1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
  26 #define SHARE_VM_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 
  34 class CmpNode;
  35 class CountedLoopEndNode;
  36 class CountedLoopNode;
  37 class IdealLoopTree;
  38 class LoopNode;
  39 class Node;
  40 class PhaseIdealLoop;
  41 class VectorSet;
  42 class Invariance;
  43 struct small_cache;
  44 
  45 //
  46 //                  I D E A L I Z E D   L O O P S
  47 //
  48 // Idealized loops are the set of loops I perform more interesting
  49 // transformations on, beyond simple hoisting.
  50 
  51 //------------------------------LoopNode---------------------------------------
  52 // Simple loop header.  Fall in path on left, loop-back path on right.
  53 class LoopNode : public RegionNode {
  54   // Size is bigger to hold the flags.  However, the flags do not change
  55   // the semantics so it does not appear in the hash & cmp functions.
  56   virtual uint size_of() const { return sizeof(*this); }
  57 protected:
  58   short _loop_flags;
  59   // Names for flag bitfields
  60   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  61          MainHasNoPreLoop=4,
  62          HasExactTripCount=8,
  63          InnerLoop=16,
  64          PartialPeelLoop=32,
  65          PartialPeelFailed=64,
  66          HasReductions=128,
  67          WasSlpAnalyzed=256,
  68          PassedSlpAnalysis=512,
  69          DoUnrollOnly=1024 };
  70   char _unswitch_count;
  71   enum { _unswitch_max=3 };
  72 
  73 public:
  74   // Names for edge indices
  75   enum { Self=0, EntryControl, LoopBackControl };
  76 
  77   int is_inner_loop() const { return _loop_flags & InnerLoop; }
  78   void set_inner_loop() { _loop_flags |= InnerLoop; }
  79 
  80   int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  81   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  82   int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
  83   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
  84   void mark_has_reductions() { _loop_flags |= HasReductions; }
  85   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
  86   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
  87   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
  88 
  89   int unswitch_max() { return _unswitch_max; }
  90   int unswitch_count() { return _unswitch_count; }
  91   void set_unswitch_count(int val) {
  92     assert (val <= unswitch_max(), "too many unswitches");
  93     _unswitch_count = val;
  94   }
  95 
  96   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
  97     init_class_id(Class_Loop);
  98     init_req(EntryControl, entry);
  99     init_req(LoopBackControl, backedge);
 100   }
 101 
 102   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 103   virtual int Opcode() const;
 104   bool can_be_counted_loop(PhaseTransform* phase) const {
 105     return req() == 3 && in(0) != NULL &&
 106       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
 107       in(2) != NULL && phase->type(in(2)) != Type::TOP;
 108   }
 109   bool is_valid_counted_loop() const;
 110 #ifndef PRODUCT
 111   virtual void dump_spec(outputStream *st) const;
 112 #endif
 113 };
 114 
 115 //------------------------------Counted Loops----------------------------------
 116 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 117 // path (and maybe some other exit paths).  The trip-counter exit is always
 118 // last in the loop.  The trip-counter have to stride by a constant;
 119 // the exit value is also loop invariant.
 120 
 121 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 122 // CountedLoopNode has the incoming loop control and the loop-back-control
 123 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 124 // CountedLoopEndNode has an incoming control (possibly not the
 125 // CountedLoopNode if there is control flow in the loop), the post-increment
 126 // trip-counter value, and the limit.  The trip-counter value is always of
 127 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 128 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 129 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 130 // CountedLoopEndNode also takes in the loop-invariant limit value.
 131 
 132 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 133 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 134 // via the old-trip-counter from the Op node.
 135 
 136 //------------------------------CountedLoopNode--------------------------------
 137 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 138 // inputs the incoming loop-start control and the loop-back control, so they
 139 // act like RegionNodes.  They also take in the initial trip counter, the
 140 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 141 // produce a loop-body control and the trip counter value.  Since
 142 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 143 
 144 class CountedLoopNode : public LoopNode {
 145   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 146   // the semantics so it does not appear in the hash & cmp functions.
 147   virtual uint size_of() const { return sizeof(*this); }
 148 
 149   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 150   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 151   node_idx_t _main_idx;
 152 
 153   // Known trip count calculated by compute_exact_trip_count()
 154   uint  _trip_count;
 155 
 156   // Expected trip count from profile data
 157   float _profile_trip_cnt;
 158 
 159   // Log2 of original loop bodies in unrolled loop
 160   int _unrolled_count_log2;
 161 
 162   // Node count prior to last unrolling - used to decide if
 163   // unroll,optimize,unroll,optimize,... is making progress
 164   int _node_count_before_unroll;
 165 
 166   // If slp analysis is performed we record the maximum
 167   // vector mapped unroll factor here
 168   int _slp_maximum_unroll_factor;
 169 
 170 public:
 171   CountedLoopNode( Node *entry, Node *backedge )
 172     : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 173       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
 174       _node_count_before_unroll(0), _slp_maximum_unroll_factor(0) {
 175     init_class_id(Class_CountedLoop);
 176     // Initialize _trip_count to the largest possible value.
 177     // Will be reset (lower) if the loop's trip count is known.
 178   }
 179 
 180   virtual int Opcode() const;
 181   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 182 
 183   Node *init_control() const { return in(EntryControl); }
 184   Node *back_control() const { return in(LoopBackControl); }
 185   CountedLoopEndNode *loopexit() const;
 186   Node *init_trip() const;
 187   Node *stride() const;
 188   int   stride_con() const;
 189   bool  stride_is_con() const;
 190   Node *limit() const;
 191   Node *incr() const;
 192   Node *phi() const;
 193 
 194   // Match increment with optional truncation
 195   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 196 
 197   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 198   // can run short a few iterations and may start a few iterations in.
 199   // It will be RCE'd and unrolled and aligned.
 200 
 201   // A following 'post' loop will run any remaining iterations.  Used
 202   // during Range Check Elimination, the 'post' loop will do any final
 203   // iterations with full checks.  Also used by Loop Unrolling, where
 204   // the 'post' loop will do any epilog iterations needed.  Basically,
 205   // a 'post' loop can not profitably be further unrolled or RCE'd.
 206 
 207   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 208   // it may do under-flow checks for RCE and may do alignment iterations
 209   // so the following main loop 'knows' that it is striding down cache
 210   // lines.
 211 
 212   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 213   // Aligned, may be missing it's pre-loop.
 214   int is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 215   int is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 216   int is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 217   int is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 218   int is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
 219   int was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 220   int has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 221   int do_unroll_only      () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 222   int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 223   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 224 
 225   int main_idx() const { return _main_idx; }
 226 
 227 
 228   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 229   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 230   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 231   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 232 
 233   void set_trip_count(uint tc) { _trip_count = tc; }
 234   uint trip_count()            { return _trip_count; }
 235 
 236   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 237   void set_exact_trip_count(uint tc) {
 238     _trip_count = tc;
 239     _loop_flags |= HasExactTripCount;
 240   }
 241   void set_nonexact_trip_count() {
 242     _loop_flags &= ~HasExactTripCount;
 243   }
 244   void set_notpassed_slp() {
 245     _loop_flags &= ~PassedSlpAnalysis;
 246   }
 247 
 248   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 249   float profile_trip_cnt()             { return _profile_trip_cnt; }
 250 
 251   void double_unrolled_count() { _unrolled_count_log2++; }
 252   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 253 
 254   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 255   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 256   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 257   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 258 
 259 #ifndef PRODUCT
 260   virtual void dump_spec(outputStream *st) const;
 261 #endif
 262 };
 263 
 264 //------------------------------CountedLoopEndNode-----------------------------
 265 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 266 // IfNodes.
 267 class CountedLoopEndNode : public IfNode {
 268 public:
 269   enum { TestControl, TestValue };
 270 
 271   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 272     : IfNode( control, test, prob, cnt) {
 273     init_class_id(Class_CountedLoopEnd);
 274   }
 275   virtual int Opcode() const;
 276 
 277   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 278   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 279   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 280   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 281   Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 282   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 283   int stride_con() const;
 284   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 285   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 286   CountedLoopNode *loopnode() const {
 287     // The CountedLoopNode that goes with this CountedLoopEndNode may
 288     // have been optimized out by the IGVN so be cautious with the
 289     // pattern matching on the graph
 290     if (phi() == NULL) {
 291       return NULL;
 292     }
 293     Node *ln = phi()->in(0);
 294     if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) {
 295       return (CountedLoopNode*)ln;
 296     }
 297     return NULL;
 298   }
 299 
 300 #ifndef PRODUCT
 301   virtual void dump_spec(outputStream *st) const;
 302 #endif
 303 };
 304 
 305 
 306 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
 307   Node *bc = back_control();
 308   if( bc == NULL ) return NULL;
 309   Node *le = bc->in(0);
 310   if( le->Opcode() != Op_CountedLoopEnd )
 311     return NULL;
 312   return (CountedLoopEndNode*)le;
 313 }
 314 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
 315 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
 316 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
 317 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
 318 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
 319 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
 320 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
 321 
 322 //------------------------------LoopLimitNode-----------------------------
 323 // Counted Loop limit node which represents exact final iterator value:
 324 // trip_count = (limit - init_trip + stride - 1)/stride
 325 // final_value= trip_count * stride + init_trip.
 326 // Use HW instructions to calculate it when it can overflow in integer.
 327 // Note, final_value should fit into integer since counted loop has
 328 // limit check: limit <= max_int-stride.
 329 class LoopLimitNode : public Node {
 330   enum { Init=1, Limit=2, Stride=3 };
 331  public:
 332   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
 333     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 334     init_flags(Flag_is_macro);
 335     C->add_macro_node(this);
 336   }
 337   virtual int Opcode() const;
 338   virtual const Type *bottom_type() const { return TypeInt::INT; }
 339   virtual uint ideal_reg() const { return Op_RegI; }
 340   virtual const Type *Value( PhaseTransform *phase ) const;
 341   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 342   virtual Node *Identity( PhaseTransform *phase );
 343 };
 344 
 345 // -----------------------------IdealLoopTree----------------------------------
 346 class IdealLoopTree : public ResourceObj {
 347 public:
 348   IdealLoopTree *_parent;       // Parent in loop tree
 349   IdealLoopTree *_next;         // Next sibling in loop tree
 350   IdealLoopTree *_child;        // First child in loop tree
 351 
 352   // The head-tail backedge defines the loop.
 353   // If tail is NULL then this loop has multiple backedges as part of the
 354   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 355   // them at the loop bottom and flow 1 real backedge into the loop.
 356   Node *_head;                  // Head of loop
 357   Node *_tail;                  // Tail of loop
 358   inline Node *tail();          // Handle lazy update of _tail field
 359   PhaseIdealLoop* _phase;
 360   int _local_loop_unroll_limit;
 361   int _local_loop_unroll_factor;
 362 
 363   Node_List _body;              // Loop body for inner loops
 364 
 365   uint8_t _nest;                // Nesting depth
 366   uint8_t _irreducible:1,       // True if irreducible
 367           _has_call:1,          // True if has call safepoint
 368           _has_sfpt:1,          // True if has non-call safepoint
 369           _rce_candidate:1;     // True if candidate for range check elimination
 370 
 371   Node_List* _safepts;          // List of safepoints in this loop
 372   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 373   bool  _allow_optimizations;   // Allow loop optimizations
 374 
 375   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 376     : _parent(0), _next(0), _child(0),
 377       _head(head), _tail(tail),
 378       _phase(phase),
 379       _safepts(NULL),
 380       _required_safept(NULL),
 381       _allow_optimizations(true),
 382       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 383       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0)
 384   { }
 385 
 386   // Is 'l' a member of 'this'?
 387   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 388 
 389   // Set loop nesting depth.  Accumulate has_call bits.
 390   int set_nest( uint depth );
 391 
 392   // Split out multiple fall-in edges from the loop header.  Move them to a
 393   // private RegionNode before the loop.  This becomes the loop landing pad.
 394   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 395 
 396   // Split out the outermost loop from this shared header.
 397   void split_outer_loop( PhaseIdealLoop *phase );
 398 
 399   // Merge all the backedges from the shared header into a private Region.
 400   // Feed that region as the one backedge to this loop.
 401   void merge_many_backedges( PhaseIdealLoop *phase );
 402 
 403   // Split shared headers and insert loop landing pads.
 404   // Insert a LoopNode to replace the RegionNode.
 405   // Returns TRUE if loop tree is structurally changed.
 406   bool beautify_loops( PhaseIdealLoop *phase );
 407 
 408   // Perform optimization to use the loop predicates for null checks and range checks.
 409   // Applies to any loop level (not just the innermost one)
 410   bool loop_predication( PhaseIdealLoop *phase);
 411 
 412   // Perform iteration-splitting on inner loops.  Split iterations to
 413   // avoid range checks or one-shot null checks.  Returns false if the
 414   // current round of loop opts should stop.
 415   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 416 
 417   // Driver for various flavors of iteration splitting.  Returns false
 418   // if the current round of loop opts should stop.
 419   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 420 
 421   // Given dominators, try to find loops with calls that must always be
 422   // executed (call dominates loop tail).  These loops do not need non-call
 423   // safepoints (ncsfpt).
 424   void check_safepts(VectorSet &visited, Node_List &stack);
 425 
 426   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 427   // encountered.
 428   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 429 
 430   // Convert to counted loops where possible
 431   void counted_loop( PhaseIdealLoop *phase );
 432 
 433   // Check for Node being a loop-breaking test
 434   Node *is_loop_exit(Node *iff) const;
 435 
 436   // Returns true if ctrl is executed on every complete iteration
 437   bool dominates_backedge(Node* ctrl);
 438 
 439   // Remove simplistic dead code from loop body
 440   void DCE_loop_body();
 441 
 442   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 443   // Replace with a 1-in-10 exit guess.
 444   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 445 
 446   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 447   // Useful for unrolling loops with NO array accesses.
 448   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 449 
 450   // Return TRUE or FALSE if the loop should be unswitched -- clone
 451   // loop with an invariant test
 452   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 453 
 454   // Micro-benchmark spamming.  Remove empty loops.
 455   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 456 
 457   // Convert one iteration loop into normal code.
 458   bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
 459 
 460   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 461   // make some loop-invariant test (usually a null-check) happen before the
 462   // loop.
 463   bool policy_peeling( PhaseIdealLoop *phase ) const;
 464 
 465   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 466   // known trip count in the counted loop node.
 467   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 468 
 469   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 470   // the loop is a CountedLoop and the body is small enough.
 471   bool policy_unroll(PhaseIdealLoop *phase);
 472 
 473   // Loop analyses to map to a maximal superword unrolling for vectorization.
 474   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 475 
 476   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 477   // Gather a list of IF tests that are dominated by iteration splitting;
 478   // also gather the end of the first split and the start of the 2nd split.
 479   bool policy_range_check( PhaseIdealLoop *phase ) const;
 480 
 481   // Return TRUE or FALSE if the loop should be cache-line aligned.
 482   // Gather the expression that does the alignment.  Note that only
 483   // one array base can be aligned in a loop (unless the VM guarantees
 484   // mutual alignment).  Note that if we vectorize short memory ops
 485   // into longer memory ops, we may want to increase alignment.
 486   bool policy_align( PhaseIdealLoop *phase ) const;
 487 
 488   // Return TRUE if "iff" is a range check.
 489   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
 490 
 491   // Compute loop exact trip count if possible
 492   void compute_exact_trip_count( PhaseIdealLoop *phase );
 493 
 494   // Compute loop trip count from profile data
 495   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 496 
 497   // Reassociate invariant expressions.
 498   void reassociate_invariants(PhaseIdealLoop *phase);
 499   // Reassociate invariant add and subtract expressions.
 500   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 501   // Return nonzero index of invariant operand if invariant and variant
 502   // are combined with an Add or Sub. Helper for reassociate_invariants.
 503   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 504 
 505   // Return true if n is invariant
 506   bool is_invariant(Node* n) const;
 507 
 508   // Put loop body on igvn work list
 509   void record_for_igvn();
 510 
 511   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 512   bool is_inner()   { return is_loop() && _child == NULL; }
 513   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 514 
 515   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 516 
 517 #ifndef PRODUCT
 518   void dump_head( ) const;      // Dump loop head only
 519   void dump() const;            // Dump this loop recursively
 520   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 521 #endif
 522 
 523 };
 524 
 525 // -----------------------------PhaseIdealLoop---------------------------------
 526 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 527 // loop tree.  Drives the loop-based transformations on the ideal graph.
 528 class PhaseIdealLoop : public PhaseTransform {
 529   friend class IdealLoopTree;
 530   friend class SuperWord;
 531   // Pre-computed def-use info
 532   PhaseIterGVN &_igvn;
 533 
 534   // Head of loop tree
 535   IdealLoopTree *_ltree_root;
 536 
 537   // Array of pre-order numbers, plus post-visited bit.
 538   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 539   // ODD for post-visited.  Other bits are the pre-order number.
 540   uint *_preorders;
 541   uint _max_preorder;
 542 
 543   const PhaseIdealLoop* _verify_me;
 544   bool _verify_only;
 545 
 546   // Allocate _preorders[] array
 547   void allocate_preorders() {
 548     _max_preorder = C->unique()+8;
 549     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 550     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 551   }
 552 
 553   // Allocate _preorders[] array
 554   void reallocate_preorders() {
 555     if ( _max_preorder < C->unique() ) {
 556       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 557       _max_preorder = C->unique();
 558     }
 559     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 560   }
 561 
 562   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 563   // adds new nodes.
 564   void check_grow_preorders( ) {
 565     if ( _max_preorder < C->unique() ) {
 566       uint newsize = _max_preorder<<1;  // double size of array
 567       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 568       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 569       _max_preorder = newsize;
 570     }
 571   }
 572   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 573   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 574   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 575   void set_preorder_visited( Node *n, int pre_order ) {
 576     assert( !is_visited( n ), "already set" );
 577     _preorders[n->_idx] = (pre_order<<1);
 578   };
 579   // Return pre-order number.
 580   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 581 
 582   // Check for being post-visited.
 583   // Should be previsited already (checked with assert(is_visited(n))).
 584   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 585 
 586   // Mark as post visited
 587   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 588 
 589   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 590   // Returns true if "n" is a data node, false if it's a control node.
 591   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 592 
 593   // clear out dead code after build_loop_late
 594   Node_List _deadlist;
 595 
 596   // Support for faster execution of get_late_ctrl()/dom_lca()
 597   // when a node has many uses and dominator depth is deep.
 598   Node_Array _dom_lca_tags;
 599   void   init_dom_lca_tags();
 600   void   clear_dom_lca_tags();
 601 
 602   // Helper for debugging bad dominance relationships
 603   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 604 
 605   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 606 
 607   // Inline wrapper for frequent cases:
 608   // 1) only one use
 609   // 2) a use is the same as the current LCA passed as 'n1'
 610   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 611     assert( n->is_CFG(), "" );
 612     // Fast-path NULL lca
 613     if( lca != NULL && lca != n ) {
 614       assert( lca->is_CFG(), "" );
 615       // find LCA of all uses
 616       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 617     }
 618     return find_non_split_ctrl(n);
 619   }
 620   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 621 
 622   // Helper function for directing control inputs away from CFG split
 623   // points.
 624   Node *find_non_split_ctrl( Node *ctrl ) const {
 625     if (ctrl != NULL) {
 626       if (ctrl->is_MultiBranch()) {
 627         ctrl = ctrl->in(0);
 628       }
 629       assert(ctrl->is_CFG(), "CFG");
 630     }
 631     return ctrl;
 632   }
 633 
 634   bool cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
 635 
 636 public:
 637   bool has_node( Node* n ) const {
 638     guarantee(n != NULL, "No Node.");
 639     return _nodes[n->_idx] != NULL;
 640   }
 641   // check if transform created new nodes that need _ctrl recorded
 642   Node *get_late_ctrl( Node *n, Node *early );
 643   Node *get_early_ctrl( Node *n );
 644   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 645   void set_early_ctrl( Node *n );
 646   void set_subtree_ctrl( Node *root );
 647   void set_ctrl( Node *n, Node *ctrl ) {
 648     assert( !has_node(n) || has_ctrl(n), "" );
 649     assert( ctrl->in(0), "cannot set dead control node" );
 650     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 651     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 652   }
 653   // Set control and update loop membership
 654   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 655     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 656     IdealLoopTree* new_loop = get_loop(ctrl);
 657     if (old_loop != new_loop) {
 658       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 659       if (new_loop->_child == NULL) new_loop->_body.push(n);
 660     }
 661     set_ctrl(n, ctrl);
 662   }
 663   // Control nodes can be replaced or subsumed.  During this pass they
 664   // get their replacement Node in slot 1.  Instead of updating the block
 665   // location of all Nodes in the subsumed block, we lazily do it.  As we
 666   // pull such a subsumed block out of the array, we write back the final
 667   // correct block.
 668   Node *get_ctrl( Node *i ) {
 669     assert(has_node(i), "");
 670     Node *n = get_ctrl_no_update(i);
 671     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 672     assert(has_node(i) && has_ctrl(i), "");
 673     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 674     return n;
 675   }
 676   // true if CFG node d dominates CFG node n
 677   bool is_dominator(Node *d, Node *n);
 678   // return get_ctrl for a data node and self(n) for a CFG node
 679   Node* ctrl_or_self(Node* n) {
 680     if (has_ctrl(n))
 681       return get_ctrl(n);
 682     else {
 683       assert (n->is_CFG(), "must be a CFG node");
 684       return n;
 685     }
 686   }
 687 
 688 private:
 689   Node *get_ctrl_no_update( Node *i ) const {
 690     assert( has_ctrl(i), "" );
 691     Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 692     if (!n->in(0)) {
 693       // Skip dead CFG nodes
 694       do {
 695         n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 696       } while (!n->in(0));
 697       n = find_non_split_ctrl(n);
 698     }
 699     return n;
 700   }
 701 
 702   // Check for loop being set
 703   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 704   bool has_loop( Node *n ) const {
 705     assert(!has_node(n) || !has_ctrl(n), "");
 706     return has_node(n);
 707   }
 708   // Set loop
 709   void set_loop( Node *n, IdealLoopTree *loop ) {
 710     _nodes.map(n->_idx, (Node*)loop);
 711   }
 712   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 713   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 714   // from old_node to new_node to support the lazy update.  Reference
 715   // replaces loop reference, since that is not needed for dead node.
 716 public:
 717   void lazy_update( Node *old_node, Node *new_node ) {
 718     assert( old_node != new_node, "no cycles please" );
 719     //old_node->set_req( 1, new_node /*NO DU INFO*/ );
 720     // Nodes always have DU info now, so re-use the side array slot
 721     // for this node to provide the forwarding pointer.
 722     _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
 723   }
 724   void lazy_replace( Node *old_node, Node *new_node ) {
 725     _igvn.replace_node( old_node, new_node );
 726     lazy_update( old_node, new_node );
 727   }
 728   void lazy_replace_proj( Node *old_node, Node *new_node ) {
 729     assert( old_node->req() == 1, "use this for Projs" );
 730     _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
 731     old_node->add_req( NULL );
 732     lazy_replace( old_node, new_node );
 733   }
 734 
 735 private:
 736 
 737   // Place 'n' in some loop nest, where 'n' is a CFG node
 738   void build_loop_tree();
 739   int build_loop_tree_impl( Node *n, int pre_order );
 740   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 741   // loop tree, not the root.
 742   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 743 
 744   // Place Data nodes in some loop nest
 745   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 746   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 747   void build_loop_late_post ( Node* n );
 748 
 749   // Array of immediate dominance info for each CFG node indexed by node idx
 750 private:
 751   uint _idom_size;
 752   Node **_idom;                 // Array of immediate dominators
 753   uint *_dom_depth;           // Used for fast LCA test
 754   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 755 
 756   Node* idom_no_update(Node* d) const {
 757     assert(d->_idx < _idom_size, "oob");
 758     Node* n = _idom[d->_idx];
 759     assert(n != NULL,"Bad immediate dominator info.");
 760     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 761       //n = n->in(1);
 762       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 763       assert(n != NULL,"Bad immediate dominator info.");
 764     }
 765     return n;
 766   }
 767   Node *idom(Node* d) const {
 768     uint didx = d->_idx;
 769     Node *n = idom_no_update(d);
 770     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 771     return n;
 772   }
 773   uint dom_depth(Node* d) const {
 774     guarantee(d != NULL, "Null dominator info.");
 775     guarantee(d->_idx < _idom_size, "");
 776     return _dom_depth[d->_idx];
 777   }
 778   void set_idom(Node* d, Node* n, uint dom_depth);
 779   // Locally compute IDOM using dom_lca call
 780   Node *compute_idom( Node *region ) const;
 781   // Recompute dom_depth
 782   void recompute_dom_depth();
 783 
 784   // Is safept not required by an outer loop?
 785   bool is_deleteable_safept(Node* sfpt);
 786 
 787   // Replace parallel induction variable (parallel to trip counter)
 788   void replace_parallel_iv(IdealLoopTree *loop);
 789 
 790   // Perform verification that the graph is valid.
 791   PhaseIdealLoop( PhaseIterGVN &igvn) :
 792     PhaseTransform(Ideal_Loop),
 793     _igvn(igvn),
 794     _dom_lca_tags(arena()), // Thread::resource_area
 795     _verify_me(NULL),
 796     _verify_only(true) {
 797     build_and_optimize(false, false);
 798   }
 799 
 800   // build the loop tree and perform any requested optimizations
 801   void build_and_optimize(bool do_split_if, bool skip_loop_opts);
 802 
 803 public:
 804   // Dominators for the sea of nodes
 805   void Dominators();
 806   Node *dom_lca( Node *n1, Node *n2 ) const {
 807     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 808   }
 809   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 810 
 811   // Compute the Ideal Node to Loop mapping
 812   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
 813     PhaseTransform(Ideal_Loop),
 814     _igvn(igvn),
 815     _dom_lca_tags(arena()), // Thread::resource_area
 816     _verify_me(NULL),
 817     _verify_only(false) {
 818     build_and_optimize(do_split_ifs, skip_loop_opts);
 819   }
 820 
 821   // Verify that verify_me made the same decisions as a fresh run.
 822   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
 823     PhaseTransform(Ideal_Loop),
 824     _igvn(igvn),
 825     _dom_lca_tags(arena()), // Thread::resource_area
 826     _verify_me(verify_me),
 827     _verify_only(false) {
 828     build_and_optimize(false, false);
 829   }
 830 
 831   // Build and verify the loop tree without modifying the graph.  This
 832   // is useful to verify that all inputs properly dominate their uses.
 833   static void verify(PhaseIterGVN& igvn) {
 834 #ifdef ASSERT
 835     PhaseIdealLoop v(igvn);
 836 #endif
 837   }
 838 
 839   // True if the method has at least 1 irreducible loop
 840   bool _has_irreducible_loops;
 841 
 842   // Per-Node transform
 843   virtual Node *transform( Node *a_node ) { return 0; }
 844 
 845   bool is_counted_loop( Node *x, IdealLoopTree *loop );
 846 
 847   Node* exact_limit( IdealLoopTree *loop );
 848 
 849   // Return a post-walked LoopNode
 850   IdealLoopTree *get_loop( Node *n ) const {
 851     // Dead nodes have no loop, so return the top level loop instead
 852     if (!has_node(n))  return _ltree_root;
 853     assert(!has_ctrl(n), "");
 854     return (IdealLoopTree*)_nodes[n->_idx];
 855   }
 856 
 857   // Is 'n' a (nested) member of 'loop'?
 858   int is_member( const IdealLoopTree *loop, Node *n ) const {
 859     return loop->is_member(get_loop(n)); }
 860 
 861   // This is the basic building block of the loop optimizations.  It clones an
 862   // entire loop body.  It makes an old_new loop body mapping; with this
 863   // mapping you can find the new-loop equivalent to an old-loop node.  All
 864   // new-loop nodes are exactly equal to their old-loop counterparts, all
 865   // edges are the same.  All exits from the old-loop now have a RegionNode
 866   // that merges the equivalent new-loop path.  This is true even for the
 867   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 868   // now come from (one or more) Phis that merge their new-loop equivalents.
 869   // Parameter side_by_side_idom:
 870   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 871   //      the clone loop to dominate the original.  Used in construction of
 872   //      pre-main-post loop sequence.
 873   //   When nonnull, the clone and original are side-by-side, both are
 874   //      dominated by the passed in side_by_side_idom node.  Used in
 875   //      construction of unswitched loops.
 876   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
 877                    Node* side_by_side_idom = NULL);
 878 
 879   // If we got the effect of peeling, either by actually peeling or by
 880   // making a pre-loop which must execute at least once, we can remove
 881   // all loop-invariant dominated tests in the main body.
 882   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
 883 
 884   // Generate code to do a loop peel for the given loop (and body).
 885   // old_new is a temp array.
 886   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
 887 
 888   // Add pre and post loops around the given loop.  These loops are used
 889   // during RCE, unrolling and aligning loops.
 890   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
 891   // If Node n lives in the back_ctrl block, we clone a private version of n
 892   // in preheader_ctrl block and return that, otherwise return n.
 893   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
 894 
 895   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
 896   // unroll to do double iterations.  The next round of major loop transforms
 897   // will repeat till the doubled loop body does all remaining iterations in 1
 898   // pass.
 899   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
 900 
 901   // Unroll the loop body one step - make each trip do 2 iterations.
 902   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
 903 
 904   // Mark vector reduction candidates before loop unrolling
 905   void mark_reductions( IdealLoopTree *loop );
 906 
 907   // Return true if exp is a constant times an induction var
 908   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
 909 
 910   // Return true if exp is a scaled induction var plus (or minus) constant
 911   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
 912 
 913   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
 914   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
 915                                         Deoptimization::DeoptReason reason);
 916   void register_control(Node* n, IdealLoopTree *loop, Node* pred);
 917 
 918   // Clone loop predicates to cloned loops (peeled, unswitched)
 919   static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
 920                                    Deoptimization::DeoptReason reason,
 921                                    PhaseIdealLoop* loop_phase,
 922                                    PhaseIterGVN* igvn);
 923 
 924   static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
 925                                          bool clone_limit_check,
 926                                          PhaseIdealLoop* loop_phase,
 927                                          PhaseIterGVN* igvn);
 928   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
 929 
 930   static Node* skip_loop_predicates(Node* entry);
 931 
 932   // Find a good location to insert a predicate
 933   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
 934   // Find a predicate
 935   static Node* find_predicate(Node* entry);
 936   // Construct a range check for a predicate if
 937   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
 938                          int scale, Node* offset,
 939                          Node* init, Node* limit, Node* stride,
 940                          Node* range, bool upper);
 941 
 942   // Implementation of the loop predication to promote checks outside the loop
 943   bool loop_predication_impl(IdealLoopTree *loop);
 944 
 945   // Helper function to collect predicate for eliminating the useless ones
 946   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
 947   void eliminate_useless_predicates();
 948 
 949   // Change the control input of expensive nodes to allow commoning by
 950   // IGVN when it is guaranteed to not result in a more frequent
 951   // execution of the expensive node. Return true if progress.
 952   bool process_expensive_nodes();
 953 
 954   // Check whether node has become unreachable
 955   bool is_node_unreachable(Node *n) const {
 956     return !has_node(n) || n->is_unreachable(_igvn);
 957   }
 958 
 959   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
 960   void do_range_check( IdealLoopTree *loop, Node_List &old_new );
 961 
 962   // Create a slow version of the loop by cloning the loop
 963   // and inserting an if to select fast-slow versions.
 964   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
 965                                         Node_List &old_new);
 966 
 967   // Clone loop with an invariant test (that does not exit) and
 968   // insert a clone of the test that selects which version to
 969   // execute.
 970   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
 971 
 972   // Find candidate "if" for unswitching
 973   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
 974 
 975   // Range Check Elimination uses this function!
 976   // Constrain the main loop iterations so the affine function:
 977   //    low_limit <= scale_con * I + offset  <  upper_limit
 978   // always holds true.  That is, either increase the number of iterations in
 979   // the pre-loop or the post-loop until the condition holds true in the main
 980   // loop.  Scale_con, offset and limit are all loop invariant.
 981   void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
 982   // Helper function for add_constraint().
 983   Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
 984 
 985   // Partially peel loop up through last_peel node.
 986   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
 987 
 988   // Create a scheduled list of nodes control dependent on ctrl set.
 989   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
 990   // Has a use in the vector set
 991   bool has_use_in_set( Node* n, VectorSet& vset );
 992   // Has use internal to the vector set (ie. not in a phi at the loop head)
 993   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
 994   // clone "n" for uses that are outside of loop
 995   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
 996   // clone "n" for special uses that are in the not_peeled region
 997   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
 998                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
 999   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1000   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1001 #ifdef ASSERT
1002   // Validate the loop partition sets: peel and not_peel
1003   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1004   // Ensure that uses outside of loop are of the right form
1005   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1006                                  uint orig_exit_idx, uint clone_exit_idx);
1007   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1008 #endif
1009 
1010   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1011   int stride_of_possible_iv( Node* iff );
1012   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1013   // Return the (unique) control output node that's in the loop (if it exists.)
1014   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1015   // Insert a signed compare loop exit cloned from an unsigned compare.
1016   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1017   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1018   // Utility to register node "n" with PhaseIdealLoop
1019   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1020   // Utility to create an if-projection
1021   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1022   // Force the iff control output to be the live_proj
1023   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1024   // Insert a region before an if projection
1025   RegionNode* insert_region_before_proj(ProjNode* proj);
1026   // Insert a new if before an if projection
1027   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1028 
1029   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1030   // "Nearly" because all Nodes have been cloned from the original in the loop,
1031   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1032   // through the Phi recursively, and return a Bool.
1033   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1034   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1035 
1036 
1037   // Rework addressing expressions to get the most loop-invariant stuff
1038   // moved out.  We'd like to do all associative operators, but it's especially
1039   // important (common) to do address expressions.
1040   Node *remix_address_expressions( Node *n );
1041 
1042   // Attempt to use a conditional move instead of a phi/branch
1043   Node *conditional_move( Node *n );
1044 
1045   // Reorganize offset computations to lower register pressure.
1046   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1047   // (which are then alive with the post-incremented trip counter
1048   // forcing an extra register move)
1049   void reorg_offsets( IdealLoopTree *loop );
1050 
1051   // Check for aggressive application of 'split-if' optimization,
1052   // using basic block level info.
1053   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
1054   Node *split_if_with_blocks_pre ( Node *n );
1055   void  split_if_with_blocks_post( Node *n );
1056   Node *has_local_phi_input( Node *n );
1057   // Mark an IfNode as being dominated by a prior test,
1058   // without actually altering the CFG (and hence IDOM info).
1059   void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1060 
1061   // Split Node 'n' through merge point
1062   Node *split_thru_region( Node *n, Node *region );
1063   // Split Node 'n' through merge point if there is enough win.
1064   Node *split_thru_phi( Node *n, Node *region, int policy );
1065   // Found an If getting its condition-code input from a Phi in the
1066   // same block.  Split thru the Region.
1067   void do_split_if( Node *iff );
1068 
1069   // Conversion of fill/copy patterns into intrisic versions
1070   bool do_intrinsify_fill();
1071   bool intrinsify_fill(IdealLoopTree* lpt);
1072   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1073                        Node*& shift, Node*& offset);
1074 
1075 private:
1076   // Return a type based on condition control flow
1077   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1078   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1079  // Helpers for filtered type
1080   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1081 
1082   // Helper functions
1083   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1084   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1085   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1086   bool split_up( Node *n, Node *blk1, Node *blk2 );
1087   void sink_use( Node *use, Node *post_loop );
1088   Node *place_near_use( Node *useblock ) const;
1089   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1090   void try_move_store_after_loop(Node* n);
1091 
1092   bool _created_loop_node;
1093 public:
1094   void set_created_loop_node() { _created_loop_node = true; }
1095   bool created_loop_node()     { return _created_loop_node; }
1096   void register_new_node( Node *n, Node *blk );
1097 
1098 #ifdef ASSERT
1099   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1100 #endif
1101 
1102 #ifndef PRODUCT
1103   void dump( ) const;
1104   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
1105   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1106   void verify() const;          // Major slow  :-)
1107   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
1108   IdealLoopTree *get_loop_idx(Node* n) const {
1109     // Dead nodes have no loop, so return the top level loop instead
1110     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1111   }
1112   // Print some stats
1113   static void print_statistics();
1114   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1115   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1116 #endif
1117 };
1118 
1119 inline Node* IdealLoopTree::tail() {
1120 // Handle lazy update of _tail field
1121   Node *n = _tail;
1122   //while( !n->in(0) )  // Skip dead CFG nodes
1123     //n = n->in(1);
1124   if (n->in(0) == NULL)
1125     n = _phase->get_ctrl(n);
1126   _tail = n;
1127   return n;
1128 }
1129 
1130 
1131 // Iterate over the loop tree using a preorder, left-to-right traversal.
1132 //
1133 // Example that visits all counted loops from within PhaseIdealLoop
1134 //
1135 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1136 //   IdealLoopTree* lpt = iter.current();
1137 //   if (!lpt->is_counted()) continue;
1138 //   ...
1139 class LoopTreeIterator : public StackObj {
1140 private:
1141   IdealLoopTree* _root;
1142   IdealLoopTree* _curnt;
1143 
1144 public:
1145   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1146 
1147   bool done() { return _curnt == NULL; }       // Finished iterating?
1148 
1149   void next();                                 // Advance to next loop tree
1150 
1151   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1152 };
1153 
1154 #endif // SHARE_VM_OPTO_LOOPNODE_HPP