1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/codeCacheExtensions.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/workgroup.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "interpreter/oopMapCache.hpp"
  42 #include "jvmtifiles/jvmtiEnv.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logConfiguration.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/universe.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/objArrayOop.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/symbol.hpp"
  52 #include "oops/verifyOopClosure.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/privilegedStack.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.inline.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/commandLineFlagConstraintList.hpp"
  61 #include "runtime/commandLineFlagRangeList.hpp"
  62 #include "runtime/deoptimization.hpp"
  63 #include "runtime/fprofiler.hpp"
  64 #include "runtime/frame.inline.hpp"
  65 #include "runtime/globals.hpp"
  66 #include "runtime/init.hpp"
  67 #include "runtime/interfaceSupport.hpp"
  68 #include "runtime/java.hpp"
  69 #include "runtime/javaCalls.hpp"
  70 #include "runtime/jniPeriodicChecker.hpp"
  71 #include "runtime/logTimer.hpp"
  72 #include "runtime/memprofiler.hpp"
  73 #include "runtime/mutexLocker.hpp"
  74 #include "runtime/objectMonitor.hpp"
  75 #include "runtime/orderAccess.inline.hpp"
  76 #include "runtime/osThread.hpp"
  77 #include "runtime/safepoint.hpp"
  78 #include "runtime/sharedRuntime.hpp"
  79 #include "runtime/statSampler.hpp"
  80 #include "runtime/stubRoutines.hpp"
  81 #include "runtime/sweeper.hpp"
  82 #include "runtime/task.hpp"
  83 #include "runtime/thread.inline.hpp"
  84 #include "runtime/threadCritical.hpp"
  85 #include "runtime/vframe.hpp"
  86 #include "runtime/vframeArray.hpp"
  87 #include "runtime/vframe_hp.hpp"
  88 #include "runtime/vmThread.hpp"
  89 #include "runtime/vm_operations.hpp"
  90 #include "runtime/vm_version.hpp"
  91 #include "services/attachListener.hpp"
  92 #include "services/management.hpp"
  93 #include "services/memTracker.hpp"
  94 #include "services/threadService.hpp"
  95 #include "trace/traceMacros.hpp"
  96 #include "trace/tracing.hpp"
  97 #include "utilities/defaultStream.hpp"
  98 #include "utilities/dtrace.hpp"
  99 #include "utilities/events.hpp"
 100 #include "utilities/macros.hpp"
 101 #include "utilities/preserveException.hpp"
 102 #if INCLUDE_ALL_GCS
 103 #include "gc/cms/concurrentMarkSweepThread.hpp"
 104 #include "gc/g1/concurrentMarkThread.inline.hpp"
 105 #include "gc/parallel/pcTasks.hpp"
 106 #endif // INCLUDE_ALL_GCS
 107 #if INCLUDE_JVMCI
 108 #include "jvmci/jvmciCompiler.hpp"
 109 #include "jvmci/jvmciRuntime.hpp"
 110 #endif
 111 #ifdef COMPILER1
 112 #include "c1/c1_Compiler.hpp"
 113 #endif
 114 #ifdef COMPILER2
 115 #include "opto/c2compiler.hpp"
 116 #include "opto/idealGraphPrinter.hpp"
 117 #endif
 118 #if INCLUDE_RTM_OPT
 119 #include "runtime/rtmLocking.hpp"
 120 #endif
 121 
 122 // Initialization after module runtime initialization
 123 void universe_post_module_init();  // must happen after call_initPhase2
 124 
 125 #ifdef DTRACE_ENABLED
 126 
 127 // Only bother with this argument setup if dtrace is available
 128 
 129   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 130   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 131 
 132   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 133     {                                                                      \
 134       ResourceMark rm(this);                                               \
 135       int len = 0;                                                         \
 136       const char* name = (javathread)->get_thread_name();                  \
 137       len = strlen(name);                                                  \
 138       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 139         (char *) name, len,                                                \
 140         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 141         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 142         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 143     }
 144 
 145 #else //  ndef DTRACE_ENABLED
 146 
 147   #define DTRACE_THREAD_PROBE(probe, javathread)
 148 
 149 #endif // ndef DTRACE_ENABLED
 150 
 151 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 152 // Current thread is maintained as a thread-local variable
 153 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 154 #endif
 155 
 156 // Class hierarchy
 157 // - Thread
 158 //   - VMThread
 159 //   - WatcherThread
 160 //   - ConcurrentMarkSweepThread
 161 //   - JavaThread
 162 //     - CompilerThread
 163 
 164 // ======= Thread ========
 165 // Support for forcing alignment of thread objects for biased locking
 166 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 167   if (UseBiasedLocking) {
 168     const int alignment = markOopDesc::biased_lock_alignment;
 169     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 170     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 171                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 172                                                          AllocFailStrategy::RETURN_NULL);
 173     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 174     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 175            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 176            "JavaThread alignment code overflowed allocated storage");
 177     if (aligned_addr != real_malloc_addr) {
 178       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 179                               p2i(real_malloc_addr),
 180                               p2i(aligned_addr));
 181     }
 182     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 183     return aligned_addr;
 184   } else {
 185     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 186                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 187   }
 188 }
 189 
 190 void Thread::operator delete(void* p) {
 191   if (UseBiasedLocking) {
 192     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 193     FreeHeap(real_malloc_addr);
 194   } else {
 195     FreeHeap(p);
 196   }
 197 }
 198 
 199 
 200 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 201 // JavaThread
 202 
 203 
 204 Thread::Thread() {
 205   // stack and get_thread
 206   set_stack_base(NULL);
 207   set_stack_size(0);
 208   set_self_raw_id(0);
 209   set_lgrp_id(-1);
 210   DEBUG_ONLY(clear_suspendible_thread();)
 211 
 212   // allocated data structures
 213   set_osthread(NULL);
 214   set_resource_area(new (mtThread)ResourceArea());
 215   DEBUG_ONLY(_current_resource_mark = NULL;)
 216   set_handle_area(new (mtThread) HandleArea(NULL));
 217   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 218   set_active_handles(NULL);
 219   set_free_handle_block(NULL);
 220   set_last_handle_mark(NULL);
 221 
 222   // This initial value ==> never claimed.
 223   _oops_do_parity = 0;
 224 
 225   // the handle mark links itself to last_handle_mark
 226   new HandleMark(this);
 227 
 228   // plain initialization
 229   debug_only(_owned_locks = NULL;)
 230   debug_only(_allow_allocation_count = 0;)
 231   NOT_PRODUCT(_allow_safepoint_count = 0;)
 232   NOT_PRODUCT(_skip_gcalot = false;)
 233   _jvmti_env_iteration_count = 0;
 234   set_allocated_bytes(0);
 235   _vm_operation_started_count = 0;
 236   _vm_operation_completed_count = 0;
 237   _current_pending_monitor = NULL;
 238   _current_pending_monitor_is_from_java = true;
 239   _current_waiting_monitor = NULL;
 240   _num_nested_signal = 0;
 241   omFreeList = NULL;
 242   omFreeCount = 0;
 243   omFreeProvision = 32;
 244   omInUseList = NULL;
 245   omInUseCount = 0;
 246 
 247 #ifdef ASSERT
 248   _visited_for_critical_count = false;
 249 #endif
 250 
 251   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 252                          Monitor::_safepoint_check_sometimes);
 253   _suspend_flags = 0;
 254 
 255   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 256   _hashStateX = os::random();
 257   _hashStateY = 842502087;
 258   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 259   _hashStateW = 273326509;
 260 
 261   _OnTrap   = 0;
 262   _schedctl = NULL;
 263   _Stalled  = 0;
 264   _TypeTag  = 0x2BAD;
 265 
 266   // Many of the following fields are effectively final - immutable
 267   // Note that nascent threads can't use the Native Monitor-Mutex
 268   // construct until the _MutexEvent is initialized ...
 269   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 270   // we might instead use a stack of ParkEvents that we could provision on-demand.
 271   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 272   // and ::Release()
 273   _ParkEvent   = ParkEvent::Allocate(this);
 274   _SleepEvent  = ParkEvent::Allocate(this);
 275   _MutexEvent  = ParkEvent::Allocate(this);
 276   _MuxEvent    = ParkEvent::Allocate(this);
 277 
 278 #ifdef CHECK_UNHANDLED_OOPS
 279   if (CheckUnhandledOops) {
 280     _unhandled_oops = new UnhandledOops(this);
 281   }
 282 #endif // CHECK_UNHANDLED_OOPS
 283 #ifdef ASSERT
 284   if (UseBiasedLocking) {
 285     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 286     assert(this == _real_malloc_address ||
 287            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 288            "bug in forced alignment of thread objects");
 289   }
 290 #endif // ASSERT
 291 }
 292 
 293 void Thread::initialize_thread_current() {
 294 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 295   assert(_thr_current == NULL, "Thread::current already initialized");
 296   _thr_current = this;
 297 #endif
 298   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 299   ThreadLocalStorage::set_thread(this);
 300   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 301 }
 302 
 303 void Thread::clear_thread_current() {
 304   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 305 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 306   _thr_current = NULL;
 307 #endif
 308   ThreadLocalStorage::set_thread(NULL);
 309 }
 310 
 311 void Thread::record_stack_base_and_size() {
 312   set_stack_base(os::current_stack_base());
 313   set_stack_size(os::current_stack_size());
 314   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 315   // in initialize_thread(). Without the adjustment, stack size is
 316   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 317   // So far, only Solaris has real implementation of initialize_thread().
 318   //
 319   // set up any platform-specific state.
 320   os::initialize_thread(this);
 321 
 322   // Set stack limits after thread is initialized.
 323   if (is_Java_thread()) {
 324     ((JavaThread*) this)->set_stack_overflow_limit();
 325     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 326   }
 327 #if INCLUDE_NMT
 328   // record thread's native stack, stack grows downward
 329   MemTracker::record_thread_stack(stack_end(), stack_size());
 330 #endif // INCLUDE_NMT
 331   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 332     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 333     os::current_thread_id(), p2i(stack_base() - stack_size()),
 334     p2i(stack_base()), stack_size()/1024);
 335 }
 336 
 337 
 338 Thread::~Thread() {
 339   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 340   ObjectSynchronizer::omFlush(this);
 341 
 342   EVENT_THREAD_DESTRUCT(this);
 343 
 344   // stack_base can be NULL if the thread is never started or exited before
 345   // record_stack_base_and_size called. Although, we would like to ensure
 346   // that all started threads do call record_stack_base_and_size(), there is
 347   // not proper way to enforce that.
 348 #if INCLUDE_NMT
 349   if (_stack_base != NULL) {
 350     MemTracker::release_thread_stack(stack_end(), stack_size());
 351 #ifdef ASSERT
 352     set_stack_base(NULL);
 353 #endif
 354   }
 355 #endif // INCLUDE_NMT
 356 
 357   // deallocate data structures
 358   delete resource_area();
 359   // since the handle marks are using the handle area, we have to deallocated the root
 360   // handle mark before deallocating the thread's handle area,
 361   assert(last_handle_mark() != NULL, "check we have an element");
 362   delete last_handle_mark();
 363   assert(last_handle_mark() == NULL, "check we have reached the end");
 364 
 365   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 366   // We NULL out the fields for good hygiene.
 367   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 368   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 369   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 370   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 371 
 372   delete handle_area();
 373   delete metadata_handles();
 374 
 375   // osthread() can be NULL, if creation of thread failed.
 376   if (osthread() != NULL) os::free_thread(osthread());
 377 
 378   delete _SR_lock;
 379 
 380   // clear Thread::current if thread is deleting itself.
 381   // Needed to ensure JNI correctly detects non-attached threads.
 382   if (this == Thread::current()) {
 383     clear_thread_current();
 384   }
 385 
 386   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 387 }
 388 
 389 // NOTE: dummy function for assertion purpose.
 390 void Thread::run() {
 391   ShouldNotReachHere();
 392 }
 393 
 394 #ifdef ASSERT
 395 // Private method to check for dangling thread pointer
 396 void check_for_dangling_thread_pointer(Thread *thread) {
 397   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 398          "possibility of dangling Thread pointer");
 399 }
 400 #endif
 401 
 402 ThreadPriority Thread::get_priority(const Thread* const thread) {
 403   ThreadPriority priority;
 404   // Can return an error!
 405   (void)os::get_priority(thread, priority);
 406   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 407   return priority;
 408 }
 409 
 410 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 411   debug_only(check_for_dangling_thread_pointer(thread);)
 412   // Can return an error!
 413   (void)os::set_priority(thread, priority);
 414 }
 415 
 416 
 417 void Thread::start(Thread* thread) {
 418   // Start is different from resume in that its safety is guaranteed by context or
 419   // being called from a Java method synchronized on the Thread object.
 420   if (!DisableStartThread) {
 421     if (thread->is_Java_thread()) {
 422       // Initialize the thread state to RUNNABLE before starting this thread.
 423       // Can not set it after the thread started because we do not know the
 424       // exact thread state at that time. It could be in MONITOR_WAIT or
 425       // in SLEEPING or some other state.
 426       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 427                                           java_lang_Thread::RUNNABLE);
 428     }
 429     os::start_thread(thread);
 430   }
 431 }
 432 
 433 // Enqueue a VM_Operation to do the job for us - sometime later
 434 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 435   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 436   VMThread::execute(vm_stop);
 437 }
 438 
 439 
 440 // Check if an external suspend request has completed (or has been
 441 // cancelled). Returns true if the thread is externally suspended and
 442 // false otherwise.
 443 //
 444 // The bits parameter returns information about the code path through
 445 // the routine. Useful for debugging:
 446 //
 447 // set in is_ext_suspend_completed():
 448 // 0x00000001 - routine was entered
 449 // 0x00000010 - routine return false at end
 450 // 0x00000100 - thread exited (return false)
 451 // 0x00000200 - suspend request cancelled (return false)
 452 // 0x00000400 - thread suspended (return true)
 453 // 0x00001000 - thread is in a suspend equivalent state (return true)
 454 // 0x00002000 - thread is native and walkable (return true)
 455 // 0x00004000 - thread is native_trans and walkable (needed retry)
 456 //
 457 // set in wait_for_ext_suspend_completion():
 458 // 0x00010000 - routine was entered
 459 // 0x00020000 - suspend request cancelled before loop (return false)
 460 // 0x00040000 - thread suspended before loop (return true)
 461 // 0x00080000 - suspend request cancelled in loop (return false)
 462 // 0x00100000 - thread suspended in loop (return true)
 463 // 0x00200000 - suspend not completed during retry loop (return false)
 464 
 465 // Helper class for tracing suspend wait debug bits.
 466 //
 467 // 0x00000100 indicates that the target thread exited before it could
 468 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 469 // 0x00080000 each indicate a cancelled suspend request so they don't
 470 // count as wait failures either.
 471 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 472 
 473 class TraceSuspendDebugBits : public StackObj {
 474  private:
 475   JavaThread * jt;
 476   bool         is_wait;
 477   bool         called_by_wait;  // meaningful when !is_wait
 478   uint32_t *   bits;
 479 
 480  public:
 481   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 482                         uint32_t *_bits) {
 483     jt             = _jt;
 484     is_wait        = _is_wait;
 485     called_by_wait = _called_by_wait;
 486     bits           = _bits;
 487   }
 488 
 489   ~TraceSuspendDebugBits() {
 490     if (!is_wait) {
 491 #if 1
 492       // By default, don't trace bits for is_ext_suspend_completed() calls.
 493       // That trace is very chatty.
 494       return;
 495 #else
 496       if (!called_by_wait) {
 497         // If tracing for is_ext_suspend_completed() is enabled, then only
 498         // trace calls to it from wait_for_ext_suspend_completion()
 499         return;
 500       }
 501 #endif
 502     }
 503 
 504     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 505       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 506         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 507         ResourceMark rm;
 508 
 509         tty->print_cr(
 510                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 511                       jt->get_thread_name(), *bits);
 512 
 513         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 514       }
 515     }
 516   }
 517 };
 518 #undef DEBUG_FALSE_BITS
 519 
 520 
 521 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 522                                           uint32_t *bits) {
 523   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 524 
 525   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 526   bool do_trans_retry;           // flag to force the retry
 527 
 528   *bits |= 0x00000001;
 529 
 530   do {
 531     do_trans_retry = false;
 532 
 533     if (is_exiting()) {
 534       // Thread is in the process of exiting. This is always checked
 535       // first to reduce the risk of dereferencing a freed JavaThread.
 536       *bits |= 0x00000100;
 537       return false;
 538     }
 539 
 540     if (!is_external_suspend()) {
 541       // Suspend request is cancelled. This is always checked before
 542       // is_ext_suspended() to reduce the risk of a rogue resume
 543       // confusing the thread that made the suspend request.
 544       *bits |= 0x00000200;
 545       return false;
 546     }
 547 
 548     if (is_ext_suspended()) {
 549       // thread is suspended
 550       *bits |= 0x00000400;
 551       return true;
 552     }
 553 
 554     // Now that we no longer do hard suspends of threads running
 555     // native code, the target thread can be changing thread state
 556     // while we are in this routine:
 557     //
 558     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 559     //
 560     // We save a copy of the thread state as observed at this moment
 561     // and make our decision about suspend completeness based on the
 562     // copy. This closes the race where the thread state is seen as
 563     // _thread_in_native_trans in the if-thread_blocked check, but is
 564     // seen as _thread_blocked in if-thread_in_native_trans check.
 565     JavaThreadState save_state = thread_state();
 566 
 567     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 568       // If the thread's state is _thread_blocked and this blocking
 569       // condition is known to be equivalent to a suspend, then we can
 570       // consider the thread to be externally suspended. This means that
 571       // the code that sets _thread_blocked has been modified to do
 572       // self-suspension if the blocking condition releases. We also
 573       // used to check for CONDVAR_WAIT here, but that is now covered by
 574       // the _thread_blocked with self-suspension check.
 575       //
 576       // Return true since we wouldn't be here unless there was still an
 577       // external suspend request.
 578       *bits |= 0x00001000;
 579       return true;
 580     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 581       // Threads running native code will self-suspend on native==>VM/Java
 582       // transitions. If its stack is walkable (should always be the case
 583       // unless this function is called before the actual java_suspend()
 584       // call), then the wait is done.
 585       *bits |= 0x00002000;
 586       return true;
 587     } else if (!called_by_wait && !did_trans_retry &&
 588                save_state == _thread_in_native_trans &&
 589                frame_anchor()->walkable()) {
 590       // The thread is transitioning from thread_in_native to another
 591       // thread state. check_safepoint_and_suspend_for_native_trans()
 592       // will force the thread to self-suspend. If it hasn't gotten
 593       // there yet we may have caught the thread in-between the native
 594       // code check above and the self-suspend. Lucky us. If we were
 595       // called by wait_for_ext_suspend_completion(), then it
 596       // will be doing the retries so we don't have to.
 597       //
 598       // Since we use the saved thread state in the if-statement above,
 599       // there is a chance that the thread has already transitioned to
 600       // _thread_blocked by the time we get here. In that case, we will
 601       // make a single unnecessary pass through the logic below. This
 602       // doesn't hurt anything since we still do the trans retry.
 603 
 604       *bits |= 0x00004000;
 605 
 606       // Once the thread leaves thread_in_native_trans for another
 607       // thread state, we break out of this retry loop. We shouldn't
 608       // need this flag to prevent us from getting back here, but
 609       // sometimes paranoia is good.
 610       did_trans_retry = true;
 611 
 612       // We wait for the thread to transition to a more usable state.
 613       for (int i = 1; i <= SuspendRetryCount; i++) {
 614         // We used to do an "os::yield_all(i)" call here with the intention
 615         // that yielding would increase on each retry. However, the parameter
 616         // is ignored on Linux which means the yield didn't scale up. Waiting
 617         // on the SR_lock below provides a much more predictable scale up for
 618         // the delay. It also provides a simple/direct point to check for any
 619         // safepoint requests from the VMThread
 620 
 621         // temporarily drops SR_lock while doing wait with safepoint check
 622         // (if we're a JavaThread - the WatcherThread can also call this)
 623         // and increase delay with each retry
 624         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 625 
 626         // check the actual thread state instead of what we saved above
 627         if (thread_state() != _thread_in_native_trans) {
 628           // the thread has transitioned to another thread state so
 629           // try all the checks (except this one) one more time.
 630           do_trans_retry = true;
 631           break;
 632         }
 633       } // end retry loop
 634 
 635 
 636     }
 637   } while (do_trans_retry);
 638 
 639   *bits |= 0x00000010;
 640   return false;
 641 }
 642 
 643 // Wait for an external suspend request to complete (or be cancelled).
 644 // Returns true if the thread is externally suspended and false otherwise.
 645 //
 646 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 647                                                  uint32_t *bits) {
 648   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 649                              false /* !called_by_wait */, bits);
 650 
 651   // local flag copies to minimize SR_lock hold time
 652   bool is_suspended;
 653   bool pending;
 654   uint32_t reset_bits;
 655 
 656   // set a marker so is_ext_suspend_completed() knows we are the caller
 657   *bits |= 0x00010000;
 658 
 659   // We use reset_bits to reinitialize the bits value at the top of
 660   // each retry loop. This allows the caller to make use of any
 661   // unused bits for their own marking purposes.
 662   reset_bits = *bits;
 663 
 664   {
 665     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 666     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 667                                             delay, bits);
 668     pending = is_external_suspend();
 669   }
 670   // must release SR_lock to allow suspension to complete
 671 
 672   if (!pending) {
 673     // A cancelled suspend request is the only false return from
 674     // is_ext_suspend_completed() that keeps us from entering the
 675     // retry loop.
 676     *bits |= 0x00020000;
 677     return false;
 678   }
 679 
 680   if (is_suspended) {
 681     *bits |= 0x00040000;
 682     return true;
 683   }
 684 
 685   for (int i = 1; i <= retries; i++) {
 686     *bits = reset_bits;  // reinit to only track last retry
 687 
 688     // We used to do an "os::yield_all(i)" call here with the intention
 689     // that yielding would increase on each retry. However, the parameter
 690     // is ignored on Linux which means the yield didn't scale up. Waiting
 691     // on the SR_lock below provides a much more predictable scale up for
 692     // the delay. It also provides a simple/direct point to check for any
 693     // safepoint requests from the VMThread
 694 
 695     {
 696       MutexLocker ml(SR_lock());
 697       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 698       // can also call this)  and increase delay with each retry
 699       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 700 
 701       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 702                                               delay, bits);
 703 
 704       // It is possible for the external suspend request to be cancelled
 705       // (by a resume) before the actual suspend operation is completed.
 706       // Refresh our local copy to see if we still need to wait.
 707       pending = is_external_suspend();
 708     }
 709 
 710     if (!pending) {
 711       // A cancelled suspend request is the only false return from
 712       // is_ext_suspend_completed() that keeps us from staying in the
 713       // retry loop.
 714       *bits |= 0x00080000;
 715       return false;
 716     }
 717 
 718     if (is_suspended) {
 719       *bits |= 0x00100000;
 720       return true;
 721     }
 722   } // end retry loop
 723 
 724   // thread did not suspend after all our retries
 725   *bits |= 0x00200000;
 726   return false;
 727 }
 728 
 729 #ifndef PRODUCT
 730 void JavaThread::record_jump(address target, address instr, const char* file,
 731                              int line) {
 732 
 733   // This should not need to be atomic as the only way for simultaneous
 734   // updates is via interrupts. Even then this should be rare or non-existent
 735   // and we don't care that much anyway.
 736 
 737   int index = _jmp_ring_index;
 738   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 739   _jmp_ring[index]._target = (intptr_t) target;
 740   _jmp_ring[index]._instruction = (intptr_t) instr;
 741   _jmp_ring[index]._file = file;
 742   _jmp_ring[index]._line = line;
 743 }
 744 #endif // PRODUCT
 745 
 746 // Called by flat profiler
 747 // Callers have already called wait_for_ext_suspend_completion
 748 // The assertion for that is currently too complex to put here:
 749 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 750   bool gotframe = false;
 751   // self suspension saves needed state.
 752   if (has_last_Java_frame() && _anchor.walkable()) {
 753     *_fr = pd_last_frame();
 754     gotframe = true;
 755   }
 756   return gotframe;
 757 }
 758 
 759 void Thread::interrupt(Thread* thread) {
 760   debug_only(check_for_dangling_thread_pointer(thread);)
 761   os::interrupt(thread);
 762 }
 763 
 764 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 765   debug_only(check_for_dangling_thread_pointer(thread);)
 766   // Note:  If clear_interrupted==false, this simply fetches and
 767   // returns the value of the field osthread()->interrupted().
 768   return os::is_interrupted(thread, clear_interrupted);
 769 }
 770 
 771 
 772 // GC Support
 773 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 774   jint thread_parity = _oops_do_parity;
 775   if (thread_parity != strong_roots_parity) {
 776     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 777     if (res == thread_parity) {
 778       return true;
 779     } else {
 780       guarantee(res == strong_roots_parity, "Or else what?");
 781       return false;
 782     }
 783   }
 784   return false;
 785 }
 786 
 787 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 788   active_handles()->oops_do(f);
 789   // Do oop for ThreadShadow
 790   f->do_oop((oop*)&_pending_exception);
 791   handle_area()->oops_do(f);
 792 }
 793 
 794 void Thread::nmethods_do(CodeBlobClosure* cf) {
 795   // no nmethods in a generic thread...
 796 }
 797 
 798 void Thread::metadata_handles_do(void f(Metadata*)) {
 799   // Only walk the Handles in Thread.
 800   if (metadata_handles() != NULL) {
 801     for (int i = 0; i< metadata_handles()->length(); i++) {
 802       f(metadata_handles()->at(i));
 803     }
 804   }
 805 }
 806 
 807 void Thread::print_on(outputStream* st) const {
 808   // get_priority assumes osthread initialized
 809   if (osthread() != NULL) {
 810     int os_prio;
 811     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 812       st->print("os_prio=%d ", os_prio);
 813     }
 814     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 815     ext().print_on(st);
 816     osthread()->print_on(st);
 817   }
 818   debug_only(if (WizardMode) print_owned_locks_on(st);)
 819 }
 820 
 821 // Thread::print_on_error() is called by fatal error handler. Don't use
 822 // any lock or allocate memory.
 823 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 824   if (is_VM_thread())                 st->print("VMThread");
 825   else if (is_Compiler_thread())      st->print("CompilerThread");
 826   else if (is_Java_thread())          st->print("JavaThread");
 827   else if (is_GC_task_thread())       st->print("GCTaskThread");
 828   else if (is_Watcher_thread())       st->print("WatcherThread");
 829   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 830   else                                st->print("Thread");
 831 
 832   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 833             p2i(stack_end()), p2i(stack_base()));
 834 
 835   if (osthread()) {
 836     st->print(" [id=%d]", osthread()->thread_id());
 837   }
 838 }
 839 
 840 #ifdef ASSERT
 841 void Thread::print_owned_locks_on(outputStream* st) const {
 842   Monitor *cur = _owned_locks;
 843   if (cur == NULL) {
 844     st->print(" (no locks) ");
 845   } else {
 846     st->print_cr(" Locks owned:");
 847     while (cur) {
 848       cur->print_on(st);
 849       cur = cur->next();
 850     }
 851   }
 852 }
 853 
 854 static int ref_use_count  = 0;
 855 
 856 bool Thread::owns_locks_but_compiled_lock() const {
 857   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 858     if (cur != Compile_lock) return true;
 859   }
 860   return false;
 861 }
 862 
 863 
 864 #endif
 865 
 866 #ifndef PRODUCT
 867 
 868 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 869 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 870 // no threads which allow_vm_block's are held
 871 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 872   // Check if current thread is allowed to block at a safepoint
 873   if (!(_allow_safepoint_count == 0)) {
 874     fatal("Possible safepoint reached by thread that does not allow it");
 875   }
 876   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 877     fatal("LEAF method calling lock?");
 878   }
 879 
 880 #ifdef ASSERT
 881   if (potential_vm_operation && is_Java_thread()
 882       && !Universe::is_bootstrapping()) {
 883     // Make sure we do not hold any locks that the VM thread also uses.
 884     // This could potentially lead to deadlocks
 885     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 886       // Threads_lock is special, since the safepoint synchronization will not start before this is
 887       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 888       // since it is used to transfer control between JavaThreads and the VMThread
 889       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 890       if ((cur->allow_vm_block() &&
 891            cur != Threads_lock &&
 892            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 893            cur != VMOperationRequest_lock &&
 894            cur != VMOperationQueue_lock) ||
 895            cur->rank() == Mutex::special) {
 896         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 897       }
 898     }
 899   }
 900 
 901   if (GCALotAtAllSafepoints) {
 902     // We could enter a safepoint here and thus have a gc
 903     InterfaceSupport::check_gc_alot();
 904   }
 905 #endif
 906 }
 907 #endif
 908 
 909 bool Thread::is_in_stack(address adr) const {
 910   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 911   address end = os::current_stack_pointer();
 912   // Allow non Java threads to call this without stack_base
 913   if (_stack_base == NULL) return true;
 914   if (stack_base() >= adr && adr >= end) return true;
 915 
 916   return false;
 917 }
 918 
 919 bool Thread::is_in_usable_stack(address adr) const {
 920   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 921   size_t usable_stack_size = _stack_size - stack_guard_size;
 922 
 923   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 924 }
 925 
 926 
 927 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 928 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 929 // used for compilation in the future. If that change is made, the need for these methods
 930 // should be revisited, and they should be removed if possible.
 931 
 932 bool Thread::is_lock_owned(address adr) const {
 933   return on_local_stack(adr);
 934 }
 935 
 936 bool Thread::set_as_starting_thread() {
 937   // NOTE: this must be called inside the main thread.
 938   return os::create_main_thread((JavaThread*)this);
 939 }
 940 
 941 static void initialize_class(Symbol* class_name, TRAPS) {
 942   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 943   InstanceKlass::cast(klass)->initialize(CHECK);
 944 }
 945 
 946 
 947 // Creates the initial ThreadGroup
 948 static Handle create_initial_thread_group(TRAPS) {
 949   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 950   instanceKlassHandle klass (THREAD, k);
 951 
 952   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 953   {
 954     JavaValue result(T_VOID);
 955     JavaCalls::call_special(&result,
 956                             system_instance,
 957                             klass,
 958                             vmSymbols::object_initializer_name(),
 959                             vmSymbols::void_method_signature(),
 960                             CHECK_NH);
 961   }
 962   Universe::set_system_thread_group(system_instance());
 963 
 964   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 965   {
 966     JavaValue result(T_VOID);
 967     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 968     JavaCalls::call_special(&result,
 969                             main_instance,
 970                             klass,
 971                             vmSymbols::object_initializer_name(),
 972                             vmSymbols::threadgroup_string_void_signature(),
 973                             system_instance,
 974                             string,
 975                             CHECK_NH);
 976   }
 977   return main_instance;
 978 }
 979 
 980 // Creates the initial Thread
 981 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 982                                  TRAPS) {
 983   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 984   instanceKlassHandle klass (THREAD, k);
 985   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 986 
 987   java_lang_Thread::set_thread(thread_oop(), thread);
 988   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 989   thread->set_threadObj(thread_oop());
 990 
 991   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 992 
 993   JavaValue result(T_VOID);
 994   JavaCalls::call_special(&result, thread_oop,
 995                           klass,
 996                           vmSymbols::object_initializer_name(),
 997                           vmSymbols::threadgroup_string_void_signature(),
 998                           thread_group,
 999                           string,
1000                           CHECK_NULL);
1001   return thread_oop();
1002 }
1003 
1004 char java_runtime_name[128] = "";
1005 char java_runtime_version[128] = "";
1006 
1007 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1008 static const char* get_java_runtime_name(TRAPS) {
1009   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1010                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1011   fieldDescriptor fd;
1012   bool found = k != NULL &&
1013                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1014                                                         vmSymbols::string_signature(), &fd);
1015   if (found) {
1016     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1017     if (name_oop == NULL) {
1018       return NULL;
1019     }
1020     const char* name = java_lang_String::as_utf8_string(name_oop,
1021                                                         java_runtime_name,
1022                                                         sizeof(java_runtime_name));
1023     return name;
1024   } else {
1025     return NULL;
1026   }
1027 }
1028 
1029 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1030 static const char* get_java_runtime_version(TRAPS) {
1031   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1032                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1033   fieldDescriptor fd;
1034   bool found = k != NULL &&
1035                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1036                                                         vmSymbols::string_signature(), &fd);
1037   if (found) {
1038     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1039     if (name_oop == NULL) {
1040       return NULL;
1041     }
1042     const char* name = java_lang_String::as_utf8_string(name_oop,
1043                                                         java_runtime_version,
1044                                                         sizeof(java_runtime_version));
1045     return name;
1046   } else {
1047     return NULL;
1048   }
1049 }
1050 
1051 // General purpose hook into Java code, run once when the VM is initialized.
1052 // The Java library method itself may be changed independently from the VM.
1053 static void call_postVMInitHook(TRAPS) {
1054   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1055   instanceKlassHandle klass (THREAD, k);
1056   if (klass.not_null()) {
1057     JavaValue result(T_VOID);
1058     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1059                            vmSymbols::void_method_signature(),
1060                            CHECK);
1061   }
1062 }
1063 
1064 static void reset_vm_info_property(TRAPS) {
1065   // the vm info string
1066   ResourceMark rm(THREAD);
1067   const char *vm_info = VM_Version::vm_info_string();
1068 
1069   // java.lang.System class
1070   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1071   instanceKlassHandle klass (THREAD, k);
1072 
1073   // setProperty arguments
1074   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1075   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1076 
1077   // return value
1078   JavaValue r(T_OBJECT);
1079 
1080   // public static String setProperty(String key, String value);
1081   JavaCalls::call_static(&r,
1082                          klass,
1083                          vmSymbols::setProperty_name(),
1084                          vmSymbols::string_string_string_signature(),
1085                          key_str,
1086                          value_str,
1087                          CHECK);
1088 }
1089 
1090 
1091 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1092                                     bool daemon, TRAPS) {
1093   assert(thread_group.not_null(), "thread group should be specified");
1094   assert(threadObj() == NULL, "should only create Java thread object once");
1095 
1096   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1097   instanceKlassHandle klass (THREAD, k);
1098   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1099 
1100   java_lang_Thread::set_thread(thread_oop(), this);
1101   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1102   set_threadObj(thread_oop());
1103 
1104   JavaValue result(T_VOID);
1105   if (thread_name != NULL) {
1106     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1107     // Thread gets assigned specified name and null target
1108     JavaCalls::call_special(&result,
1109                             thread_oop,
1110                             klass,
1111                             vmSymbols::object_initializer_name(),
1112                             vmSymbols::threadgroup_string_void_signature(),
1113                             thread_group, // Argument 1
1114                             name,         // Argument 2
1115                             THREAD);
1116   } else {
1117     // Thread gets assigned name "Thread-nnn" and null target
1118     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1119     JavaCalls::call_special(&result,
1120                             thread_oop,
1121                             klass,
1122                             vmSymbols::object_initializer_name(),
1123                             vmSymbols::threadgroup_runnable_void_signature(),
1124                             thread_group, // Argument 1
1125                             Handle(),     // Argument 2
1126                             THREAD);
1127   }
1128 
1129 
1130   if (daemon) {
1131     java_lang_Thread::set_daemon(thread_oop());
1132   }
1133 
1134   if (HAS_PENDING_EXCEPTION) {
1135     return;
1136   }
1137 
1138   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1139   Handle threadObj(THREAD, this->threadObj());
1140 
1141   JavaCalls::call_special(&result,
1142                           thread_group,
1143                           group,
1144                           vmSymbols::add_method_name(),
1145                           vmSymbols::thread_void_signature(),
1146                           threadObj,          // Arg 1
1147                           THREAD);
1148 }
1149 
1150 // NamedThread --  non-JavaThread subclasses with multiple
1151 // uniquely named instances should derive from this.
1152 NamedThread::NamedThread() : Thread() {
1153   _name = NULL;
1154   _processed_thread = NULL;
1155   _gc_id = GCId::undefined();
1156 }
1157 
1158 NamedThread::~NamedThread() {
1159   if (_name != NULL) {
1160     FREE_C_HEAP_ARRAY(char, _name);
1161     _name = NULL;
1162   }
1163 }
1164 
1165 void NamedThread::set_name(const char* format, ...) {
1166   guarantee(_name == NULL, "Only get to set name once.");
1167   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1168   guarantee(_name != NULL, "alloc failure");
1169   va_list ap;
1170   va_start(ap, format);
1171   jio_vsnprintf(_name, max_name_len, format, ap);
1172   va_end(ap);
1173 }
1174 
1175 void NamedThread::initialize_named_thread() {
1176   set_native_thread_name(name());
1177 }
1178 
1179 void NamedThread::print_on(outputStream* st) const {
1180   st->print("\"%s\" ", name());
1181   Thread::print_on(st);
1182   st->cr();
1183 }
1184 
1185 
1186 // ======= WatcherThread ========
1187 
1188 // The watcher thread exists to simulate timer interrupts.  It should
1189 // be replaced by an abstraction over whatever native support for
1190 // timer interrupts exists on the platform.
1191 
1192 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1193 bool WatcherThread::_startable = false;
1194 volatile bool  WatcherThread::_should_terminate = false;
1195 
1196 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1197   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1198   if (os::create_thread(this, os::watcher_thread)) {
1199     _watcher_thread = this;
1200 
1201     // Set the watcher thread to the highest OS priority which should not be
1202     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1203     // is created. The only normal thread using this priority is the reference
1204     // handler thread, which runs for very short intervals only.
1205     // If the VMThread's priority is not lower than the WatcherThread profiling
1206     // will be inaccurate.
1207     os::set_priority(this, MaxPriority);
1208     if (!DisableStartThread) {
1209       os::start_thread(this);
1210     }
1211   }
1212 }
1213 
1214 int WatcherThread::sleep() const {
1215   // The WatcherThread does not participate in the safepoint protocol
1216   // for the PeriodicTask_lock because it is not a JavaThread.
1217   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1218 
1219   if (_should_terminate) {
1220     // check for termination before we do any housekeeping or wait
1221     return 0;  // we did not sleep.
1222   }
1223 
1224   // remaining will be zero if there are no tasks,
1225   // causing the WatcherThread to sleep until a task is
1226   // enrolled
1227   int remaining = PeriodicTask::time_to_wait();
1228   int time_slept = 0;
1229 
1230   // we expect this to timeout - we only ever get unparked when
1231   // we should terminate or when a new task has been enrolled
1232   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1233 
1234   jlong time_before_loop = os::javaTimeNanos();
1235 
1236   while (true) {
1237     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1238                                             remaining);
1239     jlong now = os::javaTimeNanos();
1240 
1241     if (remaining == 0) {
1242       // if we didn't have any tasks we could have waited for a long time
1243       // consider the time_slept zero and reset time_before_loop
1244       time_slept = 0;
1245       time_before_loop = now;
1246     } else {
1247       // need to recalculate since we might have new tasks in _tasks
1248       time_slept = (int) ((now - time_before_loop) / 1000000);
1249     }
1250 
1251     // Change to task list or spurious wakeup of some kind
1252     if (timedout || _should_terminate) {
1253       break;
1254     }
1255 
1256     remaining = PeriodicTask::time_to_wait();
1257     if (remaining == 0) {
1258       // Last task was just disenrolled so loop around and wait until
1259       // another task gets enrolled
1260       continue;
1261     }
1262 
1263     remaining -= time_slept;
1264     if (remaining <= 0) {
1265       break;
1266     }
1267   }
1268 
1269   return time_slept;
1270 }
1271 
1272 void WatcherThread::run() {
1273   assert(this == watcher_thread(), "just checking");
1274 
1275   this->record_stack_base_and_size();
1276   this->set_native_thread_name(this->name());
1277   this->set_active_handles(JNIHandleBlock::allocate_block());
1278   while (true) {
1279     assert(watcher_thread() == Thread::current(), "thread consistency check");
1280     assert(watcher_thread() == this, "thread consistency check");
1281 
1282     // Calculate how long it'll be until the next PeriodicTask work
1283     // should be done, and sleep that amount of time.
1284     int time_waited = sleep();
1285 
1286     if (is_error_reported()) {
1287       // A fatal error has happened, the error handler(VMError::report_and_die)
1288       // should abort JVM after creating an error log file. However in some
1289       // rare cases, the error handler itself might deadlock. Here we try to
1290       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1291       //
1292       // This code is in WatcherThread because WatcherThread wakes up
1293       // periodically so the fatal error handler doesn't need to do anything;
1294       // also because the WatcherThread is less likely to crash than other
1295       // threads.
1296 
1297       for (;;) {
1298         if (!ShowMessageBoxOnError
1299             && (OnError == NULL || OnError[0] == '\0')
1300             && Arguments::abort_hook() == NULL) {
1301           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1302           fdStream err(defaultStream::output_fd());
1303           err.print_raw_cr("# [ timer expired, abort... ]");
1304           // skip atexit/vm_exit/vm_abort hooks
1305           os::die();
1306         }
1307 
1308         // Wake up 5 seconds later, the fatal handler may reset OnError or
1309         // ShowMessageBoxOnError when it is ready to abort.
1310         os::sleep(this, 5 * 1000, false);
1311       }
1312     }
1313 
1314     if (_should_terminate) {
1315       // check for termination before posting the next tick
1316       break;
1317     }
1318 
1319     PeriodicTask::real_time_tick(time_waited);
1320   }
1321 
1322   // Signal that it is terminated
1323   {
1324     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1325     _watcher_thread = NULL;
1326     Terminator_lock->notify();
1327   }
1328 }
1329 
1330 void WatcherThread::start() {
1331   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1332 
1333   if (watcher_thread() == NULL && _startable) {
1334     _should_terminate = false;
1335     // Create the single instance of WatcherThread
1336     new WatcherThread();
1337   }
1338 }
1339 
1340 void WatcherThread::make_startable() {
1341   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1342   _startable = true;
1343 }
1344 
1345 void WatcherThread::stop() {
1346   {
1347     // Follow normal safepoint aware lock enter protocol since the
1348     // WatcherThread is stopped by another JavaThread.
1349     MutexLocker ml(PeriodicTask_lock);
1350     _should_terminate = true;
1351 
1352     WatcherThread* watcher = watcher_thread();
1353     if (watcher != NULL) {
1354       // unpark the WatcherThread so it can see that it should terminate
1355       watcher->unpark();
1356     }
1357   }
1358 
1359   MutexLocker mu(Terminator_lock);
1360 
1361   while (watcher_thread() != NULL) {
1362     // This wait should make safepoint checks, wait without a timeout,
1363     // and wait as a suspend-equivalent condition.
1364     //
1365     // Note: If the FlatProfiler is running, then this thread is waiting
1366     // for the WatcherThread to terminate and the WatcherThread, via the
1367     // FlatProfiler task, is waiting for the external suspend request on
1368     // this thread to complete. wait_for_ext_suspend_completion() will
1369     // eventually timeout, but that takes time. Making this wait a
1370     // suspend-equivalent condition solves that timeout problem.
1371     //
1372     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1373                           Mutex::_as_suspend_equivalent_flag);
1374   }
1375 }
1376 
1377 void WatcherThread::unpark() {
1378   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1379   PeriodicTask_lock->notify();
1380 }
1381 
1382 void WatcherThread::print_on(outputStream* st) const {
1383   st->print("\"%s\" ", name());
1384   Thread::print_on(st);
1385   st->cr();
1386 }
1387 
1388 // ======= JavaThread ========
1389 
1390 #if INCLUDE_JVMCI
1391 
1392 jlong* JavaThread::_jvmci_old_thread_counters;
1393 
1394 bool jvmci_counters_include(JavaThread* thread) {
1395   oop threadObj = thread->threadObj();
1396   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1397 }
1398 
1399 void JavaThread::collect_counters(typeArrayOop array) {
1400   if (JVMCICounterSize > 0) {
1401     MutexLocker tl(Threads_lock);
1402     for (int i = 0; i < array->length(); i++) {
1403       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1404     }
1405     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1406       if (jvmci_counters_include(tp)) {
1407         for (int i = 0; i < array->length(); i++) {
1408           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1409         }
1410       }
1411     }
1412   }
1413 }
1414 
1415 #endif // INCLUDE_JVMCI
1416 
1417 // A JavaThread is a normal Java thread
1418 
1419 void JavaThread::initialize() {
1420   // Initialize fields
1421 
1422   set_saved_exception_pc(NULL);
1423   set_threadObj(NULL);
1424   _anchor.clear();
1425   set_entry_point(NULL);
1426   set_jni_functions(jni_functions());
1427   set_callee_target(NULL);
1428   set_vm_result(NULL);
1429   set_vm_result_2(NULL);
1430   set_vframe_array_head(NULL);
1431   set_vframe_array_last(NULL);
1432   set_deferred_locals(NULL);
1433   set_deopt_mark(NULL);
1434   set_deopt_nmethod(NULL);
1435   clear_must_deopt_id();
1436   set_monitor_chunks(NULL);
1437   set_next(NULL);
1438   set_thread_state(_thread_new);
1439   _terminated = _not_terminated;
1440   _privileged_stack_top = NULL;
1441   _array_for_gc = NULL;
1442   _suspend_equivalent = false;
1443   _in_deopt_handler = 0;
1444   _doing_unsafe_access = false;
1445   _stack_guard_state = stack_guard_unused;
1446 #if INCLUDE_JVMCI
1447   _pending_monitorenter = false;
1448   _pending_deoptimization = -1;
1449   _pending_failed_speculation = NULL;
1450   _pending_transfer_to_interpreter = false;
1451   _jvmci._alternate_call_target = NULL;
1452   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1453   if (JVMCICounterSize > 0) {
1454     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1455     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1456   } else {
1457     _jvmci_counters = NULL;
1458   }
1459 #endif // INCLUDE_JVMCI
1460   _reserved_stack_activation = NULL;  // stack base not known yet
1461   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1462   _exception_pc  = 0;
1463   _exception_handler_pc = 0;
1464   _is_method_handle_return = 0;
1465   _jvmti_thread_state= NULL;
1466   _should_post_on_exceptions_flag = JNI_FALSE;
1467   _jvmti_get_loaded_classes_closure = NULL;
1468   _interp_only_mode    = 0;
1469   _special_runtime_exit_condition = _no_async_condition;
1470   _pending_async_exception = NULL;
1471   _thread_stat = NULL;
1472   _thread_stat = new ThreadStatistics();
1473   _blocked_on_compilation = false;
1474   _jni_active_critical = 0;
1475   _pending_jni_exception_check_fn = NULL;
1476   _do_not_unlock_if_synchronized = false;
1477   _cached_monitor_info = NULL;
1478   _parker = Parker::Allocate(this);
1479 
1480 #ifndef PRODUCT
1481   _jmp_ring_index = 0;
1482   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1483     record_jump(NULL, NULL, NULL, 0);
1484   }
1485 #endif // PRODUCT
1486 
1487   set_thread_profiler(NULL);
1488   if (FlatProfiler::is_active()) {
1489     // This is where we would decide to either give each thread it's own profiler
1490     // or use one global one from FlatProfiler,
1491     // or up to some count of the number of profiled threads, etc.
1492     ThreadProfiler* pp = new ThreadProfiler();
1493     pp->engage();
1494     set_thread_profiler(pp);
1495   }
1496 
1497   // Setup safepoint state info for this thread
1498   ThreadSafepointState::create(this);
1499 
1500   debug_only(_java_call_counter = 0);
1501 
1502   // JVMTI PopFrame support
1503   _popframe_condition = popframe_inactive;
1504   _popframe_preserved_args = NULL;
1505   _popframe_preserved_args_size = 0;
1506   _frames_to_pop_failed_realloc = 0;
1507 
1508   pd_initialize();
1509 }
1510 
1511 #if INCLUDE_ALL_GCS
1512 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1513 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1514 #endif // INCLUDE_ALL_GCS
1515 
1516 JavaThread::JavaThread(bool is_attaching_via_jni) :
1517                        Thread()
1518 #if INCLUDE_ALL_GCS
1519                        , _satb_mark_queue(&_satb_mark_queue_set),
1520                        _dirty_card_queue(&_dirty_card_queue_set)
1521 #endif // INCLUDE_ALL_GCS
1522 {
1523   initialize();
1524   if (is_attaching_via_jni) {
1525     _jni_attach_state = _attaching_via_jni;
1526   } else {
1527     _jni_attach_state = _not_attaching_via_jni;
1528   }
1529   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1530 }
1531 
1532 bool JavaThread::reguard_stack(address cur_sp) {
1533   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1534       && _stack_guard_state != stack_guard_reserved_disabled) {
1535     return true; // Stack already guarded or guard pages not needed.
1536   }
1537 
1538   if (register_stack_overflow()) {
1539     // For those architectures which have separate register and
1540     // memory stacks, we must check the register stack to see if
1541     // it has overflowed.
1542     return false;
1543   }
1544 
1545   // Java code never executes within the yellow zone: the latter is only
1546   // there to provoke an exception during stack banging.  If java code
1547   // is executing there, either StackShadowPages should be larger, or
1548   // some exception code in c1, c2 or the interpreter isn't unwinding
1549   // when it should.
1550   guarantee(cur_sp > stack_reserved_zone_base(),
1551             "not enough space to reguard - increase StackShadowPages");
1552   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1553     enable_stack_yellow_reserved_zone();
1554     if (reserved_stack_activation() != stack_base()) {
1555       set_reserved_stack_activation(stack_base());
1556     }
1557   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1558     set_reserved_stack_activation(stack_base());
1559     enable_stack_reserved_zone();
1560   }
1561   return true;
1562 }
1563 
1564 bool JavaThread::reguard_stack(void) {
1565   return reguard_stack(os::current_stack_pointer());
1566 }
1567 
1568 
1569 void JavaThread::block_if_vm_exited() {
1570   if (_terminated == _vm_exited) {
1571     // _vm_exited is set at safepoint, and Threads_lock is never released
1572     // we will block here forever
1573     Threads_lock->lock_without_safepoint_check();
1574     ShouldNotReachHere();
1575   }
1576 }
1577 
1578 
1579 // Remove this ifdef when C1 is ported to the compiler interface.
1580 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1581 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1582 
1583 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1584                        Thread()
1585 #if INCLUDE_ALL_GCS
1586                        , _satb_mark_queue(&_satb_mark_queue_set),
1587                        _dirty_card_queue(&_dirty_card_queue_set)
1588 #endif // INCLUDE_ALL_GCS
1589 {
1590   initialize();
1591   _jni_attach_state = _not_attaching_via_jni;
1592   set_entry_point(entry_point);
1593   // Create the native thread itself.
1594   // %note runtime_23
1595   os::ThreadType thr_type = os::java_thread;
1596   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1597                                                      os::java_thread;
1598   os::create_thread(this, thr_type, stack_sz);
1599   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1600   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1601   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1602   // the exception consists of creating the exception object & initializing it, initialization
1603   // will leave the VM via a JavaCall and then all locks must be unlocked).
1604   //
1605   // The thread is still suspended when we reach here. Thread must be explicit started
1606   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1607   // by calling Threads:add. The reason why this is not done here, is because the thread
1608   // object must be fully initialized (take a look at JVM_Start)
1609 }
1610 
1611 JavaThread::~JavaThread() {
1612 
1613   // JSR166 -- return the parker to the free list
1614   Parker::Release(_parker);
1615   _parker = NULL;
1616 
1617   // Free any remaining  previous UnrollBlock
1618   vframeArray* old_array = vframe_array_last();
1619 
1620   if (old_array != NULL) {
1621     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1622     old_array->set_unroll_block(NULL);
1623     delete old_info;
1624     delete old_array;
1625   }
1626 
1627   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1628   if (deferred != NULL) {
1629     // This can only happen if thread is destroyed before deoptimization occurs.
1630     assert(deferred->length() != 0, "empty array!");
1631     do {
1632       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1633       deferred->remove_at(0);
1634       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1635       delete dlv;
1636     } while (deferred->length() != 0);
1637     delete deferred;
1638   }
1639 
1640   // All Java related clean up happens in exit
1641   ThreadSafepointState::destroy(this);
1642   if (_thread_profiler != NULL) delete _thread_profiler;
1643   if (_thread_stat != NULL) delete _thread_stat;
1644 
1645 #if INCLUDE_JVMCI
1646   if (JVMCICounterSize > 0) {
1647     if (jvmci_counters_include(this)) {
1648       for (int i = 0; i < JVMCICounterSize; i++) {
1649         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1650       }
1651     }
1652     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1653   }
1654 #endif // INCLUDE_JVMCI
1655 }
1656 
1657 
1658 // The first routine called by a new Java thread
1659 void JavaThread::run() {
1660   // initialize thread-local alloc buffer related fields
1661   this->initialize_tlab();
1662 
1663   // used to test validity of stack trace backs
1664   this->record_base_of_stack_pointer();
1665 
1666   // Record real stack base and size.
1667   this->record_stack_base_and_size();
1668 
1669   this->create_stack_guard_pages();
1670 
1671   this->cache_global_variables();
1672 
1673   // Thread is now sufficient initialized to be handled by the safepoint code as being
1674   // in the VM. Change thread state from _thread_new to _thread_in_vm
1675   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1676 
1677   assert(JavaThread::current() == this, "sanity check");
1678   assert(!Thread::current()->owns_locks(), "sanity check");
1679 
1680   DTRACE_THREAD_PROBE(start, this);
1681 
1682   // This operation might block. We call that after all safepoint checks for a new thread has
1683   // been completed.
1684   this->set_active_handles(JNIHandleBlock::allocate_block());
1685 
1686   if (JvmtiExport::should_post_thread_life()) {
1687     JvmtiExport::post_thread_start(this);
1688   }
1689 
1690   EventThreadStart event;
1691   if (event.should_commit()) {
1692     event.set_thread(THREAD_TRACE_ID(this));
1693     event.commit();
1694   }
1695 
1696   // We call another function to do the rest so we are sure that the stack addresses used
1697   // from there will be lower than the stack base just computed
1698   thread_main_inner();
1699 
1700   // Note, thread is no longer valid at this point!
1701 }
1702 
1703 
1704 void JavaThread::thread_main_inner() {
1705   assert(JavaThread::current() == this, "sanity check");
1706   assert(this->threadObj() != NULL, "just checking");
1707 
1708   // Execute thread entry point unless this thread has a pending exception
1709   // or has been stopped before starting.
1710   // Note: Due to JVM_StopThread we can have pending exceptions already!
1711   if (!this->has_pending_exception() &&
1712       !java_lang_Thread::is_stillborn(this->threadObj())) {
1713     {
1714       ResourceMark rm(this);
1715       this->set_native_thread_name(this->get_thread_name());
1716     }
1717     HandleMark hm(this);
1718     this->entry_point()(this, this);
1719   }
1720 
1721   DTRACE_THREAD_PROBE(stop, this);
1722 
1723   this->exit(false);
1724   delete this;
1725 }
1726 
1727 
1728 static void ensure_join(JavaThread* thread) {
1729   // We do not need to grap the Threads_lock, since we are operating on ourself.
1730   Handle threadObj(thread, thread->threadObj());
1731   assert(threadObj.not_null(), "java thread object must exist");
1732   ObjectLocker lock(threadObj, thread);
1733   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1734   thread->clear_pending_exception();
1735   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1736   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1737   // Clear the native thread instance - this makes isAlive return false and allows the join()
1738   // to complete once we've done the notify_all below
1739   java_lang_Thread::set_thread(threadObj(), NULL);
1740   lock.notify_all(thread);
1741   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1742   thread->clear_pending_exception();
1743 }
1744 
1745 
1746 // For any new cleanup additions, please check to see if they need to be applied to
1747 // cleanup_failed_attach_current_thread as well.
1748 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1749   assert(this == JavaThread::current(), "thread consistency check");
1750 
1751   HandleMark hm(this);
1752   Handle uncaught_exception(this, this->pending_exception());
1753   this->clear_pending_exception();
1754   Handle threadObj(this, this->threadObj());
1755   assert(threadObj.not_null(), "Java thread object should be created");
1756 
1757   if (get_thread_profiler() != NULL) {
1758     get_thread_profiler()->disengage();
1759     ResourceMark rm;
1760     get_thread_profiler()->print(get_thread_name());
1761   }
1762 
1763 
1764   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1765   {
1766     EXCEPTION_MARK;
1767 
1768     CLEAR_PENDING_EXCEPTION;
1769   }
1770   if (!destroy_vm) {
1771     if (uncaught_exception.not_null()) {
1772       EXCEPTION_MARK;
1773       // Call method Thread.dispatchUncaughtException().
1774       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1775       JavaValue result(T_VOID);
1776       JavaCalls::call_virtual(&result,
1777                               threadObj, thread_klass,
1778                               vmSymbols::dispatchUncaughtException_name(),
1779                               vmSymbols::throwable_void_signature(),
1780                               uncaught_exception,
1781                               THREAD);
1782       if (HAS_PENDING_EXCEPTION) {
1783         ResourceMark rm(this);
1784         jio_fprintf(defaultStream::error_stream(),
1785                     "\nException: %s thrown from the UncaughtExceptionHandler"
1786                     " in thread \"%s\"\n",
1787                     pending_exception()->klass()->external_name(),
1788                     get_thread_name());
1789         CLEAR_PENDING_EXCEPTION;
1790       }
1791     }
1792 
1793     // Called before the java thread exit since we want to read info
1794     // from java_lang_Thread object
1795     EventThreadEnd event;
1796     if (event.should_commit()) {
1797       event.set_thread(THREAD_TRACE_ID(this));
1798       event.commit();
1799     }
1800 
1801     // Call after last event on thread
1802     EVENT_THREAD_EXIT(this);
1803 
1804     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1805     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1806     // is deprecated anyhow.
1807     if (!is_Compiler_thread()) {
1808       int count = 3;
1809       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1810         EXCEPTION_MARK;
1811         JavaValue result(T_VOID);
1812         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1813         JavaCalls::call_virtual(&result,
1814                                 threadObj, thread_klass,
1815                                 vmSymbols::exit_method_name(),
1816                                 vmSymbols::void_method_signature(),
1817                                 THREAD);
1818         CLEAR_PENDING_EXCEPTION;
1819       }
1820     }
1821     // notify JVMTI
1822     if (JvmtiExport::should_post_thread_life()) {
1823       JvmtiExport::post_thread_end(this);
1824     }
1825 
1826     // We have notified the agents that we are exiting, before we go on,
1827     // we must check for a pending external suspend request and honor it
1828     // in order to not surprise the thread that made the suspend request.
1829     while (true) {
1830       {
1831         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1832         if (!is_external_suspend()) {
1833           set_terminated(_thread_exiting);
1834           ThreadService::current_thread_exiting(this);
1835           break;
1836         }
1837         // Implied else:
1838         // Things get a little tricky here. We have a pending external
1839         // suspend request, but we are holding the SR_lock so we
1840         // can't just self-suspend. So we temporarily drop the lock
1841         // and then self-suspend.
1842       }
1843 
1844       ThreadBlockInVM tbivm(this);
1845       java_suspend_self();
1846 
1847       // We're done with this suspend request, but we have to loop around
1848       // and check again. Eventually we will get SR_lock without a pending
1849       // external suspend request and will be able to mark ourselves as
1850       // exiting.
1851     }
1852     // no more external suspends are allowed at this point
1853   } else {
1854     // before_exit() has already posted JVMTI THREAD_END events
1855   }
1856 
1857   // Notify waiters on thread object. This has to be done after exit() is called
1858   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1859   // group should have the destroyed bit set before waiters are notified).
1860   ensure_join(this);
1861   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1862 
1863   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1864   // held by this thread must be released. The spec does not distinguish
1865   // between JNI-acquired and regular Java monitors. We can only see
1866   // regular Java monitors here if monitor enter-exit matching is broken.
1867   //
1868   // Optionally release any monitors for regular JavaThread exits. This
1869   // is provided as a work around for any bugs in monitor enter-exit
1870   // matching. This can be expensive so it is not enabled by default.
1871   //
1872   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1873   // ObjectSynchronizer::release_monitors_owned_by_thread().
1874   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1875     // Sanity check even though JNI DetachCurrentThread() would have
1876     // returned JNI_ERR if there was a Java frame. JavaThread exit
1877     // should be done executing Java code by the time we get here.
1878     assert(!this->has_last_Java_frame(),
1879            "should not have a Java frame when detaching or exiting");
1880     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1881     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1882   }
1883 
1884   // These things needs to be done while we are still a Java Thread. Make sure that thread
1885   // is in a consistent state, in case GC happens
1886   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1887 
1888   if (active_handles() != NULL) {
1889     JNIHandleBlock* block = active_handles();
1890     set_active_handles(NULL);
1891     JNIHandleBlock::release_block(block);
1892   }
1893 
1894   if (free_handle_block() != NULL) {
1895     JNIHandleBlock* block = free_handle_block();
1896     set_free_handle_block(NULL);
1897     JNIHandleBlock::release_block(block);
1898   }
1899 
1900   // These have to be removed while this is still a valid thread.
1901   remove_stack_guard_pages();
1902 
1903   if (UseTLAB) {
1904     tlab().make_parsable(true);  // retire TLAB
1905   }
1906 
1907   if (JvmtiEnv::environments_might_exist()) {
1908     JvmtiExport::cleanup_thread(this);
1909   }
1910 
1911   // We must flush any deferred card marks before removing a thread from
1912   // the list of active threads.
1913   Universe::heap()->flush_deferred_store_barrier(this);
1914   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1915 
1916 #if INCLUDE_ALL_GCS
1917   // We must flush the G1-related buffers before removing a thread
1918   // from the list of active threads. We must do this after any deferred
1919   // card marks have been flushed (above) so that any entries that are
1920   // added to the thread's dirty card queue as a result are not lost.
1921   if (UseG1GC) {
1922     flush_barrier_queues();
1923   }
1924 #endif // INCLUDE_ALL_GCS
1925 
1926   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1927     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1928     os::current_thread_id());
1929 
1930   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1931   Threads::remove(this);
1932 }
1933 
1934 #if INCLUDE_ALL_GCS
1935 // Flush G1-related queues.
1936 void JavaThread::flush_barrier_queues() {
1937   satb_mark_queue().flush();
1938   dirty_card_queue().flush();
1939 }
1940 
1941 void JavaThread::initialize_queues() {
1942   assert(!SafepointSynchronize::is_at_safepoint(),
1943          "we should not be at a safepoint");
1944 
1945   SATBMarkQueue& satb_queue = satb_mark_queue();
1946   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1947   // The SATB queue should have been constructed with its active
1948   // field set to false.
1949   assert(!satb_queue.is_active(), "SATB queue should not be active");
1950   assert(satb_queue.is_empty(), "SATB queue should be empty");
1951   // If we are creating the thread during a marking cycle, we should
1952   // set the active field of the SATB queue to true.
1953   if (satb_queue_set.is_active()) {
1954     satb_queue.set_active(true);
1955   }
1956 
1957   DirtyCardQueue& dirty_queue = dirty_card_queue();
1958   // The dirty card queue should have been constructed with its
1959   // active field set to true.
1960   assert(dirty_queue.is_active(), "dirty card queue should be active");
1961 }
1962 #endif // INCLUDE_ALL_GCS
1963 
1964 void JavaThread::cleanup_failed_attach_current_thread() {
1965   if (get_thread_profiler() != NULL) {
1966     get_thread_profiler()->disengage();
1967     ResourceMark rm;
1968     get_thread_profiler()->print(get_thread_name());
1969   }
1970 
1971   if (active_handles() != NULL) {
1972     JNIHandleBlock* block = active_handles();
1973     set_active_handles(NULL);
1974     JNIHandleBlock::release_block(block);
1975   }
1976 
1977   if (free_handle_block() != NULL) {
1978     JNIHandleBlock* block = free_handle_block();
1979     set_free_handle_block(NULL);
1980     JNIHandleBlock::release_block(block);
1981   }
1982 
1983   // These have to be removed while this is still a valid thread.
1984   remove_stack_guard_pages();
1985 
1986   if (UseTLAB) {
1987     tlab().make_parsable(true);  // retire TLAB, if any
1988   }
1989 
1990 #if INCLUDE_ALL_GCS
1991   if (UseG1GC) {
1992     flush_barrier_queues();
1993   }
1994 #endif // INCLUDE_ALL_GCS
1995 
1996   Threads::remove(this);
1997   delete this;
1998 }
1999 
2000 
2001 
2002 
2003 JavaThread* JavaThread::active() {
2004   Thread* thread = Thread::current();
2005   if (thread->is_Java_thread()) {
2006     return (JavaThread*) thread;
2007   } else {
2008     assert(thread->is_VM_thread(), "this must be a vm thread");
2009     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2010     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2011     assert(ret->is_Java_thread(), "must be a Java thread");
2012     return ret;
2013   }
2014 }
2015 
2016 bool JavaThread::is_lock_owned(address adr) const {
2017   if (Thread::is_lock_owned(adr)) return true;
2018 
2019   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2020     if (chunk->contains(adr)) return true;
2021   }
2022 
2023   return false;
2024 }
2025 
2026 
2027 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2028   chunk->set_next(monitor_chunks());
2029   set_monitor_chunks(chunk);
2030 }
2031 
2032 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2033   guarantee(monitor_chunks() != NULL, "must be non empty");
2034   if (monitor_chunks() == chunk) {
2035     set_monitor_chunks(chunk->next());
2036   } else {
2037     MonitorChunk* prev = monitor_chunks();
2038     while (prev->next() != chunk) prev = prev->next();
2039     prev->set_next(chunk->next());
2040   }
2041 }
2042 
2043 // JVM support.
2044 
2045 // Note: this function shouldn't block if it's called in
2046 // _thread_in_native_trans state (such as from
2047 // check_special_condition_for_native_trans()).
2048 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2049 
2050   if (has_last_Java_frame() && has_async_condition()) {
2051     // If we are at a polling page safepoint (not a poll return)
2052     // then we must defer async exception because live registers
2053     // will be clobbered by the exception path. Poll return is
2054     // ok because the call we a returning from already collides
2055     // with exception handling registers and so there is no issue.
2056     // (The exception handling path kills call result registers but
2057     //  this is ok since the exception kills the result anyway).
2058 
2059     if (is_at_poll_safepoint()) {
2060       // if the code we are returning to has deoptimized we must defer
2061       // the exception otherwise live registers get clobbered on the
2062       // exception path before deoptimization is able to retrieve them.
2063       //
2064       RegisterMap map(this, false);
2065       frame caller_fr = last_frame().sender(&map);
2066       assert(caller_fr.is_compiled_frame(), "what?");
2067       if (caller_fr.is_deoptimized_frame()) {
2068         log_info(exceptions)("deferred async exception at compiled safepoint");
2069         return;
2070       }
2071     }
2072   }
2073 
2074   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2075   if (condition == _no_async_condition) {
2076     // Conditions have changed since has_special_runtime_exit_condition()
2077     // was called:
2078     // - if we were here only because of an external suspend request,
2079     //   then that was taken care of above (or cancelled) so we are done
2080     // - if we were here because of another async request, then it has
2081     //   been cleared between the has_special_runtime_exit_condition()
2082     //   and now so again we are done
2083     return;
2084   }
2085 
2086   // Check for pending async. exception
2087   if (_pending_async_exception != NULL) {
2088     // Only overwrite an already pending exception, if it is not a threadDeath.
2089     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2090 
2091       // We cannot call Exceptions::_throw(...) here because we cannot block
2092       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2093 
2094       if (log_is_enabled(Info, exceptions)) {
2095         ResourceMark rm;
2096         outputStream* logstream = LogHandle(exceptions)::info_stream();
2097         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2098           if (has_last_Java_frame()) {
2099             frame f = last_frame();
2100            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2101           }
2102         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2103       }
2104       _pending_async_exception = NULL;
2105       clear_has_async_exception();
2106     }
2107   }
2108 
2109   if (check_unsafe_error &&
2110       condition == _async_unsafe_access_error && !has_pending_exception()) {
2111     condition = _no_async_condition;  // done
2112     switch (thread_state()) {
2113     case _thread_in_vm: {
2114       JavaThread* THREAD = this;
2115       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2116     }
2117     case _thread_in_native: {
2118       ThreadInVMfromNative tiv(this);
2119       JavaThread* THREAD = this;
2120       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2121     }
2122     case _thread_in_Java: {
2123       ThreadInVMfromJava tiv(this);
2124       JavaThread* THREAD = this;
2125       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2126     }
2127     default:
2128       ShouldNotReachHere();
2129     }
2130   }
2131 
2132   assert(condition == _no_async_condition || has_pending_exception() ||
2133          (!check_unsafe_error && condition == _async_unsafe_access_error),
2134          "must have handled the async condition, if no exception");
2135 }
2136 
2137 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2138   //
2139   // Check for pending external suspend. Internal suspend requests do
2140   // not use handle_special_runtime_exit_condition().
2141   // If JNIEnv proxies are allowed, don't self-suspend if the target
2142   // thread is not the current thread. In older versions of jdbx, jdbx
2143   // threads could call into the VM with another thread's JNIEnv so we
2144   // can be here operating on behalf of a suspended thread (4432884).
2145   bool do_self_suspend = is_external_suspend_with_lock();
2146   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2147     //
2148     // Because thread is external suspended the safepoint code will count
2149     // thread as at a safepoint. This can be odd because we can be here
2150     // as _thread_in_Java which would normally transition to _thread_blocked
2151     // at a safepoint. We would like to mark the thread as _thread_blocked
2152     // before calling java_suspend_self like all other callers of it but
2153     // we must then observe proper safepoint protocol. (We can't leave
2154     // _thread_blocked with a safepoint in progress). However we can be
2155     // here as _thread_in_native_trans so we can't use a normal transition
2156     // constructor/destructor pair because they assert on that type of
2157     // transition. We could do something like:
2158     //
2159     // JavaThreadState state = thread_state();
2160     // set_thread_state(_thread_in_vm);
2161     // {
2162     //   ThreadBlockInVM tbivm(this);
2163     //   java_suspend_self()
2164     // }
2165     // set_thread_state(_thread_in_vm_trans);
2166     // if (safepoint) block;
2167     // set_thread_state(state);
2168     //
2169     // but that is pretty messy. Instead we just go with the way the
2170     // code has worked before and note that this is the only path to
2171     // java_suspend_self that doesn't put the thread in _thread_blocked
2172     // mode.
2173 
2174     frame_anchor()->make_walkable(this);
2175     java_suspend_self();
2176 
2177     // We might be here for reasons in addition to the self-suspend request
2178     // so check for other async requests.
2179   }
2180 
2181   if (check_asyncs) {
2182     check_and_handle_async_exceptions();
2183   }
2184 }
2185 
2186 void JavaThread::send_thread_stop(oop java_throwable)  {
2187   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2188   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2189   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2190 
2191   // Do not throw asynchronous exceptions against the compiler thread
2192   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2193   if (!can_call_java()) return;
2194 
2195   {
2196     // Actually throw the Throwable against the target Thread - however
2197     // only if there is no thread death exception installed already.
2198     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2199       // If the topmost frame is a runtime stub, then we are calling into
2200       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2201       // must deoptimize the caller before continuing, as the compiled  exception handler table
2202       // may not be valid
2203       if (has_last_Java_frame()) {
2204         frame f = last_frame();
2205         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2206           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2207           RegisterMap reg_map(this, UseBiasedLocking);
2208           frame compiled_frame = f.sender(&reg_map);
2209           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2210             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2211           }
2212         }
2213       }
2214 
2215       // Set async. pending exception in thread.
2216       set_pending_async_exception(java_throwable);
2217 
2218       if (log_is_enabled(Info, exceptions)) {
2219          ResourceMark rm;
2220         log_info(exceptions)("Pending Async. exception installed of type: %s",
2221                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2222       }
2223       // for AbortVMOnException flag
2224       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2225     }
2226   }
2227 
2228 
2229   // Interrupt thread so it will wake up from a potential wait()
2230   Thread::interrupt(this);
2231 }
2232 
2233 // External suspension mechanism.
2234 //
2235 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2236 // to any VM_locks and it is at a transition
2237 // Self-suspension will happen on the transition out of the vm.
2238 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2239 //
2240 // Guarantees on return:
2241 //   + Target thread will not execute any new bytecode (that's why we need to
2242 //     force a safepoint)
2243 //   + Target thread will not enter any new monitors
2244 //
2245 void JavaThread::java_suspend() {
2246   { MutexLocker mu(Threads_lock);
2247     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2248       return;
2249     }
2250   }
2251 
2252   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2253     if (!is_external_suspend()) {
2254       // a racing resume has cancelled us; bail out now
2255       return;
2256     }
2257 
2258     // suspend is done
2259     uint32_t debug_bits = 0;
2260     // Warning: is_ext_suspend_completed() may temporarily drop the
2261     // SR_lock to allow the thread to reach a stable thread state if
2262     // it is currently in a transient thread state.
2263     if (is_ext_suspend_completed(false /* !called_by_wait */,
2264                                  SuspendRetryDelay, &debug_bits)) {
2265       return;
2266     }
2267   }
2268 
2269   VM_ForceSafepoint vm_suspend;
2270   VMThread::execute(&vm_suspend);
2271 }
2272 
2273 // Part II of external suspension.
2274 // A JavaThread self suspends when it detects a pending external suspend
2275 // request. This is usually on transitions. It is also done in places
2276 // where continuing to the next transition would surprise the caller,
2277 // e.g., monitor entry.
2278 //
2279 // Returns the number of times that the thread self-suspended.
2280 //
2281 // Note: DO NOT call java_suspend_self() when you just want to block current
2282 //       thread. java_suspend_self() is the second stage of cooperative
2283 //       suspension for external suspend requests and should only be used
2284 //       to complete an external suspend request.
2285 //
2286 int JavaThread::java_suspend_self() {
2287   int ret = 0;
2288 
2289   // we are in the process of exiting so don't suspend
2290   if (is_exiting()) {
2291     clear_external_suspend();
2292     return ret;
2293   }
2294 
2295   assert(_anchor.walkable() ||
2296          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2297          "must have walkable stack");
2298 
2299   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2300 
2301   assert(!this->is_ext_suspended(),
2302          "a thread trying to self-suspend should not already be suspended");
2303 
2304   if (this->is_suspend_equivalent()) {
2305     // If we are self-suspending as a result of the lifting of a
2306     // suspend equivalent condition, then the suspend_equivalent
2307     // flag is not cleared until we set the ext_suspended flag so
2308     // that wait_for_ext_suspend_completion() returns consistent
2309     // results.
2310     this->clear_suspend_equivalent();
2311   }
2312 
2313   // A racing resume may have cancelled us before we grabbed SR_lock
2314   // above. Or another external suspend request could be waiting for us
2315   // by the time we return from SR_lock()->wait(). The thread
2316   // that requested the suspension may already be trying to walk our
2317   // stack and if we return now, we can change the stack out from under
2318   // it. This would be a "bad thing (TM)" and cause the stack walker
2319   // to crash. We stay self-suspended until there are no more pending
2320   // external suspend requests.
2321   while (is_external_suspend()) {
2322     ret++;
2323     this->set_ext_suspended();
2324 
2325     // _ext_suspended flag is cleared by java_resume()
2326     while (is_ext_suspended()) {
2327       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2328     }
2329   }
2330 
2331   return ret;
2332 }
2333 
2334 #ifdef ASSERT
2335 // verify the JavaThread has not yet been published in the Threads::list, and
2336 // hence doesn't need protection from concurrent access at this stage
2337 void JavaThread::verify_not_published() {
2338   if (!Threads_lock->owned_by_self()) {
2339     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2340     assert(!Threads::includes(this),
2341            "java thread shouldn't have been published yet!");
2342   } else {
2343     assert(!Threads::includes(this),
2344            "java thread shouldn't have been published yet!");
2345   }
2346 }
2347 #endif
2348 
2349 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2350 // progress or when _suspend_flags is non-zero.
2351 // Current thread needs to self-suspend if there is a suspend request and/or
2352 // block if a safepoint is in progress.
2353 // Async exception ISN'T checked.
2354 // Note only the ThreadInVMfromNative transition can call this function
2355 // directly and when thread state is _thread_in_native_trans
2356 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2357   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2358 
2359   JavaThread *curJT = JavaThread::current();
2360   bool do_self_suspend = thread->is_external_suspend();
2361 
2362   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2363 
2364   // If JNIEnv proxies are allowed, don't self-suspend if the target
2365   // thread is not the current thread. In older versions of jdbx, jdbx
2366   // threads could call into the VM with another thread's JNIEnv so we
2367   // can be here operating on behalf of a suspended thread (4432884).
2368   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2369     JavaThreadState state = thread->thread_state();
2370 
2371     // We mark this thread_blocked state as a suspend-equivalent so
2372     // that a caller to is_ext_suspend_completed() won't be confused.
2373     // The suspend-equivalent state is cleared by java_suspend_self().
2374     thread->set_suspend_equivalent();
2375 
2376     // If the safepoint code sees the _thread_in_native_trans state, it will
2377     // wait until the thread changes to other thread state. There is no
2378     // guarantee on how soon we can obtain the SR_lock and complete the
2379     // self-suspend request. It would be a bad idea to let safepoint wait for
2380     // too long. Temporarily change the state to _thread_blocked to
2381     // let the VM thread know that this thread is ready for GC. The problem
2382     // of changing thread state is that safepoint could happen just after
2383     // java_suspend_self() returns after being resumed, and VM thread will
2384     // see the _thread_blocked state. We must check for safepoint
2385     // after restoring the state and make sure we won't leave while a safepoint
2386     // is in progress.
2387     thread->set_thread_state(_thread_blocked);
2388     thread->java_suspend_self();
2389     thread->set_thread_state(state);
2390     // Make sure new state is seen by VM thread
2391     if (os::is_MP()) {
2392       if (UseMembar) {
2393         // Force a fence between the write above and read below
2394         OrderAccess::fence();
2395       } else {
2396         // Must use this rather than serialization page in particular on Windows
2397         InterfaceSupport::serialize_memory(thread);
2398       }
2399     }
2400   }
2401 
2402   if (SafepointSynchronize::do_call_back()) {
2403     // If we are safepointing, then block the caller which may not be
2404     // the same as the target thread (see above).
2405     SafepointSynchronize::block(curJT);
2406   }
2407 
2408   if (thread->is_deopt_suspend()) {
2409     thread->clear_deopt_suspend();
2410     RegisterMap map(thread, false);
2411     frame f = thread->last_frame();
2412     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2413       f = f.sender(&map);
2414     }
2415     if (f.id() == thread->must_deopt_id()) {
2416       thread->clear_must_deopt_id();
2417       f.deoptimize(thread);
2418     } else {
2419       fatal("missed deoptimization!");
2420     }
2421   }
2422 }
2423 
2424 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2425 // progress or when _suspend_flags is non-zero.
2426 // Current thread needs to self-suspend if there is a suspend request and/or
2427 // block if a safepoint is in progress.
2428 // Also check for pending async exception (not including unsafe access error).
2429 // Note only the native==>VM/Java barriers can call this function and when
2430 // thread state is _thread_in_native_trans.
2431 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2432   check_safepoint_and_suspend_for_native_trans(thread);
2433 
2434   if (thread->has_async_exception()) {
2435     // We are in _thread_in_native_trans state, don't handle unsafe
2436     // access error since that may block.
2437     thread->check_and_handle_async_exceptions(false);
2438   }
2439 }
2440 
2441 // This is a variant of the normal
2442 // check_special_condition_for_native_trans with slightly different
2443 // semantics for use by critical native wrappers.  It does all the
2444 // normal checks but also performs the transition back into
2445 // thread_in_Java state.  This is required so that critical natives
2446 // can potentially block and perform a GC if they are the last thread
2447 // exiting the GCLocker.
2448 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2449   check_special_condition_for_native_trans(thread);
2450 
2451   // Finish the transition
2452   thread->set_thread_state(_thread_in_Java);
2453 
2454   if (thread->do_critical_native_unlock()) {
2455     ThreadInVMfromJavaNoAsyncException tiv(thread);
2456     GCLocker::unlock_critical(thread);
2457     thread->clear_critical_native_unlock();
2458   }
2459 }
2460 
2461 // We need to guarantee the Threads_lock here, since resumes are not
2462 // allowed during safepoint synchronization
2463 // Can only resume from an external suspension
2464 void JavaThread::java_resume() {
2465   assert_locked_or_safepoint(Threads_lock);
2466 
2467   // Sanity check: thread is gone, has started exiting or the thread
2468   // was not externally suspended.
2469   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2470     return;
2471   }
2472 
2473   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2474 
2475   clear_external_suspend();
2476 
2477   if (is_ext_suspended()) {
2478     clear_ext_suspended();
2479     SR_lock()->notify_all();
2480   }
2481 }
2482 
2483 size_t JavaThread::_stack_red_zone_size = 0;
2484 size_t JavaThread::_stack_yellow_zone_size = 0;
2485 size_t JavaThread::_stack_reserved_zone_size = 0;
2486 size_t JavaThread::_stack_shadow_zone_size = 0;
2487 
2488 void JavaThread::create_stack_guard_pages() {
2489   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2490   address low_addr = stack_end();
2491   size_t len = stack_guard_zone_size();
2492 
2493   int allocate = os::allocate_stack_guard_pages();
2494   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2495 
2496   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2497     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2498     return;
2499   }
2500 
2501   if (os::guard_memory((char *) low_addr, len)) {
2502     _stack_guard_state = stack_guard_enabled;
2503   } else {
2504     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2505       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2506     if (os::uncommit_memory((char *) low_addr, len)) {
2507       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2508     }
2509     return;
2510   }
2511 
2512   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2513     PTR_FORMAT "-" PTR_FORMAT ".",
2514     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2515 
2516 }
2517 
2518 void JavaThread::remove_stack_guard_pages() {
2519   assert(Thread::current() == this, "from different thread");
2520   if (_stack_guard_state == stack_guard_unused) return;
2521   address low_addr = stack_end();
2522   size_t len = stack_guard_zone_size();
2523 
2524   if (os::allocate_stack_guard_pages()) {
2525     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2526       _stack_guard_state = stack_guard_unused;
2527     } else {
2528       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2529         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2530       return;
2531     }
2532   } else {
2533     if (_stack_guard_state == stack_guard_unused) return;
2534     if (os::unguard_memory((char *) low_addr, len)) {
2535       _stack_guard_state = stack_guard_unused;
2536     } else {
2537       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2538         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2539       return;
2540     }
2541   }
2542 
2543   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2544     PTR_FORMAT "-" PTR_FORMAT ".",
2545     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2546 
2547 }
2548 
2549 void JavaThread::enable_stack_reserved_zone() {
2550   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2551   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2552 
2553   // The base notation is from the stack's point of view, growing downward.
2554   // We need to adjust it to work correctly with guard_memory()
2555   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2556 
2557   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2558   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2559 
2560   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2561     _stack_guard_state = stack_guard_enabled;
2562   } else {
2563     warning("Attempt to guard stack reserved zone failed.");
2564   }
2565   enable_register_stack_guard();
2566 }
2567 
2568 void JavaThread::disable_stack_reserved_zone() {
2569   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2570   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2571 
2572   // Simply return if called for a thread that does not use guard pages.
2573   if (_stack_guard_state == stack_guard_unused) return;
2574 
2575   // The base notation is from the stack's point of view, growing downward.
2576   // We need to adjust it to work correctly with guard_memory()
2577   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2578 
2579   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2580     _stack_guard_state = stack_guard_reserved_disabled;
2581   } else {
2582     warning("Attempt to unguard stack reserved zone failed.");
2583   }
2584   disable_register_stack_guard();
2585 }
2586 
2587 void JavaThread::enable_stack_yellow_reserved_zone() {
2588   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2589   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2590 
2591   // The base notation is from the stacks point of view, growing downward.
2592   // We need to adjust it to work correctly with guard_memory()
2593   address base = stack_red_zone_base();
2594 
2595   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2596   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2597 
2598   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2599     _stack_guard_state = stack_guard_enabled;
2600   } else {
2601     warning("Attempt to guard stack yellow zone failed.");
2602   }
2603   enable_register_stack_guard();
2604 }
2605 
2606 void JavaThread::disable_stack_yellow_reserved_zone() {
2607   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2608   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2609 
2610   // Simply return if called for a thread that does not use guard pages.
2611   if (_stack_guard_state == stack_guard_unused) return;
2612 
2613   // The base notation is from the stacks point of view, growing downward.
2614   // We need to adjust it to work correctly with guard_memory()
2615   address base = stack_red_zone_base();
2616 
2617   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2618     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2619   } else {
2620     warning("Attempt to unguard stack yellow zone failed.");
2621   }
2622   disable_register_stack_guard();
2623 }
2624 
2625 void JavaThread::enable_stack_red_zone() {
2626   // The base notation is from the stacks point of view, growing downward.
2627   // We need to adjust it to work correctly with guard_memory()
2628   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2629   address base = stack_red_zone_base() - stack_red_zone_size();
2630 
2631   guarantee(base < stack_base(), "Error calculating stack red zone");
2632   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2633 
2634   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2635     warning("Attempt to guard stack red zone failed.");
2636   }
2637 }
2638 
2639 void JavaThread::disable_stack_red_zone() {
2640   // The base notation is from the stacks point of view, growing downward.
2641   // We need to adjust it to work correctly with guard_memory()
2642   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2643   address base = stack_red_zone_base() - stack_red_zone_size();
2644   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2645     warning("Attempt to unguard stack red zone failed.");
2646   }
2647 }
2648 
2649 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2650   // ignore is there is no stack
2651   if (!has_last_Java_frame()) return;
2652   // traverse the stack frames. Starts from top frame.
2653   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2654     frame* fr = fst.current();
2655     f(fr, fst.register_map());
2656   }
2657 }
2658 
2659 
2660 #ifndef PRODUCT
2661 // Deoptimization
2662 // Function for testing deoptimization
2663 void JavaThread::deoptimize() {
2664   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2665   StackFrameStream fst(this, UseBiasedLocking);
2666   bool deopt = false;           // Dump stack only if a deopt actually happens.
2667   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2668   // Iterate over all frames in the thread and deoptimize
2669   for (; !fst.is_done(); fst.next()) {
2670     if (fst.current()->can_be_deoptimized()) {
2671 
2672       if (only_at) {
2673         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2674         // consists of comma or carriage return separated numbers so
2675         // search for the current bci in that string.
2676         address pc = fst.current()->pc();
2677         nmethod* nm =  (nmethod*) fst.current()->cb();
2678         ScopeDesc* sd = nm->scope_desc_at(pc);
2679         char buffer[8];
2680         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2681         size_t len = strlen(buffer);
2682         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2683         while (found != NULL) {
2684           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2685               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2686             // Check that the bci found is bracketed by terminators.
2687             break;
2688           }
2689           found = strstr(found + 1, buffer);
2690         }
2691         if (!found) {
2692           continue;
2693         }
2694       }
2695 
2696       if (DebugDeoptimization && !deopt) {
2697         deopt = true; // One-time only print before deopt
2698         tty->print_cr("[BEFORE Deoptimization]");
2699         trace_frames();
2700         trace_stack();
2701       }
2702       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2703     }
2704   }
2705 
2706   if (DebugDeoptimization && deopt) {
2707     tty->print_cr("[AFTER Deoptimization]");
2708     trace_frames();
2709   }
2710 }
2711 
2712 
2713 // Make zombies
2714 void JavaThread::make_zombies() {
2715   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2716     if (fst.current()->can_be_deoptimized()) {
2717       // it is a Java nmethod
2718       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2719       nm->make_not_entrant();
2720     }
2721   }
2722 }
2723 #endif // PRODUCT
2724 
2725 
2726 void JavaThread::deoptimized_wrt_marked_nmethods() {
2727   if (!has_last_Java_frame()) return;
2728   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2729   StackFrameStream fst(this, UseBiasedLocking);
2730   for (; !fst.is_done(); fst.next()) {
2731     if (fst.current()->should_be_deoptimized()) {
2732       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2733     }
2734   }
2735 }
2736 
2737 
2738 // If the caller is a NamedThread, then remember, in the current scope,
2739 // the given JavaThread in its _processed_thread field.
2740 class RememberProcessedThread: public StackObj {
2741   NamedThread* _cur_thr;
2742  public:
2743   RememberProcessedThread(JavaThread* jthr) {
2744     Thread* thread = Thread::current();
2745     if (thread->is_Named_thread()) {
2746       _cur_thr = (NamedThread *)thread;
2747       _cur_thr->set_processed_thread(jthr);
2748     } else {
2749       _cur_thr = NULL;
2750     }
2751   }
2752 
2753   ~RememberProcessedThread() {
2754     if (_cur_thr) {
2755       _cur_thr->set_processed_thread(NULL);
2756     }
2757   }
2758 };
2759 
2760 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2761   // Verify that the deferred card marks have been flushed.
2762   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2763 
2764   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2765   // since there may be more than one thread using each ThreadProfiler.
2766 
2767   // Traverse the GCHandles
2768   Thread::oops_do(f, cld_f, cf);
2769 
2770   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2771 
2772   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2773          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2774 
2775   if (has_last_Java_frame()) {
2776     // Record JavaThread to GC thread
2777     RememberProcessedThread rpt(this);
2778 
2779     // Traverse the privileged stack
2780     if (_privileged_stack_top != NULL) {
2781       _privileged_stack_top->oops_do(f);
2782     }
2783 
2784     // traverse the registered growable array
2785     if (_array_for_gc != NULL) {
2786       for (int index = 0; index < _array_for_gc->length(); index++) {
2787         f->do_oop(_array_for_gc->adr_at(index));
2788       }
2789     }
2790 
2791     // Traverse the monitor chunks
2792     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2793       chunk->oops_do(f);
2794     }
2795 
2796     // Traverse the execution stack
2797     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2798       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2799     }
2800   }
2801 
2802   // callee_target is never live across a gc point so NULL it here should
2803   // it still contain a methdOop.
2804 
2805   set_callee_target(NULL);
2806 
2807   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2808   // If we have deferred set_locals there might be oops waiting to be
2809   // written
2810   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2811   if (list != NULL) {
2812     for (int i = 0; i < list->length(); i++) {
2813       list->at(i)->oops_do(f);
2814     }
2815   }
2816 
2817   // Traverse instance variables at the end since the GC may be moving things
2818   // around using this function
2819   f->do_oop((oop*) &_threadObj);
2820   f->do_oop((oop*) &_vm_result);
2821   f->do_oop((oop*) &_exception_oop);
2822   f->do_oop((oop*) &_pending_async_exception);
2823 
2824   if (jvmti_thread_state() != NULL) {
2825     jvmti_thread_state()->oops_do(f);
2826   }
2827 }
2828 
2829 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2830   Thread::nmethods_do(cf);  // (super method is a no-op)
2831 
2832   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2833          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2834 
2835   if (has_last_Java_frame()) {
2836     // Traverse the execution stack
2837     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2838       fst.current()->nmethods_do(cf);
2839     }
2840   }
2841 }
2842 
2843 void JavaThread::metadata_do(void f(Metadata*)) {
2844   if (has_last_Java_frame()) {
2845     // Traverse the execution stack to call f() on the methods in the stack
2846     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2847       fst.current()->metadata_do(f);
2848     }
2849   } else if (is_Compiler_thread()) {
2850     // need to walk ciMetadata in current compile tasks to keep alive.
2851     CompilerThread* ct = (CompilerThread*)this;
2852     if (ct->env() != NULL) {
2853       ct->env()->metadata_do(f);
2854     }
2855     if (ct->task() != NULL) {
2856       ct->task()->metadata_do(f);
2857     }
2858   }
2859 }
2860 
2861 // Printing
2862 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2863   switch (_thread_state) {
2864   case _thread_uninitialized:     return "_thread_uninitialized";
2865   case _thread_new:               return "_thread_new";
2866   case _thread_new_trans:         return "_thread_new_trans";
2867   case _thread_in_native:         return "_thread_in_native";
2868   case _thread_in_native_trans:   return "_thread_in_native_trans";
2869   case _thread_in_vm:             return "_thread_in_vm";
2870   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2871   case _thread_in_Java:           return "_thread_in_Java";
2872   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2873   case _thread_blocked:           return "_thread_blocked";
2874   case _thread_blocked_trans:     return "_thread_blocked_trans";
2875   default:                        return "unknown thread state";
2876   }
2877 }
2878 
2879 #ifndef PRODUCT
2880 void JavaThread::print_thread_state_on(outputStream *st) const {
2881   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2882 };
2883 void JavaThread::print_thread_state() const {
2884   print_thread_state_on(tty);
2885 }
2886 #endif // PRODUCT
2887 
2888 // Called by Threads::print() for VM_PrintThreads operation
2889 void JavaThread::print_on(outputStream *st) const {
2890   st->print("\"%s\" ", get_thread_name());
2891   oop thread_oop = threadObj();
2892   if (thread_oop != NULL) {
2893     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2894     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2895     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2896   }
2897   Thread::print_on(st);
2898   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2899   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2900   if (thread_oop != NULL) {
2901     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2902   }
2903 #ifndef PRODUCT
2904   print_thread_state_on(st);
2905   _safepoint_state->print_on(st);
2906 #endif // PRODUCT
2907   if (is_Compiler_thread()) {
2908     CompilerThread* ct = (CompilerThread*)this;
2909     if (ct->task() != NULL) {
2910       st->print("   Compiling: ");
2911       ct->task()->print(st, NULL, true, false);
2912     } else {
2913       st->print("   No compile task");
2914     }
2915     st->cr();
2916   }
2917 }
2918 
2919 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2920   st->print("%s", get_thread_name_string(buf, buflen));
2921 }
2922 
2923 // Called by fatal error handler. The difference between this and
2924 // JavaThread::print() is that we can't grab lock or allocate memory.
2925 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2926   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2927   oop thread_obj = threadObj();
2928   if (thread_obj != NULL) {
2929     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2930   }
2931   st->print(" [");
2932   st->print("%s", _get_thread_state_name(_thread_state));
2933   if (osthread()) {
2934     st->print(", id=%d", osthread()->thread_id());
2935   }
2936   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2937             p2i(stack_end()), p2i(stack_base()));
2938   st->print("]");
2939   return;
2940 }
2941 
2942 // Verification
2943 
2944 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2945 
2946 void JavaThread::verify() {
2947   // Verify oops in the thread.
2948   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2949 
2950   // Verify the stack frames.
2951   frames_do(frame_verify);
2952 }
2953 
2954 // CR 6300358 (sub-CR 2137150)
2955 // Most callers of this method assume that it can't return NULL but a
2956 // thread may not have a name whilst it is in the process of attaching to
2957 // the VM - see CR 6412693, and there are places where a JavaThread can be
2958 // seen prior to having it's threadObj set (eg JNI attaching threads and
2959 // if vm exit occurs during initialization). These cases can all be accounted
2960 // for such that this method never returns NULL.
2961 const char* JavaThread::get_thread_name() const {
2962 #ifdef ASSERT
2963   // early safepoints can hit while current thread does not yet have TLS
2964   if (!SafepointSynchronize::is_at_safepoint()) {
2965     Thread *cur = Thread::current();
2966     if (!(cur->is_Java_thread() && cur == this)) {
2967       // Current JavaThreads are allowed to get their own name without
2968       // the Threads_lock.
2969       assert_locked_or_safepoint(Threads_lock);
2970     }
2971   }
2972 #endif // ASSERT
2973   return get_thread_name_string();
2974 }
2975 
2976 // Returns a non-NULL representation of this thread's name, or a suitable
2977 // descriptive string if there is no set name
2978 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2979   const char* name_str;
2980   oop thread_obj = threadObj();
2981   if (thread_obj != NULL) {
2982     oop name = java_lang_Thread::name(thread_obj);
2983     if (name != NULL) {
2984       if (buf == NULL) {
2985         name_str = java_lang_String::as_utf8_string(name);
2986       } else {
2987         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2988       }
2989     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2990       name_str = "<no-name - thread is attaching>";
2991     } else {
2992       name_str = Thread::name();
2993     }
2994   } else {
2995     name_str = Thread::name();
2996   }
2997   assert(name_str != NULL, "unexpected NULL thread name");
2998   return name_str;
2999 }
3000 
3001 
3002 const char* JavaThread::get_threadgroup_name() const {
3003   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3004   oop thread_obj = threadObj();
3005   if (thread_obj != NULL) {
3006     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3007     if (thread_group != NULL) {
3008       // ThreadGroup.name can be null
3009       return java_lang_ThreadGroup::name(thread_group);
3010     }
3011   }
3012   return NULL;
3013 }
3014 
3015 const char* JavaThread::get_parent_name() const {
3016   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3017   oop thread_obj = threadObj();
3018   if (thread_obj != NULL) {
3019     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3020     if (thread_group != NULL) {
3021       oop parent = java_lang_ThreadGroup::parent(thread_group);
3022       if (parent != NULL) {
3023         // ThreadGroup.name can be null
3024         return java_lang_ThreadGroup::name(parent);
3025       }
3026     }
3027   }
3028   return NULL;
3029 }
3030 
3031 ThreadPriority JavaThread::java_priority() const {
3032   oop thr_oop = threadObj();
3033   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3034   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3035   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3036   return priority;
3037 }
3038 
3039 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3040 
3041   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3042   // Link Java Thread object <-> C++ Thread
3043 
3044   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3045   // and put it into a new Handle.  The Handle "thread_oop" can then
3046   // be used to pass the C++ thread object to other methods.
3047 
3048   // Set the Java level thread object (jthread) field of the
3049   // new thread (a JavaThread *) to C++ thread object using the
3050   // "thread_oop" handle.
3051 
3052   // Set the thread field (a JavaThread *) of the
3053   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3054 
3055   Handle thread_oop(Thread::current(),
3056                     JNIHandles::resolve_non_null(jni_thread));
3057   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3058          "must be initialized");
3059   set_threadObj(thread_oop());
3060   java_lang_Thread::set_thread(thread_oop(), this);
3061 
3062   if (prio == NoPriority) {
3063     prio = java_lang_Thread::priority(thread_oop());
3064     assert(prio != NoPriority, "A valid priority should be present");
3065   }
3066 
3067   // Push the Java priority down to the native thread; needs Threads_lock
3068   Thread::set_priority(this, prio);
3069 
3070   prepare_ext();
3071 
3072   // Add the new thread to the Threads list and set it in motion.
3073   // We must have threads lock in order to call Threads::add.
3074   // It is crucial that we do not block before the thread is
3075   // added to the Threads list for if a GC happens, then the java_thread oop
3076   // will not be visited by GC.
3077   Threads::add(this);
3078 }
3079 
3080 oop JavaThread::current_park_blocker() {
3081   // Support for JSR-166 locks
3082   oop thread_oop = threadObj();
3083   if (thread_oop != NULL &&
3084       JDK_Version::current().supports_thread_park_blocker()) {
3085     return java_lang_Thread::park_blocker(thread_oop);
3086   }
3087   return NULL;
3088 }
3089 
3090 
3091 void JavaThread::print_stack_on(outputStream* st) {
3092   if (!has_last_Java_frame()) return;
3093   ResourceMark rm;
3094   HandleMark   hm;
3095 
3096   RegisterMap reg_map(this);
3097   vframe* start_vf = last_java_vframe(&reg_map);
3098   int count = 0;
3099   for (vframe* f = start_vf; f; f = f->sender()) {
3100     if (f->is_java_frame()) {
3101       javaVFrame* jvf = javaVFrame::cast(f);
3102       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3103 
3104       // Print out lock information
3105       if (JavaMonitorsInStackTrace) {
3106         jvf->print_lock_info_on(st, count);
3107       }
3108     } else {
3109       // Ignore non-Java frames
3110     }
3111 
3112     // Bail-out case for too deep stacks
3113     count++;
3114     if (MaxJavaStackTraceDepth == count) return;
3115   }
3116 }
3117 
3118 
3119 // JVMTI PopFrame support
3120 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3121   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3122   if (in_bytes(size_in_bytes) != 0) {
3123     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3124     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3125     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3126   }
3127 }
3128 
3129 void* JavaThread::popframe_preserved_args() {
3130   return _popframe_preserved_args;
3131 }
3132 
3133 ByteSize JavaThread::popframe_preserved_args_size() {
3134   return in_ByteSize(_popframe_preserved_args_size);
3135 }
3136 
3137 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3138   int sz = in_bytes(popframe_preserved_args_size());
3139   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3140   return in_WordSize(sz / wordSize);
3141 }
3142 
3143 void JavaThread::popframe_free_preserved_args() {
3144   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3145   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3146   _popframe_preserved_args = NULL;
3147   _popframe_preserved_args_size = 0;
3148 }
3149 
3150 #ifndef PRODUCT
3151 
3152 void JavaThread::trace_frames() {
3153   tty->print_cr("[Describe stack]");
3154   int frame_no = 1;
3155   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3156     tty->print("  %d. ", frame_no++);
3157     fst.current()->print_value_on(tty, this);
3158     tty->cr();
3159   }
3160 }
3161 
3162 class PrintAndVerifyOopClosure: public OopClosure {
3163  protected:
3164   template <class T> inline void do_oop_work(T* p) {
3165     oop obj = oopDesc::load_decode_heap_oop(p);
3166     if (obj == NULL) return;
3167     tty->print(INTPTR_FORMAT ": ", p2i(p));
3168     if (obj->is_oop_or_null()) {
3169       if (obj->is_objArray()) {
3170         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3171       } else {
3172         obj->print();
3173       }
3174     } else {
3175       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3176     }
3177     tty->cr();
3178   }
3179  public:
3180   virtual void do_oop(oop* p) { do_oop_work(p); }
3181   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3182 };
3183 
3184 
3185 static void oops_print(frame* f, const RegisterMap *map) {
3186   PrintAndVerifyOopClosure print;
3187   f->print_value();
3188   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3189 }
3190 
3191 // Print our all the locations that contain oops and whether they are
3192 // valid or not.  This useful when trying to find the oldest frame
3193 // where an oop has gone bad since the frame walk is from youngest to
3194 // oldest.
3195 void JavaThread::trace_oops() {
3196   tty->print_cr("[Trace oops]");
3197   frames_do(oops_print);
3198 }
3199 
3200 
3201 #ifdef ASSERT
3202 // Print or validate the layout of stack frames
3203 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3204   ResourceMark rm;
3205   PRESERVE_EXCEPTION_MARK;
3206   FrameValues values;
3207   int frame_no = 0;
3208   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3209     fst.current()->describe(values, ++frame_no);
3210     if (depth == frame_no) break;
3211   }
3212   if (validate_only) {
3213     values.validate();
3214   } else {
3215     tty->print_cr("[Describe stack layout]");
3216     values.print(this);
3217   }
3218 }
3219 #endif
3220 
3221 void JavaThread::trace_stack_from(vframe* start_vf) {
3222   ResourceMark rm;
3223   int vframe_no = 1;
3224   for (vframe* f = start_vf; f; f = f->sender()) {
3225     if (f->is_java_frame()) {
3226       javaVFrame::cast(f)->print_activation(vframe_no++);
3227     } else {
3228       f->print();
3229     }
3230     if (vframe_no > StackPrintLimit) {
3231       tty->print_cr("...<more frames>...");
3232       return;
3233     }
3234   }
3235 }
3236 
3237 
3238 void JavaThread::trace_stack() {
3239   if (!has_last_Java_frame()) return;
3240   ResourceMark rm;
3241   HandleMark   hm;
3242   RegisterMap reg_map(this);
3243   trace_stack_from(last_java_vframe(&reg_map));
3244 }
3245 
3246 
3247 #endif // PRODUCT
3248 
3249 
3250 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3251   assert(reg_map != NULL, "a map must be given");
3252   frame f = last_frame();
3253   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3254     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3255   }
3256   return NULL;
3257 }
3258 
3259 
3260 Klass* JavaThread::security_get_caller_class(int depth) {
3261   vframeStream vfst(this);
3262   vfst.security_get_caller_frame(depth);
3263   if (!vfst.at_end()) {
3264     return vfst.method()->method_holder();
3265   }
3266   return NULL;
3267 }
3268 
3269 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3270   assert(thread->is_Compiler_thread(), "must be compiler thread");
3271   CompileBroker::compiler_thread_loop();
3272 }
3273 
3274 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3275   NMethodSweeper::sweeper_loop();
3276 }
3277 
3278 // Create a CompilerThread
3279 CompilerThread::CompilerThread(CompileQueue* queue,
3280                                CompilerCounters* counters)
3281                                : JavaThread(&compiler_thread_entry) {
3282   _env   = NULL;
3283   _log   = NULL;
3284   _task  = NULL;
3285   _queue = queue;
3286   _counters = counters;
3287   _buffer_blob = NULL;
3288   _compiler = NULL;
3289 
3290 #ifndef PRODUCT
3291   _ideal_graph_printer = NULL;
3292 #endif
3293 }
3294 
3295 bool CompilerThread::can_call_java() const {
3296   return _compiler != NULL && _compiler->is_jvmci();
3297 }
3298 
3299 // Create sweeper thread
3300 CodeCacheSweeperThread::CodeCacheSweeperThread()
3301 : JavaThread(&sweeper_thread_entry) {
3302   _scanned_nmethod = NULL;
3303 }
3304 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3305   JavaThread::oops_do(f, cld_f, cf);
3306   if (_scanned_nmethod != NULL && cf != NULL) {
3307     // Safepoints can occur when the sweeper is scanning an nmethod so
3308     // process it here to make sure it isn't unloaded in the middle of
3309     // a scan.
3310     cf->do_code_blob(_scanned_nmethod);
3311   }
3312 }
3313 
3314 
3315 // ======= Threads ========
3316 
3317 // The Threads class links together all active threads, and provides
3318 // operations over all threads.  It is protected by its own Mutex
3319 // lock, which is also used in other contexts to protect thread
3320 // operations from having the thread being operated on from exiting
3321 // and going away unexpectedly (e.g., safepoint synchronization)
3322 
3323 JavaThread* Threads::_thread_list = NULL;
3324 int         Threads::_number_of_threads = 0;
3325 int         Threads::_number_of_non_daemon_threads = 0;
3326 int         Threads::_return_code = 0;
3327 int         Threads::_thread_claim_parity = 0;
3328 size_t      JavaThread::_stack_size_at_create = 0;
3329 #ifdef ASSERT
3330 bool        Threads::_vm_complete = false;
3331 #endif
3332 
3333 // All JavaThreads
3334 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3335 
3336 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3337 void Threads::threads_do(ThreadClosure* tc) {
3338   assert_locked_or_safepoint(Threads_lock);
3339   // ALL_JAVA_THREADS iterates through all JavaThreads
3340   ALL_JAVA_THREADS(p) {
3341     tc->do_thread(p);
3342   }
3343   // Someday we could have a table or list of all non-JavaThreads.
3344   // For now, just manually iterate through them.
3345   tc->do_thread(VMThread::vm_thread());
3346   Universe::heap()->gc_threads_do(tc);
3347   WatcherThread *wt = WatcherThread::watcher_thread();
3348   // Strictly speaking, the following NULL check isn't sufficient to make sure
3349   // the data for WatcherThread is still valid upon being examined. However,
3350   // considering that WatchThread terminates when the VM is on the way to
3351   // exit at safepoint, the chance of the above is extremely small. The right
3352   // way to prevent termination of WatcherThread would be to acquire
3353   // Terminator_lock, but we can't do that without violating the lock rank
3354   // checking in some cases.
3355   if (wt != NULL) {
3356     tc->do_thread(wt);
3357   }
3358 
3359   // If CompilerThreads ever become non-JavaThreads, add them here
3360 }
3361 
3362 // The system initialization in the library has three phases.
3363 //
3364 // Phase 1: java.lang.System class initialization
3365 //     java.lang.System is a primordial class loaded and initialized
3366 //     by the VM early during startup.  java.lang.System.<clinit>
3367 //     only does registerNatives and keeps the rest of the class
3368 //     initialization work later until thread initialization completes.
3369 //
3370 //     System.initPhase1 initializes the system properties, the static
3371 //     fields in, out, and err. Set up java signal handlers, OS-specific
3372 //     system settings, and thread group of the main thread.
3373 static void call_initPhase1(TRAPS) {
3374   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3375   instanceKlassHandle klass (THREAD, k);
3376 
3377   JavaValue result(T_VOID);
3378   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3379                                          vmSymbols::void_method_signature(), CHECK);
3380 }
3381 
3382 // Phase 2. Module system initialization
3383 //     This will initialize the module system.  Only java.base classes
3384 //     can be loaded until phase 2 completes.
3385 //
3386 //     Call System.initPhase2 after the compiler initialization and jsr292
3387 //     classes get initialized because module initialization runs a lot of java
3388 //     code, that for performance reasons, should be compiled.  Also, this will
3389 //     enable the startup code to use lambda and other language features in this
3390 //     phase and onward.
3391 //
3392 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3393 static void call_initPhase2(TRAPS) {
3394   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3395   instanceKlassHandle klass (THREAD, k);
3396 
3397   JavaValue result(T_VOID);
3398   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3399                                          vmSymbols::void_method_signature(), CHECK);
3400   universe_post_module_init();
3401 }
3402 
3403 // Phase 3. final setup - set security manager, system class loader and TCCL
3404 //
3405 //     This will instantiate and set the security manager, set the system class
3406 //     loader as well as the thread context class loader.  The security manager
3407 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3408 //     other modules or the application's classpath.
3409 static void call_initPhase3(TRAPS) {
3410   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3411   instanceKlassHandle klass (THREAD, k);
3412 
3413   JavaValue result(T_VOID);
3414   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3415                                          vmSymbols::void_method_signature(), CHECK);
3416 }
3417 
3418 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3419   TraceStartupTime timer("Initialize java.lang classes");
3420 
3421   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3422     create_vm_init_libraries();
3423   }
3424 
3425   initialize_class(vmSymbols::java_lang_String(), CHECK);
3426 
3427   // Inject CompactStrings value after the static initializers for String ran.
3428   java_lang_String::set_compact_strings(CompactStrings);
3429 
3430   // Initialize java_lang.System (needed before creating the thread)
3431   initialize_class(vmSymbols::java_lang_System(), CHECK);
3432   // The VM creates & returns objects of this class. Make sure it's initialized.
3433   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3434   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3435   Handle thread_group = create_initial_thread_group(CHECK);
3436   Universe::set_main_thread_group(thread_group());
3437   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3438   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3439   main_thread->set_threadObj(thread_object);
3440   // Set thread status to running since main thread has
3441   // been started and running.
3442   java_lang_Thread::set_thread_status(thread_object,
3443                                       java_lang_Thread::RUNNABLE);
3444 
3445   // The VM creates objects of this class.
3446   initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3447 
3448   // The VM preresolves methods to these classes. Make sure that they get initialized
3449   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3450   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3451 
3452   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3453   call_initPhase1(CHECK);
3454 
3455   // get the Java runtime name after java.lang.System is initialized
3456   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3457   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3458 
3459   // an instance of OutOfMemory exception has been allocated earlier
3460   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3461   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3462   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3463   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3464   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3465   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3466   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3467   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3468 }
3469 
3470 void Threads::initialize_jsr292_core_classes(TRAPS) {
3471   TraceStartupTime timer("Initialize java.lang.invoke classes");
3472 
3473   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3474   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3475   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3476 }
3477 
3478 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3479   extern void JDK_Version_init();
3480 
3481   // Preinitialize version info.
3482   VM_Version::early_initialize();
3483 
3484   // Check version
3485   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3486 
3487   // Initialize library-based TLS
3488   ThreadLocalStorage::init();
3489 
3490   // Initialize the output stream module
3491   ostream_init();
3492 
3493   // Process java launcher properties.
3494   Arguments::process_sun_java_launcher_properties(args);
3495 
3496   // Initialize the os module
3497   os::init();
3498 
3499   // Record VM creation timing statistics
3500   TraceVmCreationTime create_vm_timer;
3501   create_vm_timer.start();
3502 
3503   // Initialize system properties.
3504   Arguments::init_system_properties();
3505 
3506   // So that JDK version can be used as a discriminator when parsing arguments
3507   JDK_Version_init();
3508 
3509   // Update/Initialize System properties after JDK version number is known
3510   Arguments::init_version_specific_system_properties();
3511 
3512   // Make sure to initialize log configuration *before* parsing arguments
3513   LogConfiguration::initialize(create_vm_timer.begin_time());
3514 
3515   // Parse arguments
3516   jint parse_result = Arguments::parse(args);
3517   if (parse_result != JNI_OK) return parse_result;
3518 
3519   os::init_before_ergo();
3520 
3521   jint ergo_result = Arguments::apply_ergo();
3522   if (ergo_result != JNI_OK) return ergo_result;
3523 
3524   // Final check of all ranges after ergonomics which may change values.
3525   if (!CommandLineFlagRangeList::check_ranges()) {
3526     return JNI_EINVAL;
3527   }
3528 
3529   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3530   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3531   if (!constraint_result) {
3532     return JNI_EINVAL;
3533   }
3534 
3535   if (PauseAtStartup) {
3536     os::pause();
3537   }
3538 
3539   HOTSPOT_VM_INIT_BEGIN();
3540 
3541   // Timing (must come after argument parsing)
3542   TraceStartupTime timer("Create VM");
3543 
3544   // Initialize the os module after parsing the args
3545   jint os_init_2_result = os::init_2();
3546   if (os_init_2_result != JNI_OK) return os_init_2_result;
3547 
3548   jint adjust_after_os_result = Arguments::adjust_after_os();
3549   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3550 
3551   // Initialize output stream logging
3552   ostream_init_log();
3553 
3554   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3555   // Must be before create_vm_init_agents()
3556   if (Arguments::init_libraries_at_startup()) {
3557     convert_vm_init_libraries_to_agents();
3558   }
3559 
3560   // Launch -agentlib/-agentpath and converted -Xrun agents
3561   if (Arguments::init_agents_at_startup()) {
3562     create_vm_init_agents();
3563   }
3564 
3565   // Initialize Threads state
3566   _thread_list = NULL;
3567   _number_of_threads = 0;
3568   _number_of_non_daemon_threads = 0;
3569 
3570   // Initialize global data structures and create system classes in heap
3571   vm_init_globals();
3572 
3573 #if INCLUDE_JVMCI
3574   if (JVMCICounterSize > 0) {
3575     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3576     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3577   } else {
3578     JavaThread::_jvmci_old_thread_counters = NULL;
3579   }
3580 #endif // INCLUDE_JVMCI
3581 
3582   // Attach the main thread to this os thread
3583   JavaThread* main_thread = new JavaThread();
3584   main_thread->set_thread_state(_thread_in_vm);
3585   main_thread->initialize_thread_current();
3586   // must do this before set_active_handles
3587   main_thread->record_stack_base_and_size();
3588   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3589 
3590   if (!main_thread->set_as_starting_thread()) {
3591     vm_shutdown_during_initialization(
3592                                       "Failed necessary internal allocation. Out of swap space");
3593     delete main_thread;
3594     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3595     return JNI_ENOMEM;
3596   }
3597 
3598   // Enable guard page *after* os::create_main_thread(), otherwise it would
3599   // crash Linux VM, see notes in os_linux.cpp.
3600   main_thread->create_stack_guard_pages();
3601 
3602   // Initialize Java-Level synchronization subsystem
3603   ObjectMonitor::Initialize();
3604 
3605   // Initialize global modules
3606   jint status = init_globals();
3607   if (status != JNI_OK) {
3608     delete main_thread;
3609     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3610     return status;
3611   }
3612 
3613   if (TRACE_INITIALIZE() != JNI_OK) {
3614     vm_exit_during_initialization("Failed to initialize tracing backend");
3615   }
3616 
3617   // Should be done after the heap is fully created
3618   main_thread->cache_global_variables();
3619 
3620   HandleMark hm;
3621 
3622   { MutexLocker mu(Threads_lock);
3623     Threads::add(main_thread);
3624   }
3625 
3626   // Any JVMTI raw monitors entered in onload will transition into
3627   // real raw monitor. VM is setup enough here for raw monitor enter.
3628   JvmtiExport::transition_pending_onload_raw_monitors();
3629 
3630   // Create the VMThread
3631   { TraceStartupTime timer("Start VMThread");
3632 
3633   VMThread::create();
3634     Thread* vmthread = VMThread::vm_thread();
3635 
3636     if (!os::create_thread(vmthread, os::vm_thread)) {
3637       vm_exit_during_initialization("Cannot create VM thread. "
3638                                     "Out of system resources.");
3639     }
3640 
3641     // Wait for the VM thread to become ready, and VMThread::run to initialize
3642     // Monitors can have spurious returns, must always check another state flag
3643     {
3644       MutexLocker ml(Notify_lock);
3645       os::start_thread(vmthread);
3646       while (vmthread->active_handles() == NULL) {
3647         Notify_lock->wait();
3648       }
3649     }
3650   }
3651 
3652   assert(Universe::is_fully_initialized(), "not initialized");
3653   if (VerifyDuringStartup) {
3654     // Make sure we're starting with a clean slate.
3655     VM_Verify verify_op;
3656     VMThread::execute(&verify_op);
3657   }
3658 
3659   Thread* THREAD = Thread::current();
3660 
3661   // At this point, the Universe is initialized, but we have not executed
3662   // any byte code.  Now is a good time (the only time) to dump out the
3663   // internal state of the JVM for sharing.
3664   if (DumpSharedSpaces) {
3665     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3666     ShouldNotReachHere();
3667   }
3668 
3669   // Always call even when there are not JVMTI environments yet, since environments
3670   // may be attached late and JVMTI must track phases of VM execution
3671   JvmtiExport::enter_early_start_phase();
3672 
3673   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3674   JvmtiExport::post_early_vm_start();
3675 
3676   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3677 
3678   // We need this for ClassDataSharing - the initial vm.info property is set
3679   // with the default value of CDS "sharing" which may be reset through
3680   // command line options.
3681   reset_vm_info_property(CHECK_JNI_ERR);
3682 
3683   quicken_jni_functions();
3684 
3685   // No more stub generation allowed after that point.
3686   StubCodeDesc::freeze();
3687 
3688   // Set flag that basic initialization has completed. Used by exceptions and various
3689   // debug stuff, that does not work until all basic classes have been initialized.
3690   set_init_completed();
3691 
3692   LogConfiguration::post_initialize();
3693   Metaspace::post_initialize();
3694 
3695   HOTSPOT_VM_INIT_END();
3696 
3697   // record VM initialization completion time
3698 #if INCLUDE_MANAGEMENT
3699   Management::record_vm_init_completed();
3700 #endif // INCLUDE_MANAGEMENT
3701 
3702   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3703   // set_init_completed has just been called, causing exceptions not to be shortcut
3704   // anymore. We call vm_exit_during_initialization directly instead.
3705 
3706 #if INCLUDE_ALL_GCS
3707   // Support for ConcurrentMarkSweep. This should be cleaned up
3708   // and better encapsulated. The ugly nested if test would go away
3709   // once things are properly refactored. XXX YSR
3710   if (UseConcMarkSweepGC || UseG1GC) {
3711     if (UseConcMarkSweepGC) {
3712       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3713     } else {
3714       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3715     }
3716   }
3717 #endif // INCLUDE_ALL_GCS
3718 
3719   // Signal Dispatcher needs to be started before VMInit event is posted
3720   os::signal_init();
3721 
3722   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3723   if (!DisableAttachMechanism) {
3724     AttachListener::vm_start();
3725     if (StartAttachListener || AttachListener::init_at_startup()) {
3726       AttachListener::init();
3727     }
3728   }
3729 
3730   // Launch -Xrun agents
3731   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3732   // back-end can launch with -Xdebug -Xrunjdwp.
3733   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3734     create_vm_init_libraries();
3735   }
3736 
3737   if (CleanChunkPoolAsync) {
3738     Chunk::start_chunk_pool_cleaner_task();
3739   }
3740 
3741   // initialize compiler(s)
3742 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3743   CompileBroker::compilation_init(CHECK_JNI_ERR);
3744 #endif
3745 
3746   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3747   // It is done after compilers are initialized, because otherwise compilations of
3748   // signature polymorphic MH intrinsics can be missed
3749   // (see SystemDictionary::find_method_handle_intrinsic).
3750   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3751 
3752   // This will initialize the module system.  Only java.base classes can be
3753   // loaded until phase 2 completes
3754   call_initPhase2(CHECK_JNI_ERR);
3755 
3756   // Always call even when there are not JVMTI environments yet, since environments
3757   // may be attached late and JVMTI must track phases of VM execution
3758   JvmtiExport::enter_start_phase();
3759 
3760   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3761   JvmtiExport::post_vm_start();
3762 
3763   // Final system initialization including security manager and system class loader
3764   call_initPhase3(CHECK_JNI_ERR);
3765 
3766   // cache the system class loader
3767   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3768 
3769   // Always call even when there are not JVMTI environments yet, since environments
3770   // may be attached late and JVMTI must track phases of VM execution
3771   JvmtiExport::enter_live_phase();
3772 
3773   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3774   JvmtiExport::post_vm_initialized();
3775 
3776   if (TRACE_START() != JNI_OK) {
3777     vm_exit_during_initialization("Failed to start tracing backend.");
3778   }
3779 
3780 #if INCLUDE_MANAGEMENT
3781   Management::initialize(THREAD);
3782 
3783   if (HAS_PENDING_EXCEPTION) {
3784     // management agent fails to start possibly due to
3785     // configuration problem and is responsible for printing
3786     // stack trace if appropriate. Simply exit VM.
3787     vm_exit(1);
3788   }
3789 #endif // INCLUDE_MANAGEMENT
3790 
3791   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3792   if (MemProfiling)                   MemProfiler::engage();
3793   StatSampler::engage();
3794   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3795 
3796   BiasedLocking::init();
3797 
3798 #if INCLUDE_RTM_OPT
3799   RTMLockingCounters::init();
3800 #endif
3801 
3802   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3803     call_postVMInitHook(THREAD);
3804     // The Java side of PostVMInitHook.run must deal with all
3805     // exceptions and provide means of diagnosis.
3806     if (HAS_PENDING_EXCEPTION) {
3807       CLEAR_PENDING_EXCEPTION;
3808     }
3809   }
3810 
3811   {
3812     MutexLocker ml(PeriodicTask_lock);
3813     // Make sure the WatcherThread can be started by WatcherThread::start()
3814     // or by dynamic enrollment.
3815     WatcherThread::make_startable();
3816     // Start up the WatcherThread if there are any periodic tasks
3817     // NOTE:  All PeriodicTasks should be registered by now. If they
3818     //   aren't, late joiners might appear to start slowly (we might
3819     //   take a while to process their first tick).
3820     if (PeriodicTask::num_tasks() > 0) {
3821       WatcherThread::start();
3822     }
3823   }
3824 
3825   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3826 
3827   create_vm_timer.end();
3828 #ifdef ASSERT
3829   _vm_complete = true;
3830 #endif
3831   return JNI_OK;
3832 }
3833 
3834 // type for the Agent_OnLoad and JVM_OnLoad entry points
3835 extern "C" {
3836   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3837 }
3838 // Find a command line agent library and return its entry point for
3839 //         -agentlib:  -agentpath:   -Xrun
3840 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3841 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3842                                     const char *on_load_symbols[],
3843                                     size_t num_symbol_entries) {
3844   OnLoadEntry_t on_load_entry = NULL;
3845   void *library = NULL;
3846 
3847   if (!agent->valid()) {
3848     char buffer[JVM_MAXPATHLEN];
3849     char ebuf[1024] = "";
3850     const char *name = agent->name();
3851     const char *msg = "Could not find agent library ";
3852 
3853     // First check to see if agent is statically linked into executable
3854     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3855       library = agent->os_lib();
3856     } else if (agent->is_absolute_path()) {
3857       library = os::dll_load(name, ebuf, sizeof ebuf);
3858       if (library == NULL) {
3859         const char *sub_msg = " in absolute path, with error: ";
3860         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3861         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3862         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3863         // If we can't find the agent, exit.
3864         vm_exit_during_initialization(buf, NULL);
3865         FREE_C_HEAP_ARRAY(char, buf);
3866       }
3867     } else {
3868       // Try to load the agent from the standard dll directory
3869       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3870                              name)) {
3871         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3872       }
3873       if (library == NULL) { // Try the local directory
3874         char ns[1] = {0};
3875         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3876           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3877         }
3878         if (library == NULL) {
3879           const char *sub_msg = " on the library path, with error: ";
3880           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3881           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3882           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3883           // If we can't find the agent, exit.
3884           vm_exit_during_initialization(buf, NULL);
3885           FREE_C_HEAP_ARRAY(char, buf);
3886         }
3887       }
3888     }
3889     agent->set_os_lib(library);
3890     agent->set_valid();
3891   }
3892 
3893   // Find the OnLoad function.
3894   on_load_entry =
3895     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3896                                                           false,
3897                                                           on_load_symbols,
3898                                                           num_symbol_entries));
3899   return on_load_entry;
3900 }
3901 
3902 // Find the JVM_OnLoad entry point
3903 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3904   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3905   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3906 }
3907 
3908 // Find the Agent_OnLoad entry point
3909 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3910   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3911   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3912 }
3913 
3914 // For backwards compatibility with -Xrun
3915 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3916 // treated like -agentpath:
3917 // Must be called before agent libraries are created
3918 void Threads::convert_vm_init_libraries_to_agents() {
3919   AgentLibrary* agent;
3920   AgentLibrary* next;
3921 
3922   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3923     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3924     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3925 
3926     // If there is an JVM_OnLoad function it will get called later,
3927     // otherwise see if there is an Agent_OnLoad
3928     if (on_load_entry == NULL) {
3929       on_load_entry = lookup_agent_on_load(agent);
3930       if (on_load_entry != NULL) {
3931         // switch it to the agent list -- so that Agent_OnLoad will be called,
3932         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3933         Arguments::convert_library_to_agent(agent);
3934       } else {
3935         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3936       }
3937     }
3938   }
3939 }
3940 
3941 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3942 // Invokes Agent_OnLoad
3943 // Called very early -- before JavaThreads exist
3944 void Threads::create_vm_init_agents() {
3945   extern struct JavaVM_ main_vm;
3946   AgentLibrary* agent;
3947 
3948   JvmtiExport::enter_onload_phase();
3949 
3950   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3951     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3952 
3953     if (on_load_entry != NULL) {
3954       // Invoke the Agent_OnLoad function
3955       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3956       if (err != JNI_OK) {
3957         vm_exit_during_initialization("agent library failed to init", agent->name());
3958       }
3959     } else {
3960       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3961     }
3962   }
3963   JvmtiExport::enter_primordial_phase();
3964 }
3965 
3966 extern "C" {
3967   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3968 }
3969 
3970 void Threads::shutdown_vm_agents() {
3971   // Send any Agent_OnUnload notifications
3972   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3973   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3974   extern struct JavaVM_ main_vm;
3975   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3976 
3977     // Find the Agent_OnUnload function.
3978     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3979                                                    os::find_agent_function(agent,
3980                                                    false,
3981                                                    on_unload_symbols,
3982                                                    num_symbol_entries));
3983 
3984     // Invoke the Agent_OnUnload function
3985     if (unload_entry != NULL) {
3986       JavaThread* thread = JavaThread::current();
3987       ThreadToNativeFromVM ttn(thread);
3988       HandleMark hm(thread);
3989       (*unload_entry)(&main_vm);
3990     }
3991   }
3992 }
3993 
3994 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3995 // Invokes JVM_OnLoad
3996 void Threads::create_vm_init_libraries() {
3997   extern struct JavaVM_ main_vm;
3998   AgentLibrary* agent;
3999 
4000   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4001     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4002 
4003     if (on_load_entry != NULL) {
4004       // Invoke the JVM_OnLoad function
4005       JavaThread* thread = JavaThread::current();
4006       ThreadToNativeFromVM ttn(thread);
4007       HandleMark hm(thread);
4008       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4009       if (err != JNI_OK) {
4010         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4011       }
4012     } else {
4013       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4014     }
4015   }
4016 }
4017 
4018 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4019   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4020 
4021   JavaThread* java_thread = NULL;
4022   // Sequential search for now.  Need to do better optimization later.
4023   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4024     oop tobj = thread->threadObj();
4025     if (!thread->is_exiting() &&
4026         tobj != NULL &&
4027         java_tid == java_lang_Thread::thread_id(tobj)) {
4028       java_thread = thread;
4029       break;
4030     }
4031   }
4032   return java_thread;
4033 }
4034 
4035 
4036 // Last thread running calls java.lang.Shutdown.shutdown()
4037 void JavaThread::invoke_shutdown_hooks() {
4038   HandleMark hm(this);
4039 
4040   // We could get here with a pending exception, if so clear it now.
4041   if (this->has_pending_exception()) {
4042     this->clear_pending_exception();
4043   }
4044 
4045   EXCEPTION_MARK;
4046   Klass* k =
4047     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4048                                       THREAD);
4049   if (k != NULL) {
4050     // SystemDictionary::resolve_or_null will return null if there was
4051     // an exception.  If we cannot load the Shutdown class, just don't
4052     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4053     // and finalizers (if runFinalizersOnExit is set) won't be run.
4054     // Note that if a shutdown hook was registered or runFinalizersOnExit
4055     // was called, the Shutdown class would have already been loaded
4056     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4057     instanceKlassHandle shutdown_klass (THREAD, k);
4058     JavaValue result(T_VOID);
4059     JavaCalls::call_static(&result,
4060                            shutdown_klass,
4061                            vmSymbols::shutdown_method_name(),
4062                            vmSymbols::void_method_signature(),
4063                            THREAD);
4064   }
4065   CLEAR_PENDING_EXCEPTION;
4066 }
4067 
4068 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4069 // the program falls off the end of main(). Another VM exit path is through
4070 // vm_exit() when the program calls System.exit() to return a value or when
4071 // there is a serious error in VM. The two shutdown paths are not exactly
4072 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4073 // and VM_Exit op at VM level.
4074 //
4075 // Shutdown sequence:
4076 //   + Shutdown native memory tracking if it is on
4077 //   + Wait until we are the last non-daemon thread to execute
4078 //     <-- every thing is still working at this moment -->
4079 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4080 //        shutdown hooks, run finalizers if finalization-on-exit
4081 //   + Call before_exit(), prepare for VM exit
4082 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4083 //        currently the only user of this mechanism is File.deleteOnExit())
4084 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4085 //        post thread end and vm death events to JVMTI,
4086 //        stop signal thread
4087 //   + Call JavaThread::exit(), it will:
4088 //      > release JNI handle blocks, remove stack guard pages
4089 //      > remove this thread from Threads list
4090 //     <-- no more Java code from this thread after this point -->
4091 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4092 //     the compiler threads at safepoint
4093 //     <-- do not use anything that could get blocked by Safepoint -->
4094 //   + Disable tracing at JNI/JVM barriers
4095 //   + Set _vm_exited flag for threads that are still running native code
4096 //   + Delete this thread
4097 //   + Call exit_globals()
4098 //      > deletes tty
4099 //      > deletes PerfMemory resources
4100 //   + Return to caller
4101 
4102 bool Threads::destroy_vm() {
4103   JavaThread* thread = JavaThread::current();
4104 
4105 #ifdef ASSERT
4106   _vm_complete = false;
4107 #endif
4108   // Wait until we are the last non-daemon thread to execute
4109   { MutexLocker nu(Threads_lock);
4110     while (Threads::number_of_non_daemon_threads() > 1)
4111       // This wait should make safepoint checks, wait without a timeout,
4112       // and wait as a suspend-equivalent condition.
4113       //
4114       // Note: If the FlatProfiler is running and this thread is waiting
4115       // for another non-daemon thread to finish, then the FlatProfiler
4116       // is waiting for the external suspend request on this thread to
4117       // complete. wait_for_ext_suspend_completion() will eventually
4118       // timeout, but that takes time. Making this wait a suspend-
4119       // equivalent condition solves that timeout problem.
4120       //
4121       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4122                          Mutex::_as_suspend_equivalent_flag);
4123   }
4124 
4125   // Hang forever on exit if we are reporting an error.
4126   if (ShowMessageBoxOnError && is_error_reported()) {
4127     os::infinite_sleep();
4128   }
4129   os::wait_for_keypress_at_exit();
4130 
4131   // run Java level shutdown hooks
4132   thread->invoke_shutdown_hooks();
4133 
4134   before_exit(thread);
4135 
4136   thread->exit(true);
4137 
4138   // Stop VM thread.
4139   {
4140     // 4945125 The vm thread comes to a safepoint during exit.
4141     // GC vm_operations can get caught at the safepoint, and the
4142     // heap is unparseable if they are caught. Grab the Heap_lock
4143     // to prevent this. The GC vm_operations will not be able to
4144     // queue until after the vm thread is dead. After this point,
4145     // we'll never emerge out of the safepoint before the VM exits.
4146 
4147     MutexLocker ml(Heap_lock);
4148 
4149     VMThread::wait_for_vm_thread_exit();
4150     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4151     VMThread::destroy();
4152   }
4153 
4154   // clean up ideal graph printers
4155 #if defined(COMPILER2) && !defined(PRODUCT)
4156   IdealGraphPrinter::clean_up();
4157 #endif
4158 
4159   // Now, all Java threads are gone except daemon threads. Daemon threads
4160   // running Java code or in VM are stopped by the Safepoint. However,
4161   // daemon threads executing native code are still running.  But they
4162   // will be stopped at native=>Java/VM barriers. Note that we can't
4163   // simply kill or suspend them, as it is inherently deadlock-prone.
4164 
4165   VM_Exit::set_vm_exited();
4166 
4167   notify_vm_shutdown();
4168 
4169   delete thread;
4170 
4171 #if INCLUDE_JVMCI
4172   if (JVMCICounterSize > 0) {
4173     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4174   }
4175 #endif
4176 
4177   // exit_globals() will delete tty
4178   exit_globals();
4179 
4180   LogConfiguration::finalize();
4181 
4182   return true;
4183 }
4184 
4185 
4186 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4187   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4188   return is_supported_jni_version(version);
4189 }
4190 
4191 
4192 jboolean Threads::is_supported_jni_version(jint version) {
4193   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4194   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4195   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4196   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4197   if (version == JNI_VERSION_9) return JNI_TRUE;
4198   return JNI_FALSE;
4199 }
4200 
4201 
4202 void Threads::add(JavaThread* p, bool force_daemon) {
4203   // The threads lock must be owned at this point
4204   assert_locked_or_safepoint(Threads_lock);
4205 
4206   // See the comment for this method in thread.hpp for its purpose and
4207   // why it is called here.
4208   p->initialize_queues();
4209   p->set_next(_thread_list);
4210   _thread_list = p;
4211   _number_of_threads++;
4212   oop threadObj = p->threadObj();
4213   bool daemon = true;
4214   // Bootstrapping problem: threadObj can be null for initial
4215   // JavaThread (or for threads attached via JNI)
4216   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4217     _number_of_non_daemon_threads++;
4218     daemon = false;
4219   }
4220 
4221   ThreadService::add_thread(p, daemon);
4222 
4223   // Possible GC point.
4224   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4225 }
4226 
4227 void Threads::remove(JavaThread* p) {
4228   // Extra scope needed for Thread_lock, so we can check
4229   // that we do not remove thread without safepoint code notice
4230   { MutexLocker ml(Threads_lock);
4231 
4232     assert(includes(p), "p must be present");
4233 
4234     JavaThread* current = _thread_list;
4235     JavaThread* prev    = NULL;
4236 
4237     while (current != p) {
4238       prev    = current;
4239       current = current->next();
4240     }
4241 
4242     if (prev) {
4243       prev->set_next(current->next());
4244     } else {
4245       _thread_list = p->next();
4246     }
4247     _number_of_threads--;
4248     oop threadObj = p->threadObj();
4249     bool daemon = true;
4250     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4251       _number_of_non_daemon_threads--;
4252       daemon = false;
4253 
4254       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4255       // on destroy_vm will wake up.
4256       if (number_of_non_daemon_threads() == 1) {
4257         Threads_lock->notify_all();
4258       }
4259     }
4260     ThreadService::remove_thread(p, daemon);
4261 
4262     // Make sure that safepoint code disregard this thread. This is needed since
4263     // the thread might mess around with locks after this point. This can cause it
4264     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4265     // of this thread since it is removed from the queue.
4266     p->set_terminated_value();
4267   } // unlock Threads_lock
4268 
4269   // Since Events::log uses a lock, we grab it outside the Threads_lock
4270   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4271 }
4272 
4273 // Threads_lock must be held when this is called (or must be called during a safepoint)
4274 bool Threads::includes(JavaThread* p) {
4275   assert(Threads_lock->is_locked(), "sanity check");
4276   ALL_JAVA_THREADS(q) {
4277     if (q == p) {
4278       return true;
4279     }
4280   }
4281   return false;
4282 }
4283 
4284 // Operations on the Threads list for GC.  These are not explicitly locked,
4285 // but the garbage collector must provide a safe context for them to run.
4286 // In particular, these things should never be called when the Threads_lock
4287 // is held by some other thread. (Note: the Safepoint abstraction also
4288 // uses the Threads_lock to guarantee this property. It also makes sure that
4289 // all threads gets blocked when exiting or starting).
4290 
4291 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4292   ALL_JAVA_THREADS(p) {
4293     p->oops_do(f, cld_f, cf);
4294   }
4295   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4296 }
4297 
4298 void Threads::change_thread_claim_parity() {
4299   // Set the new claim parity.
4300   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4301          "Not in range.");
4302   _thread_claim_parity++;
4303   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4304   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4305          "Not in range.");
4306 }
4307 
4308 #ifdef ASSERT
4309 void Threads::assert_all_threads_claimed() {
4310   ALL_JAVA_THREADS(p) {
4311     const int thread_parity = p->oops_do_parity();
4312     assert((thread_parity == _thread_claim_parity),
4313            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4314   }
4315 }
4316 #endif // ASSERT
4317 
4318 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4319   int cp = Threads::thread_claim_parity();
4320   ALL_JAVA_THREADS(p) {
4321     if (p->claim_oops_do(is_par, cp)) {
4322       p->oops_do(f, cld_f, cf);
4323     }
4324   }
4325   VMThread* vmt = VMThread::vm_thread();
4326   if (vmt->claim_oops_do(is_par, cp)) {
4327     vmt->oops_do(f, cld_f, cf);
4328   }
4329 }
4330 
4331 #if INCLUDE_ALL_GCS
4332 // Used by ParallelScavenge
4333 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4334   ALL_JAVA_THREADS(p) {
4335     q->enqueue(new ThreadRootsTask(p));
4336   }
4337   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4338 }
4339 
4340 // Used by Parallel Old
4341 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4342   ALL_JAVA_THREADS(p) {
4343     q->enqueue(new ThreadRootsMarkingTask(p));
4344   }
4345   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4346 }
4347 #endif // INCLUDE_ALL_GCS
4348 
4349 void Threads::nmethods_do(CodeBlobClosure* cf) {
4350   ALL_JAVA_THREADS(p) {
4351     p->nmethods_do(cf);
4352   }
4353   VMThread::vm_thread()->nmethods_do(cf);
4354 }
4355 
4356 void Threads::metadata_do(void f(Metadata*)) {
4357   ALL_JAVA_THREADS(p) {
4358     p->metadata_do(f);
4359   }
4360 }
4361 
4362 class ThreadHandlesClosure : public ThreadClosure {
4363   void (*_f)(Metadata*);
4364  public:
4365   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4366   virtual void do_thread(Thread* thread) {
4367     thread->metadata_handles_do(_f);
4368   }
4369 };
4370 
4371 void Threads::metadata_handles_do(void f(Metadata*)) {
4372   // Only walk the Handles in Thread.
4373   ThreadHandlesClosure handles_closure(f);
4374   threads_do(&handles_closure);
4375 }
4376 
4377 void Threads::deoptimized_wrt_marked_nmethods() {
4378   ALL_JAVA_THREADS(p) {
4379     p->deoptimized_wrt_marked_nmethods();
4380   }
4381 }
4382 
4383 
4384 // Get count Java threads that are waiting to enter the specified monitor.
4385 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4386                                                          address monitor,
4387                                                          bool doLock) {
4388   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4389          "must grab Threads_lock or be at safepoint");
4390   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4391 
4392   int i = 0;
4393   {
4394     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4395     ALL_JAVA_THREADS(p) {
4396       if (!p->can_call_java()) continue;
4397 
4398       address pending = (address)p->current_pending_monitor();
4399       if (pending == monitor) {             // found a match
4400         if (i < count) result->append(p);   // save the first count matches
4401         i++;
4402       }
4403     }
4404   }
4405   return result;
4406 }
4407 
4408 
4409 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4410                                                       bool doLock) {
4411   assert(doLock ||
4412          Threads_lock->owned_by_self() ||
4413          SafepointSynchronize::is_at_safepoint(),
4414          "must grab Threads_lock or be at safepoint");
4415 
4416   // NULL owner means not locked so we can skip the search
4417   if (owner == NULL) return NULL;
4418 
4419   {
4420     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4421     ALL_JAVA_THREADS(p) {
4422       // first, see if owner is the address of a Java thread
4423       if (owner == (address)p) return p;
4424     }
4425   }
4426   // Cannot assert on lack of success here since this function may be
4427   // used by code that is trying to report useful problem information
4428   // like deadlock detection.
4429   if (UseHeavyMonitors) return NULL;
4430 
4431   // If we didn't find a matching Java thread and we didn't force use of
4432   // heavyweight monitors, then the owner is the stack address of the
4433   // Lock Word in the owning Java thread's stack.
4434   //
4435   JavaThread* the_owner = NULL;
4436   {
4437     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4438     ALL_JAVA_THREADS(q) {
4439       if (q->is_lock_owned(owner)) {
4440         the_owner = q;
4441         break;
4442       }
4443     }
4444   }
4445   // cannot assert on lack of success here; see above comment
4446   return the_owner;
4447 }
4448 
4449 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4450 void Threads::print_on(outputStream* st, bool print_stacks,
4451                        bool internal_format, bool print_concurrent_locks) {
4452   char buf[32];
4453   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4454 
4455   st->print_cr("Full thread dump %s (%s %s):",
4456                Abstract_VM_Version::vm_name(),
4457                Abstract_VM_Version::vm_release(),
4458                Abstract_VM_Version::vm_info_string());
4459   st->cr();
4460 
4461 #if INCLUDE_SERVICES
4462   // Dump concurrent locks
4463   ConcurrentLocksDump concurrent_locks;
4464   if (print_concurrent_locks) {
4465     concurrent_locks.dump_at_safepoint();
4466   }
4467 #endif // INCLUDE_SERVICES
4468 
4469   ALL_JAVA_THREADS(p) {
4470     ResourceMark rm;
4471     p->print_on(st);
4472     if (print_stacks) {
4473       if (internal_format) {
4474         p->trace_stack();
4475       } else {
4476         p->print_stack_on(st);
4477       }
4478     }
4479     st->cr();
4480 #if INCLUDE_SERVICES
4481     if (print_concurrent_locks) {
4482       concurrent_locks.print_locks_on(p, st);
4483     }
4484 #endif // INCLUDE_SERVICES
4485   }
4486 
4487   VMThread::vm_thread()->print_on(st);
4488   st->cr();
4489   Universe::heap()->print_gc_threads_on(st);
4490   WatcherThread* wt = WatcherThread::watcher_thread();
4491   if (wt != NULL) {
4492     wt->print_on(st);
4493     st->cr();
4494   }
4495   st->flush();
4496 }
4497 
4498 // Threads::print_on_error() is called by fatal error handler. It's possible
4499 // that VM is not at safepoint and/or current thread is inside signal handler.
4500 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4501 // memory (even in resource area), it might deadlock the error handler.
4502 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4503                              int buflen) {
4504   bool found_current = false;
4505   st->print_cr("Java Threads: ( => current thread )");
4506   ALL_JAVA_THREADS(thread) {
4507     bool is_current = (current == thread);
4508     found_current = found_current || is_current;
4509 
4510     st->print("%s", is_current ? "=>" : "  ");
4511 
4512     st->print(PTR_FORMAT, p2i(thread));
4513     st->print(" ");
4514     thread->print_on_error(st, buf, buflen);
4515     st->cr();
4516   }
4517   st->cr();
4518 
4519   st->print_cr("Other Threads:");
4520   if (VMThread::vm_thread()) {
4521     bool is_current = (current == VMThread::vm_thread());
4522     found_current = found_current || is_current;
4523     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4524 
4525     st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4526     st->print(" ");
4527     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4528     st->cr();
4529   }
4530   WatcherThread* wt = WatcherThread::watcher_thread();
4531   if (wt != NULL) {
4532     bool is_current = (current == wt);
4533     found_current = found_current || is_current;
4534     st->print("%s", is_current ? "=>" : "  ");
4535 
4536     st->print(PTR_FORMAT, p2i(wt));
4537     st->print(" ");
4538     wt->print_on_error(st, buf, buflen);
4539     st->cr();
4540   }
4541   if (!found_current) {
4542     st->cr();
4543     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4544     current->print_on_error(st, buf, buflen);
4545     st->cr();
4546   }
4547   st->cr();
4548   st->print_cr("Threads with active compile tasks:");
4549   print_threads_compiling(st, buf, buflen);
4550 }
4551 
4552 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4553   ALL_JAVA_THREADS(thread) {
4554     if (thread->is_Compiler_thread()) {
4555       CompilerThread* ct = (CompilerThread*) thread;
4556       if (ct->task() != NULL) {
4557         thread->print_name_on_error(st, buf, buflen);
4558         ct->task()->print(st, NULL, true, true);
4559       }
4560     }
4561   }
4562 }
4563 
4564 
4565 // Internal SpinLock and Mutex
4566 // Based on ParkEvent
4567 
4568 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4569 //
4570 // We employ SpinLocks _only for low-contention, fixed-length
4571 // short-duration critical sections where we're concerned
4572 // about native mutex_t or HotSpot Mutex:: latency.
4573 // The mux construct provides a spin-then-block mutual exclusion
4574 // mechanism.
4575 //
4576 // Testing has shown that contention on the ListLock guarding gFreeList
4577 // is common.  If we implement ListLock as a simple SpinLock it's common
4578 // for the JVM to devolve to yielding with little progress.  This is true
4579 // despite the fact that the critical sections protected by ListLock are
4580 // extremely short.
4581 //
4582 // TODO-FIXME: ListLock should be of type SpinLock.
4583 // We should make this a 1st-class type, integrated into the lock
4584 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4585 // should have sufficient padding to avoid false-sharing and excessive
4586 // cache-coherency traffic.
4587 
4588 
4589 typedef volatile int SpinLockT;
4590 
4591 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4592   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4593     return;   // normal fast-path return
4594   }
4595 
4596   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4597   TEVENT(SpinAcquire - ctx);
4598   int ctr = 0;
4599   int Yields = 0;
4600   for (;;) {
4601     while (*adr != 0) {
4602       ++ctr;
4603       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4604         if (Yields > 5) {
4605           os::naked_short_sleep(1);
4606         } else {
4607           os::naked_yield();
4608           ++Yields;
4609         }
4610       } else {
4611         SpinPause();
4612       }
4613     }
4614     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4615   }
4616 }
4617 
4618 void Thread::SpinRelease(volatile int * adr) {
4619   assert(*adr != 0, "invariant");
4620   OrderAccess::fence();      // guarantee at least release consistency.
4621   // Roach-motel semantics.
4622   // It's safe if subsequent LDs and STs float "up" into the critical section,
4623   // but prior LDs and STs within the critical section can't be allowed
4624   // to reorder or float past the ST that releases the lock.
4625   // Loads and stores in the critical section - which appear in program
4626   // order before the store that releases the lock - must also appear
4627   // before the store that releases the lock in memory visibility order.
4628   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4629   // the ST of 0 into the lock-word which releases the lock, so fence
4630   // more than covers this on all platforms.
4631   *adr = 0;
4632 }
4633 
4634 // muxAcquire and muxRelease:
4635 //
4636 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4637 //    The LSB of the word is set IFF the lock is held.
4638 //    The remainder of the word points to the head of a singly-linked list
4639 //    of threads blocked on the lock.
4640 //
4641 // *  The current implementation of muxAcquire-muxRelease uses its own
4642 //    dedicated Thread._MuxEvent instance.  If we're interested in
4643 //    minimizing the peak number of extant ParkEvent instances then
4644 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4645 //    as certain invariants were satisfied.  Specifically, care would need
4646 //    to be taken with regards to consuming unpark() "permits".
4647 //    A safe rule of thumb is that a thread would never call muxAcquire()
4648 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4649 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4650 //    consume an unpark() permit intended for monitorenter, for instance.
4651 //    One way around this would be to widen the restricted-range semaphore
4652 //    implemented in park().  Another alternative would be to provide
4653 //    multiple instances of the PlatformEvent() for each thread.  One
4654 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4655 //
4656 // *  Usage:
4657 //    -- Only as leaf locks
4658 //    -- for short-term locking only as muxAcquire does not perform
4659 //       thread state transitions.
4660 //
4661 // Alternatives:
4662 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4663 //    but with parking or spin-then-park instead of pure spinning.
4664 // *  Use Taura-Oyama-Yonenzawa locks.
4665 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4666 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4667 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4668 //    acquiring threads use timers (ParkTimed) to detect and recover from
4669 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4670 //    boundaries by using placement-new.
4671 // *  Augment MCS with advisory back-link fields maintained with CAS().
4672 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4673 //    The validity of the backlinks must be ratified before we trust the value.
4674 //    If the backlinks are invalid the exiting thread must back-track through the
4675 //    the forward links, which are always trustworthy.
4676 // *  Add a successor indication.  The LockWord is currently encoded as
4677 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4678 //    to provide the usual futile-wakeup optimization.
4679 //    See RTStt for details.
4680 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4681 //
4682 
4683 
4684 typedef volatile intptr_t MutexT;      // Mux Lock-word
4685 enum MuxBits { LOCKBIT = 1 };
4686 
4687 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4688   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4689   if (w == 0) return;
4690   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4691     return;
4692   }
4693 
4694   TEVENT(muxAcquire - Contention);
4695   ParkEvent * const Self = Thread::current()->_MuxEvent;
4696   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4697   for (;;) {
4698     int its = (os::is_MP() ? 100 : 0) + 1;
4699 
4700     // Optional spin phase: spin-then-park strategy
4701     while (--its >= 0) {
4702       w = *Lock;
4703       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4704         return;
4705       }
4706     }
4707 
4708     Self->reset();
4709     Self->OnList = intptr_t(Lock);
4710     // The following fence() isn't _strictly necessary as the subsequent
4711     // CAS() both serializes execution and ratifies the fetched *Lock value.
4712     OrderAccess::fence();
4713     for (;;) {
4714       w = *Lock;
4715       if ((w & LOCKBIT) == 0) {
4716         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4717           Self->OnList = 0;   // hygiene - allows stronger asserts
4718           return;
4719         }
4720         continue;      // Interference -- *Lock changed -- Just retry
4721       }
4722       assert(w & LOCKBIT, "invariant");
4723       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4724       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4725     }
4726 
4727     while (Self->OnList != 0) {
4728       Self->park();
4729     }
4730   }
4731 }
4732 
4733 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4734   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4735   if (w == 0) return;
4736   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4737     return;
4738   }
4739 
4740   TEVENT(muxAcquire - Contention);
4741   ParkEvent * ReleaseAfter = NULL;
4742   if (ev == NULL) {
4743     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4744   }
4745   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4746   for (;;) {
4747     guarantee(ev->OnList == 0, "invariant");
4748     int its = (os::is_MP() ? 100 : 0) + 1;
4749 
4750     // Optional spin phase: spin-then-park strategy
4751     while (--its >= 0) {
4752       w = *Lock;
4753       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4754         if (ReleaseAfter != NULL) {
4755           ParkEvent::Release(ReleaseAfter);
4756         }
4757         return;
4758       }
4759     }
4760 
4761     ev->reset();
4762     ev->OnList = intptr_t(Lock);
4763     // The following fence() isn't _strictly necessary as the subsequent
4764     // CAS() both serializes execution and ratifies the fetched *Lock value.
4765     OrderAccess::fence();
4766     for (;;) {
4767       w = *Lock;
4768       if ((w & LOCKBIT) == 0) {
4769         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4770           ev->OnList = 0;
4771           // We call ::Release while holding the outer lock, thus
4772           // artificially lengthening the critical section.
4773           // Consider deferring the ::Release() until the subsequent unlock(),
4774           // after we've dropped the outer lock.
4775           if (ReleaseAfter != NULL) {
4776             ParkEvent::Release(ReleaseAfter);
4777           }
4778           return;
4779         }
4780         continue;      // Interference -- *Lock changed -- Just retry
4781       }
4782       assert(w & LOCKBIT, "invariant");
4783       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4784       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4785     }
4786 
4787     while (ev->OnList != 0) {
4788       ev->park();
4789     }
4790   }
4791 }
4792 
4793 // Release() must extract a successor from the list and then wake that thread.
4794 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4795 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4796 // Release() would :
4797 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4798 // (B) Extract a successor from the private list "in-hand"
4799 // (C) attempt to CAS() the residual back into *Lock over null.
4800 //     If there were any newly arrived threads and the CAS() would fail.
4801 //     In that case Release() would detach the RATs, re-merge the list in-hand
4802 //     with the RATs and repeat as needed.  Alternately, Release() might
4803 //     detach and extract a successor, but then pass the residual list to the wakee.
4804 //     The wakee would be responsible for reattaching and remerging before it
4805 //     competed for the lock.
4806 //
4807 // Both "pop" and DMR are immune from ABA corruption -- there can be
4808 // multiple concurrent pushers, but only one popper or detacher.
4809 // This implementation pops from the head of the list.  This is unfair,
4810 // but tends to provide excellent throughput as hot threads remain hot.
4811 // (We wake recently run threads first).
4812 //
4813 // All paths through muxRelease() will execute a CAS.
4814 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4815 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4816 // executed within the critical section are complete and globally visible before the
4817 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4818 void Thread::muxRelease(volatile intptr_t * Lock)  {
4819   for (;;) {
4820     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4821     assert(w & LOCKBIT, "invariant");
4822     if (w == LOCKBIT) return;
4823     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4824     assert(List != NULL, "invariant");
4825     assert(List->OnList == intptr_t(Lock), "invariant");
4826     ParkEvent * const nxt = List->ListNext;
4827     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4828 
4829     // The following CAS() releases the lock and pops the head element.
4830     // The CAS() also ratifies the previously fetched lock-word value.
4831     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4832       continue;
4833     }
4834     List->OnList = 0;
4835     OrderAccess::fence();
4836     List->unpark();
4837     return;
4838   }
4839 }
4840 
4841 
4842 void Threads::verify() {
4843   ALL_JAVA_THREADS(p) {
4844     p->verify();
4845   }
4846   VMThread* thread = VMThread::vm_thread();
4847   if (thread != NULL) thread->verify();
4848 }