHere();
 946           }
 947         }
 948       }
 949     }
 950   }
 951 #endif
 952 
 953   uint instr;
 954   instr = (Assembler::ldst_op << 30)
 955         | (dst_enc        << 25)
 956         | (primary        << 19)
 957         | (src1_enc       << 14);
 958 
 959   uint index = src2_enc;
 960   int disp = disp32;
 961 
 962   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
 963     disp += STACK_BIAS;
 964     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
 965     if (!Assembler::is_simm13(disp)) {
 966       ra->C->record_method_not_compilable("unable to handle large constant offsets");
 967       return;
 968     }
 969   }
 970 
 971   // We should have a compiler bailout here rather than a guarantee.
 972   // Better yet would be some mechanism to handle variable-size matches correctly.
 973   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 974 
 975   if( disp == 0 ) {
 976     // use reg-reg form
 977     // bit 13 is already zero
 978     instr |= index;
 979   } else {
 980     // use reg-imm form
 981     instr |= 0x00002000;          // set bit 13 to one
 982     instr |= disp & 0x1FFF;
 983   }
 984 
 985   cbuf.insts()->emit_int32(instr);
 986 
 987 #ifdef ASSERT
 988   {
 989     MacroAssembler _masm(&cbuf);
 990     if (is_verified_oop_base) {
 991       __ verify_oop(reg_to_register_object(src1_enc));
 992     }
 993     if (is_verified_oop_store) {
 994       __ verify_oop(reg_to_register_object(dst_enc));
 995     }
 996     if (tmp_enc != -1) {
 997       __ mov(O7, reg_to_register_object(tmp_enc));
 998     }
 999     if (is_verified_oop_load) {
1000       __ verify_oop(reg_to_register_object(dst_enc));
1001     }
1002   }
1003 #endif
1004 }
1005 
1006 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
1007   // The method which records debug information at every safepoint
1008   // expects the call to be the first instruction in the snippet as
1009   // it creates a PcDesc structure which tracks the offset of a call
1010   // from the start of the codeBlob. This offset is computed as
1011   // code_end() - code_begin() of the code which has been emitted
1012   // so far.
1013   // In this particular case we have skirted around the problem by
1014   // putting the "mov" instruction in the delay slot but the problem
1015   // may bite us again at some other point and a cleaner/generic
1016   // solution using relocations would be needed.
1017   MacroAssembler _masm(&cbuf);
1018   __ set_inst_mark();
1019 
1020   // We flush the current window just so that there is a valid stack copy
1021   // the fact that the current window becomes active again instantly is
1022   // not a problem there is nothing live in it.
1023 
1024 #ifdef ASSERT
1025   int startpos = __ offset();
1026 #endif /* ASSERT */
1027 
1028   __ call((address)entry_point, rtype);
1029 
1030   if (preserve_g2)   __ delayed()->mov(G2, L7);
1031   else __ delayed()->nop();
1032 
1033   if (preserve_g2)   __ mov(L7, G2);
1034 
1035 #ifdef ASSERT
1036   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
1037 #ifdef _LP64
1038     // Trash argument dump slots.
1039     __ set(0xb0b8ac0db0b8ac0d, G1);
1040     __ mov(G1, G5);
1041     __ stx(G1, SP, STACK_BIAS + 0x80);
1042     __ stx(G1, SP, STACK_BIAS + 0x88);
1043     __ stx(G1, SP, STACK_BIAS + 0x90);
1044     __ stx(G1, SP, STACK_BIAS + 0x98);
1045     __ stx(G1, SP, STACK_BIAS + 0xA0);
1046     __ stx(G1, SP, STACK_BIAS + 0xA8);
1047 #else // _LP64
1048     // this is also a native call, so smash the first 7 stack locations,
1049     // and the various registers
1050 
1051     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1052     // while [SP+0x44..0x58] are the argument dump slots.
1053     __ set((intptr_t)0xbaadf00d, G1);
1054     __ mov(G1, G5);
1055     __ sllx(G1, 32, G1);
1056     __ or3(G1, G5, G1);
1057     __ mov(G1, G5);
1058     __ stx(G1, SP, 0x40);
1059     __ stx(G1, SP, 0x48);
1060     __ stx(G1, SP, 0x50);
1061     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1062 #endif // _LP64
1063   }
1064 #endif /*ASSERT*/
1065 }
1066 
1067 //=============================================================================
1068 // REQUIRED FUNCTIONALITY for encoding
1069 void emit_lo(CodeBuffer &cbuf, int val) {  }
1070 void emit_hi(CodeBuffer &cbuf, int val) {  }
1071 
1072 
1073 //=============================================================================
1074 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1075 
1076 int Compile::ConstantTable::calculate_table_base_offset() const {
1077   if (UseRDPCForConstantTableBase) {
1078     // The table base offset might be less but then it fits into
1079     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1080     return Assembler::min_simm13();
1081   } else {
1082     int offset = -(size() / 2);
1083     if (!Assembler::is_simm13(offset)) {
1084       offset = Assembler::min_simm13();
1085     }
1086     return offset;
1087   }
1088 }
1089 
1090 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
1091 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1092   ShouldNotReachHere();
1093 }
1094 
1095 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1096   Compile* C = ra_->C;
1097   Compile::ConstantTable& constant_table = C->constant_table();
1098   MacroAssembler _masm(&cbuf);
1099 
1100   Register r = as_Register(ra_->get_encode(this));
1101   CodeSection* consts_section = __ code()->consts();
1102   int consts_size = consts_section->align_at_start(consts_section->size());
1103   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1104 
1105   if (UseRDPCForConstantTableBase) {
1106     // For the following RDPC logic to work correctly the consts
1107     // section must be allocated right before the insts section.  This
1108     // assert checks for that.  The layout and the SECT_* constants
1109     // are defined in src/share/vm/asm/codeBuffer.hpp.
1110     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1111     int insts_offset = __ offset();
1112 
1113     // Layout:
1114     //
1115     // |----------- consts section ------------|----------- insts section -----------...
1116     // |------ constant table -----|- padding -|------------------x----
1117     //                                                            \ current PC (RDPC instruction)
1118     // |<------------- consts_size ----------->|<- insts_offset ->|
1119     //                                                            \ table base
1120     // The table base offset is later added to the load displacement
1121     // so it has to be negative.
1122     int table_base_offset = -(consts_size + insts_offset);
1123     int disp;
1124 
1125     // If the displacement from the current PC to the constant table
1126     // base fits into simm13 we set the constant table base to the
1127     // current PC.
1128     if (Assembler::is_simm13(table_base_offset)) {
1129       constant_table.set_table_base_offset(table_base_offset);
1130       disp = 0;
1131     } else {
1132       // Otherwise we set the constant table base offset to the
1133       // maximum negative displacement of load instructions to keep
1134       // the disp as small as possible:
1135       //
1136       // |<------------- consts_size ----------->|<- insts_offset ->|
1137       // |<--------- min_simm13 --------->|<-------- disp --------->|
1138       //                                  \ table base
1139       table_base_offset = Assembler::min_simm13();
1140       constant_table.set_table_base_offset(table_base_offset);
1141       disp = (consts_size + insts_offset) + table_base_offset;
1142     }
1143 
1144     __ rdpc(r);
1145 
1146     if (disp != 0) {
1147       assert(r != O7, "need temporary");
1148       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1149     }
1150   }
1151   else {
1152     // Materialize the constant table base.
1153     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1154     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1155     AddressLiteral base(baseaddr, rspec);
1156     __ set(base, r);
1157   }
1158 }
1159 
1160 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1161   if (UseRDPCForConstantTableBase) {
1162     // This is really the worst case but generally it's only 1 instruction.
1163     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1164   } else {
1165     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1166   }
1167 }
1168 
1169 #ifndef PRODUCT
1170 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1171   char reg[128];
1172   ra_->dump_register(this, reg);
1173   if (UseRDPCForConstantTableBase) {
1174     st->print("RDPC   %s\t! constant table base", reg);
1175   } else {
1176     st->print("SET    &constanttable,%s\t! constant table base", reg);
1177   }
1178 }
1179 #endif
1180 
1181 
1182 //=============================================================================
1183 
1184 #ifndef PRODUCT
1185 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1186   Compile* C = ra_->C;
1187 
1188   for (int i = 0; i < OptoPrologueNops; i++) {
1189     st->print_cr("NOP"); st->print("\t");
1190   }
1191 
1192   if( VerifyThread ) {
1193     st->print_cr("Verify_Thread"); st->print("\t");
1194   }
1195 
1196   size_t framesize = C->frame_size_in_bytes();
1197   int bangsize = C->bang_size_in_bytes();
1198 
1199   // Calls to C2R adapters often do not accept exceptional returns.
1200   // We require that their callers must bang for them.  But be careful, because
1201   // some VM calls (such as call site linkage) can use several kilobytes of
1202   // stack.  But the stack safety zone should account for that.
1203   // See bugs 4446381, 4468289, 4497237.
1204   if (C->need_stack_bang(bangsize)) {
1205     st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
1206   }
1207 
1208   if (Assembler::is_simm13(-framesize)) {
1209     st->print   ("SAVE   R_SP,-" SIZE_FORMAT ",R_SP",framesize);
1210   } else {
1211     st->print_cr("SETHI  R_SP,hi%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1212     st->print_cr("ADD    R_G3,lo%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1213     st->print   ("SAVE   R_SP,R_G3,R_SP");
1214   }
1215 
1216 }
1217 #endif
1218 
1219 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1220   Compile* C = ra_->C;
1221   MacroAssembler _masm(&cbuf);
1222 
1223   for (int i = 0; i < OptoPrologueNops; i++) {
1224     __ nop();
1225   }
1226 
1227   __ verify_thread();
1228 
1229   size_t framesize = C->frame_size_in_bytes();
1230   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1231   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1232   int bangsize = C->bang_size_in_bytes();
1233 
1234   // Calls to C2R adapters often do not accept exceptional returns.
1235   // We require that their callers must bang for them.  But be careful, because
1236   // some VM calls (such as call site linkage) can use several kilobytes of
1237   // stack.  But the stack safety zone should account for that.
1238   // See bugs 4446381, 4468289, 4497237.
1239   if (C->need_stack_bang(bangsize)) {
1240     __ generate_stack_overflow_check(bangsize);
1241   }
1242 
1243   if (Assembler::is_simm13(-framesize)) {
1244     __ save(SP, -framesize, SP);
1245   } else {
1246     __ sethi(-framesize & ~0x3ff, G3);
1247     __ add(G3, -framesize & 0x3ff, G3);
1248     __ save(SP, G3, SP);
1249   }
1250   C->set_frame_complete( __ offset() );
1251 
1252   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1253     // NOTE: We set the table base offset here because users might be
1254     // emitted before MachConstantBaseNode.
1255     Compile::ConstantTable& constant_table = C->constant_table();
1256     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1257   }
1258 }
1259 
1260 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1261   return MachNode::size(ra_);
1262 }
1263 
1264 int MachPrologNode::reloc() const {
1265   return 10; // a large enough number
1266 }
1267 
1268 //=============================================================================
1269 #ifndef PRODUCT
1270 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1271   Compile* C = ra_->C;
1272 
1273   if(do_polling() && ra_->C->is_method_compilation()) {
1274     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1275 #ifdef _LP64
1276     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1277 #else
1278     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1279 #endif
1280   }
1281 
1282   if(do_polling()) {
1283     if (UseCBCond && !ra_->C->is_method_compilation()) {
1284       st->print("NOP\n\t");
1285     }
1286     st->print("RET\n\t");
1287   }
1288 
1289   st->print("RESTORE");
1290 }
1291 #endif
1292 
1293 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1294   MacroAssembler _masm(&cbuf);
1295   Compile* C = ra_->C;
1296 
1297   __ verify_thread();
1298 
1299   // If this does safepoint polling, then do it here
1300   if(do_polling() && ra_->C->is_method_compilation()) {
1301     AddressLiteral polling_page(os::get_polling_page());
1302     __ sethi(polling_page, L0);
1303     __ relocate(relocInfo::poll_return_type);
1304     __ ld_ptr(L0, 0, G0);
1305   }
1306 
1307   // If this is a return, then stuff the restore in the delay slot
1308   if(do_polling()) {
1309     if (UseCBCond && !ra_->C->is_method_compilation()) {
1310       // Insert extra padding for the case when the epilogue is preceded by
1311       // a cbcond jump, which can't be followed by a CTI instruction
1312       __ nop();
1313     }
1314     __ ret();
1315     __ delayed()->restore();
1316   } else {
1317     __ restore();
1318   }
1319 }
1320 
1321 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1322   return MachNode::size(ra_);
1323 }
1324 
1325 int MachEpilogNode::reloc() const {
1326   return 16; // a large enough number
1327 }
1328 
1329 const Pipeline * MachEpilogNode::pipeline() const {
1330   return MachNode::pipeline_class();
1331 }
1332 
1333 int MachEpilogNode::safepoint_offset() const {
1334   assert( do_polling(), "no return for this epilog node");
1335   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1336 }
1337 
1338 //=============================================================================
1339 
1340 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1341 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1342 static enum RC rc_class( OptoReg::Name reg ) {
1343   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1344   if (OptoReg::is_stack(reg)) return rc_stack;
1345   VMReg r = OptoReg::as_VMReg(reg);
1346   if (r->is_Register()) return rc_int;
1347   assert(r->is_FloatRegister(), "must be");
1348   return rc_float;
1349 }
1350 
1351 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1352   if (cbuf) {
1353     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1354   }
1355 #ifndef PRODUCT
1356   else if (!do_size) {
1357     if (size != 0) st->print("\n\t");
1358     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1359     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1360   }
1361 #endif
1362   return size+4;
1363 }
1364 
1365 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1366   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1367 #ifndef PRODUCT
1368   else if( !do_size ) {
1369     if( size != 0 ) st->print("\n\t");
1370     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1371   }
1372 #endif
1373   return size+4;
1374 }
1375 
1376 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1377                                         PhaseRegAlloc *ra_,
1378                                         bool do_size,
1379                                         outputStream* st ) const {
1380   // Get registers to move
1381   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1382   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1383   OptoReg::Name dst_second = ra_->get_reg_second(this );
1384   OptoReg::Name dst_first = ra_->get_reg_first(this );
1385 
1386   enum RC src_second_rc = rc_class(src_second);
1387   enum RC src_first_rc = rc_class(src_first);
1388   enum RC dst_second_rc = rc_class(dst_second);
1389   enum RC dst_first_rc = rc_class(dst_first);
1390 
1391   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1392 
1393   // Generate spill code!
1394   int size = 0;
1395 
1396   if( src_first == dst_first && src_second == dst_second )
1397     return size;            // Self copy, no move
1398 
1399   // --------------------------------------
1400   // Check for mem-mem move.  Load into unused float registers and fall into
1401   // the float-store case.
1402   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1403     int offset = ra_->reg2offset(src_first);
1404     // Further check for aligned-adjacent pair, so we can use a double load
1405     if( (src_first&1)==0 && src_first+1 == src_second ) {
1406       src_second    = OptoReg::Name(R_F31_num);
1407       src_second_rc = rc_float;
1408       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1409     } else {
1410       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1411     }
1412     src_first    = OptoReg::Name(R_F30_num);
1413     src_first_rc = rc_float;
1414   }
1415 
1416   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1417     int offset = ra_->reg2offset(src_second);
1418     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1419     src_second    = OptoReg::Name(R_F31_num);
1420     src_second_rc = rc_float;
1421   }
1422 
1423   // --------------------------------------
1424   // Check for float->int copy; requires a trip through memory
1425   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1426     int offset = frame::register_save_words*wordSize;
1427     if (cbuf) {
1428       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1429       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1430       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1431       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1432     }
1433 #ifndef PRODUCT
1434     else if (!do_size) {
1435       if (size != 0) st->print("\n\t");
1436       st->print(  "SUB    R_SP,16,R_SP\n");
1437       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1438       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1439       st->print("\tADD    R_SP,16,R_SP\n");
1440     }
1441 #endif
1442     size += 16;
1443   }
1444 
1445   // Check for float->int copy on T4
1446   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1447     // Further check for aligned-adjacent pair, so we can use a double move
1448     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1449       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1450     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1451   }
1452   // Check for int->float copy on T4
1453   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1454     // Further check for aligned-adjacent pair, so we can use a double move
1455     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1456       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1457     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1458   }
1459 
1460   // --------------------------------------
1461   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1462   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1463   // hardware does the flop for me.  Doubles are always aligned, so no problem
1464   // there.  Misaligned sources only come from native-long-returns (handled
1465   // special below).
1466 #ifndef _LP64
1467   if( src_first_rc == rc_int &&     // source is already big-endian
1468       src_second_rc != rc_bad &&    // 64-bit move
1469       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1470     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1471     // Do the big-endian flop.
1472     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1473     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1474   }
1475 #endif
1476 
1477   // --------------------------------------
1478   // Check for integer reg-reg copy
1479   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1480 #ifndef _LP64
1481     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1482       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1483       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1484       //       operand contains the least significant word of the 64-bit value and vice versa.
1485       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1486       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1487       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1488       if( cbuf ) {
1489         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1490         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1491         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1492 #ifndef PRODUCT
1493       } else if( !do_size ) {
1494         if( size != 0 ) st->print("\n\t");
1495         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1496         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1497         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1498 #endif
1499       }
1500       return size+12;
1501     }
1502     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1503       // returning a long value in I0/I1
1504       // a SpillCopy must be able to target a return instruction's reg_class
1505       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1506       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1507       //       operand contains the least significant word of the 64-bit value and vice versa.
1508       OptoReg::Name tdest = dst_first;
1509 
1510       if (src_first == dst_first) {
1511         tdest = OptoReg::Name(R_O7_num);
1512         size += 4;
1513       }
1514 
1515       if( cbuf ) {
1516         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1517         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1518         // ShrL_reg_imm6
1519         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1520         // ShrR_reg_imm6  src, 0, dst
1521         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1522         if (tdest != dst_first) {
1523           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1524         }
1525       }
1526 #ifndef PRODUCT
1527       else if( !do_size ) {
1528         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1529         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1530         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1531         if (tdest != dst_first) {
1532           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1533         }
1534       }
1535 #endif // PRODUCT
1536       return size+8;
1537     }
1538 #endif // !_LP64
1539     // Else normal reg-reg copy
1540     assert( src_second != dst_first, "smashed second before evacuating it" );
1541     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1542     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1543     // This moves an aligned adjacent pair.
1544     // See if we are done.
1545     if( src_first+1 == src_second && dst_first+1 == dst_second )
1546       return size;
1547   }
1548 
1549   // Check for integer store
1550   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1551     int offset = ra_->reg2offset(dst_first);
1552     // Further check for aligned-adjacent pair, so we can use a double store
1553     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1554       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1555     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1556   }
1557 
1558   // Check for integer load
1559   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1560     int offset = ra_->reg2offset(src_first);
1561     // Further check for aligned-adjacent pair, so we can use a double load
1562     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1563       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1564     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1565   }
1566 
1567   // Check for float reg-reg copy
1568   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1569     // Further check for aligned-adjacent pair, so we can use a double move
1570     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1571       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1572     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1573   }
1574 
1575   // Check for float store
1576   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1577     int offset = ra_->reg2offset(dst_first);
1578     // Further check for aligned-adjacent pair, so we can use a double store
1579     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1580       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1581     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1582   }
1583 
1584   // Check for float load
1585   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1586     int offset = ra_->reg2offset(src_first);
1587     // Further check for aligned-adjacent pair, so we can use a double load
1588     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1589       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1590     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1591   }
1592 
1593   // --------------------------------------------------------------------
1594   // Check for hi bits still needing moving.  Only happens for misaligned
1595   // arguments to native calls.
1596   if( src_second == dst_second )
1597     return size;               // Self copy; no move
1598   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1599 
1600 #ifndef _LP64
1601   // In the LP64 build, all registers can be moved as aligned/adjacent
1602   // pairs, so there's never any need to move the high bits separately.
1603   // The 32-bit builds have to deal with the 32-bit ABI which can force
1604   // all sorts of silly alignment problems.
1605 
1606   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1607   // 32-bits of a 64-bit register, but are needed in low bits of another
1608   // register (else it's a hi-bits-to-hi-bits copy which should have
1609   // happened already as part of a 64-bit move)
1610   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1611     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1612     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1613     // Shift src_second down to dst_second's low bits.
1614     if( cbuf ) {
1615       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1616 #ifndef PRODUCT
1617     } else if( !do_size ) {
1618       if( size != 0 ) st->print("\n\t");
1619       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1620 #endif
1621     }
1622     return size+4;
1623   }
1624 
1625   // Check for high word integer store.  Must down-shift the hi bits
1626   // into a temp register, then fall into the case of storing int bits.
1627   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1628     // Shift src_second down to dst_second's low bits.
1629     if( cbuf ) {
1630       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1631 #ifndef PRODUCT
1632     } else if( !do_size ) {
1633       if( size != 0 ) st->print("\n\t");
1634       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1635 #endif
1636     }
1637     size+=4;
1638     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1639   }
1640 
1641   // Check for high word integer load
1642   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1643     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1644 
1645   // Check for high word integer store
1646   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1647     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1648 
1649   // Check for high word float store
1650   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1651     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1652 
1653 #endif // !_LP64
1654 
1655   Unimplemented();
1656 }
1657 
1658 #ifndef PRODUCT
1659 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1660   implementation( NULL, ra_, false, st );
1661 }
1662 #endif
1663 
1664 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1665   implementation( &cbuf, ra_, false, NULL );
1666 }
1667 
1668 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1669   return implementation( NULL, ra_, true, NULL );
1670 }
1671 
1672 //=============================================================================
1673 #ifndef PRODUCT
1674 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1675   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1676 }
1677 #endif
1678 
1679 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1680   MacroAssembler _masm(&cbuf);
1681   for(int i = 0; i < _count; i += 1) {
1682     __ nop();
1683   }
1684 }
1685 
1686 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1687   return 4 * _count;
1688 }
1689 
1690 
1691 //=============================================================================
1692 #ifndef PRODUCT
1693 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1694   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1695   int reg = ra_->get_reg_first(this);
1696   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1697 }
1698 #endif
1699 
1700 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1701   MacroAssembler _masm(&cbuf);
1702   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1703   int reg = ra_->get_encode(this);
1704 
1705   if (Assembler::is_simm13(offset)) {
1706      __ add(SP, offset, reg_to_register_object(reg));
1707   } else {
1708      __ set(offset, O7);
1709      __ add(SP, O7, reg_to_register_object(reg));
1710   }
1711 }
1712 
1713 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1714   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1715   assert(ra_ == ra_->C->regalloc(), "sanity");
1716   return ra_->C->scratch_emit_size(this);
1717 }
1718 
1719 //=============================================================================
1720 #ifndef PRODUCT
1721 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1722   st->print_cr("\nUEP:");
1723 #ifdef    _LP64
1724   if (UseCompressedClassPointers) {
1725     assert(Universe::heap() != NULL, "java heap should be initialized");
1726     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1727     if (Universe::narrow_klass_base() != 0) {
1728       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1729       if (Universe::narrow_klass_shift() != 0) {
1730         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1731       }
1732       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1733       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1734     } else {
1735       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1736     }
1737   } else {
1738     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1739   }
1740   st->print_cr("\tCMP    R_G5,R_G3" );
1741   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1742 #else  // _LP64
1743   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1744   st->print_cr("\tCMP    R_G5,R_G3" );
1745   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1746 #endif // _LP64
1747 }
1748 #endif
1749 
1750 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1751   MacroAssembler _masm(&cbuf);
1752   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1753   Register temp_reg   = G3;
1754   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1755 
1756   // Load klass from receiver
1757   __ load_klass(O0, temp_reg);
1758   // Compare against expected klass
1759   __ cmp(temp_reg, G5_ic_reg);
1760   // Branch to miss code, checks xcc or icc depending
1761   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1762 }
1763 
1764 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1765   return MachNode::size(ra_);
1766 }
1767 
1768 
1769 //=============================================================================
1770 
1771 
1772 // Emit exception handler code.
1773 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
1774   Register temp_reg = G3;
1775   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1776   MacroAssembler _masm(&cbuf);
1777 
1778   address base =
1779   __ start_a_stub(size_exception_handler());
1780   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1781 
1782   int offset = __ offset();
1783 
1784   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1785   __ delayed()->nop();
1786 
1787   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1788 
1789   __ end_a_stub();
1790 
1791   return offset;
1792 }
1793 
1794 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
1795   // Can't use any of the current frame's registers as we may have deopted
1796   // at a poll and everything (including G3) can be live.
1797   Register temp_reg = L0;
1798   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1799   MacroAssembler _masm(&cbuf);
1800 
1801   address base =
1802   __ start_a_stub(size_deopt_handler());
1803   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1804 
1805   int offset = __ offset();
1806   __ save_frame(0);
1807   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1808   __ delayed()->restore();
1809 
1810   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1811 
1812   __ end_a_stub();
1813   return offset;
1814 
1815 }
1816 
1817 // Given a register encoding, produce a Integer Register object
1818 static Register reg_to_register_object(int register_encoding) {
1819   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1820   return as_Register(register_encoding);
1821 }
1822 
1823 // Given a register encoding, produce a single-precision Float Register object
1824 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1825   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1826   return as_SingleFloatRegister(register_encoding);
1827 }
1828 
1829 // Given a register encoding, produce a double-precision Float Register object
1830 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1831   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1832   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1833   return as_DoubleFloatRegister(register_encoding);
1834 }
1835 
1836 const bool Matcher::match_rule_supported(int opcode) {
1837   if (!has_match_rule(opcode))
1838     return false;
1839 
1840   switch (opcode) {
1841   case Op_CountLeadingZerosI:
1842   case Op_CountLeadingZerosL:
1843   case Op_CountTrailingZerosI:
1844   case Op_CountTrailingZerosL:
1845   case Op_PopCountI:
1846   case Op_PopCountL:
1847     if (!UsePopCountInstruction)
1848       return false;
1849   case Op_CompareAndSwapL:
1850 #ifdef _LP64
1851   case Op_CompareAndSwapP:
1852 #endif
1853     if (!VM_Version::supports_cx8())
1854       return false;
1855     break;
1856   }
1857 
1858   return true;  // Per default match rules are supported.
1859 }
1860 
1861 int Matcher::regnum_to_fpu_offset(int regnum) {
1862   return regnum - 32; // The FP registers are in the second chunk
1863 }
1864 
1865 #ifdef ASSERT
1866 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1867 #endif
1868 
1869 // Vector width in bytes
1870 const int Matcher::vector_width_in_bytes(BasicType bt) {
1871   assert(MaxVectorSize == 8, "");
1872   return 8;
1873 }
1874 
1875 // Vector ideal reg
1876 const int Matcher::vector_ideal_reg(int size) {
1877   assert(MaxVectorSize == 8, "");
1878   return Op_RegD;
1879 }
1880 
1881 const int Matcher::vector_shift_count_ideal_reg(int size) {
1882   fatal("vector shift is not supported");
1883   return Node::NotAMachineReg;
1884 }
1885 
1886 // Limits on vector size (number of elements) loaded into vector.
1887 const int Matcher::max_vector_size(const BasicType bt) {
1888   assert(is_java_primitive(bt), "only primitive type vectors");
1889   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1890 }
1891 
1892 const int Matcher::min_vector_size(const BasicType bt) {
1893   return max_vector_size(bt); // Same as max.
1894 }
1895 
1896 // SPARC doesn't support misaligned vectors store/load.
1897 const bool Matcher::misaligned_vectors_ok() {
1898   return false;
1899 }
1900 
1901 // Current (2013) SPARC platforms need to read original key
1902 // to construct decryption expanded key 
1903 const bool Matcher::pass_original_key_for_aes() {
1904   return true;
1905 }
1906 
1907 // USII supports fxtof through the whole range of number, USIII doesn't
1908 const bool Matcher::convL2FSupported(void) {
1909   return VM_Version::has_fast_fxtof();
1910 }
1911 
1912 // Is this branch offset short enough that a short branch can be used?
1913 //
1914 // NOTE: If the platform does not provide any short branch variants, then
1915 //       this method should return false for offset 0.
1916 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1917   // The passed offset is relative to address of the branch.
1918   // Don't need to adjust the offset.
1919   return UseCBCond && Assembler::is_simm12(offset);
1920 }
1921 
1922 const bool Matcher::isSimpleConstant64(jlong value) {
1923   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1924   // Depends on optimizations in MacroAssembler::setx.
1925   int hi = (int)(value >> 32);
1926   int lo = (int)(value & ~0);
1927   return (hi == 0) || (hi == -1) || (lo == 0);
1928 }
1929 
1930 // No scaling for the parameter the ClearArray node.
1931 const bool Matcher::init_array_count_is_in_bytes = true;
1932 
1933 // Threshold size for cleararray.
1934 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1935 
1936 // No additional cost for CMOVL.
1937 const int Matcher::long_cmove_cost() { return 0; }
1938 
1939 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1940 const int Matcher::float_cmove_cost() {
1941   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1942 }
1943 
1944 // Does the CPU require late expand (see block.cpp for description of late expand)?
1945 const bool Matcher::require_postalloc_expand = false;
1946 
1947 // Should the Matcher clone shifts on addressing modes, expecting them to
1948 // be subsumed into complex addressing expressions or compute them into
1949 // registers?  True for Intel but false for most RISCs
1950 const bool Matcher::clone_shift_expressions = false;
1951 
1952 // Do we need to mask the count passed to shift instructions or does
1953 // the cpu only look at the lower 5/6 bits anyway?
1954 const bool Matcher::need_masked_shift_count = false;
1955 
1956 bool Matcher::narrow_oop_use_complex_address() {
1957   NOT_LP64(ShouldNotCallThis());
1958   assert(UseCompressedOops, "only for compressed oops code");
1959   return false;
1960 }
1961 
1962 bool Matcher::narrow_klass_use_complex_address() {
1963   NOT_LP64(ShouldNotCallThis());
1964   assert(UseCompressedClassPointers, "only for compressed klass code");
1965   return false;
1966 }
1967 
1968 // Is it better to copy float constants, or load them directly from memory?
1969 // Intel can load a float constant from a direct address, requiring no
1970 // extra registers.  Most RISCs will have to materialize an address into a
1971 // register first, so they would do better to copy the constant from stack.
1972 const bool Matcher::rematerialize_float_constants = false;
1973 
1974 // If CPU can load and store mis-aligned doubles directly then no fixup is
1975 // needed.  Else we split the double into 2 integer pieces and move it
1976 // piece-by-piece.  Only happens when passing doubles into C code as the
1977 // Java calling convention forces doubles to be aligned.
1978 #ifdef _LP64
1979 const bool Matcher::misaligned_doubles_ok = true;
1980 #else
1981 const bool Matcher::misaligned_doubles_ok = false;
1982 #endif
1983 
1984 // No-op on SPARC.
1985 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1986 }
1987 
1988 // Advertise here if the CPU requires explicit rounding operations
1989 // to implement the UseStrictFP mode.
1990 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1991 
1992 // Are floats converted to double when stored to stack during deoptimization?
1993 // Sparc does not handle callee-save floats.
1994 bool Matcher::float_in_double() { return false; }
1995 
1996 // Do ints take an entire long register or just half?
1997 // Note that we if-def off of _LP64.
1998 // The relevant question is how the int is callee-saved.  In _LP64
1999 // the whole long is written but de-opt'ing will have to extract
2000 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
2001 #ifdef _LP64
2002 const bool Matcher::int_in_long = true;
2003 #else
2004 const bool Matcher::int_in_long = false;
2005 #endif
2006 
2007 // Return whether or not this register is ever used as an argument.  This
2008 // function is used on startup to build the trampoline stubs in generateOptoStub.
2009 // Registers not mentioned will be killed by the VM call in the trampoline, and
2010 // arguments in those registers not be available to the callee.
2011 bool Matcher::can_be_java_arg( int reg ) {
2012   // Standard sparc 6 args in registers
2013   if( reg == R_I0_num ||
2014       reg == R_I1_num ||
2015       reg == R_I2_num ||
2016       reg == R_I3_num ||
2017       reg == R_I4_num ||
2018       reg == R_I5_num ) return true;
2019 #ifdef _LP64
2020   // 64-bit builds can pass 64-bit pointers and longs in
2021   // the high I registers
2022   if( reg == R_I0H_num ||
2023       reg == R_I1H_num ||
2024       reg == R_I2H_num ||
2025       reg == R_I3H_num ||
2026       reg == R_I4H_num ||
2027       reg == R_I5H_num ) return true;
2028 
2029   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
2030     return true;
2031   }
2032 
2033 #else
2034   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
2035   // Longs cannot be passed in O regs, because O regs become I regs
2036   // after a 'save' and I regs get their high bits chopped off on
2037   // interrupt.
2038   if( reg == R_G1H_num || reg == R_G1_num ) return true;
2039   if( reg == R_G4H_num || reg == R_G4_num ) return true;
2040 #endif
2041   // A few float args in registers
2042   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
2043 
2044   return false;
2045 }
2046 
2047 bool Matcher::is_spillable_arg( int reg ) {
2048   return can_be_java_arg(reg);
2049 }
2050 
2051 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
2052   // Use hardware SDIVX instruction when it is
2053   // faster than a code which use multiply.
2054   return VM_Version::has_fast_idiv();
2055 }
2056 
2057 // Register for DIVI projection of divmodI
2058 RegMask Matcher::divI_proj_mask() {
2059   ShouldNotReachHere();
2060   return RegMask();
2061 }
2062 
2063 // Register for MODI projection of divmodI
2064 RegMask Matcher::modI_proj_mask() {
2065   ShouldNotReachHere();
2066   return RegMask();
2067 }
2068 
2069 // Register for DIVL projection of divmodL
2070 RegMask Matcher::divL_proj_mask() {
2071   ShouldNotReachHere();
2072   return RegMask();
2073 }
2074 
2075 // Register for MODL projection of divmodL
2076 RegMask Matcher::modL_proj_mask() {
2077   ShouldNotReachHere();
2078   return RegMask();
2079 }
2080 
2081 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2082   return L7_REGP_mask();
2083 }
2084 
2085 %}
2086 
2087 
2088 // The intptr_t operand types, defined by textual substitution.
2089 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2090 #ifdef _LP64
2091 #define immX      immL
2092 #define immX13    immL13
2093 #define immX13m7  immL13m7
2094 #define iRegX     iRegL
2095 #define g1RegX    g1RegL
2096 #else
2097 #define immX      immI
2098 #define immX13    immI13
2099 #define immX13m7  immI13m7
2100 #define iRegX     iRegI
2101 #define g1RegX    g1RegI
2102 #endif
2103 
2104 //----------ENCODING BLOCK-----------------------------------------------------
2105 // This block specifies the encoding classes used by the compiler to output
2106 // byte streams.  Encoding classes are parameterized macros used by
2107 // Machine Instruction Nodes in order to generate the bit encoding of the
2108 // instruction.  Operands specify their base encoding interface with the
2109 // interface keyword.  There are currently supported four interfaces,
2110 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2111 // operand to generate a function which returns its register number when
2112 // queried.   CONST_INTER causes an operand to generate a function which
2113 // returns the value of the constant when queried.  MEMORY_INTER causes an
2114 // operand to generate four functions which return the Base Register, the
2115 // Index Register, the Scale Value, and the Offset Value of the operand when
2116 // queried.  COND_INTER causes an operand to generate six functions which
2117 // return the encoding code (ie - encoding bits for the instruction)
2118 // associated with each basic boolean condition for a conditional instruction.
2119 //
2120 // Instructions specify two basic values for encoding.  Again, a function
2121 // is available to check if the constant displacement is an oop. They use the
2122 // ins_encode keyword to specify their encoding classes (which must be
2123 // a sequence of enc_class names, and their parameters, specified in
2124 // the encoding block), and they use the
2125 // opcode keyword to specify, in order, their primary, secondary, and
2126 // tertiary opcode.  Only the opcode sections which a particular instruction
2127 // needs for encoding need to be specified.
2128 encode %{
2129   enc_class enc_untested %{
2130 #ifdef ASSERT
2131     MacroAssembler _masm(&cbuf);
2132     __ untested("encoding");
2133 #endif
2134   %}
2135 
2136   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2137     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
2138                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2139   %}
2140 
2141   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2142     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2143                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2144   %}
2145 
2146   enc_class form3_mem_prefetch_read( memory mem ) %{
2147     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2148                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2149   %}
2150 
2151   enc_class form3_mem_prefetch_write( memory mem ) %{
2152     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2153                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2154   %}
2155 
2156   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2157     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2158     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2159     guarantee($mem$$index == R_G0_enc, "double index?");
2160     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2161     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2162     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2163     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2164   %}
2165 
2166   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2167     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2168     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2169     guarantee($mem$$index == R_G0_enc, "double index?");
2170     // Load long with 2 instructions
2171     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2172     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2173   %}
2174 
2175   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2176   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2177     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2178     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2179   %}
2180 
2181   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2182     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2183     if( $rs2$$reg != $rd$$reg )
2184       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2185   %}
2186 
2187   // Target lo half of long
2188   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2189     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2190     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2191       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2192   %}
2193 
2194   // Source lo half of long
2195   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2196     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2197     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2198       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2199   %}
2200 
2201   // Target hi half of long
2202   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2203     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2204   %}
2205 
2206   // Source lo half of long, and leave it sign extended.
2207   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2208     // Sign extend low half
2209     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2210   %}
2211 
2212   // Source hi half of long, and leave it sign extended.
2213   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2214     // Shift high half to low half
2215     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2216   %}
2217 
2218   // Source hi half of long
2219   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2220     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2221     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2222       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2223   %}
2224 
2225   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2226     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2227   %}
2228 
2229   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2230     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2231     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2232   %}
2233 
2234   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2235     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2236     // clear if nothing else is happening
2237     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2238     // blt,a,pn done
2239     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2240     // mov dst,-1 in delay slot
2241     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2242   %}
2243 
2244   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2245     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2246   %}
2247 
2248   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2249     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2250   %}
2251 
2252   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2253     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2254   %}
2255 
2256   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2257     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2258   %}
2259 
2260   enc_class move_return_pc_to_o1() %{
2261     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2262   %}
2263 
2264 #ifdef _LP64
2265   /* %%% merge with enc_to_bool */
2266   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2267     MacroAssembler _masm(&cbuf);
2268 
2269     Register   src_reg = reg_to_register_object($src$$reg);
2270     Register   dst_reg = reg_to_register_object($dst$$reg);
2271     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2272   %}
2273 #endif
2274 
2275   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2276     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2277     MacroAssembler _masm(&cbuf);
2278 
2279     Register   p_reg = reg_to_register_object($p$$reg);
2280     Register   q_reg = reg_to_register_object($q$$reg);
2281     Register   y_reg = reg_to_register_object($y$$reg);
2282     Register tmp_reg = reg_to_register_object($tmp$$reg);
2283 
2284     __ subcc( p_reg, q_reg,   p_reg );
2285     __ add  ( p_reg, y_reg, tmp_reg );
2286     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2287   %}
2288 
2289   enc_class form_d2i_helper(regD src, regF dst) %{
2290     // fcmp %fcc0,$src,$src
2291     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2292     // branch %fcc0 not-nan, predict taken
2293     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2294     // fdtoi $src,$dst
2295     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2296     // fitos $dst,$dst (if nan)
2297     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2298     // clear $dst (if nan)
2299     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2300     // carry on here...
2301   %}
2302 
2303   enc_class form_d2l_helper(regD src, regD dst) %{
2304     // fcmp %fcc0,$src,$src  check for NAN
2305     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2306     // branch %fcc0 not-nan, predict taken
2307     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2308     // fdtox $src,$dst   convert in delay slot
2309     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2310     // fxtod $dst,$dst  (if nan)
2311     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2312     // clear $dst (if nan)
2313     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2314     // carry on here...
2315   %}
2316 
2317   enc_class form_f2i_helper(regF src, regF dst) %{
2318     // fcmps %fcc0,$src,$src
2319     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2320     // branch %fcc0 not-nan, predict taken
2321     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2322     // fstoi $src,$dst
2323     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2324     // fitos $dst,$dst (if nan)
2325     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2326     // clear $dst (if nan)
2327     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2328     // carry on here...
2329   %}
2330 
2331   enc_class form_f2l_helper(regF src, regD dst) %{
2332     // fcmps %fcc0,$src,$src
2333     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2334     // branch %fcc0 not-nan, predict taken
2335     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2336     // fstox $src,$dst
2337     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2338     // fxtod $dst,$dst (if nan)
2339     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2340     // clear $dst (if nan)
2341     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2342     // carry on here...
2343   %}
2344 
2345   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2346   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2347   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2348   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2349 
2350   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2351 
2352   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2353   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2354 
2355   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2356     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2357   %}
2358 
2359   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2360     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2361   %}
2362 
2363   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2364     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2365   %}
2366 
2367   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2368     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2369   %}
2370 
2371   enc_class form3_convI2F(regF rs2, regF rd) %{
2372     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2373   %}
2374 
2375   // Encloding class for traceable jumps
2376   enc_class form_jmpl(g3RegP dest) %{
2377     emit_jmpl(cbuf, $dest$$reg);
2378   %}
2379 
2380   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2381     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2382   %}
2383 
2384   enc_class form2_nop() %{
2385     emit_nop(cbuf);
2386   %}
2387 
2388   enc_class form2_illtrap() %{
2389     emit_illtrap(cbuf);
2390   %}
2391 
2392 
2393   // Compare longs and convert into -1, 0, 1.
2394   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2395     // CMP $src1,$src2
2396     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2397     // blt,a,pn done
2398     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2399     // mov dst,-1 in delay slot
2400     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2401     // bgt,a,pn done
2402     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2403     // mov dst,1 in delay slot
2404     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2405     // CLR    $dst
2406     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2407   %}
2408 
2409   enc_class enc_PartialSubtypeCheck() %{
2410     MacroAssembler _masm(&cbuf);
2411     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2412     __ delayed()->nop();
2413   %}
2414 
2415   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2416     MacroAssembler _masm(&cbuf);
2417     Label* L = $labl$$label;
2418     Assembler::Predict predict_taken =
2419       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2420 
2421     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2422     __ delayed()->nop();
2423   %}
2424 
2425   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2426     MacroAssembler _masm(&cbuf);
2427     Label* L = $labl$$label;
2428     Assembler::Predict predict_taken =
2429       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2430 
2431     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2432     __ delayed()->nop();
2433   %}
2434 
2435   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2436     int op = (Assembler::arith_op << 30) |
2437              ($dst$$reg << 25) |
2438              (Assembler::movcc_op3 << 19) |
2439              (1 << 18) |                    // cc2 bit for 'icc'
2440              ($cmp$$cmpcode << 14) |
2441              (0 << 13) |                    // select register move
2442              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2443              ($src$$reg << 0);
2444     cbuf.insts()->emit_int32(op);
2445   %}
2446 
2447   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2448     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2449     int op = (Assembler::arith_op << 30) |
2450              ($dst$$reg << 25) |
2451              (Assembler::movcc_op3 << 19) |
2452              (1 << 18) |                    // cc2 bit for 'icc'
2453              ($cmp$$cmpcode << 14) |
2454              (1 << 13) |                    // select immediate move
2455              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2456              (simm11 << 0);
2457     cbuf.insts()->emit_int32(op);
2458   %}
2459 
2460   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2461     int op = (Assembler::arith_op << 30) |
2462              ($dst$$reg << 25) |
2463              (Assembler::movcc_op3 << 19) |
2464              (0 << 18) |                    // cc2 bit for 'fccX'
2465              ($cmp$$cmpcode << 14) |
2466              (0 << 13) |                    // select register move
2467              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2468              ($src$$reg << 0);
2469     cbuf.insts()->emit_int32(op);
2470   %}
2471 
2472   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2473     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2474     int op = (Assembler::arith_op << 30) |
2475              ($dst$$reg << 25) |
2476              (Assembler::movcc_op3 << 19) |
2477              (0 << 18) |                    // cc2 bit for 'fccX'
2478              ($cmp$$cmpcode << 14) |
2479              (1 << 13) |                    // select immediate move
2480              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2481              (simm11 << 0);
2482     cbuf.insts()->emit_int32(op);
2483   %}
2484 
2485   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2486     int op = (Assembler::arith_op << 30) |
2487              ($dst$$reg << 25) |
2488              (Assembler::fpop2_op3 << 19) |
2489              (0 << 18) |
2490              ($cmp$$cmpcode << 14) |
2491              (1 << 13) |                    // select register move
2492              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2493              ($primary << 5) |              // select single, double or quad
2494              ($src$$reg << 0);
2495     cbuf.insts()->emit_int32(op);
2496   %}
2497 
2498   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2499     int op = (Assembler::arith_op << 30) |
2500              ($dst$$reg << 25) |
2501              (Assembler::fpop2_op3 << 19) |
2502              (0 << 18) |
2503              ($cmp$$cmpcode << 14) |
2504              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2505              ($primary << 5) |              // select single, double or quad
2506              ($src$$reg << 0);
2507     cbuf.insts()->emit_int32(op);
2508   %}
2509 
2510   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2511   // the condition comes from opcode-field instead of an argument.
2512   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2513     int op = (Assembler::arith_op << 30) |
2514              ($dst$$reg << 25) |
2515              (Assembler::movcc_op3 << 19) |
2516              (1 << 18) |                    // cc2 bit for 'icc'
2517              ($primary << 14) |
2518              (0 << 13) |                    // select register move
2519              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2520              ($src$$reg << 0);
2521     cbuf.insts()->emit_int32(op);
2522   %}
2523 
2524   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2525     int op = (Assembler::arith_op << 30) |
2526              ($dst$$reg << 25) |
2527              (Assembler::movcc_op3 << 19) |
2528              (6 << 16) |                    // cc2 bit for 'xcc'
2529              ($primary << 14) |
2530              (0 << 13) |                    // select register move
2531              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2532              ($src$$reg << 0);
2533     cbuf.insts()->emit_int32(op);
2534   %}
2535 
2536   enc_class Set13( immI13 src, iRegI rd ) %{
2537     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2538   %}
2539 
2540   enc_class SetHi22( immI src, iRegI rd ) %{
2541     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2542   %}
2543 
2544   enc_class Set32( immI src, iRegI rd ) %{
2545     MacroAssembler _masm(&cbuf);
2546     __ set($src$$constant, reg_to_register_object($rd$$reg));
2547   %}
2548 
2549   enc_class call_epilog %{
2550     if( VerifyStackAtCalls ) {
2551       MacroAssembler _masm(&cbuf);
2552       int framesize = ra_->C->frame_size_in_bytes();
2553       Register temp_reg = G3;
2554       __ add(SP, framesize, temp_reg);
2555       __ cmp(temp_reg, FP);
2556       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2557     }
2558   %}
2559 
2560   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2561   // to G1 so the register allocator will not have to deal with the misaligned register
2562   // pair.
2563   enc_class adjust_long_from_native_call %{
2564 #ifndef _LP64
2565     if (returns_long()) {
2566       //    sllx  O0,32,O0
2567       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2568       //    srl   O1,0,O1
2569       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2570       //    or    O0,O1,G1
2571       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2572     }
2573 #endif
2574   %}
2575 
2576   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2577     // CALL directly to the runtime
2578     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2579     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2580                     /*preserve_g2=*/true);
2581   %}
2582 
2583   enc_class preserve_SP %{
2584     MacroAssembler _masm(&cbuf);
2585     __ mov(SP, L7_mh_SP_save);
2586   %}
2587 
2588   enc_class restore_SP %{
2589     MacroAssembler _masm(&cbuf);
2590     __ mov(L7_mh_SP_save, SP);
2591   %}
2592 
2593   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2594     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2595     // who we intended to call.
2596     if (!_method) {
2597       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2598     } else if (_optimized_virtual) {
2599       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2600     } else {
2601       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2602     }
2603     if (_method) {  // Emit stub for static call.
2604       CompiledStaticCall::emit_to_interp_stub(cbuf);
2605     }
2606   %}
2607 
2608   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2609     MacroAssembler _masm(&cbuf);
2610     __ set_inst_mark();
2611     int vtable_index = this->_vtable_index;
2612     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2613     if (vtable_index < 0) {
2614       // must be invalid_vtable_index, not nonvirtual_vtable_index
2615       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2616       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2617       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2618       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2619       __ ic_call((address)$meth$$method);
2620     } else {
2621       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2622       // Just go thru the vtable
2623       // get receiver klass (receiver already checked for non-null)
2624       // If we end up going thru a c2i adapter interpreter expects method in G5
2625       int off = __ offset();
2626       __ load_klass(O0, G3_scratch);
2627       int klass_load_size;
2628       if (UseCompressedClassPointers) {
2629         assert(Universe::heap() != NULL, "java heap should be initialized");
2630         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2631       } else {
2632         klass_load_size = 1*BytesPerInstWord;
2633       }
2634       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2635       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2636       if (Assembler::is_simm13(v_off)) {
2637         __ ld_ptr(G3, v_off, G5_method);
2638       } else {
2639         // Generate 2 instructions
2640         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2641         __ or3(G5_method, v_off & 0x3ff, G5_method);
2642         // ld_ptr, set_hi, set
2643         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2644                "Unexpected instruction size(s)");
2645         __ ld_ptr(G3, G5_method, G5_method);
2646       }
2647       // NOTE: for vtable dispatches, the vtable entry will never be null.
2648       // However it may very well end up in handle_wrong_method if the
2649       // method is abstract for the particular class.
2650       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2651       // jump to target (either compiled code or c2iadapter)
2652       __ jmpl(G3_scratch, G0, O7);
2653       __ delayed()->nop();
2654     }
2655   %}
2656 
2657   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2658     MacroAssembler _masm(&cbuf);
2659 
2660     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2661     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2662                               // we might be calling a C2I adapter which needs it.
2663 
2664     assert(temp_reg != G5_ic_reg, "conflicting registers");
2665     // Load nmethod
2666     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2667 
2668     // CALL to compiled java, indirect the contents of G3
2669     __ set_inst_mark();
2670     __ callr(temp_reg, G0);
2671     __ delayed()->nop();
2672   %}
2673 
2674 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2675     MacroAssembler _masm(&cbuf);
2676     Register Rdividend = reg_to_register_object($src1$$reg);
2677     Register Rdivisor = reg_to_register_object($src2$$reg);
2678     Register Rresult = reg_to_register_object($dst$$reg);
2679 
2680     __ sra(Rdivisor, 0, Rdivisor);
2681     __ sra(Rdividend, 0, Rdividend);
2682     __ sdivx(Rdividend, Rdivisor, Rresult);
2683 %}
2684 
2685 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2686     MacroAssembler _masm(&cbuf);
2687 
2688     Register Rdividend = reg_to_register_object($src1$$reg);
2689     int divisor = $imm$$constant;
2690     Register Rresult = reg_to_register_object($dst$$reg);
2691 
2692     __ sra(Rdividend, 0, Rdividend);
2693     __ sdivx(Rdividend, divisor, Rresult);
2694 %}
2695 
2696 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2697     MacroAssembler _masm(&cbuf);
2698     Register Rsrc1 = reg_to_register_object($src1$$reg);
2699     Register Rsrc2 = reg_to_register_object($src2$$reg);
2700     Register Rdst  = reg_to_register_object($dst$$reg);
2701 
2702     __ sra( Rsrc1, 0, Rsrc1 );
2703     __ sra( Rsrc2, 0, Rsrc2 );
2704     __ mulx( Rsrc1, Rsrc2, Rdst );
2705     __ srlx( Rdst, 32, Rdst );
2706 %}
2707 
2708 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2709     MacroAssembler _masm(&cbuf);
2710     Register Rdividend = reg_to_register_object($src1$$reg);
2711     Register Rdivisor = reg_to_register_object($src2$$reg);
2712     Register Rresult = reg_to_register_object($dst$$reg);
2713     Register Rscratch = reg_to_register_object($scratch$$reg);
2714 
2715     assert(Rdividend != Rscratch, "");
2716     assert(Rdivisor  != Rscratch, "");
2717 
2718     __ sra(Rdividend, 0, Rdividend);
2719     __ sra(Rdivisor, 0, Rdivisor);
2720     __ sdivx(Rdividend, Rdivisor, Rscratch);
2721     __ mulx(Rscratch, Rdivisor, Rscratch);
2722     __ sub(Rdividend, Rscratch, Rresult);
2723 %}
2724 
2725 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2726     MacroAssembler _masm(&cbuf);
2727 
2728     Register Rdividend = reg_to_register_object($src1$$reg);
2729     int divisor = $imm$$constant;
2730     Register Rresult = reg_to_register_object($dst$$reg);
2731     Register Rscratch = reg_to_register_object($scratch$$reg);
2732 
2733     assert(Rdividend != Rscratch, "");
2734 
2735     __ sra(Rdividend, 0, Rdividend);
2736     __ sdivx(Rdividend, divisor, Rscratch);
2737     __ mulx(Rscratch, divisor, Rscratch);
2738     __ sub(Rdividend, Rscratch, Rresult);
2739 %}
2740 
2741 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2742     MacroAssembler _masm(&cbuf);
2743 
2744     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2745     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2746 
2747     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2748 %}
2749 
2750 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2751     MacroAssembler _masm(&cbuf);
2752 
2753     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2754     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2755 
2756     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2757 %}
2758 
2759 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2760     MacroAssembler _masm(&cbuf);
2761 
2762     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2763     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2764 
2765     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2766 %}
2767 
2768 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2769     MacroAssembler _masm(&cbuf);
2770 
2771     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2772     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2773 
2774     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2775 %}
2776 
2777 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2778     MacroAssembler _masm(&cbuf);
2779 
2780     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2781     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2782 
2783     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2784 %}
2785 
2786 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2787     MacroAssembler _masm(&cbuf);
2788 
2789     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2790     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2791 
2792     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2793 %}
2794 
2795 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2796     MacroAssembler _masm(&cbuf);
2797 
2798     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2799     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2800 
2801     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2802 %}
2803 
2804 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2805     MacroAssembler _masm(&cbuf);
2806 
2807     Register Roop  = reg_to_register_object($oop$$reg);
2808     Register Rbox  = reg_to_register_object($box$$reg);
2809     Register Rscratch = reg_to_register_object($scratch$$reg);
2810     Register Rmark =    reg_to_register_object($scratch2$$reg);
2811 
2812     assert(Roop  != Rscratch, "");
2813     assert(Roop  != Rmark, "");
2814     assert(Rbox  != Rscratch, "");
2815     assert(Rbox  != Rmark, "");
2816 
2817     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2818 %}
2819 
2820 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2821     MacroAssembler _masm(&cbuf);
2822 
2823     Register Roop  = reg_to_register_object($oop$$reg);
2824     Register Rbox  = reg_to_register_object($box$$reg);
2825     Register Rscratch = reg_to_register_object($scratch$$reg);
2826     Register Rmark =    reg_to_register_object($scratch2$$reg);
2827 
2828     assert(Roop  != Rscratch, "");
2829     assert(Roop  != Rmark, "");
2830     assert(Rbox  != Rscratch, "");
2831     assert(Rbox  != Rmark, "");
2832 
2833     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2834   %}
2835 
2836   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2837     MacroAssembler _masm(&cbuf);
2838     Register Rmem = reg_to_register_object($mem$$reg);
2839     Register Rold = reg_to_register_object($old$$reg);
2840     Register Rnew = reg_to_register_object($new$$reg);
2841 
2842     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2843     __ cmp( Rold, Rnew );
2844   %}
2845 
2846   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2847     Register Rmem = reg_to_register_object($mem$$reg);
2848     Register Rold = reg_to_register_object($old$$reg);
2849     Register Rnew = reg_to_register_object($new$$reg);
2850 
2851     MacroAssembler _masm(&cbuf);
2852     __ mov(Rnew, O7);
2853     __ casx(Rmem, Rold, O7);
2854     __ cmp( Rold, O7 );
2855   %}
2856 
2857   // raw int cas, used for compareAndSwap
2858   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2859     Register Rmem = reg_to_register_object($mem$$reg);
2860     Register Rold = reg_to_register_object($old$$reg);
2861     Register Rnew = reg_to_register_object($new$$reg);
2862 
2863     MacroAssembler _masm(&cbuf);
2864     __ mov(Rnew, O7);
2865     __ cas(Rmem, Rold, O7);
2866     __ cmp( Rold, O7 );
2867   %}
2868 
2869   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2870     Register Rres = reg_to_register_object($res$$reg);
2871 
2872     MacroAssembler _masm(&cbuf);
2873     __ mov(1, Rres);
2874     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2875   %}
2876 
2877   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2878     Register Rres = reg_to_register_object($res$$reg);
2879 
2880     MacroAssembler _masm(&cbuf);
2881     __ mov(1, Rres);
2882     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2883   %}
2884 
2885   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2886     MacroAssembler _masm(&cbuf);
2887     Register Rdst = reg_to_register_object($dst$$reg);
2888     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2889                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2890     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2891                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2892 
2893     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2894     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2895   %}
2896 
2897 
2898   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2899     Label Ldone, Lloop;
2900     MacroAssembler _masm(&cbuf);
2901 
2902     Register   str1_reg = reg_to_register_object($str1$$reg);
2903     Register   str2_reg = reg_to_register_object($str2$$reg);
2904     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2905     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2906     Register result_reg = reg_to_register_object($result$$reg);
2907 
2908     assert(result_reg != str1_reg &&
2909            result_reg != str2_reg &&
2910            result_reg != cnt1_reg &&
2911            result_reg != cnt2_reg ,
2912            "need different registers");
2913 
2914     // Compute the minimum of the string lengths(str1_reg) and the
2915     // difference of the string lengths (stack)
2916 
2917     // See if the lengths are different, and calculate min in str1_reg.
2918     // Stash diff in O7 in case we need it for a tie-breaker.
2919     Label Lskip;
2920     __ subcc(cnt1_reg, cnt2_reg, O7);
2921     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2922     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2923     // cnt2 is shorter, so use its count:
2924     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2925     __ bind(Lskip);
2926 
2927     // reallocate cnt1_reg, cnt2_reg, result_reg
2928     // Note:  limit_reg holds the string length pre-scaled by 2
2929     Register limit_reg =   cnt1_reg;
2930     Register  chr2_reg =   cnt2_reg;
2931     Register  chr1_reg = result_reg;
2932     // str{12} are the base pointers
2933 
2934     // Is the minimum length zero?
2935     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2936     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2937     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2938 
2939     // Load first characters
2940     __ lduh(str1_reg, 0, chr1_reg);
2941     __ lduh(str2_reg, 0, chr2_reg);
2942 
2943     // Compare first characters
2944     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2945     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2946     assert(chr1_reg == result_reg, "result must be pre-placed");
2947     __ delayed()->nop();
2948 
2949     {
2950       // Check after comparing first character to see if strings are equivalent
2951       Label LSkip2;
2952       // Check if the strings start at same location
2953       __ cmp(str1_reg, str2_reg);
2954       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2955       __ delayed()->nop();
2956 
2957       // Check if the length difference is zero (in O7)
2958       __ cmp(G0, O7);
2959       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2960       __ delayed()->mov(G0, result_reg);  // result is zero
2961 
2962       // Strings might not be equal
2963       __ bind(LSkip2);
2964     }
2965 
2966     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
2967     __ signx(limit_reg);
2968 
2969     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2970     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2971     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2972 
2973     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2974     __ add(str1_reg, limit_reg, str1_reg);
2975     __ add(str2_reg, limit_reg, str2_reg);
2976     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2977 
2978     // Compare the rest of the characters
2979     __ lduh(str1_reg, limit_reg, chr1_reg);
2980     __ bind(Lloop);
2981     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2982     __ lduh(str2_reg, limit_reg, chr2_reg);
2983     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2984     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2985     assert(chr1_reg == result_reg, "result must be pre-placed");
2986     __ delayed()->inccc(limit_reg, sizeof(jchar));
2987     // annul LDUH if branch is not taken to prevent access past end of string
2988     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2989     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2990 
2991     // If strings are equal up to min length, return the length difference.
2992     __ mov(O7, result_reg);
2993 
2994     // Otherwise, return the difference between the first mismatched chars.
2995     __ bind(Ldone);
2996   %}
2997 
2998 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2999     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
3000     MacroAssembler _masm(&cbuf);
3001 
3002     Register   str1_reg = reg_to_register_object($str1$$reg);
3003     Register   str2_reg = reg_to_register_object($str2$$reg);
3004     Register    cnt_reg = reg_to_register_object($cnt$$reg);
3005     Register   tmp1_reg = O7;
3006     Register result_reg = reg_to_register_object($result$$reg);
3007 
3008     assert(result_reg != str1_reg &&
3009            result_reg != str2_reg &&
3010            result_reg !=  cnt_reg &&
3011            result_reg != tmp1_reg ,
3012            "need different registers");
3013 
3014     __ cmp(str1_reg, str2_reg); //same char[] ?
3015     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3016     __ delayed()->add(G0, 1, result_reg);
3017 
3018     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
3019     __ delayed()->add(G0, 1, result_reg); // count == 0
3020 
3021     //rename registers
3022     Register limit_reg =    cnt_reg;
3023     Register  chr1_reg = result_reg;
3024     Register  chr2_reg =   tmp1_reg;
3025 
3026     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
3027     __ signx(limit_reg);
3028 
3029     //check for alignment and position the pointers to the ends
3030     __ or3(str1_reg, str2_reg, chr1_reg);
3031     __ andcc(chr1_reg, 0x3, chr1_reg);
3032     // notZero means at least one not 4-byte aligned.
3033     // We could optimize the case when both arrays are not aligned
3034     // but it is not frequent case and it requires additional checks.
3035     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
3036     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
3037 
3038     // Compare char[] arrays aligned to 4 bytes.
3039     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
3040                           chr1_reg, chr2_reg, Ldone);
3041     __ ba(Ldone);
3042     __ delayed()->add(G0, 1, result_reg);
3043 
3044     // char by char compare
3045     __ bind(Lchar);
3046     __ add(str1_reg, limit_reg, str1_reg);
3047     __ add(str2_reg, limit_reg, str2_reg);
3048     __ neg(limit_reg); //negate count
3049 
3050     __ lduh(str1_reg, limit_reg, chr1_reg);
3051     // Lchar_loop
3052     __ bind(Lchar_loop);
3053     __ lduh(str2_reg, limit_reg, chr2_reg);
3054     __ cmp(chr1_reg, chr2_reg);
3055     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3056     __ delayed()->mov(G0, result_reg); //not equal
3057     __ inccc(limit_reg, sizeof(jchar));
3058     // annul LDUH if branch is not taken to prevent access past end of string
3059     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3060     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3061 
3062     __ add(G0, 1, result_reg);  //equal
3063 
3064     __ bind(Ldone);
3065   %}
3066 
3067 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3068     Label Lvector, Ldone, Lloop;
3069     MacroAssembler _masm(&cbuf);
3070 
3071     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3072     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3073     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3074     Register   tmp2_reg = O7;
3075     Register result_reg = reg_to_register_object($result$$reg);
3076 
3077     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3078     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3079 
3080     // return true if the same array
3081     __ cmp(ary1_reg, ary2_reg);
3082     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3083     __ delayed()->add(G0, 1, result_reg); // equal
3084 
3085     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3086     __ delayed()->mov(G0, result_reg);    // not equal
3087 
3088     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3089     __ delayed()->mov(G0, result_reg);    // not equal
3090 
3091     //load the lengths of arrays
3092     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3093     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3094 
3095     // return false if the two arrays are not equal length
3096     __ cmp(tmp1_reg, tmp2_reg);
3097     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3098     __ delayed()->mov(G0, result_reg);     // not equal
3099 
3100     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3101     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3102 
3103     // load array addresses
3104     __ add(ary1_reg, base_offset, ary1_reg);
3105     __ add(ary2_reg, base_offset, ary2_reg);
3106 
3107     // renaming registers
3108     Register chr1_reg  =  result_reg; // for characters in ary1
3109     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3110     Register limit_reg =  tmp1_reg;   // length
3111 
3112     // set byte count
3113     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3114 
3115     // Compare char[] arrays aligned to 4 bytes.
3116     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3117                           chr1_reg, chr2_reg, Ldone);
3118     __ add(G0, 1, result_reg); // equals
3119 
3120     __ bind(Ldone);
3121   %}
3122 
3123   enc_class enc_rethrow() %{
3124     cbuf.set_insts_mark();
3125     Register temp_reg = G3;
3126     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3127     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3128     MacroAssembler _masm(&cbuf);
3129 #ifdef ASSERT
3130     __ save_frame(0);
3131     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3132     __ sethi(last_rethrow_addrlit, L1);
3133     Address addr(L1, last_rethrow_addrlit.low10());
3134     __ rdpc(L2);
3135     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3136     __ st_ptr(L2, addr);
3137     __ restore();
3138 #endif
3139     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3140     __ delayed()->nop();
3141   %}
3142 
3143   enc_class emit_mem_nop() %{
3144     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3145     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3146   %}
3147 
3148   enc_class emit_fadd_nop() %{
3149     // Generates the instruction FMOVS f31,f31
3150     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3151   %}
3152 
3153   enc_class emit_br_nop() %{
3154     // Generates the instruction BPN,PN .
3155     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3156   %}
3157 
3158   enc_class enc_membar_acquire %{
3159     MacroAssembler _masm(&cbuf);
3160     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3161   %}
3162 
3163   enc_class enc_membar_release %{
3164     MacroAssembler _masm(&cbuf);
3165     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3166   %}
3167 
3168   enc_class enc_membar_volatile %{
3169     MacroAssembler _masm(&cbuf);
3170     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3171   %}
3172 
3173 %}
3174 
3175 //----------FRAME--------------------------------------------------------------
3176 // Definition of frame structure and management information.
3177 //
3178 //  S T A C K   L A Y O U T    Allocators stack-slot number
3179 //                             |   (to get allocators register number
3180 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3181 //  r   CALLER     |        |
3182 //  o     |        +--------+      pad to even-align allocators stack-slot
3183 //  w     V        |  pad0  |        numbers; owned by CALLER
3184 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3185 //  h     ^        |   in   |  5
3186 //        |        |  args  |  4   Holes in incoming args owned by SELF
3187 //  |     |        |        |  3
3188 //  |     |        +--------+
3189 //  V     |        | old out|      Empty on Intel, window on Sparc
3190 //        |    old |preserve|      Must be even aligned.
3191 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3192 //        |        |   in   |  3   area for Intel ret address
3193 //     Owned by    |preserve|      Empty on Sparc.
3194 //       SELF      +--------+
3195 //        |        |  pad2  |  2   pad to align old SP
3196 //        |        +--------+  1
3197 //        |        | locks  |  0
3198 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3199 //        |        |  pad1  | 11   pad to align new SP
3200 //        |        +--------+
3201 //        |        |        | 10
3202 //        |        | spills |  9   spills
3203 //        V        |        |  8   (pad0 slot for callee)
3204 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3205 //        ^        |  out   |  7
3206 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3207 //     Owned by    +--------+
3208 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3209 //        |    new |preserve|      Must be even-aligned.
3210 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3211 //        |        |        |
3212 //
3213 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3214 //         known from SELF's arguments and the Java calling convention.
3215 //         Region 6-7 is determined per call site.
3216 // Note 2: If the calling convention leaves holes in the incoming argument
3217 //         area, those holes are owned by SELF.  Holes in the outgoing area
3218 //         are owned by the CALLEE.  Holes should not be nessecary in the
3219 //         incoming area, as the Java calling convention is completely under
3220 //         the control of the AD file.  Doubles can be sorted and packed to
3221 //         avoid holes.  Holes in the outgoing arguments may be necessary for
3222 //         varargs C calling conventions.
3223 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3224 //         even aligned with pad0 as needed.
3225 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3226 //         region 6-11 is even aligned; it may be padded out more so that
3227 //         the region from SP to FP meets the minimum stack alignment.
3228 
3229 frame %{
3230   // What direction does stack grow in (assumed to be same for native & Java)
3231   stack_direction(TOWARDS_LOW);
3232 
3233   // These two registers define part of the calling convention
3234   // between compiled code and the interpreter.
3235   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3236   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3237 
3238   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3239   cisc_spilling_operand_name(indOffset);
3240 
3241   // Number of stack slots consumed by a Monitor enter
3242 #ifdef _LP64
3243   sync_stack_slots(2);
3244 #else
3245   sync_stack_slots(1);
3246 #endif
3247 
3248   // Compiled code's Frame Pointer
3249   frame_pointer(R_SP);
3250 
3251   // Stack alignment requirement
3252   stack_alignment(StackAlignmentInBytes);
3253   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3254   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3255 
3256   // Number of stack slots between incoming argument block and the start of
3257   // a new frame.  The PROLOG must add this many slots to the stack.  The
3258   // EPILOG must remove this many slots.
3259   in_preserve_stack_slots(0);
3260 
3261   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3262   // for calls to C.  Supports the var-args backing area for register parms.
3263   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3264 #ifdef _LP64
3265   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3266   varargs_C_out_slots_killed(12);
3267 #else
3268   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3269   varargs_C_out_slots_killed( 7);
3270 #endif
3271 
3272   // The after-PROLOG location of the return address.  Location of
3273   // return address specifies a type (REG or STACK) and a number
3274   // representing the register number (i.e. - use a register name) or
3275   // stack slot.
3276   return_addr(REG R_I7);          // Ret Addr is in register I7
3277 
3278   // Body of function which returns an OptoRegs array locating
3279   // arguments either in registers or in stack slots for calling
3280   // java
3281   calling_convention %{
3282     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3283 
3284   %}
3285 
3286   // Body of function which returns an OptoRegs array locating
3287   // arguments either in registers or in stack slots for calling
3288   // C.
3289   c_calling_convention %{
3290     // This is obviously always outgoing
3291     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3292   %}
3293 
3294   // Location of native (C/C++) and interpreter return values.  This is specified to
3295   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3296   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3297   // to and from the register pairs is done by the appropriate call and epilog
3298   // opcodes.  This simplifies the register allocator.
3299   c_return_value %{
3300     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3301 #ifdef     _LP64
3302     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3303     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3304     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3305     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3306 #else  // !_LP64
3307     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3308     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3309     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3310     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3311 #endif
3312     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3313                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3314   %}
3315 
3316   // Location of compiled Java return values.  Same as C
3317   return_value %{
3318     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3319 #ifdef     _LP64
3320     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3321     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3322     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3323     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3324 #else  // !_LP64
3325     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3326     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3327     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3328     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3329 #endif
3330     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3331                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3332   %}
3333 
3334 %}
3335 
3336 
3337 //----------ATTRIBUTES---------------------------------------------------------
3338 //----------Operand Attributes-------------------------------------------------
3339 op_attrib op_cost(1);          // Required cost attribute
3340 
3341 //----------Instruction Attributes---------------------------------------------
3342 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3343 ins_attrib ins_size(32);           // Required size attribute (in bits)
3344 
3345 // avoid_back_to_back attribute is an expression that must return
3346 // one of the following values defined in MachNode:
3347 // AVOID_NONE   - instruction can be placed anywhere
3348 // AVOID_BEFORE - instruction cannot be placed after an
3349 //                instruction with MachNode::AVOID_AFTER
3350 // AVOID_AFTER  - the next instruction cannot be the one 
3351 //                with MachNode::AVOID_BEFORE
3352 // AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at 
3353 //                          the same time                                
3354 ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
3355 
3356 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3357                                    // non-matching short branch variant of some
3358                                                             // long branch?
3359 
3360 //----------OPERANDS-----------------------------------------------------------
3361 // Operand definitions must precede instruction definitions for correct parsing
3362 // in the ADLC because operands constitute user defined types which are used in
3363 // instruction definitions.
3364 
3365 //----------Simple Operands----------------------------------------------------
3366 // Immediate Operands
3367 // Integer Immediate: 32-bit
3368 operand immI() %{
3369   match(ConI);
3370 
3371   op_cost(0);
3372   // formats are generated automatically for constants and base registers
3373   format %{ %}
3374   interface(CONST_INTER);
3375 %}
3376 
3377 // Integer Immediate: 8-bit
3378 operand immI8() %{
3379   predicate(Assembler::is_simm8(n->get_int()));
3380   match(ConI);
3381   op_cost(0);
3382   format %{ %}
3383   interface(CONST_INTER);
3384 %}
3385 
3386 // Integer Immediate: 13-bit
3387 operand immI13() %{
3388   predicate(Assembler::is_simm13(n->get_int()));
3389   match(ConI);
3390   op_cost(0);
3391 
3392   format %{ %}
3393   interface(CONST_INTER);
3394 %}
3395 
3396 // Integer Immediate: 13-bit minus 7
3397 operand immI13m7() %{
3398   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3399   match(ConI);
3400   op_cost(0);
3401 
3402   format %{ %}
3403   interface(CONST_INTER);
3404 %}
3405 
3406 // Integer Immediate: 16-bit
3407 operand immI16() %{
3408   predicate(Assembler::is_simm16(n->get_int()));
3409   match(ConI);
3410   op_cost(0);
3411   format %{ %}
3412   interface(CONST_INTER);
3413 %}
3414 
3415 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3416 operand immU12() %{
3417   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3418   match(ConI);
3419   op_cost(0);
3420 
3421   format %{ %}
3422   interface(CONST_INTER);
3423 %}
3424 
3425 // Integer Immediate: 6-bit
3426 operand immU6() %{
3427   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3428   match(ConI);
3429   op_cost(0);
3430   format %{ %}
3431   interface(CONST_INTER);
3432 %}
3433 
3434 // Integer Immediate: 11-bit
3435 operand immI11() %{
3436   predicate(Assembler::is_simm11(n->get_int()));
3437   match(ConI);
3438   op_cost(0);
3439   format %{ %}
3440   interface(CONST_INTER);
3441 %}
3442 
3443 // Integer Immediate: 5-bit
3444 operand immI5() %{
3445   predicate(Assembler::is_simm5(n->get_int()));
3446   match(ConI);
3447   op_cost(0);
3448   format %{ %}
3449   interface(CONST_INTER);
3450 %}
3451 
3452 // Int Immediate non-negative
3453 operand immU31()
3454 %{
3455   predicate(n->get_int() >= 0);
3456   match(ConI);
3457 
3458   op_cost(0);
3459   format %{ %}
3460   interface(CONST_INTER);
3461 %}
3462 
3463 // Integer Immediate: 0-bit
3464 operand immI0() %{
3465   predicate(n->get_int() == 0);
3466   match(ConI);
3467   op_cost(0);
3468 
3469   format %{ %}
3470   interface(CONST_INTER);
3471 %}
3472 
3473 // Integer Immediate: the value 10
3474 operand immI10() %{
3475   predicate(n->get_int() == 10);
3476   match(ConI);
3477   op_cost(0);
3478 
3479   format %{ %}
3480   interface(CONST_INTER);
3481 %}
3482 
3483 // Integer Immediate: the values 0-31
3484 operand immU5() %{
3485   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3486   match(ConI);
3487   op_cost(0);
3488 
3489   format %{ %}
3490   interface(CONST_INTER);
3491 %}
3492 
3493 // Integer Immediate: the values 1-31
3494 operand immI_1_31() %{
3495   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3496   match(ConI);
3497   op_cost(0);
3498 
3499   format %{ %}
3500   interface(CONST_INTER);
3501 %}
3502 
3503 // Integer Immediate: the values 32-63
3504 operand immI_32_63() %{
3505   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3506   match(ConI);
3507   op_cost(0);
3508 
3509   format %{ %}
3510   interface(CONST_INTER);
3511 %}
3512 
3513 // Immediates for special shifts (sign extend)
3514 
3515 // Integer Immediate: the value 16
3516 operand immI_16() %{
3517   predicate(n->get_int() == 16);
3518   match(ConI);
3519   op_cost(0);
3520 
3521   format %{ %}
3522   interface(CONST_INTER);
3523 %}
3524 
3525 // Integer Immediate: the value 24
3526 operand immI_24() %{
3527   predicate(n->get_int() == 24);
3528   match(ConI);
3529   op_cost(0);
3530 
3531   format %{ %}
3532   interface(CONST_INTER);
3533 %}
3534 
3535 // Integer Immediate: the value 255
3536 operand immI_255() %{
3537   predicate( n->get_int() == 255 );
3538   match(ConI);
3539   op_cost(0);
3540 
3541   format %{ %}
3542   interface(CONST_INTER);
3543 %}
3544 
3545 // Integer Immediate: the value 65535
3546 operand immI_65535() %{
3547   predicate(n->get_int() == 65535);
3548   match(ConI);
3549   op_cost(0);
3550 
3551   format %{ %}
3552   interface(CONST_INTER);
3553 %}
3554 
3555 // Long Immediate: the value FF
3556 operand immL_FF() %{
3557   predicate( n->get_long() == 0xFFL );
3558   match(ConL);
3559   op_cost(0);
3560 
3561   format %{ %}
3562   interface(CONST_INTER);
3563 %}
3564 
3565 // Long Immediate: the value FFFF
3566 operand immL_FFFF() %{
3567   predicate( n->get_long() == 0xFFFFL );
3568   match(ConL);
3569   op_cost(0);
3570 
3571   format %{ %}
3572   interface(CONST_INTER);
3573 %}
3574 
3575 // Pointer Immediate: 32 or 64-bit
3576 operand immP() %{
3577   match(ConP);
3578 
3579   op_cost(5);
3580   // formats are generated automatically for constants and base registers
3581   format %{ %}
3582   interface(CONST_INTER);
3583 %}
3584 
3585 #ifdef _LP64
3586 // Pointer Immediate: 64-bit
3587 operand immP_set() %{
3588   predicate(!VM_Version::is_niagara_plus());
3589   match(ConP);
3590 
3591   op_cost(5);
3592   // formats are generated automatically for constants and base registers
3593   format %{ %}
3594   interface(CONST_INTER);
3595 %}
3596 
3597 // Pointer Immediate: 64-bit
3598 // From Niagara2 processors on a load should be better than materializing.
3599 operand immP_load() %{
3600   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3601   match(ConP);
3602 
3603   op_cost(5);
3604   // formats are generated automatically for constants and base registers
3605   format %{ %}
3606   interface(CONST_INTER);
3607 %}
3608 
3609 // Pointer Immediate: 64-bit
3610 operand immP_no_oop_cheap() %{
3611   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3612   match(ConP);
3613 
3614   op_cost(5);
3615   // formats are generated automatically for constants and base registers
3616   format %{ %}
3617   interface(CONST_INTER);
3618 %}
3619 #endif
3620 
3621 operand immP13() %{
3622   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3623   match(ConP);
3624   op_cost(0);
3625 
3626   format %{ %}
3627   interface(CONST_INTER);
3628 %}
3629 
3630 operand immP0() %{
3631   predicate(n->get_ptr() == 0);
3632   match(ConP);
3633   op_cost(0);
3634 
3635   format %{ %}
3636   interface(CONST_INTER);
3637 %}
3638 
3639 operand immP_poll() %{
3640   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3641   match(ConP);
3642 
3643   // formats are generated automatically for constants and base registers
3644   format %{ %}
3645   interface(CONST_INTER);
3646 %}
3647 
3648 // Pointer Immediate
3649 operand immN()
3650 %{
3651   match(ConN);
3652 
3653   op_cost(10);
3654   format %{ %}
3655   interface(CONST_INTER);
3656 %}
3657 
3658 operand immNKlass()
3659 %{
3660   match(ConNKlass);
3661 
3662   op_cost(10);
3663   format %{ %}
3664   interface(CONST_INTER);
3665 %}
3666 
3667 // NULL Pointer Immediate
3668 operand immN0()
3669 %{
3670   predicate(n->get_narrowcon() == 0);
3671   match(ConN);
3672 
3673   op_cost(0);
3674   format %{ %}
3675   interface(CONST_INTER);
3676 %}
3677 
3678 operand immL() %{
3679   match(ConL);
3680   op_cost(40);
3681   // formats are generated automatically for constants and base registers
3682   format %{ %}
3683   interface(CONST_INTER);
3684 %}
3685 
3686 operand immL0() %{
3687   predicate(n->get_long() == 0L);
3688   match(ConL);
3689   op_cost(0);
3690   // formats are generated automatically for constants and base registers
3691   format %{ %}
3692   interface(CONST_INTER);
3693 %}
3694 
3695 // Integer Immediate: 5-bit
3696 operand immL5() %{
3697   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3698   match(ConL);
3699   op_cost(0);
3700   format %{ %}
3701   interface(CONST_INTER);
3702 %}
3703 
3704 // Long Immediate: 13-bit
3705 operand immL13() %{
3706   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3707   match(ConL);
3708   op_cost(0);
3709 
3710   format %{ %}
3711   interface(CONST_INTER);
3712 %}
3713 
3714 // Long Immediate: 13-bit minus 7
3715 operand immL13m7() %{
3716   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3717   match(ConL);
3718   op_cost(0);
3719 
3720   format %{ %}
3721   interface(CONST_INTER);
3722 %}
3723 
3724 // Long Immediate: low 32-bit mask
3725 operand immL_32bits() %{
3726   predicate(n->get_long() == 0xFFFFFFFFL);
3727   match(ConL);
3728   op_cost(0);
3729 
3730   format %{ %}
3731   interface(CONST_INTER);
3732 %}
3733 
3734 // Long Immediate: cheap (materialize in <= 3 instructions)
3735 operand immL_cheap() %{
3736   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3737   match(ConL);
3738   op_cost(0);
3739 
3740   format %{ %}
3741   interface(CONST_INTER);
3742 %}
3743 
3744 // Long Immediate: expensive (materialize in > 3 instructions)
3745 operand immL_expensive() %{
3746   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3747   match(ConL);
3748   op_cost(0);
3749 
3750   format %{ %}
3751   interface(CONST_INTER);
3752 %}
3753 
3754 // Double Immediate
3755 operand immD() %{
3756   match(ConD);
3757 
3758   op_cost(40);
3759   format %{ %}
3760   interface(CONST_INTER);
3761 %}
3762 
3763 operand immD0() %{
3764 #ifdef _LP64
3765   // on 64-bit architectures this comparision is faster
3766   predicate(jlong_cast(n->getd()) == 0);
3767 #else
3768   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3769 #endif
3770   match(ConD);
3771 
3772   op_cost(0);
3773   format %{ %}
3774   interface(CONST_INTER);
3775 %}
3776 
3777 // Float Immediate
3778 operand immF() %{
3779   match(ConF);
3780 
3781   op_cost(20);
3782   format %{ %}
3783   interface(CONST_INTER);
3784 %}
3785 
3786 // Float Immediate: 0
3787 operand immF0() %{
3788   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3789   match(ConF);
3790 
3791   op_cost(0);
3792   format %{ %}
3793   interface(CONST_INTER);
3794 %}
3795 
3796 // Integer Register Operands
3797 // Integer Register
3798 operand iRegI() %{
3799   constraint(ALLOC_IN_RC(int_reg));
3800   match(RegI);
3801 
3802   match(notemp_iRegI);
3803   match(g1RegI);
3804   match(o0RegI);
3805   match(iRegIsafe);
3806 
3807   format %{ %}
3808   interface(REG_INTER);
3809 %}
3810 
3811 operand notemp_iRegI() %{
3812   constraint(ALLOC_IN_RC(notemp_int_reg));
3813   match(RegI);
3814 
3815   match(o0RegI);
3816 
3817   format %{ %}
3818   interface(REG_INTER);
3819 %}
3820 
3821 operand o0RegI() %{
3822   constraint(ALLOC_IN_RC(o0_regI));
3823   match(iRegI);
3824 
3825   format %{ %}
3826   interface(REG_INTER);
3827 %}
3828 
3829 // Pointer Register
3830 operand iRegP() %{
3831   constraint(ALLOC_IN_RC(ptr_reg));
3832   match(RegP);
3833 
3834   match(lock_ptr_RegP);
3835   match(g1RegP);
3836   match(g2RegP);
3837   match(g3RegP);
3838   match(g4RegP);
3839   match(i0RegP);
3840   match(o0RegP);
3841   match(o1RegP);
3842   match(l7RegP);
3843 
3844   format %{ %}
3845   interface(REG_INTER);
3846 %}
3847 
3848 operand sp_ptr_RegP() %{
3849   constraint(ALLOC_IN_RC(sp_ptr_reg));
3850   match(RegP);
3851   match(iRegP);
3852 
3853   format %{ %}
3854   interface(REG_INTER);
3855 %}
3856 
3857 operand lock_ptr_RegP() %{
3858   constraint(ALLOC_IN_RC(lock_ptr_reg));
3859   match(RegP);
3860   match(i0RegP);
3861   match(o0RegP);
3862   match(o1RegP);
3863   match(l7RegP);
3864 
3865   format %{ %}
3866   interface(REG_INTER);
3867 %}
3868 
3869 operand g1RegP() %{
3870   constraint(ALLOC_IN_RC(g1_regP));
3871   match(iRegP);
3872 
3873   format %{ %}
3874   interface(REG_INTER);
3875 %}
3876 
3877 operand g2RegP() %{
3878   constraint(ALLOC_IN_RC(g2_regP));
3879   match(iRegP);
3880 
3881   format %{ %}
3882   interface(REG_INTER);
3883 %}
3884 
3885 operand g3RegP() %{
3886   constraint(ALLOC_IN_RC(g3_regP));
3887   match(iRegP);
3888 
3889   format %{ %}
3890   interface(REG_INTER);
3891 %}
3892 
3893 operand g1RegI() %{
3894   constraint(ALLOC_IN_RC(g1_regI));
3895   match(iRegI);
3896 
3897   format %{ %}
3898   interface(REG_INTER);
3899 %}
3900 
3901 operand g3RegI() %{
3902   constraint(ALLOC_IN_RC(g3_regI));
3903   match(iRegI);
3904 
3905   format %{ %}
3906   interface(REG_INTER);
3907 %}
3908 
3909 operand g4RegI() %{
3910   constraint(ALLOC_IN_RC(g4_regI));
3911   match(iRegI);
3912 
3913   format %{ %}
3914   interface(REG_INTER);
3915 %}
3916 
3917 operand g4RegP() %{
3918   constraint(ALLOC_IN_RC(g4_regP));
3919   match(iRegP);
3920 
3921   format %{ %}
3922   interface(REG_INTER);
3923 %}
3924 
3925 operand i0RegP() %{
3926   constraint(ALLOC_IN_RC(i0_regP));
3927   match(iRegP);
3928 
3929   format %{ %}
3930   interface(REG_INTER);
3931 %}
3932 
3933 operand o0RegP() %{
3934   constraint(ALLOC_IN_RC(o0_regP));
3935   match(iRegP);
3936 
3937   format %{ %}
3938   interface(REG_INTER);
3939 %}
3940 
3941 operand o1RegP() %{
3942   constraint(ALLOC_IN_RC(o1_regP));
3943   match(iRegP);
3944 
3945   format %{ %}
3946   interface(REG_INTER);
3947 %}
3948 
3949 operand o2RegP() %{
3950   constraint(ALLOC_IN_RC(o2_regP));
3951   match(iRegP);
3952 
3953   format %{ %}
3954   interface(REG_INTER);
3955 %}
3956 
3957 operand o7RegP() %{
3958   constraint(ALLOC_IN_RC(o7_regP));
3959   match(iRegP);
3960 
3961   format %{ %}
3962   interface(REG_INTER);
3963 %}
3964 
3965 operand l7RegP() %{
3966   constraint(ALLOC_IN_RC(l7_regP));
3967   match(iRegP);
3968 
3969   format %{ %}
3970   interface(REG_INTER);
3971 %}
3972 
3973 operand o7RegI() %{
3974   constraint(ALLOC_IN_RC(o7_regI));
3975   match(iRegI);
3976 
3977   format %{ %}
3978   interface(REG_INTER);
3979 %}
3980 
3981 operand iRegN() %{
3982   constraint(ALLOC_IN_RC(int_reg));
3983   match(RegN);
3984 
3985   format %{ %}
3986   interface(REG_INTER);
3987 %}
3988 
3989 // Long Register
3990 operand iRegL() %{
3991   constraint(ALLOC_IN_RC(long_reg));
3992   match(RegL);
3993 
3994   format %{ %}
3995   interface(REG_INTER);
3996 %}
3997 
3998 operand o2RegL() %{
3999   constraint(ALLOC_IN_RC(o2_regL));
4000   match(iRegL);
4001 
4002   format %{ %}
4003   interface(REG_INTER);
4004 %}
4005 
4006 operand o7RegL() %{
4007   constraint(ALLOC_IN_RC(o7_regL));
4008   match(iRegL);
4009 
4010   format %{ %}
4011   interface(REG_INTER);
4012 %}
4013 
4014 operand g1RegL() %{
4015   constraint(ALLOC_IN_RC(g1_regL));
4016   match(iRegL);
4017 
4018   format %{ %}
4019   interface(REG_INTER);
4020 %}
4021 
4022 operand g3RegL() %{
4023   constraint(ALLOC_IN_RC(g3_regL));
4024   match(iRegL);
4025 
4026   format %{ %}
4027   interface(REG_INTER);
4028 %}
4029 
4030 // Int Register safe
4031 // This is 64bit safe
4032 operand iRegIsafe() %{
4033   constraint(ALLOC_IN_RC(long_reg));
4034 
4035   match(iRegI);
4036 
4037   format %{ %}
4038   interface(REG_INTER);
4039 %}
4040 
4041 // Condition Code Flag Register
4042 operand flagsReg() %{
4043   constraint(ALLOC_IN_RC(int_flags));
4044   match(RegFlags);
4045 
4046   format %{ "ccr" %} // both ICC and XCC
4047   interface(REG_INTER);
4048 %}
4049 
4050 // Condition Code Register, unsigned comparisons.
4051 operand flagsRegU() %{
4052   constraint(ALLOC_IN_RC(int_flags));
4053   match(RegFlags);
4054 
4055   format %{ "icc_U" %}
4056   interface(REG_INTER);
4057 %}
4058 
4059 // Condition Code Register, pointer comparisons.
4060 operand flagsRegP() %{
4061   constraint(ALLOC_IN_RC(int_flags));
4062   match(RegFlags);
4063 
4064 #ifdef _LP64
4065   format %{ "xcc_P" %}
4066 #else
4067   format %{ "icc_P" %}
4068 #endif
4069   interface(REG_INTER);
4070 %}
4071 
4072 // Condition Code Register, long comparisons.
4073 operand flagsRegL() %{
4074   constraint(ALLOC_IN_RC(int_flags));
4075   match(RegFlags);
4076 
4077   format %{ "xcc_L" %}
4078   interface(REG_INTER);
4079 %}
4080 
4081 // Condition Code Register, floating comparisons, unordered same as "less".
4082 operand flagsRegF() %{
4083   constraint(ALLOC_IN_RC(float_flags));
4084   match(RegFlags);
4085   match(flagsRegF0);
4086 
4087   format %{ %}
4088   interface(REG_INTER);
4089 %}
4090 
4091 operand flagsRegF0() %{
4092   constraint(ALLOC_IN_RC(float_flag0));
4093   match(RegFlags);
4094 
4095   format %{ %}
4096   interface(REG_INTER);
4097 %}
4098 
4099 
4100 // Condition Code Flag Register used by long compare
4101 operand flagsReg_long_LTGE() %{
4102   constraint(ALLOC_IN_RC(int_flags));
4103   match(RegFlags);
4104   format %{ "icc_LTGE" %}
4105   interface(REG_INTER);
4106 %}
4107 operand flagsReg_long_EQNE() %{
4108   constraint(ALLOC_IN_RC(int_flags));
4109   match(RegFlags);
4110   format %{ "icc_EQNE" %}
4111   interface(REG_INTER);
4112 %}
4113 operand flagsReg_long_LEGT() %{
4114   constraint(ALLOC_IN_RC(int_flags));
4115   match(RegFlags);
4116   format %{ "icc_LEGT" %}
4117   interface(REG_INTER);
4118 %}
4119 
4120 
4121 operand regD() %{
4122   constraint(ALLOC_IN_RC(dflt_reg));
4123   match(RegD);
4124 
4125   match(regD_low);
4126 
4127   format %{ %}
4128   interface(REG_INTER);
4129 %}
4130 
4131 operand regF() %{
4132   constraint(ALLOC_IN_RC(sflt_reg));
4133   match(RegF);
4134 
4135   format %{ %}
4136   interface(REG_INTER);
4137 %}
4138 
4139 operand regD_low() %{
4140   constraint(ALLOC_IN_RC(dflt_low_reg));
4141   match(regD);
4142 
4143   format %{ %}
4144   interface(REG_INTER);
4145 %}
4146 
4147 // Special Registers
4148 
4149 // Method Register
4150 operand inline_cache_regP(iRegP reg) %{
4151   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4152   match(reg);
4153   format %{ %}
4154   interface(REG_INTER);
4155 %}
4156 
4157 operand interpreter_method_oop_regP(iRegP reg) %{
4158   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4159   match(reg);
4160   format %{ %}
4161   interface(REG_INTER);
4162 %}
4163 
4164 
4165 //----------Complex Operands---------------------------------------------------
4166 // Indirect Memory Reference
4167 operand indirect(sp_ptr_RegP reg) %{
4168   constraint(ALLOC_IN_RC(sp_ptr_reg));
4169   match(reg);
4170 
4171   op_cost(100);
4172   format %{ "[$reg]" %}
4173   interface(MEMORY_INTER) %{
4174     base($reg);
4175     index(0x0);
4176     scale(0x0);
4177     disp(0x0);
4178   %}
4179 %}
4180 
4181 // Indirect with simm13 Offset
4182 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4183   constraint(ALLOC_IN_RC(sp_ptr_reg));
4184   match(AddP reg offset);
4185 
4186   op_cost(100);
4187   format %{ "[$reg + $offset]" %}
4188   interface(MEMORY_INTER) %{
4189     base($reg);
4190     index(0x0);
4191     scale(0x0);
4192     disp($offset);
4193   %}
4194 %}
4195 
4196 // Indirect with simm13 Offset minus 7
4197 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4198   constraint(ALLOC_IN_RC(sp_ptr_reg));
4199   match(AddP reg offset);
4200 
4201   op_cost(100);
4202   format %{ "[$reg + $offset]" %}
4203   interface(MEMORY_INTER) %{
4204     base($reg);
4205     index(0x0);
4206     scale(0x0);
4207     disp($offset);
4208   %}
4209 %}
4210 
4211 // Note:  Intel has a swapped version also, like this:
4212 //operand indOffsetX(iRegI reg, immP offset) %{
4213 //  constraint(ALLOC_IN_RC(int_reg));
4214 //  match(AddP offset reg);
4215 //
4216 //  op_cost(100);
4217 //  format %{ "[$reg + $offset]" %}
4218 //  interface(MEMORY_INTER) %{
4219 //    base($reg);
4220 //    index(0x0);
4221 //    scale(0x0);
4222 //    disp($offset);
4223 //  %}
4224 //%}
4225 //// However, it doesn't make sense for SPARC, since
4226 // we have no particularly good way to embed oops in
4227 // single instructions.
4228 
4229 // Indirect with Register Index
4230 operand indIndex(iRegP addr, iRegX index) %{
4231   constraint(ALLOC_IN_RC(ptr_reg));
4232   match(AddP addr index);
4233 
4234   op_cost(100);
4235   format %{ "[$addr + $index]" %}
4236   interface(MEMORY_INTER) %{
4237     base($addr);
4238     index($index);
4239     scale(0x0);
4240     disp(0x0);
4241   %}
4242 %}
4243 
4244 //----------Special Memory Operands--------------------------------------------
4245 // Stack Slot Operand - This operand is used for loading and storing temporary
4246 //                      values on the stack where a match requires a value to
4247 //                      flow through memory.
4248 operand stackSlotI(sRegI reg) %{
4249   constraint(ALLOC_IN_RC(stack_slots));
4250   op_cost(100);
4251   //match(RegI);
4252   format %{ "[$reg]" %}
4253   interface(MEMORY_INTER) %{
4254     base(0xE);   // R_SP
4255     index(0x0);
4256     scale(0x0);
4257     disp($reg);  // Stack Offset
4258   %}
4259 %}
4260 
4261 operand stackSlotP(sRegP reg) %{
4262   constraint(ALLOC_IN_RC(stack_slots));
4263   op_cost(100);
4264   //match(RegP);
4265   format %{ "[$reg]" %}
4266   interface(MEMORY_INTER) %{
4267     base(0xE);   // R_SP
4268     index(0x0);
4269     scale(0x0);
4270     disp($reg);  // Stack Offset
4271   %}
4272 %}
4273 
4274 operand stackSlotF(sRegF reg) %{
4275   constraint(ALLOC_IN_RC(stack_slots));
4276   op_cost(100);
4277   //match(RegF);
4278   format %{ "[$reg]" %}
4279   interface(MEMORY_INTER) %{
4280     base(0xE);   // R_SP
4281     index(0x0);
4282     scale(0x0);
4283     disp($reg);  // Stack Offset
4284   %}
4285 %}
4286 operand stackSlotD(sRegD reg) %{
4287   constraint(ALLOC_IN_RC(stack_slots));
4288   op_cost(100);
4289   //match(RegD);
4290   format %{ "[$reg]" %}
4291   interface(MEMORY_INTER) %{
4292     base(0xE);   // R_SP
4293     index(0x0);
4294     scale(0x0);
4295     disp($reg);  // Stack Offset
4296   %}
4297 %}
4298 operand stackSlotL(sRegL reg) %{
4299   constraint(ALLOC_IN_RC(stack_slots));
4300   op_cost(100);
4301   //match(RegL);
4302   format %{ "[$reg]" %}
4303   interface(MEMORY_INTER) %{
4304     base(0xE);   // R_SP
4305     index(0x0);
4306     scale(0x0);
4307     disp($reg);  // Stack Offset
4308   %}
4309 %}
4310 
4311 // Operands for expressing Control Flow
4312 // NOTE:  Label is a predefined operand which should not be redefined in
4313 //        the AD file.  It is generically handled within the ADLC.
4314 
4315 //----------Conditional Branch Operands----------------------------------------
4316 // Comparison Op  - This is the operation of the comparison, and is limited to
4317 //                  the following set of codes:
4318 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4319 //
4320 // Other attributes of the comparison, such as unsignedness, are specified
4321 // by the comparison instruction that sets a condition code flags register.
4322 // That result is represented by a flags operand whose subtype is appropriate
4323 // to the unsignedness (etc.) of the comparison.
4324 //
4325 // Later, the instruction which matches both the Comparison Op (a Bool) and
4326 // the flags (produced by the Cmp) specifies the coding of the comparison op
4327 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4328 
4329 operand cmpOp() %{
4330   match(Bool);
4331 
4332   format %{ "" %}
4333   interface(COND_INTER) %{
4334     equal(0x1);
4335     not_equal(0x9);
4336     less(0x3);
4337     greater_equal(0xB);
4338     less_equal(0x2);
4339     greater(0xA);
4340     overflow(0x7);
4341     no_overflow(0xF);
4342   %}
4343 %}
4344 
4345 // Comparison Op, unsigned
4346 operand cmpOpU() %{
4347   match(Bool);
4348   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4349             n->as_Bool()->_test._test != BoolTest::no_overflow);
4350 
4351   format %{ "u" %}
4352   interface(COND_INTER) %{
4353     equal(0x1);
4354     not_equal(0x9);
4355     less(0x5);
4356     greater_equal(0xD);
4357     less_equal(0x4);
4358     greater(0xC);
4359     overflow(0x7);
4360     no_overflow(0xF);
4361   %}
4362 %}
4363 
4364 // Comparison Op, pointer (same as unsigned)
4365 operand cmpOpP() %{
4366   match(Bool);
4367   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4368             n->as_Bool()->_test._test != BoolTest::no_overflow);
4369 
4370   format %{ "p" %}
4371   interface(COND_INTER) %{
4372     equal(0x1);
4373     not_equal(0x9);
4374     less(0x5);
4375     greater_equal(0xD);
4376     less_equal(0x4);
4377     greater(0xC);
4378     overflow(0x7);
4379     no_overflow(0xF);
4380   %}
4381 %}
4382 
4383 // Comparison Op, branch-register encoding
4384 operand cmpOp_reg() %{
4385   match(Bool);
4386   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4387             n->as_Bool()->_test._test != BoolTest::no_overflow);
4388 
4389   format %{ "" %}
4390   interface(COND_INTER) %{
4391     equal        (0x1);
4392     not_equal    (0x5);
4393     less         (0x3);
4394     greater_equal(0x7);
4395     less_equal   (0x2);
4396     greater      (0x6);
4397     overflow(0x7); // not supported
4398     no_overflow(0xF); // not supported
4399   %}
4400 %}
4401 
4402 // Comparison Code, floating, unordered same as less
4403 operand cmpOpF() %{
4404   match(Bool);
4405   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4406             n->as_Bool()->_test._test != BoolTest::no_overflow);
4407 
4408   format %{ "fl" %}
4409   interface(COND_INTER) %{
4410     equal(0x9);
4411     not_equal(0x1);
4412     less(0x3);
4413     greater_equal(0xB);
4414     less_equal(0xE);
4415     greater(0x6);
4416 
4417     overflow(0x7); // not supported
4418     no_overflow(0xF); // not supported
4419   %}
4420 %}
4421 
4422 // Used by long compare
4423 operand cmpOp_commute() %{
4424   match(Bool);
4425   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4426             n->as_Bool()->_test._test != BoolTest::no_overflow);
4427 
4428   format %{ "" %}
4429   interface(COND_INTER) %{
4430     equal(0x1);
4431     not_equal(0x9);
4432     less(0xA);
4433     greater_equal(0x2);
4434     less_equal(0xB);
4435     greater(0x3);
4436     overflow(0x7);
4437     no_overflow(0xF);
4438   %}
4439 %}
4440 
4441 //----------OPERAND CLASSES----------------------------------------------------
4442 // Operand Classes are groups of operands that are used to simplify
4443 // instruction definitions by not requiring the AD writer to specify separate
4444 // instructions for every form of operand when the instruction accepts
4445 // multiple operand types with the same basic encoding and format.  The classic
4446 // case of this is memory operands.
4447 opclass memory( indirect, indOffset13, indIndex );
4448 opclass indIndexMemory( indIndex );
4449 
4450 //----------PIPELINE-----------------------------------------------------------
4451 pipeline %{
4452 
4453 //----------ATTRIBUTES---------------------------------------------------------
4454 attributes %{
4455   fixed_size_instructions;           // Fixed size instructions
4456   branch_has_delay_slot;             // Branch has delay slot following
4457   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4458   instruction_unit_size = 4;         // An instruction is 4 bytes long
4459   instruction_fetch_unit_size = 16;  // The processor fetches one line
4460   instruction_fetch_units = 1;       // of 16 bytes
4461 
4462   // List of nop instructions
4463   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4464 %}
4465 
4466 //----------RESOURCES----------------------------------------------------------
4467 // Resources are the functional units available to the machine
4468 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4469 
4470 //----------PIPELINE DESCRIPTION-----------------------------------------------
4471 // Pipeline Description specifies the stages in the machine's pipeline
4472 
4473 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4474 
4475 //----------PIPELINE CLASSES---------------------------------------------------
4476 // Pipeline Classes describe the stages in which input and output are
4477 // referenced by the hardware pipeline.
4478 
4479 // Integer ALU reg-reg operation
4480 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4481     single_instruction;
4482     dst   : E(write);
4483     src1  : R(read);
4484     src2  : R(read);
4485     IALU  : R;
4486 %}
4487 
4488 // Integer ALU reg-reg long operation
4489 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4490     instruction_count(2);
4491     dst   : E(write);
4492     src1  : R(read);
4493     src2  : R(read);
4494     IALU  : R;
4495     IALU  : R;
4496 %}
4497 
4498 // Integer ALU reg-reg long dependent operation
4499 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4500     instruction_count(1); multiple_bundles;
4501     dst   : E(write);
4502     src1  : R(read);
4503     src2  : R(read);
4504     cr    : E(write);
4505     IALU  : R(2);
4506 %}
4507 
4508 // Integer ALU reg-imm operaion
4509 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4510     single_instruction;
4511     dst   : E(write);
4512     src1  : R(read);
4513     IALU  : R;
4514 %}
4515 
4516 // Integer ALU reg-reg operation with condition code
4517 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4518     single_instruction;
4519     dst   : E(write);
4520     cr    : E(write);
4521     src1  : R(read);
4522     src2  : R(read);
4523     IALU  : R;
4524 %}
4525 
4526 // Integer ALU reg-imm operation with condition code
4527 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4528     single_instruction;
4529     dst   : E(write);
4530     cr    : E(write);
4531     src1  : R(read);
4532     IALU  : R;
4533 %}
4534 
4535 // Integer ALU zero-reg operation
4536 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4537     single_instruction;
4538     dst   : E(write);
4539     src2  : R(read);
4540     IALU  : R;
4541 %}
4542 
4543 // Integer ALU zero-reg operation with condition code only
4544 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4545     single_instruction;
4546     cr    : E(write);
4547     src   : R(read);
4548     IALU  : R;
4549 %}
4550 
4551 // Integer ALU reg-reg operation with condition code only
4552 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4553     single_instruction;
4554     cr    : E(write);
4555     src1  : R(read);
4556     src2  : R(read);
4557     IALU  : R;
4558 %}
4559 
4560 // Integer ALU reg-imm operation with condition code only
4561 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4562     single_instruction;
4563     cr    : E(write);
4564     src1  : R(read);
4565     IALU  : R;
4566 %}
4567 
4568 // Integer ALU reg-reg-zero operation with condition code only
4569 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4570     single_instruction;
4571     cr    : E(write);
4572     src1  : R(read);
4573     src2  : R(read);
4574     IALU  : R;
4575 %}
4576 
4577 // Integer ALU reg-imm-zero operation with condition code only
4578 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4579     single_instruction;
4580     cr    : E(write);
4581     src1  : R(read);
4582     IALU  : R;
4583 %}
4584 
4585 // Integer ALU reg-reg operation with condition code, src1 modified
4586 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4587     single_instruction;
4588     cr    : E(write);
4589     src1  : E(write);
4590     src1  : R(read);
4591     src2  : R(read);
4592     IALU  : R;
4593 %}
4594 
4595 // Integer ALU reg-imm operation with condition code, src1 modified
4596 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4597     single_instruction;
4598     cr    : E(write);
4599     src1  : E(write);
4600     src1  : R(read);
4601     IALU  : R;
4602 %}
4603 
4604 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4605     multiple_bundles;
4606     dst   : E(write)+4;
4607     cr    : E(write);
4608     src1  : R(read);
4609     src2  : R(read);
4610     IALU  : R(3);
4611     BR    : R(2);
4612 %}
4613 
4614 // Integer ALU operation
4615 pipe_class ialu_none(iRegI dst) %{
4616     single_instruction;
4617     dst   : E(write);
4618     IALU  : R;
4619 %}
4620 
4621 // Integer ALU reg operation
4622 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4623     single_instruction; may_have_no_code;
4624     dst   : E(write);
4625     src   : R(read);
4626     IALU  : R;
4627 %}
4628 
4629 // Integer ALU reg conditional operation
4630 // This instruction has a 1 cycle stall, and cannot execute
4631 // in the same cycle as the instruction setting the condition
4632 // code. We kludge this by pretending to read the condition code
4633 // 1 cycle earlier, and by marking the functional units as busy
4634 // for 2 cycles with the result available 1 cycle later than
4635 // is really the case.
4636 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4637     single_instruction;
4638     op2_out : C(write);
4639     op1     : R(read);
4640     cr      : R(read);       // This is really E, with a 1 cycle stall
4641     BR      : R(2);
4642     MS      : R(2);
4643 %}
4644 
4645 #ifdef _LP64
4646 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4647     instruction_count(1); multiple_bundles;
4648     dst     : C(write)+1;
4649     src     : R(read)+1;
4650     IALU    : R(1);
4651     BR      : E(2);
4652     MS      : E(2);
4653 %}
4654 #endif
4655 
4656 // Integer ALU reg operation
4657 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4658     single_instruction; may_have_no_code;
4659     dst   : E(write);
4660     src   : R(read);
4661     IALU  : R;
4662 %}
4663 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4664     single_instruction; may_have_no_code;
4665     dst   : E(write);
4666     src   : R(read);
4667     IALU  : R;
4668 %}
4669 
4670 // Two integer ALU reg operations
4671 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4672     instruction_count(2);
4673     dst   : E(write);
4674     src   : R(read);
4675     A0    : R;
4676     A1    : R;
4677 %}
4678 
4679 // Two integer ALU reg operations
4680 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4681     instruction_count(2); may_have_no_code;
4682     dst   : E(write);
4683     src   : R(read);
4684     A0    : R;
4685     A1    : R;
4686 %}
4687 
4688 // Integer ALU imm operation
4689 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4690     single_instruction;
4691     dst   : E(write);
4692     IALU  : R;
4693 %}
4694 
4695 // Integer ALU reg-reg with carry operation
4696 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4697     single_instruction;
4698     dst   : E(write);
4699     src1  : R(read);
4700     src2  : R(read);
4701     IALU  : R;
4702 %}
4703 
4704 // Integer ALU cc operation
4705 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4706     single_instruction;
4707     dst   : E(write);
4708     cc    : R(read);
4709     IALU  : R;
4710 %}
4711 
4712 // Integer ALU cc / second IALU operation
4713 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4714     instruction_count(1); multiple_bundles;
4715     dst   : E(write)+1;
4716     src   : R(read);
4717     IALU  : R;
4718 %}
4719 
4720 // Integer ALU cc / second IALU operation
4721 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4722     instruction_count(1); multiple_bundles;
4723     dst   : E(write)+1;
4724     p     : R(read);
4725     q     : R(read);
4726     IALU  : R;
4727 %}
4728 
4729 // Integer ALU hi-lo-reg operation
4730 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4731     instruction_count(1); multiple_bundles;
4732     dst   : E(write)+1;
4733     IALU  : R(2);
4734 %}
4735 
4736 // Float ALU hi-lo-reg operation (with temp)
4737 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4738     instruction_count(1); multiple_bundles;
4739     dst   : E(write)+1;
4740     IALU  : R(2);
4741 %}
4742 
4743 // Long Constant
4744 pipe_class loadConL( iRegL dst, immL src ) %{
4745     instruction_count(2); multiple_bundles;
4746     dst   : E(write)+1;
4747     IALU  : R(2);
4748     IALU  : R(2);
4749 %}
4750 
4751 // Pointer Constant
4752 pipe_class loadConP( iRegP dst, immP src ) %{
4753     instruction_count(0); multiple_bundles;
4754     fixed_latency(6);
4755 %}
4756 
4757 // Polling Address
4758 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4759 #ifdef _LP64
4760     instruction_count(0); multiple_bundles;
4761     fixed_latency(6);
4762 #else
4763     dst   : E(write);
4764     IALU  : R;
4765 #endif
4766 %}
4767 
4768 // Long Constant small
4769 pipe_class loadConLlo( iRegL dst, immL src ) %{
4770     instruction_count(2);
4771     dst   : E(write);
4772     IALU  : R;
4773     IALU  : R;
4774 %}
4775 
4776 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4777 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4778     instruction_count(1); multiple_bundles;
4779     src   : R(read);
4780     dst   : M(write)+1;
4781     IALU  : R;
4782     MS    : E;
4783 %}
4784 
4785 // Integer ALU nop operation
4786 pipe_class ialu_nop() %{
4787     single_instruction;
4788     IALU  : R;
4789 %}
4790 
4791 // Integer ALU nop operation
4792 pipe_class ialu_nop_A0() %{
4793     single_instruction;
4794     A0    : R;
4795 %}
4796 
4797 // Integer ALU nop operation
4798 pipe_class ialu_nop_A1() %{
4799     single_instruction;
4800     A1    : R;
4801 %}
4802 
4803 // Integer Multiply reg-reg operation
4804 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4805     single_instruction;
4806     dst   : E(write);
4807     src1  : R(read);
4808     src2  : R(read);
4809     MS    : R(5);
4810 %}
4811 
4812 // Integer Multiply reg-imm operation
4813 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4814     single_instruction;
4815     dst   : E(write);
4816     src1  : R(read);
4817     MS    : R(5);
4818 %}
4819 
4820 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4821     single_instruction;
4822     dst   : E(write)+4;
4823     src1  : R(read);
4824     src2  : R(read);
4825     MS    : R(6);
4826 %}
4827 
4828 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4829     single_instruction;
4830     dst   : E(write)+4;
4831     src1  : R(read);
4832     MS    : R(6);
4833 %}
4834 
4835 // Integer Divide reg-reg
4836 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4837     instruction_count(1); multiple_bundles;
4838     dst   : E(write);
4839     temp  : E(write);
4840     src1  : R(read);
4841     src2  : R(read);
4842     temp  : R(read);
4843     MS    : R(38);
4844 %}
4845 
4846 // Integer Divide reg-imm
4847 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4848     instruction_count(1); multiple_bundles;
4849     dst   : E(write);
4850     temp  : E(write);
4851     src1  : R(read);
4852     temp  : R(read);
4853     MS    : R(38);
4854 %}
4855 
4856 // Long Divide
4857 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4858     dst  : E(write)+71;
4859     src1 : R(read);
4860     src2 : R(read)+1;
4861     MS   : R(70);
4862 %}
4863 
4864 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4865     dst  : E(write)+71;
4866     src1 : R(read);
4867     MS   : R(70);
4868 %}
4869 
4870 // Floating Point Add Float
4871 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4872     single_instruction;
4873     dst   : X(write);
4874     src1  : E(read);
4875     src2  : E(read);
4876     FA    : R;
4877 %}
4878 
4879 // Floating Point Add Double
4880 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4881     single_instruction;
4882     dst   : X(write);
4883     src1  : E(read);
4884     src2  : E(read);
4885     FA    : R;
4886 %}
4887 
4888 // Floating Point Conditional Move based on integer flags
4889 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4890     single_instruction;
4891     dst   : X(write);
4892     src   : E(read);
4893     cr    : R(read);
4894     FA    : R(2);
4895     BR    : R(2);
4896 %}
4897 
4898 // Floating Point Conditional Move based on integer flags
4899 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4900     single_instruction;
4901     dst   : X(write);
4902     src   : E(read);
4903     cr    : R(read);
4904     FA    : R(2);
4905     BR    : R(2);
4906 %}
4907 
4908 // Floating Point Multiply Float
4909 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4910     single_instruction;
4911     dst   : X(write);
4912     src1  : E(read);
4913     src2  : E(read);
4914     FM    : R;
4915 %}
4916 
4917 // Floating Point Multiply Double
4918 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4919     single_instruction;
4920     dst   : X(write);
4921     src1  : E(read);
4922     src2  : E(read);
4923     FM    : R;
4924 %}
4925 
4926 // Floating Point Divide Float
4927 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4928     single_instruction;
4929     dst   : X(write);
4930     src1  : E(read);
4931     src2  : E(read);
4932     FM    : R;
4933     FDIV  : C(14);
4934 %}
4935 
4936 // Floating Point Divide Double
4937 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4938     single_instruction;
4939     dst   : X(write);
4940     src1  : E(read);
4941     src2  : E(read);
4942     FM    : R;
4943     FDIV  : C(17);
4944 %}
4945 
4946 // Floating Point Move/Negate/Abs Float
4947 pipe_class faddF_reg(regF dst, regF src) %{
4948     single_instruction;
4949     dst   : W(write);
4950     src   : E(read);
4951     FA    : R(1);
4952 %}
4953 
4954 // Floating Point Move/Negate/Abs Double
4955 pipe_class faddD_reg(regD dst, regD src) %{
4956     single_instruction;
4957     dst   : W(write);
4958     src   : E(read);
4959     FA    : R;
4960 %}
4961 
4962 // Floating Point Convert F->D
4963 pipe_class fcvtF2D(regD dst, regF src) %{
4964     single_instruction;
4965     dst   : X(write);
4966     src   : E(read);
4967     FA    : R;
4968 %}
4969 
4970 // Floating Point Convert I->D
4971 pipe_class fcvtI2D(regD dst, regF src) %{
4972     single_instruction;
4973     dst   : X(write);
4974     src   : E(read);
4975     FA    : R;
4976 %}
4977 
4978 // Floating Point Convert LHi->D
4979 pipe_class fcvtLHi2D(regD dst, regD src) %{
4980     single_instruction;
4981     dst   : X(write);
4982     src   : E(read);
4983     FA    : R;
4984 %}
4985 
4986 // Floating Point Convert L->D
4987 pipe_class fcvtL2D(regD dst, regF src) %{
4988     single_instruction;
4989     dst   : X(write);
4990     src   : E(read);
4991     FA    : R;
4992 %}
4993 
4994 // Floating Point Convert L->F
4995 pipe_class fcvtL2F(regD dst, regF src) %{
4996     single_instruction;
4997     dst   : X(write);
4998     src   : E(read);
4999     FA    : R;
5000 %}
5001 
5002 // Floating Point Convert D->F
5003 pipe_class fcvtD2F(regD dst, regF src) %{
5004     single_instruction;
5005     dst   : X(write);
5006     src   : E(read);
5007     FA    : R;
5008 %}
5009 
5010 // Floating Point Convert I->L
5011 pipe_class fcvtI2L(regD dst, regF src) %{
5012     single_instruction;
5013     dst   : X(write);
5014     src   : E(read);
5015     FA    : R;
5016 %}
5017 
5018 // Floating Point Convert D->F
5019 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
5020     instruction_count(1); multiple_bundles;
5021     dst   : X(write)+6;
5022     src   : E(read);
5023     FA    : R;
5024 %}
5025 
5026 // Floating Point Convert D->L
5027 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
5028     instruction_count(1); multiple_bundles;
5029     dst   : X(write)+6;
5030     src   : E(read);
5031     FA    : R;
5032 %}
5033 
5034 // Floating Point Convert F->I
5035 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
5036     instruction_count(1); multiple_bundles;
5037     dst   : X(write)+6;
5038     src   : E(read);
5039     FA    : R;
5040 %}
5041 
5042 // Floating Point Convert F->L
5043 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
5044     instruction_count(1); multiple_bundles;
5045     dst   : X(write)+6;
5046     src   : E(read);
5047     FA    : R;
5048 %}
5049 
5050 // Floating Point Convert I->F
5051 pipe_class fcvtI2F(regF dst, regF src) %{
5052     single_instruction;
5053     dst   : X(write);
5054     src   : E(read);
5055     FA    : R;
5056 %}
5057 
5058 // Floating Point Compare
5059 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
5060     single_instruction;
5061     cr    : X(write);
5062     src1  : E(read);
5063     src2  : E(read);
5064     FA    : R;
5065 %}
5066 
5067 // Floating Point Compare
5068 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5069     single_instruction;
5070     cr    : X(write);
5071     src1  : E(read);
5072     src2  : E(read);
5073     FA    : R;
5074 %}
5075 
5076 // Floating Add Nop
5077 pipe_class fadd_nop() %{
5078     single_instruction;
5079     FA  : R;
5080 %}
5081 
5082 // Integer Store to Memory
5083 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5084     single_instruction;
5085     mem   : R(read);
5086     src   : C(read);
5087     MS    : R;
5088 %}
5089 
5090 // Integer Store to Memory
5091 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5092     single_instruction;
5093     mem   : R(read);
5094     src   : C(read);
5095     MS    : R;
5096 %}
5097 
5098 // Integer Store Zero to Memory
5099 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5100     single_instruction;
5101     mem   : R(read);
5102     MS    : R;
5103 %}
5104 
5105 // Special Stack Slot Store
5106 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5107     single_instruction;
5108     stkSlot : R(read);
5109     src     : C(read);
5110     MS      : R;
5111 %}
5112 
5113 // Special Stack Slot Store
5114 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5115     instruction_count(2); multiple_bundles;
5116     stkSlot : R(read);
5117     src     : C(read);
5118     MS      : R(2);
5119 %}
5120 
5121 // Float Store
5122 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5123     single_instruction;
5124     mem : R(read);
5125     src : C(read);
5126     MS  : R;
5127 %}
5128 
5129 // Float Store
5130 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5131     single_instruction;
5132     mem : R(read);
5133     MS  : R;
5134 %}
5135 
5136 // Double Store
5137 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5138     instruction_count(1);
5139     mem : R(read);
5140     src : C(read);
5141     MS  : R;
5142 %}
5143 
5144 // Double Store
5145 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5146     single_instruction;
5147     mem : R(read);
5148     MS  : R;
5149 %}
5150 
5151 // Special Stack Slot Float Store
5152 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5153     single_instruction;
5154     stkSlot : R(read);
5155     src     : C(read);
5156     MS      : R;
5157 %}
5158 
5159 // Special Stack Slot Double Store
5160 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5161     single_instruction;
5162     stkSlot : R(read);
5163     src     : C(read);
5164     MS      : R;
5165 %}
5166 
5167 // Integer Load (when sign bit propagation not needed)
5168 pipe_class iload_mem(iRegI dst, memory mem) %{
5169     single_instruction;
5170     mem : R(read);
5171     dst : C(write);
5172     MS  : R;
5173 %}
5174 
5175 // Integer Load from stack operand
5176 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5177     single_instruction;
5178     mem : R(read);
5179     dst : C(write);
5180     MS  : R;
5181 %}
5182 
5183 // Integer Load (when sign bit propagation or masking is needed)
5184 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5185     single_instruction;
5186     mem : R(read);
5187     dst : M(write);
5188     MS  : R;
5189 %}
5190 
5191 // Float Load
5192 pipe_class floadF_mem(regF dst, memory mem) %{
5193     single_instruction;
5194     mem : R(read);
5195     dst : M(write);
5196     MS  : R;
5197 %}
5198 
5199 // Float Load
5200 pipe_class floadD_mem(regD dst, memory mem) %{
5201     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5202     mem : R(read);
5203     dst : M(write);
5204     MS  : R;
5205 %}
5206 
5207 // Float Load
5208 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5209     single_instruction;
5210     stkSlot : R(read);
5211     dst : M(write);
5212     MS  : R;
5213 %}
5214 
5215 // Float Load
5216 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5217     single_instruction;
5218     stkSlot : R(read);
5219     dst : M(write);
5220     MS  : R;
5221 %}
5222 
5223 // Memory Nop
5224 pipe_class mem_nop() %{
5225     single_instruction;
5226     MS  : R;
5227 %}
5228 
5229 pipe_class sethi(iRegP dst, immI src) %{
5230     single_instruction;
5231     dst  : E(write);
5232     IALU : R;
5233 %}
5234 
5235 pipe_class loadPollP(iRegP poll) %{
5236     single_instruction;
5237     poll : R(read);
5238     MS   : R;
5239 %}
5240 
5241 pipe_class br(Universe br, label labl) %{
5242     single_instruction_with_delay_slot;
5243     BR  : R;
5244 %}
5245 
5246 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5247     single_instruction_with_delay_slot;
5248     cr    : E(read);
5249     BR    : R;
5250 %}
5251 
5252 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5253     single_instruction_with_delay_slot;
5254     op1 : E(read);
5255     BR  : R;
5256     MS  : R;
5257 %}
5258 
5259 // Compare and branch
5260 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5261     instruction_count(2); has_delay_slot;
5262     cr    : E(write);
5263     src1  : R(read);
5264     src2  : R(read);
5265     IALU  : R;
5266     BR    : R;
5267 %}
5268 
5269 // Compare and branch
5270 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5271     instruction_count(2); has_delay_slot;
5272     cr    : E(write);
5273     src1  : R(read);
5274     IALU  : R;
5275     BR    : R;
5276 %}
5277 
5278 // Compare and branch using cbcond
5279 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5280     single_instruction;
5281     src1  : E(read);
5282     src2  : E(read);
5283     IALU  : R;
5284     BR    : R;
5285 %}
5286 
5287 // Compare and branch using cbcond
5288 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5289     single_instruction;
5290     src1  : E(read);
5291     IALU  : R;
5292     BR    : R;
5293 %}
5294 
5295 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5296     single_instruction_with_delay_slot;
5297     cr    : E(read);
5298     BR    : R;
5299 %}
5300 
5301 pipe_class br_nop() %{
5302     single_instruction;
5303     BR  : R;
5304 %}
5305 
5306 pipe_class simple_call(method meth) %{
5307     instruction_count(2); multiple_bundles; force_serialization;
5308     fixed_latency(100);
5309     BR  : R(1);
5310     MS  : R(1);
5311     A0  : R(1);
5312 %}
5313 
5314 pipe_class compiled_call(method meth) %{
5315     instruction_count(1); multiple_bundles; force_serialization;
5316     fixed_latency(100);
5317     MS  : R(1);
5318 %}
5319 
5320 pipe_class call(method meth) %{
5321     instruction_count(0); multiple_bundles; force_serialization;
5322     fixed_latency(100);
5323 %}
5324 
5325 pipe_class tail_call(Universe ignore, label labl) %{
5326     single_instruction; has_delay_slot;
5327     fixed_latency(100);
5328     BR  : R(1);
5329     MS  : R(1);
5330 %}
5331 
5332 pipe_class ret(Universe ignore) %{
5333     single_instruction; has_delay_slot;
5334     BR  : R(1);
5335     MS  : R(1);
5336 %}
5337 
5338 pipe_class ret_poll(g3RegP poll) %{
5339     instruction_count(3); has_delay_slot;
5340     poll : E(read);
5341     MS   : R;
5342 %}
5343 
5344 // The real do-nothing guy
5345 pipe_class empty( ) %{
5346     instruction_count(0);
5347 %}
5348 
5349 pipe_class long_memory_op() %{
5350     instruction_count(0); multiple_bundles; force_serialization;
5351     fixed_latency(25);
5352     MS  : R(1);
5353 %}
5354 
5355 // Check-cast
5356 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5357     array : R(read);
5358     match  : R(read);
5359     IALU   : R(2);
5360     BR     : R(2);
5361     MS     : R;
5362 %}
5363 
5364 // Convert FPU flags into +1,0,-1
5365 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5366     src1  : E(read);
5367     src2  : E(read);
5368     dst   : E(write);
5369     FA    : R;
5370     MS    : R(2);
5371     BR    : R(2);
5372 %}
5373 
5374 // Compare for p < q, and conditionally add y
5375 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5376     p     : E(read);
5377     q     : E(read);
5378     y     : E(read);
5379     IALU  : R(3)
5380 %}
5381 
5382 // Perform a compare, then move conditionally in a branch delay slot.
5383 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5384     src2   : E(read);
5385     srcdst : E(read);
5386     IALU   : R;
5387     BR     : R;
5388 %}
5389 
5390 // Define the class for the Nop node
5391 define %{
5392    MachNop = ialu_nop;
5393 %}
5394 
5395 %}
5396 
5397 //----------INSTRUCTIONS-------------------------------------------------------
5398 
5399 //------------Special Stack Slot instructions - no match rules-----------------
5400 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5401   // No match rule to avoid chain rule match.
5402   effect(DEF dst, USE src);
5403   ins_cost(MEMORY_REF_COST);
5404   size(4);
5405   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5406   opcode(Assembler::ldf_op3);
5407   ins_encode(simple_form3_mem_reg(src, dst));
5408   ins_pipe(floadF_stk);
5409 %}
5410 
5411 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5412   // No match rule to avoid chain rule match.
5413   effect(DEF dst, USE src);
5414   ins_cost(MEMORY_REF_COST);
5415   size(4);
5416   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5417   opcode(Assembler::lddf_op3);
5418   ins_encode(simple_form3_mem_reg(src, dst));
5419   ins_pipe(floadD_stk);
5420 %}
5421 
5422 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5423   // No match rule to avoid chain rule match.
5424   effect(DEF dst, USE src);
5425   ins_cost(MEMORY_REF_COST);
5426   size(4);
5427   format %{ "STF    $src,$dst\t! regF to stkI" %}
5428   opcode(Assembler::stf_op3);
5429   ins_encode(simple_form3_mem_reg(dst, src));
5430   ins_pipe(fstoreF_stk_reg);
5431 %}
5432 
5433 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5434   // No match rule to avoid chain rule match.
5435   effect(DEF dst, USE src);
5436   ins_cost(MEMORY_REF_COST);
5437   size(4);
5438   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5439   opcode(Assembler::stdf_op3);
5440   ins_encode(simple_form3_mem_reg(dst, src));
5441   ins_pipe(fstoreD_stk_reg);
5442 %}
5443 
5444 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5445   effect(DEF dst, USE src);
5446   ins_cost(MEMORY_REF_COST*2);
5447   size(8);
5448   format %{ "STW    $src,$dst.hi\t! long\n\t"
5449             "STW    R_G0,$dst.lo" %}
5450   opcode(Assembler::stw_op3);
5451   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5452   ins_pipe(lstoreI_stk_reg);
5453 %}
5454 
5455 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5456   // No match rule to avoid chain rule match.
5457   effect(DEF dst, USE src);
5458   ins_cost(MEMORY_REF_COST);
5459   size(4);
5460   format %{ "STX    $src,$dst\t! regL to stkD" %}
5461   opcode(Assembler::stx_op3);
5462   ins_encode(simple_form3_mem_reg( dst, src ) );
5463   ins_pipe(istore_stk_reg);
5464 %}
5465 
5466 //---------- Chain stack slots between similar types --------
5467 
5468 // Load integer from stack slot
5469 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5470   match(Set dst src);
5471   ins_cost(MEMORY_REF_COST);
5472 
5473   size(4);
5474   format %{ "LDUW   $src,$dst\t!stk" %}
5475   opcode(Assembler::lduw_op3);
5476   ins_encode(simple_form3_mem_reg( src, dst ) );
5477   ins_pipe(iload_mem);
5478 %}
5479 
5480 // Store integer to stack slot
5481 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5482   match(Set dst src);
5483   ins_cost(MEMORY_REF_COST);
5484 
5485   size(4);
5486   format %{ "STW    $src,$dst\t!stk" %}
5487   opcode(Assembler::stw_op3);
5488   ins_encode(simple_form3_mem_reg( dst, src ) );
5489   ins_pipe(istore_mem_reg);
5490 %}
5491 
5492 // Load long from stack slot
5493 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5494   match(Set dst src);
5495 
5496   ins_cost(MEMORY_REF_COST);
5497   size(4);
5498   format %{ "LDX    $src,$dst\t! long" %}
5499   opcode(Assembler::ldx_op3);
5500   ins_encode(simple_form3_mem_reg( src, dst ) );
5501   ins_pipe(iload_mem);
5502 %}
5503 
5504 // Store long to stack slot
5505 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5506   match(Set dst src);
5507 
5508   ins_cost(MEMORY_REF_COST);
5509   size(4);
5510   format %{ "STX    $src,$dst\t! long" %}
5511   opcode(Assembler::stx_op3);
5512   ins_encode(simple_form3_mem_reg( dst, src ) );
5513   ins_pipe(istore_mem_reg);
5514 %}
5515 
5516 #ifdef _LP64
5517 // Load pointer from stack slot, 64-bit encoding
5518 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5519   match(Set dst src);
5520   ins_cost(MEMORY_REF_COST);
5521   size(4);
5522   format %{ "LDX    $src,$dst\t!ptr" %}
5523   opcode(Assembler::ldx_op3);
5524   ins_encode(simple_form3_mem_reg( src, dst ) );
5525   ins_pipe(iload_mem);
5526 %}
5527 
5528 // Store pointer to stack slot
5529 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5530   match(Set dst src);
5531   ins_cost(MEMORY_REF_COST);
5532   size(4);
5533   format %{ "STX    $src,$dst\t!ptr" %}
5534   opcode(Assembler::stx_op3);
5535   ins_encode(simple_form3_mem_reg( dst, src ) );
5536   ins_pipe(istore_mem_reg);
5537 %}
5538 #else // _LP64
5539 // Load pointer from stack slot, 32-bit encoding
5540 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5541   match(Set dst src);
5542   ins_cost(MEMORY_REF_COST);
5543   format %{ "LDUW   $src,$dst\t!ptr" %}
5544   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5545   ins_encode(simple_form3_mem_reg( src, dst ) );
5546   ins_pipe(iload_mem);
5547 %}
5548 
5549 // Store pointer to stack slot
5550 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5551   match(Set dst src);
5552   ins_cost(MEMORY_REF_COST);
5553   format %{ "STW    $src,$dst\t!ptr" %}
5554   opcode(Assembler::stw_op3, Assembler::ldst_op);
5555   ins_encode(simple_form3_mem_reg( dst, src ) );
5556   ins_pipe(istore_mem_reg);
5557 %}
5558 #endif // _LP64
5559 
5560 //------------Special Nop instructions for bundling - no match rules-----------
5561 // Nop using the A0 functional unit
5562 instruct Nop_A0() %{
5563   ins_cost(0);
5564 
5565   format %{ "NOP    ! Alu Pipeline" %}
5566   opcode(Assembler::or_op3, Assembler::arith_op);
5567   ins_encode( form2_nop() );
5568   ins_pipe(ialu_nop_A0);
5569 %}
5570 
5571 // Nop using the A1 functional unit
5572 instruct Nop_A1( ) %{
5573   ins_cost(0);
5574 
5575   format %{ "NOP    ! Alu Pipeline" %}
5576   opcode(Assembler::or_op3, Assembler::arith_op);
5577   ins_encode( form2_nop() );
5578   ins_pipe(ialu_nop_A1);
5579 %}
5580 
5581 // Nop using the memory functional unit
5582 instruct Nop_MS( ) %{
5583   ins_cost(0);
5584 
5585   format %{ "NOP    ! Memory Pipeline" %}
5586   ins_encode( emit_mem_nop );
5587   ins_pipe(mem_nop);
5588 %}
5589 
5590 // Nop using the floating add functional unit
5591 instruct Nop_FA( ) %{
5592   ins_cost(0);
5593 
5594   format %{ "NOP    ! Floating Add Pipeline" %}
5595   ins_encode( emit_fadd_nop );
5596   ins_pipe(fadd_nop);
5597 %}
5598 
5599 // Nop using the branch functional unit
5600 instruct Nop_BR( ) %{
5601   ins_cost(0);
5602 
5603   format %{ "NOP    ! Branch Pipeline" %}
5604   ins_encode( emit_br_nop );
5605   ins_pipe(br_nop);
5606 %}
5607 
5608 //----------Load/Store/Move Instructions---------------------------------------
5609 //----------Load Instructions--------------------------------------------------
5610 // Load Byte (8bit signed)
5611 instruct loadB(iRegI dst, memory mem) %{
5612   match(Set dst (LoadB mem));
5613   ins_cost(MEMORY_REF_COST);
5614 
5615   size(4);
5616   format %{ "LDSB   $mem,$dst\t! byte" %}
5617   ins_encode %{
5618     __ ldsb($mem$$Address, $dst$$Register);
5619   %}
5620   ins_pipe(iload_mask_mem);
5621 %}
5622 
5623 // Load Byte (8bit signed) into a Long Register
5624 instruct loadB2L(iRegL dst, memory mem) %{
5625   match(Set dst (ConvI2L (LoadB mem)));
5626   ins_cost(MEMORY_REF_COST);
5627 
5628   size(4);
5629   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5630   ins_encode %{
5631     __ ldsb($mem$$Address, $dst$$Register);
5632   %}
5633   ins_pipe(iload_mask_mem);
5634 %}
5635 
5636 // Load Unsigned Byte (8bit UNsigned) into an int reg
5637 instruct loadUB(iRegI dst, memory mem) %{
5638   match(Set dst (LoadUB mem));
5639   ins_cost(MEMORY_REF_COST);
5640 
5641   size(4);
5642   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5643   ins_encode %{
5644     __ ldub($mem$$Address, $dst$$Register);
5645   %}
5646   ins_pipe(iload_mem);
5647 %}
5648 
5649 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5650 instruct loadUB2L(iRegL dst, memory mem) %{
5651   match(Set dst (ConvI2L (LoadUB mem)));
5652   ins_cost(MEMORY_REF_COST);
5653 
5654   size(4);
5655   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5656   ins_encode %{
5657     __ ldub($mem$$Address, $dst$$Register);
5658   %}
5659   ins_pipe(iload_mem);
5660 %}
5661 
5662 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5663 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5664   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5665   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5666 
5667   size(2*4);
5668   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5669             "AND    $dst,$mask,$dst" %}
5670   ins_encode %{
5671     __ ldub($mem$$Address, $dst$$Register);
5672     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5673   %}
5674   ins_pipe(iload_mem);
5675 %}
5676 
5677 // Load Short (16bit signed)
5678 instruct loadS(iRegI dst, memory mem) %{
5679   match(Set dst (LoadS mem));
5680   ins_cost(MEMORY_REF_COST);
5681 
5682   size(4);
5683   format %{ "LDSH   $mem,$dst\t! short" %}
5684   ins_encode %{
5685     __ ldsh($mem$$Address, $dst$$Register);
5686   %}
5687   ins_pipe(iload_mask_mem);
5688 %}
5689 
5690 // Load Short (16 bit signed) to Byte (8 bit signed)
5691 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5692   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5693   ins_cost(MEMORY_REF_COST);
5694 
5695   size(4);
5696 
5697   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5698   ins_encode %{
5699     __ ldsb($mem$$Address, $dst$$Register, 1);
5700   %}
5701   ins_pipe(iload_mask_mem);
5702 %}
5703 
5704 // Load Short (16bit signed) into a Long Register
5705 instruct loadS2L(iRegL dst, memory mem) %{
5706   match(Set dst (ConvI2L (LoadS mem)));
5707   ins_cost(MEMORY_REF_COST);
5708 
5709   size(4);
5710   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5711   ins_encode %{
5712     __ ldsh($mem$$Address, $dst$$Register);
5713   %}
5714   ins_pipe(iload_mask_mem);
5715 %}
5716 
5717 // Load Unsigned Short/Char (16bit UNsigned)
5718 instruct loadUS(iRegI dst, memory mem) %{
5719   match(Set dst (LoadUS mem));
5720   ins_cost(MEMORY_REF_COST);
5721 
5722   size(4);
5723   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5724   ins_encode %{
5725     __ lduh($mem$$Address, $dst$$Register);
5726   %}
5727   ins_pipe(iload_mem);
5728 %}
5729 
5730 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5731 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5732   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5733   ins_cost(MEMORY_REF_COST);
5734 
5735   size(4);
5736   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5737   ins_encode %{
5738     __ ldsb($mem$$Address, $dst$$Register, 1);
5739   %}
5740   ins_pipe(iload_mask_mem);
5741 %}
5742 
5743 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5744 instruct loadUS2L(iRegL dst, memory mem) %{
5745   match(Set dst (ConvI2L (LoadUS mem)));
5746   ins_cost(MEMORY_REF_COST);
5747 
5748   size(4);
5749   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5750   ins_encode %{
5751     __ lduh($mem$$Address, $dst$$Register);
5752   %}
5753   ins_pipe(iload_mem);
5754 %}
5755 
5756 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5757 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5758   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5759   ins_cost(MEMORY_REF_COST);
5760 
5761   size(4);
5762   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5763   ins_encode %{
5764     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5765   %}
5766   ins_pipe(iload_mem);
5767 %}
5768 
5769 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5770 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5771   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5772   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5773 
5774   size(2*4);
5775   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5776             "AND    $dst,$mask,$dst" %}
5777   ins_encode %{
5778     Register Rdst = $dst$$Register;
5779     __ lduh($mem$$Address, Rdst);
5780     __ and3(Rdst, $mask$$constant, Rdst);
5781   %}
5782   ins_pipe(iload_mem);
5783 %}
5784 
5785 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5786 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5787   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5788   effect(TEMP dst, TEMP tmp);
5789   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5790 
5791   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5792             "SET    $mask,$tmp\n\t"
5793             "AND    $dst,$tmp,$dst" %}
5794   ins_encode %{
5795     Register Rdst = $dst$$Register;
5796     Register Rtmp = $tmp$$Register;
5797     __ lduh($mem$$Address, Rdst);
5798     __ set($mask$$constant, Rtmp);
5799     __ and3(Rdst, Rtmp, Rdst);
5800   %}
5801   ins_pipe(iload_mem);
5802 %}
5803 
5804 // Load Integer
5805 instruct loadI(iRegI dst, memory mem) %{
5806   match(Set dst (LoadI mem));
5807   ins_cost(MEMORY_REF_COST);
5808 
5809   size(4);
5810   format %{ "LDUW   $mem,$dst\t! int" %}
5811   ins_encode %{
5812     __ lduw($mem$$Address, $dst$$Register);
5813   %}
5814   ins_pipe(iload_mem);
5815 %}
5816 
5817 // Load Integer to Byte (8 bit signed)
5818 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5819   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5820   ins_cost(MEMORY_REF_COST);
5821 
5822   size(4);
5823 
5824   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5825   ins_encode %{
5826     __ ldsb($mem$$Address, $dst$$Register, 3);
5827   %}
5828   ins_pipe(iload_mask_mem);
5829 %}
5830 
5831 // Load Integer to Unsigned Byte (8 bit UNsigned)
5832 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5833   match(Set dst (AndI (LoadI mem) mask));
5834   ins_cost(MEMORY_REF_COST);
5835 
5836   size(4);
5837 
5838   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5839   ins_encode %{
5840     __ ldub($mem$$Address, $dst$$Register, 3);
5841   %}
5842   ins_pipe(iload_mask_mem);
5843 %}
5844 
5845 // Load Integer to Short (16 bit signed)
5846 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5847   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5848   ins_cost(MEMORY_REF_COST);
5849 
5850   size(4);
5851 
5852   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5853   ins_encode %{
5854     __ ldsh($mem$$Address, $dst$$Register, 2);
5855   %}
5856   ins_pipe(iload_mask_mem);
5857 %}
5858 
5859 // Load Integer to Unsigned Short (16 bit UNsigned)
5860 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5861   match(Set dst (AndI (LoadI mem) mask));
5862   ins_cost(MEMORY_REF_COST);
5863 
5864   size(4);
5865 
5866   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5867   ins_encode %{
5868     __ lduh($mem$$Address, $dst$$Register, 2);
5869   %}
5870   ins_pipe(iload_mask_mem);
5871 %}
5872 
5873 // Load Integer into a Long Register
5874 instruct loadI2L(iRegL dst, memory mem) %{
5875   match(Set dst (ConvI2L (LoadI mem)));
5876   ins_cost(MEMORY_REF_COST);
5877 
5878   size(4);
5879   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5880   ins_encode %{
5881     __ ldsw($mem$$Address, $dst$$Register);
5882   %}
5883   ins_pipe(iload_mask_mem);
5884 %}
5885 
5886 // Load Integer with mask 0xFF into a Long Register
5887 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5888   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5889   ins_cost(MEMORY_REF_COST);
5890 
5891   size(4);
5892   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5893   ins_encode %{
5894     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5895   %}
5896   ins_pipe(iload_mem);
5897 %}
5898 
5899 // Load Integer with mask 0xFFFF into a Long Register
5900 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5901   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5902   ins_cost(MEMORY_REF_COST);
5903 
5904   size(4);
5905   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5906   ins_encode %{
5907     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5908   %}
5909   ins_pipe(iload_mem);
5910 %}
5911 
5912 // Load Integer with a 12-bit mask into a Long Register
5913 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5914   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5915   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5916 
5917   size(2*4);
5918   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5919             "AND    $dst,$mask,$dst" %}
5920   ins_encode %{
5921     Register Rdst = $dst$$Register;
5922     __ lduw($mem$$Address, Rdst);
5923     __ and3(Rdst, $mask$$constant, Rdst);
5924   %}
5925   ins_pipe(iload_mem);
5926 %}
5927 
5928 // Load Integer with a 31-bit mask into a Long Register
5929 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5930   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5931   effect(TEMP dst, TEMP tmp);
5932   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5933 
5934   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5935             "SET    $mask,$tmp\n\t"
5936             "AND    $dst,$tmp,$dst" %}
5937   ins_encode %{
5938     Register Rdst = $dst$$Register;
5939     Register Rtmp = $tmp$$Register;
5940     __ lduw($mem$$Address, Rdst);
5941     __ set($mask$$constant, Rtmp);
5942     __ and3(Rdst, Rtmp, Rdst);
5943   %}
5944   ins_pipe(iload_mem);
5945 %}
5946 
5947 // Load Unsigned Integer into a Long Register
5948 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5949   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5950   ins_cost(MEMORY_REF_COST);
5951 
5952   size(4);
5953   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5954   ins_encode %{
5955     __ lduw($mem$$Address, $dst$$Register);
5956   %}
5957   ins_pipe(iload_mem);
5958 %}
5959 
5960 // Load Long - aligned
5961 instruct loadL(iRegL dst, memory mem ) %{
5962   match(Set dst (LoadL mem));
5963   ins_cost(MEMORY_REF_COST);
5964 
5965   size(4);
5966   format %{ "LDX    $mem,$dst\t! long" %}
5967   ins_encode %{
5968     __ ldx($mem$$Address, $dst$$Register);
5969   %}
5970   ins_pipe(iload_mem);
5971 %}
5972 
5973 // Load Long - UNaligned
5974 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5975   match(Set dst (LoadL_unaligned mem));
5976   effect(KILL tmp);
5977   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5978   size(16);
5979   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5980           "\tLDUW   $mem  ,$dst\n"
5981           "\tSLLX   #32, $dst, $dst\n"
5982           "\tOR     $dst, R_O7, $dst" %}
5983   opcode(Assembler::lduw_op3);
5984   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5985   ins_pipe(iload_mem);
5986 %}
5987 
5988 // Load Range
5989 instruct loadRange(iRegI dst, memory mem) %{
5990   match(Set dst (LoadRange mem));
5991   ins_cost(MEMORY_REF_COST);
5992 
5993   size(4);
5994   format %{ "LDUW   $mem,$dst\t! range" %}
5995   opcode(Assembler::lduw_op3);
5996   ins_encode(simple_form3_mem_reg( mem, dst ) );
5997   ins_pipe(iload_mem);
5998 %}
5999 
6000 // Load Integer into %f register (for fitos/fitod)
6001 instruct loadI_freg(regF dst, memory mem) %{
6002   match(Set dst (LoadI mem));
6003   ins_cost(MEMORY_REF_COST);
6004   size(4);
6005 
6006   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
6007   opcode(Assembler::ldf_op3);
6008   ins_encode(simple_form3_mem_reg( mem, dst ) );
6009   ins_pipe(floadF_mem);
6010 %}
6011 
6012 // Load Pointer
6013 instruct loadP(iRegP dst, memory mem) %{
6014   match(Set dst (LoadP mem));
6015   ins_cost(MEMORY_REF_COST);
6016   size(4);
6017 
6018 #ifndef _LP64
6019   format %{ "LDUW   $mem,$dst\t! ptr" %}
6020   ins_encode %{
6021     __ lduw($mem$$Address, $dst$$Register);
6022   %}
6023 #else
6024   format %{ "LDX    $mem,$dst\t! ptr" %}
6025   ins_encode %{
6026     __ ldx($mem$$Address, $dst$$Register);
6027   %}
6028 #endif
6029   ins_pipe(iload_mem);
6030 %}
6031 
6032 // Load Compressed Pointer
6033 instruct loadN(iRegN dst, memory mem) %{
6034   match(Set dst (LoadN mem));
6035   ins_cost(MEMORY_REF_COST);
6036   size(4);
6037 
6038   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
6039   ins_encode %{
6040     __ lduw($mem$$Address, $dst$$Register);
6041   %}
6042   ins_pipe(iload_mem);
6043 %}
6044 
6045 // Load Klass Pointer
6046 instruct loadKlass(iRegP dst, memory mem) %{
6047   match(Set dst (LoadKlass mem));
6048   ins_cost(MEMORY_REF_COST);
6049   size(4);
6050 
6051 #ifndef _LP64
6052   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
6053   ins_encode %{
6054     __ lduw($mem$$Address, $dst$$Register);
6055   %}
6056 #else
6057   format %{ "LDX    $mem,$dst\t! klass ptr" %}
6058   ins_encode %{
6059     __ ldx($mem$$Address, $dst$$Register);
6060   %}
6061 #endif
6062   ins_pipe(iload_mem);
6063 %}
6064 
6065 // Load narrow Klass Pointer
6066 instruct loadNKlass(iRegN dst, memory mem) %{
6067   match(Set dst (LoadNKlass mem));
6068   ins_cost(MEMORY_REF_COST);
6069   size(4);
6070 
6071   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6072   ins_encode %{
6073     __ lduw($mem$$Address, $dst$$Register);
6074   %}
6075   ins_pipe(iload_mem);
6076 %}
6077 
6078 // Load Double
6079 instruct loadD(regD dst, memory mem) %{
6080   match(Set dst (LoadD mem));
6081   ins_cost(MEMORY_REF_COST);
6082 
6083   size(4);
6084   format %{ "LDDF   $mem,$dst" %}
6085   opcode(Assembler::lddf_op3);
6086   ins_encode(simple_form3_mem_reg( mem, dst ) );
6087   ins_pipe(floadD_mem);
6088 %}
6089 
6090 // Load Double - UNaligned
6091 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6092   match(Set dst (LoadD_unaligned mem));
6093   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6094   size(8);
6095   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6096           "\tLDF    $mem+4,$dst.lo\t!" %}
6097   opcode(Assembler::ldf_op3);
6098   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6099   ins_pipe(iload_mem);
6100 %}
6101 
6102 // Load Float
6103 instruct loadF(regF dst, memory mem) %{
6104   match(Set dst (LoadF mem));
6105   ins_cost(MEMORY_REF_COST);
6106 
6107   size(4);
6108   format %{ "LDF    $mem,$dst" %}
6109   opcode(Assembler::ldf_op3);
6110   ins_encode(simple_form3_mem_reg( mem, dst ) );
6111   ins_pipe(floadF_mem);
6112 %}
6113 
6114 // Load Constant
6115 instruct loadConI( iRegI dst, immI src ) %{
6116   match(Set dst src);
6117   ins_cost(DEFAULT_COST * 3/2);
6118   format %{ "SET    $src,$dst" %}
6119   ins_encode( Set32(src, dst) );
6120   ins_pipe(ialu_hi_lo_reg);
6121 %}
6122 
6123 instruct loadConI13( iRegI dst, immI13 src ) %{
6124   match(Set dst src);
6125 
6126   size(4);
6127   format %{ "MOV    $src,$dst" %}
6128   ins_encode( Set13( src, dst ) );
6129   ins_pipe(ialu_imm);
6130 %}
6131 
6132 #ifndef _LP64
6133 instruct loadConP(iRegP dst, immP con) %{
6134   match(Set dst con);
6135   ins_cost(DEFAULT_COST * 3/2);
6136   format %{ "SET    $con,$dst\t!ptr" %}
6137   ins_encode %{
6138     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6139       intptr_t val = $con$$constant;
6140     if (constant_reloc == relocInfo::oop_type) {
6141       __ set_oop_constant((jobject) val, $dst$$Register);
6142     } else if (constant_reloc == relocInfo::metadata_type) {
6143       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6144     } else {          // non-oop pointers, e.g. card mark base, heap top
6145       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6146       __ set(val, $dst$$Register);
6147     }
6148   %}
6149   ins_pipe(loadConP);
6150 %}
6151 #else
6152 instruct loadConP_set(iRegP dst, immP_set con) %{
6153   match(Set dst con);
6154   ins_cost(DEFAULT_COST * 3/2);
6155   format %{ "SET    $con,$dst\t! ptr" %}
6156   ins_encode %{
6157     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6158       intptr_t val = $con$$constant;
6159     if (constant_reloc == relocInfo::oop_type) {
6160       __ set_oop_constant((jobject) val, $dst$$Register);
6161     } else if (constant_reloc == relocInfo::metadata_type) {
6162       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6163     } else {          // non-oop pointers, e.g. card mark base, heap top
6164       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6165       __ set(val, $dst$$Register);
6166     }
6167   %}
6168   ins_pipe(loadConP);
6169 %}
6170 
6171 instruct loadConP_load(iRegP dst, immP_load con) %{
6172   match(Set dst con);
6173   ins_cost(MEMORY_REF_COST);
6174   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6175   ins_encode %{
6176     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6177     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6178   %}
6179   ins_pipe(loadConP);
6180 %}
6181 
6182 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6183   match(Set dst con);
6184   ins_cost(DEFAULT_COST * 3/2);
6185   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6186   ins_encode %{
6187     if (_opnds[1]->constant_reloc() == relocInfo::metadata_type) {
6188       __ set_metadata_constant((Metadata*)$con$$constant, $dst$$Register);
6189     } else {
6190       __ set($con$$constant, $dst$$Register);
6191     }
6192   %}
6193   ins_pipe(loadConP);
6194 %}
6195 #endif // _LP64
6196 
6197 instruct loadConP0(iRegP dst, immP0 src) %{
6198   match(Set dst src);
6199 
6200   size(4);
6201   format %{ "CLR    $dst\t!ptr" %}
6202   ins_encode %{
6203     __ clr($dst$$Register);
6204   %}
6205   ins_pipe(ialu_imm);
6206 %}
6207 
6208 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6209   match(Set dst src);
6210   ins_cost(DEFAULT_COST);
6211   format %{ "SET    $src,$dst\t!ptr" %}
6212   ins_encode %{
6213     AddressLiteral polling_page(os::get_polling_page());
6214     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6215   %}
6216   ins_pipe(loadConP_poll);
6217 %}
6218 
6219 instruct loadConN0(iRegN dst, immN0 src) %{
6220   match(Set dst src);
6221 
6222   size(4);
6223   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6224   ins_encode %{
6225     __ clr($dst$$Register);
6226   %}
6227   ins_pipe(ialu_imm);
6228 %}
6229 
6230 instruct loadConN(iRegN dst, immN src) %{
6231   match(Set dst src);
6232   ins_cost(DEFAULT_COST * 3/2);
6233   format %{ "SET    $src,$dst\t! compressed ptr" %}
6234   ins_encode %{
6235     Register dst = $dst$$Register;
6236     __ set_narrow_oop((jobject)$src$$constant, dst);
6237   %}
6238   ins_pipe(ialu_hi_lo_reg);
6239 %}
6240 
6241 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6242   match(Set dst src);
6243   ins_cost(DEFAULT_COST * 3/2);
6244   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6245   ins_encode %{
6246     Register dst = $dst$$Register;
6247     __ set_narrow_klass((Klass*)$src$$constant, dst);
6248   %}
6249   ins_pipe(ialu_hi_lo_reg);
6250 %}
6251 
6252 // Materialize long value (predicated by immL_cheap).
6253 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6254   match(Set dst con);
6255   effect(KILL tmp);
6256   ins_cost(DEFAULT_COST * 3);
6257   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6258   ins_encode %{
6259     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6260   %}
6261   ins_pipe(loadConL);
6262 %}
6263 
6264 // Load long value from constant table (predicated by immL_expensive).
6265 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6266   match(Set dst con);
6267   ins_cost(MEMORY_REF_COST);
6268   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6269   ins_encode %{
6270       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6271     __ ldx($constanttablebase, con_offset, $dst$$Register);
6272   %}
6273   ins_pipe(loadConL);
6274 %}
6275 
6276 instruct loadConL0( iRegL dst, immL0 src ) %{
6277   match(Set dst src);
6278   ins_cost(DEFAULT_COST);
6279   size(4);
6280   format %{ "CLR    $dst\t! long" %}
6281   ins_encode( Set13( src, dst ) );
6282   ins_pipe(ialu_imm);
6283 %}
6284 
6285 instruct loadConL13( iRegL dst, immL13 src ) %{
6286   match(Set dst src);
6287   ins_cost(DEFAULT_COST * 2);
6288 
6289   size(4);
6290   format %{ "MOV    $src,$dst\t! long" %}
6291   ins_encode( Set13( src, dst ) );
6292   ins_pipe(ialu_imm);
6293 %}
6294 
6295 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6296   match(Set dst con);
6297   effect(KILL tmp);
6298   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6299   ins_encode %{
6300       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6301     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6302   %}
6303   ins_pipe(loadConFD);
6304 %}
6305 
6306 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6307   match(Set dst con);
6308   effect(KILL tmp);
6309   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6310   ins_encode %{
6311     // XXX This is a quick fix for 6833573.
6312     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6313     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6314     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6315   %}
6316   ins_pipe(loadConFD);
6317 %}
6318 
6319 // Prefetch instructions.
6320 // Must be safe to execute with invalid address (cannot fault).
6321 
6322 instruct prefetchr( memory mem ) %{
6323   match( PrefetchRead mem );
6324   ins_cost(MEMORY_REF_COST);
6325   size(4);
6326 
6327   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6328   opcode(Assembler::prefetch_op3);
6329   ins_encode( form3_mem_prefetch_read( mem ) );
6330   ins_pipe(iload_mem);
6331 %}
6332 
6333 instruct prefetchw( memory mem ) %{
6334   match( PrefetchWrite mem );
6335   ins_cost(MEMORY_REF_COST);
6336   size(4);
6337 
6338   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6339   opcode(Assembler::prefetch_op3);
6340   ins_encode( form3_mem_prefetch_write( mem ) );
6341   ins_pipe(iload_mem);
6342 %}
6343 
6344 // Prefetch instructions for allocation.
6345 
6346 instruct prefetchAlloc( memory mem ) %{
6347   predicate(AllocatePrefetchInstr == 0);
6348   match( PrefetchAllocation mem );
6349   ins_cost(MEMORY_REF_COST);
6350   size(4);
6351 
6352   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6353   opcode(Assembler::prefetch_op3);
6354   ins_encode( form3_mem_prefetch_write( mem ) );
6355   ins_pipe(iload_mem);
6356 %}
6357 
6358 // Use BIS instruction to prefetch for allocation.
6359 // Could fault, need space at the end of TLAB.
6360 instruct prefetchAlloc_bis( iRegP dst ) %{
6361   predicate(AllocatePrefetchInstr == 1);
6362   match( PrefetchAllocation dst );
6363   ins_cost(MEMORY_REF_COST);
6364   size(4);
6365 
6366   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6367   ins_encode %{
6368     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6369   %}
6370   ins_pipe(istore_mem_reg);
6371 %}
6372 
6373 // Next code is used for finding next cache line address to prefetch.
6374 #ifndef _LP64
6375 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6376   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6377   ins_cost(DEFAULT_COST);
6378   size(4);
6379 
6380   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6381   ins_encode %{
6382     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6383   %}
6384   ins_pipe(ialu_reg_imm);
6385 %}
6386 #else
6387 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6388   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6389   ins_cost(DEFAULT_COST);
6390   size(4);
6391 
6392   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6393   ins_encode %{
6394     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6395   %}
6396   ins_pipe(ialu_reg_imm);
6397 %}
6398 #endif
6399 
6400 //----------Store Instructions-------------------------------------------------
6401 // Store Byte
6402 instruct storeB(memory mem, iRegI src) %{
6403   match(Set mem (StoreB mem src));
6404   ins_cost(MEMORY_REF_COST);
6405 
6406   size(4);
6407   format %{ "STB    $src,$mem\t! byte" %}
6408   opcode(Assembler::stb_op3);
6409   ins_encode(simple_form3_mem_reg( mem, src ) );
6410   ins_pipe(istore_mem_reg);
6411 %}
6412 
6413 instruct storeB0(memory mem, immI0 src) %{
6414   match(Set mem (StoreB mem src));
6415   ins_cost(MEMORY_REF_COST);
6416 
6417   size(4);
6418   format %{ "STB    $src,$mem\t! byte" %}
6419   opcode(Assembler::stb_op3);
6420   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6421   ins_pipe(istore_mem_zero);
6422 %}
6423 
6424 instruct storeCM0(memory mem, immI0 src) %{
6425   match(Set mem (StoreCM mem src));
6426   ins_cost(MEMORY_REF_COST);
6427 
6428   size(4);
6429   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6430   opcode(Assembler::stb_op3);
6431   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6432   ins_pipe(istore_mem_zero);
6433 %}
6434 
6435 // Store Char/Short
6436 instruct storeC(memory mem, iRegI src) %{
6437   match(Set mem (StoreC mem src));
6438   ins_cost(MEMORY_REF_COST);
6439 
6440   size(4);
6441   format %{ "STH    $src,$mem\t! short" %}
6442   opcode(Assembler::sth_op3);
6443   ins_encode(simple_form3_mem_reg( mem, src ) );
6444   ins_pipe(istore_mem_reg);
6445 %}
6446 
6447 instruct storeC0(memory mem, immI0 src) %{
6448   match(Set mem (StoreC mem src));
6449   ins_cost(MEMORY_REF_COST);
6450 
6451   size(4);
6452   format %{ "STH    $src,$mem\t! short" %}
6453   opcode(Assembler::sth_op3);
6454   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6455   ins_pipe(istore_mem_zero);
6456 %}
6457 
6458 // Store Integer
6459 instruct storeI(memory mem, iRegI src) %{
6460   match(Set mem (StoreI mem src));
6461   ins_cost(MEMORY_REF_COST);
6462 
6463   size(4);
6464   format %{ "STW    $src,$mem" %}
6465   opcode(Assembler::stw_op3);
6466   ins_encode(simple_form3_mem_reg( mem, src ) );
6467   ins_pipe(istore_mem_reg);
6468 %}
6469 
6470 // Store Long
6471 instruct storeL(memory mem, iRegL src) %{
6472   match(Set mem (StoreL mem src));
6473   ins_cost(MEMORY_REF_COST);
6474   size(4);
6475   format %{ "STX    $src,$mem\t! long" %}
6476   opcode(Assembler::stx_op3);
6477   ins_encode(simple_form3_mem_reg( mem, src ) );
6478   ins_pipe(istore_mem_reg);
6479 %}
6480 
6481 instruct storeI0(memory mem, immI0 src) %{
6482   match(Set mem (StoreI mem src));
6483   ins_cost(MEMORY_REF_COST);
6484 
6485   size(4);
6486   format %{ "STW    $src,$mem" %}
6487   opcode(Assembler::stw_op3);
6488   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6489   ins_pipe(istore_mem_zero);
6490 %}
6491 
6492 instruct storeL0(memory mem, immL0 src) %{
6493   match(Set mem (StoreL mem src));
6494   ins_cost(MEMORY_REF_COST);
6495 
6496   size(4);
6497   format %{ "STX    $src,$mem" %}
6498   opcode(Assembler::stx_op3);
6499   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6500   ins_pipe(istore_mem_zero);
6501 %}
6502 
6503 // Store Integer from float register (used after fstoi)
6504 instruct storeI_Freg(memory mem, regF src) %{
6505   match(Set mem (StoreI mem src));
6506   ins_cost(MEMORY_REF_COST);
6507 
6508   size(4);
6509   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6510   opcode(Assembler::stf_op3);
6511   ins_encode(simple_form3_mem_reg( mem, src ) );
6512   ins_pipe(fstoreF_mem_reg);
6513 %}
6514 
6515 // Store Pointer
6516 instruct storeP(memory dst, sp_ptr_RegP src) %{
6517   match(Set dst (StoreP dst src));
6518   ins_cost(MEMORY_REF_COST);
6519   size(4);
6520 
6521 #ifndef _LP64
6522   format %{ "STW    $src,$dst\t! ptr" %}
6523   opcode(Assembler::stw_op3, 0, REGP_OP);
6524 #else
6525   format %{ "STX    $src,$dst\t! ptr" %}
6526   opcode(Assembler::stx_op3, 0, REGP_OP);
6527 #endif
6528   ins_encode( form3_mem_reg( dst, src ) );
6529   ins_pipe(istore_mem_spORreg);
6530 %}
6531 
6532 instruct storeP0(memory dst, immP0 src) %{
6533   match(Set dst (StoreP dst src));
6534   ins_cost(MEMORY_REF_COST);
6535   size(4);
6536 
6537 #ifndef _LP64
6538   format %{ "STW    $src,$dst\t! ptr" %}
6539   opcode(Assembler::stw_op3, 0, REGP_OP);
6540 #else
6541   format %{ "STX    $src,$dst\t! ptr" %}
6542   opcode(Assembler::stx_op3, 0, REGP_OP);
6543 #endif
6544   ins_encode( form3_mem_reg( dst, R_G0 ) );
6545   ins_pipe(istore_mem_zero);
6546 %}
6547 
6548 // Store Compressed Pointer
6549 instruct storeN(memory dst, iRegN src) %{
6550    match(Set dst (StoreN dst src));
6551    ins_cost(MEMORY_REF_COST);
6552    size(4);
6553 
6554    format %{ "STW    $src,$dst\t! compressed ptr" %}
6555    ins_encode %{
6556      Register base = as_Register($dst$$base);
6557      Register index = as_Register($dst$$index);
6558      Register src = $src$$Register;
6559      if (index != G0) {
6560        __ stw(src, base, index);
6561      } else {
6562        __ stw(src, base, $dst$$disp);
6563      }
6564    %}
6565    ins_pipe(istore_mem_spORreg);
6566 %}
6567 
6568 instruct storeNKlass(memory dst, iRegN src) %{
6569    match(Set dst (StoreNKlass dst src));
6570    ins_cost(MEMORY_REF_COST);
6571    size(4);
6572 
6573    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6574    ins_encode %{
6575      Register base = as_Register($dst$$base);
6576      Register index = as_Register($dst$$index);
6577      Register src = $src$$Register;
6578      if (index != G0) {
6579        __ stw(src, base, index);
6580      } else {
6581        __ stw(src, base, $dst$$disp);
6582      }
6583    %}
6584    ins_pipe(istore_mem_spORreg);
6585 %}
6586 
6587 instruct storeN0(memory dst, immN0 src) %{
6588    match(Set dst (StoreN dst src));
6589    ins_cost(MEMORY_REF_COST);
6590    size(4);
6591 
6592    format %{ "STW    $src,$dst\t! compressed ptr" %}
6593    ins_encode %{
6594      Register base = as_Register($dst$$base);
6595      Register index = as_Register($dst$$index);
6596      if (index != G0) {
6597        __ stw(0, base, index);
6598      } else {
6599        __ stw(0, base, $dst$$disp);
6600      }
6601    %}
6602    ins_pipe(istore_mem_zero);
6603 %}
6604 
6605 // Store Double
6606 instruct storeD( memory mem, regD src) %{
6607   match(Set mem (StoreD mem src));
6608   ins_cost(MEMORY_REF_COST);
6609 
6610   size(4);
6611   format %{ "STDF   $src,$mem" %}
6612   opcode(Assembler::stdf_op3);
6613   ins_encode(simple_form3_mem_reg( mem, src ) );
6614   ins_pipe(fstoreD_mem_reg);
6615 %}
6616 
6617 instruct storeD0( memory mem, immD0 src) %{
6618   match(Set mem (StoreD mem src));
6619   ins_cost(MEMORY_REF_COST);
6620 
6621   size(4);
6622   format %{ "STX    $src,$mem" %}
6623   opcode(Assembler::stx_op3);
6624   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6625   ins_pipe(fstoreD_mem_zero);
6626 %}
6627 
6628 // Store Float
6629 instruct storeF( memory mem, regF src) %{
6630   match(Set mem (StoreF mem src));
6631   ins_cost(MEMORY_REF_COST);
6632 
6633   size(4);
6634   format %{ "STF    $src,$mem" %}
6635   opcode(Assembler::stf_op3);
6636   ins_encode(simple_form3_mem_reg( mem, src ) );
6637   ins_pipe(fstoreF_mem_reg);
6638 %}
6639 
6640 instruct storeF0( memory mem, immF0 src) %{
6641   match(Set mem (StoreF mem src));
6642   ins_cost(MEMORY_REF_COST);
6643 
6644   size(4);
6645   format %{ "STW    $src,$mem\t! storeF0" %}
6646   opcode(Assembler::stw_op3);
6647   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6648   ins_pipe(fstoreF_mem_zero);
6649 %}
6650 
6651 // Convert oop pointer into compressed form
6652 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6653   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6654   match(Set dst (EncodeP src));
6655   format %{ "encode_heap_oop $src, $dst" %}
6656   ins_encode %{
6657     __ encode_heap_oop($src$$Register, $dst$$Register);
6658   %}
6659   ins_avoid_back_to_back(Universe::narrow_oop_base() == NULL ? AVOID_NONE : AVOID_BEFORE);
6660   ins_pipe(ialu_reg);
6661 %}
6662 
6663 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6664   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6665   match(Set dst (EncodeP src));
6666   format %{ "encode_heap_oop_not_null $src, $dst" %}
6667   ins_encode %{
6668     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6669   %}
6670   ins_pipe(ialu_reg);
6671 %}
6672 
6673 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6674   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6675             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6676   match(Set dst (DecodeN src));
6677   format %{ "decode_heap_oop $src, $dst" %}
6678   ins_encode %{
6679     __ decode_heap_oop($src$$Register, $dst$$Register);
6680   %}
6681   ins_pipe(ialu_reg);
6682 %}
6683 
6684 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6685   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6686             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6687   match(Set dst (DecodeN src));
6688   format %{ "decode_heap_oop_not_null $src, $dst" %}
6689   ins_encode %{
6690     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6691   %}
6692   ins_pipe(ialu_reg);
6693 %}
6694 
6695 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6696   match(Set dst (EncodePKlass src));
6697   format %{ "encode_klass_not_null $src, $dst" %}
6698   ins_encode %{
6699     __ encode_klass_not_null($src$$Register, $dst$$Register);
6700   %}
6701   ins_pipe(ialu_reg);
6702 %}
6703 
6704 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6705   match(Set dst (DecodeNKlass src));
6706   format %{ "decode_klass_not_null $src, $dst" %}
6707   ins_encode %{
6708     __ decode_klass_not_null($src$$Register, $dst$$Register);
6709   %}
6710   ins_pipe(ialu_reg);
6711 %}
6712 
6713 //----------MemBar Instructions-----------------------------------------------
6714 // Memory barrier flavors
6715 
6716 instruct membar_acquire() %{
6717   match(MemBarAcquire);
6718   match(LoadFence);
6719   ins_cost(4*MEMORY_REF_COST);
6720 
6721   size(0);
6722   format %{ "MEMBAR-acquire" %}
6723   ins_encode( enc_membar_acquire );
6724   ins_pipe(long_memory_op);
6725 %}
6726 
6727 instruct membar_acquire_lock() %{
6728   match(MemBarAcquireLock);
6729   ins_cost(0);
6730 
6731   size(0);
6732   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6733   ins_encode( );
6734   ins_pipe(empty);
6735 %}
6736 
6737 instruct membar_release() %{
6738   match(MemBarRelease);
6739   match(StoreFence);
6740   ins_cost(4*MEMORY_REF_COST);
6741 
6742   size(0);
6743   format %{ "MEMBAR-release" %}
6744   ins_encode( enc_membar_release );
6745   ins_pipe(long_memory_op);
6746 %}
6747 
6748 instruct membar_release_lock() %{
6749   match(MemBarReleaseLock);
6750   ins_cost(0);
6751 
6752   size(0);
6753   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6754   ins_encode( );
6755   ins_pipe(empty);
6756 %}
6757 
6758 instruct membar_volatile() %{
6759   match(MemBarVolatile);
6760   ins_cost(4*MEMORY_REF_COST);
6761 
6762   size(4);
6763   format %{ "MEMBAR-volatile" %}
6764   ins_encode( enc_membar_volatile );
6765   ins_pipe(long_memory_op);
6766 %}
6767 
6768 instruct unnecessary_membar_volatile() %{
6769   match(MemBarVolatile);
6770   predicate(Matcher::post_store_load_barrier(n));
6771   ins_cost(0);
6772 
6773   size(0);
6774   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6775   ins_encode( );
6776   ins_pipe(empty);
6777 %}
6778 
6779 instruct membar_storestore() %{
6780   match(MemBarStoreStore);
6781   ins_cost(0);
6782 
6783   size(0);
6784   format %{ "!MEMBAR-storestore (empty encoding)" %}
6785   ins_encode( );
6786   ins_pipe(empty);
6787 %}
6788 
6789 //----------Register Move Instructions-----------------------------------------
6790 instruct roundDouble_nop(regD dst) %{
6791   match(Set dst (RoundDouble dst));
6792   ins_cost(0);
6793   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6794   ins_encode( );
6795   ins_pipe(empty);
6796 %}
6797 
6798 
6799 instruct roundFloat_nop(regF dst) %{
6800   match(Set dst (RoundFloat dst));
6801   ins_cost(0);
6802   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6803   ins_encode( );
6804   ins_pipe(empty);
6805 %}
6806 
6807 
6808 // Cast Index to Pointer for unsafe natives
6809 instruct castX2P(iRegX src, iRegP dst) %{
6810   match(Set dst (CastX2P src));
6811 
6812   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6813   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6814   ins_pipe(ialu_reg);
6815 %}
6816 
6817 // Cast Pointer to Index for unsafe natives
6818 instruct castP2X(iRegP src, iRegX dst) %{
6819   match(Set dst (CastP2X src));
6820 
6821   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6822   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6823   ins_pipe(ialu_reg);
6824 %}
6825 
6826 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6827   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6828   match(Set stkSlot src);   // chain rule
6829   ins_cost(MEMORY_REF_COST);
6830   format %{ "STDF   $src,$stkSlot\t!stk" %}
6831   opcode(Assembler::stdf_op3);
6832   ins_encode(simple_form3_mem_reg(stkSlot, src));
6833   ins_pipe(fstoreD_stk_reg);
6834 %}
6835 
6836 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6837   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6838   match(Set dst stkSlot);   // chain rule
6839   ins_cost(MEMORY_REF_COST);
6840   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6841   opcode(Assembler::lddf_op3);
6842   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6843   ins_pipe(floadD_stk);
6844 %}
6845 
6846 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6847   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6848   match(Set stkSlot src);   // chain rule
6849   ins_cost(MEMORY_REF_COST);
6850   format %{ "STF   $src,$stkSlot\t!stk" %}
6851   opcode(Assembler::stf_op3);
6852   ins_encode(simple_form3_mem_reg(stkSlot, src));
6853   ins_pipe(fstoreF_stk_reg);
6854 %}
6855 
6856 //----------Conditional Move---------------------------------------------------
6857 // Conditional move
6858 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6859   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6860   ins_cost(150);
6861   format %{ "MOV$cmp $pcc,$src,$dst" %}
6862   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6863   ins_pipe(ialu_reg);
6864 %}
6865 
6866 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6867   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6868   ins_cost(140);
6869   format %{ "MOV$cmp $pcc,$src,$dst" %}
6870   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6871   ins_pipe(ialu_imm);
6872 %}
6873 
6874 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6875   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6876   ins_cost(150);
6877   size(4);
6878   format %{ "MOV$cmp  $icc,$src,$dst" %}
6879   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6880   ins_pipe(ialu_reg);
6881 %}
6882 
6883 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6884   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6885   ins_cost(140);
6886   size(4);
6887   format %{ "MOV$cmp  $icc,$src,$dst" %}
6888   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6889   ins_pipe(ialu_imm);
6890 %}
6891 
6892 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6893   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6894   ins_cost(150);
6895   size(4);
6896   format %{ "MOV$cmp  $icc,$src,$dst" %}
6897   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6898   ins_pipe(ialu_reg);
6899 %}
6900 
6901 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6902   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6903   ins_cost(140);
6904   size(4);
6905   format %{ "MOV$cmp  $icc,$src,$dst" %}
6906   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6907   ins_pipe(ialu_imm);
6908 %}
6909 
6910 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6911   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6912   ins_cost(150);
6913   size(4);
6914   format %{ "MOV$cmp $fcc,$src,$dst" %}
6915   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6916   ins_pipe(ialu_reg);
6917 %}
6918 
6919 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6920   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6921   ins_cost(140);
6922   size(4);
6923   format %{ "MOV$cmp $fcc,$src,$dst" %}
6924   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6925   ins_pipe(ialu_imm);
6926 %}
6927 
6928 // Conditional move for RegN. Only cmov(reg,reg).
6929 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6930   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6931   ins_cost(150);
6932   format %{ "MOV$cmp $pcc,$src,$dst" %}
6933   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6934   ins_pipe(ialu_reg);
6935 %}
6936 
6937 // This instruction also works with CmpN so we don't need cmovNN_reg.
6938 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6939   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6940   ins_cost(150);
6941   size(4);
6942   format %{ "MOV$cmp  $icc,$src,$dst" %}
6943   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6944   ins_pipe(ialu_reg);
6945 %}
6946 
6947 // This instruction also works with CmpN so we don't need cmovNN_reg.
6948 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6949   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6950   ins_cost(150);
6951   size(4);
6952   format %{ "MOV$cmp  $icc,$src,$dst" %}
6953   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6954   ins_pipe(ialu_reg);
6955 %}
6956 
6957 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6958   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6959   ins_cost(150);
6960   size(4);
6961   format %{ "MOV$cmp $fcc,$src,$dst" %}
6962   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6963   ins_pipe(ialu_reg);
6964 %}
6965 
6966 // Conditional move
6967 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6968   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6969   ins_cost(150);
6970   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6971   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6972   ins_pipe(ialu_reg);
6973 %}
6974 
6975 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6976   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6977   ins_cost(140);
6978   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6979   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6980   ins_pipe(ialu_imm);
6981 %}
6982 
6983 // This instruction also works with CmpN so we don't need cmovPN_reg.
6984 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6985   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6986   ins_cost(150);
6987 
6988   size(4);
6989   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6990   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6991   ins_pipe(ialu_reg);
6992 %}
6993 
6994 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6995   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6996   ins_cost(150);
6997 
6998   size(4);
6999   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
7000   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7001   ins_pipe(ialu_reg);
7002 %}
7003 
7004 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
7005   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
7006   ins_cost(140);
7007 
7008   size(4);
7009   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
7010   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
7011   ins_pipe(ialu_imm);
7012 %}
7013 
7014 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
7015   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
7016   ins_cost(140);
7017 
7018   size(4);
7019   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
7020   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
7021   ins_pipe(ialu_imm);
7022 %}
7023 
7024 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
7025   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
7026   ins_cost(150);
7027   size(4);
7028   format %{ "MOV$cmp $fcc,$src,$dst" %}
7029   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7030   ins_pipe(ialu_imm);
7031 %}
7032 
7033 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
7034   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
7035   ins_cost(140);
7036   size(4);
7037   format %{ "MOV$cmp $fcc,$src,$dst" %}
7038   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
7039   ins_pipe(ialu_imm);
7040 %}
7041 
7042 // Conditional move
7043 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
7044   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
7045   ins_cost(150);
7046   opcode(0x101);
7047   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7048   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7049   ins_pipe(int_conditional_float_move);
7050 %}
7051 
7052 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
7053   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7054   ins_cost(150);
7055 
7056   size(4);
7057   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7058   opcode(0x101);
7059   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7060   ins_pipe(int_conditional_float_move);
7061 %}
7062 
7063 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
7064   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7065   ins_cost(150);
7066 
7067   size(4);
7068   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7069   opcode(0x101);
7070   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7071   ins_pipe(int_conditional_float_move);
7072 %}
7073 
7074 // Conditional move,
7075 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7076   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7077   ins_cost(150);
7078   size(4);
7079   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7080   opcode(0x1);
7081   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7082   ins_pipe(int_conditional_double_move);
7083 %}
7084 
7085 // Conditional move
7086 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7087   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7088   ins_cost(150);
7089   size(4);
7090   opcode(0x102);
7091   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7092   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7093   ins_pipe(int_conditional_double_move);
7094 %}
7095 
7096 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7097   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7098   ins_cost(150);
7099 
7100   size(4);
7101   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7102   opcode(0x102);
7103   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7104   ins_pipe(int_conditional_double_move);
7105 %}
7106 
7107 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7108   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7109   ins_cost(150);
7110 
7111   size(4);
7112   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7113   opcode(0x102);
7114   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7115   ins_pipe(int_conditional_double_move);
7116 %}
7117 
7118 // Conditional move,
7119 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7120   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7121   ins_cost(150);
7122   size(4);
7123   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7124   opcode(0x2);
7125   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7126   ins_pipe(int_conditional_double_move);
7127 %}
7128 
7129 // Conditional move
7130 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7131   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7132   ins_cost(150);
7133   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7134   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7135   ins_pipe(ialu_reg);
7136 %}
7137 
7138 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7139   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7140   ins_cost(140);
7141   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7142   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7143   ins_pipe(ialu_imm);
7144 %}
7145 
7146 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7147   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7148   ins_cost(150);
7149 
7150   size(4);
7151   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7152   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7153   ins_pipe(ialu_reg);
7154 %}
7155 
7156 
7157 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7158   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7159   ins_cost(150);
7160 
7161   size(4);
7162   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7163   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7164   ins_pipe(ialu_reg);
7165 %}
7166 
7167 
7168 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7169   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7170   ins_cost(150);
7171 
7172   size(4);
7173   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7174   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7175   ins_pipe(ialu_reg);
7176 %}
7177 
7178 
7179 
7180 //----------OS and Locking Instructions----------------------------------------
7181 
7182 // This name is KNOWN by the ADLC and cannot be changed.
7183 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7184 // for this guy.
7185 instruct tlsLoadP(g2RegP dst) %{
7186   match(Set dst (ThreadLocal));
7187 
7188   size(0);
7189   ins_cost(0);
7190   format %{ "# TLS is in G2" %}
7191   ins_encode( /*empty encoding*/ );
7192   ins_pipe(ialu_none);
7193 %}
7194 
7195 instruct checkCastPP( iRegP dst ) %{
7196   match(Set dst (CheckCastPP dst));
7197 
7198   size(0);
7199   format %{ "# checkcastPP of $dst" %}
7200   ins_encode( /*empty encoding*/ );
7201   ins_pipe(empty);
7202 %}
7203 
7204 
7205 instruct castPP( iRegP dst ) %{
7206   match(Set dst (CastPP dst));
7207   format %{ "# castPP of $dst" %}
7208   ins_encode( /*empty encoding*/ );
7209   ins_pipe(empty);
7210 %}
7211 
7212 instruct castII( iRegI dst ) %{
7213   match(Set dst (CastII dst));
7214   format %{ "# castII of $dst" %}
7215   ins_encode( /*empty encoding*/ );
7216   ins_cost(0);
7217   ins_pipe(empty);
7218 %}
7219 
7220 //----------Arithmetic Instructions--------------------------------------------
7221 // Addition Instructions
7222 // Register Addition
7223 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7224   match(Set dst (AddI src1 src2));
7225 
7226   size(4);
7227   format %{ "ADD    $src1,$src2,$dst" %}
7228   ins_encode %{
7229     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7230   %}
7231   ins_pipe(ialu_reg_reg);
7232 %}
7233 
7234 // Immediate Addition
7235 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7236   match(Set dst (AddI src1 src2));
7237 
7238   size(4);
7239   format %{ "ADD    $src1,$src2,$dst" %}
7240   opcode(Assembler::add_op3, Assembler::arith_op);
7241   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7242   ins_pipe(ialu_reg_imm);
7243 %}
7244 
7245 // Pointer Register Addition
7246 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7247   match(Set dst (AddP src1 src2));
7248 
7249   size(4);
7250   format %{ "ADD    $src1,$src2,$dst" %}
7251   opcode(Assembler::add_op3, Assembler::arith_op);
7252   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7253   ins_pipe(ialu_reg_reg);
7254 %}
7255 
7256 // Pointer Immediate Addition
7257 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7258   match(Set dst (AddP src1 src2));
7259 
7260   size(4);
7261   format %{ "ADD    $src1,$src2,$dst" %}
7262   opcode(Assembler::add_op3, Assembler::arith_op);
7263   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7264   ins_pipe(ialu_reg_imm);
7265 %}
7266 
7267 // Long Addition
7268 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7269   match(Set dst (AddL src1 src2));
7270 
7271   size(4);
7272   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7273   opcode(Assembler::add_op3, Assembler::arith_op);
7274   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7275   ins_pipe(ialu_reg_reg);
7276 %}
7277 
7278 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7279   match(Set dst (AddL src1 con));
7280 
7281   size(4);
7282   format %{ "ADD    $src1,$con,$dst" %}
7283   opcode(Assembler::add_op3, Assembler::arith_op);
7284   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7285   ins_pipe(ialu_reg_imm);
7286 %}
7287 
7288 //----------Conditional_store--------------------------------------------------
7289 // Conditional-store of the updated heap-top.
7290 // Used during allocation of the shared heap.
7291 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7292 
7293 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7294 instruct loadPLocked(iRegP dst, memory mem) %{
7295   match(Set dst (LoadPLocked mem));
7296   ins_cost(MEMORY_REF_COST);
7297 
7298 #ifndef _LP64
7299   size(4);
7300   format %{ "LDUW   $mem,$dst\t! ptr" %}
7301   opcode(Assembler::lduw_op3, 0, REGP_OP);
7302 #else
7303   format %{ "LDX    $mem,$dst\t! ptr" %}
7304   opcode(Assembler::ldx_op3, 0, REGP_OP);
7305 #endif
7306   ins_encode( form3_mem_reg( mem, dst ) );
7307   ins_pipe(iload_mem);
7308 %}
7309 
7310 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7311   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7312   effect( KILL newval );
7313   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7314             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7315   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7316   ins_pipe( long_memory_op );
7317 %}
7318 
7319 // Conditional-store of an int value.
7320 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7321   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7322   effect( KILL newval );
7323   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7324             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7325   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7326   ins_pipe( long_memory_op );
7327 %}
7328 
7329 // Conditional-store of a long value.
7330 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7331   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7332   effect( KILL newval );
7333   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7334             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7335   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7336   ins_pipe( long_memory_op );
7337 %}
7338 
7339 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7340 
7341 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7342   predicate(VM_Version::supports_cx8());
7343   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7344   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7345   format %{
7346             "MOV    $newval,O7\n\t"
7347             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7348             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7349             "MOV    1,$res\n\t"
7350             "MOVne  xcc,R_G0,$res"
7351   %}
7352   ins_encode( enc_casx(mem_ptr, oldval, newval),
7353               enc_lflags_ne_to_boolean(res) );
7354   ins_pipe( long_memory_op );
7355 %}
7356 
7357 
7358 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7359   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7360   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7361   format %{
7362             "MOV    $newval,O7\n\t"
7363             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7364             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7365             "MOV    1,$res\n\t"
7366             "MOVne  icc,R_G0,$res"
7367   %}
7368   ins_encode( enc_casi(mem_ptr, oldval, newval),
7369               enc_iflags_ne_to_boolean(res) );
7370   ins_pipe( long_memory_op );
7371 %}
7372 
7373 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7374 #ifdef _LP64
7375   predicate(VM_Version::supports_cx8());
7376 #endif
7377   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7378   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7379   format %{
7380             "MOV    $newval,O7\n\t"
7381             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7382             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7383             "MOV    1,$res\n\t"
7384             "MOVne  xcc,R_G0,$res"
7385   %}
7386 #ifdef _LP64
7387   ins_encode( enc_casx(mem_ptr, oldval, newval),
7388               enc_lflags_ne_to_boolean(res) );
7389 #else
7390   ins_encode( enc_casi(mem_ptr, oldval, newval),
7391               enc_iflags_ne_to_boolean(res) );
7392 #endif
7393   ins_pipe( long_memory_op );
7394 %}
7395 
7396 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7397   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7398   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7399   format %{
7400             "MOV    $newval,O7\n\t"
7401             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7402             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7403             "MOV    1,$res\n\t"
7404             "MOVne  icc,R_G0,$res"
7405   %}
7406   ins_encode( enc_casi(mem_ptr, oldval, newval),
7407               enc_iflags_ne_to_boolean(res) );
7408   ins_pipe( long_memory_op );
7409 %}
7410 
7411 instruct xchgI( memory mem, iRegI newval) %{
7412   match(Set newval (GetAndSetI mem newval));
7413   format %{ "SWAP  [$mem],$newval" %}
7414   size(4);
7415   ins_encode %{
7416     __ swap($mem$$Address, $newval$$Register);
7417   %}
7418   ins_pipe( long_memory_op );
7419 %}
7420 
7421 #ifndef _LP64
7422 instruct xchgP( memory mem, iRegP newval) %{
7423   match(Set newval (GetAndSetP mem newval));
7424   format %{ "SWAP  [$mem],$newval" %}
7425   size(4);
7426   ins_encode %{
7427     __ swap($mem$$Address, $newval$$Register);
7428   %}
7429   ins_pipe( long_memory_op );
7430 %}
7431 #endif
7432 
7433 instruct xchgN( memory mem, iRegN newval) %{
7434   match(Set newval (GetAndSetN mem newval));
7435   format %{ "SWAP  [$mem],$newval" %}
7436   size(4);
7437   ins_encode %{
7438     __ swap($mem$$Address, $newval$$Register);
7439   %}
7440   ins_pipe( long_memory_op );
7441 %}
7442 
7443 //---------------------
7444 // Subtraction Instructions
7445 // Register Subtraction
7446 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7447   match(Set dst (SubI src1 src2));
7448 
7449   size(4);
7450   format %{ "SUB    $src1,$src2,$dst" %}
7451   opcode(Assembler::sub_op3, Assembler::arith_op);
7452   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7453   ins_pipe(ialu_reg_reg);
7454 %}
7455 
7456 // Immediate Subtraction
7457 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7458   match(Set dst (SubI src1 src2));
7459 
7460   size(4);
7461   format %{ "SUB    $src1,$src2,$dst" %}
7462   opcode(Assembler::sub_op3, Assembler::arith_op);
7463   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7464   ins_pipe(ialu_reg_imm);
7465 %}
7466 
7467 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7468   match(Set dst (SubI zero src2));
7469 
7470   size(4);
7471   format %{ "NEG    $src2,$dst" %}
7472   opcode(Assembler::sub_op3, Assembler::arith_op);
7473   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7474   ins_pipe(ialu_zero_reg);
7475 %}
7476 
7477 // Long subtraction
7478 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7479   match(Set dst (SubL src1 src2));
7480 
7481   size(4);
7482   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7483   opcode(Assembler::sub_op3, Assembler::arith_op);
7484   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7485   ins_pipe(ialu_reg_reg);
7486 %}
7487 
7488 // Immediate Subtraction
7489 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7490   match(Set dst (SubL src1 con));
7491 
7492   size(4);
7493   format %{ "SUB    $src1,$con,$dst\t! long" %}
7494   opcode(Assembler::sub_op3, Assembler::arith_op);
7495   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7496   ins_pipe(ialu_reg_imm);
7497 %}
7498 
7499 // Long negation
7500 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7501   match(Set dst (SubL zero src2));
7502 
7503   size(4);
7504   format %{ "NEG    $src2,$dst\t! long" %}
7505   opcode(Assembler::sub_op3, Assembler::arith_op);
7506   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7507   ins_pipe(ialu_zero_reg);
7508 %}
7509 
7510 // Multiplication Instructions
7511 // Integer Multiplication
7512 // Register Multiplication
7513 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7514   match(Set dst (MulI src1 src2));
7515 
7516   size(4);
7517   format %{ "MULX   $src1,$src2,$dst" %}
7518   opcode(Assembler::mulx_op3, Assembler::arith_op);
7519   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7520   ins_pipe(imul_reg_reg);
7521 %}
7522 
7523 // Immediate Multiplication
7524 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7525   match(Set dst (MulI src1 src2));
7526 
7527   size(4);
7528   format %{ "MULX   $src1,$src2,$dst" %}
7529   opcode(Assembler::mulx_op3, Assembler::arith_op);
7530   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7531   ins_pipe(imul_reg_imm);
7532 %}
7533 
7534 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7535   match(Set dst (MulL src1 src2));
7536   ins_cost(DEFAULT_COST * 5);
7537   size(4);
7538   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7539   opcode(Assembler::mulx_op3, Assembler::arith_op);
7540   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7541   ins_pipe(mulL_reg_reg);
7542 %}
7543 
7544 // Immediate Multiplication
7545 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7546   match(Set dst (MulL src1 src2));
7547   ins_cost(DEFAULT_COST * 5);
7548   size(4);
7549   format %{ "MULX   $src1,$src2,$dst" %}
7550   opcode(Assembler::mulx_op3, Assembler::arith_op);
7551   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7552   ins_pipe(mulL_reg_imm);
7553 %}
7554 
7555 // Integer Division
7556 // Register Division
7557 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7558   match(Set dst (DivI src1 src2));
7559   ins_cost((2+71)*DEFAULT_COST);
7560 
7561   format %{ "SRA     $src2,0,$src2\n\t"
7562             "SRA     $src1,0,$src1\n\t"
7563             "SDIVX   $src1,$src2,$dst" %}
7564   ins_encode( idiv_reg( src1, src2, dst ) );
7565   ins_pipe(sdiv_reg_reg);
7566 %}
7567 
7568 // Immediate Division
7569 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7570   match(Set dst (DivI src1 src2));
7571   ins_cost((2+71)*DEFAULT_COST);
7572 
7573   format %{ "SRA     $src1,0,$src1\n\t"
7574             "SDIVX   $src1,$src2,$dst" %}
7575   ins_encode( idiv_imm( src1, src2, dst ) );
7576   ins_pipe(sdiv_reg_imm);
7577 %}
7578 
7579 //----------Div-By-10-Expansion------------------------------------------------
7580 // Extract hi bits of a 32x32->64 bit multiply.
7581 // Expand rule only, not matched
7582 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7583   effect( DEF dst, USE src1, USE src2 );
7584   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7585             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7586   ins_encode( enc_mul_hi(dst,src1,src2));
7587   ins_pipe(sdiv_reg_reg);
7588 %}
7589 
7590 // Magic constant, reciprocal of 10
7591 instruct loadConI_x66666667(iRegIsafe dst) %{
7592   effect( DEF dst );
7593 
7594   size(8);
7595   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7596   ins_encode( Set32(0x66666667, dst) );
7597   ins_pipe(ialu_hi_lo_reg);
7598 %}
7599 
7600 // Register Shift Right Arithmetic Long by 32-63
7601 instruct sra_31( iRegI dst, iRegI src ) %{
7602   effect( DEF dst, USE src );
7603   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7604   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7605   ins_pipe(ialu_reg_reg);
7606 %}
7607 
7608 // Arithmetic Shift Right by 8-bit immediate
7609 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7610   effect( DEF dst, USE src );
7611   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7612   opcode(Assembler::sra_op3, Assembler::arith_op);
7613   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7614   ins_pipe(ialu_reg_imm);
7615 %}
7616 
7617 // Integer DIV with 10
7618 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7619   match(Set dst (DivI src div));
7620   ins_cost((6+6)*DEFAULT_COST);
7621   expand %{
7622     iRegIsafe tmp1;               // Killed temps;
7623     iRegIsafe tmp2;               // Killed temps;
7624     iRegI tmp3;                   // Killed temps;
7625     iRegI tmp4;                   // Killed temps;
7626     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7627     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7628     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7629     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7630     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7631   %}
7632 %}
7633 
7634 // Register Long Division
7635 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7636   match(Set dst (DivL src1 src2));
7637   ins_cost(DEFAULT_COST*71);
7638   size(4);
7639   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7640   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7641   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7642   ins_pipe(divL_reg_reg);
7643 %}
7644 
7645 // Register Long Division
7646 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7647   match(Set dst (DivL src1 src2));
7648   ins_cost(DEFAULT_COST*71);
7649   size(4);
7650   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7651   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7652   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7653   ins_pipe(divL_reg_imm);
7654 %}
7655 
7656 // Integer Remainder
7657 // Register Remainder
7658 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7659   match(Set dst (ModI src1 src2));
7660   effect( KILL ccr, KILL temp);
7661 
7662   format %{ "SREM   $src1,$src2,$dst" %}
7663   ins_encode( irem_reg(src1, src2, dst, temp) );
7664   ins_pipe(sdiv_reg_reg);
7665 %}
7666 
7667 // Immediate Remainder
7668 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7669   match(Set dst (ModI src1 src2));
7670   effect( KILL ccr, KILL temp);
7671 
7672   format %{ "SREM   $src1,$src2,$dst" %}
7673   ins_encode( irem_imm(src1, src2, dst, temp) );
7674   ins_pipe(sdiv_reg_imm);
7675 %}
7676 
7677 // Register Long Remainder
7678 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7679   effect(DEF dst, USE src1, USE src2);
7680   size(4);
7681   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7682   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7683   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7684   ins_pipe(divL_reg_reg);
7685 %}
7686 
7687 // Register Long Division
7688 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7689   effect(DEF dst, USE src1, USE src2);
7690   size(4);
7691   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7692   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7693   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7694   ins_pipe(divL_reg_imm);
7695 %}
7696 
7697 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7698   effect(DEF dst, USE src1, USE src2);
7699   size(4);
7700   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7701   opcode(Assembler::mulx_op3, Assembler::arith_op);
7702   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7703   ins_pipe(mulL_reg_reg);
7704 %}
7705 
7706 // Immediate Multiplication
7707 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7708   effect(DEF dst, USE src1, USE src2);
7709   size(4);
7710   format %{ "MULX   $src1,$src2,$dst" %}
7711   opcode(Assembler::mulx_op3, Assembler::arith_op);
7712   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7713   ins_pipe(mulL_reg_imm);
7714 %}
7715 
7716 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7717   effect(DEF dst, USE src1, USE src2);
7718   size(4);
7719   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7720   opcode(Assembler::sub_op3, Assembler::arith_op);
7721   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7722   ins_pipe(ialu_reg_reg);
7723 %}
7724 
7725 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7726   effect(DEF dst, USE src1, USE src2);
7727   size(4);
7728   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7729   opcode(Assembler::sub_op3, Assembler::arith_op);
7730   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7731   ins_pipe(ialu_reg_reg);
7732 %}
7733 
7734 // Register Long Remainder
7735 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7736   match(Set dst (ModL src1 src2));
7737   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7738   expand %{
7739     iRegL tmp1;
7740     iRegL tmp2;
7741     divL_reg_reg_1(tmp1, src1, src2);
7742     mulL_reg_reg_1(tmp2, tmp1, src2);
7743     subL_reg_reg_1(dst,  src1, tmp2);
7744   %}
7745 %}
7746 
7747 // Register Long Remainder
7748 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7749   match(Set dst (ModL src1 src2));
7750   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7751   expand %{
7752     iRegL tmp1;
7753     iRegL tmp2;
7754     divL_reg_imm13_1(tmp1, src1, src2);
7755     mulL_reg_imm13_1(tmp2, tmp1, src2);
7756     subL_reg_reg_2  (dst,  src1, tmp2);
7757   %}
7758 %}
7759 
7760 // Integer Shift Instructions
7761 // Register Shift Left
7762 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7763   match(Set dst (LShiftI src1 src2));
7764 
7765   size(4);
7766   format %{ "SLL    $src1,$src2,$dst" %}
7767   opcode(Assembler::sll_op3, Assembler::arith_op);
7768   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7769   ins_pipe(ialu_reg_reg);
7770 %}
7771 
7772 // Register Shift Left Immediate
7773 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7774   match(Set dst (LShiftI src1 src2));
7775 
7776   size(4);
7777   format %{ "SLL    $src1,$src2,$dst" %}
7778   opcode(Assembler::sll_op3, Assembler::arith_op);
7779   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7780   ins_pipe(ialu_reg_imm);
7781 %}
7782 
7783 // Register Shift Left
7784 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7785   match(Set dst (LShiftL src1 src2));
7786 
7787   size(4);
7788   format %{ "SLLX   $src1,$src2,$dst" %}
7789   opcode(Assembler::sllx_op3, Assembler::arith_op);
7790   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7791   ins_pipe(ialu_reg_reg);
7792 %}
7793 
7794 // Register Shift Left Immediate
7795 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7796   match(Set dst (LShiftL src1 src2));
7797 
7798   size(4);
7799   format %{ "SLLX   $src1,$src2,$dst" %}
7800   opcode(Assembler::sllx_op3, Assembler::arith_op);
7801   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7802   ins_pipe(ialu_reg_imm);
7803 %}
7804 
7805 // Register Arithmetic Shift Right
7806 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7807   match(Set dst (RShiftI src1 src2));
7808   size(4);
7809   format %{ "SRA    $src1,$src2,$dst" %}
7810   opcode(Assembler::sra_op3, Assembler::arith_op);
7811   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7812   ins_pipe(ialu_reg_reg);
7813 %}
7814 
7815 // Register Arithmetic Shift Right Immediate
7816 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7817   match(Set dst (RShiftI src1 src2));
7818 
7819   size(4);
7820   format %{ "SRA    $src1,$src2,$dst" %}
7821   opcode(Assembler::sra_op3, Assembler::arith_op);
7822   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7823   ins_pipe(ialu_reg_imm);
7824 %}
7825 
7826 // Register Shift Right Arithmatic Long
7827 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7828   match(Set dst (RShiftL src1 src2));
7829 
7830   size(4);
7831   format %{ "SRAX   $src1,$src2,$dst" %}
7832   opcode(Assembler::srax_op3, Assembler::arith_op);
7833   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7834   ins_pipe(ialu_reg_reg);
7835 %}
7836 
7837 // Register Shift Left Immediate
7838 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7839   match(Set dst (RShiftL src1 src2));
7840 
7841   size(4);
7842   format %{ "SRAX   $src1,$src2,$dst" %}
7843   opcode(Assembler::srax_op3, Assembler::arith_op);
7844   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7845   ins_pipe(ialu_reg_imm);
7846 %}
7847 
7848 // Register Shift Right
7849 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7850   match(Set dst (URShiftI src1 src2));
7851 
7852   size(4);
7853   format %{ "SRL    $src1,$src2,$dst" %}
7854   opcode(Assembler::srl_op3, Assembler::arith_op);
7855   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7856   ins_pipe(ialu_reg_reg);
7857 %}
7858 
7859 // Register Shift Right Immediate
7860 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7861   match(Set dst (URShiftI src1 src2));
7862 
7863   size(4);
7864   format %{ "SRL    $src1,$src2,$dst" %}
7865   opcode(Assembler::srl_op3, Assembler::arith_op);
7866   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7867   ins_pipe(ialu_reg_imm);
7868 %}
7869 
7870 // Register Shift Right
7871 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7872   match(Set dst (URShiftL src1 src2));
7873 
7874   size(4);
7875   format %{ "SRLX   $src1,$src2,$dst" %}
7876   opcode(Assembler::srlx_op3, Assembler::arith_op);
7877   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7878   ins_pipe(ialu_reg_reg);
7879 %}
7880 
7881 // Register Shift Right Immediate
7882 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7883   match(Set dst (URShiftL src1 src2));
7884 
7885   size(4);
7886   format %{ "SRLX   $src1,$src2,$dst" %}
7887   opcode(Assembler::srlx_op3, Assembler::arith_op);
7888   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7889   ins_pipe(ialu_reg_imm);
7890 %}
7891 
7892 // Register Shift Right Immediate with a CastP2X
7893 #ifdef _LP64
7894 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7895   match(Set dst (URShiftL (CastP2X src1) src2));
7896   size(4);
7897   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7898   opcode(Assembler::srlx_op3, Assembler::arith_op);
7899   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7900   ins_pipe(ialu_reg_imm);
7901 %}
7902 #else
7903 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7904   match(Set dst (URShiftI (CastP2X src1) src2));
7905   size(4);
7906   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7907   opcode(Assembler::srl_op3, Assembler::arith_op);
7908   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7909   ins_pipe(ialu_reg_imm);
7910 %}
7911 #endif
7912 
7913 
7914 //----------Floating Point Arithmetic Instructions-----------------------------
7915 
7916 //  Add float single precision
7917 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7918   match(Set dst (AddF src1 src2));
7919 
7920   size(4);
7921   format %{ "FADDS  $src1,$src2,$dst" %}
7922   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7923   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7924   ins_pipe(faddF_reg_reg);
7925 %}
7926 
7927 //  Add float double precision
7928 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7929   match(Set dst (AddD src1 src2));
7930 
7931   size(4);
7932   format %{ "FADDD  $src1,$src2,$dst" %}
7933   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7934   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7935   ins_pipe(faddD_reg_reg);
7936 %}
7937 
7938 //  Sub float single precision
7939 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7940   match(Set dst (SubF src1 src2));
7941 
7942   size(4);
7943   format %{ "FSUBS  $src1,$src2,$dst" %}
7944   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7945   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7946   ins_pipe(faddF_reg_reg);
7947 %}
7948 
7949 //  Sub float double precision
7950 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7951   match(Set dst (SubD src1 src2));
7952 
7953   size(4);
7954   format %{ "FSUBD  $src1,$src2,$dst" %}
7955   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7956   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7957   ins_pipe(faddD_reg_reg);
7958 %}
7959 
7960 //  Mul float single precision
7961 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7962   match(Set dst (MulF src1 src2));
7963 
7964   size(4);
7965   format %{ "FMULS  $src1,$src2,$dst" %}
7966   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7967   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7968   ins_pipe(fmulF_reg_reg);
7969 %}
7970 
7971 //  Mul float double precision
7972 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7973   match(Set dst (MulD src1 src2));
7974 
7975   size(4);
7976   format %{ "FMULD  $src1,$src2,$dst" %}
7977   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7978   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7979   ins_pipe(fmulD_reg_reg);
7980 %}
7981 
7982 //  Div float single precision
7983 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7984   match(Set dst (DivF src1 src2));
7985 
7986   size(4);
7987   format %{ "FDIVS  $src1,$src2,$dst" %}
7988   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7989   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7990   ins_pipe(fdivF_reg_reg);
7991 %}
7992 
7993 //  Div float double precision
7994 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7995   match(Set dst (DivD src1 src2));
7996 
7997   size(4);
7998   format %{ "FDIVD  $src1,$src2,$dst" %}
7999   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
8000   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8001   ins_pipe(fdivD_reg_reg);
8002 %}
8003 
8004 //  Absolute float double precision
8005 instruct absD_reg(regD dst, regD src) %{
8006   match(Set dst (AbsD src));
8007 
8008   format %{ "FABSd  $src,$dst" %}
8009   ins_encode(fabsd(dst, src));
8010   ins_pipe(faddD_reg);
8011 %}
8012 
8013 //  Absolute float single precision
8014 instruct absF_reg(regF dst, regF src) %{
8015   match(Set dst (AbsF src));
8016 
8017   format %{ "FABSs  $src,$dst" %}
8018   ins_encode(fabss(dst, src));
8019   ins_pipe(faddF_reg);
8020 %}
8021 
8022 instruct negF_reg(regF dst, regF src) %{
8023   match(Set dst (NegF src));
8024 
8025   size(4);
8026   format %{ "FNEGs  $src,$dst" %}
8027   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
8028   ins_encode(form3_opf_rs2F_rdF(src, dst));
8029   ins_pipe(faddF_reg);
8030 %}
8031 
8032 instruct negD_reg(regD dst, regD src) %{
8033   match(Set dst (NegD src));
8034 
8035   format %{ "FNEGd  $src,$dst" %}
8036   ins_encode(fnegd(dst, src));
8037   ins_pipe(faddD_reg);
8038 %}
8039 
8040 //  Sqrt float double precision
8041 instruct sqrtF_reg_reg(regF dst, regF src) %{
8042   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8043 
8044   size(4);
8045   format %{ "FSQRTS $src,$dst" %}
8046   ins_encode(fsqrts(dst, src));
8047   ins_pipe(fdivF_reg_reg);
8048 %}
8049 
8050 //  Sqrt float double precision
8051 instruct sqrtD_reg_reg(regD dst, regD src) %{
8052   match(Set dst (SqrtD src));
8053 
8054   size(4);
8055   format %{ "FSQRTD $src,$dst" %}
8056   ins_encode(fsqrtd(dst, src));
8057   ins_pipe(fdivD_reg_reg);
8058 %}
8059 
8060 //----------Logical Instructions-----------------------------------------------
8061 // And Instructions
8062 // Register And
8063 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8064   match(Set dst (AndI src1 src2));
8065 
8066   size(4);
8067   format %{ "AND    $src1,$src2,$dst" %}
8068   opcode(Assembler::and_op3, Assembler::arith_op);
8069   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8070   ins_pipe(ialu_reg_reg);
8071 %}
8072 
8073 // Immediate And
8074 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8075   match(Set dst (AndI src1 src2));
8076 
8077   size(4);
8078   format %{ "AND    $src1,$src2,$dst" %}
8079   opcode(Assembler::and_op3, Assembler::arith_op);
8080   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8081   ins_pipe(ialu_reg_imm);
8082 %}
8083 
8084 // Register And Long
8085 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8086   match(Set dst (AndL src1 src2));
8087 
8088   ins_cost(DEFAULT_COST);
8089   size(4);
8090   format %{ "AND    $src1,$src2,$dst\t! long" %}
8091   opcode(Assembler::and_op3, Assembler::arith_op);
8092   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8093   ins_pipe(ialu_reg_reg);
8094 %}
8095 
8096 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8097   match(Set dst (AndL src1 con));
8098 
8099   ins_cost(DEFAULT_COST);
8100   size(4);
8101   format %{ "AND    $src1,$con,$dst\t! long" %}
8102   opcode(Assembler::and_op3, Assembler::arith_op);
8103   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8104   ins_pipe(ialu_reg_imm);
8105 %}
8106 
8107 // Or Instructions
8108 // Register Or
8109 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8110   match(Set dst (OrI src1 src2));
8111 
8112   size(4);
8113   format %{ "OR     $src1,$src2,$dst" %}
8114   opcode(Assembler::or_op3, Assembler::arith_op);
8115   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8116   ins_pipe(ialu_reg_reg);
8117 %}
8118 
8119 // Immediate Or
8120 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8121   match(Set dst (OrI src1 src2));
8122 
8123   size(4);
8124   format %{ "OR     $src1,$src2,$dst" %}
8125   opcode(Assembler::or_op3, Assembler::arith_op);
8126   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8127   ins_pipe(ialu_reg_imm);
8128 %}
8129 
8130 // Register Or Long
8131 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8132   match(Set dst (OrL src1 src2));
8133 
8134   ins_cost(DEFAULT_COST);
8135   size(4);
8136   format %{ "OR     $src1,$src2,$dst\t! long" %}
8137   opcode(Assembler::or_op3, Assembler::arith_op);
8138   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8139   ins_pipe(ialu_reg_reg);
8140 %}
8141 
8142 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8143   match(Set dst (OrL src1 con));
8144   ins_cost(DEFAULT_COST*2);
8145 
8146   ins_cost(DEFAULT_COST);
8147   size(4);
8148   format %{ "OR     $src1,$con,$dst\t! long" %}
8149   opcode(Assembler::or_op3, Assembler::arith_op);
8150   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8151   ins_pipe(ialu_reg_imm);
8152 %}
8153 
8154 #ifndef _LP64
8155 
8156 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8157 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8158   match(Set dst (OrI src1 (CastP2X src2)));
8159 
8160   size(4);
8161   format %{ "OR     $src1,$src2,$dst" %}
8162   opcode(Assembler::or_op3, Assembler::arith_op);
8163   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8164   ins_pipe(ialu_reg_reg);
8165 %}
8166 
8167 #else
8168 
8169 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8170   match(Set dst (OrL src1 (CastP2X src2)));
8171 
8172   ins_cost(DEFAULT_COST);
8173   size(4);
8174   format %{ "OR     $src1,$src2,$dst\t! long" %}
8175   opcode(Assembler::or_op3, Assembler::arith_op);
8176   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8177   ins_pipe(ialu_reg_reg);
8178 %}
8179 
8180 #endif
8181 
8182 // Xor Instructions
8183 // Register Xor
8184 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8185   match(Set dst (XorI src1 src2));
8186 
8187   size(4);
8188   format %{ "XOR    $src1,$src2,$dst" %}
8189   opcode(Assembler::xor_op3, Assembler::arith_op);
8190   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8191   ins_pipe(ialu_reg_reg);
8192 %}
8193 
8194 // Immediate Xor
8195 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8196   match(Set dst (XorI src1 src2));
8197 
8198   size(4);
8199   format %{ "XOR    $src1,$src2,$dst" %}
8200   opcode(Assembler::xor_op3, Assembler::arith_op);
8201   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8202   ins_pipe(ialu_reg_imm);
8203 %}
8204 
8205 // Register Xor Long
8206 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8207   match(Set dst (XorL src1 src2));
8208 
8209   ins_cost(DEFAULT_COST);
8210   size(4);
8211   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8212   opcode(Assembler::xor_op3, Assembler::arith_op);
8213   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8214   ins_pipe(ialu_reg_reg);
8215 %}
8216 
8217 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8218   match(Set dst (XorL src1 con));
8219 
8220   ins_cost(DEFAULT_COST);
8221   size(4);
8222   format %{ "XOR    $src1,$con,$dst\t! long" %}
8223   opcode(Assembler::xor_op3, Assembler::arith_op);
8224   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8225   ins_pipe(ialu_reg_imm);
8226 %}
8227 
8228 //----------Convert to Boolean-------------------------------------------------
8229 // Nice hack for 32-bit tests but doesn't work for
8230 // 64-bit pointers.
8231 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8232   match(Set dst (Conv2B src));
8233   effect( KILL ccr );
8234   ins_cost(DEFAULT_COST*2);
8235   format %{ "CMP    R_G0,$src\n\t"
8236             "ADDX   R_G0,0,$dst" %}
8237   ins_encode( enc_to_bool( src, dst ) );
8238   ins_pipe(ialu_reg_ialu);
8239 %}
8240 
8241 #ifndef _LP64
8242 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8243   match(Set dst (Conv2B src));
8244   effect( KILL ccr );
8245   ins_cost(DEFAULT_COST*2);
8246   format %{ "CMP    R_G0,$src\n\t"
8247             "ADDX   R_G0,0,$dst" %}
8248   ins_encode( enc_to_bool( src, dst ) );
8249   ins_pipe(ialu_reg_ialu);
8250 %}
8251 #else
8252 instruct convP2B( iRegI dst, iRegP src ) %{
8253   match(Set dst (Conv2B src));
8254   ins_cost(DEFAULT_COST*2);
8255   format %{ "MOV    $src,$dst\n\t"
8256             "MOVRNZ $src,1,$dst" %}
8257   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8258   ins_pipe(ialu_clr_and_mover);
8259 %}
8260 #endif
8261 
8262 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8263   match(Set dst (CmpLTMask src zero));
8264   effect(KILL ccr);
8265   size(4);
8266   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8267   ins_encode %{
8268     __ sra($src$$Register, 31, $dst$$Register);
8269   %}
8270   ins_pipe(ialu_reg_imm);
8271 %}
8272 
8273 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8274   match(Set dst (CmpLTMask p q));
8275   effect( KILL ccr );
8276   ins_cost(DEFAULT_COST*4);
8277   format %{ "CMP    $p,$q\n\t"
8278             "MOV    #0,$dst\n\t"
8279             "BLT,a  .+8\n\t"
8280             "MOV    #-1,$dst" %}
8281   ins_encode( enc_ltmask(p,q,dst) );
8282   ins_pipe(ialu_reg_reg_ialu);
8283 %}
8284 
8285 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8286   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8287   effect(KILL ccr, TEMP tmp);
8288   ins_cost(DEFAULT_COST*3);
8289 
8290   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8291             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8292             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8293   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8294   ins_pipe(cadd_cmpltmask);
8295 %}
8296 
8297 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8298   match(Set p (AndI (CmpLTMask p q) y));
8299   effect(KILL ccr);
8300   ins_cost(DEFAULT_COST*3);
8301 
8302   format %{ "CMP  $p,$q\n\t"
8303             "MOV  $y,$p\n\t"
8304             "MOVge G0,$p" %}
8305   ins_encode %{
8306     __ cmp($p$$Register, $q$$Register);
8307     __ mov($y$$Register, $p$$Register);
8308     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8309   %}
8310   ins_pipe(ialu_reg_reg_ialu);
8311 %}
8312 
8313 //-----------------------------------------------------------------
8314 // Direct raw moves between float and general registers using VIS3.
8315 
8316 //  ins_pipe(faddF_reg);
8317 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8318   predicate(UseVIS >= 3);
8319   match(Set dst (MoveF2I src));
8320 
8321   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8322   ins_encode %{
8323     __ movstouw($src$$FloatRegister, $dst$$Register);
8324   %}
8325   ins_pipe(ialu_reg_reg);
8326 %}
8327 
8328 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8329   predicate(UseVIS >= 3);
8330   match(Set dst (MoveI2F src));
8331 
8332   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8333   ins_encode %{
8334     __ movwtos($src$$Register, $dst$$FloatRegister);
8335   %}
8336   ins_pipe(ialu_reg_reg);
8337 %}
8338 
8339 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8340   predicate(UseVIS >= 3);
8341   match(Set dst (MoveD2L src));
8342 
8343   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8344   ins_encode %{
8345     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8346   %}
8347   ins_pipe(ialu_reg_reg);
8348 %}
8349 
8350 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8351   predicate(UseVIS >= 3);
8352   match(Set dst (MoveL2D src));
8353 
8354   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8355   ins_encode %{
8356     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8357   %}
8358   ins_pipe(ialu_reg_reg);
8359 %}
8360 
8361 
8362 // Raw moves between float and general registers using stack.
8363 
8364 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8365   match(Set dst (MoveF2I src));
8366   effect(DEF dst, USE src);
8367   ins_cost(MEMORY_REF_COST);
8368 
8369   size(4);
8370   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8371   opcode(Assembler::lduw_op3);
8372   ins_encode(simple_form3_mem_reg( src, dst ) );
8373   ins_pipe(iload_mem);
8374 %}
8375 
8376 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8377   match(Set dst (MoveI2F src));
8378   effect(DEF dst, USE src);
8379   ins_cost(MEMORY_REF_COST);
8380 
8381   size(4);
8382   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8383   opcode(Assembler::ldf_op3);
8384   ins_encode(simple_form3_mem_reg(src, dst));
8385   ins_pipe(floadF_stk);
8386 %}
8387 
8388 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8389   match(Set dst (MoveD2L src));
8390   effect(DEF dst, USE src);
8391   ins_cost(MEMORY_REF_COST);
8392 
8393   size(4);
8394   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8395   opcode(Assembler::ldx_op3);
8396   ins_encode(simple_form3_mem_reg( src, dst ) );
8397   ins_pipe(iload_mem);
8398 %}
8399 
8400 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8401   match(Set dst (MoveL2D src));
8402   effect(DEF dst, USE src);
8403   ins_cost(MEMORY_REF_COST);
8404 
8405   size(4);
8406   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8407   opcode(Assembler::lddf_op3);
8408   ins_encode(simple_form3_mem_reg(src, dst));
8409   ins_pipe(floadD_stk);
8410 %}
8411 
8412 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8413   match(Set dst (MoveF2I src));
8414   effect(DEF dst, USE src);
8415   ins_cost(MEMORY_REF_COST);
8416 
8417   size(4);
8418   format %{ "STF   $src,$dst\t! MoveF2I" %}
8419   opcode(Assembler::stf_op3);
8420   ins_encode(simple_form3_mem_reg(dst, src));
8421   ins_pipe(fstoreF_stk_reg);
8422 %}
8423 
8424 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8425   match(Set dst (MoveI2F src));
8426   effect(DEF dst, USE src);
8427   ins_cost(MEMORY_REF_COST);
8428 
8429   size(4);
8430   format %{ "STW    $src,$dst\t! MoveI2F" %}
8431   opcode(Assembler::stw_op3);
8432   ins_encode(simple_form3_mem_reg( dst, src ) );
8433   ins_pipe(istore_mem_reg);
8434 %}
8435 
8436 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8437   match(Set dst (MoveD2L src));
8438   effect(DEF dst, USE src);
8439   ins_cost(MEMORY_REF_COST);
8440 
8441   size(4);
8442   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8443   opcode(Assembler::stdf_op3);
8444   ins_encode(simple_form3_mem_reg(dst, src));
8445   ins_pipe(fstoreD_stk_reg);
8446 %}
8447 
8448 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8449   match(Set dst (MoveL2D src));
8450   effect(DEF dst, USE src);
8451   ins_cost(MEMORY_REF_COST);
8452 
8453   size(4);
8454   format %{ "STX    $src,$dst\t! MoveL2D" %}
8455   opcode(Assembler::stx_op3);
8456   ins_encode(simple_form3_mem_reg( dst, src ) );
8457   ins_pipe(istore_mem_reg);
8458 %}
8459 
8460 
8461 //----------Arithmetic Conversion Instructions---------------------------------
8462 // The conversions operations are all Alpha sorted.  Please keep it that way!
8463 
8464 instruct convD2F_reg(regF dst, regD src) %{
8465   match(Set dst (ConvD2F src));
8466   size(4);
8467   format %{ "FDTOS  $src,$dst" %}
8468   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8469   ins_encode(form3_opf_rs2D_rdF(src, dst));
8470   ins_pipe(fcvtD2F);
8471 %}
8472 
8473 
8474 // Convert a double to an int in a float register.
8475 // If the double is a NAN, stuff a zero in instead.
8476 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8477   effect(DEF dst, USE src, KILL fcc0);
8478   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8479             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8480             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8481             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8482             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8483       "skip:" %}
8484   ins_encode(form_d2i_helper(src,dst));
8485   ins_pipe(fcvtD2I);
8486 %}
8487 
8488 instruct convD2I_stk(stackSlotI dst, regD src) %{
8489   match(Set dst (ConvD2I src));
8490   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8491   expand %{
8492     regF tmp;
8493     convD2I_helper(tmp, src);
8494     regF_to_stkI(dst, tmp);
8495   %}
8496 %}
8497 
8498 instruct convD2I_reg(iRegI dst, regD src) %{
8499   predicate(UseVIS >= 3);
8500   match(Set dst (ConvD2I src));
8501   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8502   expand %{
8503     regF tmp;
8504     convD2I_helper(tmp, src);
8505     MoveF2I_reg_reg(dst, tmp);
8506   %}
8507 %}
8508 
8509 
8510 // Convert a double to a long in a double register.
8511 // If the double is a NAN, stuff a zero in instead.
8512 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8513   effect(DEF dst, USE src, KILL fcc0);
8514   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8515             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8516             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8517             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8518             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8519       "skip:" %}
8520   ins_encode(form_d2l_helper(src,dst));
8521   ins_pipe(fcvtD2L);
8522 %}
8523 
8524 instruct convD2L_stk(stackSlotL dst, regD src) %{
8525   match(Set dst (ConvD2L src));
8526   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8527   expand %{
8528     regD tmp;
8529     convD2L_helper(tmp, src);
8530     regD_to_stkL(dst, tmp);
8531   %}
8532 %}
8533 
8534 instruct convD2L_reg(iRegL dst, regD src) %{
8535   predicate(UseVIS >= 3);
8536   match(Set dst (ConvD2L src));
8537   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8538   expand %{
8539     regD tmp;
8540     convD2L_helper(tmp, src);
8541     MoveD2L_reg_reg(dst, tmp);
8542   %}
8543 %}
8544 
8545 
8546 instruct convF2D_reg(regD dst, regF src) %{
8547   match(Set dst (ConvF2D src));
8548   format %{ "FSTOD  $src,$dst" %}
8549   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8550   ins_encode(form3_opf_rs2F_rdD(src, dst));
8551   ins_pipe(fcvtF2D);
8552 %}
8553 
8554 
8555 // Convert a float to an int in a float register.
8556 // If the float is a NAN, stuff a zero in instead.
8557 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8558   effect(DEF dst, USE src, KILL fcc0);
8559   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8560             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8561             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8562             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8563             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8564       "skip:" %}
8565   ins_encode(form_f2i_helper(src,dst));
8566   ins_pipe(fcvtF2I);
8567 %}
8568 
8569 instruct convF2I_stk(stackSlotI dst, regF src) %{
8570   match(Set dst (ConvF2I src));
8571   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8572   expand %{
8573     regF tmp;
8574     convF2I_helper(tmp, src);
8575     regF_to_stkI(dst, tmp);
8576   %}
8577 %}
8578 
8579 instruct convF2I_reg(iRegI dst, regF src) %{
8580   predicate(UseVIS >= 3);
8581   match(Set dst (ConvF2I src));
8582   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8583   expand %{
8584     regF tmp;
8585     convF2I_helper(tmp, src);
8586     MoveF2I_reg_reg(dst, tmp);
8587   %}
8588 %}
8589 
8590 
8591 // Convert a float to a long in a float register.
8592 // If the float is a NAN, stuff a zero in instead.
8593 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8594   effect(DEF dst, USE src, KILL fcc0);
8595   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8596             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8597             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8598             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8599             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8600       "skip:" %}
8601   ins_encode(form_f2l_helper(src,dst));
8602   ins_pipe(fcvtF2L);
8603 %}
8604 
8605 instruct convF2L_stk(stackSlotL dst, regF src) %{
8606   match(Set dst (ConvF2L src));
8607   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8608   expand %{
8609     regD tmp;
8610     convF2L_helper(tmp, src);
8611     regD_to_stkL(dst, tmp);
8612   %}
8613 %}
8614 
8615 instruct convF2L_reg(iRegL dst, regF src) %{
8616   predicate(UseVIS >= 3);
8617   match(Set dst (ConvF2L src));
8618   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8619   expand %{
8620     regD tmp;
8621     convF2L_helper(tmp, src);
8622     MoveD2L_reg_reg(dst, tmp);
8623   %}
8624 %}
8625 
8626 
8627 instruct convI2D_helper(regD dst, regF tmp) %{
8628   effect(USE tmp, DEF dst);
8629   format %{ "FITOD  $tmp,$dst" %}
8630   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8631   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8632   ins_pipe(fcvtI2D);
8633 %}
8634 
8635 instruct convI2D_stk(stackSlotI src, regD dst) %{
8636   match(Set dst (ConvI2D src));
8637   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8638   expand %{
8639     regF tmp;
8640     stkI_to_regF(tmp, src);
8641     convI2D_helper(dst, tmp);
8642   %}
8643 %}
8644 
8645 instruct convI2D_reg(regD_low dst, iRegI src) %{
8646   predicate(UseVIS >= 3);
8647   match(Set dst (ConvI2D src));
8648   expand %{
8649     regF tmp;
8650     MoveI2F_reg_reg(tmp, src);
8651     convI2D_helper(dst, tmp);
8652   %}
8653 %}
8654 
8655 instruct convI2D_mem(regD_low dst, memory mem) %{
8656   match(Set dst (ConvI2D (LoadI mem)));
8657   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8658   size(8);
8659   format %{ "LDF    $mem,$dst\n\t"
8660             "FITOD  $dst,$dst" %}
8661   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8662   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8663   ins_pipe(floadF_mem);
8664 %}
8665 
8666 
8667 instruct convI2F_helper(regF dst, regF tmp) %{
8668   effect(DEF dst, USE tmp);
8669   format %{ "FITOS  $tmp,$dst" %}
8670   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8671   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8672   ins_pipe(fcvtI2F);
8673 %}
8674 
8675 instruct convI2F_stk(regF dst, stackSlotI src) %{
8676   match(Set dst (ConvI2F src));
8677   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8678   expand %{
8679     regF tmp;
8680     stkI_to_regF(tmp,src);
8681     convI2F_helper(dst, tmp);
8682   %}
8683 %}
8684 
8685 instruct convI2F_reg(regF dst, iRegI src) %{
8686   predicate(UseVIS >= 3);
8687   match(Set dst (ConvI2F src));
8688   ins_cost(DEFAULT_COST);
8689   expand %{
8690     regF tmp;
8691     MoveI2F_reg_reg(tmp, src);
8692     convI2F_helper(dst, tmp);
8693   %}
8694 %}
8695 
8696 instruct convI2F_mem( regF dst, memory mem ) %{
8697   match(Set dst (ConvI2F (LoadI mem)));
8698   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8699   size(8);
8700   format %{ "LDF    $mem,$dst\n\t"
8701             "FITOS  $dst,$dst" %}
8702   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8703   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8704   ins_pipe(floadF_mem);
8705 %}
8706 
8707 
8708 instruct convI2L_reg(iRegL dst, iRegI src) %{
8709   match(Set dst (ConvI2L src));
8710   size(4);
8711   format %{ "SRA    $src,0,$dst\t! int->long" %}
8712   opcode(Assembler::sra_op3, Assembler::arith_op);
8713   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8714   ins_pipe(ialu_reg_reg);
8715 %}
8716 
8717 // Zero-extend convert int to long
8718 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8719   match(Set dst (AndL (ConvI2L src) mask) );
8720   size(4);
8721   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8722   opcode(Assembler::srl_op3, Assembler::arith_op);
8723   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8724   ins_pipe(ialu_reg_reg);
8725 %}
8726 
8727 // Zero-extend long
8728 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8729   match(Set dst (AndL src mask) );
8730   size(4);
8731   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8732   opcode(Assembler::srl_op3, Assembler::arith_op);
8733   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8734   ins_pipe(ialu_reg_reg);
8735 %}
8736 
8737 
8738 //-----------
8739 // Long to Double conversion using V8 opcodes.
8740 // Still useful because cheetah traps and becomes
8741 // amazingly slow for some common numbers.
8742 
8743 // Magic constant, 0x43300000
8744 instruct loadConI_x43300000(iRegI dst) %{
8745   effect(DEF dst);
8746   size(4);
8747   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8748   ins_encode(SetHi22(0x43300000, dst));
8749   ins_pipe(ialu_none);
8750 %}
8751 
8752 // Magic constant, 0x41f00000
8753 instruct loadConI_x41f00000(iRegI dst) %{
8754   effect(DEF dst);
8755   size(4);
8756   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8757   ins_encode(SetHi22(0x41f00000, dst));
8758   ins_pipe(ialu_none);
8759 %}
8760 
8761 // Construct a double from two float halves
8762 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8763   effect(DEF dst, USE src1, USE src2);
8764   size(8);
8765   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8766             "FMOVS  $src2.lo,$dst.lo" %}
8767   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8768   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8769   ins_pipe(faddD_reg_reg);
8770 %}
8771 
8772 // Convert integer in high half of a double register (in the lower half of
8773 // the double register file) to double
8774 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8775   effect(DEF dst, USE src);
8776   size(4);
8777   format %{ "FITOD  $src,$dst" %}
8778   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8779   ins_encode(form3_opf_rs2D_rdD(src, dst));
8780   ins_pipe(fcvtLHi2D);
8781 %}
8782 
8783 // Add float double precision
8784 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8785   effect(DEF dst, USE src1, USE src2);
8786   size(4);
8787   format %{ "FADDD  $src1,$src2,$dst" %}
8788   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8789   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8790   ins_pipe(faddD_reg_reg);
8791 %}
8792 
8793 // Sub float double precision
8794 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8795   effect(DEF dst, USE src1, USE src2);
8796   size(4);
8797   format %{ "FSUBD  $src1,$src2,$dst" %}
8798   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8799   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8800   ins_pipe(faddD_reg_reg);
8801 %}
8802 
8803 // Mul float double precision
8804 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8805   effect(DEF dst, USE src1, USE src2);
8806   size(4);
8807   format %{ "FMULD  $src1,$src2,$dst" %}
8808   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8809   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8810   ins_pipe(fmulD_reg_reg);
8811 %}
8812 
8813 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8814   match(Set dst (ConvL2D src));
8815   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8816 
8817   expand %{
8818     regD_low   tmpsrc;
8819     iRegI      ix43300000;
8820     iRegI      ix41f00000;
8821     stackSlotL lx43300000;
8822     stackSlotL lx41f00000;
8823     regD_low   dx43300000;
8824     regD       dx41f00000;
8825     regD       tmp1;
8826     regD_low   tmp2;
8827     regD       tmp3;
8828     regD       tmp4;
8829 
8830     stkL_to_regD(tmpsrc, src);
8831 
8832     loadConI_x43300000(ix43300000);
8833     loadConI_x41f00000(ix41f00000);
8834     regI_to_stkLHi(lx43300000, ix43300000);
8835     regI_to_stkLHi(lx41f00000, ix41f00000);
8836     stkL_to_regD(dx43300000, lx43300000);
8837     stkL_to_regD(dx41f00000, lx41f00000);
8838 
8839     convI2D_regDHi_regD(tmp1, tmpsrc);
8840     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8841     subD_regD_regD(tmp3, tmp2, dx43300000);
8842     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8843     addD_regD_regD(dst, tmp3, tmp4);
8844   %}
8845 %}
8846 
8847 // Long to Double conversion using fast fxtof
8848 instruct convL2D_helper(regD dst, regD tmp) %{
8849   effect(DEF dst, USE tmp);
8850   size(4);
8851   format %{ "FXTOD  $tmp,$dst" %}
8852   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8853   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8854   ins_pipe(fcvtL2D);
8855 %}
8856 
8857 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8858   predicate(VM_Version::has_fast_fxtof());
8859   match(Set dst (ConvL2D src));
8860   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8861   expand %{
8862     regD tmp;
8863     stkL_to_regD(tmp, src);
8864     convL2D_helper(dst, tmp);
8865   %}
8866 %}
8867 
8868 instruct convL2D_reg(regD dst, iRegL src) %{
8869   predicate(UseVIS >= 3);
8870   match(Set dst (ConvL2D src));
8871   expand %{
8872     regD tmp;
8873     MoveL2D_reg_reg(tmp, src);
8874     convL2D_helper(dst, tmp);
8875   %}
8876 %}
8877 
8878 // Long to Float conversion using fast fxtof
8879 instruct convL2F_helper(regF dst, regD tmp) %{
8880   effect(DEF dst, USE tmp);
8881   size(4);
8882   format %{ "FXTOS  $tmp,$dst" %}
8883   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8884   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8885   ins_pipe(fcvtL2F);
8886 %}
8887 
8888 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8889   match(Set dst (ConvL2F src));
8890   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8891   expand %{
8892     regD tmp;
8893     stkL_to_regD(tmp, src);
8894     convL2F_helper(dst, tmp);
8895   %}
8896 %}
8897 
8898 instruct convL2F_reg(regF dst, iRegL src) %{
8899   predicate(UseVIS >= 3);
8900   match(Set dst (ConvL2F src));
8901   ins_cost(DEFAULT_COST);
8902   expand %{
8903     regD tmp;
8904     MoveL2D_reg_reg(tmp, src);
8905     convL2F_helper(dst, tmp);
8906   %}
8907 %}
8908 
8909 //-----------
8910 
8911 instruct convL2I_reg(iRegI dst, iRegL src) %{
8912   match(Set dst (ConvL2I src));
8913 #ifndef _LP64
8914   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8915   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8916   ins_pipe(ialu_move_reg_I_to_L);
8917 #else
8918   size(4);
8919   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8920   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8921   ins_pipe(ialu_reg);
8922 #endif
8923 %}
8924 
8925 // Register Shift Right Immediate
8926 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8927   match(Set dst (ConvL2I (RShiftL src cnt)));
8928 
8929   size(4);
8930   format %{ "SRAX   $src,$cnt,$dst" %}
8931   opcode(Assembler::srax_op3, Assembler::arith_op);
8932   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8933   ins_pipe(ialu_reg_imm);
8934 %}
8935 
8936 //----------Control Flow Instructions------------------------------------------
8937 // Compare Instructions
8938 // Compare Integers
8939 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8940   match(Set icc (CmpI op1 op2));
8941   effect( DEF icc, USE op1, USE op2 );
8942 
8943   size(4);
8944   format %{ "CMP    $op1,$op2" %}
8945   opcode(Assembler::subcc_op3, Assembler::arith_op);
8946   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8947   ins_pipe(ialu_cconly_reg_reg);
8948 %}
8949 
8950 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8951   match(Set icc (CmpU op1 op2));
8952 
8953   size(4);
8954   format %{ "CMP    $op1,$op2\t! unsigned" %}
8955   opcode(Assembler::subcc_op3, Assembler::arith_op);
8956   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8957   ins_pipe(ialu_cconly_reg_reg);
8958 %}
8959 
8960 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8961   match(Set icc (CmpI op1 op2));
8962   effect( DEF icc, USE op1 );
8963 
8964   size(4);
8965   format %{ "CMP    $op1,$op2" %}
8966   opcode(Assembler::subcc_op3, Assembler::arith_op);
8967   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8968   ins_pipe(ialu_cconly_reg_imm);
8969 %}
8970 
8971 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8972   match(Set icc (CmpI (AndI op1 op2) zero));
8973 
8974   size(4);
8975   format %{ "BTST   $op2,$op1" %}
8976   opcode(Assembler::andcc_op3, Assembler::arith_op);
8977   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8978   ins_pipe(ialu_cconly_reg_reg_zero);
8979 %}
8980 
8981 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8982   match(Set icc (CmpI (AndI op1 op2) zero));
8983 
8984   size(4);
8985   format %{ "BTST   $op2,$op1" %}
8986   opcode(Assembler::andcc_op3, Assembler::arith_op);
8987   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8988   ins_pipe(ialu_cconly_reg_imm_zero);
8989 %}
8990 
8991 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8992   match(Set xcc (CmpL op1 op2));
8993   effect( DEF xcc, USE op1, USE op2 );
8994 
8995   size(4);
8996   format %{ "CMP    $op1,$op2\t\t! long" %}
8997   opcode(Assembler::subcc_op3, Assembler::arith_op);
8998   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8999   ins_pipe(ialu_cconly_reg_reg);
9000 %}
9001 
9002 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
9003   match(Set xcc (CmpL op1 con));
9004   effect( DEF xcc, USE op1, USE con );
9005 
9006   size(4);
9007   format %{ "CMP    $op1,$con\t\t! long" %}
9008   opcode(Assembler::subcc_op3, Assembler::arith_op);
9009   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9010   ins_pipe(ialu_cconly_reg_reg);
9011 %}
9012 
9013 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
9014   match(Set xcc (CmpL (AndL op1 op2) zero));
9015   effect( DEF xcc, USE op1, USE op2 );
9016 
9017   size(4);
9018   format %{ "BTST   $op1,$op2\t\t! long" %}
9019   opcode(Assembler::andcc_op3, Assembler::arith_op);
9020   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9021   ins_pipe(ialu_cconly_reg_reg);
9022 %}
9023 
9024 // useful for checking the alignment of a pointer:
9025 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
9026   match(Set xcc (CmpL (AndL op1 con) zero));
9027   effect( DEF xcc, USE op1, USE con );
9028 
9029   size(4);
9030   format %{ "BTST   $op1,$con\t\t! long" %}
9031   opcode(Assembler::andcc_op3, Assembler::arith_op);
9032   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9033   ins_pipe(ialu_cconly_reg_reg);
9034 %}
9035 
9036 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
9037   match(Set icc (CmpU op1 op2));
9038 
9039   size(4);
9040   format %{ "CMP    $op1,$op2\t! unsigned" %}
9041   opcode(Assembler::subcc_op3, Assembler::arith_op);
9042   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9043   ins_pipe(ialu_cconly_reg_imm);
9044 %}
9045 
9046 // Compare Pointers
9047 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
9048   match(Set pcc (CmpP op1 op2));
9049 
9050   size(4);
9051   format %{ "CMP    $op1,$op2\t! ptr" %}
9052   opcode(Assembler::subcc_op3, Assembler::arith_op);
9053   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9054   ins_pipe(ialu_cconly_reg_reg);
9055 %}
9056 
9057 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9058   match(Set pcc (CmpP op1 op2));
9059 
9060   size(4);
9061   format %{ "CMP    $op1,$op2\t! ptr" %}
9062   opcode(Assembler::subcc_op3, Assembler::arith_op);
9063   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9064   ins_pipe(ialu_cconly_reg_imm);
9065 %}
9066 
9067 // Compare Narrow oops
9068 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9069   match(Set icc (CmpN op1 op2));
9070 
9071   size(4);
9072   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9073   opcode(Assembler::subcc_op3, Assembler::arith_op);
9074   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9075   ins_pipe(ialu_cconly_reg_reg);
9076 %}
9077 
9078 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9079   match(Set icc (CmpN op1 op2));
9080 
9081   size(4);
9082   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9083   opcode(Assembler::subcc_op3, Assembler::arith_op);
9084   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9085   ins_pipe(ialu_cconly_reg_imm);
9086 %}
9087 
9088 //----------Max and Min--------------------------------------------------------
9089 // Min Instructions
9090 // Conditional move for min
9091 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9092   effect( USE_DEF op2, USE op1, USE icc );
9093 
9094   size(4);
9095   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9096   opcode(Assembler::less);
9097   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9098   ins_pipe(ialu_reg_flags);
9099 %}
9100 
9101 // Min Register with Register.
9102 instruct minI_eReg(iRegI op1, iRegI op2) %{
9103   match(Set op2 (MinI op1 op2));
9104   ins_cost(DEFAULT_COST*2);
9105   expand %{
9106     flagsReg icc;
9107     compI_iReg(icc,op1,op2);
9108     cmovI_reg_lt(op2,op1,icc);
9109   %}
9110 %}
9111 
9112 // Max Instructions
9113 // Conditional move for max
9114 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9115   effect( USE_DEF op2, USE op1, USE icc );
9116   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9117   opcode(Assembler::greater);
9118   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9119   ins_pipe(ialu_reg_flags);
9120 %}
9121 
9122 // Max Register with Register
9123 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9124   match(Set op2 (MaxI op1 op2));
9125   ins_cost(DEFAULT_COST*2);
9126   expand %{
9127     flagsReg icc;
9128     compI_iReg(icc,op1,op2);
9129     cmovI_reg_gt(op2,op1,icc);
9130   %}
9131 %}
9132 
9133 
9134 //----------Float Compares----------------------------------------------------
9135 // Compare floating, generate condition code
9136 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9137   match(Set fcc (CmpF src1 src2));
9138 
9139   size(4);
9140   format %{ "FCMPs  $fcc,$src1,$src2" %}
9141   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9142   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9143   ins_pipe(faddF_fcc_reg_reg_zero);
9144 %}
9145 
9146 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9147   match(Set fcc (CmpD src1 src2));
9148 
9149   size(4);
9150   format %{ "FCMPd  $fcc,$src1,$src2" %}
9151   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9152   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9153   ins_pipe(faddD_fcc_reg_reg_zero);
9154 %}
9155 
9156 
9157 // Compare floating, generate -1,0,1
9158 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9159   match(Set dst (CmpF3 src1 src2));
9160   effect(KILL fcc0);
9161   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9162   format %{ "fcmpl  $dst,$src1,$src2" %}
9163   // Primary = float
9164   opcode( true );
9165   ins_encode( floating_cmp( dst, src1, src2 ) );
9166   ins_pipe( floating_cmp );
9167 %}
9168 
9169 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9170   match(Set dst (CmpD3 src1 src2));
9171   effect(KILL fcc0);
9172   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9173   format %{ "dcmpl  $dst,$src1,$src2" %}
9174   // Primary = double (not float)
9175   opcode( false );
9176   ins_encode( floating_cmp( dst, src1, src2 ) );
9177   ins_pipe( floating_cmp );
9178 %}
9179 
9180 //----------Branches---------------------------------------------------------
9181 // Jump
9182 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9183 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9184   match(Jump switch_val);
9185   effect(TEMP table);
9186 
9187   ins_cost(350);
9188 
9189   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9190              "LD     [O7 + $switch_val], O7\n\t"
9191              "JUMP   O7" %}
9192   ins_encode %{
9193     // Calculate table address into a register.
9194     Register table_reg;
9195     Register label_reg = O7;
9196     // If we are calculating the size of this instruction don't trust
9197     // zero offsets because they might change when
9198     // MachConstantBaseNode decides to optimize the constant table
9199     // base.
9200     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9201       table_reg = $constanttablebase;
9202     } else {
9203       table_reg = O7;
9204       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9205       __ add($constanttablebase, con_offset, table_reg);
9206     }
9207 
9208     // Jump to base address + switch value
9209     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9210     __ jmp(label_reg, G0);
9211     __ delayed()->nop();
9212   %}
9213   ins_pipe(ialu_reg_reg);
9214 %}
9215 
9216 // Direct Branch.  Use V8 version with longer range.
9217 instruct branch(label labl) %{
9218   match(Goto);
9219   effect(USE labl);
9220 
9221   size(8);
9222   ins_cost(BRANCH_COST);
9223   format %{ "BA     $labl" %}
9224   ins_encode %{
9225     Label* L = $labl$$label;
9226     __ ba(*L);
9227     __ delayed()->nop();
9228   %}
9229   ins_avoid_back_to_back(AVOID_BEFORE);
9230   ins_pipe(br);
9231 %}
9232 
9233 // Direct Branch, short with no delay slot
9234 instruct branch_short(label labl) %{
9235   match(Goto);
9236   predicate(UseCBCond);
9237   effect(USE labl);
9238 
9239   size(4);
9240   ins_cost(BRANCH_COST);
9241   format %{ "BA     $labl\t! short branch" %}
9242   ins_encode %{
9243     Label* L = $labl$$label;
9244     assert(__ use_cbcond(*L), "back to back cbcond");
9245     __ ba_short(*L);
9246   %}
9247   ins_short_branch(1);
9248   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9249   ins_pipe(cbcond_reg_imm);
9250 %}
9251 
9252 // Conditional Direct Branch
9253 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9254   match(If cmp icc);
9255   effect(USE labl);
9256 
9257   size(8);
9258   ins_cost(BRANCH_COST);
9259   format %{ "BP$cmp   $icc,$labl" %}
9260   // Prim = bits 24-22, Secnd = bits 31-30
9261   ins_encode( enc_bp( labl, cmp, icc ) );
9262   ins_avoid_back_to_back(AVOID_BEFORE);
9263   ins_pipe(br_cc);
9264 %}
9265 
9266 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9267   match(If cmp icc);
9268   effect(USE labl);
9269 
9270   ins_cost(BRANCH_COST);
9271   format %{ "BP$cmp  $icc,$labl" %}
9272   // Prim = bits 24-22, Secnd = bits 31-30
9273   ins_encode( enc_bp( labl, cmp, icc ) );
9274   ins_avoid_back_to_back(AVOID_BEFORE);
9275   ins_pipe(br_cc);
9276 %}
9277 
9278 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9279   match(If cmp pcc);
9280   effect(USE labl);
9281 
9282   size(8);
9283   ins_cost(BRANCH_COST);
9284   format %{ "BP$cmp  $pcc,$labl" %}
9285   ins_encode %{
9286     Label* L = $labl$$label;
9287     Assembler::Predict predict_taken =
9288       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9289 
9290     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9291     __ delayed()->nop();
9292   %}
9293   ins_avoid_back_to_back(AVOID_BEFORE);
9294   ins_pipe(br_cc);
9295 %}
9296 
9297 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9298   match(If cmp fcc);
9299   effect(USE labl);
9300 
9301   size(8);
9302   ins_cost(BRANCH_COST);
9303   format %{ "FBP$cmp $fcc,$labl" %}
9304   ins_encode %{
9305     Label* L = $labl$$label;
9306     Assembler::Predict predict_taken =
9307       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9308 
9309     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9310     __ delayed()->nop();
9311   %}
9312   ins_avoid_back_to_back(AVOID_BEFORE);
9313   ins_pipe(br_fcc);
9314 %}
9315 
9316 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9317   match(CountedLoopEnd cmp icc);
9318   effect(USE labl);
9319 
9320   size(8);
9321   ins_cost(BRANCH_COST);
9322   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9323   // Prim = bits 24-22, Secnd = bits 31-30
9324   ins_encode( enc_bp( labl, cmp, icc ) );
9325   ins_avoid_back_to_back(AVOID_BEFORE);
9326   ins_pipe(br_cc);
9327 %}
9328 
9329 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9330   match(CountedLoopEnd cmp icc);
9331   effect(USE labl);
9332 
9333   size(8);
9334   ins_cost(BRANCH_COST);
9335   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9336   // Prim = bits 24-22, Secnd = bits 31-30
9337   ins_encode( enc_bp( labl, cmp, icc ) );
9338   ins_avoid_back_to_back(AVOID_BEFORE);
9339   ins_pipe(br_cc);
9340 %}
9341 
9342 // Compare and branch instructions
9343 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9344   match(If cmp (CmpI op1 op2));
9345   effect(USE labl, KILL icc);
9346 
9347   size(12);
9348   ins_cost(BRANCH_COST);
9349   format %{ "CMP    $op1,$op2\t! int\n\t"
9350             "BP$cmp   $labl" %}
9351   ins_encode %{
9352     Label* L = $labl$$label;
9353     Assembler::Predict predict_taken =
9354       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9355     __ cmp($op1$$Register, $op2$$Register);
9356     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9357     __ delayed()->nop();
9358   %}
9359   ins_pipe(cmp_br_reg_reg);
9360 %}
9361 
9362 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9363   match(If cmp (CmpI op1 op2));
9364   effect(USE labl, KILL icc);
9365 
9366   size(12);
9367   ins_cost(BRANCH_COST);
9368   format %{ "CMP    $op1,$op2\t! int\n\t"
9369             "BP$cmp   $labl" %}
9370   ins_encode %{
9371     Label* L = $labl$$label;
9372     Assembler::Predict predict_taken =
9373       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9374     __ cmp($op1$$Register, $op2$$constant);
9375     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9376     __ delayed()->nop();
9377   %}
9378   ins_pipe(cmp_br_reg_imm);
9379 %}
9380 
9381 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9382   match(If cmp (CmpU op1 op2));
9383   effect(USE labl, KILL icc);
9384 
9385   size(12);
9386   ins_cost(BRANCH_COST);
9387   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9388             "BP$cmp  $labl" %}
9389   ins_encode %{
9390     Label* L = $labl$$label;
9391     Assembler::Predict predict_taken =
9392       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9393     __ cmp($op1$$Register, $op2$$Register);
9394     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9395     __ delayed()->nop();
9396   %}
9397   ins_pipe(cmp_br_reg_reg);
9398 %}
9399 
9400 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9401   match(If cmp (CmpU op1 op2));
9402   effect(USE labl, KILL icc);
9403 
9404   size(12);
9405   ins_cost(BRANCH_COST);
9406   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9407             "BP$cmp  $labl" %}
9408   ins_encode %{
9409     Label* L = $labl$$label;
9410     Assembler::Predict predict_taken =
9411       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9412     __ cmp($op1$$Register, $op2$$constant);
9413     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9414     __ delayed()->nop();
9415   %}
9416   ins_pipe(cmp_br_reg_imm);
9417 %}
9418 
9419 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9420   match(If cmp (CmpL op1 op2));
9421   effect(USE labl, KILL xcc);
9422 
9423   size(12);
9424   ins_cost(BRANCH_COST);
9425   format %{ "CMP    $op1,$op2\t! long\n\t"
9426             "BP$cmp   $labl" %}
9427   ins_encode %{
9428     Label* L = $labl$$label;
9429     Assembler::Predict predict_taken =
9430       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9431     __ cmp($op1$$Register, $op2$$Register);
9432     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9433     __ delayed()->nop();
9434   %}
9435   ins_pipe(cmp_br_reg_reg);
9436 %}
9437 
9438 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9439   match(If cmp (CmpL op1 op2));
9440   effect(USE labl, KILL xcc);
9441 
9442   size(12);
9443   ins_cost(BRANCH_COST);
9444   format %{ "CMP    $op1,$op2\t! long\n\t"
9445             "BP$cmp   $labl" %}
9446   ins_encode %{
9447     Label* L = $labl$$label;
9448     Assembler::Predict predict_taken =
9449       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9450     __ cmp($op1$$Register, $op2$$constant);
9451     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9452     __ delayed()->nop();
9453   %}
9454   ins_pipe(cmp_br_reg_imm);
9455 %}
9456 
9457 // Compare Pointers and branch
9458 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9459   match(If cmp (CmpP op1 op2));
9460   effect(USE labl, KILL pcc);
9461 
9462   size(12);
9463   ins_cost(BRANCH_COST);
9464   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9465             "B$cmp   $labl" %}
9466   ins_encode %{
9467     Label* L = $labl$$label;
9468     Assembler::Predict predict_taken =
9469       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9470     __ cmp($op1$$Register, $op2$$Register);
9471     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9472     __ delayed()->nop();
9473   %}
9474   ins_pipe(cmp_br_reg_reg);
9475 %}
9476 
9477 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9478   match(If cmp (CmpP op1 null));
9479   effect(USE labl, KILL pcc);
9480 
9481   size(12);
9482   ins_cost(BRANCH_COST);
9483   format %{ "CMP    $op1,0\t! ptr\n\t"
9484             "B$cmp   $labl" %}
9485   ins_encode %{
9486     Label* L = $labl$$label;
9487     Assembler::Predict predict_taken =
9488       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9489     __ cmp($op1$$Register, G0);
9490     // bpr() is not used here since it has shorter distance.
9491     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9492     __ delayed()->nop();
9493   %}
9494   ins_pipe(cmp_br_reg_reg);
9495 %}
9496 
9497 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9498   match(If cmp (CmpN op1 op2));
9499   effect(USE labl, KILL icc);
9500 
9501   size(12);
9502   ins_cost(BRANCH_COST);
9503   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9504             "BP$cmp   $labl" %}
9505   ins_encode %{
9506     Label* L = $labl$$label;
9507     Assembler::Predict predict_taken =
9508       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9509     __ cmp($op1$$Register, $op2$$Register);
9510     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9511     __ delayed()->nop();
9512   %}
9513   ins_pipe(cmp_br_reg_reg);
9514 %}
9515 
9516 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9517   match(If cmp (CmpN op1 null));
9518   effect(USE labl, KILL icc);
9519 
9520   size(12);
9521   ins_cost(BRANCH_COST);
9522   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9523             "BP$cmp   $labl" %}
9524   ins_encode %{
9525     Label* L = $labl$$label;
9526     Assembler::Predict predict_taken =
9527       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9528     __ cmp($op1$$Register, G0);
9529     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9530     __ delayed()->nop();
9531   %}
9532   ins_pipe(cmp_br_reg_reg);
9533 %}
9534 
9535 // Loop back branch
9536 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9537   match(CountedLoopEnd cmp (CmpI op1 op2));
9538   effect(USE labl, KILL icc);
9539 
9540   size(12);
9541   ins_cost(BRANCH_COST);
9542   format %{ "CMP    $op1,$op2\t! int\n\t"
9543             "BP$cmp   $labl\t! Loop end" %}
9544   ins_encode %{
9545     Label* L = $labl$$label;
9546     Assembler::Predict predict_taken =
9547       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9548     __ cmp($op1$$Register, $op2$$Register);
9549     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9550     __ delayed()->nop();
9551   %}
9552   ins_pipe(cmp_br_reg_reg);
9553 %}
9554 
9555 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9556   match(CountedLoopEnd cmp (CmpI op1 op2));
9557   effect(USE labl, KILL icc);
9558 
9559   size(12);
9560   ins_cost(BRANCH_COST);
9561   format %{ "CMP    $op1,$op2\t! int\n\t"
9562             "BP$cmp   $labl\t! Loop end" %}
9563   ins_encode %{
9564     Label* L = $labl$$label;
9565     Assembler::Predict predict_taken =
9566       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9567     __ cmp($op1$$Register, $op2$$constant);
9568     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9569     __ delayed()->nop();
9570   %}
9571   ins_pipe(cmp_br_reg_imm);
9572 %}
9573 
9574 // Short compare and branch instructions
9575 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9576   match(If cmp (CmpI op1 op2));
9577   predicate(UseCBCond);
9578   effect(USE labl, KILL icc);
9579 
9580   size(4);
9581   ins_cost(BRANCH_COST);
9582   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9583   ins_encode %{
9584     Label* L = $labl$$label;
9585     assert(__ use_cbcond(*L), "back to back cbcond");
9586     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9587   %}
9588   ins_short_branch(1);
9589   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9590   ins_pipe(cbcond_reg_reg);
9591 %}
9592 
9593 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9594   match(If cmp (CmpI op1 op2));
9595   predicate(UseCBCond);
9596   effect(USE labl, KILL icc);
9597 
9598   size(4);
9599   ins_cost(BRANCH_COST);
9600   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9601   ins_encode %{
9602     Label* L = $labl$$label;
9603     assert(__ use_cbcond(*L), "back to back cbcond");
9604     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9605   %}
9606   ins_short_branch(1);
9607   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9608   ins_pipe(cbcond_reg_imm);
9609 %}
9610 
9611 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9612   match(If cmp (CmpU op1 op2));
9613   predicate(UseCBCond);
9614   effect(USE labl, KILL icc);
9615 
9616   size(4);
9617   ins_cost(BRANCH_COST);
9618   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9619   ins_encode %{
9620     Label* L = $labl$$label;
9621     assert(__ use_cbcond(*L), "back to back cbcond");
9622     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9623   %}
9624   ins_short_branch(1);
9625   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9626   ins_pipe(cbcond_reg_reg);
9627 %}
9628 
9629 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9630   match(If cmp (CmpU op1 op2));
9631   predicate(UseCBCond);
9632   effect(USE labl, KILL icc);
9633 
9634   size(4);
9635   ins_cost(BRANCH_COST);
9636   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9637   ins_encode %{
9638     Label* L = $labl$$label;
9639     assert(__ use_cbcond(*L), "back to back cbcond");
9640     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9641   %}
9642   ins_short_branch(1);
9643   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9644   ins_pipe(cbcond_reg_imm);
9645 %}
9646 
9647 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9648   match(If cmp (CmpL op1 op2));
9649   predicate(UseCBCond);
9650   effect(USE labl, KILL xcc);
9651 
9652   size(4);
9653   ins_cost(BRANCH_COST);
9654   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9655   ins_encode %{
9656     Label* L = $labl$$label;
9657     assert(__ use_cbcond(*L), "back to back cbcond");
9658     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9659   %}
9660   ins_short_branch(1);
9661   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9662   ins_pipe(cbcond_reg_reg);
9663 %}
9664 
9665 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9666   match(If cmp (CmpL op1 op2));
9667   predicate(UseCBCond);
9668   effect(USE labl, KILL xcc);
9669 
9670   size(4);
9671   ins_cost(BRANCH_COST);
9672   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9673   ins_encode %{
9674     Label* L = $labl$$label;
9675     assert(__ use_cbcond(*L), "back to back cbcond");
9676     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9677   %}
9678   ins_short_branch(1);
9679   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9680   ins_pipe(cbcond_reg_imm);
9681 %}
9682 
9683 // Compare Pointers and branch
9684 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9685   match(If cmp (CmpP op1 op2));
9686   predicate(UseCBCond);
9687   effect(USE labl, KILL pcc);
9688 
9689   size(4);
9690   ins_cost(BRANCH_COST);
9691 #ifdef _LP64
9692   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9693 #else
9694   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9695 #endif
9696   ins_encode %{
9697     Label* L = $labl$$label;
9698     assert(__ use_cbcond(*L), "back to back cbcond");
9699     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9700   %}
9701   ins_short_branch(1);
9702   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9703   ins_pipe(cbcond_reg_reg);
9704 %}
9705 
9706 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9707   match(If cmp (CmpP op1 null));
9708   predicate(UseCBCond);
9709   effect(USE labl, KILL pcc);
9710 
9711   size(4);
9712   ins_cost(BRANCH_COST);
9713 #ifdef _LP64
9714   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9715 #else
9716   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9717 #endif
9718   ins_encode %{
9719     Label* L = $labl$$label;
9720     assert(__ use_cbcond(*L), "back to back cbcond");
9721     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9722   %}
9723   ins_short_branch(1);
9724   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9725   ins_pipe(cbcond_reg_reg);
9726 %}
9727 
9728 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9729   match(If cmp (CmpN op1 op2));
9730   predicate(UseCBCond);
9731   effect(USE labl, KILL icc);
9732 
9733   size(4);
9734   ins_cost(BRANCH_COST);
9735   format %{ "CWB$cmp  $op1,$op2,$labl\t! compressed ptr" %}
9736   ins_encode %{
9737     Label* L = $labl$$label;
9738     assert(__ use_cbcond(*L), "back to back cbcond");
9739     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9740   %}
9741   ins_short_branch(1);
9742   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9743   ins_pipe(cbcond_reg_reg);
9744 %}
9745 
9746 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9747   match(If cmp (CmpN op1 null));
9748   predicate(UseCBCond);
9749   effect(USE labl, KILL icc);
9750 
9751   size(4);
9752   ins_cost(BRANCH_COST);
9753   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9754   ins_encode %{
9755     Label* L = $labl$$label;
9756     assert(__ use_cbcond(*L), "back to back cbcond");
9757     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9758   %}
9759   ins_short_branch(1);
9760   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9761   ins_pipe(cbcond_reg_reg);
9762 %}
9763 
9764 // Loop back branch
9765 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9766   match(CountedLoopEnd cmp (CmpI op1 op2));
9767   predicate(UseCBCond);
9768   effect(USE labl, KILL icc);
9769 
9770   size(4);
9771   ins_cost(BRANCH_COST);
9772   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9773   ins_encode %{
9774     Label* L = $labl$$label;
9775     assert(__ use_cbcond(*L), "back to back cbcond");
9776     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9777   %}
9778   ins_short_branch(1);
9779   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9780   ins_pipe(cbcond_reg_reg);
9781 %}
9782 
9783 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9784   match(CountedLoopEnd cmp (CmpI op1 op2));
9785   predicate(UseCBCond);
9786   effect(USE labl, KILL icc);
9787 
9788   size(4);
9789   ins_cost(BRANCH_COST);
9790   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9791   ins_encode %{
9792     Label* L = $labl$$label;
9793     assert(__ use_cbcond(*L), "back to back cbcond");
9794     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9795   %}
9796   ins_short_branch(1);
9797   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9798   ins_pipe(cbcond_reg_imm);
9799 %}
9800 
9801 // Branch-on-register tests all 64 bits.  We assume that values
9802 // in 64-bit registers always remains zero or sign extended
9803 // unless our code munges the high bits.  Interrupts can chop
9804 // the high order bits to zero or sign at any time.
9805 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9806   match(If cmp (CmpI op1 zero));
9807   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9808   effect(USE labl);
9809 
9810   size(8);
9811   ins_cost(BRANCH_COST);
9812   format %{ "BR$cmp   $op1,$labl" %}
9813   ins_encode( enc_bpr( labl, cmp, op1 ) );
9814   ins_avoid_back_to_back(AVOID_BEFORE);
9815   ins_pipe(br_reg);
9816 %}
9817 
9818 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9819   match(If cmp (CmpP op1 null));
9820   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9821   effect(USE labl);
9822 
9823   size(8);
9824   ins_cost(BRANCH_COST);
9825   format %{ "BR$cmp   $op1,$labl" %}
9826   ins_encode( enc_bpr( labl, cmp, op1 ) );
9827   ins_avoid_back_to_back(AVOID_BEFORE);
9828   ins_pipe(br_reg);
9829 %}
9830 
9831 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9832   match(If cmp (CmpL op1 zero));
9833   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9834   effect(USE labl);
9835 
9836   size(8);
9837   ins_cost(BRANCH_COST);
9838   format %{ "BR$cmp   $op1,$labl" %}
9839   ins_encode( enc_bpr( labl, cmp, op1 ) );
9840   ins_avoid_back_to_back(AVOID_BEFORE);
9841   ins_pipe(br_reg);
9842 %}
9843 
9844 
9845 // ============================================================================
9846 // Long Compare
9847 //
9848 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9849 // is tricky.  The flavor of compare used depends on whether we are testing
9850 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9851 // The GE test is the negated LT test.  The LE test can be had by commuting
9852 // the operands (yielding a GE test) and then negating; negate again for the
9853 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9854 // NE test is negated from that.
9855 
9856 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9857 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9858 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9859 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9860 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9861 // foo match ends up with the wrong leaf.  One fix is to not match both
9862 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9863 // both forms beat the trinary form of long-compare and both are very useful
9864 // on Intel which has so few registers.
9865 
9866 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9867   match(If cmp xcc);
9868   effect(USE labl);
9869 
9870   size(8);
9871   ins_cost(BRANCH_COST);
9872   format %{ "BP$cmp   $xcc,$labl" %}
9873   ins_encode %{
9874     Label* L = $labl$$label;
9875     Assembler::Predict predict_taken =
9876       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9877 
9878     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9879     __ delayed()->nop();
9880   %}
9881   ins_avoid_back_to_back(AVOID_BEFORE);
9882   ins_pipe(br_cc);
9883 %}
9884 
9885 // Manifest a CmpL3 result in an integer register.  Very painful.
9886 // This is the test to avoid.
9887 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9888   match(Set dst (CmpL3 src1 src2) );
9889   effect( KILL ccr );
9890   ins_cost(6*DEFAULT_COST);
9891   size(24);
9892   format %{ "CMP    $src1,$src2\t\t! long\n"
9893           "\tBLT,a,pn done\n"
9894           "\tMOV    -1,$dst\t! delay slot\n"
9895           "\tBGT,a,pn done\n"
9896           "\tMOV    1,$dst\t! delay slot\n"
9897           "\tCLR    $dst\n"
9898     "done:"     %}
9899   ins_encode( cmpl_flag(src1,src2,dst) );
9900   ins_pipe(cmpL_reg);
9901 %}
9902 
9903 // Conditional move
9904 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9905   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9906   ins_cost(150);
9907   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9908   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9909   ins_pipe(ialu_reg);
9910 %}
9911 
9912 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9913   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9914   ins_cost(140);
9915   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9916   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9917   ins_pipe(ialu_imm);
9918 %}
9919 
9920 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9921   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9922   ins_cost(150);
9923   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9924   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9925   ins_pipe(ialu_reg);
9926 %}
9927 
9928 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9929   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9930   ins_cost(140);
9931   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9932   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9933   ins_pipe(ialu_imm);
9934 %}
9935 
9936 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9937   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9938   ins_cost(150);
9939   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9940   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9941   ins_pipe(ialu_reg);
9942 %}
9943 
9944 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9945   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9946   ins_cost(150);
9947   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9948   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9949   ins_pipe(ialu_reg);
9950 %}
9951 
9952 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9953   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9954   ins_cost(140);
9955   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9956   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9957   ins_pipe(ialu_imm);
9958 %}
9959 
9960 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9961   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9962   ins_cost(150);
9963   opcode(0x101);
9964   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9965   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9966   ins_pipe(int_conditional_float_move);
9967 %}
9968 
9969 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9970   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9971   ins_cost(150);
9972   opcode(0x102);
9973   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9974   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9975   ins_pipe(int_conditional_float_move);
9976 %}
9977 
9978 // ============================================================================
9979 // Safepoint Instruction
9980 instruct safePoint_poll(iRegP poll) %{
9981   match(SafePoint poll);
9982   effect(USE poll);
9983 
9984   size(4);
9985 #ifdef _LP64
9986   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9987 #else
9988   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9989 #endif
9990   ins_encode %{
9991     __ relocate(relocInfo::poll_type);
9992     __ ld_ptr($poll$$Register, 0, G0);
9993   %}
9994   ins_pipe(loadPollP);
9995 %}
9996 
9997 // ============================================================================
9998 // Call Instructions
9999 // Call Java Static Instruction
10000 instruct CallStaticJavaDirect( method meth ) %{
10001   match(CallStaticJava);
10002   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
10003   effect(USE meth);
10004 
10005   size(8);
10006   ins_cost(CALL_COST);
10007   format %{ "CALL,static  ; NOP ==> " %}
10008   ins_encode( Java_Static_Call( meth ), call_epilog );
10009   ins_avoid_back_to_back(AVOID_BEFORE);
10010   ins_pipe(simple_call);
10011 %}
10012 
10013 // Call Java Static Instruction (method handle version)
10014 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
10015   match(CallStaticJava);
10016   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
10017   effect(USE meth, KILL l7_mh_SP_save);
10018 
10019   size(16);
10020   ins_cost(CALL_COST);
10021   format %{ "CALL,static/MethodHandle" %}
10022   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
10023   ins_pipe(simple_call);
10024 %}
10025 
10026 // Call Java Dynamic Instruction
10027 instruct CallDynamicJavaDirect( method meth ) %{
10028   match(CallDynamicJava);
10029   effect(USE meth);
10030 
10031   ins_cost(CALL_COST);
10032   format %{ "SET    (empty),R_G5\n\t"
10033             "CALL,dynamic  ; NOP ==> " %}
10034   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
10035   ins_pipe(call);
10036 %}
10037 
10038 // Call Runtime Instruction
10039 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
10040   match(CallRuntime);
10041   effect(USE meth, KILL l7);
10042   ins_cost(CALL_COST);
10043   format %{ "CALL,runtime" %}
10044   ins_encode( Java_To_Runtime( meth ),
10045               call_epilog, adjust_long_from_native_call );
10046   ins_avoid_back_to_back(AVOID_BEFORE);
10047   ins_pipe(simple_call);
10048 %}
10049 
10050 // Call runtime without safepoint - same as CallRuntime
10051 instruct CallLeafDirect(method meth, l7RegP l7) %{
10052   match(CallLeaf);
10053   effect(USE meth, KILL l7);
10054   ins_cost(CALL_COST);
10055   format %{ "CALL,runtime leaf" %}
10056   ins_encode( Java_To_Runtime( meth ),
10057               call_epilog,
10058               adjust_long_from_native_call );
10059   ins_avoid_back_to_back(AVOID_BEFORE);
10060   ins_pipe(simple_call);
10061 %}
10062 
10063 // Call runtime without safepoint - same as CallLeaf
10064 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
10065   match(CallLeafNoFP);
10066   effect(USE meth, KILL l7);
10067   ins_cost(CALL_COST);
10068   format %{ "CALL,runtime leaf nofp" %}
10069   ins_encode( Java_To_Runtime( meth ),
10070               call_epilog,
10071               adjust_long_from_native_call );
10072   ins_avoid_back_to_back(AVOID_BEFORE);
10073   ins_pipe(simple_call);
10074 %}
10075 
10076 // Tail Call; Jump from runtime stub to Java code.
10077 // Also known as an 'interprocedural jump'.
10078 // Target of jump will eventually return to caller.
10079 // TailJump below removes the return address.
10080 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
10081   match(TailCall jump_target method_oop );
10082 
10083   ins_cost(CALL_COST);
10084   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
10085   ins_encode(form_jmpl(jump_target));
10086   ins_avoid_back_to_back(AVOID_BEFORE);
10087   ins_pipe(tail_call);
10088 %}
10089 
10090 
10091 // Return Instruction
10092 instruct Ret() %{
10093   match(Return);
10094 
10095   // The epilogue node did the ret already.
10096   size(0);
10097   format %{ "! return" %}
10098   ins_encode();
10099   ins_pipe(empty);
10100 %}
10101 
10102 
10103 // Tail Jump; remove the return address; jump to target.
10104 // TailCall above leaves the return address around.
10105 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10106 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10107 // "restore" before this instruction (in Epilogue), we need to materialize it
10108 // in %i0.
10109 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10110   match( TailJump jump_target ex_oop );
10111   ins_cost(CALL_COST);
10112   format %{ "! discard R_O7\n\t"
10113             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10114   ins_encode(form_jmpl_set_exception_pc(jump_target));
10115   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10116   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10117   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10118   ins_avoid_back_to_back(AVOID_BEFORE);
10119   ins_pipe(tail_call);
10120 %}
10121 
10122 // Create exception oop: created by stack-crawling runtime code.
10123 // Created exception is now available to this handler, and is setup
10124 // just prior to jumping to this handler.  No code emitted.
10125 instruct CreateException( o0RegP ex_oop )
10126 %{
10127   match(Set ex_oop (CreateEx));
10128   ins_cost(0);
10129 
10130   size(0);
10131   // use the following format syntax
10132   format %{ "! exception oop is in R_O0; no code emitted" %}
10133   ins_encode();
10134   ins_pipe(empty);
10135 %}
10136 
10137 
10138 // Rethrow exception:
10139 // The exception oop will come in the first argument position.
10140 // Then JUMP (not call) to the rethrow stub code.
10141 instruct RethrowException()
10142 %{
10143   match(Rethrow);
10144   ins_cost(CALL_COST);
10145 
10146   // use the following format syntax
10147   format %{ "Jmp    rethrow_stub" %}
10148   ins_encode(enc_rethrow);
10149   ins_avoid_back_to_back(AVOID_BEFORE);
10150   ins_pipe(tail_call);
10151 %}
10152 
10153 
10154 // Die now
10155 instruct ShouldNotReachHere( )
10156 %{
10157   match(Halt);
10158   ins_cost(CALL_COST);
10159 
10160   size(4);
10161   // Use the following format syntax
10162   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10163   ins_encode( form2_illtrap() );
10164   ins_pipe(tail_call);
10165 %}
10166 
10167 // ============================================================================
10168 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10169 // array for an instance of the superklass.  Set a hidden internal cache on a
10170 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10171 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10172 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10173   match(Set index (PartialSubtypeCheck sub super));
10174   effect( KILL pcc, KILL o7 );
10175   ins_cost(DEFAULT_COST*10);
10176   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10177   ins_encode( enc_PartialSubtypeCheck() );
10178   ins_avoid_back_to_back(AVOID_BEFORE);
10179   ins_pipe(partial_subtype_check_pipe);
10180 %}
10181 
10182 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10183   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10184   effect( KILL idx, KILL o7 );
10185   ins_cost(DEFAULT_COST*10);
10186   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10187   ins_encode( enc_PartialSubtypeCheck() );
10188   ins_avoid_back_to_back(AVOID_BEFORE);
10189   ins_pipe(partial_subtype_check_pipe);
10190 %}
10191 
10192 
10193 // ============================================================================
10194 // inlined locking and unlocking
10195 
10196 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10197   match(Set pcc (FastLock object box));
10198 
10199   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10200   ins_cost(100);
10201 
10202   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10203   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10204   ins_pipe(long_memory_op);
10205 %}
10206 
10207 
10208 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10209   match(Set pcc (FastUnlock object box));
10210   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10211   ins_cost(100);
10212 
10213   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10214   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10215   ins_pipe(long_memory_op);
10216 %}
10217 
10218 // The encodings are generic.
10219 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10220   predicate(!use_block_zeroing(n->in(2)) );
10221   match(Set dummy (ClearArray cnt base));
10222   effect(TEMP temp, KILL ccr);
10223   ins_cost(300);
10224   format %{ "MOV    $cnt,$temp\n"
10225     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10226     "        BRge   loop\t\t! Clearing loop\n"
10227     "        STX    G0,[$base+$temp]\t! delay slot" %}
10228 
10229   ins_encode %{
10230     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10231     Register nof_bytes_arg    = $cnt$$Register;
10232     Register nof_bytes_tmp    = $temp$$Register;
10233     Register base_pointer_arg = $base$$Register;
10234 
10235     Label loop;
10236     __ mov(nof_bytes_arg, nof_bytes_tmp);
10237 
10238     // Loop and clear, walking backwards through the array.
10239     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10240     __ bind(loop);
10241     __ deccc(nof_bytes_tmp, 8);
10242     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10243     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10244     // %%%% this mini-loop must not cross a cache boundary!
10245   %}
10246   ins_pipe(long_memory_op);
10247 %}
10248 
10249 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10250   predicate(use_block_zeroing(n->in(2)));
10251   match(Set dummy (ClearArray cnt base));
10252   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10253   ins_cost(300);
10254   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10255 
10256   ins_encode %{
10257 
10258     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10259     Register to    = $base$$Register;
10260     Register count = $cnt$$Register;
10261 
10262     Label Ldone;
10263     __ nop(); // Separate short branches
10264     // Use BIS for zeroing (temp is not used).
10265     __ bis_zeroing(to, count, G0, Ldone);
10266     __ bind(Ldone);
10267 
10268   %}
10269   ins_pipe(long_memory_op);
10270 %}
10271 
10272 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10273   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10274   match(Set dummy (ClearArray cnt base));
10275   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10276   ins_cost(300);
10277   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10278 
10279   ins_encode %{
10280 
10281     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10282     Register to    = $base$$Register;
10283     Register count = $cnt$$Register;
10284     Register temp  = $tmp$$Register;
10285 
10286     Label Ldone;
10287     __ nop(); // Separate short branches
10288     // Use BIS for zeroing
10289     __ bis_zeroing(to, count, temp, Ldone);
10290     __ bind(Ldone);
10291 
10292   %}
10293   ins_pipe(long_memory_op);
10294 %}
10295 
10296 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10297                         o7RegI tmp, flagsReg ccr) %{
10298   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10299   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10300   ins_cost(300);
10301   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10302   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10303   ins_pipe(long_memory_op);
10304 %}
10305 
10306 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10307                        o7RegI tmp, flagsReg ccr) %{
10308   match(Set result (StrEquals (Binary str1 str2) cnt));
10309   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10310   ins_cost(300);
10311   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10312   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10313   ins_pipe(long_memory_op);
10314 %}
10315 
10316 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10317                       o7RegI tmp2, flagsReg ccr) %{
10318   match(Set result (AryEq ary1 ary2));
10319   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10320   ins_cost(300);
10321   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10322   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10323   ins_pipe(long_memory_op);
10324 %}
10325 
10326 
10327 //---------- Zeros Count Instructions ------------------------------------------
10328 
10329 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10330   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10331   match(Set dst (CountLeadingZerosI src));
10332   effect(TEMP dst, TEMP tmp, KILL cr);
10333 
10334   // x |= (x >> 1);
10335   // x |= (x >> 2);
10336   // x |= (x >> 4);
10337   // x |= (x >> 8);
10338   // x |= (x >> 16);
10339   // return (WORDBITS - popc(x));
10340   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10341             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10342             "OR      $dst,$tmp,$dst\n\t"
10343             "SRL     $dst,2,$tmp\n\t"
10344             "OR      $dst,$tmp,$dst\n\t"
10345             "SRL     $dst,4,$tmp\n\t"
10346             "OR      $dst,$tmp,$dst\n\t"
10347             "SRL     $dst,8,$tmp\n\t"
10348             "OR      $dst,$tmp,$dst\n\t"
10349             "SRL     $dst,16,$tmp\n\t"
10350             "OR      $dst,$tmp,$dst\n\t"
10351             "POPC    $dst,$dst\n\t"
10352             "MOV     32,$tmp\n\t"
10353             "SUB     $tmp,$dst,$dst" %}
10354   ins_encode %{
10355     Register Rdst = $dst$$Register;
10356     Register Rsrc = $src$$Register;
10357     Register Rtmp = $tmp$$Register;
10358     __ srl(Rsrc, 1,    Rtmp);
10359     __ srl(Rsrc, 0,    Rdst);
10360     __ or3(Rdst, Rtmp, Rdst);
10361     __ srl(Rdst, 2,    Rtmp);
10362     __ or3(Rdst, Rtmp, Rdst);
10363     __ srl(Rdst, 4,    Rtmp);
10364     __ or3(Rdst, Rtmp, Rdst);
10365     __ srl(Rdst, 8,    Rtmp);
10366     __ or3(Rdst, Rtmp, Rdst);
10367     __ srl(Rdst, 16,   Rtmp);
10368     __ or3(Rdst, Rtmp, Rdst);
10369     __ popc(Rdst, Rdst);
10370     __ mov(BitsPerInt, Rtmp);
10371     __ sub(Rtmp, Rdst, Rdst);
10372   %}
10373   ins_pipe(ialu_reg);
10374 %}
10375 
10376 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10377   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10378   match(Set dst (CountLeadingZerosL src));
10379   effect(TEMP dst, TEMP tmp, KILL cr);
10380 
10381   // x |= (x >> 1);
10382   // x |= (x >> 2);
10383   // x |= (x >> 4);
10384   // x |= (x >> 8);
10385   // x |= (x >> 16);
10386   // x |= (x >> 32);
10387   // return (WORDBITS - popc(x));
10388   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10389             "OR      $src,$tmp,$dst\n\t"
10390             "SRLX    $dst,2,$tmp\n\t"
10391             "OR      $dst,$tmp,$dst\n\t"
10392             "SRLX    $dst,4,$tmp\n\t"
10393             "OR      $dst,$tmp,$dst\n\t"
10394             "SRLX    $dst,8,$tmp\n\t"
10395             "OR      $dst,$tmp,$dst\n\t"
10396             "SRLX    $dst,16,$tmp\n\t"
10397             "OR      $dst,$tmp,$dst\n\t"
10398             "SRLX    $dst,32,$tmp\n\t"
10399             "OR      $dst,$tmp,$dst\n\t"
10400             "POPC    $dst,$dst\n\t"
10401             "MOV     64,$tmp\n\t"
10402             "SUB     $tmp,$dst,$dst" %}
10403   ins_encode %{
10404     Register Rdst = $dst$$Register;
10405     Register Rsrc = $src$$Register;
10406     Register Rtmp = $tmp$$Register;
10407     __ srlx(Rsrc, 1,    Rtmp);
10408     __ or3( Rsrc, Rtmp, Rdst);
10409     __ srlx(Rdst, 2,    Rtmp);
10410     __ or3( Rdst, Rtmp, Rdst);
10411     __ srlx(Rdst, 4,    Rtmp);
10412     __ or3( Rdst, Rtmp, Rdst);
10413     __ srlx(Rdst, 8,    Rtmp);
10414     __ or3( Rdst, Rtmp, Rdst);
10415     __ srlx(Rdst, 16,   Rtmp);
10416     __ or3( Rdst, Rtmp, Rdst);
10417     __ srlx(Rdst, 32,   Rtmp);
10418     __ or3( Rdst, Rtmp, Rdst);
10419     __ popc(Rdst, Rdst);
10420     __ mov(BitsPerLong, Rtmp);
10421     __ sub(Rtmp, Rdst, Rdst);
10422   %}
10423   ins_pipe(ialu_reg);
10424 %}
10425 
10426 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10427   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10428   match(Set dst (CountTrailingZerosI src));
10429   effect(TEMP dst, KILL cr);
10430 
10431   // return popc(~x & (x - 1));
10432   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10433             "ANDN    $dst,$src,$dst\n\t"
10434             "SRL     $dst,R_G0,$dst\n\t"
10435             "POPC    $dst,$dst" %}
10436   ins_encode %{
10437     Register Rdst = $dst$$Register;
10438     Register Rsrc = $src$$Register;
10439     __ sub(Rsrc, 1, Rdst);
10440     __ andn(Rdst, Rsrc, Rdst);
10441     __ srl(Rdst, G0, Rdst);
10442     __ popc(Rdst, Rdst);
10443   %}
10444   ins_pipe(ialu_reg);
10445 %}
10446 
10447 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10448   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10449   match(Set dst (CountTrailingZerosL src));
10450   effect(TEMP dst, KILL cr);
10451 
10452   // return popc(~x & (x - 1));
10453   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10454             "ANDN    $dst,$src,$dst\n\t"
10455             "POPC    $dst,$dst" %}
10456   ins_encode %{
10457     Register Rdst = $dst$$Register;
10458     Register Rsrc = $src$$Register;
10459     __ sub(Rsrc, 1, Rdst);
10460     __ andn(Rdst, Rsrc, Rdst);
10461     __ popc(Rdst, Rdst);
10462   %}
10463   ins_pipe(ialu_reg);
10464 %}
10465 
10466 
10467 //---------- Population Count Instructions -------------------------------------
10468 
10469 instruct popCountI(iRegIsafe dst, iRegI src) %{
10470   predicate(UsePopCountInstruction);
10471   match(Set dst (PopCountI src));
10472 
10473   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10474             "POPC   $dst, $dst" %}
10475   ins_encode %{
10476     __ srl($src$$Register, G0, $dst$$Register);
10477     __ popc($dst$$Register, $dst$$Register);
10478   %}
10479   ins_pipe(ialu_reg);
10480 %}
10481 
10482 // Note: Long.bitCount(long) returns an int.
10483 instruct popCountL(iRegIsafe dst, iRegL src) %{
10484   predicate(UsePopCountInstruction);
10485   match(Set dst (PopCountL src));
10486 
10487   format %{ "POPC   $src, $dst" %}
10488   ins_encode %{
10489     __ popc($src$$Register, $dst$$Register);
10490   %}
10491   ins_pipe(ialu_reg);
10492 %}
10493 
10494 
10495 // ============================================================================
10496 //------------Bytes reverse--------------------------------------------------
10497 
10498 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10499   match(Set dst (ReverseBytesI src));
10500 
10501   // Op cost is artificially doubled to make sure that load or store
10502   // instructions are preferred over this one which requires a spill
10503   // onto a stack slot.
10504   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10505   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10506 
10507   ins_encode %{
10508     __ set($src$$disp + STACK_BIAS, O7);
10509     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10510   %}
10511   ins_pipe( iload_mem );
10512 %}
10513 
10514 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10515   match(Set dst (ReverseBytesL src));
10516 
10517   // Op cost is artificially doubled to make sure that load or store
10518   // instructions are preferred over this one which requires a spill
10519   // onto a stack slot.
10520   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10521   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10522 
10523   ins_encode %{
10524     __ set($src$$disp + STACK_BIAS, O7);
10525     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10526   %}
10527   ins_pipe( iload_mem );
10528 %}
10529 
10530 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10531   match(Set dst (ReverseBytesUS src));
10532 
10533   // Op cost is artificially doubled to make sure that load or store
10534   // instructions are preferred over this one which requires a spill
10535   // onto a stack slot.
10536   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10537   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10538 
10539   ins_encode %{
10540     // the value was spilled as an int so bias the load
10541     __ set($src$$disp + STACK_BIAS + 2, O7);
10542     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10543   %}
10544   ins_pipe( iload_mem );
10545 %}
10546 
10547 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10548   match(Set dst (ReverseBytesS src));
10549 
10550   // Op cost is artificially doubled to make sure that load or store
10551   // instructions are preferred over this one which requires a spill
10552   // onto a stack slot.
10553   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10554   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10555 
10556   ins_encode %{
10557     // the value was spilled as an int so bias the load
10558     __ set($src$$disp + STACK_BIAS + 2, O7);
10559     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10560   %}
10561   ins_pipe( iload_mem );
10562 %}
10563 
10564 // Load Integer reversed byte order
10565 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10566   match(Set dst (ReverseBytesI (LoadI src)));
10567 
10568   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10569   size(4);
10570   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10571 
10572   ins_encode %{
10573     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10574   %}
10575   ins_pipe(iload_mem);
10576 %}
10577 
10578 // Load Long - aligned and reversed
10579 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10580   match(Set dst (ReverseBytesL (LoadL src)));
10581 
10582   ins_cost(MEMORY_REF_COST);
10583   size(4);
10584   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10585 
10586   ins_encode %{
10587     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10588   %}
10589   ins_pipe(iload_mem);
10590 %}
10591 
10592 // Load unsigned short / char reversed byte order
10593 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10594   match(Set dst (ReverseBytesUS (LoadUS src)));
10595 
10596   ins_cost(MEMORY_REF_COST);
10597   size(4);
10598   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10599 
10600   ins_encode %{
10601     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10602   %}
10603   ins_pipe(iload_mem);
10604 %}
10605 
10606 // Load short reversed byte order
10607 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10608   match(Set dst (ReverseBytesS (LoadS src)));
10609 
10610   ins_cost(MEMORY_REF_COST);
10611   size(4);
10612   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10613 
10614   ins_encode %{
10615     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10616   %}
10617   ins_pipe(iload_mem);
10618 %}
10619 
10620 // Store Integer reversed byte order
10621 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10622   match(Set dst (StoreI dst (ReverseBytesI src)));
10623 
10624   ins_cost(MEMORY_REF_COST);
10625   size(4);
10626   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10627 
10628   ins_encode %{
10629     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10630   %}
10631   ins_pipe(istore_mem_reg);
10632 %}
10633 
10634 // Store Long reversed byte order
10635 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10636   match(Set dst (StoreL dst (ReverseBytesL src)));
10637 
10638   ins_cost(MEMORY_REF_COST);
10639   size(4);
10640   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10641 
10642   ins_encode %{
10643     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10644   %}
10645   ins_pipe(istore_mem_reg);
10646 %}
10647 
10648 // Store unsighed short/char reversed byte order
10649 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10650   match(Set dst (StoreC dst (ReverseBytesUS src)));
10651 
10652   ins_cost(MEMORY_REF_COST);
10653   size(4);
10654   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10655 
10656   ins_encode %{
10657     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10658   %}
10659   ins_pipe(istore_mem_reg);
10660 %}
10661 
10662 // Store short reversed byte order
10663 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10664   match(Set dst (StoreC dst (ReverseBytesS src)));
10665 
10666   ins_cost(MEMORY_REF_COST);
10667   size(4);
10668   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10669 
10670   ins_encode %{
10671     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10672   %}
10673   ins_pipe(istore_mem_reg);
10674 %}
10675 
10676 // ====================VECTOR INSTRUCTIONS=====================================
10677 
10678 // Load Aligned Packed values into a Double Register
10679 instruct loadV8(regD dst, memory mem) %{
10680   predicate(n->as_LoadVector()->memory_size() == 8);
10681   match(Set dst (LoadVector mem));
10682   ins_cost(MEMORY_REF_COST);
10683   size(4);
10684   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10685   ins_encode %{
10686     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10687   %}
10688   ins_pipe(floadD_mem);
10689 %}
10690 
10691 // Store Vector in Double register to memory
10692 instruct storeV8(memory mem, regD src) %{
10693   predicate(n->as_StoreVector()->memory_size() == 8);
10694   match(Set mem (StoreVector mem src));
10695   ins_cost(MEMORY_REF_COST);
10696   size(4);
10697   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10698   ins_encode %{
10699     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10700   %}
10701   ins_pipe(fstoreD_mem_reg);
10702 %}
10703 
10704 // Store Zero into vector in memory
10705 instruct storeV8B_zero(memory mem, immI0 zero) %{
10706   predicate(n->as_StoreVector()->memory_size() == 8);
10707   match(Set mem (StoreVector mem (ReplicateB zero)));
10708   ins_cost(MEMORY_REF_COST);
10709   size(4);
10710   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10711   ins_encode %{
10712     __ stx(G0, $mem$$Address);
10713   %}
10714   ins_pipe(fstoreD_mem_zero);
10715 %}
10716 
10717 instruct storeV4S_zero(memory mem, immI0 zero) %{
10718   predicate(n->as_StoreVector()->memory_size() == 8);
10719   match(Set mem (StoreVector mem (ReplicateS zero)));
10720   ins_cost(MEMORY_REF_COST);
10721   size(4);
10722   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10723   ins_encode %{
10724     __ stx(G0, $mem$$Address);
10725   %}
10726   ins_pipe(fstoreD_mem_zero);
10727 %}
10728 
10729 instruct storeV2I_zero(memory mem, immI0 zero) %{
10730   predicate(n->as_StoreVector()->memory_size() == 8);
10731   match(Set mem (StoreVector mem (ReplicateI zero)));
10732   ins_cost(MEMORY_REF_COST);
10733   size(4);
10734   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10735   ins_encode %{
10736     __ stx(G0, $mem$$Address);
10737   %}
10738   ins_pipe(fstoreD_mem_zero);
10739 %}
10740 
10741 instruct storeV2F_zero(memory mem, immF0 zero) %{
10742   predicate(n->as_StoreVector()->memory_size() == 8);
10743   match(Set mem (StoreVector mem (ReplicateF zero)));
10744   ins_cost(MEMORY_REF_COST);
10745   size(4);
10746   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10747   ins_encode %{
10748     __ stx(G0, $mem$$Address);
10749   %}
10750   ins_pipe(fstoreD_mem_zero);
10751 %}
10752 
10753 // Replicate scalar to packed byte values into Double register
10754 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10755   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10756   match(Set dst (ReplicateB src));
10757   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10758   format %{ "SLLX  $src,56,$tmp\n\t"
10759             "SRLX  $tmp, 8,$tmp2\n\t"
10760             "OR    $tmp,$tmp2,$tmp\n\t"
10761             "SRLX  $tmp,16,$tmp2\n\t"
10762             "OR    $tmp,$tmp2,$tmp\n\t"
10763             "SRLX  $tmp,32,$tmp2\n\t"
10764             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10765             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10766   ins_encode %{
10767     Register Rsrc = $src$$Register;
10768     Register Rtmp = $tmp$$Register;
10769     Register Rtmp2 = $tmp2$$Register;
10770     __ sllx(Rsrc,    56, Rtmp);
10771     __ srlx(Rtmp,     8, Rtmp2);
10772     __ or3 (Rtmp, Rtmp2, Rtmp);
10773     __ srlx(Rtmp,    16, Rtmp2);
10774     __ or3 (Rtmp, Rtmp2, Rtmp);
10775     __ srlx(Rtmp,    32, Rtmp2);
10776     __ or3 (Rtmp, Rtmp2, Rtmp);
10777     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10778   %}
10779   ins_pipe(ialu_reg);
10780 %}
10781 
10782 // Replicate scalar to packed byte values into Double stack
10783 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10784   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10785   match(Set dst (ReplicateB src));
10786   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10787   format %{ "SLLX  $src,56,$tmp\n\t"
10788             "SRLX  $tmp, 8,$tmp2\n\t"
10789             "OR    $tmp,$tmp2,$tmp\n\t"
10790             "SRLX  $tmp,16,$tmp2\n\t"
10791             "OR    $tmp,$tmp2,$tmp\n\t"
10792             "SRLX  $tmp,32,$tmp2\n\t"
10793             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10794             "STX   $tmp,$dst\t! regL to stkD" %}
10795   ins_encode %{
10796     Register Rsrc = $src$$Register;
10797     Register Rtmp = $tmp$$Register;
10798     Register Rtmp2 = $tmp2$$Register;
10799     __ sllx(Rsrc,    56, Rtmp);
10800     __ srlx(Rtmp,     8, Rtmp2);
10801     __ or3 (Rtmp, Rtmp2, Rtmp);
10802     __ srlx(Rtmp,    16, Rtmp2);
10803     __ or3 (Rtmp, Rtmp2, Rtmp);
10804     __ srlx(Rtmp,    32, Rtmp2);
10805     __ or3 (Rtmp, Rtmp2, Rtmp);
10806     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10807     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10808   %}
10809   ins_pipe(ialu_reg);
10810 %}
10811 
10812 // Replicate scalar constant to packed byte values in Double register
10813 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10814   predicate(n->as_Vector()->length() == 8);
10815   match(Set dst (ReplicateB con));
10816   effect(KILL tmp);
10817   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10818   ins_encode %{
10819     // XXX This is a quick fix for 6833573.
10820     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10821     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10822     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10823   %}
10824   ins_pipe(loadConFD);
10825 %}
10826 
10827 // Replicate scalar to packed char/short values into Double register
10828 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10829   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10830   match(Set dst (ReplicateS src));
10831   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10832   format %{ "SLLX  $src,48,$tmp\n\t"
10833             "SRLX  $tmp,16,$tmp2\n\t"
10834             "OR    $tmp,$tmp2,$tmp\n\t"
10835             "SRLX  $tmp,32,$tmp2\n\t"
10836             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10837             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10838   ins_encode %{
10839     Register Rsrc = $src$$Register;
10840     Register Rtmp = $tmp$$Register;
10841     Register Rtmp2 = $tmp2$$Register;
10842     __ sllx(Rsrc,    48, Rtmp);
10843     __ srlx(Rtmp,    16, Rtmp2);
10844     __ or3 (Rtmp, Rtmp2, Rtmp);
10845     __ srlx(Rtmp,    32, Rtmp2);
10846     __ or3 (Rtmp, Rtmp2, Rtmp);
10847     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10848   %}
10849   ins_pipe(ialu_reg);
10850 %}
10851 
10852 // Replicate scalar to packed char/short values into Double stack
10853 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10854   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10855   match(Set dst (ReplicateS src));
10856   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10857   format %{ "SLLX  $src,48,$tmp\n\t"
10858             "SRLX  $tmp,16,$tmp2\n\t"
10859             "OR    $tmp,$tmp2,$tmp\n\t"
10860             "SRLX  $tmp,32,$tmp2\n\t"
10861             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10862             "STX   $tmp,$dst\t! regL to stkD" %}
10863   ins_encode %{
10864     Register Rsrc = $src$$Register;
10865     Register Rtmp = $tmp$$Register;
10866     Register Rtmp2 = $tmp2$$Register;
10867     __ sllx(Rsrc,    48, Rtmp);
10868     __ srlx(Rtmp,    16, Rtmp2);
10869     __ or3 (Rtmp, Rtmp2, Rtmp);
10870     __ srlx(Rtmp,    32, Rtmp2);
10871     __ or3 (Rtmp, Rtmp2, Rtmp);
10872     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10873     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10874   %}
10875   ins_pipe(ialu_reg);
10876 %}
10877 
10878 // Replicate scalar constant to packed char/short values in Double register
10879 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10880   predicate(n->as_Vector()->length() == 4);
10881   match(Set dst (ReplicateS con));
10882   effect(KILL tmp);
10883   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10884   ins_encode %{
10885     // XXX This is a quick fix for 6833573.
10886     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10887     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10888     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10889   %}
10890   ins_pipe(loadConFD);
10891 %}
10892 
10893 // Replicate scalar to packed int values into Double register
10894 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10895   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10896   match(Set dst (ReplicateI src));
10897   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10898   format %{ "SLLX  $src,32,$tmp\n\t"
10899             "SRLX  $tmp,32,$tmp2\n\t"
10900             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10901             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10902   ins_encode %{
10903     Register Rsrc = $src$$Register;
10904     Register Rtmp = $tmp$$Register;
10905     Register Rtmp2 = $tmp2$$Register;
10906     __ sllx(Rsrc,    32, Rtmp);
10907     __ srlx(Rtmp,    32, Rtmp2);
10908     __ or3 (Rtmp, Rtmp2, Rtmp);
10909     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10910   %}
10911   ins_pipe(ialu_reg);
10912 %}
10913 
10914 // Replicate scalar to packed int values into Double stack
10915 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10916   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10917   match(Set dst (ReplicateI src));
10918   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10919   format %{ "SLLX  $src,32,$tmp\n\t"
10920             "SRLX  $tmp,32,$tmp2\n\t"
10921             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10922             "STX   $tmp,$dst\t! regL to stkD" %}
10923   ins_encode %{
10924     Register Rsrc = $src$$Register;
10925     Register Rtmp = $tmp$$Register;
10926     Register Rtmp2 = $tmp2$$Register;
10927     __ sllx(Rsrc,    32, Rtmp);
10928     __ srlx(Rtmp,    32, Rtmp2);
10929     __ or3 (Rtmp, Rtmp2, Rtmp);
10930     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10931     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10932   %}
10933   ins_pipe(ialu_reg);
10934 %}
10935 
10936 // Replicate scalar zero constant to packed int values in Double register
10937 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10938   predicate(n->as_Vector()->length() == 2);
10939   match(Set dst (ReplicateI con));
10940   effect(KILL tmp);
10941   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10942   ins_encode %{
10943     // XXX This is a quick fix for 6833573.
10944     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10945     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10946     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10947   %}
10948   ins_pipe(loadConFD);
10949 %}
10950 
10951 // Replicate scalar to packed float values into Double stack
10952 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10953   predicate(n->as_Vector()->length() == 2);
10954   match(Set dst (ReplicateF src));
10955   ins_cost(MEMORY_REF_COST*2);
10956   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10957             "STF    $src,$dst.lo" %}
10958   opcode(Assembler::stf_op3);
10959   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10960   ins_pipe(fstoreF_stk_reg);
10961 %}
10962 
10963 // Replicate scalar zero constant to packed float values in Double register
10964 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10965   predicate(n->as_Vector()->length() == 2);
10966   match(Set dst (ReplicateF con));
10967   effect(KILL tmp);
10968   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10969   ins_encode %{
10970     // XXX This is a quick fix for 6833573.
10971     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10972     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10973     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10974   %}
10975   ins_pipe(loadConFD);
10976 %}
10977 
10978 //----------PEEPHOLE RULES-----------------------------------------------------
10979 // These must follow all instruction definitions as they use the names
10980 // defined in the instructions definitions.
10981 //
10982 // peepmatch ( root_instr_name [preceding_instruction]* );
10983 //
10984 // peepconstraint %{
10985 // (instruction_number.operand_name relational_op instruction_number.operand_name
10986 //  [, ...] );
10987 // // instruction numbers are zero-based using left to right order in peepmatch
10988 //
10989 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10990 // // provide an instruction_number.operand_name for each operand that appears
10991 // // in the replacement instruction's match rule
10992 //
10993 // ---------VM FLAGS---------------------------------------------------------
10994 //
10995 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10996 //
10997 // Each peephole rule is given an identifying number starting with zero and
10998 // increasing by one in the order seen by the parser.  An individual peephole
10999 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
11000 // on the command-line.
11001 //
11002 // ---------CURRENT LIMITATIONS----------------------------------------------
11003 //
11004 // Only match adjacent instructions in same basic block
11005 // Only equality constraints
11006 // Only constraints between operands, not (0.dest_reg == EAX_enc)
11007 // Only one replacement instruction
11008 //
11009 // ---------EXAMPLE----------------------------------------------------------
11010 //
11011 // // pertinent parts of existing instructions in architecture description
11012 // instruct movI(eRegI dst, eRegI src) %{
11013 //   match(Set dst (CopyI src));
11014 // %}
11015 //
11016 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
11017 //   match(Set dst (AddI dst src));
11018 //   effect(KILL cr);
11019 // %}
11020 //
11021 // // Change (inc mov) to lea
11022 // peephole %{
11023 //   // increment preceeded by register-register move
11024 //   peepmatch ( incI_eReg movI );
11025 //   // require that the destination register of the increment
11026 //   // match the destination register of the move
11027 //   peepconstraint ( 0.dst == 1.dst );
11028 //   // construct a replacement instruction that sets
11029 //   // the destination to ( move's source register + one )
11030 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
11031 // %}
11032 //
11033 
11034 // // Change load of spilled value to only a spill
11035 // instruct storeI(memory mem, eRegI src) %{
11036 //   match(Set mem (StoreI mem src));
11037 // %}
11038 //
11039 // instruct loadI(eRegI dst, memory mem) %{
11040 //   match(Set dst (LoadI mem));
11041 // %}
11042 //
11043 // peephole %{
11044 //   peepmatch ( loadI storeI );
11045 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
11046 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
11047 // %}
11048 
11049 //----------SMARTSPILL RULES---------------------------------------------------
11050 // These must follow all instruction definitions as they use the names
11051 // defined in the instructions definitions.
11052 //
11053 // SPARC will probably not have any of these rules due to RISC instruction set.
11054 
11055 //----------PIPELINE-----------------------------------------------------------
11056 // Rules which define the behavior of the target architectures pipeline.