1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/countbitsnode.hpp"
  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/mathexactnode.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/mulnode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/parse.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "trace/traceMacros.hpp"
  53 
  54 class LibraryIntrinsic : public InlineCallGenerator {
  55   // Extend the set of intrinsics known to the runtime:
  56  public:
  57  private:
  58   bool             _is_virtual;
  59   bool             _does_virtual_dispatch;
  60   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  61   int8_t           _last_predicate; // Last generated predicate
  62   vmIntrinsics::ID _intrinsic_id;
  63 
  64  public:
  65   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  66     : InlineCallGenerator(m),
  67       _is_virtual(is_virtual),
  68       _does_virtual_dispatch(does_virtual_dispatch),
  69       _predicates_count((int8_t)predicates_count),
  70       _last_predicate((int8_t)-1),
  71       _intrinsic_id(id)
  72   {
  73   }
  74   virtual bool is_intrinsic() const { return true; }
  75   virtual bool is_virtual()   const { return _is_virtual; }
  76   virtual bool is_predicated() const { return _predicates_count > 0; }
  77   virtual int  predicates_count() const { return _predicates_count; }
  78   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  79   virtual JVMState* generate(JVMState* jvms);
  80   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  81   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  82 };
  83 
  84 
  85 // Local helper class for LibraryIntrinsic:
  86 class LibraryCallKit : public GraphKit {
  87  private:
  88   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  89   Node*             _result;        // the result node, if any
  90   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  91 
  92   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  93 
  94  public:
  95   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  96     : GraphKit(jvms),
  97       _intrinsic(intrinsic),
  98       _result(NULL)
  99   {
 100     // Check if this is a root compile.  In that case we don't have a caller.
 101     if (!jvms->has_method()) {
 102       _reexecute_sp = sp();
 103     } else {
 104       // Find out how many arguments the interpreter needs when deoptimizing
 105       // and save the stack pointer value so it can used by uncommon_trap.
 106       // We find the argument count by looking at the declared signature.
 107       bool ignored_will_link;
 108       ciSignature* declared_signature = NULL;
 109       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 110       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 111       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 112     }
 113   }
 114 
 115   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 116 
 117   ciMethod*         caller()    const    { return jvms()->method(); }
 118   int               bci()       const    { return jvms()->bci(); }
 119   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 120   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 121   ciMethod*         callee()    const    { return _intrinsic->method(); }
 122 
 123   bool  try_to_inline(int predicate);
 124   Node* try_to_predicate(int predicate);
 125 
 126   void push_result() {
 127     // Push the result onto the stack.
 128     if (!stopped() && result() != NULL) {
 129       BasicType bt = result()->bottom_type()->basic_type();
 130       push_node(bt, result());
 131     }
 132   }
 133 
 134  private:
 135   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 136     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 137   }
 138 
 139   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 140   void  set_result(RegionNode* region, PhiNode* value);
 141   Node*     result() { return _result; }
 142 
 143   virtual int reexecute_sp() { return _reexecute_sp; }
 144 
 145   // Helper functions to inline natives
 146   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 147   Node* generate_slow_guard(Node* test, RegionNode* region);
 148   Node* generate_fair_guard(Node* test, RegionNode* region);
 149   Node* generate_negative_guard(Node* index, RegionNode* region,
 150                                 // resulting CastII of index:
 151                                 Node* *pos_index = NULL);
 152   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 153                              Node* array_length,
 154                              RegionNode* region);
 155   Node* generate_current_thread(Node* &tls_output);
 156   Node* load_mirror_from_klass(Node* klass);
 157   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 158                                       RegionNode* region, int null_path,
 159                                       int offset);
 160   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 161                                RegionNode* region, int null_path) {
 162     int offset = java_lang_Class::klass_offset_in_bytes();
 163     return load_klass_from_mirror_common(mirror, never_see_null,
 164                                          region, null_path,
 165                                          offset);
 166   }
 167   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 168                                      RegionNode* region, int null_path) {
 169     int offset = java_lang_Class::array_klass_offset_in_bytes();
 170     return load_klass_from_mirror_common(mirror, never_see_null,
 171                                          region, null_path,
 172                                          offset);
 173   }
 174   Node* generate_access_flags_guard(Node* kls,
 175                                     int modifier_mask, int modifier_bits,
 176                                     RegionNode* region);
 177   Node* generate_interface_guard(Node* kls, RegionNode* region);
 178   Node* generate_array_guard(Node* kls, RegionNode* region) {
 179     return generate_array_guard_common(kls, region, false, false);
 180   }
 181   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 182     return generate_array_guard_common(kls, region, false, true);
 183   }
 184   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 185     return generate_array_guard_common(kls, region, true, false);
 186   }
 187   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 188     return generate_array_guard_common(kls, region, true, true);
 189   }
 190   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 191                                     bool obj_array, bool not_array);
 192   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 193   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 194                                      bool is_virtual = false, bool is_static = false);
 195   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 196     return generate_method_call(method_id, false, true);
 197   }
 198   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 199     return generate_method_call(method_id, true, false);
 200   }
 201   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 202 
 203   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 204   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 205   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 206   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 207   bool inline_string_indexOfChar();
 208   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 209   bool inline_string_toBytesU();
 210   bool inline_string_getCharsU();
 211   bool inline_string_copy(bool compress);
 212   bool inline_string_char_access(bool is_store);
 213   Node* round_double_node(Node* n);
 214   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 215   bool inline_math_native(vmIntrinsics::ID id);
 216   bool inline_trig(vmIntrinsics::ID id);
 217   bool inline_math(vmIntrinsics::ID id);
 218   template <typename OverflowOp>
 219   bool inline_math_overflow(Node* arg1, Node* arg2);
 220   void inline_math_mathExact(Node* math, Node* test);
 221   bool inline_math_addExactI(bool is_increment);
 222   bool inline_math_addExactL(bool is_increment);
 223   bool inline_math_multiplyExactI();
 224   bool inline_math_multiplyExactL();
 225   bool inline_math_negateExactI();
 226   bool inline_math_negateExactL();
 227   bool inline_math_subtractExactI(bool is_decrement);
 228   bool inline_math_subtractExactL(bool is_decrement);
 229   bool inline_pow();
 230   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 231   bool inline_min_max(vmIntrinsics::ID id);
 232   bool inline_notify(vmIntrinsics::ID id);
 233   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 234   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 235   int classify_unsafe_addr(Node* &base, Node* &offset);
 236   Node* make_unsafe_address(Node* base, Node* offset);
 237   // Helper for inline_unsafe_access.
 238   // Generates the guards that check whether the result of
 239   // Unsafe.getObject should be recorded in an SATB log buffer.
 240   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 241   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool is_unaligned);
 242   static bool klass_needs_init_guard(Node* kls);
 243   bool inline_unsafe_allocate();
 244   bool inline_unsafe_copyMemory();
 245   bool inline_native_currentThread();
 246 #ifdef TRACE_HAVE_INTRINSICS
 247   bool inline_native_classID();
 248   bool inline_native_threadID();
 249 #endif
 250   bool inline_native_time_funcs(address method, const char* funcName);
 251   bool inline_native_isInterrupted();
 252   bool inline_native_Class_query(vmIntrinsics::ID id);
 253   bool inline_native_subtype_check();
 254 
 255   bool inline_native_newArray();
 256   bool inline_native_getLength();
 257   bool inline_array_copyOf(bool is_copyOfRange);
 258   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 259   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 260   bool inline_native_clone(bool is_virtual);
 261   bool inline_native_Reflection_getCallerClass();
 262   // Helper function for inlining native object hash method
 263   bool inline_native_hashcode(bool is_virtual, bool is_static);
 264   bool inline_native_getClass();
 265 
 266   // Helper functions for inlining arraycopy
 267   bool inline_arraycopy();
 268   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 269                                                 RegionNode* slow_region);
 270   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 271   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 272 
 273   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 274   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 275   bool inline_unsafe_ordered_store(BasicType type);
 276   bool inline_unsafe_fence(vmIntrinsics::ID id);
 277   bool inline_fp_conversions(vmIntrinsics::ID id);
 278   bool inline_number_methods(vmIntrinsics::ID id);
 279   bool inline_reference_get();
 280   bool inline_Class_cast();
 281   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 282   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 283   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 284   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 285   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 286   bool inline_ghash_processBlocks();
 287   bool inline_sha_implCompress(vmIntrinsics::ID id);
 288   bool inline_digestBase_implCompressMB(int predicate);
 289   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 290                                  bool long_state, address stubAddr, const char *stubName,
 291                                  Node* src_start, Node* ofs, Node* limit);
 292   Node* get_state_from_sha_object(Node *sha_object);
 293   Node* get_state_from_sha5_object(Node *sha_object);
 294   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 295   bool inline_encodeISOArray();
 296   bool inline_updateCRC32();
 297   bool inline_updateBytesCRC32();
 298   bool inline_updateByteBufferCRC32();
 299   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 300   bool inline_updateBytesCRC32C();
 301   bool inline_updateDirectByteBufferCRC32C();
 302   bool inline_updateBytesAdler32();
 303   bool inline_updateByteBufferAdler32();
 304   bool inline_multiplyToLen();
 305   bool inline_hasNegatives();
 306   bool inline_squareToLen();
 307   bool inline_mulAdd();
 308   bool inline_montgomeryMultiply();
 309   bool inline_montgomerySquare();
 310 
 311   bool inline_profileBoolean();
 312   bool inline_isCompileConstant();
 313 };
 314 
 315 //---------------------------make_vm_intrinsic----------------------------
 316 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 317   vmIntrinsics::ID id = m->intrinsic_id();
 318   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 319 
 320   if (!m->is_loaded()) {
 321     // Do not attempt to inline unloaded methods.
 322     return NULL;
 323   }
 324 
 325   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 326   bool is_available = false;
 327 
 328   {
 329     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 330     // the compiler must transition to '_thread_in_vm' state because both
 331     // methods access VM-internal data.
 332     VM_ENTRY_MARK;
 333     methodHandle mh(THREAD, m->get_Method());
 334     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 335                    !C->directive()->is_intrinsic_disabled(mh) &&
 336                    !vmIntrinsics::is_disabled_by_flags(mh);
 337 
 338   }
 339 
 340   if (is_available) {
 341     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 342     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 343     return new LibraryIntrinsic(m, is_virtual,
 344                                 vmIntrinsics::predicates_needed(id),
 345                                 vmIntrinsics::does_virtual_dispatch(id),
 346                                 (vmIntrinsics::ID) id);
 347   } else {
 348     return NULL;
 349   }
 350 }
 351 
 352 //----------------------register_library_intrinsics-----------------------
 353 // Initialize this file's data structures, for each Compile instance.
 354 void Compile::register_library_intrinsics() {
 355   // Nothing to do here.
 356 }
 357 
 358 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 359   LibraryCallKit kit(jvms, this);
 360   Compile* C = kit.C;
 361   int nodes = C->unique();
 362 #ifndef PRODUCT
 363   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 364     char buf[1000];
 365     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 366     tty->print_cr("Intrinsic %s", str);
 367   }
 368 #endif
 369   ciMethod* callee = kit.callee();
 370   const int bci    = kit.bci();
 371 
 372   // Try to inline the intrinsic.
 373   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 374       kit.try_to_inline(_last_predicate)) {
 375     if (C->print_intrinsics() || C->print_inlining()) {
 376       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 377     }
 378     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 379     if (C->log()) {
 380       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 381                      vmIntrinsics::name_at(intrinsic_id()),
 382                      (is_virtual() ? " virtual='1'" : ""),
 383                      C->unique() - nodes);
 384     }
 385     // Push the result from the inlined method onto the stack.
 386     kit.push_result();
 387     C->print_inlining_update(this);
 388     return kit.transfer_exceptions_into_jvms();
 389   }
 390 
 391   // The intrinsic bailed out
 392   if (C->print_intrinsics() || C->print_inlining()) {
 393     if (jvms->has_method()) {
 394       // Not a root compile.
 395       const char* msg;
 396       if (callee->intrinsic_candidate()) {
 397         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 398       } else {
 399         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 400                            : "failed to inline (intrinsic), method not annotated";
 401       }
 402       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 403     } else {
 404       // Root compile
 405       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 406                vmIntrinsics::name_at(intrinsic_id()),
 407                (is_virtual() ? " (virtual)" : ""), bci);
 408     }
 409   }
 410   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 411   C->print_inlining_update(this);
 412   return NULL;
 413 }
 414 
 415 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 416   LibraryCallKit kit(jvms, this);
 417   Compile* C = kit.C;
 418   int nodes = C->unique();
 419   _last_predicate = predicate;
 420 #ifndef PRODUCT
 421   assert(is_predicated() && predicate < predicates_count(), "sanity");
 422   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 423     char buf[1000];
 424     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 425     tty->print_cr("Predicate for intrinsic %s", str);
 426   }
 427 #endif
 428   ciMethod* callee = kit.callee();
 429   const int bci    = kit.bci();
 430 
 431   Node* slow_ctl = kit.try_to_predicate(predicate);
 432   if (!kit.failing()) {
 433     if (C->print_intrinsics() || C->print_inlining()) {
 434       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 435     }
 436     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 437     if (C->log()) {
 438       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 439                      vmIntrinsics::name_at(intrinsic_id()),
 440                      (is_virtual() ? " virtual='1'" : ""),
 441                      C->unique() - nodes);
 442     }
 443     return slow_ctl; // Could be NULL if the check folds.
 444   }
 445 
 446   // The intrinsic bailed out
 447   if (C->print_intrinsics() || C->print_inlining()) {
 448     if (jvms->has_method()) {
 449       // Not a root compile.
 450       const char* msg = "failed to generate predicate for intrinsic";
 451       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 452     } else {
 453       // Root compile
 454       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 455                                         vmIntrinsics::name_at(intrinsic_id()),
 456                                         (is_virtual() ? " (virtual)" : ""), bci);
 457     }
 458   }
 459   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 460   return NULL;
 461 }
 462 
 463 bool LibraryCallKit::try_to_inline(int predicate) {
 464   // Handle symbolic names for otherwise undistinguished boolean switches:
 465   const bool is_store       = true;
 466   const bool is_compress    = true;
 467   const bool is_native_ptr  = true;
 468   const bool is_static      = true;
 469   const bool is_volatile    = true;
 470 
 471   if (!jvms()->has_method()) {
 472     // Root JVMState has a null method.
 473     assert(map()->memory()->Opcode() == Op_Parm, "");
 474     // Insert the memory aliasing node
 475     set_all_memory(reset_memory());
 476   }
 477   assert(merged_memory(), "");
 478 
 479 
 480   switch (intrinsic_id()) {
 481   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 482   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 483   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 484 
 485   case vmIntrinsics::_dsin:
 486   case vmIntrinsics::_dcos:
 487   case vmIntrinsics::_dtan:
 488   case vmIntrinsics::_dabs:
 489   case vmIntrinsics::_datan2:
 490   case vmIntrinsics::_dsqrt:
 491   case vmIntrinsics::_dexp:
 492   case vmIntrinsics::_dlog:
 493   case vmIntrinsics::_dlog10:
 494   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 495 
 496   case vmIntrinsics::_min:
 497   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 498 
 499   case vmIntrinsics::_notify:
 500   case vmIntrinsics::_notifyAll:
 501     if (InlineNotify) {
 502       return inline_notify(intrinsic_id());
 503     }
 504     return false;
 505 
 506   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 507   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 508   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 509   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 510   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 511   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 512   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 513   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 514   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 515   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 516   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 517   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 518 
 519   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 520 
 521   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 522   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 523   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 524   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 525 
 526   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 527   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 528   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 529   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 530   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 531   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 532   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 533 
 534   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 535   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 536 
 537   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 538   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 539   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 540   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 541 
 542   case vmIntrinsics::_compressStringC:
 543   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 544   case vmIntrinsics::_inflateStringC:
 545   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 546 
 547   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile, false);
 548   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile, false);
 549   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 550   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 551   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 552   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 553   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 554   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 555   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 556   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile, false);
 557   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile, false);
 558   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 559   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 560   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 561   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 562   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 563   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 564   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 565 
 566   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 567   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 568   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 569   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 570   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 571   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 572   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 573   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile, false);
 574 
 575   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 576   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 577   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 578   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 579   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 580   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 581   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 582   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile, false);
 583 
 584   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile, false);
 585   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile, false);
 586   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile, false);
 587   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile, false);
 588   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile, false);
 589   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile, false);
 590   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile, false);
 591   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile, false);
 592   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile, false);
 593 
 594   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile, false);
 595   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile, false);
 596   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile, false);
 597   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile, false);
 598   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile, false);
 599   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile, false);
 600   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile, false);
 601   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile, false);
 602   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile, false);
 603 
 604   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile, true);
 605   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile, true);
 606   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile, true);
 607   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile, true);
 608 
 609   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile, true);
 610   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile, true);
 611   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile, true);
 612   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile, true);
 613 
 614   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 615   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 616   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 617 
 618   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 619   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 620   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 621 
 622   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 623   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 624   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 625   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 626   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 627 
 628   case vmIntrinsics::_loadFence:
 629   case vmIntrinsics::_storeFence:
 630   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 631 
 632   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 633   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 634 
 635 #ifdef TRACE_HAVE_INTRINSICS
 636   case vmIntrinsics::_classID:                  return inline_native_classID();
 637   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 638   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 639 #endif
 640   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 641   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 642   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 643   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 644   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 645   case vmIntrinsics::_getLength:                return inline_native_getLength();
 646   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 647   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 648   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 649   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 650   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 651 
 652   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 653 
 654   case vmIntrinsics::_isInstance:
 655   case vmIntrinsics::_getModifiers:
 656   case vmIntrinsics::_isInterface:
 657   case vmIntrinsics::_isArray:
 658   case vmIntrinsics::_isPrimitive:
 659   case vmIntrinsics::_getSuperclass:
 660   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 661 
 662   case vmIntrinsics::_floatToRawIntBits:
 663   case vmIntrinsics::_floatToIntBits:
 664   case vmIntrinsics::_intBitsToFloat:
 665   case vmIntrinsics::_doubleToRawLongBits:
 666   case vmIntrinsics::_doubleToLongBits:
 667   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 668 
 669   case vmIntrinsics::_numberOfLeadingZeros_i:
 670   case vmIntrinsics::_numberOfLeadingZeros_l:
 671   case vmIntrinsics::_numberOfTrailingZeros_i:
 672   case vmIntrinsics::_numberOfTrailingZeros_l:
 673   case vmIntrinsics::_bitCount_i:
 674   case vmIntrinsics::_bitCount_l:
 675   case vmIntrinsics::_reverseBytes_i:
 676   case vmIntrinsics::_reverseBytes_l:
 677   case vmIntrinsics::_reverseBytes_s:
 678   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 679 
 680   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 681 
 682   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 683 
 684   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 685 
 686   case vmIntrinsics::_aescrypt_encryptBlock:
 687   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 688 
 689   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 690   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 691     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 692 
 693   case vmIntrinsics::_sha_implCompress:
 694   case vmIntrinsics::_sha2_implCompress:
 695   case vmIntrinsics::_sha5_implCompress:
 696     return inline_sha_implCompress(intrinsic_id());
 697 
 698   case vmIntrinsics::_digestBase_implCompressMB:
 699     return inline_digestBase_implCompressMB(predicate);
 700 
 701   case vmIntrinsics::_multiplyToLen:
 702     return inline_multiplyToLen();
 703 
 704   case vmIntrinsics::_squareToLen:
 705     return inline_squareToLen();
 706 
 707   case vmIntrinsics::_mulAdd:
 708     return inline_mulAdd();
 709 
 710   case vmIntrinsics::_montgomeryMultiply:
 711     return inline_montgomeryMultiply();
 712   case vmIntrinsics::_montgomerySquare:
 713     return inline_montgomerySquare();
 714 
 715   case vmIntrinsics::_ghash_processBlocks:
 716     return inline_ghash_processBlocks();
 717 
 718   case vmIntrinsics::_encodeISOArray:
 719   case vmIntrinsics::_encodeByteISOArray:
 720     return inline_encodeISOArray();
 721 
 722   case vmIntrinsics::_updateCRC32:
 723     return inline_updateCRC32();
 724   case vmIntrinsics::_updateBytesCRC32:
 725     return inline_updateBytesCRC32();
 726   case vmIntrinsics::_updateByteBufferCRC32:
 727     return inline_updateByteBufferCRC32();
 728 
 729   case vmIntrinsics::_updateBytesCRC32C:
 730     return inline_updateBytesCRC32C();
 731   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 732     return inline_updateDirectByteBufferCRC32C();
 733 
 734   case vmIntrinsics::_updateBytesAdler32:
 735     return inline_updateBytesAdler32();
 736   case vmIntrinsics::_updateByteBufferAdler32:
 737     return inline_updateByteBufferAdler32();
 738 
 739   case vmIntrinsics::_profileBoolean:
 740     return inline_profileBoolean();
 741   case vmIntrinsics::_isCompileConstant:
 742     return inline_isCompileConstant();
 743 
 744   case vmIntrinsics::_hasNegatives:
 745     return inline_hasNegatives();
 746 
 747   default:
 748     // If you get here, it may be that someone has added a new intrinsic
 749     // to the list in vmSymbols.hpp without implementing it here.
 750 #ifndef PRODUCT
 751     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 752       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 753                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 754     }
 755 #endif
 756     return false;
 757   }
 758 }
 759 
 760 Node* LibraryCallKit::try_to_predicate(int predicate) {
 761   if (!jvms()->has_method()) {
 762     // Root JVMState has a null method.
 763     assert(map()->memory()->Opcode() == Op_Parm, "");
 764     // Insert the memory aliasing node
 765     set_all_memory(reset_memory());
 766   }
 767   assert(merged_memory(), "");
 768 
 769   switch (intrinsic_id()) {
 770   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 771     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 772   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 773     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 774   case vmIntrinsics::_digestBase_implCompressMB:
 775     return inline_digestBase_implCompressMB_predicate(predicate);
 776 
 777   default:
 778     // If you get here, it may be that someone has added a new intrinsic
 779     // to the list in vmSymbols.hpp without implementing it here.
 780 #ifndef PRODUCT
 781     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 782       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 783                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 784     }
 785 #endif
 786     Node* slow_ctl = control();
 787     set_control(top()); // No fast path instrinsic
 788     return slow_ctl;
 789   }
 790 }
 791 
 792 //------------------------------set_result-------------------------------
 793 // Helper function for finishing intrinsics.
 794 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 795   record_for_igvn(region);
 796   set_control(_gvn.transform(region));
 797   set_result( _gvn.transform(value));
 798   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 799 }
 800 
 801 //------------------------------generate_guard---------------------------
 802 // Helper function for generating guarded fast-slow graph structures.
 803 // The given 'test', if true, guards a slow path.  If the test fails
 804 // then a fast path can be taken.  (We generally hope it fails.)
 805 // In all cases, GraphKit::control() is updated to the fast path.
 806 // The returned value represents the control for the slow path.
 807 // The return value is never 'top'; it is either a valid control
 808 // or NULL if it is obvious that the slow path can never be taken.
 809 // Also, if region and the slow control are not NULL, the slow edge
 810 // is appended to the region.
 811 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 812   if (stopped()) {
 813     // Already short circuited.
 814     return NULL;
 815   }
 816 
 817   // Build an if node and its projections.
 818   // If test is true we take the slow path, which we assume is uncommon.
 819   if (_gvn.type(test) == TypeInt::ZERO) {
 820     // The slow branch is never taken.  No need to build this guard.
 821     return NULL;
 822   }
 823 
 824   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 825 
 826   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 827   if (if_slow == top()) {
 828     // The slow branch is never taken.  No need to build this guard.
 829     return NULL;
 830   }
 831 
 832   if (region != NULL)
 833     region->add_req(if_slow);
 834 
 835   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 836   set_control(if_fast);
 837 
 838   return if_slow;
 839 }
 840 
 841 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 842   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 843 }
 844 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 845   return generate_guard(test, region, PROB_FAIR);
 846 }
 847 
 848 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 849                                                      Node* *pos_index) {
 850   if (stopped())
 851     return NULL;                // already stopped
 852   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 853     return NULL;                // index is already adequately typed
 854   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 855   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 856   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 857   if (is_neg != NULL && pos_index != NULL) {
 858     // Emulate effect of Parse::adjust_map_after_if.
 859     Node* ccast = new CastIINode(index, TypeInt::POS);
 860     ccast->set_req(0, control());
 861     (*pos_index) = _gvn.transform(ccast);
 862   }
 863   return is_neg;
 864 }
 865 
 866 // Make sure that 'position' is a valid limit index, in [0..length].
 867 // There are two equivalent plans for checking this:
 868 //   A. (offset + copyLength)  unsigned<=  arrayLength
 869 //   B. offset  <=  (arrayLength - copyLength)
 870 // We require that all of the values above, except for the sum and
 871 // difference, are already known to be non-negative.
 872 // Plan A is robust in the face of overflow, if offset and copyLength
 873 // are both hugely positive.
 874 //
 875 // Plan B is less direct and intuitive, but it does not overflow at
 876 // all, since the difference of two non-negatives is always
 877 // representable.  Whenever Java methods must perform the equivalent
 878 // check they generally use Plan B instead of Plan A.
 879 // For the moment we use Plan A.
 880 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 881                                                   Node* subseq_length,
 882                                                   Node* array_length,
 883                                                   RegionNode* region) {
 884   if (stopped())
 885     return NULL;                // already stopped
 886   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 887   if (zero_offset && subseq_length->eqv_uncast(array_length))
 888     return NULL;                // common case of whole-array copy
 889   Node* last = subseq_length;
 890   if (!zero_offset)             // last += offset
 891     last = _gvn.transform(new AddINode(last, offset));
 892   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 893   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 894   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 895   return is_over;
 896 }
 897 
 898 
 899 //--------------------------generate_current_thread--------------------
 900 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 901   ciKlass*    thread_klass = env()->Thread_klass();
 902   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 903   Node* thread = _gvn.transform(new ThreadLocalNode());
 904   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 905   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
 906   tls_output = thread;
 907   return threadObj;
 908 }
 909 
 910 
 911 //------------------------------make_string_method_node------------------------
 912 // Helper method for String intrinsic functions. This version is called with
 913 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 914 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 915 // containing the lengths of str1 and str2.
 916 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 917   Node* result = NULL;
 918   switch (opcode) {
 919   case Op_StrIndexOf:
 920     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 921                                 str1_start, cnt1, str2_start, cnt2, ae);
 922     break;
 923   case Op_StrComp:
 924     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
 925                              str1_start, cnt1, str2_start, cnt2, ae);
 926     break;
 927   case Op_StrEquals:
 928     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
 929                                str1_start, str2_start, cnt1, ae);
 930     break;
 931   default:
 932     ShouldNotReachHere();
 933     return NULL;
 934   }
 935 
 936   // All these intrinsics have checks.
 937   C->set_has_split_ifs(true); // Has chance for split-if optimization
 938 
 939   return _gvn.transform(result);
 940 }
 941 
 942 //------------------------------inline_string_compareTo------------------------
 943 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
 944   Node* arg1 = argument(0);
 945   Node* arg2 = argument(1);
 946 
 947   // Get start addr and length of first argument
 948   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
 949   Node* arg1_cnt    = load_array_length(arg1);
 950 
 951   // Get start addr and length of second argument
 952   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
 953   Node* arg2_cnt    = load_array_length(arg2);
 954 
 955   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
 956   set_result(result);
 957   return true;
 958 }
 959 
 960 //------------------------------inline_string_equals------------------------
 961 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
 962   Node* arg1 = argument(0);
 963   Node* arg2 = argument(1);
 964 
 965   // paths (plus control) merge
 966   RegionNode* region = new RegionNode(3);
 967   Node* phi = new PhiNode(region, TypeInt::BOOL);
 968 
 969   if (!stopped()) {
 970     // Get start addr and length of first argument
 971     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
 972     Node* arg1_cnt    = load_array_length(arg1);
 973 
 974     // Get start addr and length of second argument
 975     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
 976     Node* arg2_cnt    = load_array_length(arg2);
 977 
 978     // Check for arg1_cnt != arg2_cnt
 979     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
 980     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
 981     Node* if_ne = generate_slow_guard(bol, NULL);
 982     if (if_ne != NULL) {
 983       phi->init_req(2, intcon(0));
 984       region->init_req(2, if_ne);
 985     }
 986 
 987     // Check for count == 0 is done by assembler code for StrEquals.
 988 
 989     if (!stopped()) {
 990       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
 991       phi->init_req(1, equals);
 992       region->init_req(1, control());
 993     }
 994   }
 995 
 996   // post merge
 997   set_control(_gvn.transform(region));
 998   record_for_igvn(region);
 999 
1000   set_result(_gvn.transform(phi));
1001   return true;
1002 }
1003 
1004 //------------------------------inline_array_equals----------------------------
1005 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1006   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1007   Node* arg1 = argument(0);
1008   Node* arg2 = argument(1);
1009 
1010   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1011   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1012   return true;
1013 }
1014 
1015 //------------------------------inline_hasNegatives------------------------------
1016 bool LibraryCallKit::inline_hasNegatives() {
1017   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1018 
1019   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1020   // no receiver since it is static method
1021   Node* ba         = argument(0);
1022   Node* offset     = argument(1);
1023   Node* len        = argument(2);
1024 
1025   RegionNode* bailout = new RegionNode(1);
1026   record_for_igvn(bailout);
1027 
1028   // offset must not be negative.
1029   generate_negative_guard(offset, bailout);
1030 
1031   // offset + length must not exceed length of ba.
1032   generate_limit_guard(offset, len, load_array_length(ba), bailout);
1033 
1034   if (bailout->req() > 1) {
1035     PreserveJVMState pjvms(this);
1036     set_control(_gvn.transform(bailout));
1037     uncommon_trap(Deoptimization::Reason_intrinsic,
1038                   Deoptimization::Action_maybe_recompile);
1039   }
1040   if (!stopped()) {
1041     Node* ba_start = array_element_address(ba, offset, T_BYTE);
1042     Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1043     set_result(_gvn.transform(result));
1044   }
1045   return true;
1046 }
1047 
1048 //------------------------------inline_string_indexOf------------------------
1049 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1050   if (!Matcher::has_match_rule(Op_StrIndexOf) || !UseSSE42Intrinsics) {
1051     return false;
1052   }
1053   Node* src = argument(0);
1054   Node* tgt = argument(1);
1055 
1056   // Make the merge point
1057   RegionNode* result_rgn = new RegionNode(4);
1058   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1059 
1060   // Get start addr and length of source string
1061   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1062   Node* src_count = load_array_length(src);
1063 
1064   // Get start addr and length of substring
1065   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1066   Node* tgt_count = load_array_length(tgt);
1067 
1068   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1069     // Divide src size by 2 if String is UTF16 encoded
1070     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1071   }
1072   if (ae == StrIntrinsicNode::UU) {
1073     // Divide substring size by 2 if String is UTF16 encoded
1074     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1075   }
1076 
1077   // Check for substr count > string count
1078   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1079   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1080   Node* if_gt = generate_slow_guard(bol, NULL);
1081   if (if_gt != NULL) {
1082     result_phi->init_req(2, intcon(-1));
1083     result_rgn->init_req(2, if_gt);
1084   }
1085 
1086   if (!stopped()) {
1087     // Check for substr count == 0
1088     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1089     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1090     Node* if_zero = generate_slow_guard(bol, NULL);
1091     if (if_zero != NULL) {
1092       result_phi->init_req(3, intcon(0));
1093       result_rgn->init_req(3, if_zero);
1094     }
1095   }
1096 
1097   if (!stopped()) {
1098     Node* result = make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1099     result_phi->init_req(1, result);
1100     result_rgn->init_req(1, control());
1101   }
1102   set_control(_gvn.transform(result_rgn));
1103   record_for_igvn(result_rgn);
1104   set_result(_gvn.transform(result_phi));
1105 
1106   return true;
1107 }
1108 
1109 //-----------------------------inline_string_indexOf-----------------------
1110 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1111   if (!Matcher::has_match_rule(Op_StrIndexOf) || !UseSSE42Intrinsics) {
1112     return false;
1113   }
1114   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1115   Node* src         = argument(0); // byte[]
1116   Node* src_count   = argument(1);
1117   Node* tgt         = argument(2); // byte[]
1118   Node* tgt_count   = argument(3);
1119   Node* from_index  = argument(4);
1120 
1121   // Multiply byte array index by 2 if String is UTF16 encoded
1122   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1123   src_count = _gvn.transform(new SubINode(src_count, from_index));
1124   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1125   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1126 
1127   RegionNode* bailout = new RegionNode(1);
1128   record_for_igvn(bailout);
1129 
1130   // Range checks
1131   generate_negative_guard(src_offset, bailout);
1132   generate_negative_guard(src_count, bailout);
1133   generate_negative_guard(tgt_count, bailout);
1134   Node* src_byte_count = _gvn.transform(new LShiftINode(src_count, intcon(1)));
1135   Node* tgt_byte_count = _gvn.transform(new LShiftINode(tgt_count, intcon(1)));
1136   generate_limit_guard(src_offset, (ae == StrIntrinsicNode::LL) ? src_count : src_byte_count, load_array_length(src), bailout);
1137   generate_limit_guard(intcon(0), (ae == StrIntrinsicNode::UU) ? tgt_byte_count : tgt_count, load_array_length(tgt), bailout);
1138 
1139   if (bailout->req() > 1) {
1140     PreserveJVMState pjvms(this);
1141     set_control(_gvn.transform(bailout));
1142     uncommon_trap(Deoptimization::Reason_intrinsic,
1143                   Deoptimization::Action_maybe_recompile);
1144   }
1145   if (stopped()) {
1146     return true;
1147   }
1148 
1149   Node* result = make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1150 
1151   // The result is index relative to from_index if substring was found, -1 otherwise.
1152   // Generate code which will fold into cmove.
1153   RegionNode* region = new RegionNode(3);
1154   Node* phi = new PhiNode(region, TypeInt::INT);
1155 
1156   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1157   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1158 
1159   Node* if_lt = generate_slow_guard(bol, NULL);
1160   if (if_lt != NULL) {
1161     // result == -1
1162     phi->init_req(2, result);
1163     region->init_req(2, if_lt);
1164   }
1165   if (!stopped()) {
1166     result = _gvn.transform(new AddINode(result, from_index));
1167     phi->init_req(1, result);
1168     region->init_req(1, control());
1169   }
1170 
1171   set_control(_gvn.transform(region));
1172   record_for_igvn(region);
1173   set_result(_gvn.transform(phi));
1174 
1175   return true;
1176 }
1177 
1178 //-----------------------------inline_string_indexOfChar-----------------------
1179 bool LibraryCallKit::inline_string_indexOfChar() {
1180   if (!Matcher::has_match_rule(Op_StrIndexOfChar) || !(UseSSE > 4)) {
1181     return false;
1182   }
1183   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1184   Node* src         = argument(0); // byte[]
1185   Node* tgt         = argument(1); // tgt is int ch
1186   Node* from_index  = argument(2);
1187   Node* max         = argument(3);
1188 
1189   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1190   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1191   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1192 
1193   RegionNode* bailout = new RegionNode(1);
1194   record_for_igvn(bailout);
1195 
1196   // Range checks
1197   generate_negative_guard(src_offset, bailout);
1198   generate_negative_guard(src_count, bailout);
1199   Node* byte_length = _gvn.transform(new LShiftINode(src_count, intcon(1)));
1200   generate_limit_guard(src_offset, byte_length, load_array_length(src), bailout);
1201 
1202   if (bailout->req() > 1) {
1203     PreserveJVMState pjvms(this);
1204     set_control(_gvn.transform(bailout));
1205     uncommon_trap(Deoptimization::Reason_intrinsic,
1206                   Deoptimization::Action_maybe_recompile);
1207   }
1208   if (stopped()) {
1209     return true;
1210   }
1211 
1212   RegionNode* region = new RegionNode(3);
1213   Node* phi = new PhiNode(region, TypeInt::INT);
1214 
1215   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1216   C->set_has_split_ifs(true); // Has chance for split-if optimization
1217   _gvn.transform(result);
1218 
1219   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1220   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1221 
1222   Node* if_lt = generate_slow_guard(bol, NULL);
1223   if (if_lt != NULL) {
1224     // result == -1
1225     phi->init_req(2, result);
1226     region->init_req(2, if_lt);
1227   }
1228   if (!stopped()) {
1229     result = _gvn.transform(new AddINode(result, from_index));
1230     phi->init_req(1, result);
1231     region->init_req(1, control());
1232   }
1233   set_control(_gvn.transform(region));
1234   record_for_igvn(region);
1235   set_result(_gvn.transform(phi));
1236 
1237   return true;
1238 }
1239 //---------------------------inline_string_copy---------------------
1240 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1241 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1242 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1243 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1244 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1245 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1246 bool LibraryCallKit::inline_string_copy(bool compress) {
1247   int nargs = 5;  // 2 oops, 3 ints
1248   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1249 
1250   Node* src         = argument(0);
1251   Node* src_offset  = argument(1);
1252   Node* dst         = argument(2);
1253   Node* dst_offset  = argument(3);
1254   Node* length      = argument(4);
1255 
1256   // Check for allocation before we add nodes that would confuse
1257   // tightly_coupled_allocation()
1258   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1259 
1260   // Figure out the size and type of the elements we will be copying.
1261   const Type* src_type = src->Value(&_gvn);
1262   const Type* dst_type = dst->Value(&_gvn);
1263   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1264   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1265   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1266          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1267          "Unsupported array types for inline_string_copy");
1268 
1269   RegionNode* bailout = new RegionNode(1);
1270   record_for_igvn(bailout);
1271 
1272   // Range checks
1273   generate_negative_guard(src_offset, bailout);
1274   generate_negative_guard(dst_offset, bailout);
1275   generate_negative_guard(length, bailout);
1276   Node* byte_length = _gvn.transform(new LShiftINode(length, intcon(1)));
1277   generate_limit_guard(src_offset, (compress && src_elem == T_BYTE) ? byte_length : length, load_array_length(src), bailout);
1278   generate_limit_guard(dst_offset, (!compress && dst_elem == T_BYTE) ? byte_length : length, load_array_length(dst), bailout);
1279 
1280   if (bailout->req() > 1) {
1281     PreserveJVMState pjvms(this);
1282     set_control(_gvn.transform(bailout));
1283     uncommon_trap(Deoptimization::Reason_intrinsic,
1284                   Deoptimization::Action_maybe_recompile);
1285   }
1286   if (stopped()) {
1287     return true;
1288   }
1289 
1290   // Convert char[] offsets to byte[] offsets
1291   if (compress && src_elem == T_BYTE) {
1292     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1293   } else if (!compress && dst_elem == T_BYTE) {
1294     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1295   }
1296 
1297   Node* src_start = array_element_address(src, src_offset, src_elem);
1298   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1299   // 'src_start' points to src array + scaled offset
1300   // 'dst_start' points to dst array + scaled offset
1301   Node* count;
1302   if (compress) {
1303     count = compress_string(src_start, dst_start, length);
1304   } else {
1305     inflate_string(src_start, dst_start, length);
1306   }
1307 
1308   if (alloc != NULL) {
1309     if (alloc->maybe_set_complete(&_gvn)) {
1310       // "You break it, you buy it."
1311       InitializeNode* init = alloc->initialization();
1312       assert(init->is_complete(), "we just did this");
1313       init->set_complete_with_arraycopy();
1314       assert(dst->is_CheckCastPP(), "sanity");
1315       assert(dst->in(0)->in(0) == init, "dest pinned");
1316     }
1317     // Do not let stores that initialize this object be reordered with
1318     // a subsequent store that would make this object accessible by
1319     // other threads.
1320     // Record what AllocateNode this StoreStore protects so that
1321     // escape analysis can go from the MemBarStoreStoreNode to the
1322     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1323     // based on the escape status of the AllocateNode.
1324     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1325   }
1326   if (compress) {
1327     set_result(_gvn.transform(count));
1328   }
1329   return true;
1330 }
1331 
1332 #ifdef _LP64
1333 #define XTOP ,top() /*additional argument*/
1334 #else  //_LP64
1335 #define XTOP        /*no additional argument*/
1336 #endif //_LP64
1337 
1338 //------------------------inline_string_toBytesU--------------------------
1339 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1340 bool LibraryCallKit::inline_string_toBytesU() {
1341   // Get the arguments.
1342   Node* value     = argument(0);
1343   Node* offset    = argument(1);
1344   Node* length    = argument(2);
1345 
1346   Node* newcopy = NULL;
1347 
1348   // Set the original stack and the reexecute bit for the interpreter to reexecute
1349   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1350   { PreserveReexecuteState preexecs(this);
1351     jvms()->set_should_reexecute(true);
1352 
1353     // Check if a null path was taken unconditionally.
1354     value = null_check(value);
1355 
1356     RegionNode* bailout = new RegionNode(1);
1357     record_for_igvn(bailout);
1358 
1359     // Range checks
1360     generate_negative_guard(length, bailout);
1361     generate_negative_guard(offset, bailout);
1362     generate_limit_guard(offset, length, load_array_length(value), bailout);
1363     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1364     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1365 
1366     if (bailout->req() > 1) {
1367       PreserveJVMState pjvms(this);
1368       set_control(_gvn.transform(bailout));
1369       uncommon_trap(Deoptimization::Reason_intrinsic,
1370                     Deoptimization::Action_maybe_recompile);
1371     }
1372     if (stopped()) {
1373       return true;
1374     }
1375 
1376     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1377     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1378     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1379     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1380 
1381     // Calculate starting addresses.
1382     Node* src_start = array_element_address(value, offset, T_CHAR);
1383     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1384 
1385     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1386     const TypeInt* toffset = gvn().type(offset)->is_int();
1387     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1388 
1389     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1390     const char* copyfunc_name = "arraycopy";
1391     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1392     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1393                       OptoRuntime::fast_arraycopy_Type(),
1394                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1395                       src_start, dst_start, ConvI2X(length) XTOP);
1396     // Do not let reads from the cloned object float above the arraycopy.
1397     if (alloc != NULL) {
1398       if (alloc->maybe_set_complete(&_gvn)) {
1399         // "You break it, you buy it."
1400         InitializeNode* init = alloc->initialization();
1401         assert(init->is_complete(), "we just did this");
1402         init->set_complete_with_arraycopy();
1403         assert(newcopy->is_CheckCastPP(), "sanity");
1404         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1405       }
1406       // Do not let stores that initialize this object be reordered with
1407       // a subsequent store that would make this object accessible by
1408       // other threads.
1409       // Record what AllocateNode this StoreStore protects so that
1410       // escape analysis can go from the MemBarStoreStoreNode to the
1411       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1412       // based on the escape status of the AllocateNode.
1413       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1414     } else {
1415       insert_mem_bar(Op_MemBarCPUOrder);
1416     }
1417   } // original reexecute is set back here
1418 
1419   C->set_has_split_ifs(true); // Has chance for split-if optimization
1420   if (!stopped()) {
1421     set_result(newcopy);
1422   }
1423   return true;
1424 }
1425 
1426 //------------------------inline_string_getCharsU--------------------------
1427 // public void StringUTF16.getChars(byte[] value, int srcBegin, int srcEnd, char dst[], int dstBegin)
1428 bool LibraryCallKit::inline_string_getCharsU() {
1429   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1430 
1431   // Get the arguments.
1432   Node* value     = argument(0);
1433   Node* src_begin = argument(1);
1434   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1435   Node* dst       = argument(3);
1436   Node* dst_begin = argument(4);
1437 
1438   // Check for allocation before we add nodes that would confuse
1439   // tightly_coupled_allocation()
1440   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1441 
1442   // Check if a null path was taken unconditionally.
1443   value = null_check(value);
1444   dst = null_check(dst);
1445   if (stopped()) {
1446     return true;
1447   }
1448 
1449   // Get length and convert char[] offset to byte[] offset
1450   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1451   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1452 
1453   RegionNode* bailout = new RegionNode(1);
1454   record_for_igvn(bailout);
1455 
1456   // Range checks
1457   generate_negative_guard(length, bailout);
1458   generate_negative_guard(src_begin, bailout);
1459   generate_negative_guard(dst_begin, bailout);
1460   Node* byte_length = _gvn.transform(new LShiftINode(length, intcon(1)));
1461   generate_limit_guard(src_begin, byte_length, load_array_length(value), bailout);
1462   generate_limit_guard(dst_begin, length, load_array_length(dst), bailout);
1463 
1464   if (bailout->req() > 1) {
1465     PreserveJVMState pjvms(this);
1466     set_control(_gvn.transform(bailout));
1467     uncommon_trap(Deoptimization::Reason_intrinsic,
1468                   Deoptimization::Action_maybe_recompile);
1469   }
1470   if (stopped()) {
1471     return true;
1472   }
1473 
1474   if (!stopped()) {
1475     // Calculate starting addresses.
1476     Node* src_start = array_element_address(value, src_begin, T_BYTE);
1477     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1478 
1479     // Check if array addresses are aligned to HeapWordSize
1480     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1481     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1482     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1483                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1484 
1485     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1486     const char* copyfunc_name = "arraycopy";
1487     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1488     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1489                       OptoRuntime::fast_arraycopy_Type(),
1490                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1491                       src_start, dst_start, ConvI2X(length) XTOP);
1492     // Do not let reads from the cloned object float above the arraycopy.
1493     if (alloc != NULL) {
1494       if (alloc->maybe_set_complete(&_gvn)) {
1495         // "You break it, you buy it."
1496         InitializeNode* init = alloc->initialization();
1497         assert(init->is_complete(), "we just did this");
1498         init->set_complete_with_arraycopy();
1499         assert(dst->is_CheckCastPP(), "sanity");
1500         assert(dst->in(0)->in(0) == init, "dest pinned");
1501       }
1502       // Do not let stores that initialize this object be reordered with
1503       // a subsequent store that would make this object accessible by
1504       // other threads.
1505       // Record what AllocateNode this StoreStore protects so that
1506       // escape analysis can go from the MemBarStoreStoreNode to the
1507       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1508       // based on the escape status of the AllocateNode.
1509       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1510     } else {
1511       insert_mem_bar(Op_MemBarCPUOrder);
1512     }
1513   }
1514 
1515   C->set_has_split_ifs(true); // Has chance for split-if optimization
1516   return true;
1517 }
1518 
1519 //----------------------inline_string_char_access----------------------------
1520 // Store/Load char to/from byte[] array.
1521 // static void StringUTF16.putChar(byte[] val, int index, int c)
1522 // static char StringUTF16.getChar(byte[] val, int index)
1523 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1524   Node* value  = argument(0);
1525   Node* index  = argument(1);
1526   Node* ch = is_store ? argument(2) : NULL;
1527 
1528   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1529   // correctly requires matched array shapes.
1530   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1531           "sanity: byte[] and char[] bases agree");
1532   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1533           "sanity: byte[] and char[] scales agree");
1534 
1535   Node* adr = array_element_address(value, index, T_CHAR);
1536   if (is_store) {
1537     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered);
1538   } else {
1539     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, MemNode::unordered);
1540     set_result(ch);
1541   }
1542   return true;
1543 }
1544 
1545 //--------------------------round_double_node--------------------------------
1546 // Round a double node if necessary.
1547 Node* LibraryCallKit::round_double_node(Node* n) {
1548   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1549     n = _gvn.transform(new RoundDoubleNode(0, n));
1550   return n;
1551 }
1552 
1553 //------------------------------inline_math-----------------------------------
1554 // public static double Math.abs(double)
1555 // public static double Math.sqrt(double)
1556 // public static double Math.log(double)
1557 // public static double Math.log10(double)
1558 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1559   Node* arg = round_double_node(argument(0));
1560   Node* n;
1561   switch (id) {
1562   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1563   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1564   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1565   default:  fatal_unexpected_iid(id);  break;
1566   }
1567   set_result(_gvn.transform(n));
1568   return true;
1569 }
1570 
1571 //------------------------------inline_trig----------------------------------
1572 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1573 // argument reduction which will turn into a fast/slow diamond.
1574 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1575   Node* arg = round_double_node(argument(0));
1576   Node* n = NULL;
1577 
1578   switch (id) {
1579   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1580   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1581   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1582   default:  fatal_unexpected_iid(id);  break;
1583   }
1584   n = _gvn.transform(n);
1585 
1586   // Rounding required?  Check for argument reduction!
1587   if (Matcher::strict_fp_requires_explicit_rounding) {
1588     static const double     pi_4 =  0.7853981633974483;
1589     static const double neg_pi_4 = -0.7853981633974483;
1590     // pi/2 in 80-bit extended precision
1591     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1592     // -pi/2 in 80-bit extended precision
1593     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1594     // Cutoff value for using this argument reduction technique
1595     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1596     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1597 
1598     // Pseudocode for sin:
1599     // if (x <= Math.PI / 4.0) {
1600     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1601     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1602     // } else {
1603     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1604     // }
1605     // return StrictMath.sin(x);
1606 
1607     // Pseudocode for cos:
1608     // if (x <= Math.PI / 4.0) {
1609     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1610     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1611     // } else {
1612     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1613     // }
1614     // return StrictMath.cos(x);
1615 
1616     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1617     // requires a special machine instruction to load it.  Instead we'll try
1618     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1619     // probably do the math inside the SIN encoding.
1620 
1621     // Make the merge point
1622     RegionNode* r = new RegionNode(3);
1623     Node* phi = new PhiNode(r, Type::DOUBLE);
1624 
1625     // Flatten arg so we need only 1 test
1626     Node *abs = _gvn.transform(new AbsDNode(arg));
1627     // Node for PI/4 constant
1628     Node *pi4 = makecon(TypeD::make(pi_4));
1629     // Check PI/4 : abs(arg)
1630     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1631     // Check: If PI/4 < abs(arg) then go slow
1632     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1633     // Branch either way
1634     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1635     set_control(opt_iff(r,iff));
1636 
1637     // Set fast path result
1638     phi->init_req(2, n);
1639 
1640     // Slow path - non-blocking leaf call
1641     Node* call = NULL;
1642     switch (id) {
1643     case vmIntrinsics::_dsin:
1644       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1645                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1646                                "Sin", NULL, arg, top());
1647       break;
1648     case vmIntrinsics::_dcos:
1649       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1650                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1651                                "Cos", NULL, arg, top());
1652       break;
1653     case vmIntrinsics::_dtan:
1654       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1655                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1656                                "Tan", NULL, arg, top());
1657       break;
1658     }
1659     assert(control()->in(0) == call, "");
1660     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1661     r->init_req(1, control());
1662     phi->init_req(1, slow_result);
1663 
1664     // Post-merge
1665     set_control(_gvn.transform(r));
1666     record_for_igvn(r);
1667     n = _gvn.transform(phi);
1668 
1669     C->set_has_split_ifs(true); // Has chance for split-if optimization
1670   }
1671   set_result(n);
1672   return true;
1673 }
1674 
1675 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1676   //-------------------
1677   //result=(result.isNaN())? funcAddr():result;
1678   // Check: If isNaN() by checking result!=result? then either trap
1679   // or go to runtime
1680   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1681   // Build the boolean node
1682   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1683 
1684   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1685     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1686       // The pow or exp intrinsic returned a NaN, which requires a call
1687       // to the runtime.  Recompile with the runtime call.
1688       uncommon_trap(Deoptimization::Reason_intrinsic,
1689                     Deoptimization::Action_make_not_entrant);
1690     }
1691     return result;
1692   } else {
1693     // If this inlining ever returned NaN in the past, we compile a call
1694     // to the runtime to properly handle corner cases
1695 
1696     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1697     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1698     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1699 
1700     if (!if_slow->is_top()) {
1701       RegionNode* result_region = new RegionNode(3);
1702       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1703 
1704       result_region->init_req(1, if_fast);
1705       result_val->init_req(1, result);
1706 
1707       set_control(if_slow);
1708 
1709       const TypePtr* no_memory_effects = NULL;
1710       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1711                                    no_memory_effects,
1712                                    x, top(), y, y ? top() : NULL);
1713       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1714 #ifdef ASSERT
1715       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1716       assert(value_top == top(), "second value must be top");
1717 #endif
1718 
1719       result_region->init_req(2, control());
1720       result_val->init_req(2, value);
1721       set_control(_gvn.transform(result_region));
1722       return _gvn.transform(result_val);
1723     } else {
1724       return result;
1725     }
1726   }
1727 }
1728 
1729 //------------------------------inline_pow-------------------------------------
1730 // Inline power instructions, if possible.
1731 bool LibraryCallKit::inline_pow() {
1732   // Pseudocode for pow
1733   // if (y == 2) {
1734   //   return x * x;
1735   // } else {
1736   //   if (x <= 0.0) {
1737   //     long longy = (long)y;
1738   //     if ((double)longy == y) { // if y is long
1739   //       if (y + 1 == y) longy = 0; // huge number: even
1740   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1741   //     } else {
1742   //       result = NaN;
1743   //     }
1744   //   } else {
1745   //     result = DPow(x,y);
1746   //   }
1747   //   if (result != result)?  {
1748   //     result = uncommon_trap() or runtime_call();
1749   //   }
1750   //   return result;
1751   // }
1752 
1753   Node* x = round_double_node(argument(0));
1754   Node* y = round_double_node(argument(2));
1755 
1756   Node* result = NULL;
1757 
1758   Node*   const_two_node = makecon(TypeD::make(2.0));
1759   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1760   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1761   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1762   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1763   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1764 
1765   RegionNode* region_node = new RegionNode(3);
1766   region_node->init_req(1, if_true);
1767 
1768   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1769   // special case for x^y where y == 2, we can convert it to x * x
1770   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1771 
1772   // set control to if_false since we will now process the false branch
1773   set_control(if_false);
1774 
1775   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1776     // Short form: skip the fancy tests and just check for NaN result.
1777     result = _gvn.transform(new PowDNode(C, control(), x, y));
1778   } else {
1779     // If this inlining ever returned NaN in the past, include all
1780     // checks + call to the runtime.
1781 
1782     // Set the merge point for If node with condition of (x <= 0.0)
1783     // There are four possible paths to region node and phi node
1784     RegionNode *r = new RegionNode(4);
1785     Node *phi = new PhiNode(r, Type::DOUBLE);
1786 
1787     // Build the first if node: if (x <= 0.0)
1788     // Node for 0 constant
1789     Node *zeronode = makecon(TypeD::ZERO);
1790     // Check x:0
1791     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1792     // Check: If (x<=0) then go complex path
1793     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1794     // Branch either way
1795     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1796     // Fast path taken; set region slot 3
1797     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1798     r->init_req(3,fast_taken); // Capture fast-control
1799 
1800     // Fast path not-taken, i.e. slow path
1801     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1802 
1803     // Set fast path result
1804     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1805     phi->init_req(3, fast_result);
1806 
1807     // Complex path
1808     // Build the second if node (if y is long)
1809     // Node for (long)y
1810     Node *longy = _gvn.transform(new ConvD2LNode(y));
1811     // Node for (double)((long) y)
1812     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1813     // Check (double)((long) y) : y
1814     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1815     // Check if (y isn't long) then go to slow path
1816 
1817     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1818     // Branch either way
1819     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1820     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1821 
1822     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1823 
1824     // Calculate DPow(abs(x), y)*(1 & (long)y)
1825     // Node for constant 1
1826     Node *conone = longcon(1);
1827     // 1& (long)y
1828     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1829 
1830     // A huge number is always even. Detect a huge number by checking
1831     // if y + 1 == y and set integer to be tested for parity to 0.
1832     // Required for corner case:
1833     // (long)9.223372036854776E18 = max_jlong
1834     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1835     // max_jlong is odd but 9.223372036854776E18 is even
1836     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1837     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1838     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1839     Node* correctedsign = NULL;
1840     if (ConditionalMoveLimit != 0) {
1841       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1842     } else {
1843       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1844       RegionNode *r = new RegionNode(3);
1845       Node *phi = new PhiNode(r, TypeLong::LONG);
1846       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1847       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1848       phi->init_req(1, signnode);
1849       phi->init_req(2, longcon(0));
1850       correctedsign = _gvn.transform(phi);
1851       ylong_path = _gvn.transform(r);
1852       record_for_igvn(r);
1853     }
1854 
1855     // zero node
1856     Node *conzero = longcon(0);
1857     // Check (1&(long)y)==0?
1858     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1859     // Check if (1&(long)y)!=0?, if so the result is negative
1860     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1861     // abs(x)
1862     Node *absx=_gvn.transform(new AbsDNode(x));
1863     // abs(x)^y
1864     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1865     // -abs(x)^y
1866     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1867     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1868     Node *signresult = NULL;
1869     if (ConditionalMoveLimit != 0) {
1870       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1871     } else {
1872       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1873       RegionNode *r = new RegionNode(3);
1874       Node *phi = new PhiNode(r, Type::DOUBLE);
1875       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1876       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1877       phi->init_req(1, absxpowy);
1878       phi->init_req(2, negabsxpowy);
1879       signresult = _gvn.transform(phi);
1880       ylong_path = _gvn.transform(r);
1881       record_for_igvn(r);
1882     }
1883     // Set complex path fast result
1884     r->init_req(2, ylong_path);
1885     phi->init_req(2, signresult);
1886 
1887     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1888     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1889     r->init_req(1,slow_path);
1890     phi->init_req(1,slow_result);
1891 
1892     // Post merge
1893     set_control(_gvn.transform(r));
1894     record_for_igvn(r);
1895     result = _gvn.transform(phi);
1896   }
1897 
1898   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1899 
1900   // control from finish_pow_exp is now input to the region node
1901   region_node->set_req(2, control());
1902   // the result from finish_pow_exp is now input to the phi node
1903   phi_node->init_req(2, result);
1904   set_control(_gvn.transform(region_node));
1905   record_for_igvn(region_node);
1906   set_result(_gvn.transform(phi_node));
1907 
1908   C->set_has_split_ifs(true); // Has chance for split-if optimization
1909   return true;
1910 }
1911 
1912 //------------------------------runtime_math-----------------------------
1913 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1914   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1915          "must be (DD)D or (D)D type");
1916 
1917   // Inputs
1918   Node* a = round_double_node(argument(0));
1919   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1920 
1921   const TypePtr* no_memory_effects = NULL;
1922   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1923                                  no_memory_effects,
1924                                  a, top(), b, b ? top() : NULL);
1925   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1926 #ifdef ASSERT
1927   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1928   assert(value_top == top(), "second value must be top");
1929 #endif
1930 
1931   set_result(value);
1932   return true;
1933 }
1934 
1935 //------------------------------inline_math_native-----------------------------
1936 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1937 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1938   switch (id) {
1939     // These intrinsics are not properly supported on all hardware
1940   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1941     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1942   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1943     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1944   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1945     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1946 
1947   case vmIntrinsics::_dlog:
1948     return StubRoutines::dlog() != NULL ?
1949     runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1950     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1951   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1952     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1953 
1954     // These intrinsics are supported on all hardware
1955   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1956   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1957 
1958   case vmIntrinsics::_dexp:
1959     return StubRoutines::dexp() != NULL ?
1960       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1961       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1962   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1963     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1964 #undef FN_PTR
1965 
1966    // These intrinsics are not yet correctly implemented
1967   case vmIntrinsics::_datan2:
1968     return false;
1969 
1970   default:
1971     fatal_unexpected_iid(id);
1972     return false;
1973   }
1974 }
1975 
1976 static bool is_simple_name(Node* n) {
1977   return (n->req() == 1         // constant
1978           || (n->is_Type() && n->as_Type()->type()->singleton())
1979           || n->is_Proj()       // parameter or return value
1980           || n->is_Phi()        // local of some sort
1981           );
1982 }
1983 
1984 //----------------------------inline_notify-----------------------------------*
1985 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1986   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1987   address func;
1988   if (id == vmIntrinsics::_notify) {
1989     func = OptoRuntime::monitor_notify_Java();
1990   } else {
1991     func = OptoRuntime::monitor_notifyAll_Java();
1992   }
1993   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1994   make_slow_call_ex(call, env()->Throwable_klass(), false);
1995   return true;
1996 }
1997 
1998 
1999 //----------------------------inline_min_max-----------------------------------
2000 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2001   set_result(generate_min_max(id, argument(0), argument(1)));
2002   return true;
2003 }
2004 
2005 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2006   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2007   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2008   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2009   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2010 
2011   {
2012     PreserveJVMState pjvms(this);
2013     PreserveReexecuteState preexecs(this);
2014     jvms()->set_should_reexecute(true);
2015 
2016     set_control(slow_path);
2017     set_i_o(i_o());
2018 
2019     uncommon_trap(Deoptimization::Reason_intrinsic,
2020                   Deoptimization::Action_none);
2021   }
2022 
2023   set_control(fast_path);
2024   set_result(math);
2025 }
2026 
2027 template <typename OverflowOp>
2028 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2029   typedef typename OverflowOp::MathOp MathOp;
2030 
2031   MathOp* mathOp = new MathOp(arg1, arg2);
2032   Node* operation = _gvn.transform( mathOp );
2033   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2034   inline_math_mathExact(operation, ofcheck);
2035   return true;
2036 }
2037 
2038 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2039   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2040 }
2041 
2042 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2043   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2044 }
2045 
2046 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2047   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2048 }
2049 
2050 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2051   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2052 }
2053 
2054 bool LibraryCallKit::inline_math_negateExactI() {
2055   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2056 }
2057 
2058 bool LibraryCallKit::inline_math_negateExactL() {
2059   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2060 }
2061 
2062 bool LibraryCallKit::inline_math_multiplyExactI() {
2063   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2064 }
2065 
2066 bool LibraryCallKit::inline_math_multiplyExactL() {
2067   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2068 }
2069 
2070 Node*
2071 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2072   // These are the candidate return value:
2073   Node* xvalue = x0;
2074   Node* yvalue = y0;
2075 
2076   if (xvalue == yvalue) {
2077     return xvalue;
2078   }
2079 
2080   bool want_max = (id == vmIntrinsics::_max);
2081 
2082   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2083   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2084   if (txvalue == NULL || tyvalue == NULL)  return top();
2085   // This is not really necessary, but it is consistent with a
2086   // hypothetical MaxINode::Value method:
2087   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2088 
2089   // %%% This folding logic should (ideally) be in a different place.
2090   // Some should be inside IfNode, and there to be a more reliable
2091   // transformation of ?: style patterns into cmoves.  We also want
2092   // more powerful optimizations around cmove and min/max.
2093 
2094   // Try to find a dominating comparison of these guys.
2095   // It can simplify the index computation for Arrays.copyOf
2096   // and similar uses of System.arraycopy.
2097   // First, compute the normalized version of CmpI(x, y).
2098   int   cmp_op = Op_CmpI;
2099   Node* xkey = xvalue;
2100   Node* ykey = yvalue;
2101   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2102   if (ideal_cmpxy->is_Cmp()) {
2103     // E.g., if we have CmpI(length - offset, count),
2104     // it might idealize to CmpI(length, count + offset)
2105     cmp_op = ideal_cmpxy->Opcode();
2106     xkey = ideal_cmpxy->in(1);
2107     ykey = ideal_cmpxy->in(2);
2108   }
2109 
2110   // Start by locating any relevant comparisons.
2111   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2112   Node* cmpxy = NULL;
2113   Node* cmpyx = NULL;
2114   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2115     Node* cmp = start_from->fast_out(k);
2116     if (cmp->outcnt() > 0 &&            // must have prior uses
2117         cmp->in(0) == NULL &&           // must be context-independent
2118         cmp->Opcode() == cmp_op) {      // right kind of compare
2119       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2120       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2121     }
2122   }
2123 
2124   const int NCMPS = 2;
2125   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2126   int cmpn;
2127   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2128     if (cmps[cmpn] != NULL)  break;     // find a result
2129   }
2130   if (cmpn < NCMPS) {
2131     // Look for a dominating test that tells us the min and max.
2132     int depth = 0;                // Limit search depth for speed
2133     Node* dom = control();
2134     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2135       if (++depth >= 100)  break;
2136       Node* ifproj = dom;
2137       if (!ifproj->is_Proj())  continue;
2138       Node* iff = ifproj->in(0);
2139       if (!iff->is_If())  continue;
2140       Node* bol = iff->in(1);
2141       if (!bol->is_Bool())  continue;
2142       Node* cmp = bol->in(1);
2143       if (cmp == NULL)  continue;
2144       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2145         if (cmps[cmpn] == cmp)  break;
2146       if (cmpn == NCMPS)  continue;
2147       BoolTest::mask btest = bol->as_Bool()->_test._test;
2148       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2149       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2150       // At this point, we know that 'x btest y' is true.
2151       switch (btest) {
2152       case BoolTest::eq:
2153         // They are proven equal, so we can collapse the min/max.
2154         // Either value is the answer.  Choose the simpler.
2155         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2156           return yvalue;
2157         return xvalue;
2158       case BoolTest::lt:          // x < y
2159       case BoolTest::le:          // x <= y
2160         return (want_max ? yvalue : xvalue);
2161       case BoolTest::gt:          // x > y
2162       case BoolTest::ge:          // x >= y
2163         return (want_max ? xvalue : yvalue);
2164       }
2165     }
2166   }
2167 
2168   // We failed to find a dominating test.
2169   // Let's pick a test that might GVN with prior tests.
2170   Node*          best_bol   = NULL;
2171   BoolTest::mask best_btest = BoolTest::illegal;
2172   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2173     Node* cmp = cmps[cmpn];
2174     if (cmp == NULL)  continue;
2175     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2176       Node* bol = cmp->fast_out(j);
2177       if (!bol->is_Bool())  continue;
2178       BoolTest::mask btest = bol->as_Bool()->_test._test;
2179       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2180       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2181       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2182         best_bol   = bol->as_Bool();
2183         best_btest = btest;
2184       }
2185     }
2186   }
2187 
2188   Node* answer_if_true  = NULL;
2189   Node* answer_if_false = NULL;
2190   switch (best_btest) {
2191   default:
2192     if (cmpxy == NULL)
2193       cmpxy = ideal_cmpxy;
2194     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2195     // and fall through:
2196   case BoolTest::lt:          // x < y
2197   case BoolTest::le:          // x <= y
2198     answer_if_true  = (want_max ? yvalue : xvalue);
2199     answer_if_false = (want_max ? xvalue : yvalue);
2200     break;
2201   case BoolTest::gt:          // x > y
2202   case BoolTest::ge:          // x >= y
2203     answer_if_true  = (want_max ? xvalue : yvalue);
2204     answer_if_false = (want_max ? yvalue : xvalue);
2205     break;
2206   }
2207 
2208   jint hi, lo;
2209   if (want_max) {
2210     // We can sharpen the minimum.
2211     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2212     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2213   } else {
2214     // We can sharpen the maximum.
2215     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2216     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2217   }
2218 
2219   // Use a flow-free graph structure, to avoid creating excess control edges
2220   // which could hinder other optimizations.
2221   // Since Math.min/max is often used with arraycopy, we want
2222   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2223   Node* cmov = CMoveNode::make(NULL, best_bol,
2224                                answer_if_false, answer_if_true,
2225                                TypeInt::make(lo, hi, widen));
2226 
2227   return _gvn.transform(cmov);
2228 
2229   /*
2230   // This is not as desirable as it may seem, since Min and Max
2231   // nodes do not have a full set of optimizations.
2232   // And they would interfere, anyway, with 'if' optimizations
2233   // and with CMoveI canonical forms.
2234   switch (id) {
2235   case vmIntrinsics::_min:
2236     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2237   case vmIntrinsics::_max:
2238     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2239   default:
2240     ShouldNotReachHere();
2241   }
2242   */
2243 }
2244 
2245 inline int
2246 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2247   const TypePtr* base_type = TypePtr::NULL_PTR;
2248   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2249   if (base_type == NULL) {
2250     // Unknown type.
2251     return Type::AnyPtr;
2252   } else if (base_type == TypePtr::NULL_PTR) {
2253     // Since this is a NULL+long form, we have to switch to a rawptr.
2254     base   = _gvn.transform(new CastX2PNode(offset));
2255     offset = MakeConX(0);
2256     return Type::RawPtr;
2257   } else if (base_type->base() == Type::RawPtr) {
2258     return Type::RawPtr;
2259   } else if (base_type->isa_oopptr()) {
2260     // Base is never null => always a heap address.
2261     if (base_type->ptr() == TypePtr::NotNull) {
2262       return Type::OopPtr;
2263     }
2264     // Offset is small => always a heap address.
2265     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2266     if (offset_type != NULL &&
2267         base_type->offset() == 0 &&     // (should always be?)
2268         offset_type->_lo >= 0 &&
2269         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2270       return Type::OopPtr;
2271     }
2272     // Otherwise, it might either be oop+off or NULL+addr.
2273     return Type::AnyPtr;
2274   } else {
2275     // No information:
2276     return Type::AnyPtr;
2277   }
2278 }
2279 
2280 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2281   int kind = classify_unsafe_addr(base, offset);
2282   if (kind == Type::RawPtr) {
2283     return basic_plus_adr(top(), base, offset);
2284   } else {
2285     return basic_plus_adr(base, offset);
2286   }
2287 }
2288 
2289 //--------------------------inline_number_methods-----------------------------
2290 // inline int     Integer.numberOfLeadingZeros(int)
2291 // inline int        Long.numberOfLeadingZeros(long)
2292 //
2293 // inline int     Integer.numberOfTrailingZeros(int)
2294 // inline int        Long.numberOfTrailingZeros(long)
2295 //
2296 // inline int     Integer.bitCount(int)
2297 // inline int        Long.bitCount(long)
2298 //
2299 // inline char  Character.reverseBytes(char)
2300 // inline short     Short.reverseBytes(short)
2301 // inline int     Integer.reverseBytes(int)
2302 // inline long       Long.reverseBytes(long)
2303 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2304   Node* arg = argument(0);
2305   Node* n;
2306   switch (id) {
2307   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2308   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2309   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2310   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2311   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2312   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2313   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2314   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2315   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2316   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2317   default:  fatal_unexpected_iid(id);  break;
2318   }
2319   set_result(_gvn.transform(n));
2320   return true;
2321 }
2322 
2323 //----------------------------inline_unsafe_access----------------------------
2324 
2325 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2326 
2327 // Helper that guards and inserts a pre-barrier.
2328 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2329                                         Node* pre_val, bool need_mem_bar) {
2330   // We could be accessing the referent field of a reference object. If so, when G1
2331   // is enabled, we need to log the value in the referent field in an SATB buffer.
2332   // This routine performs some compile time filters and generates suitable
2333   // runtime filters that guard the pre-barrier code.
2334   // Also add memory barrier for non volatile load from the referent field
2335   // to prevent commoning of loads across safepoint.
2336   if (!UseG1GC && !need_mem_bar)
2337     return;
2338 
2339   // Some compile time checks.
2340 
2341   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2342   const TypeX* otype = offset->find_intptr_t_type();
2343   if (otype != NULL && otype->is_con() &&
2344       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2345     // Constant offset but not the reference_offset so just return
2346     return;
2347   }
2348 
2349   // We only need to generate the runtime guards for instances.
2350   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2351   if (btype != NULL) {
2352     if (btype->isa_aryptr()) {
2353       // Array type so nothing to do
2354       return;
2355     }
2356 
2357     const TypeInstPtr* itype = btype->isa_instptr();
2358     if (itype != NULL) {
2359       // Can the klass of base_oop be statically determined to be
2360       // _not_ a sub-class of Reference and _not_ Object?
2361       ciKlass* klass = itype->klass();
2362       if ( klass->is_loaded() &&
2363           !klass->is_subtype_of(env()->Reference_klass()) &&
2364           !env()->Object_klass()->is_subtype_of(klass)) {
2365         return;
2366       }
2367     }
2368   }
2369 
2370   // The compile time filters did not reject base_oop/offset so
2371   // we need to generate the following runtime filters
2372   //
2373   // if (offset == java_lang_ref_Reference::_reference_offset) {
2374   //   if (instance_of(base, java.lang.ref.Reference)) {
2375   //     pre_barrier(_, pre_val, ...);
2376   //   }
2377   // }
2378 
2379   float likely   = PROB_LIKELY(  0.999);
2380   float unlikely = PROB_UNLIKELY(0.999);
2381 
2382   IdealKit ideal(this);
2383 #define __ ideal.
2384 
2385   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2386 
2387   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2388       // Update graphKit memory and control from IdealKit.
2389       sync_kit(ideal);
2390 
2391       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2392       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2393 
2394       // Update IdealKit memory and control from graphKit.
2395       __ sync_kit(this);
2396 
2397       Node* one = __ ConI(1);
2398       // is_instof == 0 if base_oop == NULL
2399       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2400 
2401         // Update graphKit from IdeakKit.
2402         sync_kit(ideal);
2403 
2404         // Use the pre-barrier to record the value in the referent field
2405         pre_barrier(false /* do_load */,
2406                     __ ctrl(),
2407                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2408                     pre_val /* pre_val */,
2409                     T_OBJECT);
2410         if (need_mem_bar) {
2411           // Add memory barrier to prevent commoning reads from this field
2412           // across safepoint since GC can change its value.
2413           insert_mem_bar(Op_MemBarCPUOrder);
2414         }
2415         // Update IdealKit from graphKit.
2416         __ sync_kit(this);
2417 
2418       } __ end_if(); // _ref_type != ref_none
2419   } __ end_if(); // offset == referent_offset
2420 
2421   // Final sync IdealKit and GraphKit.
2422   final_sync(ideal);
2423 #undef __
2424 }
2425 
2426 
2427 // Interpret Unsafe.fieldOffset cookies correctly:
2428 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2429 
2430 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2431   // Attempt to infer a sharper value type from the offset and base type.
2432   ciKlass* sharpened_klass = NULL;
2433 
2434   // See if it is an instance field, with an object type.
2435   if (alias_type->field() != NULL) {
2436     assert(!is_native_ptr, "native pointer op cannot use a java address");
2437     if (alias_type->field()->type()->is_klass()) {
2438       sharpened_klass = alias_type->field()->type()->as_klass();
2439     }
2440   }
2441 
2442   // See if it is a narrow oop array.
2443   if (adr_type->isa_aryptr()) {
2444     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2445       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2446       if (elem_type != NULL) {
2447         sharpened_klass = elem_type->klass();
2448       }
2449     }
2450   }
2451 
2452   // The sharpened class might be unloaded if there is no class loader
2453   // contraint in place.
2454   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2455     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2456 
2457 #ifndef PRODUCT
2458     if (C->print_intrinsics() || C->print_inlining()) {
2459       tty->print("  from base type: ");  adr_type->dump();
2460       tty->print("  sharpened value: ");  tjp->dump();
2461     }
2462 #endif
2463     // Sharpen the value type.
2464     return tjp;
2465   }
2466   return NULL;
2467 }
2468 
2469 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool unaligned) {
2470   if (callee()->is_static())  return false;  // caller must have the capability!
2471 
2472 #ifndef PRODUCT
2473   {
2474     ResourceMark rm;
2475     // Check the signatures.
2476     ciSignature* sig = callee()->signature();
2477 #ifdef ASSERT
2478     if (!is_store) {
2479       // Object getObject(Object base, int/long offset), etc.
2480       BasicType rtype = sig->return_type()->basic_type();
2481       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2482           rtype = T_ADDRESS;  // it is really a C void*
2483       assert(rtype == type, "getter must return the expected value");
2484       if (!is_native_ptr) {
2485         assert(sig->count() == 2, "oop getter has 2 arguments");
2486         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2487         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2488       } else {
2489         assert(sig->count() == 1, "native getter has 1 argument");
2490         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2491       }
2492     } else {
2493       // void putObject(Object base, int/long offset, Object x), etc.
2494       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2495       if (!is_native_ptr) {
2496         assert(sig->count() == 3, "oop putter has 3 arguments");
2497         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2498         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2499       } else {
2500         assert(sig->count() == 2, "native putter has 2 arguments");
2501         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2502       }
2503       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2504       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2505         vtype = T_ADDRESS;  // it is really a C void*
2506       assert(vtype == type, "putter must accept the expected value");
2507     }
2508 #endif // ASSERT
2509  }
2510 #endif //PRODUCT
2511 
2512   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2513 
2514   Node* receiver = argument(0);  // type: oop
2515 
2516   // Build address expression.
2517   Node* adr;
2518   Node* heap_base_oop = top();
2519   Node* offset = top();
2520   Node* val;
2521 
2522   if (!is_native_ptr) {
2523     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2524     Node* base = argument(1);  // type: oop
2525     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2526     offset = argument(2);  // type: long
2527     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2528     // to be plain byte offsets, which are also the same as those accepted
2529     // by oopDesc::field_base.
2530     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2531            "fieldOffset must be byte-scaled");
2532     // 32-bit machines ignore the high half!
2533     offset = ConvL2X(offset);
2534     adr = make_unsafe_address(base, offset);
2535     heap_base_oop = base;
2536     val = is_store ? argument(4) : NULL;
2537   } else {
2538     Node* ptr = argument(1);  // type: long
2539     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2540     adr = make_unsafe_address(NULL, ptr);
2541     val = is_store ? argument(3) : NULL;
2542   }
2543 
2544   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2545 
2546   // First guess at the value type.
2547   const Type *value_type = Type::get_const_basic_type(type);
2548 
2549   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2550   // there was not enough information to nail it down.
2551   Compile::AliasType* alias_type = C->alias_type(adr_type);
2552   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2553 
2554   // We will need memory barriers unless we can determine a unique
2555   // alias category for this reference.  (Note:  If for some reason
2556   // the barriers get omitted and the unsafe reference begins to "pollute"
2557   // the alias analysis of the rest of the graph, either Compile::can_alias
2558   // or Compile::must_alias will throw a diagnostic assert.)
2559   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2560 
2561   // If we are reading the value of the referent field of a Reference
2562   // object (either by using Unsafe directly or through reflection)
2563   // then, if G1 is enabled, we need to record the referent in an
2564   // SATB log buffer using the pre-barrier mechanism.
2565   // Also we need to add memory barrier to prevent commoning reads
2566   // from this field across safepoint since GC can change its value.
2567   bool need_read_barrier = !is_native_ptr && !is_store &&
2568                            offset != top() && heap_base_oop != top();
2569 
2570   if (!is_store && type == T_OBJECT) {
2571     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2572     if (tjp != NULL) {
2573       value_type = tjp;
2574     }
2575   }
2576 
2577   receiver = null_check(receiver);
2578   if (stopped()) {
2579     return true;
2580   }
2581   // Heap pointers get a null-check from the interpreter,
2582   // as a courtesy.  However, this is not guaranteed by Unsafe,
2583   // and it is not possible to fully distinguish unintended nulls
2584   // from intended ones in this API.
2585 
2586   if (is_volatile) {
2587     // We need to emit leading and trailing CPU membars (see below) in
2588     // addition to memory membars when is_volatile. This is a little
2589     // too strong, but avoids the need to insert per-alias-type
2590     // volatile membars (for stores; compare Parse::do_put_xxx), which
2591     // we cannot do effectively here because we probably only have a
2592     // rough approximation of type.
2593     need_mem_bar = true;
2594     // For Stores, place a memory ordering barrier now.
2595     if (is_store) {
2596       insert_mem_bar(Op_MemBarRelease);
2597     } else {
2598       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2599         insert_mem_bar(Op_MemBarVolatile);
2600       }
2601     }
2602   }
2603 
2604   // Memory barrier to prevent normal and 'unsafe' accesses from
2605   // bypassing each other.  Happens after null checks, so the
2606   // exception paths do not take memory state from the memory barrier,
2607   // so there's no problems making a strong assert about mixing users
2608   // of safe & unsafe memory.
2609   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2610 
2611   assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2612          alias_type->field() != NULL || alias_type->element() != NULL, "field, array element or unknown");
2613   bool mismatched = false;
2614   if (alias_type->element() != NULL || alias_type->field() != NULL) {
2615     BasicType bt;
2616     if (alias_type->element() != NULL) {
2617       const Type* element = alias_type->element();
2618       bt = element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
2619     } else {
2620       bt = alias_type->field()->type()->basic_type();
2621     }
2622     if (bt != type) {
2623       mismatched = true;
2624     }
2625   }
2626   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2627 
2628   if (!is_store) {
2629     Node* p = NULL;
2630     // Try to constant fold a load from a constant field
2631     ciField* field = alias_type->field();
2632     if (heap_base_oop != top() &&
2633         field != NULL && field->is_constant() && field->layout_type() == type) {
2634       // final or stable field
2635       const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop);
2636       if (con_type != NULL) {
2637         p = makecon(con_type);
2638       }
2639     }
2640     if (p == NULL) {
2641       MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2642       // To be valid, unsafe loads may depend on other conditions than
2643       // the one that guards them: pin the Load node
2644       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile, unaligned, mismatched);
2645       // load value
2646       switch (type) {
2647       case T_BOOLEAN:
2648       case T_CHAR:
2649       case T_BYTE:
2650       case T_SHORT:
2651       case T_INT:
2652       case T_LONG:
2653       case T_FLOAT:
2654       case T_DOUBLE:
2655         break;
2656       case T_OBJECT:
2657         if (need_read_barrier) {
2658           insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2659         }
2660         break;
2661       case T_ADDRESS:
2662         // Cast to an int type.
2663         p = _gvn.transform(new CastP2XNode(NULL, p));
2664         p = ConvX2UL(p);
2665         break;
2666       default:
2667         fatal("unexpected type %d: %s", type, type2name(type));
2668         break;
2669       }
2670     }
2671     // The load node has the control of the preceding MemBarCPUOrder.  All
2672     // following nodes will have the control of the MemBarCPUOrder inserted at
2673     // the end of this method.  So, pushing the load onto the stack at a later
2674     // point is fine.
2675     set_result(p);
2676   } else {
2677     // place effect of store into memory
2678     switch (type) {
2679     case T_DOUBLE:
2680       val = dstore_rounding(val);
2681       break;
2682     case T_ADDRESS:
2683       // Repackage the long as a pointer.
2684       val = ConvL2X(val);
2685       val = _gvn.transform(new CastX2PNode(val));
2686       break;
2687     }
2688 
2689     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2690     if (type != T_OBJECT ) {
2691       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile, unaligned, mismatched);
2692     } else {
2693       // Possibly an oop being stored to Java heap or native memory
2694       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2695         // oop to Java heap.
2696         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2697       } else {
2698         // We can't tell at compile time if we are storing in the Java heap or outside
2699         // of it. So we need to emit code to conditionally do the proper type of
2700         // store.
2701 
2702         IdealKit ideal(this);
2703 #define __ ideal.
2704         // QQQ who knows what probability is here??
2705         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2706           // Sync IdealKit and graphKit.
2707           sync_kit(ideal);
2708           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2709           // Update IdealKit memory.
2710           __ sync_kit(this);
2711         } __ else_(); {
2712           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile, mismatched);
2713         } __ end_if();
2714         // Final sync IdealKit and GraphKit.
2715         final_sync(ideal);
2716 #undef __
2717       }
2718     }
2719   }
2720 
2721   if (is_volatile) {
2722     if (!is_store) {
2723       insert_mem_bar(Op_MemBarAcquire);
2724     } else {
2725       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2726         insert_mem_bar(Op_MemBarVolatile);
2727       }
2728     }
2729   }
2730 
2731   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2732 
2733   return true;
2734 }
2735 
2736 //----------------------------inline_unsafe_load_store----------------------------
2737 // This method serves a couple of different customers (depending on LoadStoreKind):
2738 //
2739 // LS_cmpxchg:
2740 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2741 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2742 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2743 //
2744 // LS_xadd:
2745 //   public int  getAndAddInt( Object o, long offset, int  delta)
2746 //   public long getAndAddLong(Object o, long offset, long delta)
2747 //
2748 // LS_xchg:
2749 //   int    getAndSet(Object o, long offset, int    newValue)
2750 //   long   getAndSet(Object o, long offset, long   newValue)
2751 //   Object getAndSet(Object o, long offset, Object newValue)
2752 //
2753 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2754   // This basic scheme here is the same as inline_unsafe_access, but
2755   // differs in enough details that combining them would make the code
2756   // overly confusing.  (This is a true fact! I originally combined
2757   // them, but even I was confused by it!) As much code/comments as
2758   // possible are retained from inline_unsafe_access though to make
2759   // the correspondences clearer. - dl
2760 
2761   if (callee()->is_static())  return false;  // caller must have the capability!
2762 
2763 #ifndef PRODUCT
2764   BasicType rtype;
2765   {
2766     ResourceMark rm;
2767     // Check the signatures.
2768     ciSignature* sig = callee()->signature();
2769     rtype = sig->return_type()->basic_type();
2770     if (kind == LS_xadd || kind == LS_xchg) {
2771       // Check the signatures.
2772 #ifdef ASSERT
2773       assert(rtype == type, "get and set must return the expected type");
2774       assert(sig->count() == 3, "get and set has 3 arguments");
2775       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2776       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2777       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2778 #endif // ASSERT
2779     } else if (kind == LS_cmpxchg) {
2780       // Check the signatures.
2781 #ifdef ASSERT
2782       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2783       assert(sig->count() == 4, "CAS has 4 arguments");
2784       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2785       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2786 #endif // ASSERT
2787     } else {
2788       ShouldNotReachHere();
2789     }
2790   }
2791 #endif //PRODUCT
2792 
2793   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2794 
2795   // Get arguments:
2796   Node* receiver = NULL;
2797   Node* base     = NULL;
2798   Node* offset   = NULL;
2799   Node* oldval   = NULL;
2800   Node* newval   = NULL;
2801   if (kind == LS_cmpxchg) {
2802     const bool two_slot_type = type2size[type] == 2;
2803     receiver = argument(0);  // type: oop
2804     base     = argument(1);  // type: oop
2805     offset   = argument(2);  // type: long
2806     oldval   = argument(4);  // type: oop, int, or long
2807     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2808   } else if (kind == LS_xadd || kind == LS_xchg){
2809     receiver = argument(0);  // type: oop
2810     base     = argument(1);  // type: oop
2811     offset   = argument(2);  // type: long
2812     oldval   = NULL;
2813     newval   = argument(4);  // type: oop, int, or long
2814   }
2815 
2816   // Null check receiver.
2817   receiver = null_check(receiver);
2818   if (stopped()) {
2819     return true;
2820   }
2821 
2822   // Build field offset expression.
2823   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2824   // to be plain byte offsets, which are also the same as those accepted
2825   // by oopDesc::field_base.
2826   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2827   // 32-bit machines ignore the high half of long offsets
2828   offset = ConvL2X(offset);
2829   Node* adr = make_unsafe_address(base, offset);
2830   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2831 
2832   // For CAS, unlike inline_unsafe_access, there seems no point in
2833   // trying to refine types. Just use the coarse types here.
2834   const Type *value_type = Type::get_const_basic_type(type);
2835   Compile::AliasType* alias_type = C->alias_type(adr_type);
2836   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2837 
2838   if (kind == LS_xchg && type == T_OBJECT) {
2839     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2840     if (tjp != NULL) {
2841       value_type = tjp;
2842     }
2843   }
2844 
2845   int alias_idx = C->get_alias_index(adr_type);
2846 
2847   // Memory-model-wise, a LoadStore acts like a little synchronized
2848   // block, so needs barriers on each side.  These don't translate
2849   // into actual barriers on most machines, but we still need rest of
2850   // compiler to respect ordering.
2851 
2852   insert_mem_bar(Op_MemBarRelease);
2853   insert_mem_bar(Op_MemBarCPUOrder);
2854 
2855   // 4984716: MemBars must be inserted before this
2856   //          memory node in order to avoid a false
2857   //          dependency which will confuse the scheduler.
2858   Node *mem = memory(alias_idx);
2859 
2860   // For now, we handle only those cases that actually exist: ints,
2861   // longs, and Object. Adding others should be straightforward.
2862   Node* load_store;
2863   switch(type) {
2864   case T_INT:
2865     if (kind == LS_xadd) {
2866       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2867     } else if (kind == LS_xchg) {
2868       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2869     } else if (kind == LS_cmpxchg) {
2870       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2871     } else {
2872       ShouldNotReachHere();
2873     }
2874     break;
2875   case T_LONG:
2876     if (kind == LS_xadd) {
2877       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2878     } else if (kind == LS_xchg) {
2879       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2880     } else if (kind == LS_cmpxchg) {
2881       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2882     } else {
2883       ShouldNotReachHere();
2884     }
2885     break;
2886   case T_OBJECT:
2887     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2888     // could be delayed during Parse (for example, in adjust_map_after_if()).
2889     // Execute transformation here to avoid barrier generation in such case.
2890     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2891       newval = _gvn.makecon(TypePtr::NULL_PTR);
2892 
2893     // Reference stores need a store barrier.
2894     if (kind == LS_xchg) {
2895       // If pre-barrier must execute before the oop store, old value will require do_load here.
2896       if (!can_move_pre_barrier()) {
2897         pre_barrier(true /* do_load*/,
2898                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2899                     NULL /* pre_val*/,
2900                     T_OBJECT);
2901       } // Else move pre_barrier to use load_store value, see below.
2902     } else if (kind == LS_cmpxchg) {
2903       // Same as for newval above:
2904       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2905         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2906       }
2907       // The only known value which might get overwritten is oldval.
2908       pre_barrier(false /* do_load */,
2909                   control(), NULL, NULL, max_juint, NULL, NULL,
2910                   oldval /* pre_val */,
2911                   T_OBJECT);
2912     } else {
2913       ShouldNotReachHere();
2914     }
2915 
2916 #ifdef _LP64
2917     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2918       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2919       if (kind == LS_xchg) {
2920         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2921                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2922       } else {
2923         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2924         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2925         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2926                                                                 newval_enc, oldval_enc));
2927       }
2928     } else
2929 #endif
2930     {
2931       if (kind == LS_xchg) {
2932         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2933       } else {
2934         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2935         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2936       }
2937     }
2938     if (kind == LS_cmpxchg) {
2939       // Emit the post barrier only when the actual store happened.
2940       // This makes sense to check only for compareAndSet that can fail to set the value.
2941       // CAS success path is marked more likely since we anticipate this is a performance
2942       // critical path, while CAS failure path can use the penalty for going through unlikely
2943       // path as backoff. Which is still better than doing a store barrier there.
2944       IdealKit ideal(this);
2945       ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
2946         sync_kit(ideal);
2947         post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2948         ideal.sync_kit(this);
2949       } ideal.end_if();
2950       final_sync(ideal);
2951     } else {
2952       post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2953     }
2954     break;
2955   default:
2956     fatal("unexpected type %d: %s", type, type2name(type));
2957     break;
2958   }
2959 
2960   // SCMemProjNodes represent the memory state of a LoadStore. Their
2961   // main role is to prevent LoadStore nodes from being optimized away
2962   // when their results aren't used.
2963   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2964   set_memory(proj, alias_idx);
2965 
2966   if (type == T_OBJECT && kind == LS_xchg) {
2967 #ifdef _LP64
2968     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2969       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2970     }
2971 #endif
2972     if (can_move_pre_barrier()) {
2973       // Don't need to load pre_val. The old value is returned by load_store.
2974       // The pre_barrier can execute after the xchg as long as no safepoint
2975       // gets inserted between them.
2976       pre_barrier(false /* do_load */,
2977                   control(), NULL, NULL, max_juint, NULL, NULL,
2978                   load_store /* pre_val */,
2979                   T_OBJECT);
2980     }
2981   }
2982 
2983   // Add the trailing membar surrounding the access
2984   insert_mem_bar(Op_MemBarCPUOrder);
2985   insert_mem_bar(Op_MemBarAcquire);
2986 
2987   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2988   set_result(load_store);
2989   return true;
2990 }
2991 
2992 //----------------------------inline_unsafe_ordered_store----------------------
2993 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2994 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2995 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2996 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2997   // This is another variant of inline_unsafe_access, differing in
2998   // that it always issues store-store ("release") barrier and ensures
2999   // store-atomicity (which only matters for "long").
3000 
3001   if (callee()->is_static())  return false;  // caller must have the capability!
3002 
3003 #ifndef PRODUCT
3004   {
3005     ResourceMark rm;
3006     // Check the signatures.
3007     ciSignature* sig = callee()->signature();
3008 #ifdef ASSERT
3009     BasicType rtype = sig->return_type()->basic_type();
3010     assert(rtype == T_VOID, "must return void");
3011     assert(sig->count() == 3, "has 3 arguments");
3012     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3013     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3014 #endif // ASSERT
3015   }
3016 #endif //PRODUCT
3017 
3018   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3019 
3020   // Get arguments:
3021   Node* receiver = argument(0);  // type: oop
3022   Node* base     = argument(1);  // type: oop
3023   Node* offset   = argument(2);  // type: long
3024   Node* val      = argument(4);  // type: oop, int, or long
3025 
3026   // Null check receiver.
3027   receiver = null_check(receiver);
3028   if (stopped()) {
3029     return true;
3030   }
3031 
3032   // Build field offset expression.
3033   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3034   // 32-bit machines ignore the high half of long offsets
3035   offset = ConvL2X(offset);
3036   Node* adr = make_unsafe_address(base, offset);
3037   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3038   const Type *value_type = Type::get_const_basic_type(type);
3039   Compile::AliasType* alias_type = C->alias_type(adr_type);
3040 
3041   insert_mem_bar(Op_MemBarRelease);
3042   insert_mem_bar(Op_MemBarCPUOrder);
3043   // Ensure that the store is atomic for longs:
3044   const bool require_atomic_access = true;
3045   Node* store;
3046   if (type == T_OBJECT) // reference stores need a store barrier.
3047     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3048   else {
3049     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3050   }
3051   insert_mem_bar(Op_MemBarCPUOrder);
3052   return true;
3053 }
3054 
3055 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3056   // Regardless of form, don't allow previous ld/st to move down,
3057   // then issue acquire, release, or volatile mem_bar.
3058   insert_mem_bar(Op_MemBarCPUOrder);
3059   switch(id) {
3060     case vmIntrinsics::_loadFence:
3061       insert_mem_bar(Op_LoadFence);
3062       return true;
3063     case vmIntrinsics::_storeFence:
3064       insert_mem_bar(Op_StoreFence);
3065       return true;
3066     case vmIntrinsics::_fullFence:
3067       insert_mem_bar(Op_MemBarVolatile);
3068       return true;
3069     default:
3070       fatal_unexpected_iid(id);
3071       return false;
3072   }
3073 }
3074 
3075 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3076   if (!kls->is_Con()) {
3077     return true;
3078   }
3079   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3080   if (klsptr == NULL) {
3081     return true;
3082   }
3083   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3084   // don't need a guard for a klass that is already initialized
3085   return !ik->is_initialized();
3086 }
3087 
3088 //----------------------------inline_unsafe_allocate---------------------------
3089 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3090 bool LibraryCallKit::inline_unsafe_allocate() {
3091   if (callee()->is_static())  return false;  // caller must have the capability!
3092 
3093   null_check_receiver();  // null-check, then ignore
3094   Node* cls = null_check(argument(1));
3095   if (stopped())  return true;
3096 
3097   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3098   kls = null_check(kls);
3099   if (stopped())  return true;  // argument was like int.class
3100 
3101   Node* test = NULL;
3102   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3103     // Note:  The argument might still be an illegal value like
3104     // Serializable.class or Object[].class.   The runtime will handle it.
3105     // But we must make an explicit check for initialization.
3106     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3107     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3108     // can generate code to load it as unsigned byte.
3109     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3110     Node* bits = intcon(InstanceKlass::fully_initialized);
3111     test = _gvn.transform(new SubINode(inst, bits));
3112     // The 'test' is non-zero if we need to take a slow path.
3113   }
3114 
3115   Node* obj = new_instance(kls, test);
3116   set_result(obj);
3117   return true;
3118 }
3119 
3120 #ifdef TRACE_HAVE_INTRINSICS
3121 /*
3122  * oop -> myklass
3123  * myklass->trace_id |= USED
3124  * return myklass->trace_id & ~0x3
3125  */
3126 bool LibraryCallKit::inline_native_classID() {
3127   null_check_receiver();  // null-check, then ignore
3128   Node* cls = null_check(argument(1), T_OBJECT);
3129   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3130   kls = null_check(kls, T_OBJECT);
3131   ByteSize offset = TRACE_ID_OFFSET;
3132   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3133   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3134   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3135   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3136   Node* clsused = longcon(0x01l); // set the class bit
3137   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3138 
3139   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3140   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3141   set_result(andl);
3142   return true;
3143 }
3144 
3145 bool LibraryCallKit::inline_native_threadID() {
3146   Node* tls_ptr = NULL;
3147   Node* cur_thr = generate_current_thread(tls_ptr);
3148   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3149   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3150   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3151 
3152   Node* threadid = NULL;
3153   size_t thread_id_size = OSThread::thread_id_size();
3154   if (thread_id_size == (size_t) BytesPerLong) {
3155     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3156   } else if (thread_id_size == (size_t) BytesPerInt) {
3157     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3158   } else {
3159     ShouldNotReachHere();
3160   }
3161   set_result(threadid);
3162   return true;
3163 }
3164 #endif
3165 
3166 //------------------------inline_native_time_funcs--------------
3167 // inline code for System.currentTimeMillis() and System.nanoTime()
3168 // these have the same type and signature
3169 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3170   const TypeFunc* tf = OptoRuntime::void_long_Type();
3171   const TypePtr* no_memory_effects = NULL;
3172   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3173   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3174 #ifdef ASSERT
3175   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3176   assert(value_top == top(), "second value must be top");
3177 #endif
3178   set_result(value);
3179   return true;
3180 }
3181 
3182 //------------------------inline_native_currentThread------------------
3183 bool LibraryCallKit::inline_native_currentThread() {
3184   Node* junk = NULL;
3185   set_result(generate_current_thread(junk));
3186   return true;
3187 }
3188 
3189 //------------------------inline_native_isInterrupted------------------
3190 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3191 bool LibraryCallKit::inline_native_isInterrupted() {
3192   // Add a fast path to t.isInterrupted(clear_int):
3193   //   (t == Thread.current() &&
3194   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3195   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3196   // So, in the common case that the interrupt bit is false,
3197   // we avoid making a call into the VM.  Even if the interrupt bit
3198   // is true, if the clear_int argument is false, we avoid the VM call.
3199   // However, if the receiver is not currentThread, we must call the VM,
3200   // because there must be some locking done around the operation.
3201 
3202   // We only go to the fast case code if we pass two guards.
3203   // Paths which do not pass are accumulated in the slow_region.
3204 
3205   enum {
3206     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3207     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3208     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3209     PATH_LIMIT
3210   };
3211 
3212   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3213   // out of the function.
3214   insert_mem_bar(Op_MemBarCPUOrder);
3215 
3216   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3217   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3218 
3219   RegionNode* slow_region = new RegionNode(1);
3220   record_for_igvn(slow_region);
3221 
3222   // (a) Receiving thread must be the current thread.
3223   Node* rec_thr = argument(0);
3224   Node* tls_ptr = NULL;
3225   Node* cur_thr = generate_current_thread(tls_ptr);
3226   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3227   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3228 
3229   generate_slow_guard(bol_thr, slow_region);
3230 
3231   // (b) Interrupt bit on TLS must be false.
3232   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3233   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3234   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3235 
3236   // Set the control input on the field _interrupted read to prevent it floating up.
3237   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3238   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3239   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3240 
3241   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3242 
3243   // First fast path:  if (!TLS._interrupted) return false;
3244   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3245   result_rgn->init_req(no_int_result_path, false_bit);
3246   result_val->init_req(no_int_result_path, intcon(0));
3247 
3248   // drop through to next case
3249   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3250 
3251 #ifndef TARGET_OS_FAMILY_windows
3252   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3253   Node* clr_arg = argument(1);
3254   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3255   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3256   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3257 
3258   // Second fast path:  ... else if (!clear_int) return true;
3259   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3260   result_rgn->init_req(no_clear_result_path, false_arg);
3261   result_val->init_req(no_clear_result_path, intcon(1));
3262 
3263   // drop through to next case
3264   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3265 #else
3266   // To return true on Windows you must read the _interrupted field
3267   // and check the the event state i.e. take the slow path.
3268 #endif // TARGET_OS_FAMILY_windows
3269 
3270   // (d) Otherwise, go to the slow path.
3271   slow_region->add_req(control());
3272   set_control( _gvn.transform(slow_region));
3273 
3274   if (stopped()) {
3275     // There is no slow path.
3276     result_rgn->init_req(slow_result_path, top());
3277     result_val->init_req(slow_result_path, top());
3278   } else {
3279     // non-virtual because it is a private non-static
3280     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3281 
3282     Node* slow_val = set_results_for_java_call(slow_call);
3283     // this->control() comes from set_results_for_java_call
3284 
3285     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3286     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3287 
3288     // These two phis are pre-filled with copies of of the fast IO and Memory
3289     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3290     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3291 
3292     result_rgn->init_req(slow_result_path, control());
3293     result_io ->init_req(slow_result_path, i_o());
3294     result_mem->init_req(slow_result_path, reset_memory());
3295     result_val->init_req(slow_result_path, slow_val);
3296 
3297     set_all_memory(_gvn.transform(result_mem));
3298     set_i_o(       _gvn.transform(result_io));
3299   }
3300 
3301   C->set_has_split_ifs(true); // Has chance for split-if optimization
3302   set_result(result_rgn, result_val);
3303   return true;
3304 }
3305 
3306 //---------------------------load_mirror_from_klass----------------------------
3307 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3308 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3309   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3310   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3311 }
3312 
3313 //-----------------------load_klass_from_mirror_common-------------------------
3314 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3315 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3316 // and branch to the given path on the region.
3317 // If never_see_null, take an uncommon trap on null, so we can optimistically
3318 // compile for the non-null case.
3319 // If the region is NULL, force never_see_null = true.
3320 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3321                                                     bool never_see_null,
3322                                                     RegionNode* region,
3323                                                     int null_path,
3324                                                     int offset) {
3325   if (region == NULL)  never_see_null = true;
3326   Node* p = basic_plus_adr(mirror, offset);
3327   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3328   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3329   Node* null_ctl = top();
3330   kls = null_check_oop(kls, &null_ctl, never_see_null);
3331   if (region != NULL) {
3332     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3333     region->init_req(null_path, null_ctl);
3334   } else {
3335     assert(null_ctl == top(), "no loose ends");
3336   }
3337   return kls;
3338 }
3339 
3340 //--------------------(inline_native_Class_query helpers)---------------------
3341 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3342 // Fall through if (mods & mask) == bits, take the guard otherwise.
3343 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3344   // Branch around if the given klass has the given modifier bit set.
3345   // Like generate_guard, adds a new path onto the region.
3346   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3347   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3348   Node* mask = intcon(modifier_mask);
3349   Node* bits = intcon(modifier_bits);
3350   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3351   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3352   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3353   return generate_fair_guard(bol, region);
3354 }
3355 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3356   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3357 }
3358 
3359 //-------------------------inline_native_Class_query-------------------
3360 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3361   const Type* return_type = TypeInt::BOOL;
3362   Node* prim_return_value = top();  // what happens if it's a primitive class?
3363   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3364   bool expect_prim = false;     // most of these guys expect to work on refs
3365 
3366   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3367 
3368   Node* mirror = argument(0);
3369   Node* obj    = top();
3370 
3371   switch (id) {
3372   case vmIntrinsics::_isInstance:
3373     // nothing is an instance of a primitive type
3374     prim_return_value = intcon(0);
3375     obj = argument(1);
3376     break;
3377   case vmIntrinsics::_getModifiers:
3378     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3379     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3380     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3381     break;
3382   case vmIntrinsics::_isInterface:
3383     prim_return_value = intcon(0);
3384     break;
3385   case vmIntrinsics::_isArray:
3386     prim_return_value = intcon(0);
3387     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3388     break;
3389   case vmIntrinsics::_isPrimitive:
3390     prim_return_value = intcon(1);
3391     expect_prim = true;  // obviously
3392     break;
3393   case vmIntrinsics::_getSuperclass:
3394     prim_return_value = null();
3395     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3396     break;
3397   case vmIntrinsics::_getClassAccessFlags:
3398     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3399     return_type = TypeInt::INT;  // not bool!  6297094
3400     break;
3401   default:
3402     fatal_unexpected_iid(id);
3403     break;
3404   }
3405 
3406   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3407   if (mirror_con == NULL)  return false;  // cannot happen?
3408 
3409 #ifndef PRODUCT
3410   if (C->print_intrinsics() || C->print_inlining()) {
3411     ciType* k = mirror_con->java_mirror_type();
3412     if (k) {
3413       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3414       k->print_name();
3415       tty->cr();
3416     }
3417   }
3418 #endif
3419 
3420   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3421   RegionNode* region = new RegionNode(PATH_LIMIT);
3422   record_for_igvn(region);
3423   PhiNode* phi = new PhiNode(region, return_type);
3424 
3425   // The mirror will never be null of Reflection.getClassAccessFlags, however
3426   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3427   // if it is. See bug 4774291.
3428 
3429   // For Reflection.getClassAccessFlags(), the null check occurs in
3430   // the wrong place; see inline_unsafe_access(), above, for a similar
3431   // situation.
3432   mirror = null_check(mirror);
3433   // If mirror or obj is dead, only null-path is taken.
3434   if (stopped())  return true;
3435 
3436   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3437 
3438   // Now load the mirror's klass metaobject, and null-check it.
3439   // Side-effects region with the control path if the klass is null.
3440   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3441   // If kls is null, we have a primitive mirror.
3442   phi->init_req(_prim_path, prim_return_value);
3443   if (stopped()) { set_result(region, phi); return true; }
3444   bool safe_for_replace = (region->in(_prim_path) == top());
3445 
3446   Node* p;  // handy temp
3447   Node* null_ctl;
3448 
3449   // Now that we have the non-null klass, we can perform the real query.
3450   // For constant classes, the query will constant-fold in LoadNode::Value.
3451   Node* query_value = top();
3452   switch (id) {
3453   case vmIntrinsics::_isInstance:
3454     // nothing is an instance of a primitive type
3455     query_value = gen_instanceof(obj, kls, safe_for_replace);
3456     break;
3457 
3458   case vmIntrinsics::_getModifiers:
3459     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3460     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3461     break;
3462 
3463   case vmIntrinsics::_isInterface:
3464     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3465     if (generate_interface_guard(kls, region) != NULL)
3466       // A guard was added.  If the guard is taken, it was an interface.
3467       phi->add_req(intcon(1));
3468     // If we fall through, it's a plain class.
3469     query_value = intcon(0);
3470     break;
3471 
3472   case vmIntrinsics::_isArray:
3473     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3474     if (generate_array_guard(kls, region) != NULL)
3475       // A guard was added.  If the guard is taken, it was an array.
3476       phi->add_req(intcon(1));
3477     // If we fall through, it's a plain class.
3478     query_value = intcon(0);
3479     break;
3480 
3481   case vmIntrinsics::_isPrimitive:
3482     query_value = intcon(0); // "normal" path produces false
3483     break;
3484 
3485   case vmIntrinsics::_getSuperclass:
3486     // The rules here are somewhat unfortunate, but we can still do better
3487     // with random logic than with a JNI call.
3488     // Interfaces store null or Object as _super, but must report null.
3489     // Arrays store an intermediate super as _super, but must report Object.
3490     // Other types can report the actual _super.
3491     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3492     if (generate_interface_guard(kls, region) != NULL)
3493       // A guard was added.  If the guard is taken, it was an interface.
3494       phi->add_req(null());
3495     if (generate_array_guard(kls, region) != NULL)
3496       // A guard was added.  If the guard is taken, it was an array.
3497       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3498     // If we fall through, it's a plain class.  Get its _super.
3499     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3500     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3501     null_ctl = top();
3502     kls = null_check_oop(kls, &null_ctl);
3503     if (null_ctl != top()) {
3504       // If the guard is taken, Object.superClass is null (both klass and mirror).
3505       region->add_req(null_ctl);
3506       phi   ->add_req(null());
3507     }
3508     if (!stopped()) {
3509       query_value = load_mirror_from_klass(kls);
3510     }
3511     break;
3512 
3513   case vmIntrinsics::_getClassAccessFlags:
3514     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3515     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3516     break;
3517 
3518   default:
3519     fatal_unexpected_iid(id);
3520     break;
3521   }
3522 
3523   // Fall-through is the normal case of a query to a real class.
3524   phi->init_req(1, query_value);
3525   region->init_req(1, control());
3526 
3527   C->set_has_split_ifs(true); // Has chance for split-if optimization
3528   set_result(region, phi);
3529   return true;
3530 }
3531 
3532 //-------------------------inline_Class_cast-------------------
3533 bool LibraryCallKit::inline_Class_cast() {
3534   Node* mirror = argument(0); // Class
3535   Node* obj    = argument(1);
3536   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3537   if (mirror_con == NULL) {
3538     return false;  // dead path (mirror->is_top()).
3539   }
3540   if (obj == NULL || obj->is_top()) {
3541     return false;  // dead path
3542   }
3543   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3544 
3545   // First, see if Class.cast() can be folded statically.
3546   // java_mirror_type() returns non-null for compile-time Class constants.
3547   ciType* tm = mirror_con->java_mirror_type();
3548   if (tm != NULL && tm->is_klass() &&
3549       tp != NULL && tp->klass() != NULL) {
3550     if (!tp->klass()->is_loaded()) {
3551       // Don't use intrinsic when class is not loaded.
3552       return false;
3553     } else {
3554       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3555       if (static_res == Compile::SSC_always_true) {
3556         // isInstance() is true - fold the code.
3557         set_result(obj);
3558         return true;
3559       } else if (static_res == Compile::SSC_always_false) {
3560         // Don't use intrinsic, have to throw ClassCastException.
3561         // If the reference is null, the non-intrinsic bytecode will
3562         // be optimized appropriately.
3563         return false;
3564       }
3565     }
3566   }
3567 
3568   // Bailout intrinsic and do normal inlining if exception path is frequent.
3569   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3570     return false;
3571   }
3572 
3573   // Generate dynamic checks.
3574   // Class.cast() is java implementation of _checkcast bytecode.
3575   // Do checkcast (Parse::do_checkcast()) optimizations here.
3576 
3577   mirror = null_check(mirror);
3578   // If mirror is dead, only null-path is taken.
3579   if (stopped()) {
3580     return true;
3581   }
3582 
3583   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3584   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3585   RegionNode* region = new RegionNode(PATH_LIMIT);
3586   record_for_igvn(region);
3587 
3588   // Now load the mirror's klass metaobject, and null-check it.
3589   // If kls is null, we have a primitive mirror and
3590   // nothing is an instance of a primitive type.
3591   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3592 
3593   Node* res = top();
3594   if (!stopped()) {
3595     Node* bad_type_ctrl = top();
3596     // Do checkcast optimizations.
3597     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3598     region->init_req(_bad_type_path, bad_type_ctrl);
3599   }
3600   if (region->in(_prim_path) != top() ||
3601       region->in(_bad_type_path) != top()) {
3602     // Let Interpreter throw ClassCastException.
3603     PreserveJVMState pjvms(this);
3604     set_control(_gvn.transform(region));
3605     uncommon_trap(Deoptimization::Reason_intrinsic,
3606                   Deoptimization::Action_maybe_recompile);
3607   }
3608   if (!stopped()) {
3609     set_result(res);
3610   }
3611   return true;
3612 }
3613 
3614 
3615 //--------------------------inline_native_subtype_check------------------------
3616 // This intrinsic takes the JNI calls out of the heart of
3617 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3618 bool LibraryCallKit::inline_native_subtype_check() {
3619   // Pull both arguments off the stack.
3620   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3621   args[0] = argument(0);
3622   args[1] = argument(1);
3623   Node* klasses[2];             // corresponding Klasses: superk, subk
3624   klasses[0] = klasses[1] = top();
3625 
3626   enum {
3627     // A full decision tree on {superc is prim, subc is prim}:
3628     _prim_0_path = 1,           // {P,N} => false
3629                                 // {P,P} & superc!=subc => false
3630     _prim_same_path,            // {P,P} & superc==subc => true
3631     _prim_1_path,               // {N,P} => false
3632     _ref_subtype_path,          // {N,N} & subtype check wins => true
3633     _both_ref_path,             // {N,N} & subtype check loses => false
3634     PATH_LIMIT
3635   };
3636 
3637   RegionNode* region = new RegionNode(PATH_LIMIT);
3638   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3639   record_for_igvn(region);
3640 
3641   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3642   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3643   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3644 
3645   // First null-check both mirrors and load each mirror's klass metaobject.
3646   int which_arg;
3647   for (which_arg = 0; which_arg <= 1; which_arg++) {
3648     Node* arg = args[which_arg];
3649     arg = null_check(arg);
3650     if (stopped())  break;
3651     args[which_arg] = arg;
3652 
3653     Node* p = basic_plus_adr(arg, class_klass_offset);
3654     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3655     klasses[which_arg] = _gvn.transform(kls);
3656   }
3657 
3658   // Having loaded both klasses, test each for null.
3659   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3660   for (which_arg = 0; which_arg <= 1; which_arg++) {
3661     Node* kls = klasses[which_arg];
3662     Node* null_ctl = top();
3663     kls = null_check_oop(kls, &null_ctl, never_see_null);
3664     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3665     region->init_req(prim_path, null_ctl);
3666     if (stopped())  break;
3667     klasses[which_arg] = kls;
3668   }
3669 
3670   if (!stopped()) {
3671     // now we have two reference types, in klasses[0..1]
3672     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3673     Node* superk = klasses[0];  // the receiver
3674     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3675     // now we have a successful reference subtype check
3676     region->set_req(_ref_subtype_path, control());
3677   }
3678 
3679   // If both operands are primitive (both klasses null), then
3680   // we must return true when they are identical primitives.
3681   // It is convenient to test this after the first null klass check.
3682   set_control(region->in(_prim_0_path)); // go back to first null check
3683   if (!stopped()) {
3684     // Since superc is primitive, make a guard for the superc==subc case.
3685     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3686     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3687     generate_guard(bol_eq, region, PROB_FAIR);
3688     if (region->req() == PATH_LIMIT+1) {
3689       // A guard was added.  If the added guard is taken, superc==subc.
3690       region->swap_edges(PATH_LIMIT, _prim_same_path);
3691       region->del_req(PATH_LIMIT);
3692     }
3693     region->set_req(_prim_0_path, control()); // Not equal after all.
3694   }
3695 
3696   // these are the only paths that produce 'true':
3697   phi->set_req(_prim_same_path,   intcon(1));
3698   phi->set_req(_ref_subtype_path, intcon(1));
3699 
3700   // pull together the cases:
3701   assert(region->req() == PATH_LIMIT, "sane region");
3702   for (uint i = 1; i < region->req(); i++) {
3703     Node* ctl = region->in(i);
3704     if (ctl == NULL || ctl == top()) {
3705       region->set_req(i, top());
3706       phi   ->set_req(i, top());
3707     } else if (phi->in(i) == NULL) {
3708       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3709     }
3710   }
3711 
3712   set_control(_gvn.transform(region));
3713   set_result(_gvn.transform(phi));
3714   return true;
3715 }
3716 
3717 //---------------------generate_array_guard_common------------------------
3718 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3719                                                   bool obj_array, bool not_array) {
3720 
3721   if (stopped()) {
3722     return NULL;
3723   }
3724 
3725   // If obj_array/non_array==false/false:
3726   // Branch around if the given klass is in fact an array (either obj or prim).
3727   // If obj_array/non_array==false/true:
3728   // Branch around if the given klass is not an array klass of any kind.
3729   // If obj_array/non_array==true/true:
3730   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3731   // If obj_array/non_array==true/false:
3732   // Branch around if the kls is an oop array (Object[] or subtype)
3733   //
3734   // Like generate_guard, adds a new path onto the region.
3735   jint  layout_con = 0;
3736   Node* layout_val = get_layout_helper(kls, layout_con);
3737   if (layout_val == NULL) {
3738     bool query = (obj_array
3739                   ? Klass::layout_helper_is_objArray(layout_con)
3740                   : Klass::layout_helper_is_array(layout_con));
3741     if (query == not_array) {
3742       return NULL;                       // never a branch
3743     } else {                             // always a branch
3744       Node* always_branch = control();
3745       if (region != NULL)
3746         region->add_req(always_branch);
3747       set_control(top());
3748       return always_branch;
3749     }
3750   }
3751   // Now test the correct condition.
3752   jint  nval = (obj_array
3753                 ? ((jint)Klass::_lh_array_tag_type_value
3754                    <<    Klass::_lh_array_tag_shift)
3755                 : Klass::_lh_neutral_value);
3756   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3757   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3758   // invert the test if we are looking for a non-array
3759   if (not_array)  btest = BoolTest(btest).negate();
3760   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3761   return generate_fair_guard(bol, region);
3762 }
3763 
3764 
3765 //-----------------------inline_native_newArray--------------------------
3766 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3767 bool LibraryCallKit::inline_native_newArray() {
3768   Node* mirror    = argument(0);
3769   Node* count_val = argument(1);
3770 
3771   mirror = null_check(mirror);
3772   // If mirror or obj is dead, only null-path is taken.
3773   if (stopped())  return true;
3774 
3775   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3776   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3777   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3778   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3779   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3780 
3781   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3782   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3783                                                   result_reg, _slow_path);
3784   Node* normal_ctl   = control();
3785   Node* no_array_ctl = result_reg->in(_slow_path);
3786 
3787   // Generate code for the slow case.  We make a call to newArray().
3788   set_control(no_array_ctl);
3789   if (!stopped()) {
3790     // Either the input type is void.class, or else the
3791     // array klass has not yet been cached.  Either the
3792     // ensuing call will throw an exception, or else it
3793     // will cache the array klass for next time.
3794     PreserveJVMState pjvms(this);
3795     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3796     Node* slow_result = set_results_for_java_call(slow_call);
3797     // this->control() comes from set_results_for_java_call
3798     result_reg->set_req(_slow_path, control());
3799     result_val->set_req(_slow_path, slow_result);
3800     result_io ->set_req(_slow_path, i_o());
3801     result_mem->set_req(_slow_path, reset_memory());
3802   }
3803 
3804   set_control(normal_ctl);
3805   if (!stopped()) {
3806     // Normal case:  The array type has been cached in the java.lang.Class.
3807     // The following call works fine even if the array type is polymorphic.
3808     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3809     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3810     result_reg->init_req(_normal_path, control());
3811     result_val->init_req(_normal_path, obj);
3812     result_io ->init_req(_normal_path, i_o());
3813     result_mem->init_req(_normal_path, reset_memory());
3814   }
3815 
3816   // Return the combined state.
3817   set_i_o(        _gvn.transform(result_io)  );
3818   set_all_memory( _gvn.transform(result_mem));
3819 
3820   C->set_has_split_ifs(true); // Has chance for split-if optimization
3821   set_result(result_reg, result_val);
3822   return true;
3823 }
3824 
3825 //----------------------inline_native_getLength--------------------------
3826 // public static native int java.lang.reflect.Array.getLength(Object array);
3827 bool LibraryCallKit::inline_native_getLength() {
3828   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3829 
3830   Node* array = null_check(argument(0));
3831   // If array is dead, only null-path is taken.
3832   if (stopped())  return true;
3833 
3834   // Deoptimize if it is a non-array.
3835   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3836 
3837   if (non_array != NULL) {
3838     PreserveJVMState pjvms(this);
3839     set_control(non_array);
3840     uncommon_trap(Deoptimization::Reason_intrinsic,
3841                   Deoptimization::Action_maybe_recompile);
3842   }
3843 
3844   // If control is dead, only non-array-path is taken.
3845   if (stopped())  return true;
3846 
3847   // The works fine even if the array type is polymorphic.
3848   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3849   Node* result = load_array_length(array);
3850 
3851   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3852   set_result(result);
3853   return true;
3854 }
3855 
3856 //------------------------inline_array_copyOf----------------------------
3857 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3858 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3859 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3860   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3861 
3862   // Get the arguments.
3863   Node* original          = argument(0);
3864   Node* start             = is_copyOfRange? argument(1): intcon(0);
3865   Node* end               = is_copyOfRange? argument(2): argument(1);
3866   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3867 
3868   Node* newcopy;
3869 
3870   // Set the original stack and the reexecute bit for the interpreter to reexecute
3871   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3872   { PreserveReexecuteState preexecs(this);
3873     jvms()->set_should_reexecute(true);
3874 
3875     array_type_mirror = null_check(array_type_mirror);
3876     original          = null_check(original);
3877 
3878     // Check if a null path was taken unconditionally.
3879     if (stopped())  return true;
3880 
3881     Node* orig_length = load_array_length(original);
3882 
3883     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3884     klass_node = null_check(klass_node);
3885 
3886     RegionNode* bailout = new RegionNode(1);
3887     record_for_igvn(bailout);
3888 
3889     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3890     // Bail out if that is so.
3891     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3892     if (not_objArray != NULL) {
3893       // Improve the klass node's type from the new optimistic assumption:
3894       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3895       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3896       Node* cast = new CastPPNode(klass_node, akls);
3897       cast->init_req(0, control());
3898       klass_node = _gvn.transform(cast);
3899     }
3900 
3901     // Bail out if either start or end is negative.
3902     generate_negative_guard(start, bailout, &start);
3903     generate_negative_guard(end,   bailout, &end);
3904 
3905     Node* length = end;
3906     if (_gvn.type(start) != TypeInt::ZERO) {
3907       length = _gvn.transform(new SubINode(end, start));
3908     }
3909 
3910     // Bail out if length is negative.
3911     // Without this the new_array would throw
3912     // NegativeArraySizeException but IllegalArgumentException is what
3913     // should be thrown
3914     generate_negative_guard(length, bailout, &length);
3915 
3916     if (bailout->req() > 1) {
3917       PreserveJVMState pjvms(this);
3918       set_control(_gvn.transform(bailout));
3919       uncommon_trap(Deoptimization::Reason_intrinsic,
3920                     Deoptimization::Action_maybe_recompile);
3921     }
3922 
3923     if (!stopped()) {
3924       // How many elements will we copy from the original?
3925       // The answer is MinI(orig_length - start, length).
3926       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3927       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3928 
3929       // Generate a direct call to the right arraycopy function(s).
3930       // We know the copy is disjoint but we might not know if the
3931       // oop stores need checking.
3932       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3933       // This will fail a store-check if x contains any non-nulls.
3934 
3935       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3936       // loads/stores but it is legal only if we're sure the
3937       // Arrays.copyOf would succeed. So we need all input arguments
3938       // to the copyOf to be validated, including that the copy to the
3939       // new array won't trigger an ArrayStoreException. That subtype
3940       // check can be optimized if we know something on the type of
3941       // the input array from type speculation.
3942       if (_gvn.type(klass_node)->singleton()) {
3943         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3944         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3945 
3946         int test = C->static_subtype_check(superk, subk);
3947         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3948           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3949           if (t_original->speculative_type() != NULL) {
3950             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3951           }
3952         }
3953       }
3954 
3955       bool validated = false;
3956       // Reason_class_check rather than Reason_intrinsic because we
3957       // want to intrinsify even if this traps.
3958       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3959         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3960                                                    klass_node);
3961 
3962         if (not_subtype_ctrl != top()) {
3963           PreserveJVMState pjvms(this);
3964           set_control(not_subtype_ctrl);
3965           uncommon_trap(Deoptimization::Reason_class_check,
3966                         Deoptimization::Action_make_not_entrant);
3967           assert(stopped(), "Should be stopped");
3968         }
3969         validated = true;
3970       }
3971 
3972       if (!stopped()) {
3973         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3974 
3975         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3976                                                 load_object_klass(original), klass_node);
3977         if (!is_copyOfRange) {
3978           ac->set_copyof(validated);
3979         } else {
3980           ac->set_copyofrange(validated);
3981         }
3982         Node* n = _gvn.transform(ac);
3983         if (n == ac) {
3984           ac->connect_outputs(this);
3985         } else {
3986           assert(validated, "shouldn't transform if all arguments not validated");
3987           set_all_memory(n);
3988         }
3989       }
3990     }
3991   } // original reexecute is set back here
3992 
3993   C->set_has_split_ifs(true); // Has chance for split-if optimization
3994   if (!stopped()) {
3995     set_result(newcopy);
3996   }
3997   return true;
3998 }
3999 
4000 
4001 //----------------------generate_virtual_guard---------------------------
4002 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4003 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4004                                              RegionNode* slow_region) {
4005   ciMethod* method = callee();
4006   int vtable_index = method->vtable_index();
4007   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4008          "bad index %d", vtable_index);
4009   // Get the Method* out of the appropriate vtable entry.
4010   int entry_offset  = (InstanceKlass::vtable_start_offset() +
4011                      vtable_index*vtableEntry::size()) * wordSize +
4012                      vtableEntry::method_offset_in_bytes();
4013   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4014   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4015 
4016   // Compare the target method with the expected method (e.g., Object.hashCode).
4017   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4018 
4019   Node* native_call = makecon(native_call_addr);
4020   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4021   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4022 
4023   return generate_slow_guard(test_native, slow_region);
4024 }
4025 
4026 //-----------------------generate_method_call----------------------------
4027 // Use generate_method_call to make a slow-call to the real
4028 // method if the fast path fails.  An alternative would be to
4029 // use a stub like OptoRuntime::slow_arraycopy_Java.
4030 // This only works for expanding the current library call,
4031 // not another intrinsic.  (E.g., don't use this for making an
4032 // arraycopy call inside of the copyOf intrinsic.)
4033 CallJavaNode*
4034 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4035   // When compiling the intrinsic method itself, do not use this technique.
4036   guarantee(callee() != C->method(), "cannot make slow-call to self");
4037 
4038   ciMethod* method = callee();
4039   // ensure the JVMS we have will be correct for this call
4040   guarantee(method_id == method->intrinsic_id(), "must match");
4041 
4042   const TypeFunc* tf = TypeFunc::make(method);
4043   CallJavaNode* slow_call;
4044   if (is_static) {
4045     assert(!is_virtual, "");
4046     slow_call = new CallStaticJavaNode(C, tf,
4047                            SharedRuntime::get_resolve_static_call_stub(),
4048                            method, bci());
4049   } else if (is_virtual) {
4050     null_check_receiver();
4051     int vtable_index = Method::invalid_vtable_index;
4052     if (UseInlineCaches) {
4053       // Suppress the vtable call
4054     } else {
4055       // hashCode and clone are not a miranda methods,
4056       // so the vtable index is fixed.
4057       // No need to use the linkResolver to get it.
4058        vtable_index = method->vtable_index();
4059        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4060               "bad index %d", vtable_index);
4061     }
4062     slow_call = new CallDynamicJavaNode(tf,
4063                           SharedRuntime::get_resolve_virtual_call_stub(),
4064                           method, vtable_index, bci());
4065   } else {  // neither virtual nor static:  opt_virtual
4066     null_check_receiver();
4067     slow_call = new CallStaticJavaNode(C, tf,
4068                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4069                                 method, bci());
4070     slow_call->set_optimized_virtual(true);
4071   }
4072   set_arguments_for_java_call(slow_call);
4073   set_edges_for_java_call(slow_call);
4074   return slow_call;
4075 }
4076 
4077 
4078 /**
4079  * Build special case code for calls to hashCode on an object. This call may
4080  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4081  * slightly different code.
4082  */
4083 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4084   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4085   assert(!(is_virtual && is_static), "either virtual, special, or static");
4086 
4087   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4088 
4089   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4090   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4091   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4092   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4093   Node* obj = NULL;
4094   if (!is_static) {
4095     // Check for hashing null object
4096     obj = null_check_receiver();
4097     if (stopped())  return true;        // unconditionally null
4098     result_reg->init_req(_null_path, top());
4099     result_val->init_req(_null_path, top());
4100   } else {
4101     // Do a null check, and return zero if null.
4102     // System.identityHashCode(null) == 0
4103     obj = argument(0);
4104     Node* null_ctl = top();
4105     obj = null_check_oop(obj, &null_ctl);
4106     result_reg->init_req(_null_path, null_ctl);
4107     result_val->init_req(_null_path, _gvn.intcon(0));
4108   }
4109 
4110   // Unconditionally null?  Then return right away.
4111   if (stopped()) {
4112     set_control( result_reg->in(_null_path));
4113     if (!stopped())
4114       set_result(result_val->in(_null_path));
4115     return true;
4116   }
4117 
4118   // We only go to the fast case code if we pass a number of guards.  The
4119   // paths which do not pass are accumulated in the slow_region.
4120   RegionNode* slow_region = new RegionNode(1);
4121   record_for_igvn(slow_region);
4122 
4123   // If this is a virtual call, we generate a funny guard.  We pull out
4124   // the vtable entry corresponding to hashCode() from the target object.
4125   // If the target method which we are calling happens to be the native
4126   // Object hashCode() method, we pass the guard.  We do not need this
4127   // guard for non-virtual calls -- the caller is known to be the native
4128   // Object hashCode().
4129   if (is_virtual) {
4130     // After null check, get the object's klass.
4131     Node* obj_klass = load_object_klass(obj);
4132     generate_virtual_guard(obj_klass, slow_region);
4133   }
4134 
4135   // Get the header out of the object, use LoadMarkNode when available
4136   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4137   // The control of the load must be NULL. Otherwise, the load can move before
4138   // the null check after castPP removal.
4139   Node* no_ctrl = NULL;
4140   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4141 
4142   // Test the header to see if it is unlocked.
4143   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4144   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4145   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4146   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4147   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4148 
4149   generate_slow_guard(test_unlocked, slow_region);
4150 
4151   // Get the hash value and check to see that it has been properly assigned.
4152   // We depend on hash_mask being at most 32 bits and avoid the use of
4153   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4154   // vm: see markOop.hpp.
4155   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4156   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4157   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4158   // This hack lets the hash bits live anywhere in the mark object now, as long
4159   // as the shift drops the relevant bits into the low 32 bits.  Note that
4160   // Java spec says that HashCode is an int so there's no point in capturing
4161   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4162   hshifted_header      = ConvX2I(hshifted_header);
4163   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4164 
4165   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4166   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4167   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4168 
4169   generate_slow_guard(test_assigned, slow_region);
4170 
4171   Node* init_mem = reset_memory();
4172   // fill in the rest of the null path:
4173   result_io ->init_req(_null_path, i_o());
4174   result_mem->init_req(_null_path, init_mem);
4175 
4176   result_val->init_req(_fast_path, hash_val);
4177   result_reg->init_req(_fast_path, control());
4178   result_io ->init_req(_fast_path, i_o());
4179   result_mem->init_req(_fast_path, init_mem);
4180 
4181   // Generate code for the slow case.  We make a call to hashCode().
4182   set_control(_gvn.transform(slow_region));
4183   if (!stopped()) {
4184     // No need for PreserveJVMState, because we're using up the present state.
4185     set_all_memory(init_mem);
4186     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4187     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4188     Node* slow_result = set_results_for_java_call(slow_call);
4189     // this->control() comes from set_results_for_java_call
4190     result_reg->init_req(_slow_path, control());
4191     result_val->init_req(_slow_path, slow_result);
4192     result_io  ->set_req(_slow_path, i_o());
4193     result_mem ->set_req(_slow_path, reset_memory());
4194   }
4195 
4196   // Return the combined state.
4197   set_i_o(        _gvn.transform(result_io)  );
4198   set_all_memory( _gvn.transform(result_mem));
4199 
4200   set_result(result_reg, result_val);
4201   return true;
4202 }
4203 
4204 //---------------------------inline_native_getClass----------------------------
4205 // public final native Class<?> java.lang.Object.getClass();
4206 //
4207 // Build special case code for calls to getClass on an object.
4208 bool LibraryCallKit::inline_native_getClass() {
4209   Node* obj = null_check_receiver();
4210   if (stopped())  return true;
4211   set_result(load_mirror_from_klass(load_object_klass(obj)));
4212   return true;
4213 }
4214 
4215 //-----------------inline_native_Reflection_getCallerClass---------------------
4216 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4217 //
4218 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4219 //
4220 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4221 // in that it must skip particular security frames and checks for
4222 // caller sensitive methods.
4223 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4224 #ifndef PRODUCT
4225   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4226     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4227   }
4228 #endif
4229 
4230   if (!jvms()->has_method()) {
4231 #ifndef PRODUCT
4232     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4233       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4234     }
4235 #endif
4236     return false;
4237   }
4238 
4239   // Walk back up the JVM state to find the caller at the required
4240   // depth.
4241   JVMState* caller_jvms = jvms();
4242 
4243   // Cf. JVM_GetCallerClass
4244   // NOTE: Start the loop at depth 1 because the current JVM state does
4245   // not include the Reflection.getCallerClass() frame.
4246   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4247     ciMethod* m = caller_jvms->method();
4248     switch (n) {
4249     case 0:
4250       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4251       break;
4252     case 1:
4253       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4254       if (!m->caller_sensitive()) {
4255 #ifndef PRODUCT
4256         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4257           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4258         }
4259 #endif
4260         return false;  // bail-out; let JVM_GetCallerClass do the work
4261       }
4262       break;
4263     default:
4264       if (!m->is_ignored_by_security_stack_walk()) {
4265         // We have reached the desired frame; return the holder class.
4266         // Acquire method holder as java.lang.Class and push as constant.
4267         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4268         ciInstance* caller_mirror = caller_klass->java_mirror();
4269         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4270 
4271 #ifndef PRODUCT
4272         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4273           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4274           tty->print_cr("  JVM state at this point:");
4275           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4276             ciMethod* m = jvms()->of_depth(i)->method();
4277             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4278           }
4279         }
4280 #endif
4281         return true;
4282       }
4283       break;
4284     }
4285   }
4286 
4287 #ifndef PRODUCT
4288   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4289     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4290     tty->print_cr("  JVM state at this point:");
4291     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4292       ciMethod* m = jvms()->of_depth(i)->method();
4293       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4294     }
4295   }
4296 #endif
4297 
4298   return false;  // bail-out; let JVM_GetCallerClass do the work
4299 }
4300 
4301 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4302   Node* arg = argument(0);
4303   Node* result;
4304 
4305   switch (id) {
4306   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4307   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4308   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4309   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4310 
4311   case vmIntrinsics::_doubleToLongBits: {
4312     // two paths (plus control) merge in a wood
4313     RegionNode *r = new RegionNode(3);
4314     Node *phi = new PhiNode(r, TypeLong::LONG);
4315 
4316     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4317     // Build the boolean node
4318     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4319 
4320     // Branch either way.
4321     // NaN case is less traveled, which makes all the difference.
4322     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4323     Node *opt_isnan = _gvn.transform(ifisnan);
4324     assert( opt_isnan->is_If(), "Expect an IfNode");
4325     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4326     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4327 
4328     set_control(iftrue);
4329 
4330     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4331     Node *slow_result = longcon(nan_bits); // return NaN
4332     phi->init_req(1, _gvn.transform( slow_result ));
4333     r->init_req(1, iftrue);
4334 
4335     // Else fall through
4336     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4337     set_control(iffalse);
4338 
4339     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4340     r->init_req(2, iffalse);
4341 
4342     // Post merge
4343     set_control(_gvn.transform(r));
4344     record_for_igvn(r);
4345 
4346     C->set_has_split_ifs(true); // Has chance for split-if optimization
4347     result = phi;
4348     assert(result->bottom_type()->isa_long(), "must be");
4349     break;
4350   }
4351 
4352   case vmIntrinsics::_floatToIntBits: {
4353     // two paths (plus control) merge in a wood
4354     RegionNode *r = new RegionNode(3);
4355     Node *phi = new PhiNode(r, TypeInt::INT);
4356 
4357     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4358     // Build the boolean node
4359     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4360 
4361     // Branch either way.
4362     // NaN case is less traveled, which makes all the difference.
4363     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4364     Node *opt_isnan = _gvn.transform(ifisnan);
4365     assert( opt_isnan->is_If(), "Expect an IfNode");
4366     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4367     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4368 
4369     set_control(iftrue);
4370 
4371     static const jint nan_bits = 0x7fc00000;
4372     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4373     phi->init_req(1, _gvn.transform( slow_result ));
4374     r->init_req(1, iftrue);
4375 
4376     // Else fall through
4377     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4378     set_control(iffalse);
4379 
4380     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4381     r->init_req(2, iffalse);
4382 
4383     // Post merge
4384     set_control(_gvn.transform(r));
4385     record_for_igvn(r);
4386 
4387     C->set_has_split_ifs(true); // Has chance for split-if optimization
4388     result = phi;
4389     assert(result->bottom_type()->isa_int(), "must be");
4390     break;
4391   }
4392 
4393   default:
4394     fatal_unexpected_iid(id);
4395     break;
4396   }
4397   set_result(_gvn.transform(result));
4398   return true;
4399 }
4400 
4401 //----------------------inline_unsafe_copyMemory-------------------------
4402 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4403 bool LibraryCallKit::inline_unsafe_copyMemory() {
4404   if (callee()->is_static())  return false;  // caller must have the capability!
4405   null_check_receiver();  // null-check receiver
4406   if (stopped())  return true;
4407 
4408   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4409 
4410   Node* src_ptr =         argument(1);   // type: oop
4411   Node* src_off = ConvL2X(argument(2));  // type: long
4412   Node* dst_ptr =         argument(4);   // type: oop
4413   Node* dst_off = ConvL2X(argument(5));  // type: long
4414   Node* size    = ConvL2X(argument(7));  // type: long
4415 
4416   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4417          "fieldOffset must be byte-scaled");
4418 
4419   Node* src = make_unsafe_address(src_ptr, src_off);
4420   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4421 
4422   // Conservatively insert a memory barrier on all memory slices.
4423   // Do not let writes of the copy source or destination float below the copy.
4424   insert_mem_bar(Op_MemBarCPUOrder);
4425 
4426   // Call it.  Note that the length argument is not scaled.
4427   make_runtime_call(RC_LEAF|RC_NO_FP,
4428                     OptoRuntime::fast_arraycopy_Type(),
4429                     StubRoutines::unsafe_arraycopy(),
4430                     "unsafe_arraycopy",
4431                     TypeRawPtr::BOTTOM,
4432                     src, dst, size XTOP);
4433 
4434   // Do not let reads of the copy destination float above the copy.
4435   insert_mem_bar(Op_MemBarCPUOrder);
4436 
4437   return true;
4438 }
4439 
4440 //------------------------clone_coping-----------------------------------
4441 // Helper function for inline_native_clone.
4442 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4443   assert(obj_size != NULL, "");
4444   Node* raw_obj = alloc_obj->in(1);
4445   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4446 
4447   AllocateNode* alloc = NULL;
4448   if (ReduceBulkZeroing) {
4449     // We will be completely responsible for initializing this object -
4450     // mark Initialize node as complete.
4451     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4452     // The object was just allocated - there should be no any stores!
4453     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4454     // Mark as complete_with_arraycopy so that on AllocateNode
4455     // expansion, we know this AllocateNode is initialized by an array
4456     // copy and a StoreStore barrier exists after the array copy.
4457     alloc->initialization()->set_complete_with_arraycopy();
4458   }
4459 
4460   // Copy the fastest available way.
4461   // TODO: generate fields copies for small objects instead.
4462   Node* src  = obj;
4463   Node* dest = alloc_obj;
4464   Node* size = _gvn.transform(obj_size);
4465 
4466   // Exclude the header but include array length to copy by 8 bytes words.
4467   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4468   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4469                             instanceOopDesc::base_offset_in_bytes();
4470   // base_off:
4471   // 8  - 32-bit VM
4472   // 12 - 64-bit VM, compressed klass
4473   // 16 - 64-bit VM, normal klass
4474   if (base_off % BytesPerLong != 0) {
4475     assert(UseCompressedClassPointers, "");
4476     if (is_array) {
4477       // Exclude length to copy by 8 bytes words.
4478       base_off += sizeof(int);
4479     } else {
4480       // Include klass to copy by 8 bytes words.
4481       base_off = instanceOopDesc::klass_offset_in_bytes();
4482     }
4483     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4484   }
4485   src  = basic_plus_adr(src,  base_off);
4486   dest = basic_plus_adr(dest, base_off);
4487 
4488   // Compute the length also, if needed:
4489   Node* countx = size;
4490   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4491   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4492 
4493   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4494 
4495   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4496   ac->set_clonebasic();
4497   Node* n = _gvn.transform(ac);
4498   if (n == ac) {
4499     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4500   } else {
4501     set_all_memory(n);
4502   }
4503 
4504   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4505   if (card_mark) {
4506     assert(!is_array, "");
4507     // Put in store barrier for any and all oops we are sticking
4508     // into this object.  (We could avoid this if we could prove
4509     // that the object type contains no oop fields at all.)
4510     Node* no_particular_value = NULL;
4511     Node* no_particular_field = NULL;
4512     int raw_adr_idx = Compile::AliasIdxRaw;
4513     post_barrier(control(),
4514                  memory(raw_adr_type),
4515                  alloc_obj,
4516                  no_particular_field,
4517                  raw_adr_idx,
4518                  no_particular_value,
4519                  T_OBJECT,
4520                  false);
4521   }
4522 
4523   // Do not let reads from the cloned object float above the arraycopy.
4524   if (alloc != NULL) {
4525     // Do not let stores that initialize this object be reordered with
4526     // a subsequent store that would make this object accessible by
4527     // other threads.
4528     // Record what AllocateNode this StoreStore protects so that
4529     // escape analysis can go from the MemBarStoreStoreNode to the
4530     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4531     // based on the escape status of the AllocateNode.
4532     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4533   } else {
4534     insert_mem_bar(Op_MemBarCPUOrder);
4535   }
4536 }
4537 
4538 //------------------------inline_native_clone----------------------------
4539 // protected native Object java.lang.Object.clone();
4540 //
4541 // Here are the simple edge cases:
4542 //  null receiver => normal trap
4543 //  virtual and clone was overridden => slow path to out-of-line clone
4544 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4545 //
4546 // The general case has two steps, allocation and copying.
4547 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4548 //
4549 // Copying also has two cases, oop arrays and everything else.
4550 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4551 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4552 //
4553 // These steps fold up nicely if and when the cloned object's klass
4554 // can be sharply typed as an object array, a type array, or an instance.
4555 //
4556 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4557   PhiNode* result_val;
4558 
4559   // Set the reexecute bit for the interpreter to reexecute
4560   // the bytecode that invokes Object.clone if deoptimization happens.
4561   { PreserveReexecuteState preexecs(this);
4562     jvms()->set_should_reexecute(true);
4563 
4564     Node* obj = null_check_receiver();
4565     if (stopped())  return true;
4566 
4567     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4568 
4569     // If we are going to clone an instance, we need its exact type to
4570     // know the number and types of fields to convert the clone to
4571     // loads/stores. Maybe a speculative type can help us.
4572     if (!obj_type->klass_is_exact() &&
4573         obj_type->speculative_type() != NULL &&
4574         obj_type->speculative_type()->is_instance_klass()) {
4575       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4576       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4577           !spec_ik->has_injected_fields()) {
4578         ciKlass* k = obj_type->klass();
4579         if (!k->is_instance_klass() ||
4580             k->as_instance_klass()->is_interface() ||
4581             k->as_instance_klass()->has_subklass()) {
4582           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4583         }
4584       }
4585     }
4586 
4587     Node* obj_klass = load_object_klass(obj);
4588     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4589     const TypeOopPtr*   toop   = ((tklass != NULL)
4590                                 ? tklass->as_instance_type()
4591                                 : TypeInstPtr::NOTNULL);
4592 
4593     // Conservatively insert a memory barrier on all memory slices.
4594     // Do not let writes into the original float below the clone.
4595     insert_mem_bar(Op_MemBarCPUOrder);
4596 
4597     // paths into result_reg:
4598     enum {
4599       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4600       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4601       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4602       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4603       PATH_LIMIT
4604     };
4605     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4606     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4607     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4608     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4609     record_for_igvn(result_reg);
4610 
4611     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4612     int raw_adr_idx = Compile::AliasIdxRaw;
4613 
4614     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4615     if (array_ctl != NULL) {
4616       // It's an array.
4617       PreserveJVMState pjvms(this);
4618       set_control(array_ctl);
4619       Node* obj_length = load_array_length(obj);
4620       Node* obj_size  = NULL;
4621       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4622 
4623       if (!use_ReduceInitialCardMarks()) {
4624         // If it is an oop array, it requires very special treatment,
4625         // because card marking is required on each card of the array.
4626         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4627         if (is_obja != NULL) {
4628           PreserveJVMState pjvms2(this);
4629           set_control(is_obja);
4630           // Generate a direct call to the right arraycopy function(s).
4631           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4632           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4633           ac->set_cloneoop();
4634           Node* n = _gvn.transform(ac);
4635           assert(n == ac, "cannot disappear");
4636           ac->connect_outputs(this);
4637 
4638           result_reg->init_req(_objArray_path, control());
4639           result_val->init_req(_objArray_path, alloc_obj);
4640           result_i_o ->set_req(_objArray_path, i_o());
4641           result_mem ->set_req(_objArray_path, reset_memory());
4642         }
4643       }
4644       // Otherwise, there are no card marks to worry about.
4645       // (We can dispense with card marks if we know the allocation
4646       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4647       //  causes the non-eden paths to take compensating steps to
4648       //  simulate a fresh allocation, so that no further
4649       //  card marks are required in compiled code to initialize
4650       //  the object.)
4651 
4652       if (!stopped()) {
4653         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4654 
4655         // Present the results of the copy.
4656         result_reg->init_req(_array_path, control());
4657         result_val->init_req(_array_path, alloc_obj);
4658         result_i_o ->set_req(_array_path, i_o());
4659         result_mem ->set_req(_array_path, reset_memory());
4660       }
4661     }
4662 
4663     // We only go to the instance fast case code if we pass a number of guards.
4664     // The paths which do not pass are accumulated in the slow_region.
4665     RegionNode* slow_region = new RegionNode(1);
4666     record_for_igvn(slow_region);
4667     if (!stopped()) {
4668       // It's an instance (we did array above).  Make the slow-path tests.
4669       // If this is a virtual call, we generate a funny guard.  We grab
4670       // the vtable entry corresponding to clone() from the target object.
4671       // If the target method which we are calling happens to be the
4672       // Object clone() method, we pass the guard.  We do not need this
4673       // guard for non-virtual calls; the caller is known to be the native
4674       // Object clone().
4675       if (is_virtual) {
4676         generate_virtual_guard(obj_klass, slow_region);
4677       }
4678 
4679       // The object must be cloneable and must not have a finalizer.
4680       // Both of these conditions may be checked in a single test.
4681       // We could optimize the cloneable test further, but we don't care.
4682       generate_access_flags_guard(obj_klass,
4683                                   // Test both conditions:
4684                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4685                                   // Must be cloneable but not finalizer:
4686                                   JVM_ACC_IS_CLONEABLE,
4687                                   slow_region);
4688     }
4689 
4690     if (!stopped()) {
4691       // It's an instance, and it passed the slow-path tests.
4692       PreserveJVMState pjvms(this);
4693       Node* obj_size  = NULL;
4694       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4695       // is reexecuted if deoptimization occurs and there could be problems when merging
4696       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4697       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4698 
4699       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4700 
4701       // Present the results of the slow call.
4702       result_reg->init_req(_instance_path, control());
4703       result_val->init_req(_instance_path, alloc_obj);
4704       result_i_o ->set_req(_instance_path, i_o());
4705       result_mem ->set_req(_instance_path, reset_memory());
4706     }
4707 
4708     // Generate code for the slow case.  We make a call to clone().
4709     set_control(_gvn.transform(slow_region));
4710     if (!stopped()) {
4711       PreserveJVMState pjvms(this);
4712       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4713       Node* slow_result = set_results_for_java_call(slow_call);
4714       // this->control() comes from set_results_for_java_call
4715       result_reg->init_req(_slow_path, control());
4716       result_val->init_req(_slow_path, slow_result);
4717       result_i_o ->set_req(_slow_path, i_o());
4718       result_mem ->set_req(_slow_path, reset_memory());
4719     }
4720 
4721     // Return the combined state.
4722     set_control(    _gvn.transform(result_reg));
4723     set_i_o(        _gvn.transform(result_i_o));
4724     set_all_memory( _gvn.transform(result_mem));
4725   } // original reexecute is set back here
4726 
4727   set_result(_gvn.transform(result_val));
4728   return true;
4729 }
4730 
4731 // If we have a tighly coupled allocation, the arraycopy may take care
4732 // of the array initialization. If one of the guards we insert between
4733 // the allocation and the arraycopy causes a deoptimization, an
4734 // unitialized array will escape the compiled method. To prevent that
4735 // we set the JVM state for uncommon traps between the allocation and
4736 // the arraycopy to the state before the allocation so, in case of
4737 // deoptimization, we'll reexecute the allocation and the
4738 // initialization.
4739 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4740   if (alloc != NULL) {
4741     ciMethod* trap_method = alloc->jvms()->method();
4742     int trap_bci = alloc->jvms()->bci();
4743 
4744     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4745           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4746       // Make sure there's no store between the allocation and the
4747       // arraycopy otherwise visible side effects could be rexecuted
4748       // in case of deoptimization and cause incorrect execution.
4749       bool no_interfering_store = true;
4750       Node* mem = alloc->in(TypeFunc::Memory);
4751       if (mem->is_MergeMem()) {
4752         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4753           Node* n = mms.memory();
4754           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4755             assert(n->is_Store(), "what else?");
4756             no_interfering_store = false;
4757             break;
4758           }
4759         }
4760       } else {
4761         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4762           Node* n = mms.memory();
4763           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4764             assert(n->is_Store(), "what else?");
4765             no_interfering_store = false;
4766             break;
4767           }
4768         }
4769       }
4770 
4771       if (no_interfering_store) {
4772         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4773         uint size = alloc->req();
4774         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4775         old_jvms->set_map(sfpt);
4776         for (uint i = 0; i < size; i++) {
4777           sfpt->init_req(i, alloc->in(i));
4778         }
4779         // re-push array length for deoptimization
4780         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4781         old_jvms->set_sp(old_jvms->sp()+1);
4782         old_jvms->set_monoff(old_jvms->monoff()+1);
4783         old_jvms->set_scloff(old_jvms->scloff()+1);
4784         old_jvms->set_endoff(old_jvms->endoff()+1);
4785         old_jvms->set_should_reexecute(true);
4786 
4787         sfpt->set_i_o(map()->i_o());
4788         sfpt->set_memory(map()->memory());
4789         sfpt->set_control(map()->control());
4790 
4791         JVMState* saved_jvms = jvms();
4792         saved_reexecute_sp = _reexecute_sp;
4793 
4794         set_jvms(sfpt->jvms());
4795         _reexecute_sp = jvms()->sp();
4796 
4797         return saved_jvms;
4798       }
4799     }
4800   }
4801   return NULL;
4802 }
4803 
4804 // In case of a deoptimization, we restart execution at the
4805 // allocation, allocating a new array. We would leave an uninitialized
4806 // array in the heap that GCs wouldn't expect. Move the allocation
4807 // after the traps so we don't allocate the array if we
4808 // deoptimize. This is possible because tightly_coupled_allocation()
4809 // guarantees there's no observer of the allocated array at this point
4810 // and the control flow is simple enough.
4811 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4812   if (saved_jvms != NULL && !stopped()) {
4813     assert(alloc != NULL, "only with a tightly coupled allocation");
4814     // restore JVM state to the state at the arraycopy
4815     saved_jvms->map()->set_control(map()->control());
4816     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4817     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4818     // If we've improved the types of some nodes (null check) while
4819     // emitting the guards, propagate them to the current state
4820     map()->replaced_nodes().apply(saved_jvms->map());
4821     set_jvms(saved_jvms);
4822     _reexecute_sp = saved_reexecute_sp;
4823 
4824     // Remove the allocation from above the guards
4825     CallProjections callprojs;
4826     alloc->extract_projections(&callprojs, true);
4827     InitializeNode* init = alloc->initialization();
4828     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4829     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4830     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4831     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4832 
4833     // move the allocation here (after the guards)
4834     _gvn.hash_delete(alloc);
4835     alloc->set_req(TypeFunc::Control, control());
4836     alloc->set_req(TypeFunc::I_O, i_o());
4837     Node *mem = reset_memory();
4838     set_all_memory(mem);
4839     alloc->set_req(TypeFunc::Memory, mem);
4840     set_control(init->proj_out(TypeFunc::Control));
4841     set_i_o(callprojs.fallthrough_ioproj);
4842 
4843     // Update memory as done in GraphKit::set_output_for_allocation()
4844     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4845     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4846     if (ary_type->isa_aryptr() && length_type != NULL) {
4847       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4848     }
4849     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4850     int            elemidx  = C->get_alias_index(telemref);
4851     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4852     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4853 
4854     Node* allocx = _gvn.transform(alloc);
4855     assert(allocx == alloc, "where has the allocation gone?");
4856     assert(dest->is_CheckCastPP(), "not an allocation result?");
4857 
4858     _gvn.hash_delete(dest);
4859     dest->set_req(0, control());
4860     Node* destx = _gvn.transform(dest);
4861     assert(destx == dest, "where has the allocation result gone?");
4862   }
4863 }
4864 
4865 
4866 //------------------------------inline_arraycopy-----------------------
4867 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4868 //                                                      Object dest, int destPos,
4869 //                                                      int length);
4870 bool LibraryCallKit::inline_arraycopy() {
4871   // Get the arguments.
4872   Node* src         = argument(0);  // type: oop
4873   Node* src_offset  = argument(1);  // type: int
4874   Node* dest        = argument(2);  // type: oop
4875   Node* dest_offset = argument(3);  // type: int
4876   Node* length      = argument(4);  // type: int
4877 
4878 
4879   // Check for allocation before we add nodes that would confuse
4880   // tightly_coupled_allocation()
4881   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4882 
4883   int saved_reexecute_sp = -1;
4884   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4885   // See arraycopy_restore_alloc_state() comment
4886   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4887   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4888   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4889   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4890 
4891   // The following tests must be performed
4892   // (1) src and dest are arrays.
4893   // (2) src and dest arrays must have elements of the same BasicType
4894   // (3) src and dest must not be null.
4895   // (4) src_offset must not be negative.
4896   // (5) dest_offset must not be negative.
4897   // (6) length must not be negative.
4898   // (7) src_offset + length must not exceed length of src.
4899   // (8) dest_offset + length must not exceed length of dest.
4900   // (9) each element of an oop array must be assignable
4901 
4902   // (3) src and dest must not be null.
4903   // always do this here because we need the JVM state for uncommon traps
4904   Node* null_ctl = top();
4905   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4906   assert(null_ctl->is_top(), "no null control here");
4907   dest = null_check(dest, T_ARRAY);
4908 
4909   if (!can_emit_guards) {
4910     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4911     // guards but the arraycopy node could still take advantage of a
4912     // tightly allocated allocation. tightly_coupled_allocation() is
4913     // called again to make sure it takes the null check above into
4914     // account: the null check is mandatory and if it caused an
4915     // uncommon trap to be emitted then the allocation can't be
4916     // considered tightly coupled in this context.
4917     alloc = tightly_coupled_allocation(dest, NULL);
4918   }
4919 
4920   bool validated = false;
4921 
4922   const Type* src_type  = _gvn.type(src);
4923   const Type* dest_type = _gvn.type(dest);
4924   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4925   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4926 
4927   // Do we have the type of src?
4928   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4929   // Do we have the type of dest?
4930   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4931   // Is the type for src from speculation?
4932   bool src_spec = false;
4933   // Is the type for dest from speculation?
4934   bool dest_spec = false;
4935 
4936   if ((!has_src || !has_dest) && can_emit_guards) {
4937     // We don't have sufficient type information, let's see if
4938     // speculative types can help. We need to have types for both src
4939     // and dest so that it pays off.
4940 
4941     // Do we already have or could we have type information for src
4942     bool could_have_src = has_src;
4943     // Do we already have or could we have type information for dest
4944     bool could_have_dest = has_dest;
4945 
4946     ciKlass* src_k = NULL;
4947     if (!has_src) {
4948       src_k = src_type->speculative_type_not_null();
4949       if (src_k != NULL && src_k->is_array_klass()) {
4950         could_have_src = true;
4951       }
4952     }
4953 
4954     ciKlass* dest_k = NULL;
4955     if (!has_dest) {
4956       dest_k = dest_type->speculative_type_not_null();
4957       if (dest_k != NULL && dest_k->is_array_klass()) {
4958         could_have_dest = true;
4959       }
4960     }
4961 
4962     if (could_have_src && could_have_dest) {
4963       // This is going to pay off so emit the required guards
4964       if (!has_src) {
4965         src = maybe_cast_profiled_obj(src, src_k, true);
4966         src_type  = _gvn.type(src);
4967         top_src  = src_type->isa_aryptr();
4968         has_src = (top_src != NULL && top_src->klass() != NULL);
4969         src_spec = true;
4970       }
4971       if (!has_dest) {
4972         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4973         dest_type  = _gvn.type(dest);
4974         top_dest  = dest_type->isa_aryptr();
4975         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4976         dest_spec = true;
4977       }
4978     }
4979   }
4980 
4981   if (has_src && has_dest && can_emit_guards) {
4982     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4983     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4984     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4985     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4986 
4987     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4988       // If both arrays are object arrays then having the exact types
4989       // for both will remove the need for a subtype check at runtime
4990       // before the call and may make it possible to pick a faster copy
4991       // routine (without a subtype check on every element)
4992       // Do we have the exact type of src?
4993       bool could_have_src = src_spec;
4994       // Do we have the exact type of dest?
4995       bool could_have_dest = dest_spec;
4996       ciKlass* src_k = top_src->klass();
4997       ciKlass* dest_k = top_dest->klass();
4998       if (!src_spec) {
4999         src_k = src_type->speculative_type_not_null();
5000         if (src_k != NULL && src_k->is_array_klass()) {
5001           could_have_src = true;
5002         }
5003       }
5004       if (!dest_spec) {
5005         dest_k = dest_type->speculative_type_not_null();
5006         if (dest_k != NULL && dest_k->is_array_klass()) {
5007           could_have_dest = true;
5008         }
5009       }
5010       if (could_have_src && could_have_dest) {
5011         // If we can have both exact types, emit the missing guards
5012         if (could_have_src && !src_spec) {
5013           src = maybe_cast_profiled_obj(src, src_k, true);
5014         }
5015         if (could_have_dest && !dest_spec) {
5016           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5017         }
5018       }
5019     }
5020   }
5021 
5022   ciMethod* trap_method = method();
5023   int trap_bci = bci();
5024   if (saved_jvms != NULL) {
5025     trap_method = alloc->jvms()->method();
5026     trap_bci = alloc->jvms()->bci();
5027   }
5028 
5029   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5030       can_emit_guards &&
5031       !src->is_top() && !dest->is_top()) {
5032     // validate arguments: enables transformation the ArrayCopyNode
5033     validated = true;
5034 
5035     RegionNode* slow_region = new RegionNode(1);
5036     record_for_igvn(slow_region);
5037 
5038     // (1) src and dest are arrays.
5039     generate_non_array_guard(load_object_klass(src), slow_region);
5040     generate_non_array_guard(load_object_klass(dest), slow_region);
5041 
5042     // (2) src and dest arrays must have elements of the same BasicType
5043     // done at macro expansion or at Ideal transformation time
5044 
5045     // (4) src_offset must not be negative.
5046     generate_negative_guard(src_offset, slow_region);
5047 
5048     // (5) dest_offset must not be negative.
5049     generate_negative_guard(dest_offset, slow_region);
5050 
5051     // (7) src_offset + length must not exceed length of src.
5052     generate_limit_guard(src_offset, length,
5053                          load_array_length(src),
5054                          slow_region);
5055 
5056     // (8) dest_offset + length must not exceed length of dest.
5057     generate_limit_guard(dest_offset, length,
5058                          load_array_length(dest),
5059                          slow_region);
5060 
5061     // (9) each element of an oop array must be assignable
5062     Node* src_klass  = load_object_klass(src);
5063     Node* dest_klass = load_object_klass(dest);
5064     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5065 
5066     if (not_subtype_ctrl != top()) {
5067       PreserveJVMState pjvms(this);
5068       set_control(not_subtype_ctrl);
5069       uncommon_trap(Deoptimization::Reason_intrinsic,
5070                     Deoptimization::Action_make_not_entrant);
5071       assert(stopped(), "Should be stopped");
5072     }
5073     {
5074       PreserveJVMState pjvms(this);
5075       set_control(_gvn.transform(slow_region));
5076       uncommon_trap(Deoptimization::Reason_intrinsic,
5077                     Deoptimization::Action_make_not_entrant);
5078       assert(stopped(), "Should be stopped");
5079     }
5080   }
5081 
5082   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5083 
5084   if (stopped()) {
5085     return true;
5086   }
5087 
5088   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5089                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5090                                           // so the compiler has a chance to eliminate them: during macro expansion,
5091                                           // we have to set their control (CastPP nodes are eliminated).
5092                                           load_object_klass(src), load_object_klass(dest),
5093                                           load_array_length(src), load_array_length(dest));
5094 
5095   ac->set_arraycopy(validated);
5096 
5097   Node* n = _gvn.transform(ac);
5098   if (n == ac) {
5099     ac->connect_outputs(this);
5100   } else {
5101     assert(validated, "shouldn't transform if all arguments not validated");
5102     set_all_memory(n);
5103   }
5104 
5105   return true;
5106 }
5107 
5108 
5109 // Helper function which determines if an arraycopy immediately follows
5110 // an allocation, with no intervening tests or other escapes for the object.
5111 AllocateArrayNode*
5112 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5113                                            RegionNode* slow_region) {
5114   if (stopped())             return NULL;  // no fast path
5115   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5116 
5117   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5118   if (alloc == NULL)  return NULL;
5119 
5120   Node* rawmem = memory(Compile::AliasIdxRaw);
5121   // Is the allocation's memory state untouched?
5122   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5123     // Bail out if there have been raw-memory effects since the allocation.
5124     // (Example:  There might have been a call or safepoint.)
5125     return NULL;
5126   }
5127   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5128   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5129     return NULL;
5130   }
5131 
5132   // There must be no unexpected observers of this allocation.
5133   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5134     Node* obs = ptr->fast_out(i);
5135     if (obs != this->map()) {
5136       return NULL;
5137     }
5138   }
5139 
5140   // This arraycopy must unconditionally follow the allocation of the ptr.
5141   Node* alloc_ctl = ptr->in(0);
5142   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5143 
5144   Node* ctl = control();
5145   while (ctl != alloc_ctl) {
5146     // There may be guards which feed into the slow_region.
5147     // Any other control flow means that we might not get a chance
5148     // to finish initializing the allocated object.
5149     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5150       IfNode* iff = ctl->in(0)->as_If();
5151       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5152       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5153       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5154         ctl = iff->in(0);       // This test feeds the known slow_region.
5155         continue;
5156       }
5157       // One more try:  Various low-level checks bottom out in
5158       // uncommon traps.  If the debug-info of the trap omits
5159       // any reference to the allocation, as we've already
5160       // observed, then there can be no objection to the trap.
5161       bool found_trap = false;
5162       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5163         Node* obs = not_ctl->fast_out(j);
5164         if (obs->in(0) == not_ctl && obs->is_Call() &&
5165             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5166           found_trap = true; break;
5167         }
5168       }
5169       if (found_trap) {
5170         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5171         continue;
5172       }
5173     }
5174     return NULL;
5175   }
5176 
5177   // If we get this far, we have an allocation which immediately
5178   // precedes the arraycopy, and we can take over zeroing the new object.
5179   // The arraycopy will finish the initialization, and provide
5180   // a new control state to which we will anchor the destination pointer.
5181 
5182   return alloc;
5183 }
5184 
5185 //-------------inline_encodeISOArray-----------------------------------
5186 // encode char[] to byte[] in ISO_8859_1
5187 bool LibraryCallKit::inline_encodeISOArray() {
5188   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5189   // no receiver since it is static method
5190   Node *src         = argument(0);
5191   Node *src_offset  = argument(1);
5192   Node *dst         = argument(2);
5193   Node *dst_offset  = argument(3);
5194   Node *length      = argument(4);
5195 
5196   const Type* src_type = src->Value(&_gvn);
5197   const Type* dst_type = dst->Value(&_gvn);
5198   const TypeAryPtr* top_src = src_type->isa_aryptr();
5199   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5200   if (top_src  == NULL || top_src->klass()  == NULL ||
5201       top_dest == NULL || top_dest->klass() == NULL) {
5202     // failed array check
5203     return false;
5204   }
5205 
5206   // Figure out the size and type of the elements we will be copying.
5207   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5208   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5209   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5210     return false;
5211   }
5212 
5213   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5214   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5215   // 'src_start' points to src array + scaled offset
5216   // 'dst_start' points to dst array + scaled offset
5217 
5218   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5219   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5220   enc = _gvn.transform(enc);
5221   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5222   set_memory(res_mem, mtype);
5223   set_result(enc);
5224   return true;
5225 }
5226 
5227 //-------------inline_multiplyToLen-----------------------------------
5228 bool LibraryCallKit::inline_multiplyToLen() {
5229   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5230 
5231   address stubAddr = StubRoutines::multiplyToLen();
5232   if (stubAddr == NULL) {
5233     return false; // Intrinsic's stub is not implemented on this platform
5234   }
5235   const char* stubName = "multiplyToLen";
5236 
5237   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5238 
5239   // no receiver because it is a static method
5240   Node* x    = argument(0);
5241   Node* xlen = argument(1);
5242   Node* y    = argument(2);
5243   Node* ylen = argument(3);
5244   Node* z    = argument(4);
5245 
5246   const Type* x_type = x->Value(&_gvn);
5247   const Type* y_type = y->Value(&_gvn);
5248   const TypeAryPtr* top_x = x_type->isa_aryptr();
5249   const TypeAryPtr* top_y = y_type->isa_aryptr();
5250   if (top_x  == NULL || top_x->klass()  == NULL ||
5251       top_y == NULL || top_y->klass() == NULL) {
5252     // failed array check
5253     return false;
5254   }
5255 
5256   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5257   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5258   if (x_elem != T_INT || y_elem != T_INT) {
5259     return false;
5260   }
5261 
5262   // Set the original stack and the reexecute bit for the interpreter to reexecute
5263   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5264   // on the return from z array allocation in runtime.
5265   { PreserveReexecuteState preexecs(this);
5266     jvms()->set_should_reexecute(true);
5267 
5268     Node* x_start = array_element_address(x, intcon(0), x_elem);
5269     Node* y_start = array_element_address(y, intcon(0), y_elem);
5270     // 'x_start' points to x array + scaled xlen
5271     // 'y_start' points to y array + scaled ylen
5272 
5273     // Allocate the result array
5274     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5275     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5276     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5277 
5278     IdealKit ideal(this);
5279 
5280 #define __ ideal.
5281      Node* one = __ ConI(1);
5282      Node* zero = __ ConI(0);
5283      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5284      __ set(need_alloc, zero);
5285      __ set(z_alloc, z);
5286      __ if_then(z, BoolTest::eq, null()); {
5287        __ increment (need_alloc, one);
5288      } __ else_(); {
5289        // Update graphKit memory and control from IdealKit.
5290        sync_kit(ideal);
5291        Node* zlen_arg = load_array_length(z);
5292        // Update IdealKit memory and control from graphKit.
5293        __ sync_kit(this);
5294        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5295          __ increment (need_alloc, one);
5296        } __ end_if();
5297      } __ end_if();
5298 
5299      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5300        // Update graphKit memory and control from IdealKit.
5301        sync_kit(ideal);
5302        Node * narr = new_array(klass_node, zlen, 1);
5303        // Update IdealKit memory and control from graphKit.
5304        __ sync_kit(this);
5305        __ set(z_alloc, narr);
5306      } __ end_if();
5307 
5308      sync_kit(ideal);
5309      z = __ value(z_alloc);
5310      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5311      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5312      // Final sync IdealKit and GraphKit.
5313      final_sync(ideal);
5314 #undef __
5315 
5316     Node* z_start = array_element_address(z, intcon(0), T_INT);
5317 
5318     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5319                                    OptoRuntime::multiplyToLen_Type(),
5320                                    stubAddr, stubName, TypePtr::BOTTOM,
5321                                    x_start, xlen, y_start, ylen, z_start, zlen);
5322   } // original reexecute is set back here
5323 
5324   C->set_has_split_ifs(true); // Has chance for split-if optimization
5325   set_result(z);
5326   return true;
5327 }
5328 
5329 //-------------inline_squareToLen------------------------------------
5330 bool LibraryCallKit::inline_squareToLen() {
5331   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5332 
5333   address stubAddr = StubRoutines::squareToLen();
5334   if (stubAddr == NULL) {
5335     return false; // Intrinsic's stub is not implemented on this platform
5336   }
5337   const char* stubName = "squareToLen";
5338 
5339   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5340 
5341   Node* x    = argument(0);
5342   Node* len  = argument(1);
5343   Node* z    = argument(2);
5344   Node* zlen = argument(3);
5345 
5346   const Type* x_type = x->Value(&_gvn);
5347   const Type* z_type = z->Value(&_gvn);
5348   const TypeAryPtr* top_x = x_type->isa_aryptr();
5349   const TypeAryPtr* top_z = z_type->isa_aryptr();
5350   if (top_x  == NULL || top_x->klass()  == NULL ||
5351       top_z  == NULL || top_z->klass()  == NULL) {
5352     // failed array check
5353     return false;
5354   }
5355 
5356   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5357   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5358   if (x_elem != T_INT || z_elem != T_INT) {
5359     return false;
5360   }
5361 
5362 
5363   Node* x_start = array_element_address(x, intcon(0), x_elem);
5364   Node* z_start = array_element_address(z, intcon(0), z_elem);
5365 
5366   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5367                                   OptoRuntime::squareToLen_Type(),
5368                                   stubAddr, stubName, TypePtr::BOTTOM,
5369                                   x_start, len, z_start, zlen);
5370 
5371   set_result(z);
5372   return true;
5373 }
5374 
5375 //-------------inline_mulAdd------------------------------------------
5376 bool LibraryCallKit::inline_mulAdd() {
5377   assert(UseMulAddIntrinsic, "not implemented on this platform");
5378 
5379   address stubAddr = StubRoutines::mulAdd();
5380   if (stubAddr == NULL) {
5381     return false; // Intrinsic's stub is not implemented on this platform
5382   }
5383   const char* stubName = "mulAdd";
5384 
5385   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5386 
5387   Node* out      = argument(0);
5388   Node* in       = argument(1);
5389   Node* offset   = argument(2);
5390   Node* len      = argument(3);
5391   Node* k        = argument(4);
5392 
5393   const Type* out_type = out->Value(&_gvn);
5394   const Type* in_type = in->Value(&_gvn);
5395   const TypeAryPtr* top_out = out_type->isa_aryptr();
5396   const TypeAryPtr* top_in = in_type->isa_aryptr();
5397   if (top_out  == NULL || top_out->klass()  == NULL ||
5398       top_in == NULL || top_in->klass() == NULL) {
5399     // failed array check
5400     return false;
5401   }
5402 
5403   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5404   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5405   if (out_elem != T_INT || in_elem != T_INT) {
5406     return false;
5407   }
5408 
5409   Node* outlen = load_array_length(out);
5410   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5411   Node* out_start = array_element_address(out, intcon(0), out_elem);
5412   Node* in_start = array_element_address(in, intcon(0), in_elem);
5413 
5414   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5415                                   OptoRuntime::mulAdd_Type(),
5416                                   stubAddr, stubName, TypePtr::BOTTOM,
5417                                   out_start,in_start, new_offset, len, k);
5418   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5419   set_result(result);
5420   return true;
5421 }
5422 
5423 //-------------inline_montgomeryMultiply-----------------------------------
5424 bool LibraryCallKit::inline_montgomeryMultiply() {
5425   address stubAddr = StubRoutines::montgomeryMultiply();
5426   if (stubAddr == NULL) {
5427     return false; // Intrinsic's stub is not implemented on this platform
5428   }
5429 
5430   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5431   const char* stubName = "montgomery_square";
5432 
5433   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5434 
5435   Node* a    = argument(0);
5436   Node* b    = argument(1);
5437   Node* n    = argument(2);
5438   Node* len  = argument(3);
5439   Node* inv  = argument(4);
5440   Node* m    = argument(6);
5441 
5442   const Type* a_type = a->Value(&_gvn);
5443   const TypeAryPtr* top_a = a_type->isa_aryptr();
5444   const Type* b_type = b->Value(&_gvn);
5445   const TypeAryPtr* top_b = b_type->isa_aryptr();
5446   const Type* n_type = a->Value(&_gvn);
5447   const TypeAryPtr* top_n = n_type->isa_aryptr();
5448   const Type* m_type = a->Value(&_gvn);
5449   const TypeAryPtr* top_m = m_type->isa_aryptr();
5450   if (top_a  == NULL || top_a->klass()  == NULL ||
5451       top_b == NULL || top_b->klass()  == NULL ||
5452       top_n == NULL || top_n->klass()  == NULL ||
5453       top_m == NULL || top_m->klass()  == NULL) {
5454     // failed array check
5455     return false;
5456   }
5457 
5458   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5459   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5460   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5461   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5462   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5463     return false;
5464   }
5465 
5466   // Make the call
5467   {
5468     Node* a_start = array_element_address(a, intcon(0), a_elem);
5469     Node* b_start = array_element_address(b, intcon(0), b_elem);
5470     Node* n_start = array_element_address(n, intcon(0), n_elem);
5471     Node* m_start = array_element_address(m, intcon(0), m_elem);
5472 
5473     Node* call = make_runtime_call(RC_LEAF,
5474                                    OptoRuntime::montgomeryMultiply_Type(),
5475                                    stubAddr, stubName, TypePtr::BOTTOM,
5476                                    a_start, b_start, n_start, len, inv, top(),
5477                                    m_start);
5478     set_result(m);
5479   }
5480 
5481   return true;
5482 }
5483 
5484 bool LibraryCallKit::inline_montgomerySquare() {
5485   address stubAddr = StubRoutines::montgomerySquare();
5486   if (stubAddr == NULL) {
5487     return false; // Intrinsic's stub is not implemented on this platform
5488   }
5489 
5490   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5491   const char* stubName = "montgomery_square";
5492 
5493   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5494 
5495   Node* a    = argument(0);
5496   Node* n    = argument(1);
5497   Node* len  = argument(2);
5498   Node* inv  = argument(3);
5499   Node* m    = argument(5);
5500 
5501   const Type* a_type = a->Value(&_gvn);
5502   const TypeAryPtr* top_a = a_type->isa_aryptr();
5503   const Type* n_type = a->Value(&_gvn);
5504   const TypeAryPtr* top_n = n_type->isa_aryptr();
5505   const Type* m_type = a->Value(&_gvn);
5506   const TypeAryPtr* top_m = m_type->isa_aryptr();
5507   if (top_a  == NULL || top_a->klass()  == NULL ||
5508       top_n == NULL || top_n->klass()  == NULL ||
5509       top_m == NULL || top_m->klass()  == NULL) {
5510     // failed array check
5511     return false;
5512   }
5513 
5514   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5515   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5516   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5517   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5518     return false;
5519   }
5520 
5521   // Make the call
5522   {
5523     Node* a_start = array_element_address(a, intcon(0), a_elem);
5524     Node* n_start = array_element_address(n, intcon(0), n_elem);
5525     Node* m_start = array_element_address(m, intcon(0), m_elem);
5526 
5527     Node* call = make_runtime_call(RC_LEAF,
5528                                    OptoRuntime::montgomerySquare_Type(),
5529                                    stubAddr, stubName, TypePtr::BOTTOM,
5530                                    a_start, n_start, len, inv, top(),
5531                                    m_start);
5532     set_result(m);
5533   }
5534 
5535   return true;
5536 }
5537 
5538 
5539 /**
5540  * Calculate CRC32 for byte.
5541  * int java.util.zip.CRC32.update(int crc, int b)
5542  */
5543 bool LibraryCallKit::inline_updateCRC32() {
5544   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5545   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5546   // no receiver since it is static method
5547   Node* crc  = argument(0); // type: int
5548   Node* b    = argument(1); // type: int
5549 
5550   /*
5551    *    int c = ~ crc;
5552    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5553    *    b = b ^ (c >>> 8);
5554    *    crc = ~b;
5555    */
5556 
5557   Node* M1 = intcon(-1);
5558   crc = _gvn.transform(new XorINode(crc, M1));
5559   Node* result = _gvn.transform(new XorINode(crc, b));
5560   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5561 
5562   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5563   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5564   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5565   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5566 
5567   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5568   result = _gvn.transform(new XorINode(crc, result));
5569   result = _gvn.transform(new XorINode(result, M1));
5570   set_result(result);
5571   return true;
5572 }
5573 
5574 /**
5575  * Calculate CRC32 for byte[] array.
5576  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5577  */
5578 bool LibraryCallKit::inline_updateBytesCRC32() {
5579   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5580   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5581   // no receiver since it is static method
5582   Node* crc     = argument(0); // type: int
5583   Node* src     = argument(1); // type: oop
5584   Node* offset  = argument(2); // type: int
5585   Node* length  = argument(3); // type: int
5586 
5587   const Type* src_type = src->Value(&_gvn);
5588   const TypeAryPtr* top_src = src_type->isa_aryptr();
5589   if (top_src  == NULL || top_src->klass()  == NULL) {
5590     // failed array check
5591     return false;
5592   }
5593 
5594   // Figure out the size and type of the elements we will be copying.
5595   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5596   if (src_elem != T_BYTE) {
5597     return false;
5598   }
5599 
5600   // 'src_start' points to src array + scaled offset
5601   Node* src_start = array_element_address(src, offset, src_elem);
5602 
5603   // We assume that range check is done by caller.
5604   // TODO: generate range check (offset+length < src.length) in debug VM.
5605 
5606   // Call the stub.
5607   address stubAddr = StubRoutines::updateBytesCRC32();
5608   const char *stubName = "updateBytesCRC32";
5609 
5610   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5611                                  stubAddr, stubName, TypePtr::BOTTOM,
5612                                  crc, src_start, length);
5613   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5614   set_result(result);
5615   return true;
5616 }
5617 
5618 /**
5619  * Calculate CRC32 for ByteBuffer.
5620  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5621  */
5622 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5623   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5624   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5625   // no receiver since it is static method
5626   Node* crc     = argument(0); // type: int
5627   Node* src     = argument(1); // type: long
5628   Node* offset  = argument(3); // type: int
5629   Node* length  = argument(4); // type: int
5630 
5631   src = ConvL2X(src);  // adjust Java long to machine word
5632   Node* base = _gvn.transform(new CastX2PNode(src));
5633   offset = ConvI2X(offset);
5634 
5635   // 'src_start' points to src array + scaled offset
5636   Node* src_start = basic_plus_adr(top(), base, offset);
5637 
5638   // Call the stub.
5639   address stubAddr = StubRoutines::updateBytesCRC32();
5640   const char *stubName = "updateBytesCRC32";
5641 
5642   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5643                                  stubAddr, stubName, TypePtr::BOTTOM,
5644                                  crc, src_start, length);
5645   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5646   set_result(result);
5647   return true;
5648 }
5649 
5650 //------------------------------get_table_from_crc32c_class-----------------------
5651 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5652   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5653   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5654 
5655   return table;
5656 }
5657 
5658 //------------------------------inline_updateBytesCRC32C-----------------------
5659 //
5660 // Calculate CRC32C for byte[] array.
5661 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5662 //
5663 bool LibraryCallKit::inline_updateBytesCRC32C() {
5664   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5665   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5666   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5667   // no receiver since it is a static method
5668   Node* crc     = argument(0); // type: int
5669   Node* src     = argument(1); // type: oop
5670   Node* offset  = argument(2); // type: int
5671   Node* end     = argument(3); // type: int
5672 
5673   Node* length = _gvn.transform(new SubINode(end, offset));
5674 
5675   const Type* src_type = src->Value(&_gvn);
5676   const TypeAryPtr* top_src = src_type->isa_aryptr();
5677   if (top_src  == NULL || top_src->klass()  == NULL) {
5678     // failed array check
5679     return false;
5680   }
5681 
5682   // Figure out the size and type of the elements we will be copying.
5683   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5684   if (src_elem != T_BYTE) {
5685     return false;
5686   }
5687 
5688   // 'src_start' points to src array + scaled offset
5689   Node* src_start = array_element_address(src, offset, src_elem);
5690 
5691   // static final int[] byteTable in class CRC32C
5692   Node* table = get_table_from_crc32c_class(callee()->holder());
5693   Node* table_start = array_element_address(table, intcon(0), T_INT);
5694 
5695   // We assume that range check is done by caller.
5696   // TODO: generate range check (offset+length < src.length) in debug VM.
5697 
5698   // Call the stub.
5699   address stubAddr = StubRoutines::updateBytesCRC32C();
5700   const char *stubName = "updateBytesCRC32C";
5701 
5702   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5703                                  stubAddr, stubName, TypePtr::BOTTOM,
5704                                  crc, src_start, length, table_start);
5705   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5706   set_result(result);
5707   return true;
5708 }
5709 
5710 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5711 //
5712 // Calculate CRC32C for DirectByteBuffer.
5713 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5714 //
5715 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5716   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5717   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5718   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5719   // no receiver since it is a static method
5720   Node* crc     = argument(0); // type: int
5721   Node* src     = argument(1); // type: long
5722   Node* offset  = argument(3); // type: int
5723   Node* end     = argument(4); // type: int
5724 
5725   Node* length = _gvn.transform(new SubINode(end, offset));
5726 
5727   src = ConvL2X(src);  // adjust Java long to machine word
5728   Node* base = _gvn.transform(new CastX2PNode(src));
5729   offset = ConvI2X(offset);
5730 
5731   // 'src_start' points to src array + scaled offset
5732   Node* src_start = basic_plus_adr(top(), base, offset);
5733 
5734   // static final int[] byteTable in class CRC32C
5735   Node* table = get_table_from_crc32c_class(callee()->holder());
5736   Node* table_start = array_element_address(table, intcon(0), T_INT);
5737 
5738   // Call the stub.
5739   address stubAddr = StubRoutines::updateBytesCRC32C();
5740   const char *stubName = "updateBytesCRC32C";
5741 
5742   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5743                                  stubAddr, stubName, TypePtr::BOTTOM,
5744                                  crc, src_start, length, table_start);
5745   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5746   set_result(result);
5747   return true;
5748 }
5749 
5750 //------------------------------inline_updateBytesAdler32----------------------
5751 //
5752 // Calculate Adler32 checksum for byte[] array.
5753 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5754 //
5755 bool LibraryCallKit::inline_updateBytesAdler32() {
5756   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5757   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5758   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5759   // no receiver since it is static method
5760   Node* crc     = argument(0); // type: int
5761   Node* src     = argument(1); // type: oop
5762   Node* offset  = argument(2); // type: int
5763   Node* length  = argument(3); // type: int
5764 
5765   const Type* src_type = src->Value(&_gvn);
5766   const TypeAryPtr* top_src = src_type->isa_aryptr();
5767   if (top_src  == NULL || top_src->klass()  == NULL) {
5768     // failed array check
5769     return false;
5770   }
5771 
5772   // Figure out the size and type of the elements we will be copying.
5773   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5774   if (src_elem != T_BYTE) {
5775     return false;
5776   }
5777 
5778   // 'src_start' points to src array + scaled offset
5779   Node* src_start = array_element_address(src, offset, src_elem);
5780 
5781   // We assume that range check is done by caller.
5782   // TODO: generate range check (offset+length < src.length) in debug VM.
5783 
5784   // Call the stub.
5785   address stubAddr = StubRoutines::updateBytesAdler32();
5786   const char *stubName = "updateBytesAdler32";
5787 
5788   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5789                                  stubAddr, stubName, TypePtr::BOTTOM,
5790                                  crc, src_start, length);
5791   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5792   set_result(result);
5793   return true;
5794 }
5795 
5796 //------------------------------inline_updateByteBufferAdler32---------------
5797 //
5798 // Calculate Adler32 checksum for DirectByteBuffer.
5799 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5800 //
5801 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5802   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5803   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5804   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5805   // no receiver since it is static method
5806   Node* crc     = argument(0); // type: int
5807   Node* src     = argument(1); // type: long
5808   Node* offset  = argument(3); // type: int
5809   Node* length  = argument(4); // type: int
5810 
5811   src = ConvL2X(src);  // adjust Java long to machine word
5812   Node* base = _gvn.transform(new CastX2PNode(src));
5813   offset = ConvI2X(offset);
5814 
5815   // 'src_start' points to src array + scaled offset
5816   Node* src_start = basic_plus_adr(top(), base, offset);
5817 
5818   // Call the stub.
5819   address stubAddr = StubRoutines::updateBytesAdler32();
5820   const char *stubName = "updateBytesAdler32";
5821 
5822   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5823                                  stubAddr, stubName, TypePtr::BOTTOM,
5824                                  crc, src_start, length);
5825 
5826   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5827   set_result(result);
5828   return true;
5829 }
5830 
5831 //----------------------------inline_reference_get----------------------------
5832 // public T java.lang.ref.Reference.get();
5833 bool LibraryCallKit::inline_reference_get() {
5834   const int referent_offset = java_lang_ref_Reference::referent_offset;
5835   guarantee(referent_offset > 0, "should have already been set");
5836 
5837   // Get the argument:
5838   Node* reference_obj = null_check_receiver();
5839   if (stopped()) return true;
5840 
5841   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5842 
5843   ciInstanceKlass* klass = env()->Object_klass();
5844   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5845 
5846   Node* no_ctrl = NULL;
5847   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5848 
5849   // Use the pre-barrier to record the value in the referent field
5850   pre_barrier(false /* do_load */,
5851               control(),
5852               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5853               result /* pre_val */,
5854               T_OBJECT);
5855 
5856   // Add memory barrier to prevent commoning reads from this field
5857   // across safepoint since GC can change its value.
5858   insert_mem_bar(Op_MemBarCPUOrder);
5859 
5860   set_result(result);
5861   return true;
5862 }
5863 
5864 
5865 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5866                                               bool is_exact=true, bool is_static=false,
5867                                               ciInstanceKlass * fromKls=NULL) {
5868   if (fromKls == NULL) {
5869     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5870     assert(tinst != NULL, "obj is null");
5871     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5872     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5873     fromKls = tinst->klass()->as_instance_klass();
5874   } else {
5875     assert(is_static, "only for static field access");
5876   }
5877   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5878                                               ciSymbol::make(fieldTypeString),
5879                                               is_static);
5880 
5881   assert (field != NULL, "undefined field");
5882   if (field == NULL) return (Node *) NULL;
5883 
5884   if (is_static) {
5885     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5886     fromObj = makecon(tip);
5887   }
5888 
5889   // Next code  copied from Parse::do_get_xxx():
5890 
5891   // Compute address and memory type.
5892   int offset  = field->offset_in_bytes();
5893   bool is_vol = field->is_volatile();
5894   ciType* field_klass = field->type();
5895   assert(field_klass->is_loaded(), "should be loaded");
5896   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5897   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5898   BasicType bt = field->layout_type();
5899 
5900   // Build the resultant type of the load
5901   const Type *type;
5902   if (bt == T_OBJECT) {
5903     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5904   } else {
5905     type = Type::get_const_basic_type(bt);
5906   }
5907 
5908   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5909     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5910   }
5911   // Build the load.
5912   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5913   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5914   // If reference is volatile, prevent following memory ops from
5915   // floating up past the volatile read.  Also prevents commoning
5916   // another volatile read.
5917   if (is_vol) {
5918     // Memory barrier includes bogus read of value to force load BEFORE membar
5919     insert_mem_bar(Op_MemBarAcquire, loadedField);
5920   }
5921   return loadedField;
5922 }
5923 
5924 
5925 //------------------------------inline_aescrypt_Block-----------------------
5926 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5927   address stubAddr;
5928   const char *stubName;
5929   assert(UseAES, "need AES instruction support");
5930 
5931   switch(id) {
5932   case vmIntrinsics::_aescrypt_encryptBlock:
5933     stubAddr = StubRoutines::aescrypt_encryptBlock();
5934     stubName = "aescrypt_encryptBlock";
5935     break;
5936   case vmIntrinsics::_aescrypt_decryptBlock:
5937     stubAddr = StubRoutines::aescrypt_decryptBlock();
5938     stubName = "aescrypt_decryptBlock";
5939     break;
5940   }
5941   if (stubAddr == NULL) return false;
5942 
5943   Node* aescrypt_object = argument(0);
5944   Node* src             = argument(1);
5945   Node* src_offset      = argument(2);
5946   Node* dest            = argument(3);
5947   Node* dest_offset     = argument(4);
5948 
5949   // (1) src and dest are arrays.
5950   const Type* src_type = src->Value(&_gvn);
5951   const Type* dest_type = dest->Value(&_gvn);
5952   const TypeAryPtr* top_src = src_type->isa_aryptr();
5953   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5954   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5955 
5956   // for the quick and dirty code we will skip all the checks.
5957   // we are just trying to get the call to be generated.
5958   Node* src_start  = src;
5959   Node* dest_start = dest;
5960   if (src_offset != NULL || dest_offset != NULL) {
5961     assert(src_offset != NULL && dest_offset != NULL, "");
5962     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5963     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5964   }
5965 
5966   // now need to get the start of its expanded key array
5967   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5968   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5969   if (k_start == NULL) return false;
5970 
5971   if (Matcher::pass_original_key_for_aes()) {
5972     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5973     // compatibility issues between Java key expansion and SPARC crypto instructions
5974     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5975     if (original_k_start == NULL) return false;
5976 
5977     // Call the stub.
5978     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5979                       stubAddr, stubName, TypePtr::BOTTOM,
5980                       src_start, dest_start, k_start, original_k_start);
5981   } else {
5982     // Call the stub.
5983     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5984                       stubAddr, stubName, TypePtr::BOTTOM,
5985                       src_start, dest_start, k_start);
5986   }
5987 
5988   return true;
5989 }
5990 
5991 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5992 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5993   address stubAddr;
5994   const char *stubName;
5995 
5996   assert(UseAES, "need AES instruction support");
5997 
5998   switch(id) {
5999   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6000     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6001     stubName = "cipherBlockChaining_encryptAESCrypt";
6002     break;
6003   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6004     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6005     stubName = "cipherBlockChaining_decryptAESCrypt";
6006     break;
6007   }
6008   if (stubAddr == NULL) return false;
6009 
6010   Node* cipherBlockChaining_object = argument(0);
6011   Node* src                        = argument(1);
6012   Node* src_offset                 = argument(2);
6013   Node* len                        = argument(3);
6014   Node* dest                       = argument(4);
6015   Node* dest_offset                = argument(5);
6016 
6017   // (1) src and dest are arrays.
6018   const Type* src_type = src->Value(&_gvn);
6019   const Type* dest_type = dest->Value(&_gvn);
6020   const TypeAryPtr* top_src = src_type->isa_aryptr();
6021   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6022   assert (top_src  != NULL && top_src->klass()  != NULL
6023           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6024 
6025   // checks are the responsibility of the caller
6026   Node* src_start  = src;
6027   Node* dest_start = dest;
6028   if (src_offset != NULL || dest_offset != NULL) {
6029     assert(src_offset != NULL && dest_offset != NULL, "");
6030     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6031     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6032   }
6033 
6034   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6035   // (because of the predicated logic executed earlier).
6036   // so we cast it here safely.
6037   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6038 
6039   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6040   if (embeddedCipherObj == NULL) return false;
6041 
6042   // cast it to what we know it will be at runtime
6043   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6044   assert(tinst != NULL, "CBC obj is null");
6045   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6046   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6047   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6048 
6049   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6050   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6051   const TypeOopPtr* xtype = aklass->as_instance_type();
6052   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6053   aescrypt_object = _gvn.transform(aescrypt_object);
6054 
6055   // we need to get the start of the aescrypt_object's expanded key array
6056   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6057   if (k_start == NULL) return false;
6058 
6059   // similarly, get the start address of the r vector
6060   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6061   if (objRvec == NULL) return false;
6062   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6063 
6064   Node* cbcCrypt;
6065   if (Matcher::pass_original_key_for_aes()) {
6066     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6067     // compatibility issues between Java key expansion and SPARC crypto instructions
6068     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6069     if (original_k_start == NULL) return false;
6070 
6071     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6072     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6073                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6074                                  stubAddr, stubName, TypePtr::BOTTOM,
6075                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6076   } else {
6077     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6078     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6079                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6080                                  stubAddr, stubName, TypePtr::BOTTOM,
6081                                  src_start, dest_start, k_start, r_start, len);
6082   }
6083 
6084   // return cipher length (int)
6085   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6086   set_result(retvalue);
6087   return true;
6088 }
6089 
6090 //------------------------------get_key_start_from_aescrypt_object-----------------------
6091 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6092   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6093   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6094   if (objAESCryptKey == NULL) return (Node *) NULL;
6095 
6096   // now have the array, need to get the start address of the K array
6097   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6098   return k_start;
6099 }
6100 
6101 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6102 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6103   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6104   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6105   if (objAESCryptKey == NULL) return (Node *) NULL;
6106 
6107   // now have the array, need to get the start address of the lastKey array
6108   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6109   return original_k_start;
6110 }
6111 
6112 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6113 // Return node representing slow path of predicate check.
6114 // the pseudo code we want to emulate with this predicate is:
6115 // for encryption:
6116 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6117 // for decryption:
6118 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6119 //    note cipher==plain is more conservative than the original java code but that's OK
6120 //
6121 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6122   // The receiver was checked for NULL already.
6123   Node* objCBC = argument(0);
6124 
6125   // Load embeddedCipher field of CipherBlockChaining object.
6126   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6127 
6128   // get AESCrypt klass for instanceOf check
6129   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6130   // will have same classloader as CipherBlockChaining object
6131   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6132   assert(tinst != NULL, "CBCobj is null");
6133   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6134 
6135   // we want to do an instanceof comparison against the AESCrypt class
6136   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6137   if (!klass_AESCrypt->is_loaded()) {
6138     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6139     Node* ctrl = control();
6140     set_control(top()); // no regular fast path
6141     return ctrl;
6142   }
6143   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6144 
6145   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6146   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6147   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6148 
6149   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6150 
6151   // for encryption, we are done
6152   if (!decrypting)
6153     return instof_false;  // even if it is NULL
6154 
6155   // for decryption, we need to add a further check to avoid
6156   // taking the intrinsic path when cipher and plain are the same
6157   // see the original java code for why.
6158   RegionNode* region = new RegionNode(3);
6159   region->init_req(1, instof_false);
6160   Node* src = argument(1);
6161   Node* dest = argument(4);
6162   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6163   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6164   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6165   region->init_req(2, src_dest_conjoint);
6166 
6167   record_for_igvn(region);
6168   return _gvn.transform(region);
6169 }
6170 
6171 //------------------------------inline_ghash_processBlocks
6172 bool LibraryCallKit::inline_ghash_processBlocks() {
6173   address stubAddr;
6174   const char *stubName;
6175   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6176 
6177   stubAddr = StubRoutines::ghash_processBlocks();
6178   stubName = "ghash_processBlocks";
6179 
6180   Node* data           = argument(0);
6181   Node* offset         = argument(1);
6182   Node* len            = argument(2);
6183   Node* state          = argument(3);
6184   Node* subkeyH        = argument(4);
6185 
6186   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6187   assert(state_start, "state is NULL");
6188   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6189   assert(subkeyH_start, "subkeyH is NULL");
6190   Node* data_start  = array_element_address(data, offset, T_BYTE);
6191   assert(data_start, "data is NULL");
6192 
6193   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6194                                   OptoRuntime::ghash_processBlocks_Type(),
6195                                   stubAddr, stubName, TypePtr::BOTTOM,
6196                                   state_start, subkeyH_start, data_start, len);
6197   return true;
6198 }
6199 
6200 //------------------------------inline_sha_implCompress-----------------------
6201 //
6202 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6203 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6204 //
6205 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6206 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6207 //
6208 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6209 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6210 //
6211 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6212   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6213 
6214   Node* sha_obj = argument(0);
6215   Node* src     = argument(1); // type oop
6216   Node* ofs     = argument(2); // type int
6217 
6218   const Type* src_type = src->Value(&_gvn);
6219   const TypeAryPtr* top_src = src_type->isa_aryptr();
6220   if (top_src  == NULL || top_src->klass()  == NULL) {
6221     // failed array check
6222     return false;
6223   }
6224   // Figure out the size and type of the elements we will be copying.
6225   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6226   if (src_elem != T_BYTE) {
6227     return false;
6228   }
6229   // 'src_start' points to src array + offset
6230   Node* src_start = array_element_address(src, ofs, src_elem);
6231   Node* state = NULL;
6232   address stubAddr;
6233   const char *stubName;
6234 
6235   switch(id) {
6236   case vmIntrinsics::_sha_implCompress:
6237     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6238     state = get_state_from_sha_object(sha_obj);
6239     stubAddr = StubRoutines::sha1_implCompress();
6240     stubName = "sha1_implCompress";
6241     break;
6242   case vmIntrinsics::_sha2_implCompress:
6243     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6244     state = get_state_from_sha_object(sha_obj);
6245     stubAddr = StubRoutines::sha256_implCompress();
6246     stubName = "sha256_implCompress";
6247     break;
6248   case vmIntrinsics::_sha5_implCompress:
6249     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6250     state = get_state_from_sha5_object(sha_obj);
6251     stubAddr = StubRoutines::sha512_implCompress();
6252     stubName = "sha512_implCompress";
6253     break;
6254   default:
6255     fatal_unexpected_iid(id);
6256     return false;
6257   }
6258   if (state == NULL) return false;
6259 
6260   // Call the stub.
6261   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6262                                  stubAddr, stubName, TypePtr::BOTTOM,
6263                                  src_start, state);
6264 
6265   return true;
6266 }
6267 
6268 //------------------------------inline_digestBase_implCompressMB-----------------------
6269 //
6270 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6271 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6272 //
6273 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6274   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6275          "need SHA1/SHA256/SHA512 instruction support");
6276   assert((uint)predicate < 3, "sanity");
6277   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6278 
6279   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6280   Node* src            = argument(1); // byte[] array
6281   Node* ofs            = argument(2); // type int
6282   Node* limit          = argument(3); // type int
6283 
6284   const Type* src_type = src->Value(&_gvn);
6285   const TypeAryPtr* top_src = src_type->isa_aryptr();
6286   if (top_src  == NULL || top_src->klass()  == NULL) {
6287     // failed array check
6288     return false;
6289   }
6290   // Figure out the size and type of the elements we will be copying.
6291   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6292   if (src_elem != T_BYTE) {
6293     return false;
6294   }
6295   // 'src_start' points to src array + offset
6296   Node* src_start = array_element_address(src, ofs, src_elem);
6297 
6298   const char* klass_SHA_name = NULL;
6299   const char* stub_name = NULL;
6300   address     stub_addr = NULL;
6301   bool        long_state = false;
6302 
6303   switch (predicate) {
6304   case 0:
6305     if (UseSHA1Intrinsics) {
6306       klass_SHA_name = "sun/security/provider/SHA";
6307       stub_name = "sha1_implCompressMB";
6308       stub_addr = StubRoutines::sha1_implCompressMB();
6309     }
6310     break;
6311   case 1:
6312     if (UseSHA256Intrinsics) {
6313       klass_SHA_name = "sun/security/provider/SHA2";
6314       stub_name = "sha256_implCompressMB";
6315       stub_addr = StubRoutines::sha256_implCompressMB();
6316     }
6317     break;
6318   case 2:
6319     if (UseSHA512Intrinsics) {
6320       klass_SHA_name = "sun/security/provider/SHA5";
6321       stub_name = "sha512_implCompressMB";
6322       stub_addr = StubRoutines::sha512_implCompressMB();
6323       long_state = true;
6324     }
6325     break;
6326   default:
6327     fatal("unknown SHA intrinsic predicate: %d", predicate);
6328   }
6329   if (klass_SHA_name != NULL) {
6330     // get DigestBase klass to lookup for SHA klass
6331     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6332     assert(tinst != NULL, "digestBase_obj is not instance???");
6333     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6334 
6335     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6336     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6337     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6338     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6339   }
6340   return false;
6341 }
6342 //------------------------------inline_sha_implCompressMB-----------------------
6343 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6344                                                bool long_state, address stubAddr, const char *stubName,
6345                                                Node* src_start, Node* ofs, Node* limit) {
6346   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6347   const TypeOopPtr* xtype = aklass->as_instance_type();
6348   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6349   sha_obj = _gvn.transform(sha_obj);
6350 
6351   Node* state;
6352   if (long_state) {
6353     state = get_state_from_sha5_object(sha_obj);
6354   } else {
6355     state = get_state_from_sha_object(sha_obj);
6356   }
6357   if (state == NULL) return false;
6358 
6359   // Call the stub.
6360   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6361                                  OptoRuntime::digestBase_implCompressMB_Type(),
6362                                  stubAddr, stubName, TypePtr::BOTTOM,
6363                                  src_start, state, ofs, limit);
6364   // return ofs (int)
6365   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6366   set_result(result);
6367 
6368   return true;
6369 }
6370 
6371 //------------------------------get_state_from_sha_object-----------------------
6372 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6373   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6374   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6375   if (sha_state == NULL) return (Node *) NULL;
6376 
6377   // now have the array, need to get the start address of the state array
6378   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6379   return state;
6380 }
6381 
6382 //------------------------------get_state_from_sha5_object-----------------------
6383 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6384   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6385   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6386   if (sha_state == NULL) return (Node *) NULL;
6387 
6388   // now have the array, need to get the start address of the state array
6389   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6390   return state;
6391 }
6392 
6393 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6394 // Return node representing slow path of predicate check.
6395 // the pseudo code we want to emulate with this predicate is:
6396 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6397 //
6398 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6399   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6400          "need SHA1/SHA256/SHA512 instruction support");
6401   assert((uint)predicate < 3, "sanity");
6402 
6403   // The receiver was checked for NULL already.
6404   Node* digestBaseObj = argument(0);
6405 
6406   // get DigestBase klass for instanceOf check
6407   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6408   assert(tinst != NULL, "digestBaseObj is null");
6409   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6410 
6411   const char* klass_SHA_name = NULL;
6412   switch (predicate) {
6413   case 0:
6414     if (UseSHA1Intrinsics) {
6415       // we want to do an instanceof comparison against the SHA class
6416       klass_SHA_name = "sun/security/provider/SHA";
6417     }
6418     break;
6419   case 1:
6420     if (UseSHA256Intrinsics) {
6421       // we want to do an instanceof comparison against the SHA2 class
6422       klass_SHA_name = "sun/security/provider/SHA2";
6423     }
6424     break;
6425   case 2:
6426     if (UseSHA512Intrinsics) {
6427       // we want to do an instanceof comparison against the SHA5 class
6428       klass_SHA_name = "sun/security/provider/SHA5";
6429     }
6430     break;
6431   default:
6432     fatal("unknown SHA intrinsic predicate: %d", predicate);
6433   }
6434 
6435   ciKlass* klass_SHA = NULL;
6436   if (klass_SHA_name != NULL) {
6437     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6438   }
6439   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6440     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6441     Node* ctrl = control();
6442     set_control(top()); // no intrinsic path
6443     return ctrl;
6444   }
6445   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6446 
6447   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6448   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6449   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6450   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6451 
6452   return instof_false;  // even if it is NULL
6453 }
6454 
6455 bool LibraryCallKit::inline_profileBoolean() {
6456   Node* counts = argument(1);
6457   const TypeAryPtr* ary = NULL;
6458   ciArray* aobj = NULL;
6459   if (counts->is_Con()
6460       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6461       && (aobj = ary->const_oop()->as_array()) != NULL
6462       && (aobj->length() == 2)) {
6463     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6464     jint false_cnt = aobj->element_value(0).as_int();
6465     jint  true_cnt = aobj->element_value(1).as_int();
6466 
6467     if (C->log() != NULL) {
6468       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6469                      false_cnt, true_cnt);
6470     }
6471 
6472     if (false_cnt + true_cnt == 0) {
6473       // According to profile, never executed.
6474       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6475                           Deoptimization::Action_reinterpret);
6476       return true;
6477     }
6478 
6479     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6480     // is a number of each value occurrences.
6481     Node* result = argument(0);
6482     if (false_cnt == 0 || true_cnt == 0) {
6483       // According to profile, one value has been never seen.
6484       int expected_val = (false_cnt == 0) ? 1 : 0;
6485 
6486       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6487       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6488 
6489       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6490       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6491       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6492 
6493       { // Slow path: uncommon trap for never seen value and then reexecute
6494         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6495         // the value has been seen at least once.
6496         PreserveJVMState pjvms(this);
6497         PreserveReexecuteState preexecs(this);
6498         jvms()->set_should_reexecute(true);
6499 
6500         set_control(slow_path);
6501         set_i_o(i_o());
6502 
6503         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6504                             Deoptimization::Action_reinterpret);
6505       }
6506       // The guard for never seen value enables sharpening of the result and
6507       // returning a constant. It allows to eliminate branches on the same value
6508       // later on.
6509       set_control(fast_path);
6510       result = intcon(expected_val);
6511     }
6512     // Stop profiling.
6513     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6514     // By replacing method body with profile data (represented as ProfileBooleanNode
6515     // on IR level) we effectively disable profiling.
6516     // It enables full speed execution once optimized code is generated.
6517     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6518     C->record_for_igvn(profile);
6519     set_result(profile);
6520     return true;
6521   } else {
6522     // Continue profiling.
6523     // Profile data isn't available at the moment. So, execute method's bytecode version.
6524     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6525     // is compiled and counters aren't available since corresponding MethodHandle
6526     // isn't a compile-time constant.
6527     return false;
6528   }
6529 }
6530 
6531 bool LibraryCallKit::inline_isCompileConstant() {
6532   Node* n = argument(0);
6533   set_result(n->is_Con() ? intcon(1) : intcon(0));
6534   return true;
6535 }