1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/countbitsnode.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/idealKit.hpp"
  40 #include "opto/mathexactnode.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/mulnode.hpp"
  43 #include "opto/narrowptrnode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subnode.hpp"
  47 #include "prims/nativeLookup.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "trace/traceMacros.hpp"
  50 
  51 class LibraryIntrinsic : public InlineCallGenerator {
  52   // Extend the set of intrinsics known to the runtime:
  53  public:
  54  private:
  55   bool             _is_virtual;
  56   bool             _does_virtual_dispatch;
  57   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  58   int8_t           _last_predicate; // Last generated predicate
  59   vmIntrinsics::ID _intrinsic_id;
  60 
  61  public:
  62   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  63     : InlineCallGenerator(m),
  64       _is_virtual(is_virtual),
  65       _does_virtual_dispatch(does_virtual_dispatch),
  66       _predicates_count((int8_t)predicates_count),
  67       _last_predicate((int8_t)-1),
  68       _intrinsic_id(id)
  69   {
  70   }
  71   virtual bool is_intrinsic() const { return true; }
  72   virtual bool is_virtual()   const { return _is_virtual; }
  73   virtual bool is_predicated() const { return _predicates_count > 0; }
  74   virtual int  predicates_count() const { return _predicates_count; }
  75   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  76   virtual JVMState* generate(JVMState* jvms);
  77   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  78   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  79 };
  80 
  81 
  82 // Local helper class for LibraryIntrinsic:
  83 class LibraryCallKit : public GraphKit {
  84  private:
  85   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  86   Node*             _result;        // the result node, if any
  87   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  88 
  89   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  90 
  91  public:
  92   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  93     : GraphKit(jvms),
  94       _intrinsic(intrinsic),
  95       _result(NULL)
  96   {
  97     // Check if this is a root compile.  In that case we don't have a caller.
  98     if (!jvms->has_method()) {
  99       _reexecute_sp = sp();
 100     } else {
 101       // Find out how many arguments the interpreter needs when deoptimizing
 102       // and save the stack pointer value so it can used by uncommon_trap.
 103       // We find the argument count by looking at the declared signature.
 104       bool ignored_will_link;
 105       ciSignature* declared_signature = NULL;
 106       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 107       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 108       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 109     }
 110   }
 111 
 112   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 113 
 114   ciMethod*         caller()    const    { return jvms()->method(); }
 115   int               bci()       const    { return jvms()->bci(); }
 116   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 117   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 118   ciMethod*         callee()    const    { return _intrinsic->method(); }
 119 
 120   bool  try_to_inline(int predicate);
 121   Node* try_to_predicate(int predicate);
 122 
 123   void push_result() {
 124     // Push the result onto the stack.
 125     if (!stopped() && result() != NULL) {
 126       BasicType bt = result()->bottom_type()->basic_type();
 127       push_node(bt, result());
 128     }
 129   }
 130 
 131  private:
 132   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 133     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 134   }
 135 
 136   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 137   void  set_result(RegionNode* region, PhiNode* value);
 138   Node*     result() { return _result; }
 139 
 140   virtual int reexecute_sp() { return _reexecute_sp; }
 141 
 142   // Helper functions to inline natives
 143   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 144   Node* generate_slow_guard(Node* test, RegionNode* region);
 145   Node* generate_fair_guard(Node* test, RegionNode* region);
 146   Node* generate_negative_guard(Node* index, RegionNode* region,
 147                                 // resulting CastII of index:
 148                                 Node* *pos_index = NULL);
 149   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 150                              Node* array_length,
 151                              RegionNode* region);
 152   Node* generate_current_thread(Node* &tls_output);
 153   Node* load_mirror_from_klass(Node* klass);
 154   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 155                                       RegionNode* region, int null_path,
 156                                       int offset);
 157   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 158                                RegionNode* region, int null_path) {
 159     int offset = java_lang_Class::klass_offset_in_bytes();
 160     return load_klass_from_mirror_common(mirror, never_see_null,
 161                                          region, null_path,
 162                                          offset);
 163   }
 164   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 165                                      RegionNode* region, int null_path) {
 166     int offset = java_lang_Class::array_klass_offset_in_bytes();
 167     return load_klass_from_mirror_common(mirror, never_see_null,
 168                                          region, null_path,
 169                                          offset);
 170   }
 171   Node* generate_access_flags_guard(Node* kls,
 172                                     int modifier_mask, int modifier_bits,
 173                                     RegionNode* region);
 174   Node* generate_interface_guard(Node* kls, RegionNode* region);
 175   Node* generate_array_guard(Node* kls, RegionNode* region) {
 176     return generate_array_guard_common(kls, region, false, false);
 177   }
 178   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 179     return generate_array_guard_common(kls, region, false, true);
 180   }
 181   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 182     return generate_array_guard_common(kls, region, true, false);
 183   }
 184   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 185     return generate_array_guard_common(kls, region, true, true);
 186   }
 187   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 188                                     bool obj_array, bool not_array);
 189   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 190   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 191                                      bool is_virtual = false, bool is_static = false);
 192   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 193     return generate_method_call(method_id, false, true);
 194   }
 195   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 196     return generate_method_call(method_id, true, false);
 197   }
 198   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 199 
 200   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 201   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 202   bool inline_string_compareTo();
 203   bool inline_string_indexOf();
 204   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 205   bool inline_string_equals();
 206   Node* round_double_node(Node* n);
 207   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 208   bool inline_math_native(vmIntrinsics::ID id);
 209   bool inline_trig(vmIntrinsics::ID id);
 210   bool inline_math(vmIntrinsics::ID id);
 211   template <typename OverflowOp>
 212   bool inline_math_overflow(Node* arg1, Node* arg2);
 213   void inline_math_mathExact(Node* math, Node* test);
 214   bool inline_math_addExactI(bool is_increment);
 215   bool inline_math_addExactL(bool is_increment);
 216   bool inline_math_multiplyExactI();
 217   bool inline_math_multiplyExactL();
 218   bool inline_math_negateExactI();
 219   bool inline_math_negateExactL();
 220   bool inline_math_subtractExactI(bool is_decrement);
 221   bool inline_math_subtractExactL(bool is_decrement);
 222   bool inline_exp();
 223   bool inline_pow();
 224   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 225   bool inline_min_max(vmIntrinsics::ID id);
 226   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 227   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 228   int classify_unsafe_addr(Node* &base, Node* &offset);
 229   Node* make_unsafe_address(Node* base, Node* offset);
 230   // Helper for inline_unsafe_access.
 231   // Generates the guards that check whether the result of
 232   // Unsafe.getObject should be recorded in an SATB log buffer.
 233   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 234   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 235   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 236   static bool klass_needs_init_guard(Node* kls);
 237   bool inline_unsafe_allocate();
 238   bool inline_unsafe_copyMemory();
 239   bool inline_native_currentThread();
 240 #ifdef TRACE_HAVE_INTRINSICS
 241   bool inline_native_classID();
 242   bool inline_native_threadID();
 243 #endif
 244   bool inline_native_time_funcs(address method, const char* funcName);
 245   bool inline_native_isInterrupted();
 246   bool inline_native_Class_query(vmIntrinsics::ID id);
 247   bool inline_native_subtype_check();
 248 
 249   bool inline_native_newArray();
 250   bool inline_native_getLength();
 251   bool inline_array_copyOf(bool is_copyOfRange);
 252   bool inline_array_equals();
 253   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 254   bool inline_native_clone(bool is_virtual);
 255   bool inline_native_Reflection_getCallerClass();
 256   // Helper function for inlining native object hash method
 257   bool inline_native_hashcode(bool is_virtual, bool is_static);
 258   bool inline_native_getClass();
 259 
 260   // Helper functions for inlining arraycopy
 261   bool inline_arraycopy();
 262   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 263                                                 RegionNode* slow_region);
 264   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 265   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 266   bool inline_unsafe_ordered_store(BasicType type);
 267   bool inline_unsafe_fence(vmIntrinsics::ID id);
 268   bool inline_fp_conversions(vmIntrinsics::ID id);
 269   bool inline_number_methods(vmIntrinsics::ID id);
 270   bool inline_reference_get();
 271   bool inline_Class_cast();
 272   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 273   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 274   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 275   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 276   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 277   bool inline_sha_implCompress(vmIntrinsics::ID id);
 278   bool inline_digestBase_implCompressMB(int predicate);
 279   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 280                                  bool long_state, address stubAddr, const char *stubName,
 281                                  Node* src_start, Node* ofs, Node* limit);
 282   Node* get_state_from_sha_object(Node *sha_object);
 283   Node* get_state_from_sha5_object(Node *sha_object);
 284   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 285   bool inline_encodeISOArray();
 286   bool inline_updateCRC32();
 287   bool inline_updateBytesCRC32();
 288   bool inline_updateByteBufferCRC32();
 289   bool inline_multiplyToLen();
 290 };
 291 
 292 
 293 //---------------------------make_vm_intrinsic----------------------------
 294 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 295   vmIntrinsics::ID id = m->intrinsic_id();
 296   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 297 
 298   ccstr disable_intr = NULL;
 299 
 300   if ((DisableIntrinsic[0] != '\0'
 301        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 302       (method_has_option_value("DisableIntrinsic", disable_intr)
 303        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 304     // disabled by a user request on the command line:
 305     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 306     return NULL;
 307   }
 308 
 309   if (!m->is_loaded()) {
 310     // do not attempt to inline unloaded methods
 311     return NULL;
 312   }
 313 
 314   // Only a few intrinsics implement a virtual dispatch.
 315   // They are expensive calls which are also frequently overridden.
 316   if (is_virtual) {
 317     switch (id) {
 318     case vmIntrinsics::_hashCode:
 319     case vmIntrinsics::_clone:
 320       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 321       break;
 322     default:
 323       return NULL;
 324     }
 325   }
 326 
 327   // -XX:-InlineNatives disables nearly all intrinsics:
 328   if (!InlineNatives) {
 329     switch (id) {
 330     case vmIntrinsics::_indexOf:
 331     case vmIntrinsics::_compareTo:
 332     case vmIntrinsics::_equals:
 333     case vmIntrinsics::_equalsC:
 334     case vmIntrinsics::_getAndAddInt:
 335     case vmIntrinsics::_getAndAddLong:
 336     case vmIntrinsics::_getAndSetInt:
 337     case vmIntrinsics::_getAndSetLong:
 338     case vmIntrinsics::_getAndSetObject:
 339     case vmIntrinsics::_loadFence:
 340     case vmIntrinsics::_storeFence:
 341     case vmIntrinsics::_fullFence:
 342       break;  // InlineNatives does not control String.compareTo
 343     case vmIntrinsics::_Reference_get:
 344       break;  // InlineNatives does not control Reference.get
 345     default:
 346       return NULL;
 347     }
 348   }
 349 
 350   int predicates = 0;
 351   bool does_virtual_dispatch = false;
 352 
 353   switch (id) {
 354   case vmIntrinsics::_compareTo:
 355     if (!SpecialStringCompareTo)  return NULL;
 356     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 357     break;
 358   case vmIntrinsics::_indexOf:
 359     if (!SpecialStringIndexOf)  return NULL;
 360     break;
 361   case vmIntrinsics::_equals:
 362     if (!SpecialStringEquals)  return NULL;
 363     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 364     break;
 365   case vmIntrinsics::_equalsC:
 366     if (!SpecialArraysEquals)  return NULL;
 367     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 368     break;
 369   case vmIntrinsics::_arraycopy:
 370     if (!InlineArrayCopy)  return NULL;
 371     break;
 372   case vmIntrinsics::_copyMemory:
 373     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 374     if (!InlineArrayCopy)  return NULL;
 375     break;
 376   case vmIntrinsics::_hashCode:
 377     if (!InlineObjectHash)  return NULL;
 378     does_virtual_dispatch = true;
 379     break;
 380   case vmIntrinsics::_clone:
 381     does_virtual_dispatch = true;
 382   case vmIntrinsics::_copyOf:
 383   case vmIntrinsics::_copyOfRange:
 384     if (!InlineObjectCopy)  return NULL;
 385     // These also use the arraycopy intrinsic mechanism:
 386     if (!InlineArrayCopy)  return NULL;
 387     break;
 388   case vmIntrinsics::_encodeISOArray:
 389     if (!SpecialEncodeISOArray)  return NULL;
 390     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 391     break;
 392   case vmIntrinsics::_checkIndex:
 393     // We do not intrinsify this.  The optimizer does fine with it.
 394     return NULL;
 395 
 396   case vmIntrinsics::_getCallerClass:
 397     if (!InlineReflectionGetCallerClass)  return NULL;
 398     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 399     break;
 400 
 401   case vmIntrinsics::_bitCount_i:
 402     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 403     break;
 404 
 405   case vmIntrinsics::_bitCount_l:
 406     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 407     break;
 408 
 409   case vmIntrinsics::_numberOfLeadingZeros_i:
 410     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 411     break;
 412 
 413   case vmIntrinsics::_numberOfLeadingZeros_l:
 414     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 415     break;
 416 
 417   case vmIntrinsics::_numberOfTrailingZeros_i:
 418     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 419     break;
 420 
 421   case vmIntrinsics::_numberOfTrailingZeros_l:
 422     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 423     break;
 424 
 425   case vmIntrinsics::_reverseBytes_c:
 426     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 427     break;
 428   case vmIntrinsics::_reverseBytes_s:
 429     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 430     break;
 431   case vmIntrinsics::_reverseBytes_i:
 432     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 433     break;
 434   case vmIntrinsics::_reverseBytes_l:
 435     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 436     break;
 437 
 438   case vmIntrinsics::_Reference_get:
 439     // Use the intrinsic version of Reference.get() so that the value in
 440     // the referent field can be registered by the G1 pre-barrier code.
 441     // Also add memory barrier to prevent commoning reads from this field
 442     // across safepoint since GC can change it value.
 443     break;
 444 
 445   case vmIntrinsics::_compareAndSwapObject:
 446 #ifdef _LP64
 447     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 448 #endif
 449     break;
 450 
 451   case vmIntrinsics::_compareAndSwapLong:
 452     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 453     break;
 454 
 455   case vmIntrinsics::_getAndAddInt:
 456     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 457     break;
 458 
 459   case vmIntrinsics::_getAndAddLong:
 460     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 461     break;
 462 
 463   case vmIntrinsics::_getAndSetInt:
 464     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 465     break;
 466 
 467   case vmIntrinsics::_getAndSetLong:
 468     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 469     break;
 470 
 471   case vmIntrinsics::_getAndSetObject:
 472 #ifdef _LP64
 473     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 474     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 475     break;
 476 #else
 477     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 478     break;
 479 #endif
 480 
 481   case vmIntrinsics::_aescrypt_encryptBlock:
 482   case vmIntrinsics::_aescrypt_decryptBlock:
 483     if (!UseAESIntrinsics) return NULL;
 484     break;
 485 
 486   case vmIntrinsics::_multiplyToLen:
 487     if (!UseMultiplyToLenIntrinsic) return NULL;
 488     break;
 489 
 490   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 491   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 492     if (!UseAESIntrinsics) return NULL;
 493     // these two require the predicated logic
 494     predicates = 1;
 495     break;
 496 
 497   case vmIntrinsics::_sha_implCompress:
 498     if (!UseSHA1Intrinsics) return NULL;
 499     break;
 500 
 501   case vmIntrinsics::_sha2_implCompress:
 502     if (!UseSHA256Intrinsics) return NULL;
 503     break;
 504 
 505   case vmIntrinsics::_sha5_implCompress:
 506     if (!UseSHA512Intrinsics) return NULL;
 507     break;
 508 
 509   case vmIntrinsics::_digestBase_implCompressMB:
 510     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 511     predicates = 3;
 512     break;
 513 
 514   case vmIntrinsics::_updateCRC32:
 515   case vmIntrinsics::_updateBytesCRC32:
 516   case vmIntrinsics::_updateByteBufferCRC32:
 517     if (!UseCRC32Intrinsics) return NULL;
 518     break;
 519 
 520   case vmIntrinsics::_incrementExactI:
 521   case vmIntrinsics::_addExactI:
 522     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 523     break;
 524   case vmIntrinsics::_incrementExactL:
 525   case vmIntrinsics::_addExactL:
 526     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 527     break;
 528   case vmIntrinsics::_decrementExactI:
 529   case vmIntrinsics::_subtractExactI:
 530     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 531     break;
 532   case vmIntrinsics::_decrementExactL:
 533   case vmIntrinsics::_subtractExactL:
 534     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 535     break;
 536   case vmIntrinsics::_negateExactI:
 537     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 538     break;
 539   case vmIntrinsics::_negateExactL:
 540     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 541     break;
 542   case vmIntrinsics::_multiplyExactI:
 543     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 544     break;
 545   case vmIntrinsics::_multiplyExactL:
 546     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 547     break;
 548 
 549  default:
 550     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 551     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 552     break;
 553   }
 554 
 555   // -XX:-InlineClassNatives disables natives from the Class class.
 556   // The flag applies to all reflective calls, notably Array.newArray
 557   // (visible to Java programmers as Array.newInstance).
 558   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 559       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 560     if (!InlineClassNatives)  return NULL;
 561   }
 562 
 563   // -XX:-InlineThreadNatives disables natives from the Thread class.
 564   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 565     if (!InlineThreadNatives)  return NULL;
 566   }
 567 
 568   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 569   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 570       m->holder()->name() == ciSymbol::java_lang_Float() ||
 571       m->holder()->name() == ciSymbol::java_lang_Double()) {
 572     if (!InlineMathNatives)  return NULL;
 573   }
 574 
 575   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 576   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 577     if (!InlineUnsafeOps)  return NULL;
 578   }
 579 
 580   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 581 }
 582 
 583 //----------------------register_library_intrinsics-----------------------
 584 // Initialize this file's data structures, for each Compile instance.
 585 void Compile::register_library_intrinsics() {
 586   // Nothing to do here.
 587 }
 588 
 589 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 590   LibraryCallKit kit(jvms, this);
 591   Compile* C = kit.C;
 592   int nodes = C->unique();
 593 #ifndef PRODUCT
 594   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 595     char buf[1000];
 596     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 597     tty->print_cr("Intrinsic %s", str);
 598   }
 599 #endif
 600   ciMethod* callee = kit.callee();
 601   const int bci    = kit.bci();
 602 
 603   // Try to inline the intrinsic.
 604   if (kit.try_to_inline(_last_predicate)) {
 605     if (C->print_intrinsics() || C->print_inlining()) {
 606       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 607     }
 608     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 609     if (C->log()) {
 610       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 611                      vmIntrinsics::name_at(intrinsic_id()),
 612                      (is_virtual() ? " virtual='1'" : ""),
 613                      C->unique() - nodes);
 614     }
 615     // Push the result from the inlined method onto the stack.
 616     kit.push_result();
 617     C->print_inlining_update(this);
 618     return kit.transfer_exceptions_into_jvms();
 619   }
 620 
 621   // The intrinsic bailed out
 622   if (C->print_intrinsics() || C->print_inlining()) {
 623     if (jvms->has_method()) {
 624       // Not a root compile.
 625       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 626       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 627     } else {
 628       // Root compile
 629       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 630                vmIntrinsics::name_at(intrinsic_id()),
 631                (is_virtual() ? " (virtual)" : ""), bci);
 632     }
 633   }
 634   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 635   C->print_inlining_update(this);
 636   return NULL;
 637 }
 638 
 639 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 640   LibraryCallKit kit(jvms, this);
 641   Compile* C = kit.C;
 642   int nodes = C->unique();
 643   _last_predicate = predicate;
 644 #ifndef PRODUCT
 645   assert(is_predicated() && predicate < predicates_count(), "sanity");
 646   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 647     char buf[1000];
 648     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 649     tty->print_cr("Predicate for intrinsic %s", str);
 650   }
 651 #endif
 652   ciMethod* callee = kit.callee();
 653   const int bci    = kit.bci();
 654 
 655   Node* slow_ctl = kit.try_to_predicate(predicate);
 656   if (!kit.failing()) {
 657     if (C->print_intrinsics() || C->print_inlining()) {
 658       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 659     }
 660     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 661     if (C->log()) {
 662       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 663                      vmIntrinsics::name_at(intrinsic_id()),
 664                      (is_virtual() ? " virtual='1'" : ""),
 665                      C->unique() - nodes);
 666     }
 667     return slow_ctl; // Could be NULL if the check folds.
 668   }
 669 
 670   // The intrinsic bailed out
 671   if (C->print_intrinsics() || C->print_inlining()) {
 672     if (jvms->has_method()) {
 673       // Not a root compile.
 674       const char* msg = "failed to generate predicate for intrinsic";
 675       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 676     } else {
 677       // Root compile
 678       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 679                                         vmIntrinsics::name_at(intrinsic_id()),
 680                                         (is_virtual() ? " (virtual)" : ""), bci);
 681     }
 682   }
 683   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 684   return NULL;
 685 }
 686 
 687 bool LibraryCallKit::try_to_inline(int predicate) {
 688   // Handle symbolic names for otherwise undistinguished boolean switches:
 689   const bool is_store       = true;
 690   const bool is_native_ptr  = true;
 691   const bool is_static      = true;
 692   const bool is_volatile    = true;
 693 
 694   if (!jvms()->has_method()) {
 695     // Root JVMState has a null method.
 696     assert(map()->memory()->Opcode() == Op_Parm, "");
 697     // Insert the memory aliasing node
 698     set_all_memory(reset_memory());
 699   }
 700   assert(merged_memory(), "");
 701 
 702 
 703   switch (intrinsic_id()) {
 704   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 705   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 706   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 707 
 708   case vmIntrinsics::_dsin:
 709   case vmIntrinsics::_dcos:
 710   case vmIntrinsics::_dtan:
 711   case vmIntrinsics::_dabs:
 712   case vmIntrinsics::_datan2:
 713   case vmIntrinsics::_dsqrt:
 714   case vmIntrinsics::_dexp:
 715   case vmIntrinsics::_dlog:
 716   case vmIntrinsics::_dlog10:
 717   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 718 
 719   case vmIntrinsics::_min:
 720   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 721 
 722   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 723   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 724   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 725   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 726   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 727   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 728   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 729   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 730   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 731   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 732   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 733   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 734 
 735   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 736 
 737   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 738   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 739   case vmIntrinsics::_equals:                   return inline_string_equals();
 740 
 741   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 742   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 743   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 744   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 745   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 746   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 747   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 748   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 749   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 750 
 751   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 752   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 753   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 754   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 755   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 756   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 757   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 758   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 759   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 760 
 761   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 762   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 763   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 764   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 765   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 766   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 767   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 768   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 769 
 770   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 771   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 772   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 773   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 774   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 775   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 776   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 777   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 778 
 779   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 780   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 781   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 782   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 783   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 784   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 785   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 786   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 787   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 788 
 789   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 790   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 791   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 792   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 793   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 794   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 795   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 796   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 797   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 798 
 799   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 800   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 801   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 802   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 803 
 804   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 805   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 806   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 807 
 808   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 809   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 810   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 811 
 812   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 813   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 814   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 815   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 816   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 817 
 818   case vmIntrinsics::_loadFence:
 819   case vmIntrinsics::_storeFence:
 820   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 821 
 822   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 823   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 824 
 825 #ifdef TRACE_HAVE_INTRINSICS
 826   case vmIntrinsics::_classID:                  return inline_native_classID();
 827   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 828   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 829 #endif
 830   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 831   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 832   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 833   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 834   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 835   case vmIntrinsics::_getLength:                return inline_native_getLength();
 836   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 837   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 838   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 839   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 840 
 841   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 842 
 843   case vmIntrinsics::_isInstance:
 844   case vmIntrinsics::_getModifiers:
 845   case vmIntrinsics::_isInterface:
 846   case vmIntrinsics::_isArray:
 847   case vmIntrinsics::_isPrimitive:
 848   case vmIntrinsics::_getSuperclass:
 849   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 850 
 851   case vmIntrinsics::_floatToRawIntBits:
 852   case vmIntrinsics::_floatToIntBits:
 853   case vmIntrinsics::_intBitsToFloat:
 854   case vmIntrinsics::_doubleToRawLongBits:
 855   case vmIntrinsics::_doubleToLongBits:
 856   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 857 
 858   case vmIntrinsics::_numberOfLeadingZeros_i:
 859   case vmIntrinsics::_numberOfLeadingZeros_l:
 860   case vmIntrinsics::_numberOfTrailingZeros_i:
 861   case vmIntrinsics::_numberOfTrailingZeros_l:
 862   case vmIntrinsics::_bitCount_i:
 863   case vmIntrinsics::_bitCount_l:
 864   case vmIntrinsics::_reverseBytes_i:
 865   case vmIntrinsics::_reverseBytes_l:
 866   case vmIntrinsics::_reverseBytes_s:
 867   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 868 
 869   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 870 
 871   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 872 
 873   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 874 
 875   case vmIntrinsics::_aescrypt_encryptBlock:
 876   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 877 
 878   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 879   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 880     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 881 
 882   case vmIntrinsics::_sha_implCompress:
 883   case vmIntrinsics::_sha2_implCompress:
 884   case vmIntrinsics::_sha5_implCompress:
 885     return inline_sha_implCompress(intrinsic_id());
 886 
 887   case vmIntrinsics::_digestBase_implCompressMB:
 888     return inline_digestBase_implCompressMB(predicate);
 889 
 890   case vmIntrinsics::_multiplyToLen:
 891     return inline_multiplyToLen();
 892 
 893   case vmIntrinsics::_encodeISOArray:
 894     return inline_encodeISOArray();
 895 
 896   case vmIntrinsics::_updateCRC32:
 897     return inline_updateCRC32();
 898   case vmIntrinsics::_updateBytesCRC32:
 899     return inline_updateBytesCRC32();
 900   case vmIntrinsics::_updateByteBufferCRC32:
 901     return inline_updateByteBufferCRC32();
 902 
 903   default:
 904     // If you get here, it may be that someone has added a new intrinsic
 905     // to the list in vmSymbols.hpp without implementing it here.
 906 #ifndef PRODUCT
 907     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 908       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 909                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 910     }
 911 #endif
 912     return false;
 913   }
 914 }
 915 
 916 Node* LibraryCallKit::try_to_predicate(int predicate) {
 917   if (!jvms()->has_method()) {
 918     // Root JVMState has a null method.
 919     assert(map()->memory()->Opcode() == Op_Parm, "");
 920     // Insert the memory aliasing node
 921     set_all_memory(reset_memory());
 922   }
 923   assert(merged_memory(), "");
 924 
 925   switch (intrinsic_id()) {
 926   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 927     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 928   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 929     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 930   case vmIntrinsics::_digestBase_implCompressMB:
 931     return inline_digestBase_implCompressMB_predicate(predicate);
 932 
 933   default:
 934     // If you get here, it may be that someone has added a new intrinsic
 935     // to the list in vmSymbols.hpp without implementing it here.
 936 #ifndef PRODUCT
 937     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 938       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 939                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 940     }
 941 #endif
 942     Node* slow_ctl = control();
 943     set_control(top()); // No fast path instrinsic
 944     return slow_ctl;
 945   }
 946 }
 947 
 948 //------------------------------set_result-------------------------------
 949 // Helper function for finishing intrinsics.
 950 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 951   record_for_igvn(region);
 952   set_control(_gvn.transform(region));
 953   set_result( _gvn.transform(value));
 954   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 955 }
 956 
 957 //------------------------------generate_guard---------------------------
 958 // Helper function for generating guarded fast-slow graph structures.
 959 // The given 'test', if true, guards a slow path.  If the test fails
 960 // then a fast path can be taken.  (We generally hope it fails.)
 961 // In all cases, GraphKit::control() is updated to the fast path.
 962 // The returned value represents the control for the slow path.
 963 // The return value is never 'top'; it is either a valid control
 964 // or NULL if it is obvious that the slow path can never be taken.
 965 // Also, if region and the slow control are not NULL, the slow edge
 966 // is appended to the region.
 967 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 968   if (stopped()) {
 969     // Already short circuited.
 970     return NULL;
 971   }
 972 
 973   // Build an if node and its projections.
 974   // If test is true we take the slow path, which we assume is uncommon.
 975   if (_gvn.type(test) == TypeInt::ZERO) {
 976     // The slow branch is never taken.  No need to build this guard.
 977     return NULL;
 978   }
 979 
 980   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 981 
 982   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 983   if (if_slow == top()) {
 984     // The slow branch is never taken.  No need to build this guard.
 985     return NULL;
 986   }
 987 
 988   if (region != NULL)
 989     region->add_req(if_slow);
 990 
 991   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 992   set_control(if_fast);
 993 
 994   return if_slow;
 995 }
 996 
 997 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 998   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 999 }
1000 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1001   return generate_guard(test, region, PROB_FAIR);
1002 }
1003 
1004 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1005                                                      Node* *pos_index) {
1006   if (stopped())
1007     return NULL;                // already stopped
1008   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1009     return NULL;                // index is already adequately typed
1010   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1011   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1012   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1013   if (is_neg != NULL && pos_index != NULL) {
1014     // Emulate effect of Parse::adjust_map_after_if.
1015     Node* ccast = new CastIINode(index, TypeInt::POS);
1016     ccast->set_req(0, control());
1017     (*pos_index) = _gvn.transform(ccast);
1018   }
1019   return is_neg;
1020 }
1021 
1022 // Make sure that 'position' is a valid limit index, in [0..length].
1023 // There are two equivalent plans for checking this:
1024 //   A. (offset + copyLength)  unsigned<=  arrayLength
1025 //   B. offset  <=  (arrayLength - copyLength)
1026 // We require that all of the values above, except for the sum and
1027 // difference, are already known to be non-negative.
1028 // Plan A is robust in the face of overflow, if offset and copyLength
1029 // are both hugely positive.
1030 //
1031 // Plan B is less direct and intuitive, but it does not overflow at
1032 // all, since the difference of two non-negatives is always
1033 // representable.  Whenever Java methods must perform the equivalent
1034 // check they generally use Plan B instead of Plan A.
1035 // For the moment we use Plan A.
1036 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1037                                                   Node* subseq_length,
1038                                                   Node* array_length,
1039                                                   RegionNode* region) {
1040   if (stopped())
1041     return NULL;                // already stopped
1042   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1043   if (zero_offset && subseq_length->eqv_uncast(array_length))
1044     return NULL;                // common case of whole-array copy
1045   Node* last = subseq_length;
1046   if (!zero_offset)             // last += offset
1047     last = _gvn.transform(new AddINode(last, offset));
1048   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1049   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1050   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1051   return is_over;
1052 }
1053 
1054 
1055 //--------------------------generate_current_thread--------------------
1056 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1057   ciKlass*    thread_klass = env()->Thread_klass();
1058   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1059   Node* thread = _gvn.transform(new ThreadLocalNode());
1060   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1061   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1062   tls_output = thread;
1063   return threadObj;
1064 }
1065 
1066 
1067 //------------------------------make_string_method_node------------------------
1068 // Helper method for String intrinsic functions. This version is called
1069 // with str1 and str2 pointing to String object nodes.
1070 //
1071 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1072   Node* no_ctrl = NULL;
1073 
1074   // Get start addr of string
1075   Node* str1_value   = load_String_value(no_ctrl, str1);
1076   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1077   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1078 
1079   // Get length of string 1
1080   Node* str1_len  = load_String_length(no_ctrl, str1);
1081 
1082   Node* str2_value   = load_String_value(no_ctrl, str2);
1083   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1084   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1085 
1086   Node* str2_len = NULL;
1087   Node* result = NULL;
1088 
1089   switch (opcode) {
1090   case Op_StrIndexOf:
1091     // Get length of string 2
1092     str2_len = load_String_length(no_ctrl, str2);
1093 
1094     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1095                                 str1_start, str1_len, str2_start, str2_len);
1096     break;
1097   case Op_StrComp:
1098     // Get length of string 2
1099     str2_len = load_String_length(no_ctrl, str2);
1100 
1101     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1102                              str1_start, str1_len, str2_start, str2_len);
1103     break;
1104   case Op_StrEquals:
1105     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1106                                str1_start, str2_start, str1_len);
1107     break;
1108   default:
1109     ShouldNotReachHere();
1110     return NULL;
1111   }
1112 
1113   // All these intrinsics have checks.
1114   C->set_has_split_ifs(true); // Has chance for split-if optimization
1115 
1116   return _gvn.transform(result);
1117 }
1118 
1119 // Helper method for String intrinsic functions. This version is called
1120 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1121 // to Int nodes containing the lenghts of str1 and str2.
1122 //
1123 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1124   Node* result = NULL;
1125   switch (opcode) {
1126   case Op_StrIndexOf:
1127     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1128                                 str1_start, cnt1, str2_start, cnt2);
1129     break;
1130   case Op_StrComp:
1131     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1132                              str1_start, cnt1, str2_start, cnt2);
1133     break;
1134   case Op_StrEquals:
1135     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1136                                str1_start, str2_start, cnt1);
1137     break;
1138   default:
1139     ShouldNotReachHere();
1140     return NULL;
1141   }
1142 
1143   // All these intrinsics have checks.
1144   C->set_has_split_ifs(true); // Has chance for split-if optimization
1145 
1146   return _gvn.transform(result);
1147 }
1148 
1149 //------------------------------inline_string_compareTo------------------------
1150 // public int java.lang.String.compareTo(String anotherString);
1151 bool LibraryCallKit::inline_string_compareTo() {
1152   Node* receiver = null_check(argument(0));
1153   Node* arg      = null_check(argument(1));
1154   if (stopped()) {
1155     return true;
1156   }
1157   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1158   return true;
1159 }
1160 
1161 //------------------------------inline_string_equals------------------------
1162 bool LibraryCallKit::inline_string_equals() {
1163   Node* receiver = null_check_receiver();
1164   // NOTE: Do not null check argument for String.equals() because spec
1165   // allows to specify NULL as argument.
1166   Node* argument = this->argument(1);
1167   if (stopped()) {
1168     return true;
1169   }
1170 
1171   // paths (plus control) merge
1172   RegionNode* region = new RegionNode(5);
1173   Node* phi = new PhiNode(region, TypeInt::BOOL);
1174 
1175   // does source == target string?
1176   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1177   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1178 
1179   Node* if_eq = generate_slow_guard(bol, NULL);
1180   if (if_eq != NULL) {
1181     // receiver == argument
1182     phi->init_req(2, intcon(1));
1183     region->init_req(2, if_eq);
1184   }
1185 
1186   // get String klass for instanceOf
1187   ciInstanceKlass* klass = env()->String_klass();
1188 
1189   if (!stopped()) {
1190     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1191     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1192     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1193 
1194     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1195     //instanceOf == true, fallthrough
1196 
1197     if (inst_false != NULL) {
1198       phi->init_req(3, intcon(0));
1199       region->init_req(3, inst_false);
1200     }
1201   }
1202 
1203   if (!stopped()) {
1204     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1205 
1206     // Properly cast the argument to String
1207     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1208     // This path is taken only when argument's type is String:NotNull.
1209     argument = cast_not_null(argument, false);
1210 
1211     Node* no_ctrl = NULL;
1212 
1213     // Get start addr of receiver
1214     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1215     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1216     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1217 
1218     // Get length of receiver
1219     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1220 
1221     // Get start addr of argument
1222     Node* argument_val    = load_String_value(no_ctrl, argument);
1223     Node* argument_offset = load_String_offset(no_ctrl, argument);
1224     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1225 
1226     // Get length of argument
1227     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1228 
1229     // Check for receiver count != argument count
1230     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1231     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1232     Node* if_ne = generate_slow_guard(bol, NULL);
1233     if (if_ne != NULL) {
1234       phi->init_req(4, intcon(0));
1235       region->init_req(4, if_ne);
1236     }
1237 
1238     // Check for count == 0 is done by assembler code for StrEquals.
1239 
1240     if (!stopped()) {
1241       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1242       phi->init_req(1, equals);
1243       region->init_req(1, control());
1244     }
1245   }
1246 
1247   // post merge
1248   set_control(_gvn.transform(region));
1249   record_for_igvn(region);
1250 
1251   set_result(_gvn.transform(phi));
1252   return true;
1253 }
1254 
1255 //------------------------------inline_array_equals----------------------------
1256 bool LibraryCallKit::inline_array_equals() {
1257   Node* arg1 = argument(0);
1258   Node* arg2 = argument(1);
1259   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1260   return true;
1261 }
1262 
1263 // Java version of String.indexOf(constant string)
1264 // class StringDecl {
1265 //   StringDecl(char[] ca) {
1266 //     offset = 0;
1267 //     count = ca.length;
1268 //     value = ca;
1269 //   }
1270 //   int offset;
1271 //   int count;
1272 //   char[] value;
1273 // }
1274 //
1275 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1276 //                             int targetOffset, int cache_i, int md2) {
1277 //   int cache = cache_i;
1278 //   int sourceOffset = string_object.offset;
1279 //   int sourceCount = string_object.count;
1280 //   int targetCount = target_object.length;
1281 //
1282 //   int targetCountLess1 = targetCount - 1;
1283 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1284 //
1285 //   char[] source = string_object.value;
1286 //   char[] target = target_object;
1287 //   int lastChar = target[targetCountLess1];
1288 //
1289 //  outer_loop:
1290 //   for (int i = sourceOffset; i < sourceEnd; ) {
1291 //     int src = source[i + targetCountLess1];
1292 //     if (src == lastChar) {
1293 //       // With random strings and a 4-character alphabet,
1294 //       // reverse matching at this point sets up 0.8% fewer
1295 //       // frames, but (paradoxically) makes 0.3% more probes.
1296 //       // Since those probes are nearer the lastChar probe,
1297 //       // there is may be a net D$ win with reverse matching.
1298 //       // But, reversing loop inhibits unroll of inner loop
1299 //       // for unknown reason.  So, does running outer loop from
1300 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1301 //       for (int j = 0; j < targetCountLess1; j++) {
1302 //         if (target[targetOffset + j] != source[i+j]) {
1303 //           if ((cache & (1 << source[i+j])) == 0) {
1304 //             if (md2 < j+1) {
1305 //               i += j+1;
1306 //               continue outer_loop;
1307 //             }
1308 //           }
1309 //           i += md2;
1310 //           continue outer_loop;
1311 //         }
1312 //       }
1313 //       return i - sourceOffset;
1314 //     }
1315 //     if ((cache & (1 << src)) == 0) {
1316 //       i += targetCountLess1;
1317 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1318 //     i++;
1319 //   }
1320 //   return -1;
1321 // }
1322 
1323 //------------------------------string_indexOf------------------------
1324 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1325                                      jint cache_i, jint md2_i) {
1326 
1327   Node* no_ctrl  = NULL;
1328   float likely   = PROB_LIKELY(0.9);
1329   float unlikely = PROB_UNLIKELY(0.9);
1330 
1331   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1332 
1333   Node* source        = load_String_value(no_ctrl, string_object);
1334   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1335   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1336 
1337   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1338   jint target_length = target_array->length();
1339   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1340   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1341 
1342   // String.value field is known to be @Stable.
1343   if (UseImplicitStableValues) {
1344     target = cast_array_to_stable(target, target_type);
1345   }
1346 
1347   IdealKit kit(this, false, true);
1348 #define __ kit.
1349   Node* zero             = __ ConI(0);
1350   Node* one              = __ ConI(1);
1351   Node* cache            = __ ConI(cache_i);
1352   Node* md2              = __ ConI(md2_i);
1353   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1354   Node* targetCountLess1 = __ ConI(target_length - 1);
1355   Node* targetOffset     = __ ConI(targetOffset_i);
1356   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1357 
1358   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1359   Node* outer_loop = __ make_label(2 /* goto */);
1360   Node* return_    = __ make_label(1);
1361 
1362   __ set(rtn,__ ConI(-1));
1363   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1364        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1365        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1366        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1367        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1368          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1369               Node* tpj = __ AddI(targetOffset, __ value(j));
1370               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1371               Node* ipj  = __ AddI(__ value(i), __ value(j));
1372               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1373               __ if_then(targ, BoolTest::ne, src2); {
1374                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1375                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1376                     __ increment(i, __ AddI(__ value(j), one));
1377                     __ goto_(outer_loop);
1378                   } __ end_if(); __ dead(j);
1379                 }__ end_if(); __ dead(j);
1380                 __ increment(i, md2);
1381                 __ goto_(outer_loop);
1382               }__ end_if();
1383               __ increment(j, one);
1384          }__ end_loop(); __ dead(j);
1385          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1386          __ goto_(return_);
1387        }__ end_if();
1388        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1389          __ increment(i, targetCountLess1);
1390        }__ end_if();
1391        __ increment(i, one);
1392        __ bind(outer_loop);
1393   }__ end_loop(); __ dead(i);
1394   __ bind(return_);
1395 
1396   // Final sync IdealKit and GraphKit.
1397   final_sync(kit);
1398   Node* result = __ value(rtn);
1399 #undef __
1400   C->set_has_loops(true);
1401   return result;
1402 }
1403 
1404 //------------------------------inline_string_indexOf------------------------
1405 bool LibraryCallKit::inline_string_indexOf() {
1406   Node* receiver = argument(0);
1407   Node* arg      = argument(1);
1408 
1409   Node* result;
1410   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1411       UseSSE42Intrinsics) {
1412     // Generate SSE4.2 version of indexOf
1413     // We currently only have match rules that use SSE4.2
1414 
1415     receiver = null_check(receiver);
1416     arg      = null_check(arg);
1417     if (stopped()) {
1418       return true;
1419     }
1420 
1421     // Make the merge point
1422     RegionNode* result_rgn = new RegionNode(4);
1423     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1424     Node* no_ctrl  = NULL;
1425 
1426     // Get start addr of source string
1427     Node* source = load_String_value(no_ctrl, receiver);
1428     Node* source_offset = load_String_offset(no_ctrl, receiver);
1429     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1430 
1431     // Get length of source string
1432     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1433 
1434     // Get start addr of substring
1435     Node* substr = load_String_value(no_ctrl, arg);
1436     Node* substr_offset = load_String_offset(no_ctrl, arg);
1437     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1438 
1439     // Get length of source string
1440     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1441 
1442     // Check for substr count > string count
1443     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1444     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1445     Node* if_gt = generate_slow_guard(bol, NULL);
1446     if (if_gt != NULL) {
1447       result_phi->init_req(2, intcon(-1));
1448       result_rgn->init_req(2, if_gt);
1449     }
1450 
1451     if (!stopped()) {
1452       // Check for substr count == 0
1453       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1454       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1455       Node* if_zero = generate_slow_guard(bol, NULL);
1456       if (if_zero != NULL) {
1457         result_phi->init_req(3, intcon(0));
1458         result_rgn->init_req(3, if_zero);
1459       }
1460     }
1461 
1462     if (!stopped()) {
1463       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1464       result_phi->init_req(1, result);
1465       result_rgn->init_req(1, control());
1466     }
1467     set_control(_gvn.transform(result_rgn));
1468     record_for_igvn(result_rgn);
1469     result = _gvn.transform(result_phi);
1470 
1471   } else { // Use LibraryCallKit::string_indexOf
1472     // don't intrinsify if argument isn't a constant string.
1473     if (!arg->is_Con()) {
1474      return false;
1475     }
1476     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1477     if (str_type == NULL) {
1478       return false;
1479     }
1480     ciInstanceKlass* klass = env()->String_klass();
1481     ciObject* str_const = str_type->const_oop();
1482     if (str_const == NULL || str_const->klass() != klass) {
1483       return false;
1484     }
1485     ciInstance* str = str_const->as_instance();
1486     assert(str != NULL, "must be instance");
1487 
1488     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1489     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1490 
1491     int o;
1492     int c;
1493     if (java_lang_String::has_offset_field()) {
1494       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1495       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1496     } else {
1497       o = 0;
1498       c = pat->length();
1499     }
1500 
1501     // constant strings have no offset and count == length which
1502     // simplifies the resulting code somewhat so lets optimize for that.
1503     if (o != 0 || c != pat->length()) {
1504      return false;
1505     }
1506 
1507     receiver = null_check(receiver, T_OBJECT);
1508     // NOTE: No null check on the argument is needed since it's a constant String oop.
1509     if (stopped()) {
1510       return true;
1511     }
1512 
1513     // The null string as a pattern always returns 0 (match at beginning of string)
1514     if (c == 0) {
1515       set_result(intcon(0));
1516       return true;
1517     }
1518 
1519     // Generate default indexOf
1520     jchar lastChar = pat->char_at(o + (c - 1));
1521     int cache = 0;
1522     int i;
1523     for (i = 0; i < c - 1; i++) {
1524       assert(i < pat->length(), "out of range");
1525       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1526     }
1527 
1528     int md2 = c;
1529     for (i = 0; i < c - 1; i++) {
1530       assert(i < pat->length(), "out of range");
1531       if (pat->char_at(o + i) == lastChar) {
1532         md2 = (c - 1) - i;
1533       }
1534     }
1535 
1536     result = string_indexOf(receiver, pat, o, cache, md2);
1537   }
1538   set_result(result);
1539   return true;
1540 }
1541 
1542 //--------------------------round_double_node--------------------------------
1543 // Round a double node if necessary.
1544 Node* LibraryCallKit::round_double_node(Node* n) {
1545   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1546     n = _gvn.transform(new RoundDoubleNode(0, n));
1547   return n;
1548 }
1549 
1550 //------------------------------inline_math-----------------------------------
1551 // public static double Math.abs(double)
1552 // public static double Math.sqrt(double)
1553 // public static double Math.log(double)
1554 // public static double Math.log10(double)
1555 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1556   Node* arg = round_double_node(argument(0));
1557   Node* n;
1558   switch (id) {
1559   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1560   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1561   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1562   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1563   default:  fatal_unexpected_iid(id);  break;
1564   }
1565   set_result(_gvn.transform(n));
1566   return true;
1567 }
1568 
1569 //------------------------------inline_trig----------------------------------
1570 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1571 // argument reduction which will turn into a fast/slow diamond.
1572 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1573   Node* arg = round_double_node(argument(0));
1574   Node* n = NULL;
1575 
1576   switch (id) {
1577   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1578   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1579   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1580   default:  fatal_unexpected_iid(id);  break;
1581   }
1582   n = _gvn.transform(n);
1583 
1584   // Rounding required?  Check for argument reduction!
1585   if (Matcher::strict_fp_requires_explicit_rounding) {
1586     static const double     pi_4 =  0.7853981633974483;
1587     static const double neg_pi_4 = -0.7853981633974483;
1588     // pi/2 in 80-bit extended precision
1589     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1590     // -pi/2 in 80-bit extended precision
1591     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1592     // Cutoff value for using this argument reduction technique
1593     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1594     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1595 
1596     // Pseudocode for sin:
1597     // if (x <= Math.PI / 4.0) {
1598     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1599     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1600     // } else {
1601     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1602     // }
1603     // return StrictMath.sin(x);
1604 
1605     // Pseudocode for cos:
1606     // if (x <= Math.PI / 4.0) {
1607     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1608     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1609     // } else {
1610     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1611     // }
1612     // return StrictMath.cos(x);
1613 
1614     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1615     // requires a special machine instruction to load it.  Instead we'll try
1616     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1617     // probably do the math inside the SIN encoding.
1618 
1619     // Make the merge point
1620     RegionNode* r = new RegionNode(3);
1621     Node* phi = new PhiNode(r, Type::DOUBLE);
1622 
1623     // Flatten arg so we need only 1 test
1624     Node *abs = _gvn.transform(new AbsDNode(arg));
1625     // Node for PI/4 constant
1626     Node *pi4 = makecon(TypeD::make(pi_4));
1627     // Check PI/4 : abs(arg)
1628     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1629     // Check: If PI/4 < abs(arg) then go slow
1630     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1631     // Branch either way
1632     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1633     set_control(opt_iff(r,iff));
1634 
1635     // Set fast path result
1636     phi->init_req(2, n);
1637 
1638     // Slow path - non-blocking leaf call
1639     Node* call = NULL;
1640     switch (id) {
1641     case vmIntrinsics::_dsin:
1642       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1643                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1644                                "Sin", NULL, arg, top());
1645       break;
1646     case vmIntrinsics::_dcos:
1647       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1648                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1649                                "Cos", NULL, arg, top());
1650       break;
1651     case vmIntrinsics::_dtan:
1652       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1653                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1654                                "Tan", NULL, arg, top());
1655       break;
1656     }
1657     assert(control()->in(0) == call, "");
1658     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1659     r->init_req(1, control());
1660     phi->init_req(1, slow_result);
1661 
1662     // Post-merge
1663     set_control(_gvn.transform(r));
1664     record_for_igvn(r);
1665     n = _gvn.transform(phi);
1666 
1667     C->set_has_split_ifs(true); // Has chance for split-if optimization
1668   }
1669   set_result(n);
1670   return true;
1671 }
1672 
1673 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1674   //-------------------
1675   //result=(result.isNaN())? funcAddr():result;
1676   // Check: If isNaN() by checking result!=result? then either trap
1677   // or go to runtime
1678   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1679   // Build the boolean node
1680   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1681 
1682   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1683     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1684       // The pow or exp intrinsic returned a NaN, which requires a call
1685       // to the runtime.  Recompile with the runtime call.
1686       uncommon_trap(Deoptimization::Reason_intrinsic,
1687                     Deoptimization::Action_make_not_entrant);
1688     }
1689     return result;
1690   } else {
1691     // If this inlining ever returned NaN in the past, we compile a call
1692     // to the runtime to properly handle corner cases
1693 
1694     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1695     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1696     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1697 
1698     if (!if_slow->is_top()) {
1699       RegionNode* result_region = new RegionNode(3);
1700       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1701 
1702       result_region->init_req(1, if_fast);
1703       result_val->init_req(1, result);
1704 
1705       set_control(if_slow);
1706 
1707       const TypePtr* no_memory_effects = NULL;
1708       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1709                                    no_memory_effects,
1710                                    x, top(), y, y ? top() : NULL);
1711       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1712 #ifdef ASSERT
1713       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1714       assert(value_top == top(), "second value must be top");
1715 #endif
1716 
1717       result_region->init_req(2, control());
1718       result_val->init_req(2, value);
1719       set_control(_gvn.transform(result_region));
1720       return _gvn.transform(result_val);
1721     } else {
1722       return result;
1723     }
1724   }
1725 }
1726 
1727 //------------------------------inline_exp-------------------------------------
1728 // Inline exp instructions, if possible.  The Intel hardware only misses
1729 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1730 bool LibraryCallKit::inline_exp() {
1731   Node* arg = round_double_node(argument(0));
1732   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1733 
1734   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1735   set_result(n);
1736 
1737   C->set_has_split_ifs(true); // Has chance for split-if optimization
1738   return true;
1739 }
1740 
1741 //------------------------------inline_pow-------------------------------------
1742 // Inline power instructions, if possible.
1743 bool LibraryCallKit::inline_pow() {
1744   // Pseudocode for pow
1745   // if (y == 2) {
1746   //   return x * x;
1747   // } else {
1748   //   if (x <= 0.0) {
1749   //     long longy = (long)y;
1750   //     if ((double)longy == y) { // if y is long
1751   //       if (y + 1 == y) longy = 0; // huge number: even
1752   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1753   //     } else {
1754   //       result = NaN;
1755   //     }
1756   //   } else {
1757   //     result = DPow(x,y);
1758   //   }
1759   //   if (result != result)?  {
1760   //     result = uncommon_trap() or runtime_call();
1761   //   }
1762   //   return result;
1763   // }
1764 
1765   Node* x = round_double_node(argument(0));
1766   Node* y = round_double_node(argument(2));
1767 
1768   Node* result = NULL;
1769 
1770   Node*   const_two_node = makecon(TypeD::make(2.0));
1771   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1772   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1773   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1774   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1775   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1776 
1777   RegionNode* region_node = new RegionNode(3);
1778   region_node->init_req(1, if_true);
1779 
1780   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1781   // special case for x^y where y == 2, we can convert it to x * x
1782   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1783 
1784   // set control to if_false since we will now process the false branch
1785   set_control(if_false);
1786 
1787   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1788     // Short form: skip the fancy tests and just check for NaN result.
1789     result = _gvn.transform(new PowDNode(C, control(), x, y));
1790   } else {
1791     // If this inlining ever returned NaN in the past, include all
1792     // checks + call to the runtime.
1793 
1794     // Set the merge point for If node with condition of (x <= 0.0)
1795     // There are four possible paths to region node and phi node
1796     RegionNode *r = new RegionNode(4);
1797     Node *phi = new PhiNode(r, Type::DOUBLE);
1798 
1799     // Build the first if node: if (x <= 0.0)
1800     // Node for 0 constant
1801     Node *zeronode = makecon(TypeD::ZERO);
1802     // Check x:0
1803     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1804     // Check: If (x<=0) then go complex path
1805     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1806     // Branch either way
1807     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1808     // Fast path taken; set region slot 3
1809     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1810     r->init_req(3,fast_taken); // Capture fast-control
1811 
1812     // Fast path not-taken, i.e. slow path
1813     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1814 
1815     // Set fast path result
1816     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1817     phi->init_req(3, fast_result);
1818 
1819     // Complex path
1820     // Build the second if node (if y is long)
1821     // Node for (long)y
1822     Node *longy = _gvn.transform(new ConvD2LNode(y));
1823     // Node for (double)((long) y)
1824     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1825     // Check (double)((long) y) : y
1826     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1827     // Check if (y isn't long) then go to slow path
1828 
1829     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1830     // Branch either way
1831     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1832     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1833 
1834     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1835 
1836     // Calculate DPow(abs(x), y)*(1 & (long)y)
1837     // Node for constant 1
1838     Node *conone = longcon(1);
1839     // 1& (long)y
1840     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1841 
1842     // A huge number is always even. Detect a huge number by checking
1843     // if y + 1 == y and set integer to be tested for parity to 0.
1844     // Required for corner case:
1845     // (long)9.223372036854776E18 = max_jlong
1846     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1847     // max_jlong is odd but 9.223372036854776E18 is even
1848     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1849     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1850     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1851     Node* correctedsign = NULL;
1852     if (ConditionalMoveLimit != 0) {
1853       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1854     } else {
1855       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1856       RegionNode *r = new RegionNode(3);
1857       Node *phi = new PhiNode(r, TypeLong::LONG);
1858       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1859       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1860       phi->init_req(1, signnode);
1861       phi->init_req(2, longcon(0));
1862       correctedsign = _gvn.transform(phi);
1863       ylong_path = _gvn.transform(r);
1864       record_for_igvn(r);
1865     }
1866 
1867     // zero node
1868     Node *conzero = longcon(0);
1869     // Check (1&(long)y)==0?
1870     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1871     // Check if (1&(long)y)!=0?, if so the result is negative
1872     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1873     // abs(x)
1874     Node *absx=_gvn.transform(new AbsDNode(x));
1875     // abs(x)^y
1876     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1877     // -abs(x)^y
1878     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1879     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1880     Node *signresult = NULL;
1881     if (ConditionalMoveLimit != 0) {
1882       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1883     } else {
1884       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1885       RegionNode *r = new RegionNode(3);
1886       Node *phi = new PhiNode(r, Type::DOUBLE);
1887       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1888       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1889       phi->init_req(1, absxpowy);
1890       phi->init_req(2, negabsxpowy);
1891       signresult = _gvn.transform(phi);
1892       ylong_path = _gvn.transform(r);
1893       record_for_igvn(r);
1894     }
1895     // Set complex path fast result
1896     r->init_req(2, ylong_path);
1897     phi->init_req(2, signresult);
1898 
1899     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1900     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1901     r->init_req(1,slow_path);
1902     phi->init_req(1,slow_result);
1903 
1904     // Post merge
1905     set_control(_gvn.transform(r));
1906     record_for_igvn(r);
1907     result = _gvn.transform(phi);
1908   }
1909 
1910   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1911 
1912   // control from finish_pow_exp is now input to the region node
1913   region_node->set_req(2, control());
1914   // the result from finish_pow_exp is now input to the phi node
1915   phi_node->init_req(2, result);
1916   set_control(_gvn.transform(region_node));
1917   record_for_igvn(region_node);
1918   set_result(_gvn.transform(phi_node));
1919 
1920   C->set_has_split_ifs(true); // Has chance for split-if optimization
1921   return true;
1922 }
1923 
1924 //------------------------------runtime_math-----------------------------
1925 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1926   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1927          "must be (DD)D or (D)D type");
1928 
1929   // Inputs
1930   Node* a = round_double_node(argument(0));
1931   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1932 
1933   const TypePtr* no_memory_effects = NULL;
1934   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1935                                  no_memory_effects,
1936                                  a, top(), b, b ? top() : NULL);
1937   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1938 #ifdef ASSERT
1939   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1940   assert(value_top == top(), "second value must be top");
1941 #endif
1942 
1943   set_result(value);
1944   return true;
1945 }
1946 
1947 //------------------------------inline_math_native-----------------------------
1948 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1949 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1950   switch (id) {
1951     // These intrinsics are not properly supported on all hardware
1952   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1953     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1954   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1955     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1956   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1957     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1958 
1959   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1960     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1961   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1962     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1963 
1964     // These intrinsics are supported on all hardware
1965   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1966   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1967 
1968   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1969     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1970   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1971     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1972 #undef FN_PTR
1973 
1974    // These intrinsics are not yet correctly implemented
1975   case vmIntrinsics::_datan2:
1976     return false;
1977 
1978   default:
1979     fatal_unexpected_iid(id);
1980     return false;
1981   }
1982 }
1983 
1984 static bool is_simple_name(Node* n) {
1985   return (n->req() == 1         // constant
1986           || (n->is_Type() && n->as_Type()->type()->singleton())
1987           || n->is_Proj()       // parameter or return value
1988           || n->is_Phi()        // local of some sort
1989           );
1990 }
1991 
1992 //----------------------------inline_min_max-----------------------------------
1993 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1994   set_result(generate_min_max(id, argument(0), argument(1)));
1995   return true;
1996 }
1997 
1998 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1999   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2000   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2001   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2002   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2003 
2004   {
2005     PreserveJVMState pjvms(this);
2006     PreserveReexecuteState preexecs(this);
2007     jvms()->set_should_reexecute(true);
2008 
2009     set_control(slow_path);
2010     set_i_o(i_o());
2011 
2012     uncommon_trap(Deoptimization::Reason_intrinsic,
2013                   Deoptimization::Action_none);
2014   }
2015 
2016   set_control(fast_path);
2017   set_result(math);
2018 }
2019 
2020 template <typename OverflowOp>
2021 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2022   typedef typename OverflowOp::MathOp MathOp;
2023 
2024   MathOp* mathOp = new MathOp(arg1, arg2);
2025   Node* operation = _gvn.transform( mathOp );
2026   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2027   inline_math_mathExact(operation, ofcheck);
2028   return true;
2029 }
2030 
2031 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2032   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2033 }
2034 
2035 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2036   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2037 }
2038 
2039 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2040   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2041 }
2042 
2043 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2044   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2045 }
2046 
2047 bool LibraryCallKit::inline_math_negateExactI() {
2048   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2049 }
2050 
2051 bool LibraryCallKit::inline_math_negateExactL() {
2052   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2053 }
2054 
2055 bool LibraryCallKit::inline_math_multiplyExactI() {
2056   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2057 }
2058 
2059 bool LibraryCallKit::inline_math_multiplyExactL() {
2060   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2061 }
2062 
2063 Node*
2064 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2065   // These are the candidate return value:
2066   Node* xvalue = x0;
2067   Node* yvalue = y0;
2068 
2069   if (xvalue == yvalue) {
2070     return xvalue;
2071   }
2072 
2073   bool want_max = (id == vmIntrinsics::_max);
2074 
2075   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2076   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2077   if (txvalue == NULL || tyvalue == NULL)  return top();
2078   // This is not really necessary, but it is consistent with a
2079   // hypothetical MaxINode::Value method:
2080   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2081 
2082   // %%% This folding logic should (ideally) be in a different place.
2083   // Some should be inside IfNode, and there to be a more reliable
2084   // transformation of ?: style patterns into cmoves.  We also want
2085   // more powerful optimizations around cmove and min/max.
2086 
2087   // Try to find a dominating comparison of these guys.
2088   // It can simplify the index computation for Arrays.copyOf
2089   // and similar uses of System.arraycopy.
2090   // First, compute the normalized version of CmpI(x, y).
2091   int   cmp_op = Op_CmpI;
2092   Node* xkey = xvalue;
2093   Node* ykey = yvalue;
2094   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2095   if (ideal_cmpxy->is_Cmp()) {
2096     // E.g., if we have CmpI(length - offset, count),
2097     // it might idealize to CmpI(length, count + offset)
2098     cmp_op = ideal_cmpxy->Opcode();
2099     xkey = ideal_cmpxy->in(1);
2100     ykey = ideal_cmpxy->in(2);
2101   }
2102 
2103   // Start by locating any relevant comparisons.
2104   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2105   Node* cmpxy = NULL;
2106   Node* cmpyx = NULL;
2107   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2108     Node* cmp = start_from->fast_out(k);
2109     if (cmp->outcnt() > 0 &&            // must have prior uses
2110         cmp->in(0) == NULL &&           // must be context-independent
2111         cmp->Opcode() == cmp_op) {      // right kind of compare
2112       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2113       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2114     }
2115   }
2116 
2117   const int NCMPS = 2;
2118   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2119   int cmpn;
2120   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2121     if (cmps[cmpn] != NULL)  break;     // find a result
2122   }
2123   if (cmpn < NCMPS) {
2124     // Look for a dominating test that tells us the min and max.
2125     int depth = 0;                // Limit search depth for speed
2126     Node* dom = control();
2127     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2128       if (++depth >= 100)  break;
2129       Node* ifproj = dom;
2130       if (!ifproj->is_Proj())  continue;
2131       Node* iff = ifproj->in(0);
2132       if (!iff->is_If())  continue;
2133       Node* bol = iff->in(1);
2134       if (!bol->is_Bool())  continue;
2135       Node* cmp = bol->in(1);
2136       if (cmp == NULL)  continue;
2137       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2138         if (cmps[cmpn] == cmp)  break;
2139       if (cmpn == NCMPS)  continue;
2140       BoolTest::mask btest = bol->as_Bool()->_test._test;
2141       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2142       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2143       // At this point, we know that 'x btest y' is true.
2144       switch (btest) {
2145       case BoolTest::eq:
2146         // They are proven equal, so we can collapse the min/max.
2147         // Either value is the answer.  Choose the simpler.
2148         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2149           return yvalue;
2150         return xvalue;
2151       case BoolTest::lt:          // x < y
2152       case BoolTest::le:          // x <= y
2153         return (want_max ? yvalue : xvalue);
2154       case BoolTest::gt:          // x > y
2155       case BoolTest::ge:          // x >= y
2156         return (want_max ? xvalue : yvalue);
2157       }
2158     }
2159   }
2160 
2161   // We failed to find a dominating test.
2162   // Let's pick a test that might GVN with prior tests.
2163   Node*          best_bol   = NULL;
2164   BoolTest::mask best_btest = BoolTest::illegal;
2165   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2166     Node* cmp = cmps[cmpn];
2167     if (cmp == NULL)  continue;
2168     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2169       Node* bol = cmp->fast_out(j);
2170       if (!bol->is_Bool())  continue;
2171       BoolTest::mask btest = bol->as_Bool()->_test._test;
2172       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2173       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2174       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2175         best_bol   = bol->as_Bool();
2176         best_btest = btest;
2177       }
2178     }
2179   }
2180 
2181   Node* answer_if_true  = NULL;
2182   Node* answer_if_false = NULL;
2183   switch (best_btest) {
2184   default:
2185     if (cmpxy == NULL)
2186       cmpxy = ideal_cmpxy;
2187     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2188     // and fall through:
2189   case BoolTest::lt:          // x < y
2190   case BoolTest::le:          // x <= y
2191     answer_if_true  = (want_max ? yvalue : xvalue);
2192     answer_if_false = (want_max ? xvalue : yvalue);
2193     break;
2194   case BoolTest::gt:          // x > y
2195   case BoolTest::ge:          // x >= y
2196     answer_if_true  = (want_max ? xvalue : yvalue);
2197     answer_if_false = (want_max ? yvalue : xvalue);
2198     break;
2199   }
2200 
2201   jint hi, lo;
2202   if (want_max) {
2203     // We can sharpen the minimum.
2204     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2205     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2206   } else {
2207     // We can sharpen the maximum.
2208     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2209     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2210   }
2211 
2212   // Use a flow-free graph structure, to avoid creating excess control edges
2213   // which could hinder other optimizations.
2214   // Since Math.min/max is often used with arraycopy, we want
2215   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2216   Node* cmov = CMoveNode::make(NULL, best_bol,
2217                                answer_if_false, answer_if_true,
2218                                TypeInt::make(lo, hi, widen));
2219 
2220   return _gvn.transform(cmov);
2221 
2222   /*
2223   // This is not as desirable as it may seem, since Min and Max
2224   // nodes do not have a full set of optimizations.
2225   // And they would interfere, anyway, with 'if' optimizations
2226   // and with CMoveI canonical forms.
2227   switch (id) {
2228   case vmIntrinsics::_min:
2229     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2230   case vmIntrinsics::_max:
2231     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2232   default:
2233     ShouldNotReachHere();
2234   }
2235   */
2236 }
2237 
2238 inline int
2239 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2240   const TypePtr* base_type = TypePtr::NULL_PTR;
2241   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2242   if (base_type == NULL) {
2243     // Unknown type.
2244     return Type::AnyPtr;
2245   } else if (base_type == TypePtr::NULL_PTR) {
2246     // Since this is a NULL+long form, we have to switch to a rawptr.
2247     base   = _gvn.transform(new CastX2PNode(offset));
2248     offset = MakeConX(0);
2249     return Type::RawPtr;
2250   } else if (base_type->base() == Type::RawPtr) {
2251     return Type::RawPtr;
2252   } else if (base_type->isa_oopptr()) {
2253     // Base is never null => always a heap address.
2254     if (base_type->ptr() == TypePtr::NotNull) {
2255       return Type::OopPtr;
2256     }
2257     // Offset is small => always a heap address.
2258     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2259     if (offset_type != NULL &&
2260         base_type->offset() == 0 &&     // (should always be?)
2261         offset_type->_lo >= 0 &&
2262         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2263       return Type::OopPtr;
2264     }
2265     // Otherwise, it might either be oop+off or NULL+addr.
2266     return Type::AnyPtr;
2267   } else {
2268     // No information:
2269     return Type::AnyPtr;
2270   }
2271 }
2272 
2273 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2274   int kind = classify_unsafe_addr(base, offset);
2275   if (kind == Type::RawPtr) {
2276     return basic_plus_adr(top(), base, offset);
2277   } else {
2278     return basic_plus_adr(base, offset);
2279   }
2280 }
2281 
2282 //--------------------------inline_number_methods-----------------------------
2283 // inline int     Integer.numberOfLeadingZeros(int)
2284 // inline int        Long.numberOfLeadingZeros(long)
2285 //
2286 // inline int     Integer.numberOfTrailingZeros(int)
2287 // inline int        Long.numberOfTrailingZeros(long)
2288 //
2289 // inline int     Integer.bitCount(int)
2290 // inline int        Long.bitCount(long)
2291 //
2292 // inline char  Character.reverseBytes(char)
2293 // inline short     Short.reverseBytes(short)
2294 // inline int     Integer.reverseBytes(int)
2295 // inline long       Long.reverseBytes(long)
2296 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2297   Node* arg = argument(0);
2298   Node* n;
2299   switch (id) {
2300   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2301   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2302   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2303   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2304   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2305   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2306   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2307   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2308   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2309   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2310   default:  fatal_unexpected_iid(id);  break;
2311   }
2312   set_result(_gvn.transform(n));
2313   return true;
2314 }
2315 
2316 //----------------------------inline_unsafe_access----------------------------
2317 
2318 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2319 
2320 // Helper that guards and inserts a pre-barrier.
2321 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2322                                         Node* pre_val, bool need_mem_bar) {
2323   // We could be accessing the referent field of a reference object. If so, when G1
2324   // is enabled, we need to log the value in the referent field in an SATB buffer.
2325   // This routine performs some compile time filters and generates suitable
2326   // runtime filters that guard the pre-barrier code.
2327   // Also add memory barrier for non volatile load from the referent field
2328   // to prevent commoning of loads across safepoint.
2329   if (!UseG1GC && !need_mem_bar)
2330     return;
2331 
2332   // Some compile time checks.
2333 
2334   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2335   const TypeX* otype = offset->find_intptr_t_type();
2336   if (otype != NULL && otype->is_con() &&
2337       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2338     // Constant offset but not the reference_offset so just return
2339     return;
2340   }
2341 
2342   // We only need to generate the runtime guards for instances.
2343   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2344   if (btype != NULL) {
2345     if (btype->isa_aryptr()) {
2346       // Array type so nothing to do
2347       return;
2348     }
2349 
2350     const TypeInstPtr* itype = btype->isa_instptr();
2351     if (itype != NULL) {
2352       // Can the klass of base_oop be statically determined to be
2353       // _not_ a sub-class of Reference and _not_ Object?
2354       ciKlass* klass = itype->klass();
2355       if ( klass->is_loaded() &&
2356           !klass->is_subtype_of(env()->Reference_klass()) &&
2357           !env()->Object_klass()->is_subtype_of(klass)) {
2358         return;
2359       }
2360     }
2361   }
2362 
2363   // The compile time filters did not reject base_oop/offset so
2364   // we need to generate the following runtime filters
2365   //
2366   // if (offset == java_lang_ref_Reference::_reference_offset) {
2367   //   if (instance_of(base, java.lang.ref.Reference)) {
2368   //     pre_barrier(_, pre_val, ...);
2369   //   }
2370   // }
2371 
2372   float likely   = PROB_LIKELY(  0.999);
2373   float unlikely = PROB_UNLIKELY(0.999);
2374 
2375   IdealKit ideal(this);
2376 #define __ ideal.
2377 
2378   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2379 
2380   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2381       // Update graphKit memory and control from IdealKit.
2382       sync_kit(ideal);
2383 
2384       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2385       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2386 
2387       // Update IdealKit memory and control from graphKit.
2388       __ sync_kit(this);
2389 
2390       Node* one = __ ConI(1);
2391       // is_instof == 0 if base_oop == NULL
2392       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2393 
2394         // Update graphKit from IdeakKit.
2395         sync_kit(ideal);
2396 
2397         // Use the pre-barrier to record the value in the referent field
2398         pre_barrier(false /* do_load */,
2399                     __ ctrl(),
2400                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2401                     pre_val /* pre_val */,
2402                     T_OBJECT);
2403         if (need_mem_bar) {
2404           // Add memory barrier to prevent commoning reads from this field
2405           // across safepoint since GC can change its value.
2406           insert_mem_bar(Op_MemBarCPUOrder);
2407         }
2408         // Update IdealKit from graphKit.
2409         __ sync_kit(this);
2410 
2411       } __ end_if(); // _ref_type != ref_none
2412   } __ end_if(); // offset == referent_offset
2413 
2414   // Final sync IdealKit and GraphKit.
2415   final_sync(ideal);
2416 #undef __
2417 }
2418 
2419 
2420 // Interpret Unsafe.fieldOffset cookies correctly:
2421 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2422 
2423 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2424   // Attempt to infer a sharper value type from the offset and base type.
2425   ciKlass* sharpened_klass = NULL;
2426 
2427   // See if it is an instance field, with an object type.
2428   if (alias_type->field() != NULL) {
2429     assert(!is_native_ptr, "native pointer op cannot use a java address");
2430     if (alias_type->field()->type()->is_klass()) {
2431       sharpened_klass = alias_type->field()->type()->as_klass();
2432     }
2433   }
2434 
2435   // See if it is a narrow oop array.
2436   if (adr_type->isa_aryptr()) {
2437     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2438       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2439       if (elem_type != NULL) {
2440         sharpened_klass = elem_type->klass();
2441       }
2442     }
2443   }
2444 
2445   // The sharpened class might be unloaded if there is no class loader
2446   // contraint in place.
2447   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2448     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2449 
2450 #ifndef PRODUCT
2451     if (C->print_intrinsics() || C->print_inlining()) {
2452       tty->print("  from base type: ");  adr_type->dump();
2453       tty->print("  sharpened value: ");  tjp->dump();
2454     }
2455 #endif
2456     // Sharpen the value type.
2457     return tjp;
2458   }
2459   return NULL;
2460 }
2461 
2462 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2463   if (callee()->is_static())  return false;  // caller must have the capability!
2464 
2465 #ifndef PRODUCT
2466   {
2467     ResourceMark rm;
2468     // Check the signatures.
2469     ciSignature* sig = callee()->signature();
2470 #ifdef ASSERT
2471     if (!is_store) {
2472       // Object getObject(Object base, int/long offset), etc.
2473       BasicType rtype = sig->return_type()->basic_type();
2474       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2475           rtype = T_ADDRESS;  // it is really a C void*
2476       assert(rtype == type, "getter must return the expected value");
2477       if (!is_native_ptr) {
2478         assert(sig->count() == 2, "oop getter has 2 arguments");
2479         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2480         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2481       } else {
2482         assert(sig->count() == 1, "native getter has 1 argument");
2483         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2484       }
2485     } else {
2486       // void putObject(Object base, int/long offset, Object x), etc.
2487       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2488       if (!is_native_ptr) {
2489         assert(sig->count() == 3, "oop putter has 3 arguments");
2490         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2491         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2492       } else {
2493         assert(sig->count() == 2, "native putter has 2 arguments");
2494         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2495       }
2496       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2497       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2498         vtype = T_ADDRESS;  // it is really a C void*
2499       assert(vtype == type, "putter must accept the expected value");
2500     }
2501 #endif // ASSERT
2502  }
2503 #endif //PRODUCT
2504 
2505   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2506 
2507   Node* receiver = argument(0);  // type: oop
2508 
2509   // Build address expression.  See the code in inline_unsafe_prefetch.
2510   Node* adr;
2511   Node* heap_base_oop = top();
2512   Node* offset = top();
2513   Node* val;
2514 
2515   if (!is_native_ptr) {
2516     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2517     Node* base = argument(1);  // type: oop
2518     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2519     offset = argument(2);  // type: long
2520     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2521     // to be plain byte offsets, which are also the same as those accepted
2522     // by oopDesc::field_base.
2523     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2524            "fieldOffset must be byte-scaled");
2525     // 32-bit machines ignore the high half!
2526     offset = ConvL2X(offset);
2527     adr = make_unsafe_address(base, offset);
2528     heap_base_oop = base;
2529     val = is_store ? argument(4) : NULL;
2530   } else {
2531     Node* ptr = argument(1);  // type: long
2532     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2533     adr = make_unsafe_address(NULL, ptr);
2534     val = is_store ? argument(3) : NULL;
2535   }
2536 
2537   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2538 
2539   // First guess at the value type.
2540   const Type *value_type = Type::get_const_basic_type(type);
2541 
2542   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2543   // there was not enough information to nail it down.
2544   Compile::AliasType* alias_type = C->alias_type(adr_type);
2545   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2546 
2547   // We will need memory barriers unless we can determine a unique
2548   // alias category for this reference.  (Note:  If for some reason
2549   // the barriers get omitted and the unsafe reference begins to "pollute"
2550   // the alias analysis of the rest of the graph, either Compile::can_alias
2551   // or Compile::must_alias will throw a diagnostic assert.)
2552   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2553 
2554   // If we are reading the value of the referent field of a Reference
2555   // object (either by using Unsafe directly or through reflection)
2556   // then, if G1 is enabled, we need to record the referent in an
2557   // SATB log buffer using the pre-barrier mechanism.
2558   // Also we need to add memory barrier to prevent commoning reads
2559   // from this field across safepoint since GC can change its value.
2560   bool need_read_barrier = !is_native_ptr && !is_store &&
2561                            offset != top() && heap_base_oop != top();
2562 
2563   if (!is_store && type == T_OBJECT) {
2564     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2565     if (tjp != NULL) {
2566       value_type = tjp;
2567     }
2568   }
2569 
2570   receiver = null_check(receiver);
2571   if (stopped()) {
2572     return true;
2573   }
2574   // Heap pointers get a null-check from the interpreter,
2575   // as a courtesy.  However, this is not guaranteed by Unsafe,
2576   // and it is not possible to fully distinguish unintended nulls
2577   // from intended ones in this API.
2578 
2579   if (is_volatile) {
2580     // We need to emit leading and trailing CPU membars (see below) in
2581     // addition to memory membars when is_volatile. This is a little
2582     // too strong, but avoids the need to insert per-alias-type
2583     // volatile membars (for stores; compare Parse::do_put_xxx), which
2584     // we cannot do effectively here because we probably only have a
2585     // rough approximation of type.
2586     need_mem_bar = true;
2587     // For Stores, place a memory ordering barrier now.
2588     if (is_store) {
2589       insert_mem_bar(Op_MemBarRelease);
2590     } else {
2591       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2592         insert_mem_bar(Op_MemBarVolatile);
2593       }
2594     }
2595   }
2596 
2597   // Memory barrier to prevent normal and 'unsafe' accesses from
2598   // bypassing each other.  Happens after null checks, so the
2599   // exception paths do not take memory state from the memory barrier,
2600   // so there's no problems making a strong assert about mixing users
2601   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2602   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2603   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2604 
2605   if (!is_store) {
2606     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2607     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, is_volatile);
2608     // load value
2609     switch (type) {
2610     case T_BOOLEAN:
2611     case T_CHAR:
2612     case T_BYTE:
2613     case T_SHORT:
2614     case T_INT:
2615     case T_LONG:
2616     case T_FLOAT:
2617     case T_DOUBLE:
2618       break;
2619     case T_OBJECT:
2620       if (need_read_barrier) {
2621         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2622       }
2623       break;
2624     case T_ADDRESS:
2625       // Cast to an int type.
2626       p = _gvn.transform(new CastP2XNode(NULL, p));
2627       p = ConvX2UL(p);
2628       break;
2629     default:
2630       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2631       break;
2632     }
2633     // The load node has the control of the preceding MemBarCPUOrder.  All
2634     // following nodes will have the control of the MemBarCPUOrder inserted at
2635     // the end of this method.  So, pushing the load onto the stack at a later
2636     // point is fine.
2637     set_result(p);
2638   } else {
2639     // place effect of store into memory
2640     switch (type) {
2641     case T_DOUBLE:
2642       val = dstore_rounding(val);
2643       break;
2644     case T_ADDRESS:
2645       // Repackage the long as a pointer.
2646       val = ConvL2X(val);
2647       val = _gvn.transform(new CastX2PNode(val));
2648       break;
2649     }
2650 
2651     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2652     if (type != T_OBJECT ) {
2653       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2654     } else {
2655       // Possibly an oop being stored to Java heap or native memory
2656       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2657         // oop to Java heap.
2658         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2659       } else {
2660         // We can't tell at compile time if we are storing in the Java heap or outside
2661         // of it. So we need to emit code to conditionally do the proper type of
2662         // store.
2663 
2664         IdealKit ideal(this);
2665 #define __ ideal.
2666         // QQQ who knows what probability is here??
2667         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2668           // Sync IdealKit and graphKit.
2669           sync_kit(ideal);
2670           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2671           // Update IdealKit memory.
2672           __ sync_kit(this);
2673         } __ else_(); {
2674           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2675         } __ end_if();
2676         // Final sync IdealKit and GraphKit.
2677         final_sync(ideal);
2678 #undef __
2679       }
2680     }
2681   }
2682 
2683   if (is_volatile) {
2684     if (!is_store) {
2685       insert_mem_bar(Op_MemBarAcquire);
2686     } else {
2687       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2688         insert_mem_bar(Op_MemBarVolatile);
2689       }
2690     }
2691   }
2692 
2693   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2694 
2695   return true;
2696 }
2697 
2698 //----------------------------inline_unsafe_prefetch----------------------------
2699 
2700 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2701 #ifndef PRODUCT
2702   {
2703     ResourceMark rm;
2704     // Check the signatures.
2705     ciSignature* sig = callee()->signature();
2706 #ifdef ASSERT
2707     // Object getObject(Object base, int/long offset), etc.
2708     BasicType rtype = sig->return_type()->basic_type();
2709     if (!is_native_ptr) {
2710       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2711       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2712       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2713     } else {
2714       assert(sig->count() == 1, "native prefetch has 1 argument");
2715       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2716     }
2717 #endif // ASSERT
2718   }
2719 #endif // !PRODUCT
2720 
2721   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2722 
2723   const int idx = is_static ? 0 : 1;
2724   if (!is_static) {
2725     null_check_receiver();
2726     if (stopped()) {
2727       return true;
2728     }
2729   }
2730 
2731   // Build address expression.  See the code in inline_unsafe_access.
2732   Node *adr;
2733   if (!is_native_ptr) {
2734     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2735     Node* base   = argument(idx + 0);  // type: oop
2736     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2737     Node* offset = argument(idx + 1);  // type: long
2738     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2739     // to be plain byte offsets, which are also the same as those accepted
2740     // by oopDesc::field_base.
2741     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2742            "fieldOffset must be byte-scaled");
2743     // 32-bit machines ignore the high half!
2744     offset = ConvL2X(offset);
2745     adr = make_unsafe_address(base, offset);
2746   } else {
2747     Node* ptr = argument(idx + 0);  // type: long
2748     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2749     adr = make_unsafe_address(NULL, ptr);
2750   }
2751 
2752   // Generate the read or write prefetch
2753   Node *prefetch;
2754   if (is_store) {
2755     prefetch = new PrefetchWriteNode(i_o(), adr);
2756   } else {
2757     prefetch = new PrefetchReadNode(i_o(), adr);
2758   }
2759   prefetch->init_req(0, control());
2760   set_i_o(_gvn.transform(prefetch));
2761 
2762   return true;
2763 }
2764 
2765 //----------------------------inline_unsafe_load_store----------------------------
2766 // This method serves a couple of different customers (depending on LoadStoreKind):
2767 //
2768 // LS_cmpxchg:
2769 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2770 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2771 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2772 //
2773 // LS_xadd:
2774 //   public int  getAndAddInt( Object o, long offset, int  delta)
2775 //   public long getAndAddLong(Object o, long offset, long delta)
2776 //
2777 // LS_xchg:
2778 //   int    getAndSet(Object o, long offset, int    newValue)
2779 //   long   getAndSet(Object o, long offset, long   newValue)
2780 //   Object getAndSet(Object o, long offset, Object newValue)
2781 //
2782 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2783   // This basic scheme here is the same as inline_unsafe_access, but
2784   // differs in enough details that combining them would make the code
2785   // overly confusing.  (This is a true fact! I originally combined
2786   // them, but even I was confused by it!) As much code/comments as
2787   // possible are retained from inline_unsafe_access though to make
2788   // the correspondences clearer. - dl
2789 
2790   if (callee()->is_static())  return false;  // caller must have the capability!
2791 
2792 #ifndef PRODUCT
2793   BasicType rtype;
2794   {
2795     ResourceMark rm;
2796     // Check the signatures.
2797     ciSignature* sig = callee()->signature();
2798     rtype = sig->return_type()->basic_type();
2799     if (kind == LS_xadd || kind == LS_xchg) {
2800       // Check the signatures.
2801 #ifdef ASSERT
2802       assert(rtype == type, "get and set must return the expected type");
2803       assert(sig->count() == 3, "get and set has 3 arguments");
2804       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2805       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2806       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2807 #endif // ASSERT
2808     } else if (kind == LS_cmpxchg) {
2809       // Check the signatures.
2810 #ifdef ASSERT
2811       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2812       assert(sig->count() == 4, "CAS has 4 arguments");
2813       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2814       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2815 #endif // ASSERT
2816     } else {
2817       ShouldNotReachHere();
2818     }
2819   }
2820 #endif //PRODUCT
2821 
2822   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2823 
2824   // Get arguments:
2825   Node* receiver = NULL;
2826   Node* base     = NULL;
2827   Node* offset   = NULL;
2828   Node* oldval   = NULL;
2829   Node* newval   = NULL;
2830   if (kind == LS_cmpxchg) {
2831     const bool two_slot_type = type2size[type] == 2;
2832     receiver = argument(0);  // type: oop
2833     base     = argument(1);  // type: oop
2834     offset   = argument(2);  // type: long
2835     oldval   = argument(4);  // type: oop, int, or long
2836     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2837   } else if (kind == LS_xadd || kind == LS_xchg){
2838     receiver = argument(0);  // type: oop
2839     base     = argument(1);  // type: oop
2840     offset   = argument(2);  // type: long
2841     oldval   = NULL;
2842     newval   = argument(4);  // type: oop, int, or long
2843   }
2844 
2845   // Null check receiver.
2846   receiver = null_check(receiver);
2847   if (stopped()) {
2848     return true;
2849   }
2850 
2851   // Build field offset expression.
2852   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2853   // to be plain byte offsets, which are also the same as those accepted
2854   // by oopDesc::field_base.
2855   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2856   // 32-bit machines ignore the high half of long offsets
2857   offset = ConvL2X(offset);
2858   Node* adr = make_unsafe_address(base, offset);
2859   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2860 
2861   // For CAS, unlike inline_unsafe_access, there seems no point in
2862   // trying to refine types. Just use the coarse types here.
2863   const Type *value_type = Type::get_const_basic_type(type);
2864   Compile::AliasType* alias_type = C->alias_type(adr_type);
2865   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2866 
2867   if (kind == LS_xchg && type == T_OBJECT) {
2868     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2869     if (tjp != NULL) {
2870       value_type = tjp;
2871     }
2872   }
2873 
2874   int alias_idx = C->get_alias_index(adr_type);
2875 
2876   // Memory-model-wise, a LoadStore acts like a little synchronized
2877   // block, so needs barriers on each side.  These don't translate
2878   // into actual barriers on most machines, but we still need rest of
2879   // compiler to respect ordering.
2880 
2881   insert_mem_bar(Op_MemBarRelease);
2882   insert_mem_bar(Op_MemBarCPUOrder);
2883 
2884   // 4984716: MemBars must be inserted before this
2885   //          memory node in order to avoid a false
2886   //          dependency which will confuse the scheduler.
2887   Node *mem = memory(alias_idx);
2888 
2889   // For now, we handle only those cases that actually exist: ints,
2890   // longs, and Object. Adding others should be straightforward.
2891   Node* load_store;
2892   switch(type) {
2893   case T_INT:
2894     if (kind == LS_xadd) {
2895       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2896     } else if (kind == LS_xchg) {
2897       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2898     } else if (kind == LS_cmpxchg) {
2899       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2900     } else {
2901       ShouldNotReachHere();
2902     }
2903     break;
2904   case T_LONG:
2905     if (kind == LS_xadd) {
2906       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2907     } else if (kind == LS_xchg) {
2908       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2909     } else if (kind == LS_cmpxchg) {
2910       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2911     } else {
2912       ShouldNotReachHere();
2913     }
2914     break;
2915   case T_OBJECT:
2916     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2917     // could be delayed during Parse (for example, in adjust_map_after_if()).
2918     // Execute transformation here to avoid barrier generation in such case.
2919     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2920       newval = _gvn.makecon(TypePtr::NULL_PTR);
2921 
2922     // Reference stores need a store barrier.
2923     if (kind == LS_xchg) {
2924       // If pre-barrier must execute before the oop store, old value will require do_load here.
2925       if (!can_move_pre_barrier()) {
2926         pre_barrier(true /* do_load*/,
2927                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2928                     NULL /* pre_val*/,
2929                     T_OBJECT);
2930       } // Else move pre_barrier to use load_store value, see below.
2931     } else if (kind == LS_cmpxchg) {
2932       // Same as for newval above:
2933       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2934         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2935       }
2936       // The only known value which might get overwritten is oldval.
2937       pre_barrier(false /* do_load */,
2938                   control(), NULL, NULL, max_juint, NULL, NULL,
2939                   oldval /* pre_val */,
2940                   T_OBJECT);
2941     } else {
2942       ShouldNotReachHere();
2943     }
2944 
2945 #ifdef _LP64
2946     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2947       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2948       if (kind == LS_xchg) {
2949         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2950                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2951       } else {
2952         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2953         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2954         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2955                                                                 newval_enc, oldval_enc));
2956       }
2957     } else
2958 #endif
2959     {
2960       if (kind == LS_xchg) {
2961         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2962       } else {
2963         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2964         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2965       }
2966     }
2967     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2968     break;
2969   default:
2970     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2971     break;
2972   }
2973 
2974   // SCMemProjNodes represent the memory state of a LoadStore. Their
2975   // main role is to prevent LoadStore nodes from being optimized away
2976   // when their results aren't used.
2977   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2978   set_memory(proj, alias_idx);
2979 
2980   if (type == T_OBJECT && kind == LS_xchg) {
2981 #ifdef _LP64
2982     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2983       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2984     }
2985 #endif
2986     if (can_move_pre_barrier()) {
2987       // Don't need to load pre_val. The old value is returned by load_store.
2988       // The pre_barrier can execute after the xchg as long as no safepoint
2989       // gets inserted between them.
2990       pre_barrier(false /* do_load */,
2991                   control(), NULL, NULL, max_juint, NULL, NULL,
2992                   load_store /* pre_val */,
2993                   T_OBJECT);
2994     }
2995   }
2996 
2997   // Add the trailing membar surrounding the access
2998   insert_mem_bar(Op_MemBarCPUOrder);
2999   insert_mem_bar(Op_MemBarAcquire);
3000 
3001   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3002   set_result(load_store);
3003   return true;
3004 }
3005 
3006 //----------------------------inline_unsafe_ordered_store----------------------
3007 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3008 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3009 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3010 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3011   // This is another variant of inline_unsafe_access, differing in
3012   // that it always issues store-store ("release") barrier and ensures
3013   // store-atomicity (which only matters for "long").
3014 
3015   if (callee()->is_static())  return false;  // caller must have the capability!
3016 
3017 #ifndef PRODUCT
3018   {
3019     ResourceMark rm;
3020     // Check the signatures.
3021     ciSignature* sig = callee()->signature();
3022 #ifdef ASSERT
3023     BasicType rtype = sig->return_type()->basic_type();
3024     assert(rtype == T_VOID, "must return void");
3025     assert(sig->count() == 3, "has 3 arguments");
3026     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3027     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3028 #endif // ASSERT
3029   }
3030 #endif //PRODUCT
3031 
3032   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3033 
3034   // Get arguments:
3035   Node* receiver = argument(0);  // type: oop
3036   Node* base     = argument(1);  // type: oop
3037   Node* offset   = argument(2);  // type: long
3038   Node* val      = argument(4);  // type: oop, int, or long
3039 
3040   // Null check receiver.
3041   receiver = null_check(receiver);
3042   if (stopped()) {
3043     return true;
3044   }
3045 
3046   // Build field offset expression.
3047   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3048   // 32-bit machines ignore the high half of long offsets
3049   offset = ConvL2X(offset);
3050   Node* adr = make_unsafe_address(base, offset);
3051   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3052   const Type *value_type = Type::get_const_basic_type(type);
3053   Compile::AliasType* alias_type = C->alias_type(adr_type);
3054 
3055   insert_mem_bar(Op_MemBarRelease);
3056   insert_mem_bar(Op_MemBarCPUOrder);
3057   // Ensure that the store is atomic for longs:
3058   const bool require_atomic_access = true;
3059   Node* store;
3060   if (type == T_OBJECT) // reference stores need a store barrier.
3061     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3062   else {
3063     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3064   }
3065   insert_mem_bar(Op_MemBarCPUOrder);
3066   return true;
3067 }
3068 
3069 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3070   // Regardless of form, don't allow previous ld/st to move down,
3071   // then issue acquire, release, or volatile mem_bar.
3072   insert_mem_bar(Op_MemBarCPUOrder);
3073   switch(id) {
3074     case vmIntrinsics::_loadFence:
3075       insert_mem_bar(Op_LoadFence);
3076       return true;
3077     case vmIntrinsics::_storeFence:
3078       insert_mem_bar(Op_StoreFence);
3079       return true;
3080     case vmIntrinsics::_fullFence:
3081       insert_mem_bar(Op_MemBarVolatile);
3082       return true;
3083     default:
3084       fatal_unexpected_iid(id);
3085       return false;
3086   }
3087 }
3088 
3089 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3090   if (!kls->is_Con()) {
3091     return true;
3092   }
3093   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3094   if (klsptr == NULL) {
3095     return true;
3096   }
3097   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3098   // don't need a guard for a klass that is already initialized
3099   return !ik->is_initialized();
3100 }
3101 
3102 //----------------------------inline_unsafe_allocate---------------------------
3103 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3104 bool LibraryCallKit::inline_unsafe_allocate() {
3105   if (callee()->is_static())  return false;  // caller must have the capability!
3106 
3107   null_check_receiver();  // null-check, then ignore
3108   Node* cls = null_check(argument(1));
3109   if (stopped())  return true;
3110 
3111   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3112   kls = null_check(kls);
3113   if (stopped())  return true;  // argument was like int.class
3114 
3115   Node* test = NULL;
3116   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3117     // Note:  The argument might still be an illegal value like
3118     // Serializable.class or Object[].class.   The runtime will handle it.
3119     // But we must make an explicit check for initialization.
3120     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3121     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3122     // can generate code to load it as unsigned byte.
3123     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3124     Node* bits = intcon(InstanceKlass::fully_initialized);
3125     test = _gvn.transform(new SubINode(inst, bits));
3126     // The 'test' is non-zero if we need to take a slow path.
3127   }
3128 
3129   Node* obj = new_instance(kls, test);
3130   set_result(obj);
3131   return true;
3132 }
3133 
3134 #ifdef TRACE_HAVE_INTRINSICS
3135 /*
3136  * oop -> myklass
3137  * myklass->trace_id |= USED
3138  * return myklass->trace_id & ~0x3
3139  */
3140 bool LibraryCallKit::inline_native_classID() {
3141   null_check_receiver();  // null-check, then ignore
3142   Node* cls = null_check(argument(1), T_OBJECT);
3143   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3144   kls = null_check(kls, T_OBJECT);
3145   ByteSize offset = TRACE_ID_OFFSET;
3146   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3147   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3148   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3149   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3150   Node* clsused = longcon(0x01l); // set the class bit
3151   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3152 
3153   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3154   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3155   set_result(andl);
3156   return true;
3157 }
3158 
3159 bool LibraryCallKit::inline_native_threadID() {
3160   Node* tls_ptr = NULL;
3161   Node* cur_thr = generate_current_thread(tls_ptr);
3162   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3163   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3164   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3165 
3166   Node* threadid = NULL;
3167   size_t thread_id_size = OSThread::thread_id_size();
3168   if (thread_id_size == (size_t) BytesPerLong) {
3169     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3170   } else if (thread_id_size == (size_t) BytesPerInt) {
3171     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3172   } else {
3173     ShouldNotReachHere();
3174   }
3175   set_result(threadid);
3176   return true;
3177 }
3178 #endif
3179 
3180 //------------------------inline_native_time_funcs--------------
3181 // inline code for System.currentTimeMillis() and System.nanoTime()
3182 // these have the same type and signature
3183 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3184   const TypeFunc* tf = OptoRuntime::void_long_Type();
3185   const TypePtr* no_memory_effects = NULL;
3186   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3187   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3188 #ifdef ASSERT
3189   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3190   assert(value_top == top(), "second value must be top");
3191 #endif
3192   set_result(value);
3193   return true;
3194 }
3195 
3196 //------------------------inline_native_currentThread------------------
3197 bool LibraryCallKit::inline_native_currentThread() {
3198   Node* junk = NULL;
3199   set_result(generate_current_thread(junk));
3200   return true;
3201 }
3202 
3203 //------------------------inline_native_isInterrupted------------------
3204 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3205 bool LibraryCallKit::inline_native_isInterrupted() {
3206   // Add a fast path to t.isInterrupted(clear_int):
3207   //   (t == Thread.current() &&
3208   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3209   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3210   // So, in the common case that the interrupt bit is false,
3211   // we avoid making a call into the VM.  Even if the interrupt bit
3212   // is true, if the clear_int argument is false, we avoid the VM call.
3213   // However, if the receiver is not currentThread, we must call the VM,
3214   // because there must be some locking done around the operation.
3215 
3216   // We only go to the fast case code if we pass two guards.
3217   // Paths which do not pass are accumulated in the slow_region.
3218 
3219   enum {
3220     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3221     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3222     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3223     PATH_LIMIT
3224   };
3225 
3226   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3227   // out of the function.
3228   insert_mem_bar(Op_MemBarCPUOrder);
3229 
3230   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3231   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3232 
3233   RegionNode* slow_region = new RegionNode(1);
3234   record_for_igvn(slow_region);
3235 
3236   // (a) Receiving thread must be the current thread.
3237   Node* rec_thr = argument(0);
3238   Node* tls_ptr = NULL;
3239   Node* cur_thr = generate_current_thread(tls_ptr);
3240   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3241   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3242 
3243   generate_slow_guard(bol_thr, slow_region);
3244 
3245   // (b) Interrupt bit on TLS must be false.
3246   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3247   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3248   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3249 
3250   // Set the control input on the field _interrupted read to prevent it floating up.
3251   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3252   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3253   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3254 
3255   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3256 
3257   // First fast path:  if (!TLS._interrupted) return false;
3258   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3259   result_rgn->init_req(no_int_result_path, false_bit);
3260   result_val->init_req(no_int_result_path, intcon(0));
3261 
3262   // drop through to next case
3263   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3264 
3265 #ifndef TARGET_OS_FAMILY_windows
3266   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3267   Node* clr_arg = argument(1);
3268   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3269   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3270   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3271 
3272   // Second fast path:  ... else if (!clear_int) return true;
3273   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3274   result_rgn->init_req(no_clear_result_path, false_arg);
3275   result_val->init_req(no_clear_result_path, intcon(1));
3276 
3277   // drop through to next case
3278   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3279 #else
3280   // To return true on Windows you must read the _interrupted field
3281   // and check the the event state i.e. take the slow path.
3282 #endif // TARGET_OS_FAMILY_windows
3283 
3284   // (d) Otherwise, go to the slow path.
3285   slow_region->add_req(control());
3286   set_control( _gvn.transform(slow_region));
3287 
3288   if (stopped()) {
3289     // There is no slow path.
3290     result_rgn->init_req(slow_result_path, top());
3291     result_val->init_req(slow_result_path, top());
3292   } else {
3293     // non-virtual because it is a private non-static
3294     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3295 
3296     Node* slow_val = set_results_for_java_call(slow_call);
3297     // this->control() comes from set_results_for_java_call
3298 
3299     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3300     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3301 
3302     // These two phis are pre-filled with copies of of the fast IO and Memory
3303     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3304     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3305 
3306     result_rgn->init_req(slow_result_path, control());
3307     result_io ->init_req(slow_result_path, i_o());
3308     result_mem->init_req(slow_result_path, reset_memory());
3309     result_val->init_req(slow_result_path, slow_val);
3310 
3311     set_all_memory(_gvn.transform(result_mem));
3312     set_i_o(       _gvn.transform(result_io));
3313   }
3314 
3315   C->set_has_split_ifs(true); // Has chance for split-if optimization
3316   set_result(result_rgn, result_val);
3317   return true;
3318 }
3319 
3320 //---------------------------load_mirror_from_klass----------------------------
3321 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3322 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3323   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3324   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3325 }
3326 
3327 //-----------------------load_klass_from_mirror_common-------------------------
3328 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3329 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3330 // and branch to the given path on the region.
3331 // If never_see_null, take an uncommon trap on null, so we can optimistically
3332 // compile for the non-null case.
3333 // If the region is NULL, force never_see_null = true.
3334 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3335                                                     bool never_see_null,
3336                                                     RegionNode* region,
3337                                                     int null_path,
3338                                                     int offset) {
3339   if (region == NULL)  never_see_null = true;
3340   Node* p = basic_plus_adr(mirror, offset);
3341   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3342   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3343   Node* null_ctl = top();
3344   kls = null_check_oop(kls, &null_ctl, never_see_null);
3345   if (region != NULL) {
3346     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3347     region->init_req(null_path, null_ctl);
3348   } else {
3349     assert(null_ctl == top(), "no loose ends");
3350   }
3351   return kls;
3352 }
3353 
3354 //--------------------(inline_native_Class_query helpers)---------------------
3355 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3356 // Fall through if (mods & mask) == bits, take the guard otherwise.
3357 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3358   // Branch around if the given klass has the given modifier bit set.
3359   // Like generate_guard, adds a new path onto the region.
3360   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3361   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3362   Node* mask = intcon(modifier_mask);
3363   Node* bits = intcon(modifier_bits);
3364   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3365   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3366   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3367   return generate_fair_guard(bol, region);
3368 }
3369 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3370   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3371 }
3372 
3373 //-------------------------inline_native_Class_query-------------------
3374 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3375   const Type* return_type = TypeInt::BOOL;
3376   Node* prim_return_value = top();  // what happens if it's a primitive class?
3377   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3378   bool expect_prim = false;     // most of these guys expect to work on refs
3379 
3380   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3381 
3382   Node* mirror = argument(0);
3383   Node* obj    = top();
3384 
3385   switch (id) {
3386   case vmIntrinsics::_isInstance:
3387     // nothing is an instance of a primitive type
3388     prim_return_value = intcon(0);
3389     obj = argument(1);
3390     break;
3391   case vmIntrinsics::_getModifiers:
3392     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3393     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3394     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3395     break;
3396   case vmIntrinsics::_isInterface:
3397     prim_return_value = intcon(0);
3398     break;
3399   case vmIntrinsics::_isArray:
3400     prim_return_value = intcon(0);
3401     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3402     break;
3403   case vmIntrinsics::_isPrimitive:
3404     prim_return_value = intcon(1);
3405     expect_prim = true;  // obviously
3406     break;
3407   case vmIntrinsics::_getSuperclass:
3408     prim_return_value = null();
3409     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3410     break;
3411   case vmIntrinsics::_getClassAccessFlags:
3412     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3413     return_type = TypeInt::INT;  // not bool!  6297094
3414     break;
3415   default:
3416     fatal_unexpected_iid(id);
3417     break;
3418   }
3419 
3420   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3421   if (mirror_con == NULL)  return false;  // cannot happen?
3422 
3423 #ifndef PRODUCT
3424   if (C->print_intrinsics() || C->print_inlining()) {
3425     ciType* k = mirror_con->java_mirror_type();
3426     if (k) {
3427       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3428       k->print_name();
3429       tty->cr();
3430     }
3431   }
3432 #endif
3433 
3434   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3435   RegionNode* region = new RegionNode(PATH_LIMIT);
3436   record_for_igvn(region);
3437   PhiNode* phi = new PhiNode(region, return_type);
3438 
3439   // The mirror will never be null of Reflection.getClassAccessFlags, however
3440   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3441   // if it is. See bug 4774291.
3442 
3443   // For Reflection.getClassAccessFlags(), the null check occurs in
3444   // the wrong place; see inline_unsafe_access(), above, for a similar
3445   // situation.
3446   mirror = null_check(mirror);
3447   // If mirror or obj is dead, only null-path is taken.
3448   if (stopped())  return true;
3449 
3450   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3451 
3452   // Now load the mirror's klass metaobject, and null-check it.
3453   // Side-effects region with the control path if the klass is null.
3454   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3455   // If kls is null, we have a primitive mirror.
3456   phi->init_req(_prim_path, prim_return_value);
3457   if (stopped()) { set_result(region, phi); return true; }
3458   bool safe_for_replace = (region->in(_prim_path) == top());
3459 
3460   Node* p;  // handy temp
3461   Node* null_ctl;
3462 
3463   // Now that we have the non-null klass, we can perform the real query.
3464   // For constant classes, the query will constant-fold in LoadNode::Value.
3465   Node* query_value = top();
3466   switch (id) {
3467   case vmIntrinsics::_isInstance:
3468     // nothing is an instance of a primitive type
3469     query_value = gen_instanceof(obj, kls, safe_for_replace);
3470     break;
3471 
3472   case vmIntrinsics::_getModifiers:
3473     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3474     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3475     break;
3476 
3477   case vmIntrinsics::_isInterface:
3478     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3479     if (generate_interface_guard(kls, region) != NULL)
3480       // A guard was added.  If the guard is taken, it was an interface.
3481       phi->add_req(intcon(1));
3482     // If we fall through, it's a plain class.
3483     query_value = intcon(0);
3484     break;
3485 
3486   case vmIntrinsics::_isArray:
3487     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3488     if (generate_array_guard(kls, region) != NULL)
3489       // A guard was added.  If the guard is taken, it was an array.
3490       phi->add_req(intcon(1));
3491     // If we fall through, it's a plain class.
3492     query_value = intcon(0);
3493     break;
3494 
3495   case vmIntrinsics::_isPrimitive:
3496     query_value = intcon(0); // "normal" path produces false
3497     break;
3498 
3499   case vmIntrinsics::_getSuperclass:
3500     // The rules here are somewhat unfortunate, but we can still do better
3501     // with random logic than with a JNI call.
3502     // Interfaces store null or Object as _super, but must report null.
3503     // Arrays store an intermediate super as _super, but must report Object.
3504     // Other types can report the actual _super.
3505     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3506     if (generate_interface_guard(kls, region) != NULL)
3507       // A guard was added.  If the guard is taken, it was an interface.
3508       phi->add_req(null());
3509     if (generate_array_guard(kls, region) != NULL)
3510       // A guard was added.  If the guard is taken, it was an array.
3511       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3512     // If we fall through, it's a plain class.  Get its _super.
3513     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3514     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3515     null_ctl = top();
3516     kls = null_check_oop(kls, &null_ctl);
3517     if (null_ctl != top()) {
3518       // If the guard is taken, Object.superClass is null (both klass and mirror).
3519       region->add_req(null_ctl);
3520       phi   ->add_req(null());
3521     }
3522     if (!stopped()) {
3523       query_value = load_mirror_from_klass(kls);
3524     }
3525     break;
3526 
3527   case vmIntrinsics::_getClassAccessFlags:
3528     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3529     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3530     break;
3531 
3532   default:
3533     fatal_unexpected_iid(id);
3534     break;
3535   }
3536 
3537   // Fall-through is the normal case of a query to a real class.
3538   phi->init_req(1, query_value);
3539   region->init_req(1, control());
3540 
3541   C->set_has_split_ifs(true); // Has chance for split-if optimization
3542   set_result(region, phi);
3543   return true;
3544 }
3545 
3546 //-------------------------inline_Class_cast-------------------
3547 bool LibraryCallKit::inline_Class_cast() {
3548   Node* mirror = argument(0); // Class
3549   Node* obj    = argument(1);
3550   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3551   if (mirror_con == NULL) {
3552     return false;  // dead path (mirror->is_top()).
3553   }
3554   if (obj == NULL || obj->is_top()) {
3555     return false;  // dead path
3556   }
3557   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3558 
3559   // First, see if Class.cast() can be folded statically.
3560   // java_mirror_type() returns non-null for compile-time Class constants.
3561   ciType* tm = mirror_con->java_mirror_type();
3562   if (tm != NULL && tm->is_klass() &&
3563       tp != NULL && tp->klass() != NULL) {
3564     if (!tp->klass()->is_loaded()) {
3565       // Don't use intrinsic when class is not loaded.
3566       return false;
3567     } else {
3568       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3569       if (static_res == Compile::SSC_always_true) {
3570         // isInstance() is true - fold the code.
3571         set_result(obj);
3572         return true;
3573       } else if (static_res == Compile::SSC_always_false) {
3574         // Don't use intrinsic, have to throw ClassCastException.
3575         // If the reference is null, the non-intrinsic bytecode will
3576         // be optimized appropriately.
3577         return false;
3578       }
3579     }
3580   }
3581 
3582   // Bailout intrinsic and do normal inlining if exception path is frequent.
3583   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3584     return false;
3585   }
3586 
3587   // Generate dynamic checks.
3588   // Class.cast() is java implementation of _checkcast bytecode.
3589   // Do checkcast (Parse::do_checkcast()) optimizations here.
3590 
3591   mirror = null_check(mirror);
3592   // If mirror is dead, only null-path is taken.
3593   if (stopped()) {
3594     return true;
3595   }
3596 
3597   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3598   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3599   RegionNode* region = new RegionNode(PATH_LIMIT);
3600   record_for_igvn(region);
3601 
3602   // Now load the mirror's klass metaobject, and null-check it.
3603   // If kls is null, we have a primitive mirror and
3604   // nothing is an instance of a primitive type.
3605   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3606 
3607   Node* res = top();
3608   if (!stopped()) {
3609     Node* bad_type_ctrl = top();
3610     // Do checkcast optimizations.
3611     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3612     region->init_req(_bad_type_path, bad_type_ctrl);
3613   }
3614   if (region->in(_prim_path) != top() ||
3615       region->in(_bad_type_path) != top()) {
3616     // Let Interpreter throw ClassCastException.
3617     PreserveJVMState pjvms(this);
3618     set_control(_gvn.transform(region));
3619     uncommon_trap(Deoptimization::Reason_intrinsic,
3620                   Deoptimization::Action_maybe_recompile);
3621   }
3622   if (!stopped()) {
3623     set_result(res);
3624   }
3625   return true;
3626 }
3627 
3628 
3629 //--------------------------inline_native_subtype_check------------------------
3630 // This intrinsic takes the JNI calls out of the heart of
3631 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3632 bool LibraryCallKit::inline_native_subtype_check() {
3633   // Pull both arguments off the stack.
3634   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3635   args[0] = argument(0);
3636   args[1] = argument(1);
3637   Node* klasses[2];             // corresponding Klasses: superk, subk
3638   klasses[0] = klasses[1] = top();
3639 
3640   enum {
3641     // A full decision tree on {superc is prim, subc is prim}:
3642     _prim_0_path = 1,           // {P,N} => false
3643                                 // {P,P} & superc!=subc => false
3644     _prim_same_path,            // {P,P} & superc==subc => true
3645     _prim_1_path,               // {N,P} => false
3646     _ref_subtype_path,          // {N,N} & subtype check wins => true
3647     _both_ref_path,             // {N,N} & subtype check loses => false
3648     PATH_LIMIT
3649   };
3650 
3651   RegionNode* region = new RegionNode(PATH_LIMIT);
3652   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3653   record_for_igvn(region);
3654 
3655   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3656   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3657   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3658 
3659   // First null-check both mirrors and load each mirror's klass metaobject.
3660   int which_arg;
3661   for (which_arg = 0; which_arg <= 1; which_arg++) {
3662     Node* arg = args[which_arg];
3663     arg = null_check(arg);
3664     if (stopped())  break;
3665     args[which_arg] = arg;
3666 
3667     Node* p = basic_plus_adr(arg, class_klass_offset);
3668     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3669     klasses[which_arg] = _gvn.transform(kls);
3670   }
3671 
3672   // Having loaded both klasses, test each for null.
3673   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3674   for (which_arg = 0; which_arg <= 1; which_arg++) {
3675     Node* kls = klasses[which_arg];
3676     Node* null_ctl = top();
3677     kls = null_check_oop(kls, &null_ctl, never_see_null);
3678     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3679     region->init_req(prim_path, null_ctl);
3680     if (stopped())  break;
3681     klasses[which_arg] = kls;
3682   }
3683 
3684   if (!stopped()) {
3685     // now we have two reference types, in klasses[0..1]
3686     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3687     Node* superk = klasses[0];  // the receiver
3688     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3689     // now we have a successful reference subtype check
3690     region->set_req(_ref_subtype_path, control());
3691   }
3692 
3693   // If both operands are primitive (both klasses null), then
3694   // we must return true when they are identical primitives.
3695   // It is convenient to test this after the first null klass check.
3696   set_control(region->in(_prim_0_path)); // go back to first null check
3697   if (!stopped()) {
3698     // Since superc is primitive, make a guard for the superc==subc case.
3699     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3700     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3701     generate_guard(bol_eq, region, PROB_FAIR);
3702     if (region->req() == PATH_LIMIT+1) {
3703       // A guard was added.  If the added guard is taken, superc==subc.
3704       region->swap_edges(PATH_LIMIT, _prim_same_path);
3705       region->del_req(PATH_LIMIT);
3706     }
3707     region->set_req(_prim_0_path, control()); // Not equal after all.
3708   }
3709 
3710   // these are the only paths that produce 'true':
3711   phi->set_req(_prim_same_path,   intcon(1));
3712   phi->set_req(_ref_subtype_path, intcon(1));
3713 
3714   // pull together the cases:
3715   assert(region->req() == PATH_LIMIT, "sane region");
3716   for (uint i = 1; i < region->req(); i++) {
3717     Node* ctl = region->in(i);
3718     if (ctl == NULL || ctl == top()) {
3719       region->set_req(i, top());
3720       phi   ->set_req(i, top());
3721     } else if (phi->in(i) == NULL) {
3722       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3723     }
3724   }
3725 
3726   set_control(_gvn.transform(region));
3727   set_result(_gvn.transform(phi));
3728   return true;
3729 }
3730 
3731 //---------------------generate_array_guard_common------------------------
3732 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3733                                                   bool obj_array, bool not_array) {
3734   // If obj_array/non_array==false/false:
3735   // Branch around if the given klass is in fact an array (either obj or prim).
3736   // If obj_array/non_array==false/true:
3737   // Branch around if the given klass is not an array klass of any kind.
3738   // If obj_array/non_array==true/true:
3739   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3740   // If obj_array/non_array==true/false:
3741   // Branch around if the kls is an oop array (Object[] or subtype)
3742   //
3743   // Like generate_guard, adds a new path onto the region.
3744   jint  layout_con = 0;
3745   Node* layout_val = get_layout_helper(kls, layout_con);
3746   if (layout_val == NULL) {
3747     bool query = (obj_array
3748                   ? Klass::layout_helper_is_objArray(layout_con)
3749                   : Klass::layout_helper_is_array(layout_con));
3750     if (query == not_array) {
3751       return NULL;                       // never a branch
3752     } else {                             // always a branch
3753       Node* always_branch = control();
3754       if (region != NULL)
3755         region->add_req(always_branch);
3756       set_control(top());
3757       return always_branch;
3758     }
3759   }
3760   // Now test the correct condition.
3761   jint  nval = (obj_array
3762                 ? ((jint)Klass::_lh_array_tag_type_value
3763                    <<    Klass::_lh_array_tag_shift)
3764                 : Klass::_lh_neutral_value);
3765   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3766   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3767   // invert the test if we are looking for a non-array
3768   if (not_array)  btest = BoolTest(btest).negate();
3769   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3770   return generate_fair_guard(bol, region);
3771 }
3772 
3773 
3774 //-----------------------inline_native_newArray--------------------------
3775 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3776 bool LibraryCallKit::inline_native_newArray() {
3777   Node* mirror    = argument(0);
3778   Node* count_val = argument(1);
3779 
3780   mirror = null_check(mirror);
3781   // If mirror or obj is dead, only null-path is taken.
3782   if (stopped())  return true;
3783 
3784   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3785   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3786   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3787   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3788   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3789 
3790   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3791   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3792                                                   result_reg, _slow_path);
3793   Node* normal_ctl   = control();
3794   Node* no_array_ctl = result_reg->in(_slow_path);
3795 
3796   // Generate code for the slow case.  We make a call to newArray().
3797   set_control(no_array_ctl);
3798   if (!stopped()) {
3799     // Either the input type is void.class, or else the
3800     // array klass has not yet been cached.  Either the
3801     // ensuing call will throw an exception, or else it
3802     // will cache the array klass for next time.
3803     PreserveJVMState pjvms(this);
3804     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3805     Node* slow_result = set_results_for_java_call(slow_call);
3806     // this->control() comes from set_results_for_java_call
3807     result_reg->set_req(_slow_path, control());
3808     result_val->set_req(_slow_path, slow_result);
3809     result_io ->set_req(_slow_path, i_o());
3810     result_mem->set_req(_slow_path, reset_memory());
3811   }
3812 
3813   set_control(normal_ctl);
3814   if (!stopped()) {
3815     // Normal case:  The array type has been cached in the java.lang.Class.
3816     // The following call works fine even if the array type is polymorphic.
3817     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3818     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3819     result_reg->init_req(_normal_path, control());
3820     result_val->init_req(_normal_path, obj);
3821     result_io ->init_req(_normal_path, i_o());
3822     result_mem->init_req(_normal_path, reset_memory());
3823   }
3824 
3825   // Return the combined state.
3826   set_i_o(        _gvn.transform(result_io)  );
3827   set_all_memory( _gvn.transform(result_mem));
3828 
3829   C->set_has_split_ifs(true); // Has chance for split-if optimization
3830   set_result(result_reg, result_val);
3831   return true;
3832 }
3833 
3834 //----------------------inline_native_getLength--------------------------
3835 // public static native int java.lang.reflect.Array.getLength(Object array);
3836 bool LibraryCallKit::inline_native_getLength() {
3837   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3838 
3839   Node* array = null_check(argument(0));
3840   // If array is dead, only null-path is taken.
3841   if (stopped())  return true;
3842 
3843   // Deoptimize if it is a non-array.
3844   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3845 
3846   if (non_array != NULL) {
3847     PreserveJVMState pjvms(this);
3848     set_control(non_array);
3849     uncommon_trap(Deoptimization::Reason_intrinsic,
3850                   Deoptimization::Action_maybe_recompile);
3851   }
3852 
3853   // If control is dead, only non-array-path is taken.
3854   if (stopped())  return true;
3855 
3856   // The works fine even if the array type is polymorphic.
3857   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3858   Node* result = load_array_length(array);
3859 
3860   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3861   set_result(result);
3862   return true;
3863 }
3864 
3865 //------------------------inline_array_copyOf----------------------------
3866 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3867 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3868 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3869   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3870 
3871   // Get the arguments.
3872   Node* original          = argument(0);
3873   Node* start             = is_copyOfRange? argument(1): intcon(0);
3874   Node* end               = is_copyOfRange? argument(2): argument(1);
3875   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3876 
3877   Node* newcopy;
3878 
3879   // Set the original stack and the reexecute bit for the interpreter to reexecute
3880   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3881   { PreserveReexecuteState preexecs(this);
3882     jvms()->set_should_reexecute(true);
3883 
3884     array_type_mirror = null_check(array_type_mirror);
3885     original          = null_check(original);
3886 
3887     // Check if a null path was taken unconditionally.
3888     if (stopped())  return true;
3889 
3890     Node* orig_length = load_array_length(original);
3891 
3892     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3893     klass_node = null_check(klass_node);
3894 
3895     RegionNode* bailout = new RegionNode(1);
3896     record_for_igvn(bailout);
3897 
3898     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3899     // Bail out if that is so.
3900     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3901     if (not_objArray != NULL) {
3902       // Improve the klass node's type from the new optimistic assumption:
3903       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3904       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3905       Node* cast = new CastPPNode(klass_node, akls);
3906       cast->init_req(0, control());
3907       klass_node = _gvn.transform(cast);
3908     }
3909 
3910     // Bail out if either start or end is negative.
3911     generate_negative_guard(start, bailout, &start);
3912     generate_negative_guard(end,   bailout, &end);
3913 
3914     Node* length = end;
3915     if (_gvn.type(start) != TypeInt::ZERO) {
3916       length = _gvn.transform(new SubINode(end, start));
3917     }
3918 
3919     // Bail out if length is negative.
3920     // Without this the new_array would throw
3921     // NegativeArraySizeException but IllegalArgumentException is what
3922     // should be thrown
3923     generate_negative_guard(length, bailout, &length);
3924 
3925     if (bailout->req() > 1) {
3926       PreserveJVMState pjvms(this);
3927       set_control(_gvn.transform(bailout));
3928       uncommon_trap(Deoptimization::Reason_intrinsic,
3929                     Deoptimization::Action_maybe_recompile);
3930     }
3931 
3932     if (!stopped()) {
3933       // How many elements will we copy from the original?
3934       // The answer is MinI(orig_length - start, length).
3935       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3936       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3937 
3938       newcopy = new_array(klass_node, length, 0);  // no arguments to push
3939 
3940       // Generate a direct call to the right arraycopy function(s).
3941       // We know the copy is disjoint but we might not know if the
3942       // oop stores need checking.
3943       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3944       // This will fail a store-check if x contains any non-nulls.
3945 
3946       Node* alloc = tightly_coupled_allocation(newcopy, NULL);
3947 
3948       ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, alloc != NULL,
3949                                               load_object_klass(original), klass_node);
3950       if (!is_copyOfRange) {
3951         ac->set_copyof();
3952       } else {
3953         ac->set_copyofrange();
3954       }
3955       Node* n = _gvn.transform(ac);
3956       assert(n == ac, "cannot disappear");
3957       ac->connect_outputs(this);
3958     }
3959   } // original reexecute is set back here
3960 
3961   C->set_has_split_ifs(true); // Has chance for split-if optimization
3962   if (!stopped()) {
3963     set_result(newcopy);
3964   }
3965   return true;
3966 }
3967 
3968 
3969 //----------------------generate_virtual_guard---------------------------
3970 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3971 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3972                                              RegionNode* slow_region) {
3973   ciMethod* method = callee();
3974   int vtable_index = method->vtable_index();
3975   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3976          err_msg_res("bad index %d", vtable_index));
3977   // Get the Method* out of the appropriate vtable entry.
3978   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3979                      vtable_index*vtableEntry::size()) * wordSize +
3980                      vtableEntry::method_offset_in_bytes();
3981   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3982   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3983 
3984   // Compare the target method with the expected method (e.g., Object.hashCode).
3985   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3986 
3987   Node* native_call = makecon(native_call_addr);
3988   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3989   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3990 
3991   return generate_slow_guard(test_native, slow_region);
3992 }
3993 
3994 //-----------------------generate_method_call----------------------------
3995 // Use generate_method_call to make a slow-call to the real
3996 // method if the fast path fails.  An alternative would be to
3997 // use a stub like OptoRuntime::slow_arraycopy_Java.
3998 // This only works for expanding the current library call,
3999 // not another intrinsic.  (E.g., don't use this for making an
4000 // arraycopy call inside of the copyOf intrinsic.)
4001 CallJavaNode*
4002 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4003   // When compiling the intrinsic method itself, do not use this technique.
4004   guarantee(callee() != C->method(), "cannot make slow-call to self");
4005 
4006   ciMethod* method = callee();
4007   // ensure the JVMS we have will be correct for this call
4008   guarantee(method_id == method->intrinsic_id(), "must match");
4009 
4010   const TypeFunc* tf = TypeFunc::make(method);
4011   CallJavaNode* slow_call;
4012   if (is_static) {
4013     assert(!is_virtual, "");
4014     slow_call = new CallStaticJavaNode(C, tf,
4015                            SharedRuntime::get_resolve_static_call_stub(),
4016                            method, bci());
4017   } else if (is_virtual) {
4018     null_check_receiver();
4019     int vtable_index = Method::invalid_vtable_index;
4020     if (UseInlineCaches) {
4021       // Suppress the vtable call
4022     } else {
4023       // hashCode and clone are not a miranda methods,
4024       // so the vtable index is fixed.
4025       // No need to use the linkResolver to get it.
4026        vtable_index = method->vtable_index();
4027        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4028               err_msg_res("bad index %d", vtable_index));
4029     }
4030     slow_call = new CallDynamicJavaNode(tf,
4031                           SharedRuntime::get_resolve_virtual_call_stub(),
4032                           method, vtable_index, bci());
4033   } else {  // neither virtual nor static:  opt_virtual
4034     null_check_receiver();
4035     slow_call = new CallStaticJavaNode(C, tf,
4036                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4037                                 method, bci());
4038     slow_call->set_optimized_virtual(true);
4039   }
4040   set_arguments_for_java_call(slow_call);
4041   set_edges_for_java_call(slow_call);
4042   return slow_call;
4043 }
4044 
4045 
4046 /**
4047  * Build special case code for calls to hashCode on an object. This call may
4048  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4049  * slightly different code.
4050  */
4051 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4052   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4053   assert(!(is_virtual && is_static), "either virtual, special, or static");
4054 
4055   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4056 
4057   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4058   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4059   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4060   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4061   Node* obj = NULL;
4062   if (!is_static) {
4063     // Check for hashing null object
4064     obj = null_check_receiver();
4065     if (stopped())  return true;        // unconditionally null
4066     result_reg->init_req(_null_path, top());
4067     result_val->init_req(_null_path, top());
4068   } else {
4069     // Do a null check, and return zero if null.
4070     // System.identityHashCode(null) == 0
4071     obj = argument(0);
4072     Node* null_ctl = top();
4073     obj = null_check_oop(obj, &null_ctl);
4074     result_reg->init_req(_null_path, null_ctl);
4075     result_val->init_req(_null_path, _gvn.intcon(0));
4076   }
4077 
4078   // Unconditionally null?  Then return right away.
4079   if (stopped()) {
4080     set_control( result_reg->in(_null_path));
4081     if (!stopped())
4082       set_result(result_val->in(_null_path));
4083     return true;
4084   }
4085 
4086   // We only go to the fast case code if we pass a number of guards.  The
4087   // paths which do not pass are accumulated in the slow_region.
4088   RegionNode* slow_region = new RegionNode(1);
4089   record_for_igvn(slow_region);
4090 
4091   // If this is a virtual call, we generate a funny guard.  We pull out
4092   // the vtable entry corresponding to hashCode() from the target object.
4093   // If the target method which we are calling happens to be the native
4094   // Object hashCode() method, we pass the guard.  We do not need this
4095   // guard for non-virtual calls -- the caller is known to be the native
4096   // Object hashCode().
4097   if (is_virtual) {
4098     // After null check, get the object's klass.
4099     Node* obj_klass = load_object_klass(obj);
4100     generate_virtual_guard(obj_klass, slow_region);
4101   }
4102 
4103   // Get the header out of the object, use LoadMarkNode when available
4104   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4105   // The control of the load must be NULL. Otherwise, the load can move before
4106   // the null check after castPP removal.
4107   Node* no_ctrl = NULL;
4108   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4109 
4110   // Test the header to see if it is unlocked.
4111   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4112   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4113   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4114   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4115   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4116 
4117   generate_slow_guard(test_unlocked, slow_region);
4118 
4119   // Get the hash value and check to see that it has been properly assigned.
4120   // We depend on hash_mask being at most 32 bits and avoid the use of
4121   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4122   // vm: see markOop.hpp.
4123   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4124   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4125   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4126   // This hack lets the hash bits live anywhere in the mark object now, as long
4127   // as the shift drops the relevant bits into the low 32 bits.  Note that
4128   // Java spec says that HashCode is an int so there's no point in capturing
4129   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4130   hshifted_header      = ConvX2I(hshifted_header);
4131   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4132 
4133   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4134   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4135   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4136 
4137   generate_slow_guard(test_assigned, slow_region);
4138 
4139   Node* init_mem = reset_memory();
4140   // fill in the rest of the null path:
4141   result_io ->init_req(_null_path, i_o());
4142   result_mem->init_req(_null_path, init_mem);
4143 
4144   result_val->init_req(_fast_path, hash_val);
4145   result_reg->init_req(_fast_path, control());
4146   result_io ->init_req(_fast_path, i_o());
4147   result_mem->init_req(_fast_path, init_mem);
4148 
4149   // Generate code for the slow case.  We make a call to hashCode().
4150   set_control(_gvn.transform(slow_region));
4151   if (!stopped()) {
4152     // No need for PreserveJVMState, because we're using up the present state.
4153     set_all_memory(init_mem);
4154     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4155     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4156     Node* slow_result = set_results_for_java_call(slow_call);
4157     // this->control() comes from set_results_for_java_call
4158     result_reg->init_req(_slow_path, control());
4159     result_val->init_req(_slow_path, slow_result);
4160     result_io  ->set_req(_slow_path, i_o());
4161     result_mem ->set_req(_slow_path, reset_memory());
4162   }
4163 
4164   // Return the combined state.
4165   set_i_o(        _gvn.transform(result_io)  );
4166   set_all_memory( _gvn.transform(result_mem));
4167 
4168   set_result(result_reg, result_val);
4169   return true;
4170 }
4171 
4172 //---------------------------inline_native_getClass----------------------------
4173 // public final native Class<?> java.lang.Object.getClass();
4174 //
4175 // Build special case code for calls to getClass on an object.
4176 bool LibraryCallKit::inline_native_getClass() {
4177   Node* obj = null_check_receiver();
4178   if (stopped())  return true;
4179   set_result(load_mirror_from_klass(load_object_klass(obj)));
4180   return true;
4181 }
4182 
4183 //-----------------inline_native_Reflection_getCallerClass---------------------
4184 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4185 //
4186 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4187 //
4188 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4189 // in that it must skip particular security frames and checks for
4190 // caller sensitive methods.
4191 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4192 #ifndef PRODUCT
4193   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4194     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4195   }
4196 #endif
4197 
4198   if (!jvms()->has_method()) {
4199 #ifndef PRODUCT
4200     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4201       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4202     }
4203 #endif
4204     return false;
4205   }
4206 
4207   // Walk back up the JVM state to find the caller at the required
4208   // depth.
4209   JVMState* caller_jvms = jvms();
4210 
4211   // Cf. JVM_GetCallerClass
4212   // NOTE: Start the loop at depth 1 because the current JVM state does
4213   // not include the Reflection.getCallerClass() frame.
4214   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4215     ciMethod* m = caller_jvms->method();
4216     switch (n) {
4217     case 0:
4218       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4219       break;
4220     case 1:
4221       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4222       if (!m->caller_sensitive()) {
4223 #ifndef PRODUCT
4224         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4225           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4226         }
4227 #endif
4228         return false;  // bail-out; let JVM_GetCallerClass do the work
4229       }
4230       break;
4231     default:
4232       if (!m->is_ignored_by_security_stack_walk()) {
4233         // We have reached the desired frame; return the holder class.
4234         // Acquire method holder as java.lang.Class and push as constant.
4235         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4236         ciInstance* caller_mirror = caller_klass->java_mirror();
4237         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4238 
4239 #ifndef PRODUCT
4240         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4241           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4242           tty->print_cr("  JVM state at this point:");
4243           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4244             ciMethod* m = jvms()->of_depth(i)->method();
4245             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4246           }
4247         }
4248 #endif
4249         return true;
4250       }
4251       break;
4252     }
4253   }
4254 
4255 #ifndef PRODUCT
4256   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4257     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4258     tty->print_cr("  JVM state at this point:");
4259     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4260       ciMethod* m = jvms()->of_depth(i)->method();
4261       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4262     }
4263   }
4264 #endif
4265 
4266   return false;  // bail-out; let JVM_GetCallerClass do the work
4267 }
4268 
4269 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4270   Node* arg = argument(0);
4271   Node* result;
4272 
4273   switch (id) {
4274   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4275   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4276   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4277   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4278 
4279   case vmIntrinsics::_doubleToLongBits: {
4280     // two paths (plus control) merge in a wood
4281     RegionNode *r = new RegionNode(3);
4282     Node *phi = new PhiNode(r, TypeLong::LONG);
4283 
4284     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4285     // Build the boolean node
4286     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4287 
4288     // Branch either way.
4289     // NaN case is less traveled, which makes all the difference.
4290     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4291     Node *opt_isnan = _gvn.transform(ifisnan);
4292     assert( opt_isnan->is_If(), "Expect an IfNode");
4293     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4294     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4295 
4296     set_control(iftrue);
4297 
4298     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4299     Node *slow_result = longcon(nan_bits); // return NaN
4300     phi->init_req(1, _gvn.transform( slow_result ));
4301     r->init_req(1, iftrue);
4302 
4303     // Else fall through
4304     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4305     set_control(iffalse);
4306 
4307     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4308     r->init_req(2, iffalse);
4309 
4310     // Post merge
4311     set_control(_gvn.transform(r));
4312     record_for_igvn(r);
4313 
4314     C->set_has_split_ifs(true); // Has chance for split-if optimization
4315     result = phi;
4316     assert(result->bottom_type()->isa_long(), "must be");
4317     break;
4318   }
4319 
4320   case vmIntrinsics::_floatToIntBits: {
4321     // two paths (plus control) merge in a wood
4322     RegionNode *r = new RegionNode(3);
4323     Node *phi = new PhiNode(r, TypeInt::INT);
4324 
4325     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4326     // Build the boolean node
4327     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4328 
4329     // Branch either way.
4330     // NaN case is less traveled, which makes all the difference.
4331     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4332     Node *opt_isnan = _gvn.transform(ifisnan);
4333     assert( opt_isnan->is_If(), "Expect an IfNode");
4334     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4335     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4336 
4337     set_control(iftrue);
4338 
4339     static const jint nan_bits = 0x7fc00000;
4340     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4341     phi->init_req(1, _gvn.transform( slow_result ));
4342     r->init_req(1, iftrue);
4343 
4344     // Else fall through
4345     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4346     set_control(iffalse);
4347 
4348     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4349     r->init_req(2, iffalse);
4350 
4351     // Post merge
4352     set_control(_gvn.transform(r));
4353     record_for_igvn(r);
4354 
4355     C->set_has_split_ifs(true); // Has chance for split-if optimization
4356     result = phi;
4357     assert(result->bottom_type()->isa_int(), "must be");
4358     break;
4359   }
4360 
4361   default:
4362     fatal_unexpected_iid(id);
4363     break;
4364   }
4365   set_result(_gvn.transform(result));
4366   return true;
4367 }
4368 
4369 #ifdef _LP64
4370 #define XTOP ,top() /*additional argument*/
4371 #else  //_LP64
4372 #define XTOP        /*no additional argument*/
4373 #endif //_LP64
4374 
4375 //----------------------inline_unsafe_copyMemory-------------------------
4376 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4377 bool LibraryCallKit::inline_unsafe_copyMemory() {
4378   if (callee()->is_static())  return false;  // caller must have the capability!
4379   null_check_receiver();  // null-check receiver
4380   if (stopped())  return true;
4381 
4382   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4383 
4384   Node* src_ptr =         argument(1);   // type: oop
4385   Node* src_off = ConvL2X(argument(2));  // type: long
4386   Node* dst_ptr =         argument(4);   // type: oop
4387   Node* dst_off = ConvL2X(argument(5));  // type: long
4388   Node* size    = ConvL2X(argument(7));  // type: long
4389 
4390   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4391          "fieldOffset must be byte-scaled");
4392 
4393   Node* src = make_unsafe_address(src_ptr, src_off);
4394   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4395 
4396   // Conservatively insert a memory barrier on all memory slices.
4397   // Do not let writes of the copy source or destination float below the copy.
4398   insert_mem_bar(Op_MemBarCPUOrder);
4399 
4400   // Call it.  Note that the length argument is not scaled.
4401   make_runtime_call(RC_LEAF|RC_NO_FP,
4402                     OptoRuntime::fast_arraycopy_Type(),
4403                     StubRoutines::unsafe_arraycopy(),
4404                     "unsafe_arraycopy",
4405                     TypeRawPtr::BOTTOM,
4406                     src, dst, size XTOP);
4407 
4408   // Do not let reads of the copy destination float above the copy.
4409   insert_mem_bar(Op_MemBarCPUOrder);
4410 
4411   return true;
4412 }
4413 
4414 //------------------------clone_coping-----------------------------------
4415 // Helper function for inline_native_clone.
4416 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4417   assert(obj_size != NULL, "");
4418   Node* raw_obj = alloc_obj->in(1);
4419   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4420 
4421   AllocateNode* alloc = NULL;
4422   if (ReduceBulkZeroing) {
4423     // We will be completely responsible for initializing this object -
4424     // mark Initialize node as complete.
4425     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4426     // The object was just allocated - there should be no any stores!
4427     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4428     // Mark as complete_with_arraycopy so that on AllocateNode
4429     // expansion, we know this AllocateNode is initialized by an array
4430     // copy and a StoreStore barrier exists after the array copy.
4431     alloc->initialization()->set_complete_with_arraycopy();
4432   }
4433 
4434   // Copy the fastest available way.
4435   // TODO: generate fields copies for small objects instead.
4436   Node* src  = obj;
4437   Node* dest = alloc_obj;
4438   Node* size = _gvn.transform(obj_size);
4439 
4440   // Exclude the header but include array length to copy by 8 bytes words.
4441   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4442   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4443                             instanceOopDesc::base_offset_in_bytes();
4444   // base_off:
4445   // 8  - 32-bit VM
4446   // 12 - 64-bit VM, compressed klass
4447   // 16 - 64-bit VM, normal klass
4448   if (base_off % BytesPerLong != 0) {
4449     assert(UseCompressedClassPointers, "");
4450     if (is_array) {
4451       // Exclude length to copy by 8 bytes words.
4452       base_off += sizeof(int);
4453     } else {
4454       // Include klass to copy by 8 bytes words.
4455       base_off = instanceOopDesc::klass_offset_in_bytes();
4456     }
4457     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4458   }
4459   src  = basic_plus_adr(src,  base_off);
4460   dest = basic_plus_adr(dest, base_off);
4461 
4462   // Compute the length also, if needed:
4463   Node* countx = size;
4464   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4465   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4466 
4467   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4468 
4469   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4470   ac->set_clonebasic();
4471   Node* n = _gvn.transform(ac);
4472   if (n == ac) {
4473     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4474   } else {
4475     set_all_memory(n);
4476   }
4477 
4478   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4479   if (card_mark) {
4480     assert(!is_array, "");
4481     // Put in store barrier for any and all oops we are sticking
4482     // into this object.  (We could avoid this if we could prove
4483     // that the object type contains no oop fields at all.)
4484     Node* no_particular_value = NULL;
4485     Node* no_particular_field = NULL;
4486     int raw_adr_idx = Compile::AliasIdxRaw;
4487     post_barrier(control(),
4488                  memory(raw_adr_type),
4489                  alloc_obj,
4490                  no_particular_field,
4491                  raw_adr_idx,
4492                  no_particular_value,
4493                  T_OBJECT,
4494                  false);
4495   }
4496 
4497   // Do not let reads from the cloned object float above the arraycopy.
4498   if (alloc != NULL) {
4499     // Do not let stores that initialize this object be reordered with
4500     // a subsequent store that would make this object accessible by
4501     // other threads.
4502     // Record what AllocateNode this StoreStore protects so that
4503     // escape analysis can go from the MemBarStoreStoreNode to the
4504     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4505     // based on the escape status of the AllocateNode.
4506     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4507   } else {
4508     insert_mem_bar(Op_MemBarCPUOrder);
4509   }
4510 }
4511 
4512 //------------------------inline_native_clone----------------------------
4513 // protected native Object java.lang.Object.clone();
4514 //
4515 // Here are the simple edge cases:
4516 //  null receiver => normal trap
4517 //  virtual and clone was overridden => slow path to out-of-line clone
4518 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4519 //
4520 // The general case has two steps, allocation and copying.
4521 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4522 //
4523 // Copying also has two cases, oop arrays and everything else.
4524 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4525 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4526 //
4527 // These steps fold up nicely if and when the cloned object's klass
4528 // can be sharply typed as an object array, a type array, or an instance.
4529 //
4530 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4531   PhiNode* result_val;
4532 
4533   // Set the reexecute bit for the interpreter to reexecute
4534   // the bytecode that invokes Object.clone if deoptimization happens.
4535   { PreserveReexecuteState preexecs(this);
4536     jvms()->set_should_reexecute(true);
4537 
4538     Node* obj = null_check_receiver();
4539     if (stopped())  return true;
4540 
4541     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4542 
4543     // If we are going to clone an instance, we need its exact type to
4544     // know the number and types of fields to convert the clone to
4545     // loads/stores. Maybe a speculative type can help us.
4546     if (!obj_type->klass_is_exact() &&
4547         obj_type->speculative_type() != NULL &&
4548         obj_type->speculative_type()->is_instance_klass()) {
4549       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4550       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4551           !spec_ik->has_injected_fields()) {
4552         ciKlass* k = obj_type->klass();
4553         if (!k->is_instance_klass() ||
4554             k->as_instance_klass()->is_interface() ||
4555             k->as_instance_klass()->has_subklass()) {
4556           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4557         }
4558       }
4559     }
4560 
4561     Node* obj_klass = load_object_klass(obj);
4562     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4563     const TypeOopPtr*   toop   = ((tklass != NULL)
4564                                 ? tklass->as_instance_type()
4565                                 : TypeInstPtr::NOTNULL);
4566 
4567     // Conservatively insert a memory barrier on all memory slices.
4568     // Do not let writes into the original float below the clone.
4569     insert_mem_bar(Op_MemBarCPUOrder);
4570 
4571     // paths into result_reg:
4572     enum {
4573       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4574       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4575       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4576       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4577       PATH_LIMIT
4578     };
4579     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4580     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4581     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4582     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4583     record_for_igvn(result_reg);
4584 
4585     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4586     int raw_adr_idx = Compile::AliasIdxRaw;
4587 
4588     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4589     if (array_ctl != NULL) {
4590       // It's an array.
4591       PreserveJVMState pjvms(this);
4592       set_control(array_ctl);
4593       Node* obj_length = load_array_length(obj);
4594       Node* obj_size  = NULL;
4595       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4596 
4597       if (!use_ReduceInitialCardMarks()) {
4598         // If it is an oop array, it requires very special treatment,
4599         // because card marking is required on each card of the array.
4600         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4601         if (is_obja != NULL) {
4602           PreserveJVMState pjvms2(this);
4603           set_control(is_obja);
4604           // Generate a direct call to the right arraycopy function(s).
4605           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4606           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4607           ac->set_cloneoop();
4608           Node* n = _gvn.transform(ac);
4609           assert(n == ac, "cannot disappear");
4610           ac->connect_outputs(this);
4611 
4612           result_reg->init_req(_objArray_path, control());
4613           result_val->init_req(_objArray_path, alloc_obj);
4614           result_i_o ->set_req(_objArray_path, i_o());
4615           result_mem ->set_req(_objArray_path, reset_memory());
4616         }
4617       }
4618       // Otherwise, there are no card marks to worry about.
4619       // (We can dispense with card marks if we know the allocation
4620       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4621       //  causes the non-eden paths to take compensating steps to
4622       //  simulate a fresh allocation, so that no further
4623       //  card marks are required in compiled code to initialize
4624       //  the object.)
4625 
4626       if (!stopped()) {
4627         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4628 
4629         // Present the results of the copy.
4630         result_reg->init_req(_array_path, control());
4631         result_val->init_req(_array_path, alloc_obj);
4632         result_i_o ->set_req(_array_path, i_o());
4633         result_mem ->set_req(_array_path, reset_memory());
4634       }
4635     }
4636 
4637     // We only go to the instance fast case code if we pass a number of guards.
4638     // The paths which do not pass are accumulated in the slow_region.
4639     RegionNode* slow_region = new RegionNode(1);
4640     record_for_igvn(slow_region);
4641     if (!stopped()) {
4642       // It's an instance (we did array above).  Make the slow-path tests.
4643       // If this is a virtual call, we generate a funny guard.  We grab
4644       // the vtable entry corresponding to clone() from the target object.
4645       // If the target method which we are calling happens to be the
4646       // Object clone() method, we pass the guard.  We do not need this
4647       // guard for non-virtual calls; the caller is known to be the native
4648       // Object clone().
4649       if (is_virtual) {
4650         generate_virtual_guard(obj_klass, slow_region);
4651       }
4652 
4653       // The object must be cloneable and must not have a finalizer.
4654       // Both of these conditions may be checked in a single test.
4655       // We could optimize the cloneable test further, but we don't care.
4656       generate_access_flags_guard(obj_klass,
4657                                   // Test both conditions:
4658                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4659                                   // Must be cloneable but not finalizer:
4660                                   JVM_ACC_IS_CLONEABLE,
4661                                   slow_region);
4662     }
4663 
4664     if (!stopped()) {
4665       // It's an instance, and it passed the slow-path tests.
4666       PreserveJVMState pjvms(this);
4667       Node* obj_size  = NULL;
4668       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4669       // is reexecuted if deoptimization occurs and there could be problems when merging
4670       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4671       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4672 
4673       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4674 
4675       // Present the results of the slow call.
4676       result_reg->init_req(_instance_path, control());
4677       result_val->init_req(_instance_path, alloc_obj);
4678       result_i_o ->set_req(_instance_path, i_o());
4679       result_mem ->set_req(_instance_path, reset_memory());
4680     }
4681 
4682     // Generate code for the slow case.  We make a call to clone().
4683     set_control(_gvn.transform(slow_region));
4684     if (!stopped()) {
4685       PreserveJVMState pjvms(this);
4686       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4687       Node* slow_result = set_results_for_java_call(slow_call);
4688       // this->control() comes from set_results_for_java_call
4689       result_reg->init_req(_slow_path, control());
4690       result_val->init_req(_slow_path, slow_result);
4691       result_i_o ->set_req(_slow_path, i_o());
4692       result_mem ->set_req(_slow_path, reset_memory());
4693     }
4694 
4695     // Return the combined state.
4696     set_control(    _gvn.transform(result_reg));
4697     set_i_o(        _gvn.transform(result_i_o));
4698     set_all_memory( _gvn.transform(result_mem));
4699   } // original reexecute is set back here
4700 
4701   set_result(_gvn.transform(result_val));
4702   return true;
4703 }
4704 
4705 //------------------------------inline_arraycopy-----------------------
4706 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4707 //                                                      Object dest, int destPos,
4708 //                                                      int length);
4709 bool LibraryCallKit::inline_arraycopy() {
4710   // Get the arguments.
4711   Node* src         = argument(0);  // type: oop
4712   Node* src_offset  = argument(1);  // type: int
4713   Node* dest        = argument(2);  // type: oop
4714   Node* dest_offset = argument(3);  // type: int
4715   Node* length      = argument(4);  // type: int
4716 
4717   // The following tests must be performed
4718   // (1) src and dest are arrays.
4719   // (2) src and dest arrays must have elements of the same BasicType
4720   // (3) src and dest must not be null.
4721   // (4) src_offset must not be negative.
4722   // (5) dest_offset must not be negative.
4723   // (6) length must not be negative.
4724   // (7) src_offset + length must not exceed length of src.
4725   // (8) dest_offset + length must not exceed length of dest.
4726   // (9) each element of an oop array must be assignable
4727 
4728   // (3) src and dest must not be null.
4729   // always do this here because we need the JVM state for uncommon traps
4730   src  = null_check(src,  T_ARRAY);
4731   dest = null_check(dest, T_ARRAY);
4732 
4733   // Check for allocation before we add nodes that would confuse
4734   // tightly_coupled_allocation()
4735   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4736 
4737   SafePointNode* sfpt = NULL;
4738   if (alloc != NULL) {
4739     // The JVM state for uncommon traps between the allocation and
4740     // arraycopy is set to the state before the allocation: if the
4741     // initialization is performed by the array copy, we don't want to
4742     // go back to the interpreter with an unitialized array.
4743     JVMState* old_jvms = alloc->jvms();
4744     JVMState* jvms = old_jvms->clone_shallow(C);
4745     uint size = alloc->req();
4746     sfpt = new SafePointNode(size, jvms);
4747     jvms->set_map(sfpt);
4748     for (uint i = 0; i < size; i++) {
4749       sfpt->init_req(i, alloc->in(i));
4750     }
4751     // re-push array length for deoptimization
4752     sfpt->ins_req(jvms->stkoff() + jvms->sp(), alloc->in(AllocateNode::ALength));
4753     jvms->set_sp(jvms->sp()+1);
4754     jvms->set_monoff(jvms->monoff()+1);
4755     jvms->set_scloff(jvms->scloff()+1);
4756     jvms->set_endoff(jvms->endoff()+1);
4757     jvms->set_should_reexecute(true);
4758 
4759     sfpt->set_i_o(map()->i_o());
4760     sfpt->set_memory(map()->memory());
4761   }
4762 
4763   bool validated = false;
4764 
4765   const Type* src_type  = _gvn.type(src);
4766   const Type* dest_type = _gvn.type(dest);
4767   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4768   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4769 
4770   // Do we have the type of src?
4771   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4772   // Do we have the type of dest?
4773   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4774   // Is the type for src from speculation?
4775   bool src_spec = false;
4776   // Is the type for dest from speculation?
4777   bool dest_spec = false;
4778 
4779   if (!has_src || !has_dest) {
4780     // We don't have sufficient type information, let's see if
4781     // speculative types can help. We need to have types for both src
4782     // and dest so that it pays off.
4783 
4784     // Do we already have or could we have type information for src
4785     bool could_have_src = has_src;
4786     // Do we already have or could we have type information for dest
4787     bool could_have_dest = has_dest;
4788 
4789     ciKlass* src_k = NULL;
4790     if (!has_src) {
4791       src_k = src_type->speculative_type_not_null();
4792       if (src_k != NULL && src_k->is_array_klass()) {
4793         could_have_src = true;
4794       }
4795     }
4796 
4797     ciKlass* dest_k = NULL;
4798     if (!has_dest) {
4799       dest_k = dest_type->speculative_type_not_null();
4800       if (dest_k != NULL && dest_k->is_array_klass()) {
4801         could_have_dest = true;
4802       }
4803     }
4804 
4805     if (could_have_src && could_have_dest) {
4806       // This is going to pay off so emit the required guards
4807       if (!has_src) {
4808         src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4809         src_type  = _gvn.type(src);
4810         top_src  = src_type->isa_aryptr();
4811         has_src = (top_src != NULL && top_src->klass() != NULL);
4812         src_spec = true;
4813       }
4814       if (!has_dest) {
4815         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4816         dest_type  = _gvn.type(dest);
4817         top_dest  = dest_type->isa_aryptr();
4818         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4819         dest_spec = true;
4820       }
4821     }
4822   }
4823 
4824   if (has_src && has_dest) {
4825     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4826     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4827     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4828     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4829 
4830     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4831       // If both arrays are object arrays then having the exact types
4832       // for both will remove the need for a subtype check at runtime
4833       // before the call and may make it possible to pick a faster copy
4834       // routine (without a subtype check on every element)
4835       // Do we have the exact type of src?
4836       bool could_have_src = src_spec;
4837       // Do we have the exact type of dest?
4838       bool could_have_dest = dest_spec;
4839       ciKlass* src_k = top_src->klass();
4840       ciKlass* dest_k = top_dest->klass();
4841       if (!src_spec) {
4842         src_k = src_type->speculative_type_not_null();
4843         if (src_k != NULL && src_k->is_array_klass()) {
4844           could_have_src = true;
4845         }
4846       }
4847       if (!dest_spec) {
4848         dest_k = dest_type->speculative_type_not_null();
4849         if (dest_k != NULL && dest_k->is_array_klass()) {
4850           could_have_dest = true;
4851         }
4852       }
4853       if (could_have_src && could_have_dest) {
4854         // If we can have both exact types, emit the missing guards
4855         if (could_have_src && !src_spec) {
4856           src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4857         }
4858         if (could_have_dest && !dest_spec) {
4859           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4860         }
4861       }
4862     }
4863   }
4864 
4865   if (!too_many_traps(Deoptimization::Reason_intrinsic) && !src->is_top() && !dest->is_top()) {
4866     // validate arguments: enables transformation the ArrayCopyNode
4867     validated = true;
4868 
4869     RegionNode* slow_region = new RegionNode(1);
4870     record_for_igvn(slow_region);
4871 
4872     // (1) src and dest are arrays.
4873     generate_non_array_guard(load_object_klass(src), slow_region);
4874     generate_non_array_guard(load_object_klass(dest), slow_region);
4875 
4876     // (2) src and dest arrays must have elements of the same BasicType
4877     // done at macro expansion or at Ideal transformation time
4878 
4879     // (4) src_offset must not be negative.
4880     generate_negative_guard(src_offset, slow_region);
4881 
4882     // (5) dest_offset must not be negative.
4883     generate_negative_guard(dest_offset, slow_region);
4884 
4885     // (7) src_offset + length must not exceed length of src.
4886     generate_limit_guard(src_offset, length,
4887                          load_array_length(src),
4888                          slow_region);
4889 
4890     // (8) dest_offset + length must not exceed length of dest.
4891     generate_limit_guard(dest_offset, length,
4892                          load_array_length(dest),
4893                          slow_region);
4894 
4895     // (9) each element of an oop array must be assignable
4896     Node* src_klass  = load_object_klass(src);
4897     Node* dest_klass = load_object_klass(dest);
4898     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4899 
4900     if (not_subtype_ctrl != top()) {
4901       if (sfpt != NULL) {
4902         GraphKit kit(sfpt->jvms());
4903         PreserveJVMState pjvms(&kit);
4904         kit.set_control(not_subtype_ctrl);
4905         kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4906                           Deoptimization::Action_make_not_entrant);
4907         assert(kit.stopped(), "Should be stopped");
4908       } else {
4909         PreserveJVMState pjvms(this);
4910         set_control(not_subtype_ctrl);
4911         uncommon_trap(Deoptimization::Reason_intrinsic,
4912                       Deoptimization::Action_make_not_entrant);
4913         assert(stopped(), "Should be stopped");
4914       }
4915     }
4916     if (sfpt != NULL) {
4917       GraphKit kit(sfpt->jvms());
4918       kit.set_control(_gvn.transform(slow_region));
4919       kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4920                         Deoptimization::Action_make_not_entrant);
4921       assert(kit.stopped(), "Should be stopped");
4922     } else {
4923       PreserveJVMState pjvms(this);
4924       set_control(_gvn.transform(slow_region));
4925       uncommon_trap(Deoptimization::Reason_intrinsic,
4926                     Deoptimization::Action_make_not_entrant);
4927       assert(stopped(), "Should be stopped");
4928     }
4929   }
4930 
4931   if (stopped()) {
4932     return true;
4933   }
4934 
4935   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
4936                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4937                                           // so the compiler has a chance to eliminate them: during macro expansion,
4938                                           // we have to set their control (CastPP nodes are eliminated).
4939                                           load_object_klass(src), load_object_klass(dest),
4940                                           load_array_length(src), load_array_length(dest));
4941 
4942   ac->set_arraycopy(validated);
4943 
4944   Node* n = _gvn.transform(ac);
4945   if (n == ac) {
4946     ac->connect_outputs(this);
4947   } else {
4948     assert(validated, "shouldn't transform if all arguments not validated");
4949     set_all_memory(n);
4950   }
4951 
4952   return true;
4953 }
4954 
4955 
4956 // Helper function which determines if an arraycopy immediately follows
4957 // an allocation, with no intervening tests or other escapes for the object.
4958 AllocateArrayNode*
4959 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4960                                            RegionNode* slow_region) {
4961   if (stopped())             return NULL;  // no fast path
4962   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4963 
4964   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4965   if (alloc == NULL)  return NULL;
4966 
4967   Node* rawmem = memory(Compile::AliasIdxRaw);
4968   // Is the allocation's memory state untouched?
4969   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4970     // Bail out if there have been raw-memory effects since the allocation.
4971     // (Example:  There might have been a call or safepoint.)
4972     return NULL;
4973   }
4974   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4975   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4976     return NULL;
4977   }
4978 
4979   // There must be no unexpected observers of this allocation.
4980   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4981     Node* obs = ptr->fast_out(i);
4982     if (obs != this->map()) {
4983       return NULL;
4984     }
4985   }
4986 
4987   // This arraycopy must unconditionally follow the allocation of the ptr.
4988   Node* alloc_ctl = ptr->in(0);
4989   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4990 
4991   Node* ctl = control();
4992   while (ctl != alloc_ctl) {
4993     // There may be guards which feed into the slow_region.
4994     // Any other control flow means that we might not get a chance
4995     // to finish initializing the allocated object.
4996     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4997       IfNode* iff = ctl->in(0)->as_If();
4998       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4999       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5000       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5001         ctl = iff->in(0);       // This test feeds the known slow_region.
5002         continue;
5003       }
5004       // One more try:  Various low-level checks bottom out in
5005       // uncommon traps.  If the debug-info of the trap omits
5006       // any reference to the allocation, as we've already
5007       // observed, then there can be no objection to the trap.
5008       bool found_trap = false;
5009       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5010         Node* obs = not_ctl->fast_out(j);
5011         if (obs->in(0) == not_ctl && obs->is_Call() &&
5012             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5013           found_trap = true; break;
5014         }
5015       }
5016       if (found_trap) {
5017         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5018         continue;
5019       }
5020     }
5021     return NULL;
5022   }
5023 
5024   // If we get this far, we have an allocation which immediately
5025   // precedes the arraycopy, and we can take over zeroing the new object.
5026   // The arraycopy will finish the initialization, and provide
5027   // a new control state to which we will anchor the destination pointer.
5028 
5029   return alloc;
5030 }
5031 
5032 //-------------inline_encodeISOArray-----------------------------------
5033 // encode char[] to byte[] in ISO_8859_1
5034 bool LibraryCallKit::inline_encodeISOArray() {
5035   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5036   // no receiver since it is static method
5037   Node *src         = argument(0);
5038   Node *src_offset  = argument(1);
5039   Node *dst         = argument(2);
5040   Node *dst_offset  = argument(3);
5041   Node *length      = argument(4);
5042 
5043   const Type* src_type = src->Value(&_gvn);
5044   const Type* dst_type = dst->Value(&_gvn);
5045   const TypeAryPtr* top_src = src_type->isa_aryptr();
5046   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5047   if (top_src  == NULL || top_src->klass()  == NULL ||
5048       top_dest == NULL || top_dest->klass() == NULL) {
5049     // failed array check
5050     return false;
5051   }
5052 
5053   // Figure out the size and type of the elements we will be copying.
5054   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5055   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5056   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5057     return false;
5058   }
5059   Node* src_start = array_element_address(src, src_offset, src_elem);
5060   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5061   // 'src_start' points to src array + scaled offset
5062   // 'dst_start' points to dst array + scaled offset
5063 
5064   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5065   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5066   enc = _gvn.transform(enc);
5067   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5068   set_memory(res_mem, mtype);
5069   set_result(enc);
5070   return true;
5071 }
5072 
5073 //-------------inline_multiplyToLen-----------------------------------
5074 bool LibraryCallKit::inline_multiplyToLen() {
5075   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5076 
5077   address stubAddr = StubRoutines::multiplyToLen();
5078   if (stubAddr == NULL) {
5079     return false; // Intrinsic's stub is not implemented on this platform
5080   }
5081   const char* stubName = "multiplyToLen";
5082 
5083   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5084 
5085   Node* x    = argument(1);
5086   Node* xlen = argument(2);
5087   Node* y    = argument(3);
5088   Node* ylen = argument(4);
5089   Node* z    = argument(5);
5090 
5091   const Type* x_type = x->Value(&_gvn);
5092   const Type* y_type = y->Value(&_gvn);
5093   const TypeAryPtr* top_x = x_type->isa_aryptr();
5094   const TypeAryPtr* top_y = y_type->isa_aryptr();
5095   if (top_x  == NULL || top_x->klass()  == NULL ||
5096       top_y == NULL || top_y->klass() == NULL) {
5097     // failed array check
5098     return false;
5099   }
5100 
5101   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5102   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5103   if (x_elem != T_INT || y_elem != T_INT) {
5104     return false;
5105   }
5106 
5107   // Set the original stack and the reexecute bit for the interpreter to reexecute
5108   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5109   // on the return from z array allocation in runtime.
5110   { PreserveReexecuteState preexecs(this);
5111     jvms()->set_should_reexecute(true);
5112 
5113     Node* x_start = array_element_address(x, intcon(0), x_elem);
5114     Node* y_start = array_element_address(y, intcon(0), y_elem);
5115     // 'x_start' points to x array + scaled xlen
5116     // 'y_start' points to y array + scaled ylen
5117 
5118     // Allocate the result array
5119     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5120     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5121     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5122 
5123     IdealKit ideal(this);
5124 
5125 #define __ ideal.
5126      Node* one = __ ConI(1);
5127      Node* zero = __ ConI(0);
5128      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5129      __ set(need_alloc, zero);
5130      __ set(z_alloc, z);
5131      __ if_then(z, BoolTest::eq, null()); {
5132        __ increment (need_alloc, one);
5133      } __ else_(); {
5134        // Update graphKit memory and control from IdealKit.
5135        sync_kit(ideal);
5136        Node* zlen_arg = load_array_length(z);
5137        // Update IdealKit memory and control from graphKit.
5138        __ sync_kit(this);
5139        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5140          __ increment (need_alloc, one);
5141        } __ end_if();
5142      } __ end_if();
5143 
5144      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5145        // Update graphKit memory and control from IdealKit.
5146        sync_kit(ideal);
5147        Node * narr = new_array(klass_node, zlen, 1);
5148        // Update IdealKit memory and control from graphKit.
5149        __ sync_kit(this);
5150        __ set(z_alloc, narr);
5151      } __ end_if();
5152 
5153      sync_kit(ideal);
5154      z = __ value(z_alloc);
5155      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5156      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5157      // Final sync IdealKit and GraphKit.
5158      final_sync(ideal);
5159 #undef __
5160 
5161     Node* z_start = array_element_address(z, intcon(0), T_INT);
5162 
5163     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5164                                    OptoRuntime::multiplyToLen_Type(),
5165                                    stubAddr, stubName, TypePtr::BOTTOM,
5166                                    x_start, xlen, y_start, ylen, z_start, zlen);
5167   } // original reexecute is set back here
5168 
5169   C->set_has_split_ifs(true); // Has chance for split-if optimization
5170   set_result(z);
5171   return true;
5172 }
5173 
5174 
5175 /**
5176  * Calculate CRC32 for byte.
5177  * int java.util.zip.CRC32.update(int crc, int b)
5178  */
5179 bool LibraryCallKit::inline_updateCRC32() {
5180   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5181   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5182   // no receiver since it is static method
5183   Node* crc  = argument(0); // type: int
5184   Node* b    = argument(1); // type: int
5185 
5186   /*
5187    *    int c = ~ crc;
5188    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5189    *    b = b ^ (c >>> 8);
5190    *    crc = ~b;
5191    */
5192 
5193   Node* M1 = intcon(-1);
5194   crc = _gvn.transform(new XorINode(crc, M1));
5195   Node* result = _gvn.transform(new XorINode(crc, b));
5196   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5197 
5198   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5199   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5200   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5201   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5202 
5203   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5204   result = _gvn.transform(new XorINode(crc, result));
5205   result = _gvn.transform(new XorINode(result, M1));
5206   set_result(result);
5207   return true;
5208 }
5209 
5210 /**
5211  * Calculate CRC32 for byte[] array.
5212  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5213  */
5214 bool LibraryCallKit::inline_updateBytesCRC32() {
5215   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5216   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5217   // no receiver since it is static method
5218   Node* crc     = argument(0); // type: int
5219   Node* src     = argument(1); // type: oop
5220   Node* offset  = argument(2); // type: int
5221   Node* length  = argument(3); // type: int
5222 
5223   const Type* src_type = src->Value(&_gvn);
5224   const TypeAryPtr* top_src = src_type->isa_aryptr();
5225   if (top_src  == NULL || top_src->klass()  == NULL) {
5226     // failed array check
5227     return false;
5228   }
5229 
5230   // Figure out the size and type of the elements we will be copying.
5231   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5232   if (src_elem != T_BYTE) {
5233     return false;
5234   }
5235 
5236   // 'src_start' points to src array + scaled offset
5237   Node* src_start = array_element_address(src, offset, src_elem);
5238 
5239   // We assume that range check is done by caller.
5240   // TODO: generate range check (offset+length < src.length) in debug VM.
5241 
5242   // Call the stub.
5243   address stubAddr = StubRoutines::updateBytesCRC32();
5244   const char *stubName = "updateBytesCRC32";
5245 
5246   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5247                                  stubAddr, stubName, TypePtr::BOTTOM,
5248                                  crc, src_start, length);
5249   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5250   set_result(result);
5251   return true;
5252 }
5253 
5254 /**
5255  * Calculate CRC32 for ByteBuffer.
5256  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5257  */
5258 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5259   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5260   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5261   // no receiver since it is static method
5262   Node* crc     = argument(0); // type: int
5263   Node* src     = argument(1); // type: long
5264   Node* offset  = argument(3); // type: int
5265   Node* length  = argument(4); // type: int
5266 
5267   src = ConvL2X(src);  // adjust Java long to machine word
5268   Node* base = _gvn.transform(new CastX2PNode(src));
5269   offset = ConvI2X(offset);
5270 
5271   // 'src_start' points to src array + scaled offset
5272   Node* src_start = basic_plus_adr(top(), base, offset);
5273 
5274   // Call the stub.
5275   address stubAddr = StubRoutines::updateBytesCRC32();
5276   const char *stubName = "updateBytesCRC32";
5277 
5278   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5279                                  stubAddr, stubName, TypePtr::BOTTOM,
5280                                  crc, src_start, length);
5281   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5282   set_result(result);
5283   return true;
5284 }
5285 
5286 //----------------------------inline_reference_get----------------------------
5287 // public T java.lang.ref.Reference.get();
5288 bool LibraryCallKit::inline_reference_get() {
5289   const int referent_offset = java_lang_ref_Reference::referent_offset;
5290   guarantee(referent_offset > 0, "should have already been set");
5291 
5292   // Get the argument:
5293   Node* reference_obj = null_check_receiver();
5294   if (stopped()) return true;
5295 
5296   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5297 
5298   ciInstanceKlass* klass = env()->Object_klass();
5299   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5300 
5301   Node* no_ctrl = NULL;
5302   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5303 
5304   // Use the pre-barrier to record the value in the referent field
5305   pre_barrier(false /* do_load */,
5306               control(),
5307               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5308               result /* pre_val */,
5309               T_OBJECT);
5310 
5311   // Add memory barrier to prevent commoning reads from this field
5312   // across safepoint since GC can change its value.
5313   insert_mem_bar(Op_MemBarCPUOrder);
5314 
5315   set_result(result);
5316   return true;
5317 }
5318 
5319 
5320 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5321                                               bool is_exact=true, bool is_static=false) {
5322 
5323   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5324   assert(tinst != NULL, "obj is null");
5325   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5326   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5327 
5328   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5329                                                                           ciSymbol::make(fieldTypeString),
5330                                                                           is_static);
5331   if (field == NULL) return (Node *) NULL;
5332   assert (field != NULL, "undefined field");
5333 
5334   // Next code  copied from Parse::do_get_xxx():
5335 
5336   // Compute address and memory type.
5337   int offset  = field->offset_in_bytes();
5338   bool is_vol = field->is_volatile();
5339   ciType* field_klass = field->type();
5340   assert(field_klass->is_loaded(), "should be loaded");
5341   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5342   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5343   BasicType bt = field->layout_type();
5344 
5345   // Build the resultant type of the load
5346   const Type *type;
5347   if (bt == T_OBJECT) {
5348     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5349   } else {
5350     type = Type::get_const_basic_type(bt);
5351   }
5352 
5353   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5354     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5355   }
5356   // Build the load.
5357   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5358   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, is_vol);
5359   // If reference is volatile, prevent following memory ops from
5360   // floating up past the volatile read.  Also prevents commoning
5361   // another volatile read.
5362   if (is_vol) {
5363     // Memory barrier includes bogus read of value to force load BEFORE membar
5364     insert_mem_bar(Op_MemBarAcquire, loadedField);
5365   }
5366   return loadedField;
5367 }
5368 
5369 
5370 //------------------------------inline_aescrypt_Block-----------------------
5371 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5372   address stubAddr;
5373   const char *stubName;
5374   assert(UseAES, "need AES instruction support");
5375 
5376   switch(id) {
5377   case vmIntrinsics::_aescrypt_encryptBlock:
5378     stubAddr = StubRoutines::aescrypt_encryptBlock();
5379     stubName = "aescrypt_encryptBlock";
5380     break;
5381   case vmIntrinsics::_aescrypt_decryptBlock:
5382     stubAddr = StubRoutines::aescrypt_decryptBlock();
5383     stubName = "aescrypt_decryptBlock";
5384     break;
5385   }
5386   if (stubAddr == NULL) return false;
5387 
5388   Node* aescrypt_object = argument(0);
5389   Node* src             = argument(1);
5390   Node* src_offset      = argument(2);
5391   Node* dest            = argument(3);
5392   Node* dest_offset     = argument(4);
5393 
5394   // (1) src and dest are arrays.
5395   const Type* src_type = src->Value(&_gvn);
5396   const Type* dest_type = dest->Value(&_gvn);
5397   const TypeAryPtr* top_src = src_type->isa_aryptr();
5398   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5399   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5400 
5401   // for the quick and dirty code we will skip all the checks.
5402   // we are just trying to get the call to be generated.
5403   Node* src_start  = src;
5404   Node* dest_start = dest;
5405   if (src_offset != NULL || dest_offset != NULL) {
5406     assert(src_offset != NULL && dest_offset != NULL, "");
5407     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5408     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5409   }
5410 
5411   // now need to get the start of its expanded key array
5412   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5413   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5414   if (k_start == NULL) return false;
5415 
5416   if (Matcher::pass_original_key_for_aes()) {
5417     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5418     // compatibility issues between Java key expansion and SPARC crypto instructions
5419     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5420     if (original_k_start == NULL) return false;
5421 
5422     // Call the stub.
5423     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5424                       stubAddr, stubName, TypePtr::BOTTOM,
5425                       src_start, dest_start, k_start, original_k_start);
5426   } else {
5427     // Call the stub.
5428     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5429                       stubAddr, stubName, TypePtr::BOTTOM,
5430                       src_start, dest_start, k_start);
5431   }
5432 
5433   return true;
5434 }
5435 
5436 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5437 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5438   address stubAddr;
5439   const char *stubName;
5440 
5441   assert(UseAES, "need AES instruction support");
5442 
5443   switch(id) {
5444   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5445     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5446     stubName = "cipherBlockChaining_encryptAESCrypt";
5447     break;
5448   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5449     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5450     stubName = "cipherBlockChaining_decryptAESCrypt";
5451     break;
5452   }
5453   if (stubAddr == NULL) return false;
5454 
5455   Node* cipherBlockChaining_object = argument(0);
5456   Node* src                        = argument(1);
5457   Node* src_offset                 = argument(2);
5458   Node* len                        = argument(3);
5459   Node* dest                       = argument(4);
5460   Node* dest_offset                = argument(5);
5461 
5462   // (1) src and dest are arrays.
5463   const Type* src_type = src->Value(&_gvn);
5464   const Type* dest_type = dest->Value(&_gvn);
5465   const TypeAryPtr* top_src = src_type->isa_aryptr();
5466   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5467   assert (top_src  != NULL && top_src->klass()  != NULL
5468           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5469 
5470   // checks are the responsibility of the caller
5471   Node* src_start  = src;
5472   Node* dest_start = dest;
5473   if (src_offset != NULL || dest_offset != NULL) {
5474     assert(src_offset != NULL && dest_offset != NULL, "");
5475     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5476     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5477   }
5478 
5479   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5480   // (because of the predicated logic executed earlier).
5481   // so we cast it here safely.
5482   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5483 
5484   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5485   if (embeddedCipherObj == NULL) return false;
5486 
5487   // cast it to what we know it will be at runtime
5488   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5489   assert(tinst != NULL, "CBC obj is null");
5490   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5491   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5492   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5493 
5494   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5495   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5496   const TypeOopPtr* xtype = aklass->as_instance_type();
5497   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5498   aescrypt_object = _gvn.transform(aescrypt_object);
5499 
5500   // we need to get the start of the aescrypt_object's expanded key array
5501   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5502   if (k_start == NULL) return false;
5503 
5504   // similarly, get the start address of the r vector
5505   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5506   if (objRvec == NULL) return false;
5507   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5508 
5509   Node* cbcCrypt;
5510   if (Matcher::pass_original_key_for_aes()) {
5511     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5512     // compatibility issues between Java key expansion and SPARC crypto instructions
5513     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5514     if (original_k_start == NULL) return false;
5515 
5516     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5517     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5518                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5519                                  stubAddr, stubName, TypePtr::BOTTOM,
5520                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5521   } else {
5522     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5523     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5524                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5525                                  stubAddr, stubName, TypePtr::BOTTOM,
5526                                  src_start, dest_start, k_start, r_start, len);
5527   }
5528 
5529   // return cipher length (int)
5530   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5531   set_result(retvalue);
5532   return true;
5533 }
5534 
5535 //------------------------------get_key_start_from_aescrypt_object-----------------------
5536 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5537   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5538   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5539   if (objAESCryptKey == NULL) return (Node *) NULL;
5540 
5541   // now have the array, need to get the start address of the K array
5542   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5543   return k_start;
5544 }
5545 
5546 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5547 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5548   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5549   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5550   if (objAESCryptKey == NULL) return (Node *) NULL;
5551 
5552   // now have the array, need to get the start address of the lastKey array
5553   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5554   return original_k_start;
5555 }
5556 
5557 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5558 // Return node representing slow path of predicate check.
5559 // the pseudo code we want to emulate with this predicate is:
5560 // for encryption:
5561 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5562 // for decryption:
5563 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5564 //    note cipher==plain is more conservative than the original java code but that's OK
5565 //
5566 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5567   // The receiver was checked for NULL already.
5568   Node* objCBC = argument(0);
5569 
5570   // Load embeddedCipher field of CipherBlockChaining object.
5571   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5572 
5573   // get AESCrypt klass for instanceOf check
5574   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5575   // will have same classloader as CipherBlockChaining object
5576   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5577   assert(tinst != NULL, "CBCobj is null");
5578   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5579 
5580   // we want to do an instanceof comparison against the AESCrypt class
5581   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5582   if (!klass_AESCrypt->is_loaded()) {
5583     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5584     Node* ctrl = control();
5585     set_control(top()); // no regular fast path
5586     return ctrl;
5587   }
5588   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5589 
5590   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5591   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5592   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5593 
5594   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5595 
5596   // for encryption, we are done
5597   if (!decrypting)
5598     return instof_false;  // even if it is NULL
5599 
5600   // for decryption, we need to add a further check to avoid
5601   // taking the intrinsic path when cipher and plain are the same
5602   // see the original java code for why.
5603   RegionNode* region = new RegionNode(3);
5604   region->init_req(1, instof_false);
5605   Node* src = argument(1);
5606   Node* dest = argument(4);
5607   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5608   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5609   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5610   region->init_req(2, src_dest_conjoint);
5611 
5612   record_for_igvn(region);
5613   return _gvn.transform(region);
5614 }
5615 
5616 //------------------------------inline_sha_implCompress-----------------------
5617 //
5618 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
5619 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
5620 //
5621 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
5622 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
5623 //
5624 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
5625 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
5626 //
5627 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
5628   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
5629 
5630   Node* sha_obj = argument(0);
5631   Node* src     = argument(1); // type oop
5632   Node* ofs     = argument(2); // type int
5633 
5634   const Type* src_type = src->Value(&_gvn);
5635   const TypeAryPtr* top_src = src_type->isa_aryptr();
5636   if (top_src  == NULL || top_src->klass()  == NULL) {
5637     // failed array check
5638     return false;
5639   }
5640   // Figure out the size and type of the elements we will be copying.
5641   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5642   if (src_elem != T_BYTE) {
5643     return false;
5644   }
5645   // 'src_start' points to src array + offset
5646   Node* src_start = array_element_address(src, ofs, src_elem);
5647   Node* state = NULL;
5648   address stubAddr;
5649   const char *stubName;
5650 
5651   switch(id) {
5652   case vmIntrinsics::_sha_implCompress:
5653     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
5654     state = get_state_from_sha_object(sha_obj);
5655     stubAddr = StubRoutines::sha1_implCompress();
5656     stubName = "sha1_implCompress";
5657     break;
5658   case vmIntrinsics::_sha2_implCompress:
5659     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
5660     state = get_state_from_sha_object(sha_obj);
5661     stubAddr = StubRoutines::sha256_implCompress();
5662     stubName = "sha256_implCompress";
5663     break;
5664   case vmIntrinsics::_sha5_implCompress:
5665     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
5666     state = get_state_from_sha5_object(sha_obj);
5667     stubAddr = StubRoutines::sha512_implCompress();
5668     stubName = "sha512_implCompress";
5669     break;
5670   default:
5671     fatal_unexpected_iid(id);
5672     return false;
5673   }
5674   if (state == NULL) return false;
5675 
5676   // Call the stub.
5677   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
5678                                  stubAddr, stubName, TypePtr::BOTTOM,
5679                                  src_start, state);
5680 
5681   return true;
5682 }
5683 
5684 //------------------------------inline_digestBase_implCompressMB-----------------------
5685 //
5686 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
5687 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
5688 //
5689 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
5690   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5691          "need SHA1/SHA256/SHA512 instruction support");
5692   assert((uint)predicate < 3, "sanity");
5693   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
5694 
5695   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
5696   Node* src            = argument(1); // byte[] array
5697   Node* ofs            = argument(2); // type int
5698   Node* limit          = argument(3); // type int
5699 
5700   const Type* src_type = src->Value(&_gvn);
5701   const TypeAryPtr* top_src = src_type->isa_aryptr();
5702   if (top_src  == NULL || top_src->klass()  == NULL) {
5703     // failed array check
5704     return false;
5705   }
5706   // Figure out the size and type of the elements we will be copying.
5707   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5708   if (src_elem != T_BYTE) {
5709     return false;
5710   }
5711   // 'src_start' points to src array + offset
5712   Node* src_start = array_element_address(src, ofs, src_elem);
5713 
5714   const char* klass_SHA_name = NULL;
5715   const char* stub_name = NULL;
5716   address     stub_addr = NULL;
5717   bool        long_state = false;
5718 
5719   switch (predicate) {
5720   case 0:
5721     if (UseSHA1Intrinsics) {
5722       klass_SHA_name = "sun/security/provider/SHA";
5723       stub_name = "sha1_implCompressMB";
5724       stub_addr = StubRoutines::sha1_implCompressMB();
5725     }
5726     break;
5727   case 1:
5728     if (UseSHA256Intrinsics) {
5729       klass_SHA_name = "sun/security/provider/SHA2";
5730       stub_name = "sha256_implCompressMB";
5731       stub_addr = StubRoutines::sha256_implCompressMB();
5732     }
5733     break;
5734   case 2:
5735     if (UseSHA512Intrinsics) {
5736       klass_SHA_name = "sun/security/provider/SHA5";
5737       stub_name = "sha512_implCompressMB";
5738       stub_addr = StubRoutines::sha512_implCompressMB();
5739       long_state = true;
5740     }
5741     break;
5742   default:
5743     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5744   }
5745   if (klass_SHA_name != NULL) {
5746     // get DigestBase klass to lookup for SHA klass
5747     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
5748     assert(tinst != NULL, "digestBase_obj is not instance???");
5749     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5750 
5751     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5752     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
5753     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5754     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
5755   }
5756   return false;
5757 }
5758 //------------------------------inline_sha_implCompressMB-----------------------
5759 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
5760                                                bool long_state, address stubAddr, const char *stubName,
5761                                                Node* src_start, Node* ofs, Node* limit) {
5762   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
5763   const TypeOopPtr* xtype = aklass->as_instance_type();
5764   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
5765   sha_obj = _gvn.transform(sha_obj);
5766 
5767   Node* state;
5768   if (long_state) {
5769     state = get_state_from_sha5_object(sha_obj);
5770   } else {
5771     state = get_state_from_sha_object(sha_obj);
5772   }
5773   if (state == NULL) return false;
5774 
5775   // Call the stub.
5776   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5777                                  OptoRuntime::digestBase_implCompressMB_Type(),
5778                                  stubAddr, stubName, TypePtr::BOTTOM,
5779                                  src_start, state, ofs, limit);
5780   // return ofs (int)
5781   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5782   set_result(result);
5783 
5784   return true;
5785 }
5786 
5787 //------------------------------get_state_from_sha_object-----------------------
5788 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
5789   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
5790   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
5791   if (sha_state == NULL) return (Node *) NULL;
5792 
5793   // now have the array, need to get the start address of the state array
5794   Node* state = array_element_address(sha_state, intcon(0), T_INT);
5795   return state;
5796 }
5797 
5798 //------------------------------get_state_from_sha5_object-----------------------
5799 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
5800   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
5801   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
5802   if (sha_state == NULL) return (Node *) NULL;
5803 
5804   // now have the array, need to get the start address of the state array
5805   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
5806   return state;
5807 }
5808 
5809 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
5810 // Return node representing slow path of predicate check.
5811 // the pseudo code we want to emulate with this predicate is:
5812 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
5813 //
5814 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
5815   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5816          "need SHA1/SHA256/SHA512 instruction support");
5817   assert((uint)predicate < 3, "sanity");
5818 
5819   // The receiver was checked for NULL already.
5820   Node* digestBaseObj = argument(0);
5821 
5822   // get DigestBase klass for instanceOf check
5823   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
5824   assert(tinst != NULL, "digestBaseObj is null");
5825   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5826 
5827   const char* klass_SHA_name = NULL;
5828   switch (predicate) {
5829   case 0:
5830     if (UseSHA1Intrinsics) {
5831       // we want to do an instanceof comparison against the SHA class
5832       klass_SHA_name = "sun/security/provider/SHA";
5833     }
5834     break;
5835   case 1:
5836     if (UseSHA256Intrinsics) {
5837       // we want to do an instanceof comparison against the SHA2 class
5838       klass_SHA_name = "sun/security/provider/SHA2";
5839     }
5840     break;
5841   case 2:
5842     if (UseSHA512Intrinsics) {
5843       // we want to do an instanceof comparison against the SHA5 class
5844       klass_SHA_name = "sun/security/provider/SHA5";
5845     }
5846     break;
5847   default:
5848     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5849   }
5850 
5851   ciKlass* klass_SHA = NULL;
5852   if (klass_SHA_name != NULL) {
5853     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5854   }
5855   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
5856     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
5857     Node* ctrl = control();
5858     set_control(top()); // no intrinsic path
5859     return ctrl;
5860   }
5861   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5862 
5863   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
5864   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
5865   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5866   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5867 
5868   return instof_false;  // even if it is NULL
5869 }