1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/countbitsnode.hpp"
  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/mathexactnode.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/mulnode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/parse.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "trace/traceMacros.hpp"
  53 
  54 class LibraryIntrinsic : public InlineCallGenerator {
  55   // Extend the set of intrinsics known to the runtime:
  56  public:
  57  private:
  58   bool             _is_virtual;
  59   bool             _does_virtual_dispatch;
  60   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  61   int8_t           _last_predicate; // Last generated predicate
  62   vmIntrinsics::ID _intrinsic_id;
  63 
  64  public:
  65   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  66     : InlineCallGenerator(m),
  67       _is_virtual(is_virtual),
  68       _does_virtual_dispatch(does_virtual_dispatch),
  69       _predicates_count((int8_t)predicates_count),
  70       _last_predicate((int8_t)-1),
  71       _intrinsic_id(id)
  72   {
  73   }
  74   virtual bool is_intrinsic() const { return true; }
  75   virtual bool is_virtual()   const { return _is_virtual; }
  76   virtual bool is_predicated() const { return _predicates_count > 0; }
  77   virtual int  predicates_count() const { return _predicates_count; }
  78   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  79   virtual JVMState* generate(JVMState* jvms);
  80   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  81   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  82 };
  83 
  84 
  85 // Local helper class for LibraryIntrinsic:
  86 class LibraryCallKit : public GraphKit {
  87  private:
  88   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  89   Node*             _result;        // the result node, if any
  90   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  91 
  92   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  93 
  94  public:
  95   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  96     : GraphKit(jvms),
  97       _intrinsic(intrinsic),
  98       _result(NULL)
  99   {
 100     // Check if this is a root compile.  In that case we don't have a caller.
 101     if (!jvms->has_method()) {
 102       _reexecute_sp = sp();
 103     } else {
 104       // Find out how many arguments the interpreter needs when deoptimizing
 105       // and save the stack pointer value so it can used by uncommon_trap.
 106       // We find the argument count by looking at the declared signature.
 107       bool ignored_will_link;
 108       ciSignature* declared_signature = NULL;
 109       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 110       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 111       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 112     }
 113   }
 114 
 115   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 116 
 117   ciMethod*         caller()    const    { return jvms()->method(); }
 118   int               bci()       const    { return jvms()->bci(); }
 119   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 120   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 121   ciMethod*         callee()    const    { return _intrinsic->method(); }
 122 
 123   bool  try_to_inline(int predicate);
 124   Node* try_to_predicate(int predicate);
 125 
 126   void push_result() {
 127     // Push the result onto the stack.
 128     if (!stopped() && result() != NULL) {
 129       BasicType bt = result()->bottom_type()->basic_type();
 130       push_node(bt, result());
 131     }
 132   }
 133 
 134  private:
 135   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 136     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 137   }
 138 
 139   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 140   void  set_result(RegionNode* region, PhiNode* value);
 141   Node*     result() { return _result; }
 142 
 143   virtual int reexecute_sp() { return _reexecute_sp; }
 144 
 145   // Helper functions to inline natives
 146   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 147   Node* generate_slow_guard(Node* test, RegionNode* region);
 148   Node* generate_fair_guard(Node* test, RegionNode* region);
 149   Node* generate_negative_guard(Node* index, RegionNode* region,
 150                                 // resulting CastII of index:
 151                                 Node* *pos_index = NULL);
 152   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 153                              Node* array_length,
 154                              RegionNode* region);
 155   void  generate_string_range_check(Node* array, Node* offset,
 156                                     Node* length, bool char_count);
 157   Node* generate_current_thread(Node* &tls_output);
 158   Node* load_mirror_from_klass(Node* klass);
 159   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 160                                       RegionNode* region, int null_path,
 161                                       int offset);
 162   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 163                                RegionNode* region, int null_path) {
 164     int offset = java_lang_Class::klass_offset_in_bytes();
 165     return load_klass_from_mirror_common(mirror, never_see_null,
 166                                          region, null_path,
 167                                          offset);
 168   }
 169   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 170                                      RegionNode* region, int null_path) {
 171     int offset = java_lang_Class::array_klass_offset_in_bytes();
 172     return load_klass_from_mirror_common(mirror, never_see_null,
 173                                          region, null_path,
 174                                          offset);
 175   }
 176   Node* generate_access_flags_guard(Node* kls,
 177                                     int modifier_mask, int modifier_bits,
 178                                     RegionNode* region);
 179   Node* generate_interface_guard(Node* kls, RegionNode* region);
 180   Node* generate_array_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, false, false);
 182   }
 183   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, false, true);
 185   }
 186   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, true, false);
 188   }
 189   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, true, true);
 191   }
 192   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 193                                     bool obj_array, bool not_array);
 194   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 195   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 196                                      bool is_virtual = false, bool is_static = false);
 197   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 198     return generate_method_call(method_id, false, true);
 199   }
 200   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 201     return generate_method_call(method_id, true, false);
 202   }
 203   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 204 
 205   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 206   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 207   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 208   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 209   bool inline_string_indexOfChar();
 210   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 211   bool inline_string_toBytesU();
 212   bool inline_string_getCharsU();
 213   bool inline_string_copy(bool compress);
 214   bool inline_string_char_access(bool is_store);
 215   Node* round_double_node(Node* n);
 216   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 217   bool inline_math_native(vmIntrinsics::ID id);
 218   bool inline_trig(vmIntrinsics::ID id);
 219   bool inline_math(vmIntrinsics::ID id);
 220   template <typename OverflowOp>
 221   bool inline_math_overflow(Node* arg1, Node* arg2);
 222   void inline_math_mathExact(Node* math, Node* test);
 223   bool inline_math_addExactI(bool is_increment);
 224   bool inline_math_addExactL(bool is_increment);
 225   bool inline_math_multiplyExactI();
 226   bool inline_math_multiplyExactL();
 227   bool inline_math_negateExactI();
 228   bool inline_math_negateExactL();
 229   bool inline_math_subtractExactI(bool is_decrement);
 230   bool inline_math_subtractExactL(bool is_decrement);
 231   bool inline_pow();
 232   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 233   bool inline_min_max(vmIntrinsics::ID id);
 234   bool inline_notify(vmIntrinsics::ID id);
 235   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 236   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 237   int classify_unsafe_addr(Node* &base, Node* &offset);
 238   Node* make_unsafe_address(Node* base, Node* offset);
 239   // Helper for inline_unsafe_access.
 240   // Generates the guards that check whether the result of
 241   // Unsafe.getObject should be recorded in an SATB log buffer.
 242   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 243   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool is_unaligned);
 244   static bool klass_needs_init_guard(Node* kls);
 245   bool inline_unsafe_allocate();
 246   bool inline_unsafe_copyMemory();
 247   bool inline_native_currentThread();
 248 #ifdef TRACE_HAVE_INTRINSICS
 249   bool inline_native_classID();
 250   bool inline_native_threadID();
 251 #endif
 252   bool inline_native_time_funcs(address method, const char* funcName);
 253   bool inline_native_isInterrupted();
 254   bool inline_native_Class_query(vmIntrinsics::ID id);
 255   bool inline_native_subtype_check();
 256 
 257   bool inline_native_newArray();
 258   bool inline_native_getLength();
 259   bool inline_array_copyOf(bool is_copyOfRange);
 260   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 261   bool inline_objects_checkIndex();
 262   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 263   bool inline_native_clone(bool is_virtual);
 264   bool inline_native_Reflection_getCallerClass();
 265   // Helper function for inlining native object hash method
 266   bool inline_native_hashcode(bool is_virtual, bool is_static);
 267   bool inline_native_getClass();
 268 
 269   // Helper functions for inlining arraycopy
 270   bool inline_arraycopy();
 271   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 272                                                 RegionNode* slow_region);
 273   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 274   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 275 
 276   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 277   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 278   bool inline_unsafe_ordered_store(BasicType type);
 279   bool inline_unsafe_fence(vmIntrinsics::ID id);
 280   bool inline_fp_conversions(vmIntrinsics::ID id);
 281   bool inline_number_methods(vmIntrinsics::ID id);
 282   bool inline_reference_get();
 283   bool inline_Class_cast();
 284   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 285   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 286   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 287   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 288   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 289   bool inline_ghash_processBlocks();
 290   bool inline_sha_implCompress(vmIntrinsics::ID id);
 291   bool inline_digestBase_implCompressMB(int predicate);
 292   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 293                                  bool long_state, address stubAddr, const char *stubName,
 294                                  Node* src_start, Node* ofs, Node* limit);
 295   Node* get_state_from_sha_object(Node *sha_object);
 296   Node* get_state_from_sha5_object(Node *sha_object);
 297   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 298   bool inline_encodeISOArray();
 299   bool inline_updateCRC32();
 300   bool inline_updateBytesCRC32();
 301   bool inline_updateByteBufferCRC32();
 302   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 303   bool inline_updateBytesCRC32C();
 304   bool inline_updateDirectByteBufferCRC32C();
 305   bool inline_updateBytesAdler32();
 306   bool inline_updateByteBufferAdler32();
 307   bool inline_multiplyToLen();
 308   bool inline_hasNegatives();
 309   bool inline_squareToLen();
 310   bool inline_mulAdd();
 311   bool inline_montgomeryMultiply();
 312   bool inline_montgomerySquare();
 313 
 314   bool inline_profileBoolean();
 315   bool inline_isCompileConstant();
 316 };
 317 
 318 //---------------------------make_vm_intrinsic----------------------------
 319 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 320   vmIntrinsics::ID id = m->intrinsic_id();
 321   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 322 
 323   if (!m->is_loaded()) {
 324     // Do not attempt to inline unloaded methods.
 325     return NULL;
 326   }
 327 
 328   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 329   bool is_available = false;
 330 
 331   {
 332     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 333     // the compiler must transition to '_thread_in_vm' state because both
 334     // methods access VM-internal data.
 335     VM_ENTRY_MARK;
 336     methodHandle mh(THREAD, m->get_Method());
 337     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 338                    !C->directive()->is_intrinsic_disabled(mh) &&
 339                    !vmIntrinsics::is_disabled_by_flags(mh);
 340 
 341   }
 342 
 343   if (is_available) {
 344     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 345     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 346     return new LibraryIntrinsic(m, is_virtual,
 347                                 vmIntrinsics::predicates_needed(id),
 348                                 vmIntrinsics::does_virtual_dispatch(id),
 349                                 (vmIntrinsics::ID) id);
 350   } else {
 351     return NULL;
 352   }
 353 }
 354 
 355 //----------------------register_library_intrinsics-----------------------
 356 // Initialize this file's data structures, for each Compile instance.
 357 void Compile::register_library_intrinsics() {
 358   // Nothing to do here.
 359 }
 360 
 361 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 362   LibraryCallKit kit(jvms, this);
 363   Compile* C = kit.C;
 364   int nodes = C->unique();
 365 #ifndef PRODUCT
 366   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 367     char buf[1000];
 368     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 369     tty->print_cr("Intrinsic %s", str);
 370   }
 371 #endif
 372   ciMethod* callee = kit.callee();
 373   const int bci    = kit.bci();
 374 
 375   // Try to inline the intrinsic.
 376   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 377       kit.try_to_inline(_last_predicate)) {
 378     if (C->print_intrinsics() || C->print_inlining()) {
 379       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 380     }
 381     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 382     if (C->log()) {
 383       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 384                      vmIntrinsics::name_at(intrinsic_id()),
 385                      (is_virtual() ? " virtual='1'" : ""),
 386                      C->unique() - nodes);
 387     }
 388     // Push the result from the inlined method onto the stack.
 389     kit.push_result();
 390     C->print_inlining_update(this);
 391     return kit.transfer_exceptions_into_jvms();
 392   }
 393 
 394   // The intrinsic bailed out
 395   if (C->print_intrinsics() || C->print_inlining()) {
 396     if (jvms->has_method()) {
 397       // Not a root compile.
 398       const char* msg;
 399       if (callee->intrinsic_candidate()) {
 400         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 401       } else {
 402         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 403                            : "failed to inline (intrinsic), method not annotated";
 404       }
 405       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 406     } else {
 407       // Root compile
 408       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 409                vmIntrinsics::name_at(intrinsic_id()),
 410                (is_virtual() ? " (virtual)" : ""), bci);
 411     }
 412   }
 413   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 414   C->print_inlining_update(this);
 415   return NULL;
 416 }
 417 
 418 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 419   LibraryCallKit kit(jvms, this);
 420   Compile* C = kit.C;
 421   int nodes = C->unique();
 422   _last_predicate = predicate;
 423 #ifndef PRODUCT
 424   assert(is_predicated() && predicate < predicates_count(), "sanity");
 425   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 426     char buf[1000];
 427     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 428     tty->print_cr("Predicate for intrinsic %s", str);
 429   }
 430 #endif
 431   ciMethod* callee = kit.callee();
 432   const int bci    = kit.bci();
 433 
 434   Node* slow_ctl = kit.try_to_predicate(predicate);
 435   if (!kit.failing()) {
 436     if (C->print_intrinsics() || C->print_inlining()) {
 437       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 438     }
 439     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 440     if (C->log()) {
 441       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 442                      vmIntrinsics::name_at(intrinsic_id()),
 443                      (is_virtual() ? " virtual='1'" : ""),
 444                      C->unique() - nodes);
 445     }
 446     return slow_ctl; // Could be NULL if the check folds.
 447   }
 448 
 449   // The intrinsic bailed out
 450   if (C->print_intrinsics() || C->print_inlining()) {
 451     if (jvms->has_method()) {
 452       // Not a root compile.
 453       const char* msg = "failed to generate predicate for intrinsic";
 454       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 455     } else {
 456       // Root compile
 457       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 458                                         vmIntrinsics::name_at(intrinsic_id()),
 459                                         (is_virtual() ? " (virtual)" : ""), bci);
 460     }
 461   }
 462   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 463   return NULL;
 464 }
 465 
 466 bool LibraryCallKit::try_to_inline(int predicate) {
 467   // Handle symbolic names for otherwise undistinguished boolean switches:
 468   const bool is_store       = true;
 469   const bool is_compress    = true;
 470   const bool is_native_ptr  = true;
 471   const bool is_static      = true;
 472   const bool is_volatile    = true;
 473 
 474   if (!jvms()->has_method()) {
 475     // Root JVMState has a null method.
 476     assert(map()->memory()->Opcode() == Op_Parm, "");
 477     // Insert the memory aliasing node
 478     set_all_memory(reset_memory());
 479   }
 480   assert(merged_memory(), "");
 481 
 482 
 483   switch (intrinsic_id()) {
 484   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 485   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 486   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 487 
 488   case vmIntrinsics::_dsin:
 489   case vmIntrinsics::_dcos:
 490   case vmIntrinsics::_dtan:
 491   case vmIntrinsics::_dabs:
 492   case vmIntrinsics::_datan2:
 493   case vmIntrinsics::_dsqrt:
 494   case vmIntrinsics::_dexp:
 495   case vmIntrinsics::_dlog:
 496   case vmIntrinsics::_dlog10:
 497   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 498 
 499   case vmIntrinsics::_min:
 500   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 501 
 502   case vmIntrinsics::_notify:
 503   case vmIntrinsics::_notifyAll:
 504     if (InlineNotify) {
 505       return inline_notify(intrinsic_id());
 506     }
 507     return false;
 508 
 509   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 510   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 511   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 512   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 513   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 514   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 515   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 516   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 517   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 518   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 519   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 520   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 521 
 522   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 523 
 524   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 525   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 526   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 527   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 528 
 529   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 530   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 531   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 532   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 533   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 534   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 535   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 536 
 537   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 538   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 539 
 540   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 541   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 542   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 543   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 544 
 545   case vmIntrinsics::_compressStringC:
 546   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 547   case vmIntrinsics::_inflateStringC:
 548   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 549 
 550   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile, false);
 551   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile, false);
 552   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 553   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 554   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 555   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 556   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 557   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 558   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 559   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile, false);
 560   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile, false);
 561   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 562   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 563   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 564   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 565   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 566   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 567   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 568 
 569   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 570   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 571   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 572   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 573   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 574   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 575   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 576   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile, false);
 577 
 578   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 579   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 580   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 581   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 582   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 583   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 584   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 585   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile, false);
 586 
 587   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile, false);
 588   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile, false);
 589   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile, false);
 590   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile, false);
 591   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile, false);
 592   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile, false);
 593   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile, false);
 594   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile, false);
 595   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile, false);
 596 
 597   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile, false);
 598   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile, false);
 599   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile, false);
 600   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile, false);
 601   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile, false);
 602   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile, false);
 603   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile, false);
 604   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile, false);
 605   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile, false);
 606 
 607   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile, true);
 608   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile, true);
 609   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile, true);
 610   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile, true);
 611 
 612   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile, true);
 613   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile, true);
 614   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile, true);
 615   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile, true);
 616 
 617   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 618   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 619   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 620 
 621   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 622   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 623   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 624 
 625   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 626   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 627   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 628   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 629   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 630 
 631   case vmIntrinsics::_loadFence:
 632   case vmIntrinsics::_storeFence:
 633   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 634 
 635   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 636   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 637 
 638 #ifdef TRACE_HAVE_INTRINSICS
 639   case vmIntrinsics::_classID:                  return inline_native_classID();
 640   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 641   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 642 #endif
 643   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 644   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 645   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 646   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 647   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 648   case vmIntrinsics::_getLength:                return inline_native_getLength();
 649   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 650   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 651   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 652   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 653   case vmIntrinsics::_Objects_checkIndex:       return inline_objects_checkIndex();
 654   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 655 
 656   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 657 
 658   case vmIntrinsics::_isInstance:
 659   case vmIntrinsics::_getModifiers:
 660   case vmIntrinsics::_isInterface:
 661   case vmIntrinsics::_isArray:
 662   case vmIntrinsics::_isPrimitive:
 663   case vmIntrinsics::_getSuperclass:
 664   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 665 
 666   case vmIntrinsics::_floatToRawIntBits:
 667   case vmIntrinsics::_floatToIntBits:
 668   case vmIntrinsics::_intBitsToFloat:
 669   case vmIntrinsics::_doubleToRawLongBits:
 670   case vmIntrinsics::_doubleToLongBits:
 671   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 672 
 673   case vmIntrinsics::_numberOfLeadingZeros_i:
 674   case vmIntrinsics::_numberOfLeadingZeros_l:
 675   case vmIntrinsics::_numberOfTrailingZeros_i:
 676   case vmIntrinsics::_numberOfTrailingZeros_l:
 677   case vmIntrinsics::_bitCount_i:
 678   case vmIntrinsics::_bitCount_l:
 679   case vmIntrinsics::_reverseBytes_i:
 680   case vmIntrinsics::_reverseBytes_l:
 681   case vmIntrinsics::_reverseBytes_s:
 682   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 683 
 684   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 685 
 686   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 687 
 688   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 689 
 690   case vmIntrinsics::_aescrypt_encryptBlock:
 691   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 692 
 693   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 694   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 695     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 696 
 697   case vmIntrinsics::_sha_implCompress:
 698   case vmIntrinsics::_sha2_implCompress:
 699   case vmIntrinsics::_sha5_implCompress:
 700     return inline_sha_implCompress(intrinsic_id());
 701 
 702   case vmIntrinsics::_digestBase_implCompressMB:
 703     return inline_digestBase_implCompressMB(predicate);
 704 
 705   case vmIntrinsics::_multiplyToLen:
 706     return inline_multiplyToLen();
 707 
 708   case vmIntrinsics::_squareToLen:
 709     return inline_squareToLen();
 710 
 711   case vmIntrinsics::_mulAdd:
 712     return inline_mulAdd();
 713 
 714   case vmIntrinsics::_montgomeryMultiply:
 715     return inline_montgomeryMultiply();
 716   case vmIntrinsics::_montgomerySquare:
 717     return inline_montgomerySquare();
 718 
 719   case vmIntrinsics::_ghash_processBlocks:
 720     return inline_ghash_processBlocks();
 721 
 722   case vmIntrinsics::_encodeISOArray:
 723   case vmIntrinsics::_encodeByteISOArray:
 724     return inline_encodeISOArray();
 725 
 726   case vmIntrinsics::_updateCRC32:
 727     return inline_updateCRC32();
 728   case vmIntrinsics::_updateBytesCRC32:
 729     return inline_updateBytesCRC32();
 730   case vmIntrinsics::_updateByteBufferCRC32:
 731     return inline_updateByteBufferCRC32();
 732 
 733   case vmIntrinsics::_updateBytesCRC32C:
 734     return inline_updateBytesCRC32C();
 735   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 736     return inline_updateDirectByteBufferCRC32C();
 737 
 738   case vmIntrinsics::_updateBytesAdler32:
 739     return inline_updateBytesAdler32();
 740   case vmIntrinsics::_updateByteBufferAdler32:
 741     return inline_updateByteBufferAdler32();
 742 
 743   case vmIntrinsics::_profileBoolean:
 744     return inline_profileBoolean();
 745   case vmIntrinsics::_isCompileConstant:
 746     return inline_isCompileConstant();
 747 
 748   case vmIntrinsics::_hasNegatives:
 749     return inline_hasNegatives();
 750 
 751   default:
 752     // If you get here, it may be that someone has added a new intrinsic
 753     // to the list in vmSymbols.hpp without implementing it here.
 754 #ifndef PRODUCT
 755     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 756       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 757                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 758     }
 759 #endif
 760     return false;
 761   }
 762 }
 763 
 764 Node* LibraryCallKit::try_to_predicate(int predicate) {
 765   if (!jvms()->has_method()) {
 766     // Root JVMState has a null method.
 767     assert(map()->memory()->Opcode() == Op_Parm, "");
 768     // Insert the memory aliasing node
 769     set_all_memory(reset_memory());
 770   }
 771   assert(merged_memory(), "");
 772 
 773   switch (intrinsic_id()) {
 774   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 775     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 776   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 777     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 778   case vmIntrinsics::_digestBase_implCompressMB:
 779     return inline_digestBase_implCompressMB_predicate(predicate);
 780 
 781   default:
 782     // If you get here, it may be that someone has added a new intrinsic
 783     // to the list in vmSymbols.hpp without implementing it here.
 784 #ifndef PRODUCT
 785     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 786       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 787                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 788     }
 789 #endif
 790     Node* slow_ctl = control();
 791     set_control(top()); // No fast path instrinsic
 792     return slow_ctl;
 793   }
 794 }
 795 
 796 //------------------------------set_result-------------------------------
 797 // Helper function for finishing intrinsics.
 798 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 799   record_for_igvn(region);
 800   set_control(_gvn.transform(region));
 801   set_result( _gvn.transform(value));
 802   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 803 }
 804 
 805 //------------------------------generate_guard---------------------------
 806 // Helper function for generating guarded fast-slow graph structures.
 807 // The given 'test', if true, guards a slow path.  If the test fails
 808 // then a fast path can be taken.  (We generally hope it fails.)
 809 // In all cases, GraphKit::control() is updated to the fast path.
 810 // The returned value represents the control for the slow path.
 811 // The return value is never 'top'; it is either a valid control
 812 // or NULL if it is obvious that the slow path can never be taken.
 813 // Also, if region and the slow control are not NULL, the slow edge
 814 // is appended to the region.
 815 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 816   if (stopped()) {
 817     // Already short circuited.
 818     return NULL;
 819   }
 820 
 821   // Build an if node and its projections.
 822   // If test is true we take the slow path, which we assume is uncommon.
 823   if (_gvn.type(test) == TypeInt::ZERO) {
 824     // The slow branch is never taken.  No need to build this guard.
 825     return NULL;
 826   }
 827 
 828   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 829 
 830   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 831   if (if_slow == top()) {
 832     // The slow branch is never taken.  No need to build this guard.
 833     return NULL;
 834   }
 835 
 836   if (region != NULL)
 837     region->add_req(if_slow);
 838 
 839   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 840   set_control(if_fast);
 841 
 842   return if_slow;
 843 }
 844 
 845 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 846   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 847 }
 848 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 849   return generate_guard(test, region, PROB_FAIR);
 850 }
 851 
 852 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 853                                                      Node* *pos_index) {
 854   if (stopped())
 855     return NULL;                // already stopped
 856   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 857     return NULL;                // index is already adequately typed
 858   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 859   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 860   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 861   if (is_neg != NULL && pos_index != NULL) {
 862     // Emulate effect of Parse::adjust_map_after_if.
 863     Node* ccast = new CastIINode(index, TypeInt::POS);
 864     ccast->set_req(0, control());
 865     (*pos_index) = _gvn.transform(ccast);
 866   }
 867   return is_neg;
 868 }
 869 
 870 // Make sure that 'position' is a valid limit index, in [0..length].
 871 // There are two equivalent plans for checking this:
 872 //   A. (offset + copyLength)  unsigned<=  arrayLength
 873 //   B. offset  <=  (arrayLength - copyLength)
 874 // We require that all of the values above, except for the sum and
 875 // difference, are already known to be non-negative.
 876 // Plan A is robust in the face of overflow, if offset and copyLength
 877 // are both hugely positive.
 878 //
 879 // Plan B is less direct and intuitive, but it does not overflow at
 880 // all, since the difference of two non-negatives is always
 881 // representable.  Whenever Java methods must perform the equivalent
 882 // check they generally use Plan B instead of Plan A.
 883 // For the moment we use Plan A.
 884 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 885                                                   Node* subseq_length,
 886                                                   Node* array_length,
 887                                                   RegionNode* region) {
 888   if (stopped())
 889     return NULL;                // already stopped
 890   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 891   if (zero_offset && subseq_length->eqv_uncast(array_length))
 892     return NULL;                // common case of whole-array copy
 893   Node* last = subseq_length;
 894   if (!zero_offset)             // last += offset
 895     last = _gvn.transform(new AddINode(last, offset));
 896   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 897   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 898   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 899   return is_over;
 900 }
 901 
 902 // Emit range checks for the given String.value byte array
 903 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 904   RegionNode* bailout = new RegionNode(1);
 905   record_for_igvn(bailout);
 906   if (char_count) {
 907     // Convert char count to byte count
 908     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 909   }
 910 
 911   // Offset and count must not be negative
 912   generate_negative_guard(offset, bailout);
 913   generate_negative_guard(count, bailout);
 914   // Offset + count must not exceed length of array
 915   generate_limit_guard(offset, count, load_array_length(array), bailout);
 916 
 917   if (bailout->req() > 1) {
 918     PreserveJVMState pjvms(this);
 919     set_control(_gvn.transform(bailout));
 920     uncommon_trap(Deoptimization::Reason_intrinsic,
 921                   Deoptimization::Action_maybe_recompile);
 922   }
 923 }
 924 
 925 //--------------------------generate_current_thread--------------------
 926 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 927   ciKlass*    thread_klass = env()->Thread_klass();
 928   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 929   Node* thread = _gvn.transform(new ThreadLocalNode());
 930   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 931   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
 932   tls_output = thread;
 933   return threadObj;
 934 }
 935 
 936 
 937 //------------------------------make_string_method_node------------------------
 938 // Helper method for String intrinsic functions. This version is called with
 939 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 940 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 941 // containing the lengths of str1 and str2.
 942 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 943   Node* result = NULL;
 944   switch (opcode) {
 945   case Op_StrIndexOf:
 946     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 947                                 str1_start, cnt1, str2_start, cnt2, ae);
 948     break;
 949   case Op_StrComp:
 950     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
 951                              str1_start, cnt1, str2_start, cnt2, ae);
 952     break;
 953   case Op_StrEquals:
 954     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
 955                                str1_start, str2_start, cnt1, ae);
 956     break;
 957   default:
 958     ShouldNotReachHere();
 959     return NULL;
 960   }
 961 
 962   // All these intrinsics have checks.
 963   C->set_has_split_ifs(true); // Has chance for split-if optimization
 964 
 965   return _gvn.transform(result);
 966 }
 967 
 968 //------------------------------inline_string_compareTo------------------------
 969 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
 970   Node* arg1 = argument(0);
 971   Node* arg2 = argument(1);
 972 
 973   // Get start addr and length of first argument
 974   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
 975   Node* arg1_cnt    = load_array_length(arg1);
 976 
 977   // Get start addr and length of second argument
 978   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
 979   Node* arg2_cnt    = load_array_length(arg2);
 980 
 981   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
 982   set_result(result);
 983   return true;
 984 }
 985 
 986 //------------------------------inline_string_equals------------------------
 987 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
 988   Node* arg1 = argument(0);
 989   Node* arg2 = argument(1);
 990 
 991   // paths (plus control) merge
 992   RegionNode* region = new RegionNode(3);
 993   Node* phi = new PhiNode(region, TypeInt::BOOL);
 994 
 995   if (!stopped()) {
 996     // Get start addr and length of first argument
 997     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
 998     Node* arg1_cnt    = load_array_length(arg1);
 999 
1000     // Get start addr and length of second argument
1001     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1002     Node* arg2_cnt    = load_array_length(arg2);
1003 
1004     // Check for arg1_cnt != arg2_cnt
1005     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1006     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1007     Node* if_ne = generate_slow_guard(bol, NULL);
1008     if (if_ne != NULL) {
1009       phi->init_req(2, intcon(0));
1010       region->init_req(2, if_ne);
1011     }
1012 
1013     // Check for count == 0 is done by assembler code for StrEquals.
1014 
1015     if (!stopped()) {
1016       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1017       phi->init_req(1, equals);
1018       region->init_req(1, control());
1019     }
1020   }
1021 
1022   // post merge
1023   set_control(_gvn.transform(region));
1024   record_for_igvn(region);
1025 
1026   set_result(_gvn.transform(phi));
1027   return true;
1028 }
1029 
1030 //------------------------------inline_array_equals----------------------------
1031 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1032   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1033   Node* arg1 = argument(0);
1034   Node* arg2 = argument(1);
1035 
1036   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1037   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1038   return true;
1039 }
1040 
1041 //------------------------------inline_hasNegatives------------------------------
1042 bool LibraryCallKit::inline_hasNegatives() {
1043   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1044 
1045   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1046   // no receiver since it is static method
1047   Node* ba         = argument(0);
1048   Node* offset     = argument(1);
1049   Node* len        = argument(2);
1050 
1051   // Range checks
1052   generate_string_range_check(ba, offset, len, false);
1053   if (stopped()) {
1054     return true;
1055   }
1056   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1057   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1058   set_result(_gvn.transform(result));
1059   return true;
1060 }
1061 
1062 bool LibraryCallKit::inline_objects_checkIndex() {
1063   Node* index = argument(0);
1064   Node* length = argument(1);
1065   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1066     return false;
1067   }
1068 
1069   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1070   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1071 
1072   {
1073     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1074     uncommon_trap(Deoptimization::Reason_intrinsic,
1075                   Deoptimization::Action_make_not_entrant);
1076   }
1077 
1078   if (stopped()) {
1079     return false;
1080   }
1081 
1082   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1083   BoolTest::mask btest = BoolTest::lt;
1084   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1085   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1086   _gvn.set_type(rc, rc->Value(&_gvn));
1087   if (!rc_bool->is_Con()) {
1088     record_for_igvn(rc);
1089   }
1090   set_control(_gvn.transform(new IfTrueNode(rc)));
1091   {
1092     PreserveJVMState pjvms(this);
1093     set_control(_gvn.transform(new IfFalseNode(rc)));
1094     uncommon_trap(Deoptimization::Reason_range_check,
1095                   Deoptimization::Action_make_not_entrant);
1096   }
1097 
1098   if (stopped()) {
1099     return false;
1100   }
1101 
1102   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1103   result->set_req(0, control());
1104   result = _gvn.transform(result);
1105   set_result(result);
1106   replace_in_map(index, result);
1107   return true;
1108 }
1109 
1110 //------------------------------inline_string_indexOf------------------------
1111 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1112   if (!Matcher::has_match_rule(Op_StrIndexOf) || !UseSSE42Intrinsics) {
1113     return false;
1114   }
1115   Node* src = argument(0);
1116   Node* tgt = argument(1);
1117 
1118   // Make the merge point
1119   RegionNode* result_rgn = new RegionNode(4);
1120   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1121 
1122   // Get start addr and length of source string
1123   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1124   Node* src_count = load_array_length(src);
1125 
1126   // Get start addr and length of substring
1127   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1128   Node* tgt_count = load_array_length(tgt);
1129 
1130   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1131     // Divide src size by 2 if String is UTF16 encoded
1132     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1133   }
1134   if (ae == StrIntrinsicNode::UU) {
1135     // Divide substring size by 2 if String is UTF16 encoded
1136     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1137   }
1138 
1139   // Check for substr count > string count
1140   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1141   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1142   Node* if_gt = generate_slow_guard(bol, NULL);
1143   if (if_gt != NULL) {
1144     result_phi->init_req(2, intcon(-1));
1145     result_rgn->init_req(2, if_gt);
1146   }
1147 
1148   if (!stopped()) {
1149     // Check for substr count == 0
1150     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1151     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1152     Node* if_zero = generate_slow_guard(bol, NULL);
1153     if (if_zero != NULL) {
1154       result_phi->init_req(3, intcon(0));
1155       result_rgn->init_req(3, if_zero);
1156     }
1157   }
1158 
1159   if (!stopped()) {
1160     Node* result = make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1161     result_phi->init_req(1, result);
1162     result_rgn->init_req(1, control());
1163   }
1164   set_control(_gvn.transform(result_rgn));
1165   record_for_igvn(result_rgn);
1166   set_result(_gvn.transform(result_phi));
1167 
1168   return true;
1169 }
1170 
1171 //-----------------------------inline_string_indexOf-----------------------
1172 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1173   if (!Matcher::has_match_rule(Op_StrIndexOf) || !UseSSE42Intrinsics) {
1174     return false;
1175   }
1176   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1177   Node* src         = argument(0); // byte[]
1178   Node* src_count   = argument(1);
1179   Node* tgt         = argument(2); // byte[]
1180   Node* tgt_count   = argument(3);
1181   Node* from_index  = argument(4);
1182 
1183   // Multiply byte array index by 2 if String is UTF16 encoded
1184   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1185   src_count = _gvn.transform(new SubINode(src_count, from_index));
1186   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1187   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1188 
1189   // Range checks
1190   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1191   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1192   if (stopped()) {
1193     return true;
1194   }
1195 
1196   Node* result = make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1197 
1198   // The result is index relative to from_index if substring was found, -1 otherwise.
1199   // Generate code which will fold into cmove.
1200   RegionNode* region = new RegionNode(3);
1201   Node* phi = new PhiNode(region, TypeInt::INT);
1202 
1203   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1204   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1205 
1206   Node* if_lt = generate_slow_guard(bol, NULL);
1207   if (if_lt != NULL) {
1208     // result == -1
1209     phi->init_req(2, result);
1210     region->init_req(2, if_lt);
1211   }
1212   if (!stopped()) {
1213     result = _gvn.transform(new AddINode(result, from_index));
1214     phi->init_req(1, result);
1215     region->init_req(1, control());
1216   }
1217 
1218   set_control(_gvn.transform(region));
1219   record_for_igvn(region);
1220   set_result(_gvn.transform(phi));
1221 
1222   return true;
1223 }
1224 
1225 //-----------------------------inline_string_indexOfChar-----------------------
1226 bool LibraryCallKit::inline_string_indexOfChar() {
1227   if (!Matcher::has_match_rule(Op_StrIndexOfChar) || !(UseSSE > 4)) {
1228     return false;
1229   }
1230   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1231   Node* src         = argument(0); // byte[]
1232   Node* tgt         = argument(1); // tgt is int ch
1233   Node* from_index  = argument(2);
1234   Node* max         = argument(3);
1235 
1236   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1237   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1238   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1239 
1240   // Range checks
1241   generate_string_range_check(src, src_offset, src_count, true);
1242   if (stopped()) {
1243     return true;
1244   }
1245 
1246   RegionNode* region = new RegionNode(3);
1247   Node* phi = new PhiNode(region, TypeInt::INT);
1248 
1249   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1250   C->set_has_split_ifs(true); // Has chance for split-if optimization
1251   _gvn.transform(result);
1252 
1253   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1254   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1255 
1256   Node* if_lt = generate_slow_guard(bol, NULL);
1257   if (if_lt != NULL) {
1258     // result == -1
1259     phi->init_req(2, result);
1260     region->init_req(2, if_lt);
1261   }
1262   if (!stopped()) {
1263     result = _gvn.transform(new AddINode(result, from_index));
1264     phi->init_req(1, result);
1265     region->init_req(1, control());
1266   }
1267   set_control(_gvn.transform(region));
1268   record_for_igvn(region);
1269   set_result(_gvn.transform(phi));
1270 
1271   return true;
1272 }
1273 //---------------------------inline_string_copy---------------------
1274 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1275 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1276 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1277 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1278 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1279 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1280 bool LibraryCallKit::inline_string_copy(bool compress) {
1281   int nargs = 5;  // 2 oops, 3 ints
1282   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1283 
1284   Node* src         = argument(0);
1285   Node* src_offset  = argument(1);
1286   Node* dst         = argument(2);
1287   Node* dst_offset  = argument(3);
1288   Node* length      = argument(4);
1289 
1290   // Check for allocation before we add nodes that would confuse
1291   // tightly_coupled_allocation()
1292   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1293 
1294   // Figure out the size and type of the elements we will be copying.
1295   const Type* src_type = src->Value(&_gvn);
1296   const Type* dst_type = dst->Value(&_gvn);
1297   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1298   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1299   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1300          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1301          "Unsupported array types for inline_string_copy");
1302 
1303   // Range checks
1304   generate_string_range_check(src, src_offset, length, compress && src_elem == T_BYTE);
1305   generate_string_range_check(dst, dst_offset, length, !compress && dst_elem == T_BYTE);
1306   if (stopped()) {
1307     return true;
1308   }
1309 
1310   // Convert char[] offsets to byte[] offsets
1311   if (compress && src_elem == T_BYTE) {
1312     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1313   } else if (!compress && dst_elem == T_BYTE) {
1314     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1315   }
1316 
1317   Node* src_start = array_element_address(src, src_offset, src_elem);
1318   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1319   // 'src_start' points to src array + scaled offset
1320   // 'dst_start' points to dst array + scaled offset
1321   Node* count = NULL;
1322   if (compress) {
1323     count = compress_string(src_start, dst_start, length);
1324   } else {
1325     inflate_string(src_start, dst_start, length);
1326   }
1327 
1328   if (alloc != NULL) {
1329     if (alloc->maybe_set_complete(&_gvn)) {
1330       // "You break it, you buy it."
1331       InitializeNode* init = alloc->initialization();
1332       assert(init->is_complete(), "we just did this");
1333       init->set_complete_with_arraycopy();
1334       assert(dst->is_CheckCastPP(), "sanity");
1335       assert(dst->in(0)->in(0) == init, "dest pinned");
1336     }
1337     // Do not let stores that initialize this object be reordered with
1338     // a subsequent store that would make this object accessible by
1339     // other threads.
1340     // Record what AllocateNode this StoreStore protects so that
1341     // escape analysis can go from the MemBarStoreStoreNode to the
1342     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1343     // based on the escape status of the AllocateNode.
1344     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1345   }
1346   if (compress) {
1347     set_result(_gvn.transform(count));
1348   }
1349   return true;
1350 }
1351 
1352 #ifdef _LP64
1353 #define XTOP ,top() /*additional argument*/
1354 #else  //_LP64
1355 #define XTOP        /*no additional argument*/
1356 #endif //_LP64
1357 
1358 //------------------------inline_string_toBytesU--------------------------
1359 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1360 bool LibraryCallKit::inline_string_toBytesU() {
1361   // Get the arguments.
1362   Node* value     = argument(0);
1363   Node* offset    = argument(1);
1364   Node* length    = argument(2);
1365 
1366   Node* newcopy = NULL;
1367 
1368   // Set the original stack and the reexecute bit for the interpreter to reexecute
1369   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1370   { PreserveReexecuteState preexecs(this);
1371     jvms()->set_should_reexecute(true);
1372 
1373     // Check if a null path was taken unconditionally.
1374     value = null_check(value);
1375 
1376     RegionNode* bailout = new RegionNode(1);
1377     record_for_igvn(bailout);
1378 
1379     // Range checks
1380     generate_negative_guard(offset, bailout);
1381     generate_negative_guard(length, bailout);
1382     generate_limit_guard(offset, length, load_array_length(value), bailout);
1383     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1384     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1385 
1386     if (bailout->req() > 1) {
1387       PreserveJVMState pjvms(this);
1388       set_control(_gvn.transform(bailout));
1389       uncommon_trap(Deoptimization::Reason_intrinsic,
1390                     Deoptimization::Action_maybe_recompile);
1391     }
1392     if (stopped()) {
1393       return true;
1394     }
1395 
1396     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1397     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1398     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1399     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1400 
1401     // Calculate starting addresses.
1402     Node* src_start = array_element_address(value, offset, T_CHAR);
1403     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1404 
1405     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1406     const TypeInt* toffset = gvn().type(offset)->is_int();
1407     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1408 
1409     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1410     const char* copyfunc_name = "arraycopy";
1411     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1412     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1413                       OptoRuntime::fast_arraycopy_Type(),
1414                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1415                       src_start, dst_start, ConvI2X(length) XTOP);
1416     // Do not let reads from the cloned object float above the arraycopy.
1417     if (alloc != NULL) {
1418       if (alloc->maybe_set_complete(&_gvn)) {
1419         // "You break it, you buy it."
1420         InitializeNode* init = alloc->initialization();
1421         assert(init->is_complete(), "we just did this");
1422         init->set_complete_with_arraycopy();
1423         assert(newcopy->is_CheckCastPP(), "sanity");
1424         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1425       }
1426       // Do not let stores that initialize this object be reordered with
1427       // a subsequent store that would make this object accessible by
1428       // other threads.
1429       // Record what AllocateNode this StoreStore protects so that
1430       // escape analysis can go from the MemBarStoreStoreNode to the
1431       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1432       // based on the escape status of the AllocateNode.
1433       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1434     } else {
1435       insert_mem_bar(Op_MemBarCPUOrder);
1436     }
1437   } // original reexecute is set back here
1438 
1439   C->set_has_split_ifs(true); // Has chance for split-if optimization
1440   if (!stopped()) {
1441     set_result(newcopy);
1442   }
1443   return true;
1444 }
1445 
1446 //------------------------inline_string_getCharsU--------------------------
1447 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1448 bool LibraryCallKit::inline_string_getCharsU() {
1449   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1450 
1451   // Get the arguments.
1452   Node* src       = argument(0);
1453   Node* src_begin = argument(1);
1454   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1455   Node* dst       = argument(3);
1456   Node* dst_begin = argument(4);
1457 
1458   // Check for allocation before we add nodes that would confuse
1459   // tightly_coupled_allocation()
1460   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1461 
1462   // Check if a null path was taken unconditionally.
1463   src = null_check(src);
1464   dst = null_check(dst);
1465   if (stopped()) {
1466     return true;
1467   }
1468 
1469   // Get length and convert char[] offset to byte[] offset
1470   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1471   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1472 
1473   // Range checks
1474   generate_string_range_check(src, src_begin, length, true);
1475   generate_string_range_check(dst, dst_begin, length, false);
1476   if (stopped()) {
1477     return true;
1478   }
1479 
1480   if (!stopped()) {
1481     // Calculate starting addresses.
1482     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1483     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1484 
1485     // Check if array addresses are aligned to HeapWordSize
1486     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1487     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1488     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1489                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1490 
1491     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1492     const char* copyfunc_name = "arraycopy";
1493     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1494     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1495                       OptoRuntime::fast_arraycopy_Type(),
1496                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1497                       src_start, dst_start, ConvI2X(length) XTOP);
1498     // Do not let reads from the cloned object float above the arraycopy.
1499     if (alloc != NULL) {
1500       if (alloc->maybe_set_complete(&_gvn)) {
1501         // "You break it, you buy it."
1502         InitializeNode* init = alloc->initialization();
1503         assert(init->is_complete(), "we just did this");
1504         init->set_complete_with_arraycopy();
1505         assert(dst->is_CheckCastPP(), "sanity");
1506         assert(dst->in(0)->in(0) == init, "dest pinned");
1507       }
1508       // Do not let stores that initialize this object be reordered with
1509       // a subsequent store that would make this object accessible by
1510       // other threads.
1511       // Record what AllocateNode this StoreStore protects so that
1512       // escape analysis can go from the MemBarStoreStoreNode to the
1513       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1514       // based on the escape status of the AllocateNode.
1515       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1516     } else {
1517       insert_mem_bar(Op_MemBarCPUOrder);
1518     }
1519   }
1520 
1521   C->set_has_split_ifs(true); // Has chance for split-if optimization
1522   return true;
1523 }
1524 
1525 //----------------------inline_string_char_access----------------------------
1526 // Store/Load char to/from byte[] array.
1527 // static void StringUTF16.putChar(byte[] val, int index, int c)
1528 // static char StringUTF16.getChar(byte[] val, int index)
1529 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1530   Node* value  = argument(0);
1531   Node* index  = argument(1);
1532   Node* ch = is_store ? argument(2) : NULL;
1533 
1534   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1535   // correctly requires matched array shapes.
1536   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1537           "sanity: byte[] and char[] bases agree");
1538   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1539           "sanity: byte[] and char[] scales agree");
1540 
1541   Node* adr = array_element_address(value, index, T_CHAR);
1542   if (is_store) {
1543     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered);
1544   } else {
1545     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, MemNode::unordered);
1546     set_result(ch);
1547   }
1548   return true;
1549 }
1550 
1551 //--------------------------round_double_node--------------------------------
1552 // Round a double node if necessary.
1553 Node* LibraryCallKit::round_double_node(Node* n) {
1554   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1555     n = _gvn.transform(new RoundDoubleNode(0, n));
1556   return n;
1557 }
1558 
1559 //------------------------------inline_math-----------------------------------
1560 // public static double Math.abs(double)
1561 // public static double Math.sqrt(double)
1562 // public static double Math.log(double)
1563 // public static double Math.log10(double)
1564 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1565   Node* arg = round_double_node(argument(0));
1566   Node* n = NULL;
1567   switch (id) {
1568   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1569   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1570   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1571   default:  fatal_unexpected_iid(id);  break;
1572   }
1573   set_result(_gvn.transform(n));
1574   return true;
1575 }
1576 
1577 //------------------------------inline_trig----------------------------------
1578 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1579 // argument reduction which will turn into a fast/slow diamond.
1580 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1581   Node* arg = round_double_node(argument(0));
1582   Node* n = NULL;
1583 
1584   switch (id) {
1585   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1586   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1587   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1588   default:  fatal_unexpected_iid(id);  break;
1589   }
1590   n = _gvn.transform(n);
1591 
1592   // Rounding required?  Check for argument reduction!
1593   if (Matcher::strict_fp_requires_explicit_rounding) {
1594     static const double     pi_4 =  0.7853981633974483;
1595     static const double neg_pi_4 = -0.7853981633974483;
1596     // pi/2 in 80-bit extended precision
1597     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1598     // -pi/2 in 80-bit extended precision
1599     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1600     // Cutoff value for using this argument reduction technique
1601     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1602     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1603 
1604     // Pseudocode for sin:
1605     // if (x <= Math.PI / 4.0) {
1606     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1607     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1608     // } else {
1609     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1610     // }
1611     // return StrictMath.sin(x);
1612 
1613     // Pseudocode for cos:
1614     // if (x <= Math.PI / 4.0) {
1615     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1616     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1617     // } else {
1618     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1619     // }
1620     // return StrictMath.cos(x);
1621 
1622     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1623     // requires a special machine instruction to load it.  Instead we'll try
1624     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1625     // probably do the math inside the SIN encoding.
1626 
1627     // Make the merge point
1628     RegionNode* r = new RegionNode(3);
1629     Node* phi = new PhiNode(r, Type::DOUBLE);
1630 
1631     // Flatten arg so we need only 1 test
1632     Node *abs = _gvn.transform(new AbsDNode(arg));
1633     // Node for PI/4 constant
1634     Node *pi4 = makecon(TypeD::make(pi_4));
1635     // Check PI/4 : abs(arg)
1636     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1637     // Check: If PI/4 < abs(arg) then go slow
1638     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1639     // Branch either way
1640     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1641     set_control(opt_iff(r,iff));
1642 
1643     // Set fast path result
1644     phi->init_req(2, n);
1645 
1646     // Slow path - non-blocking leaf call
1647     Node* call = NULL;
1648     switch (id) {
1649     case vmIntrinsics::_dsin:
1650       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1651                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1652                                "Sin", NULL, arg, top());
1653       break;
1654     case vmIntrinsics::_dcos:
1655       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1656                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1657                                "Cos", NULL, arg, top());
1658       break;
1659     case vmIntrinsics::_dtan:
1660       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1661                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1662                                "Tan", NULL, arg, top());
1663       break;
1664     }
1665     assert(control()->in(0) == call, "");
1666     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1667     r->init_req(1, control());
1668     phi->init_req(1, slow_result);
1669 
1670     // Post-merge
1671     set_control(_gvn.transform(r));
1672     record_for_igvn(r);
1673     n = _gvn.transform(phi);
1674 
1675     C->set_has_split_ifs(true); // Has chance for split-if optimization
1676   }
1677   set_result(n);
1678   return true;
1679 }
1680 
1681 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1682   //-------------------
1683   //result=(result.isNaN())? funcAddr():result;
1684   // Check: If isNaN() by checking result!=result? then either trap
1685   // or go to runtime
1686   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1687   // Build the boolean node
1688   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1689 
1690   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1691     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1692       // The pow or exp intrinsic returned a NaN, which requires a call
1693       // to the runtime.  Recompile with the runtime call.
1694       uncommon_trap(Deoptimization::Reason_intrinsic,
1695                     Deoptimization::Action_make_not_entrant);
1696     }
1697     return result;
1698   } else {
1699     // If this inlining ever returned NaN in the past, we compile a call
1700     // to the runtime to properly handle corner cases
1701 
1702     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1703     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1704     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1705 
1706     if (!if_slow->is_top()) {
1707       RegionNode* result_region = new RegionNode(3);
1708       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1709 
1710       result_region->init_req(1, if_fast);
1711       result_val->init_req(1, result);
1712 
1713       set_control(if_slow);
1714 
1715       const TypePtr* no_memory_effects = NULL;
1716       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1717                                    no_memory_effects,
1718                                    x, top(), y, y ? top() : NULL);
1719       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1720 #ifdef ASSERT
1721       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1722       assert(value_top == top(), "second value must be top");
1723 #endif
1724 
1725       result_region->init_req(2, control());
1726       result_val->init_req(2, value);
1727       set_control(_gvn.transform(result_region));
1728       return _gvn.transform(result_val);
1729     } else {
1730       return result;
1731     }
1732   }
1733 }
1734 
1735 //------------------------------inline_pow-------------------------------------
1736 // Inline power instructions, if possible.
1737 bool LibraryCallKit::inline_pow() {
1738   // Pseudocode for pow
1739   // if (y == 2) {
1740   //   return x * x;
1741   // } else {
1742   //   if (x <= 0.0) {
1743   //     long longy = (long)y;
1744   //     if ((double)longy == y) { // if y is long
1745   //       if (y + 1 == y) longy = 0; // huge number: even
1746   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1747   //     } else {
1748   //       result = NaN;
1749   //     }
1750   //   } else {
1751   //     result = DPow(x,y);
1752   //   }
1753   //   if (result != result)?  {
1754   //     result = uncommon_trap() or runtime_call();
1755   //   }
1756   //   return result;
1757   // }
1758 
1759   Node* x = round_double_node(argument(0));
1760   Node* y = round_double_node(argument(2));
1761 
1762   Node* result = NULL;
1763 
1764   Node*   const_two_node = makecon(TypeD::make(2.0));
1765   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1766   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1767   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1768   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1769   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1770 
1771   RegionNode* region_node = new RegionNode(3);
1772   region_node->init_req(1, if_true);
1773 
1774   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1775   // special case for x^y where y == 2, we can convert it to x * x
1776   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1777 
1778   // set control to if_false since we will now process the false branch
1779   set_control(if_false);
1780 
1781   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1782     // Short form: skip the fancy tests and just check for NaN result.
1783     result = _gvn.transform(new PowDNode(C, control(), x, y));
1784   } else {
1785     // If this inlining ever returned NaN in the past, include all
1786     // checks + call to the runtime.
1787 
1788     // Set the merge point for If node with condition of (x <= 0.0)
1789     // There are four possible paths to region node and phi node
1790     RegionNode *r = new RegionNode(4);
1791     Node *phi = new PhiNode(r, Type::DOUBLE);
1792 
1793     // Build the first if node: if (x <= 0.0)
1794     // Node for 0 constant
1795     Node *zeronode = makecon(TypeD::ZERO);
1796     // Check x:0
1797     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1798     // Check: If (x<=0) then go complex path
1799     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1800     // Branch either way
1801     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1802     // Fast path taken; set region slot 3
1803     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1804     r->init_req(3,fast_taken); // Capture fast-control
1805 
1806     // Fast path not-taken, i.e. slow path
1807     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1808 
1809     // Set fast path result
1810     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1811     phi->init_req(3, fast_result);
1812 
1813     // Complex path
1814     // Build the second if node (if y is long)
1815     // Node for (long)y
1816     Node *longy = _gvn.transform(new ConvD2LNode(y));
1817     // Node for (double)((long) y)
1818     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1819     // Check (double)((long) y) : y
1820     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1821     // Check if (y isn't long) then go to slow path
1822 
1823     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1824     // Branch either way
1825     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1826     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1827 
1828     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1829 
1830     // Calculate DPow(abs(x), y)*(1 & (long)y)
1831     // Node for constant 1
1832     Node *conone = longcon(1);
1833     // 1& (long)y
1834     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1835 
1836     // A huge number is always even. Detect a huge number by checking
1837     // if y + 1 == y and set integer to be tested for parity to 0.
1838     // Required for corner case:
1839     // (long)9.223372036854776E18 = max_jlong
1840     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1841     // max_jlong is odd but 9.223372036854776E18 is even
1842     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1843     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1844     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1845     Node* correctedsign = NULL;
1846     if (ConditionalMoveLimit != 0) {
1847       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1848     } else {
1849       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1850       RegionNode *r = new RegionNode(3);
1851       Node *phi = new PhiNode(r, TypeLong::LONG);
1852       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1853       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1854       phi->init_req(1, signnode);
1855       phi->init_req(2, longcon(0));
1856       correctedsign = _gvn.transform(phi);
1857       ylong_path = _gvn.transform(r);
1858       record_for_igvn(r);
1859     }
1860 
1861     // zero node
1862     Node *conzero = longcon(0);
1863     // Check (1&(long)y)==0?
1864     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1865     // Check if (1&(long)y)!=0?, if so the result is negative
1866     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1867     // abs(x)
1868     Node *absx=_gvn.transform(new AbsDNode(x));
1869     // abs(x)^y
1870     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1871     // -abs(x)^y
1872     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1873     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1874     Node *signresult = NULL;
1875     if (ConditionalMoveLimit != 0) {
1876       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1877     } else {
1878       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1879       RegionNode *r = new RegionNode(3);
1880       Node *phi = new PhiNode(r, Type::DOUBLE);
1881       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1882       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1883       phi->init_req(1, absxpowy);
1884       phi->init_req(2, negabsxpowy);
1885       signresult = _gvn.transform(phi);
1886       ylong_path = _gvn.transform(r);
1887       record_for_igvn(r);
1888     }
1889     // Set complex path fast result
1890     r->init_req(2, ylong_path);
1891     phi->init_req(2, signresult);
1892 
1893     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1894     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1895     r->init_req(1,slow_path);
1896     phi->init_req(1,slow_result);
1897 
1898     // Post merge
1899     set_control(_gvn.transform(r));
1900     record_for_igvn(r);
1901     result = _gvn.transform(phi);
1902   }
1903 
1904   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1905 
1906   // control from finish_pow_exp is now input to the region node
1907   region_node->set_req(2, control());
1908   // the result from finish_pow_exp is now input to the phi node
1909   phi_node->init_req(2, result);
1910   set_control(_gvn.transform(region_node));
1911   record_for_igvn(region_node);
1912   set_result(_gvn.transform(phi_node));
1913 
1914   C->set_has_split_ifs(true); // Has chance for split-if optimization
1915   return true;
1916 }
1917 
1918 //------------------------------runtime_math-----------------------------
1919 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1920   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1921          "must be (DD)D or (D)D type");
1922 
1923   // Inputs
1924   Node* a = round_double_node(argument(0));
1925   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1926 
1927   const TypePtr* no_memory_effects = NULL;
1928   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1929                                  no_memory_effects,
1930                                  a, top(), b, b ? top() : NULL);
1931   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1932 #ifdef ASSERT
1933   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1934   assert(value_top == top(), "second value must be top");
1935 #endif
1936 
1937   set_result(value);
1938   return true;
1939 }
1940 
1941 //------------------------------inline_math_native-----------------------------
1942 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1943 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1944   switch (id) {
1945     // These intrinsics are not properly supported on all hardware
1946   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1947     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1948   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1949     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1950   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1951     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1952 
1953   case vmIntrinsics::_dlog:
1954     return StubRoutines::dlog() != NULL ?
1955     runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1956     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1957   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1958     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1959 
1960     // These intrinsics are supported on all hardware
1961   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1962   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1963 
1964   case vmIntrinsics::_dexp:
1965     return StubRoutines::dexp() != NULL ?
1966       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1967       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1968   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1969     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1970 #undef FN_PTR
1971 
1972    // These intrinsics are not yet correctly implemented
1973   case vmIntrinsics::_datan2:
1974     return false;
1975 
1976   default:
1977     fatal_unexpected_iid(id);
1978     return false;
1979   }
1980 }
1981 
1982 static bool is_simple_name(Node* n) {
1983   return (n->req() == 1         // constant
1984           || (n->is_Type() && n->as_Type()->type()->singleton())
1985           || n->is_Proj()       // parameter or return value
1986           || n->is_Phi()        // local of some sort
1987           );
1988 }
1989 
1990 //----------------------------inline_notify-----------------------------------*
1991 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1992   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1993   address func;
1994   if (id == vmIntrinsics::_notify) {
1995     func = OptoRuntime::monitor_notify_Java();
1996   } else {
1997     func = OptoRuntime::monitor_notifyAll_Java();
1998   }
1999   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
2000   make_slow_call_ex(call, env()->Throwable_klass(), false);
2001   return true;
2002 }
2003 
2004 
2005 //----------------------------inline_min_max-----------------------------------
2006 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2007   set_result(generate_min_max(id, argument(0), argument(1)));
2008   return true;
2009 }
2010 
2011 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2012   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2013   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2014   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2015   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2016 
2017   {
2018     PreserveJVMState pjvms(this);
2019     PreserveReexecuteState preexecs(this);
2020     jvms()->set_should_reexecute(true);
2021 
2022     set_control(slow_path);
2023     set_i_o(i_o());
2024 
2025     uncommon_trap(Deoptimization::Reason_intrinsic,
2026                   Deoptimization::Action_none);
2027   }
2028 
2029   set_control(fast_path);
2030   set_result(math);
2031 }
2032 
2033 template <typename OverflowOp>
2034 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2035   typedef typename OverflowOp::MathOp MathOp;
2036 
2037   MathOp* mathOp = new MathOp(arg1, arg2);
2038   Node* operation = _gvn.transform( mathOp );
2039   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2040   inline_math_mathExact(operation, ofcheck);
2041   return true;
2042 }
2043 
2044 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2045   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2046 }
2047 
2048 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2049   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2050 }
2051 
2052 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2053   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2054 }
2055 
2056 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2057   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2058 }
2059 
2060 bool LibraryCallKit::inline_math_negateExactI() {
2061   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2062 }
2063 
2064 bool LibraryCallKit::inline_math_negateExactL() {
2065   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2066 }
2067 
2068 bool LibraryCallKit::inline_math_multiplyExactI() {
2069   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2070 }
2071 
2072 bool LibraryCallKit::inline_math_multiplyExactL() {
2073   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2074 }
2075 
2076 Node*
2077 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2078   // These are the candidate return value:
2079   Node* xvalue = x0;
2080   Node* yvalue = y0;
2081 
2082   if (xvalue == yvalue) {
2083     return xvalue;
2084   }
2085 
2086   bool want_max = (id == vmIntrinsics::_max);
2087 
2088   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2089   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2090   if (txvalue == NULL || tyvalue == NULL)  return top();
2091   // This is not really necessary, but it is consistent with a
2092   // hypothetical MaxINode::Value method:
2093   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2094 
2095   // %%% This folding logic should (ideally) be in a different place.
2096   // Some should be inside IfNode, and there to be a more reliable
2097   // transformation of ?: style patterns into cmoves.  We also want
2098   // more powerful optimizations around cmove and min/max.
2099 
2100   // Try to find a dominating comparison of these guys.
2101   // It can simplify the index computation for Arrays.copyOf
2102   // and similar uses of System.arraycopy.
2103   // First, compute the normalized version of CmpI(x, y).
2104   int   cmp_op = Op_CmpI;
2105   Node* xkey = xvalue;
2106   Node* ykey = yvalue;
2107   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2108   if (ideal_cmpxy->is_Cmp()) {
2109     // E.g., if we have CmpI(length - offset, count),
2110     // it might idealize to CmpI(length, count + offset)
2111     cmp_op = ideal_cmpxy->Opcode();
2112     xkey = ideal_cmpxy->in(1);
2113     ykey = ideal_cmpxy->in(2);
2114   }
2115 
2116   // Start by locating any relevant comparisons.
2117   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2118   Node* cmpxy = NULL;
2119   Node* cmpyx = NULL;
2120   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2121     Node* cmp = start_from->fast_out(k);
2122     if (cmp->outcnt() > 0 &&            // must have prior uses
2123         cmp->in(0) == NULL &&           // must be context-independent
2124         cmp->Opcode() == cmp_op) {      // right kind of compare
2125       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2126       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2127     }
2128   }
2129 
2130   const int NCMPS = 2;
2131   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2132   int cmpn;
2133   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2134     if (cmps[cmpn] != NULL)  break;     // find a result
2135   }
2136   if (cmpn < NCMPS) {
2137     // Look for a dominating test that tells us the min and max.
2138     int depth = 0;                // Limit search depth for speed
2139     Node* dom = control();
2140     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2141       if (++depth >= 100)  break;
2142       Node* ifproj = dom;
2143       if (!ifproj->is_Proj())  continue;
2144       Node* iff = ifproj->in(0);
2145       if (!iff->is_If())  continue;
2146       Node* bol = iff->in(1);
2147       if (!bol->is_Bool())  continue;
2148       Node* cmp = bol->in(1);
2149       if (cmp == NULL)  continue;
2150       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2151         if (cmps[cmpn] == cmp)  break;
2152       if (cmpn == NCMPS)  continue;
2153       BoolTest::mask btest = bol->as_Bool()->_test._test;
2154       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2155       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2156       // At this point, we know that 'x btest y' is true.
2157       switch (btest) {
2158       case BoolTest::eq:
2159         // They are proven equal, so we can collapse the min/max.
2160         // Either value is the answer.  Choose the simpler.
2161         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2162           return yvalue;
2163         return xvalue;
2164       case BoolTest::lt:          // x < y
2165       case BoolTest::le:          // x <= y
2166         return (want_max ? yvalue : xvalue);
2167       case BoolTest::gt:          // x > y
2168       case BoolTest::ge:          // x >= y
2169         return (want_max ? xvalue : yvalue);
2170       }
2171     }
2172   }
2173 
2174   // We failed to find a dominating test.
2175   // Let's pick a test that might GVN with prior tests.
2176   Node*          best_bol   = NULL;
2177   BoolTest::mask best_btest = BoolTest::illegal;
2178   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2179     Node* cmp = cmps[cmpn];
2180     if (cmp == NULL)  continue;
2181     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2182       Node* bol = cmp->fast_out(j);
2183       if (!bol->is_Bool())  continue;
2184       BoolTest::mask btest = bol->as_Bool()->_test._test;
2185       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2186       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2187       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2188         best_bol   = bol->as_Bool();
2189         best_btest = btest;
2190       }
2191     }
2192   }
2193 
2194   Node* answer_if_true  = NULL;
2195   Node* answer_if_false = NULL;
2196   switch (best_btest) {
2197   default:
2198     if (cmpxy == NULL)
2199       cmpxy = ideal_cmpxy;
2200     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2201     // and fall through:
2202   case BoolTest::lt:          // x < y
2203   case BoolTest::le:          // x <= y
2204     answer_if_true  = (want_max ? yvalue : xvalue);
2205     answer_if_false = (want_max ? xvalue : yvalue);
2206     break;
2207   case BoolTest::gt:          // x > y
2208   case BoolTest::ge:          // x >= y
2209     answer_if_true  = (want_max ? xvalue : yvalue);
2210     answer_if_false = (want_max ? yvalue : xvalue);
2211     break;
2212   }
2213 
2214   jint hi, lo;
2215   if (want_max) {
2216     // We can sharpen the minimum.
2217     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2218     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2219   } else {
2220     // We can sharpen the maximum.
2221     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2222     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2223   }
2224 
2225   // Use a flow-free graph structure, to avoid creating excess control edges
2226   // which could hinder other optimizations.
2227   // Since Math.min/max is often used with arraycopy, we want
2228   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2229   Node* cmov = CMoveNode::make(NULL, best_bol,
2230                                answer_if_false, answer_if_true,
2231                                TypeInt::make(lo, hi, widen));
2232 
2233   return _gvn.transform(cmov);
2234 
2235   /*
2236   // This is not as desirable as it may seem, since Min and Max
2237   // nodes do not have a full set of optimizations.
2238   // And they would interfere, anyway, with 'if' optimizations
2239   // and with CMoveI canonical forms.
2240   switch (id) {
2241   case vmIntrinsics::_min:
2242     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2243   case vmIntrinsics::_max:
2244     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2245   default:
2246     ShouldNotReachHere();
2247   }
2248   */
2249 }
2250 
2251 inline int
2252 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2253   const TypePtr* base_type = TypePtr::NULL_PTR;
2254   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2255   if (base_type == NULL) {
2256     // Unknown type.
2257     return Type::AnyPtr;
2258   } else if (base_type == TypePtr::NULL_PTR) {
2259     // Since this is a NULL+long form, we have to switch to a rawptr.
2260     base   = _gvn.transform(new CastX2PNode(offset));
2261     offset = MakeConX(0);
2262     return Type::RawPtr;
2263   } else if (base_type->base() == Type::RawPtr) {
2264     return Type::RawPtr;
2265   } else if (base_type->isa_oopptr()) {
2266     // Base is never null => always a heap address.
2267     if (base_type->ptr() == TypePtr::NotNull) {
2268       return Type::OopPtr;
2269     }
2270     // Offset is small => always a heap address.
2271     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2272     if (offset_type != NULL &&
2273         base_type->offset() == 0 &&     // (should always be?)
2274         offset_type->_lo >= 0 &&
2275         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2276       return Type::OopPtr;
2277     }
2278     // Otherwise, it might either be oop+off or NULL+addr.
2279     return Type::AnyPtr;
2280   } else {
2281     // No information:
2282     return Type::AnyPtr;
2283   }
2284 }
2285 
2286 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2287   int kind = classify_unsafe_addr(base, offset);
2288   if (kind == Type::RawPtr) {
2289     return basic_plus_adr(top(), base, offset);
2290   } else {
2291     return basic_plus_adr(base, offset);
2292   }
2293 }
2294 
2295 //--------------------------inline_number_methods-----------------------------
2296 // inline int     Integer.numberOfLeadingZeros(int)
2297 // inline int        Long.numberOfLeadingZeros(long)
2298 //
2299 // inline int     Integer.numberOfTrailingZeros(int)
2300 // inline int        Long.numberOfTrailingZeros(long)
2301 //
2302 // inline int     Integer.bitCount(int)
2303 // inline int        Long.bitCount(long)
2304 //
2305 // inline char  Character.reverseBytes(char)
2306 // inline short     Short.reverseBytes(short)
2307 // inline int     Integer.reverseBytes(int)
2308 // inline long       Long.reverseBytes(long)
2309 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2310   Node* arg = argument(0);
2311   Node* n = NULL;
2312   switch (id) {
2313   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2314   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2315   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2316   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2317   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2318   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2319   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2320   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2321   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2322   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2323   default:  fatal_unexpected_iid(id);  break;
2324   }
2325   set_result(_gvn.transform(n));
2326   return true;
2327 }
2328 
2329 //----------------------------inline_unsafe_access----------------------------
2330 
2331 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2332 
2333 // Helper that guards and inserts a pre-barrier.
2334 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2335                                         Node* pre_val, bool need_mem_bar) {
2336   // We could be accessing the referent field of a reference object. If so, when G1
2337   // is enabled, we need to log the value in the referent field in an SATB buffer.
2338   // This routine performs some compile time filters and generates suitable
2339   // runtime filters that guard the pre-barrier code.
2340   // Also add memory barrier for non volatile load from the referent field
2341   // to prevent commoning of loads across safepoint.
2342   if (!UseG1GC && !need_mem_bar)
2343     return;
2344 
2345   // Some compile time checks.
2346 
2347   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2348   const TypeX* otype = offset->find_intptr_t_type();
2349   if (otype != NULL && otype->is_con() &&
2350       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2351     // Constant offset but not the reference_offset so just return
2352     return;
2353   }
2354 
2355   // We only need to generate the runtime guards for instances.
2356   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2357   if (btype != NULL) {
2358     if (btype->isa_aryptr()) {
2359       // Array type so nothing to do
2360       return;
2361     }
2362 
2363     const TypeInstPtr* itype = btype->isa_instptr();
2364     if (itype != NULL) {
2365       // Can the klass of base_oop be statically determined to be
2366       // _not_ a sub-class of Reference and _not_ Object?
2367       ciKlass* klass = itype->klass();
2368       if ( klass->is_loaded() &&
2369           !klass->is_subtype_of(env()->Reference_klass()) &&
2370           !env()->Object_klass()->is_subtype_of(klass)) {
2371         return;
2372       }
2373     }
2374   }
2375 
2376   // The compile time filters did not reject base_oop/offset so
2377   // we need to generate the following runtime filters
2378   //
2379   // if (offset == java_lang_ref_Reference::_reference_offset) {
2380   //   if (instance_of(base, java.lang.ref.Reference)) {
2381   //     pre_barrier(_, pre_val, ...);
2382   //   }
2383   // }
2384 
2385   float likely   = PROB_LIKELY(  0.999);
2386   float unlikely = PROB_UNLIKELY(0.999);
2387 
2388   IdealKit ideal(this);
2389 #define __ ideal.
2390 
2391   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2392 
2393   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2394       // Update graphKit memory and control from IdealKit.
2395       sync_kit(ideal);
2396 
2397       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2398       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2399 
2400       // Update IdealKit memory and control from graphKit.
2401       __ sync_kit(this);
2402 
2403       Node* one = __ ConI(1);
2404       // is_instof == 0 if base_oop == NULL
2405       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2406 
2407         // Update graphKit from IdeakKit.
2408         sync_kit(ideal);
2409 
2410         // Use the pre-barrier to record the value in the referent field
2411         pre_barrier(false /* do_load */,
2412                     __ ctrl(),
2413                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2414                     pre_val /* pre_val */,
2415                     T_OBJECT);
2416         if (need_mem_bar) {
2417           // Add memory barrier to prevent commoning reads from this field
2418           // across safepoint since GC can change its value.
2419           insert_mem_bar(Op_MemBarCPUOrder);
2420         }
2421         // Update IdealKit from graphKit.
2422         __ sync_kit(this);
2423 
2424       } __ end_if(); // _ref_type != ref_none
2425   } __ end_if(); // offset == referent_offset
2426 
2427   // Final sync IdealKit and GraphKit.
2428   final_sync(ideal);
2429 #undef __
2430 }
2431 
2432 
2433 // Interpret Unsafe.fieldOffset cookies correctly:
2434 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2435 
2436 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2437   // Attempt to infer a sharper value type from the offset and base type.
2438   ciKlass* sharpened_klass = NULL;
2439 
2440   // See if it is an instance field, with an object type.
2441   if (alias_type->field() != NULL) {
2442     assert(!is_native_ptr, "native pointer op cannot use a java address");
2443     if (alias_type->field()->type()->is_klass()) {
2444       sharpened_klass = alias_type->field()->type()->as_klass();
2445     }
2446   }
2447 
2448   // See if it is a narrow oop array.
2449   if (adr_type->isa_aryptr()) {
2450     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2451       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2452       if (elem_type != NULL) {
2453         sharpened_klass = elem_type->klass();
2454       }
2455     }
2456   }
2457 
2458   // The sharpened class might be unloaded if there is no class loader
2459   // contraint in place.
2460   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2461     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2462 
2463 #ifndef PRODUCT
2464     if (C->print_intrinsics() || C->print_inlining()) {
2465       tty->print("  from base type: ");  adr_type->dump();
2466       tty->print("  sharpened value: ");  tjp->dump();
2467     }
2468 #endif
2469     // Sharpen the value type.
2470     return tjp;
2471   }
2472   return NULL;
2473 }
2474 
2475 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool unaligned) {
2476   if (callee()->is_static())  return false;  // caller must have the capability!
2477 
2478 #ifndef PRODUCT
2479   {
2480     ResourceMark rm;
2481     // Check the signatures.
2482     ciSignature* sig = callee()->signature();
2483 #ifdef ASSERT
2484     if (!is_store) {
2485       // Object getObject(Object base, int/long offset), etc.
2486       BasicType rtype = sig->return_type()->basic_type();
2487       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2488           rtype = T_ADDRESS;  // it is really a C void*
2489       assert(rtype == type, "getter must return the expected value");
2490       if (!is_native_ptr) {
2491         assert(sig->count() == 2, "oop getter has 2 arguments");
2492         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2493         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2494       } else {
2495         assert(sig->count() == 1, "native getter has 1 argument");
2496         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2497       }
2498     } else {
2499       // void putObject(Object base, int/long offset, Object x), etc.
2500       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2501       if (!is_native_ptr) {
2502         assert(sig->count() == 3, "oop putter has 3 arguments");
2503         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2504         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2505       } else {
2506         assert(sig->count() == 2, "native putter has 2 arguments");
2507         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2508       }
2509       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2510       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2511         vtype = T_ADDRESS;  // it is really a C void*
2512       assert(vtype == type, "putter must accept the expected value");
2513     }
2514 #endif // ASSERT
2515  }
2516 #endif //PRODUCT
2517 
2518   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2519 
2520   Node* receiver = argument(0);  // type: oop
2521 
2522   // Build address expression.
2523   Node* adr;
2524   Node* heap_base_oop = top();
2525   Node* offset = top();
2526   Node* val;
2527 
2528   if (!is_native_ptr) {
2529     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2530     Node* base = argument(1);  // type: oop
2531     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2532     offset = argument(2);  // type: long
2533     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2534     // to be plain byte offsets, which are also the same as those accepted
2535     // by oopDesc::field_base.
2536     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2537            "fieldOffset must be byte-scaled");
2538     // 32-bit machines ignore the high half!
2539     offset = ConvL2X(offset);
2540     adr = make_unsafe_address(base, offset);
2541     heap_base_oop = base;
2542     val = is_store ? argument(4) : NULL;
2543   } else {
2544     Node* ptr = argument(1);  // type: long
2545     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2546     adr = make_unsafe_address(NULL, ptr);
2547     val = is_store ? argument(3) : NULL;
2548   }
2549 
2550   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2551 
2552   // First guess at the value type.
2553   const Type *value_type = Type::get_const_basic_type(type);
2554 
2555   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2556   // there was not enough information to nail it down.
2557   Compile::AliasType* alias_type = C->alias_type(adr_type);
2558   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2559 
2560   // We will need memory barriers unless we can determine a unique
2561   // alias category for this reference.  (Note:  If for some reason
2562   // the barriers get omitted and the unsafe reference begins to "pollute"
2563   // the alias analysis of the rest of the graph, either Compile::can_alias
2564   // or Compile::must_alias will throw a diagnostic assert.)
2565   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2566 
2567   // If we are reading the value of the referent field of a Reference
2568   // object (either by using Unsafe directly or through reflection)
2569   // then, if G1 is enabled, we need to record the referent in an
2570   // SATB log buffer using the pre-barrier mechanism.
2571   // Also we need to add memory barrier to prevent commoning reads
2572   // from this field across safepoint since GC can change its value.
2573   bool need_read_barrier = !is_native_ptr && !is_store &&
2574                            offset != top() && heap_base_oop != top();
2575 
2576   if (!is_store && type == T_OBJECT) {
2577     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2578     if (tjp != NULL) {
2579       value_type = tjp;
2580     }
2581   }
2582 
2583   receiver = null_check(receiver);
2584   if (stopped()) {
2585     return true;
2586   }
2587   // Heap pointers get a null-check from the interpreter,
2588   // as a courtesy.  However, this is not guaranteed by Unsafe,
2589   // and it is not possible to fully distinguish unintended nulls
2590   // from intended ones in this API.
2591 
2592   if (is_volatile) {
2593     // We need to emit leading and trailing CPU membars (see below) in
2594     // addition to memory membars when is_volatile. This is a little
2595     // too strong, but avoids the need to insert per-alias-type
2596     // volatile membars (for stores; compare Parse::do_put_xxx), which
2597     // we cannot do effectively here because we probably only have a
2598     // rough approximation of type.
2599     need_mem_bar = true;
2600     // For Stores, place a memory ordering barrier now.
2601     if (is_store) {
2602       insert_mem_bar(Op_MemBarRelease);
2603     } else {
2604       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2605         insert_mem_bar(Op_MemBarVolatile);
2606       }
2607     }
2608   }
2609 
2610   // Memory barrier to prevent normal and 'unsafe' accesses from
2611   // bypassing each other.  Happens after null checks, so the
2612   // exception paths do not take memory state from the memory barrier,
2613   // so there's no problems making a strong assert about mixing users
2614   // of safe & unsafe memory.
2615   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2616 
2617   assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2618          alias_type->field() != NULL || alias_type->element() != NULL, "field, array element or unknown");
2619   bool mismatched = false;
2620   if (alias_type->element() != NULL || alias_type->field() != NULL) {
2621     BasicType bt;
2622     if (alias_type->element() != NULL) {
2623       const Type* element = alias_type->element();
2624       bt = element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
2625     } else {
2626       bt = alias_type->field()->type()->basic_type();
2627     }
2628     if (bt == T_ARRAY) {
2629       // accessing an array field with getObject is not a mismatch
2630       bt = T_OBJECT;
2631     }
2632     if (bt != type) {
2633       mismatched = true;
2634     }
2635   }
2636   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2637 
2638   if (!is_store) {
2639     Node* p = NULL;
2640     // Try to constant fold a load from a constant field
2641     ciField* field = alias_type->field();
2642     if (heap_base_oop != top() &&
2643         field != NULL && field->is_constant() && field->layout_type() == type) {
2644       // final or stable field
2645       const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop);
2646       if (con_type != NULL) {
2647         p = makecon(con_type);
2648       }
2649     }
2650     if (p == NULL) {
2651       MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2652       // To be valid, unsafe loads may depend on other conditions than
2653       // the one that guards them: pin the Load node
2654       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile, unaligned, mismatched);
2655       // load value
2656       switch (type) {
2657       case T_BOOLEAN:
2658       case T_CHAR:
2659       case T_BYTE:
2660       case T_SHORT:
2661       case T_INT:
2662       case T_LONG:
2663       case T_FLOAT:
2664       case T_DOUBLE:
2665         break;
2666       case T_OBJECT:
2667         if (need_read_barrier) {
2668           insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2669         }
2670         break;
2671       case T_ADDRESS:
2672         // Cast to an int type.
2673         p = _gvn.transform(new CastP2XNode(NULL, p));
2674         p = ConvX2UL(p);
2675         break;
2676       default:
2677         fatal("unexpected type %d: %s", type, type2name(type));
2678         break;
2679       }
2680     }
2681     // The load node has the control of the preceding MemBarCPUOrder.  All
2682     // following nodes will have the control of the MemBarCPUOrder inserted at
2683     // the end of this method.  So, pushing the load onto the stack at a later
2684     // point is fine.
2685     set_result(p);
2686   } else {
2687     // place effect of store into memory
2688     switch (type) {
2689     case T_DOUBLE:
2690       val = dstore_rounding(val);
2691       break;
2692     case T_ADDRESS:
2693       // Repackage the long as a pointer.
2694       val = ConvL2X(val);
2695       val = _gvn.transform(new CastX2PNode(val));
2696       break;
2697     }
2698 
2699     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2700     if (type != T_OBJECT ) {
2701       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile, unaligned, mismatched);
2702     } else {
2703       // Possibly an oop being stored to Java heap or native memory
2704       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2705         // oop to Java heap.
2706         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2707       } else {
2708         // We can't tell at compile time if we are storing in the Java heap or outside
2709         // of it. So we need to emit code to conditionally do the proper type of
2710         // store.
2711 
2712         IdealKit ideal(this);
2713 #define __ ideal.
2714         // QQQ who knows what probability is here??
2715         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2716           // Sync IdealKit and graphKit.
2717           sync_kit(ideal);
2718           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2719           // Update IdealKit memory.
2720           __ sync_kit(this);
2721         } __ else_(); {
2722           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile, mismatched);
2723         } __ end_if();
2724         // Final sync IdealKit and GraphKit.
2725         final_sync(ideal);
2726 #undef __
2727       }
2728     }
2729   }
2730 
2731   if (is_volatile) {
2732     if (!is_store) {
2733       insert_mem_bar(Op_MemBarAcquire);
2734     } else {
2735       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2736         insert_mem_bar(Op_MemBarVolatile);
2737       }
2738     }
2739   }
2740 
2741   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2742 
2743   return true;
2744 }
2745 
2746 //----------------------------inline_unsafe_load_store----------------------------
2747 // This method serves a couple of different customers (depending on LoadStoreKind):
2748 //
2749 // LS_cmpxchg:
2750 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2751 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2752 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2753 //
2754 // LS_xadd:
2755 //   public int  getAndAddInt( Object o, long offset, int  delta)
2756 //   public long getAndAddLong(Object o, long offset, long delta)
2757 //
2758 // LS_xchg:
2759 //   int    getAndSet(Object o, long offset, int    newValue)
2760 //   long   getAndSet(Object o, long offset, long   newValue)
2761 //   Object getAndSet(Object o, long offset, Object newValue)
2762 //
2763 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2764   // This basic scheme here is the same as inline_unsafe_access, but
2765   // differs in enough details that combining them would make the code
2766   // overly confusing.  (This is a true fact! I originally combined
2767   // them, but even I was confused by it!) As much code/comments as
2768   // possible are retained from inline_unsafe_access though to make
2769   // the correspondences clearer. - dl
2770 
2771   if (callee()->is_static())  return false;  // caller must have the capability!
2772 
2773 #ifndef PRODUCT
2774   BasicType rtype;
2775   {
2776     ResourceMark rm;
2777     // Check the signatures.
2778     ciSignature* sig = callee()->signature();
2779     rtype = sig->return_type()->basic_type();
2780     if (kind == LS_xadd || kind == LS_xchg) {
2781       // Check the signatures.
2782 #ifdef ASSERT
2783       assert(rtype == type, "get and set must return the expected type");
2784       assert(sig->count() == 3, "get and set has 3 arguments");
2785       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2786       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2787       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2788 #endif // ASSERT
2789     } else if (kind == LS_cmpxchg) {
2790       // Check the signatures.
2791 #ifdef ASSERT
2792       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2793       assert(sig->count() == 4, "CAS has 4 arguments");
2794       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2795       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2796 #endif // ASSERT
2797     } else {
2798       ShouldNotReachHere();
2799     }
2800   }
2801 #endif //PRODUCT
2802 
2803   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2804 
2805   // Get arguments:
2806   Node* receiver = NULL;
2807   Node* base     = NULL;
2808   Node* offset   = NULL;
2809   Node* oldval   = NULL;
2810   Node* newval   = NULL;
2811   if (kind == LS_cmpxchg) {
2812     const bool two_slot_type = type2size[type] == 2;
2813     receiver = argument(0);  // type: oop
2814     base     = argument(1);  // type: oop
2815     offset   = argument(2);  // type: long
2816     oldval   = argument(4);  // type: oop, int, or long
2817     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2818   } else if (kind == LS_xadd || kind == LS_xchg){
2819     receiver = argument(0);  // type: oop
2820     base     = argument(1);  // type: oop
2821     offset   = argument(2);  // type: long
2822     oldval   = NULL;
2823     newval   = argument(4);  // type: oop, int, or long
2824   }
2825 
2826   // Null check receiver.
2827   receiver = null_check(receiver);
2828   if (stopped()) {
2829     return true;
2830   }
2831 
2832   // Build field offset expression.
2833   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2834   // to be plain byte offsets, which are also the same as those accepted
2835   // by oopDesc::field_base.
2836   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2837   // 32-bit machines ignore the high half of long offsets
2838   offset = ConvL2X(offset);
2839   Node* adr = make_unsafe_address(base, offset);
2840   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2841 
2842   // For CAS, unlike inline_unsafe_access, there seems no point in
2843   // trying to refine types. Just use the coarse types here.
2844   const Type *value_type = Type::get_const_basic_type(type);
2845   Compile::AliasType* alias_type = C->alias_type(adr_type);
2846   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2847 
2848   if (kind == LS_xchg && type == T_OBJECT) {
2849     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2850     if (tjp != NULL) {
2851       value_type = tjp;
2852     }
2853   }
2854 
2855   int alias_idx = C->get_alias_index(adr_type);
2856 
2857   // Memory-model-wise, a LoadStore acts like a little synchronized
2858   // block, so needs barriers on each side.  These don't translate
2859   // into actual barriers on most machines, but we still need rest of
2860   // compiler to respect ordering.
2861 
2862   insert_mem_bar(Op_MemBarRelease);
2863   insert_mem_bar(Op_MemBarCPUOrder);
2864 
2865   // 4984716: MemBars must be inserted before this
2866   //          memory node in order to avoid a false
2867   //          dependency which will confuse the scheduler.
2868   Node *mem = memory(alias_idx);
2869 
2870   // For now, we handle only those cases that actually exist: ints,
2871   // longs, and Object. Adding others should be straightforward.
2872   Node* load_store = NULL;
2873   switch(type) {
2874   case T_INT:
2875     if (kind == LS_xadd) {
2876       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2877     } else if (kind == LS_xchg) {
2878       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2879     } else if (kind == LS_cmpxchg) {
2880       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2881     } else {
2882       ShouldNotReachHere();
2883     }
2884     break;
2885   case T_LONG:
2886     if (kind == LS_xadd) {
2887       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2888     } else if (kind == LS_xchg) {
2889       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2890     } else if (kind == LS_cmpxchg) {
2891       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2892     } else {
2893       ShouldNotReachHere();
2894     }
2895     break;
2896   case T_OBJECT:
2897     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2898     // could be delayed during Parse (for example, in adjust_map_after_if()).
2899     // Execute transformation here to avoid barrier generation in such case.
2900     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2901       newval = _gvn.makecon(TypePtr::NULL_PTR);
2902 
2903     // Reference stores need a store barrier.
2904     if (kind == LS_xchg) {
2905       // If pre-barrier must execute before the oop store, old value will require do_load here.
2906       if (!can_move_pre_barrier()) {
2907         pre_barrier(true /* do_load*/,
2908                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2909                     NULL /* pre_val*/,
2910                     T_OBJECT);
2911       } // Else move pre_barrier to use load_store value, see below.
2912     } else if (kind == LS_cmpxchg) {
2913       // Same as for newval above:
2914       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2915         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2916       }
2917       // The only known value which might get overwritten is oldval.
2918       pre_barrier(false /* do_load */,
2919                   control(), NULL, NULL, max_juint, NULL, NULL,
2920                   oldval /* pre_val */,
2921                   T_OBJECT);
2922     } else {
2923       ShouldNotReachHere();
2924     }
2925 
2926 #ifdef _LP64
2927     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2928       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2929       if (kind == LS_xchg) {
2930         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2931                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2932       } else {
2933         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2934         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2935         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2936                                                                 newval_enc, oldval_enc));
2937       }
2938     } else
2939 #endif
2940     {
2941       if (kind == LS_xchg) {
2942         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2943       } else {
2944         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2945         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2946       }
2947     }
2948     if (kind == LS_cmpxchg) {
2949       // Emit the post barrier only when the actual store happened.
2950       // This makes sense to check only for compareAndSet that can fail to set the value.
2951       // CAS success path is marked more likely since we anticipate this is a performance
2952       // critical path, while CAS failure path can use the penalty for going through unlikely
2953       // path as backoff. Which is still better than doing a store barrier there.
2954       IdealKit ideal(this);
2955       ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
2956         sync_kit(ideal);
2957         post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2958         ideal.sync_kit(this);
2959       } ideal.end_if();
2960       final_sync(ideal);
2961     } else {
2962       post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2963     }
2964     break;
2965   default:
2966     fatal("unexpected type %d: %s", type, type2name(type));
2967     break;
2968   }
2969 
2970   // SCMemProjNodes represent the memory state of a LoadStore. Their
2971   // main role is to prevent LoadStore nodes from being optimized away
2972   // when their results aren't used.
2973   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2974   set_memory(proj, alias_idx);
2975 
2976   if (type == T_OBJECT && kind == LS_xchg) {
2977 #ifdef _LP64
2978     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2979       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2980     }
2981 #endif
2982     if (can_move_pre_barrier()) {
2983       // Don't need to load pre_val. The old value is returned by load_store.
2984       // The pre_barrier can execute after the xchg as long as no safepoint
2985       // gets inserted between them.
2986       pre_barrier(false /* do_load */,
2987                   control(), NULL, NULL, max_juint, NULL, NULL,
2988                   load_store /* pre_val */,
2989                   T_OBJECT);
2990     }
2991   }
2992 
2993   // Add the trailing membar surrounding the access
2994   insert_mem_bar(Op_MemBarCPUOrder);
2995   insert_mem_bar(Op_MemBarAcquire);
2996 
2997   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2998   set_result(load_store);
2999   return true;
3000 }
3001 
3002 //----------------------------inline_unsafe_ordered_store----------------------
3003 // public native void Unsafe.putOrderedObject(Object o, long offset, Object x);
3004 // public native void Unsafe.putOrderedInt(Object o, long offset, int x);
3005 // public native void Unsafe.putOrderedLong(Object o, long offset, long x);
3006 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3007   // This is another variant of inline_unsafe_access, differing in
3008   // that it always issues store-store ("release") barrier and ensures
3009   // store-atomicity (which only matters for "long").
3010 
3011   if (callee()->is_static())  return false;  // caller must have the capability!
3012 
3013 #ifndef PRODUCT
3014   {
3015     ResourceMark rm;
3016     // Check the signatures.
3017     ciSignature* sig = callee()->signature();
3018 #ifdef ASSERT
3019     BasicType rtype = sig->return_type()->basic_type();
3020     assert(rtype == T_VOID, "must return void");
3021     assert(sig->count() == 3, "has 3 arguments");
3022     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3023     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3024 #endif // ASSERT
3025   }
3026 #endif //PRODUCT
3027 
3028   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3029 
3030   // Get arguments:
3031   Node* receiver = argument(0);  // type: oop
3032   Node* base     = argument(1);  // type: oop
3033   Node* offset   = argument(2);  // type: long
3034   Node* val      = argument(4);  // type: oop, int, or long
3035 
3036   // Null check receiver.
3037   receiver = null_check(receiver);
3038   if (stopped()) {
3039     return true;
3040   }
3041 
3042   // Build field offset expression.
3043   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3044   // 32-bit machines ignore the high half of long offsets
3045   offset = ConvL2X(offset);
3046   Node* adr = make_unsafe_address(base, offset);
3047   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3048   const Type *value_type = Type::get_const_basic_type(type);
3049   Compile::AliasType* alias_type = C->alias_type(adr_type);
3050 
3051   insert_mem_bar(Op_MemBarRelease);
3052   insert_mem_bar(Op_MemBarCPUOrder);
3053   // Ensure that the store is atomic for longs:
3054   const bool require_atomic_access = true;
3055   Node* store;
3056   if (type == T_OBJECT) // reference stores need a store barrier.
3057     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3058   else {
3059     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3060   }
3061   insert_mem_bar(Op_MemBarCPUOrder);
3062   return true;
3063 }
3064 
3065 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3066   // Regardless of form, don't allow previous ld/st to move down,
3067   // then issue acquire, release, or volatile mem_bar.
3068   insert_mem_bar(Op_MemBarCPUOrder);
3069   switch(id) {
3070     case vmIntrinsics::_loadFence:
3071       insert_mem_bar(Op_LoadFence);
3072       return true;
3073     case vmIntrinsics::_storeFence:
3074       insert_mem_bar(Op_StoreFence);
3075       return true;
3076     case vmIntrinsics::_fullFence:
3077       insert_mem_bar(Op_MemBarVolatile);
3078       return true;
3079     default:
3080       fatal_unexpected_iid(id);
3081       return false;
3082   }
3083 }
3084 
3085 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3086   if (!kls->is_Con()) {
3087     return true;
3088   }
3089   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3090   if (klsptr == NULL) {
3091     return true;
3092   }
3093   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3094   // don't need a guard for a klass that is already initialized
3095   return !ik->is_initialized();
3096 }
3097 
3098 //----------------------------inline_unsafe_allocate---------------------------
3099 // public native Object Unsafe.allocateInstance(Class<?> cls);
3100 bool LibraryCallKit::inline_unsafe_allocate() {
3101   if (callee()->is_static())  return false;  // caller must have the capability!
3102 
3103   null_check_receiver();  // null-check, then ignore
3104   Node* cls = null_check(argument(1));
3105   if (stopped())  return true;
3106 
3107   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3108   kls = null_check(kls);
3109   if (stopped())  return true;  // argument was like int.class
3110 
3111   Node* test = NULL;
3112   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3113     // Note:  The argument might still be an illegal value like
3114     // Serializable.class or Object[].class.   The runtime will handle it.
3115     // But we must make an explicit check for initialization.
3116     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3117     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3118     // can generate code to load it as unsigned byte.
3119     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3120     Node* bits = intcon(InstanceKlass::fully_initialized);
3121     test = _gvn.transform(new SubINode(inst, bits));
3122     // The 'test' is non-zero if we need to take a slow path.
3123   }
3124 
3125   Node* obj = new_instance(kls, test);
3126   set_result(obj);
3127   return true;
3128 }
3129 
3130 #ifdef TRACE_HAVE_INTRINSICS
3131 /*
3132  * oop -> myklass
3133  * myklass->trace_id |= USED
3134  * return myklass->trace_id & ~0x3
3135  */
3136 bool LibraryCallKit::inline_native_classID() {
3137   null_check_receiver();  // null-check, then ignore
3138   Node* cls = null_check(argument(1), T_OBJECT);
3139   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3140   kls = null_check(kls, T_OBJECT);
3141   ByteSize offset = TRACE_ID_OFFSET;
3142   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3143   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3144   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3145   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3146   Node* clsused = longcon(0x01l); // set the class bit
3147   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3148 
3149   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3150   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3151   set_result(andl);
3152   return true;
3153 }
3154 
3155 bool LibraryCallKit::inline_native_threadID() {
3156   Node* tls_ptr = NULL;
3157   Node* cur_thr = generate_current_thread(tls_ptr);
3158   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3159   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3160   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3161 
3162   Node* threadid = NULL;
3163   size_t thread_id_size = OSThread::thread_id_size();
3164   if (thread_id_size == (size_t) BytesPerLong) {
3165     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3166   } else if (thread_id_size == (size_t) BytesPerInt) {
3167     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3168   } else {
3169     ShouldNotReachHere();
3170   }
3171   set_result(threadid);
3172   return true;
3173 }
3174 #endif
3175 
3176 //------------------------inline_native_time_funcs--------------
3177 // inline code for System.currentTimeMillis() and System.nanoTime()
3178 // these have the same type and signature
3179 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3180   const TypeFunc* tf = OptoRuntime::void_long_Type();
3181   const TypePtr* no_memory_effects = NULL;
3182   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3183   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3184 #ifdef ASSERT
3185   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3186   assert(value_top == top(), "second value must be top");
3187 #endif
3188   set_result(value);
3189   return true;
3190 }
3191 
3192 //------------------------inline_native_currentThread------------------
3193 bool LibraryCallKit::inline_native_currentThread() {
3194   Node* junk = NULL;
3195   set_result(generate_current_thread(junk));
3196   return true;
3197 }
3198 
3199 //------------------------inline_native_isInterrupted------------------
3200 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3201 bool LibraryCallKit::inline_native_isInterrupted() {
3202   // Add a fast path to t.isInterrupted(clear_int):
3203   //   (t == Thread.current() &&
3204   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3205   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3206   // So, in the common case that the interrupt bit is false,
3207   // we avoid making a call into the VM.  Even if the interrupt bit
3208   // is true, if the clear_int argument is false, we avoid the VM call.
3209   // However, if the receiver is not currentThread, we must call the VM,
3210   // because there must be some locking done around the operation.
3211 
3212   // We only go to the fast case code if we pass two guards.
3213   // Paths which do not pass are accumulated in the slow_region.
3214 
3215   enum {
3216     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3217     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3218     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3219     PATH_LIMIT
3220   };
3221 
3222   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3223   // out of the function.
3224   insert_mem_bar(Op_MemBarCPUOrder);
3225 
3226   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3227   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3228 
3229   RegionNode* slow_region = new RegionNode(1);
3230   record_for_igvn(slow_region);
3231 
3232   // (a) Receiving thread must be the current thread.
3233   Node* rec_thr = argument(0);
3234   Node* tls_ptr = NULL;
3235   Node* cur_thr = generate_current_thread(tls_ptr);
3236   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3237   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3238 
3239   generate_slow_guard(bol_thr, slow_region);
3240 
3241   // (b) Interrupt bit on TLS must be false.
3242   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3243   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3244   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3245 
3246   // Set the control input on the field _interrupted read to prevent it floating up.
3247   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3248   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3249   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3250 
3251   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3252 
3253   // First fast path:  if (!TLS._interrupted) return false;
3254   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3255   result_rgn->init_req(no_int_result_path, false_bit);
3256   result_val->init_req(no_int_result_path, intcon(0));
3257 
3258   // drop through to next case
3259   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3260 
3261 #ifndef TARGET_OS_FAMILY_windows
3262   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3263   Node* clr_arg = argument(1);
3264   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3265   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3266   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3267 
3268   // Second fast path:  ... else if (!clear_int) return true;
3269   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3270   result_rgn->init_req(no_clear_result_path, false_arg);
3271   result_val->init_req(no_clear_result_path, intcon(1));
3272 
3273   // drop through to next case
3274   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3275 #else
3276   // To return true on Windows you must read the _interrupted field
3277   // and check the the event state i.e. take the slow path.
3278 #endif // TARGET_OS_FAMILY_windows
3279 
3280   // (d) Otherwise, go to the slow path.
3281   slow_region->add_req(control());
3282   set_control( _gvn.transform(slow_region));
3283 
3284   if (stopped()) {
3285     // There is no slow path.
3286     result_rgn->init_req(slow_result_path, top());
3287     result_val->init_req(slow_result_path, top());
3288   } else {
3289     // non-virtual because it is a private non-static
3290     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3291 
3292     Node* slow_val = set_results_for_java_call(slow_call);
3293     // this->control() comes from set_results_for_java_call
3294 
3295     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3296     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3297 
3298     // These two phis are pre-filled with copies of of the fast IO and Memory
3299     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3300     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3301 
3302     result_rgn->init_req(slow_result_path, control());
3303     result_io ->init_req(slow_result_path, i_o());
3304     result_mem->init_req(slow_result_path, reset_memory());
3305     result_val->init_req(slow_result_path, slow_val);
3306 
3307     set_all_memory(_gvn.transform(result_mem));
3308     set_i_o(       _gvn.transform(result_io));
3309   }
3310 
3311   C->set_has_split_ifs(true); // Has chance for split-if optimization
3312   set_result(result_rgn, result_val);
3313   return true;
3314 }
3315 
3316 //---------------------------load_mirror_from_klass----------------------------
3317 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3318 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3319   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3320   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3321 }
3322 
3323 //-----------------------load_klass_from_mirror_common-------------------------
3324 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3325 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3326 // and branch to the given path on the region.
3327 // If never_see_null, take an uncommon trap on null, so we can optimistically
3328 // compile for the non-null case.
3329 // If the region is NULL, force never_see_null = true.
3330 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3331                                                     bool never_see_null,
3332                                                     RegionNode* region,
3333                                                     int null_path,
3334                                                     int offset) {
3335   if (region == NULL)  never_see_null = true;
3336   Node* p = basic_plus_adr(mirror, offset);
3337   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3338   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3339   Node* null_ctl = top();
3340   kls = null_check_oop(kls, &null_ctl, never_see_null);
3341   if (region != NULL) {
3342     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3343     region->init_req(null_path, null_ctl);
3344   } else {
3345     assert(null_ctl == top(), "no loose ends");
3346   }
3347   return kls;
3348 }
3349 
3350 //--------------------(inline_native_Class_query helpers)---------------------
3351 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3352 // Fall through if (mods & mask) == bits, take the guard otherwise.
3353 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3354   // Branch around if the given klass has the given modifier bit set.
3355   // Like generate_guard, adds a new path onto the region.
3356   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3357   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3358   Node* mask = intcon(modifier_mask);
3359   Node* bits = intcon(modifier_bits);
3360   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3361   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3362   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3363   return generate_fair_guard(bol, region);
3364 }
3365 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3366   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3367 }
3368 
3369 //-------------------------inline_native_Class_query-------------------
3370 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3371   const Type* return_type = TypeInt::BOOL;
3372   Node* prim_return_value = top();  // what happens if it's a primitive class?
3373   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3374   bool expect_prim = false;     // most of these guys expect to work on refs
3375 
3376   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3377 
3378   Node* mirror = argument(0);
3379   Node* obj    = top();
3380 
3381   switch (id) {
3382   case vmIntrinsics::_isInstance:
3383     // nothing is an instance of a primitive type
3384     prim_return_value = intcon(0);
3385     obj = argument(1);
3386     break;
3387   case vmIntrinsics::_getModifiers:
3388     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3389     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3390     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3391     break;
3392   case vmIntrinsics::_isInterface:
3393     prim_return_value = intcon(0);
3394     break;
3395   case vmIntrinsics::_isArray:
3396     prim_return_value = intcon(0);
3397     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3398     break;
3399   case vmIntrinsics::_isPrimitive:
3400     prim_return_value = intcon(1);
3401     expect_prim = true;  // obviously
3402     break;
3403   case vmIntrinsics::_getSuperclass:
3404     prim_return_value = null();
3405     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3406     break;
3407   case vmIntrinsics::_getClassAccessFlags:
3408     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3409     return_type = TypeInt::INT;  // not bool!  6297094
3410     break;
3411   default:
3412     fatal_unexpected_iid(id);
3413     break;
3414   }
3415 
3416   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3417   if (mirror_con == NULL)  return false;  // cannot happen?
3418 
3419 #ifndef PRODUCT
3420   if (C->print_intrinsics() || C->print_inlining()) {
3421     ciType* k = mirror_con->java_mirror_type();
3422     if (k) {
3423       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3424       k->print_name();
3425       tty->cr();
3426     }
3427   }
3428 #endif
3429 
3430   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3431   RegionNode* region = new RegionNode(PATH_LIMIT);
3432   record_for_igvn(region);
3433   PhiNode* phi = new PhiNode(region, return_type);
3434 
3435   // The mirror will never be null of Reflection.getClassAccessFlags, however
3436   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3437   // if it is. See bug 4774291.
3438 
3439   // For Reflection.getClassAccessFlags(), the null check occurs in
3440   // the wrong place; see inline_unsafe_access(), above, for a similar
3441   // situation.
3442   mirror = null_check(mirror);
3443   // If mirror or obj is dead, only null-path is taken.
3444   if (stopped())  return true;
3445 
3446   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3447 
3448   // Now load the mirror's klass metaobject, and null-check it.
3449   // Side-effects region with the control path if the klass is null.
3450   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3451   // If kls is null, we have a primitive mirror.
3452   phi->init_req(_prim_path, prim_return_value);
3453   if (stopped()) { set_result(region, phi); return true; }
3454   bool safe_for_replace = (region->in(_prim_path) == top());
3455 
3456   Node* p;  // handy temp
3457   Node* null_ctl;
3458 
3459   // Now that we have the non-null klass, we can perform the real query.
3460   // For constant classes, the query will constant-fold in LoadNode::Value.
3461   Node* query_value = top();
3462   switch (id) {
3463   case vmIntrinsics::_isInstance:
3464     // nothing is an instance of a primitive type
3465     query_value = gen_instanceof(obj, kls, safe_for_replace);
3466     break;
3467 
3468   case vmIntrinsics::_getModifiers:
3469     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3470     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3471     break;
3472 
3473   case vmIntrinsics::_isInterface:
3474     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3475     if (generate_interface_guard(kls, region) != NULL)
3476       // A guard was added.  If the guard is taken, it was an interface.
3477       phi->add_req(intcon(1));
3478     // If we fall through, it's a plain class.
3479     query_value = intcon(0);
3480     break;
3481 
3482   case vmIntrinsics::_isArray:
3483     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3484     if (generate_array_guard(kls, region) != NULL)
3485       // A guard was added.  If the guard is taken, it was an array.
3486       phi->add_req(intcon(1));
3487     // If we fall through, it's a plain class.
3488     query_value = intcon(0);
3489     break;
3490 
3491   case vmIntrinsics::_isPrimitive:
3492     query_value = intcon(0); // "normal" path produces false
3493     break;
3494 
3495   case vmIntrinsics::_getSuperclass:
3496     // The rules here are somewhat unfortunate, but we can still do better
3497     // with random logic than with a JNI call.
3498     // Interfaces store null or Object as _super, but must report null.
3499     // Arrays store an intermediate super as _super, but must report Object.
3500     // Other types can report the actual _super.
3501     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3502     if (generate_interface_guard(kls, region) != NULL)
3503       // A guard was added.  If the guard is taken, it was an interface.
3504       phi->add_req(null());
3505     if (generate_array_guard(kls, region) != NULL)
3506       // A guard was added.  If the guard is taken, it was an array.
3507       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3508     // If we fall through, it's a plain class.  Get its _super.
3509     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3510     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3511     null_ctl = top();
3512     kls = null_check_oop(kls, &null_ctl);
3513     if (null_ctl != top()) {
3514       // If the guard is taken, Object.superClass is null (both klass and mirror).
3515       region->add_req(null_ctl);
3516       phi   ->add_req(null());
3517     }
3518     if (!stopped()) {
3519       query_value = load_mirror_from_klass(kls);
3520     }
3521     break;
3522 
3523   case vmIntrinsics::_getClassAccessFlags:
3524     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3525     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3526     break;
3527 
3528   default:
3529     fatal_unexpected_iid(id);
3530     break;
3531   }
3532 
3533   // Fall-through is the normal case of a query to a real class.
3534   phi->init_req(1, query_value);
3535   region->init_req(1, control());
3536 
3537   C->set_has_split_ifs(true); // Has chance for split-if optimization
3538   set_result(region, phi);
3539   return true;
3540 }
3541 
3542 //-------------------------inline_Class_cast-------------------
3543 bool LibraryCallKit::inline_Class_cast() {
3544   Node* mirror = argument(0); // Class
3545   Node* obj    = argument(1);
3546   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3547   if (mirror_con == NULL) {
3548     return false;  // dead path (mirror->is_top()).
3549   }
3550   if (obj == NULL || obj->is_top()) {
3551     return false;  // dead path
3552   }
3553   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3554 
3555   // First, see if Class.cast() can be folded statically.
3556   // java_mirror_type() returns non-null for compile-time Class constants.
3557   ciType* tm = mirror_con->java_mirror_type();
3558   if (tm != NULL && tm->is_klass() &&
3559       tp != NULL && tp->klass() != NULL) {
3560     if (!tp->klass()->is_loaded()) {
3561       // Don't use intrinsic when class is not loaded.
3562       return false;
3563     } else {
3564       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3565       if (static_res == Compile::SSC_always_true) {
3566         // isInstance() is true - fold the code.
3567         set_result(obj);
3568         return true;
3569       } else if (static_res == Compile::SSC_always_false) {
3570         // Don't use intrinsic, have to throw ClassCastException.
3571         // If the reference is null, the non-intrinsic bytecode will
3572         // be optimized appropriately.
3573         return false;
3574       }
3575     }
3576   }
3577 
3578   // Bailout intrinsic and do normal inlining if exception path is frequent.
3579   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3580     return false;
3581   }
3582 
3583   // Generate dynamic checks.
3584   // Class.cast() is java implementation of _checkcast bytecode.
3585   // Do checkcast (Parse::do_checkcast()) optimizations here.
3586 
3587   mirror = null_check(mirror);
3588   // If mirror is dead, only null-path is taken.
3589   if (stopped()) {
3590     return true;
3591   }
3592 
3593   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3594   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3595   RegionNode* region = new RegionNode(PATH_LIMIT);
3596   record_for_igvn(region);
3597 
3598   // Now load the mirror's klass metaobject, and null-check it.
3599   // If kls is null, we have a primitive mirror and
3600   // nothing is an instance of a primitive type.
3601   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3602 
3603   Node* res = top();
3604   if (!stopped()) {
3605     Node* bad_type_ctrl = top();
3606     // Do checkcast optimizations.
3607     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3608     region->init_req(_bad_type_path, bad_type_ctrl);
3609   }
3610   if (region->in(_prim_path) != top() ||
3611       region->in(_bad_type_path) != top()) {
3612     // Let Interpreter throw ClassCastException.
3613     PreserveJVMState pjvms(this);
3614     set_control(_gvn.transform(region));
3615     uncommon_trap(Deoptimization::Reason_intrinsic,
3616                   Deoptimization::Action_maybe_recompile);
3617   }
3618   if (!stopped()) {
3619     set_result(res);
3620   }
3621   return true;
3622 }
3623 
3624 
3625 //--------------------------inline_native_subtype_check------------------------
3626 // This intrinsic takes the JNI calls out of the heart of
3627 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3628 bool LibraryCallKit::inline_native_subtype_check() {
3629   // Pull both arguments off the stack.
3630   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3631   args[0] = argument(0);
3632   args[1] = argument(1);
3633   Node* klasses[2];             // corresponding Klasses: superk, subk
3634   klasses[0] = klasses[1] = top();
3635 
3636   enum {
3637     // A full decision tree on {superc is prim, subc is prim}:
3638     _prim_0_path = 1,           // {P,N} => false
3639                                 // {P,P} & superc!=subc => false
3640     _prim_same_path,            // {P,P} & superc==subc => true
3641     _prim_1_path,               // {N,P} => false
3642     _ref_subtype_path,          // {N,N} & subtype check wins => true
3643     _both_ref_path,             // {N,N} & subtype check loses => false
3644     PATH_LIMIT
3645   };
3646 
3647   RegionNode* region = new RegionNode(PATH_LIMIT);
3648   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3649   record_for_igvn(region);
3650 
3651   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3652   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3653   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3654 
3655   // First null-check both mirrors and load each mirror's klass metaobject.
3656   int which_arg;
3657   for (which_arg = 0; which_arg <= 1; which_arg++) {
3658     Node* arg = args[which_arg];
3659     arg = null_check(arg);
3660     if (stopped())  break;
3661     args[which_arg] = arg;
3662 
3663     Node* p = basic_plus_adr(arg, class_klass_offset);
3664     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3665     klasses[which_arg] = _gvn.transform(kls);
3666   }
3667 
3668   // Having loaded both klasses, test each for null.
3669   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3670   for (which_arg = 0; which_arg <= 1; which_arg++) {
3671     Node* kls = klasses[which_arg];
3672     Node* null_ctl = top();
3673     kls = null_check_oop(kls, &null_ctl, never_see_null);
3674     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3675     region->init_req(prim_path, null_ctl);
3676     if (stopped())  break;
3677     klasses[which_arg] = kls;
3678   }
3679 
3680   if (!stopped()) {
3681     // now we have two reference types, in klasses[0..1]
3682     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3683     Node* superk = klasses[0];  // the receiver
3684     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3685     // now we have a successful reference subtype check
3686     region->set_req(_ref_subtype_path, control());
3687   }
3688 
3689   // If both operands are primitive (both klasses null), then
3690   // we must return true when they are identical primitives.
3691   // It is convenient to test this after the first null klass check.
3692   set_control(region->in(_prim_0_path)); // go back to first null check
3693   if (!stopped()) {
3694     // Since superc is primitive, make a guard for the superc==subc case.
3695     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3696     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3697     generate_guard(bol_eq, region, PROB_FAIR);
3698     if (region->req() == PATH_LIMIT+1) {
3699       // A guard was added.  If the added guard is taken, superc==subc.
3700       region->swap_edges(PATH_LIMIT, _prim_same_path);
3701       region->del_req(PATH_LIMIT);
3702     }
3703     region->set_req(_prim_0_path, control()); // Not equal after all.
3704   }
3705 
3706   // these are the only paths that produce 'true':
3707   phi->set_req(_prim_same_path,   intcon(1));
3708   phi->set_req(_ref_subtype_path, intcon(1));
3709 
3710   // pull together the cases:
3711   assert(region->req() == PATH_LIMIT, "sane region");
3712   for (uint i = 1; i < region->req(); i++) {
3713     Node* ctl = region->in(i);
3714     if (ctl == NULL || ctl == top()) {
3715       region->set_req(i, top());
3716       phi   ->set_req(i, top());
3717     } else if (phi->in(i) == NULL) {
3718       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3719     }
3720   }
3721 
3722   set_control(_gvn.transform(region));
3723   set_result(_gvn.transform(phi));
3724   return true;
3725 }
3726 
3727 //---------------------generate_array_guard_common------------------------
3728 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3729                                                   bool obj_array, bool not_array) {
3730 
3731   if (stopped()) {
3732     return NULL;
3733   }
3734 
3735   // If obj_array/non_array==false/false:
3736   // Branch around if the given klass is in fact an array (either obj or prim).
3737   // If obj_array/non_array==false/true:
3738   // Branch around if the given klass is not an array klass of any kind.
3739   // If obj_array/non_array==true/true:
3740   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3741   // If obj_array/non_array==true/false:
3742   // Branch around if the kls is an oop array (Object[] or subtype)
3743   //
3744   // Like generate_guard, adds a new path onto the region.
3745   jint  layout_con = 0;
3746   Node* layout_val = get_layout_helper(kls, layout_con);
3747   if (layout_val == NULL) {
3748     bool query = (obj_array
3749                   ? Klass::layout_helper_is_objArray(layout_con)
3750                   : Klass::layout_helper_is_array(layout_con));
3751     if (query == not_array) {
3752       return NULL;                       // never a branch
3753     } else {                             // always a branch
3754       Node* always_branch = control();
3755       if (region != NULL)
3756         region->add_req(always_branch);
3757       set_control(top());
3758       return always_branch;
3759     }
3760   }
3761   // Now test the correct condition.
3762   jint  nval = (obj_array
3763                 ? ((jint)Klass::_lh_array_tag_type_value
3764                    <<    Klass::_lh_array_tag_shift)
3765                 : Klass::_lh_neutral_value);
3766   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3767   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3768   // invert the test if we are looking for a non-array
3769   if (not_array)  btest = BoolTest(btest).negate();
3770   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3771   return generate_fair_guard(bol, region);
3772 }
3773 
3774 
3775 //-----------------------inline_native_newArray--------------------------
3776 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3777 bool LibraryCallKit::inline_native_newArray() {
3778   Node* mirror    = argument(0);
3779   Node* count_val = argument(1);
3780 
3781   mirror = null_check(mirror);
3782   // If mirror or obj is dead, only null-path is taken.
3783   if (stopped())  return true;
3784 
3785   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3786   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3787   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3788   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3789   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3790 
3791   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3792   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3793                                                   result_reg, _slow_path);
3794   Node* normal_ctl   = control();
3795   Node* no_array_ctl = result_reg->in(_slow_path);
3796 
3797   // Generate code for the slow case.  We make a call to newArray().
3798   set_control(no_array_ctl);
3799   if (!stopped()) {
3800     // Either the input type is void.class, or else the
3801     // array klass has not yet been cached.  Either the
3802     // ensuing call will throw an exception, or else it
3803     // will cache the array klass for next time.
3804     PreserveJVMState pjvms(this);
3805     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3806     Node* slow_result = set_results_for_java_call(slow_call);
3807     // this->control() comes from set_results_for_java_call
3808     result_reg->set_req(_slow_path, control());
3809     result_val->set_req(_slow_path, slow_result);
3810     result_io ->set_req(_slow_path, i_o());
3811     result_mem->set_req(_slow_path, reset_memory());
3812   }
3813 
3814   set_control(normal_ctl);
3815   if (!stopped()) {
3816     // Normal case:  The array type has been cached in the java.lang.Class.
3817     // The following call works fine even if the array type is polymorphic.
3818     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3819     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3820     result_reg->init_req(_normal_path, control());
3821     result_val->init_req(_normal_path, obj);
3822     result_io ->init_req(_normal_path, i_o());
3823     result_mem->init_req(_normal_path, reset_memory());
3824   }
3825 
3826   // Return the combined state.
3827   set_i_o(        _gvn.transform(result_io)  );
3828   set_all_memory( _gvn.transform(result_mem));
3829 
3830   C->set_has_split_ifs(true); // Has chance for split-if optimization
3831   set_result(result_reg, result_val);
3832   return true;
3833 }
3834 
3835 //----------------------inline_native_getLength--------------------------
3836 // public static native int java.lang.reflect.Array.getLength(Object array);
3837 bool LibraryCallKit::inline_native_getLength() {
3838   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3839 
3840   Node* array = null_check(argument(0));
3841   // If array is dead, only null-path is taken.
3842   if (stopped())  return true;
3843 
3844   // Deoptimize if it is a non-array.
3845   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3846 
3847   if (non_array != NULL) {
3848     PreserveJVMState pjvms(this);
3849     set_control(non_array);
3850     uncommon_trap(Deoptimization::Reason_intrinsic,
3851                   Deoptimization::Action_maybe_recompile);
3852   }
3853 
3854   // If control is dead, only non-array-path is taken.
3855   if (stopped())  return true;
3856 
3857   // The works fine even if the array type is polymorphic.
3858   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3859   Node* result = load_array_length(array);
3860 
3861   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3862   set_result(result);
3863   return true;
3864 }
3865 
3866 //------------------------inline_array_copyOf----------------------------
3867 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3868 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3869 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3870   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3871 
3872   // Get the arguments.
3873   Node* original          = argument(0);
3874   Node* start             = is_copyOfRange? argument(1): intcon(0);
3875   Node* end               = is_copyOfRange? argument(2): argument(1);
3876   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3877 
3878   Node* newcopy = NULL;
3879 
3880   // Set the original stack and the reexecute bit for the interpreter to reexecute
3881   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3882   { PreserveReexecuteState preexecs(this);
3883     jvms()->set_should_reexecute(true);
3884 
3885     array_type_mirror = null_check(array_type_mirror);
3886     original          = null_check(original);
3887 
3888     // Check if a null path was taken unconditionally.
3889     if (stopped())  return true;
3890 
3891     Node* orig_length = load_array_length(original);
3892 
3893     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3894     klass_node = null_check(klass_node);
3895 
3896     RegionNode* bailout = new RegionNode(1);
3897     record_for_igvn(bailout);
3898 
3899     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3900     // Bail out if that is so.
3901     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3902     if (not_objArray != NULL) {
3903       // Improve the klass node's type from the new optimistic assumption:
3904       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3905       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3906       Node* cast = new CastPPNode(klass_node, akls);
3907       cast->init_req(0, control());
3908       klass_node = _gvn.transform(cast);
3909     }
3910 
3911     // Bail out if either start or end is negative.
3912     generate_negative_guard(start, bailout, &start);
3913     generate_negative_guard(end,   bailout, &end);
3914 
3915     Node* length = end;
3916     if (_gvn.type(start) != TypeInt::ZERO) {
3917       length = _gvn.transform(new SubINode(end, start));
3918     }
3919 
3920     // Bail out if length is negative.
3921     // Without this the new_array would throw
3922     // NegativeArraySizeException but IllegalArgumentException is what
3923     // should be thrown
3924     generate_negative_guard(length, bailout, &length);
3925 
3926     if (bailout->req() > 1) {
3927       PreserveJVMState pjvms(this);
3928       set_control(_gvn.transform(bailout));
3929       uncommon_trap(Deoptimization::Reason_intrinsic,
3930                     Deoptimization::Action_maybe_recompile);
3931     }
3932 
3933     if (!stopped()) {
3934       // How many elements will we copy from the original?
3935       // The answer is MinI(orig_length - start, length).
3936       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3937       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3938 
3939       // Generate a direct call to the right arraycopy function(s).
3940       // We know the copy is disjoint but we might not know if the
3941       // oop stores need checking.
3942       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3943       // This will fail a store-check if x contains any non-nulls.
3944 
3945       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3946       // loads/stores but it is legal only if we're sure the
3947       // Arrays.copyOf would succeed. So we need all input arguments
3948       // to the copyOf to be validated, including that the copy to the
3949       // new array won't trigger an ArrayStoreException. That subtype
3950       // check can be optimized if we know something on the type of
3951       // the input array from type speculation.
3952       if (_gvn.type(klass_node)->singleton()) {
3953         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3954         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3955 
3956         int test = C->static_subtype_check(superk, subk);
3957         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3958           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3959           if (t_original->speculative_type() != NULL) {
3960             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3961           }
3962         }
3963       }
3964 
3965       bool validated = false;
3966       // Reason_class_check rather than Reason_intrinsic because we
3967       // want to intrinsify even if this traps.
3968       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3969         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3970                                                    klass_node);
3971 
3972         if (not_subtype_ctrl != top()) {
3973           PreserveJVMState pjvms(this);
3974           set_control(not_subtype_ctrl);
3975           uncommon_trap(Deoptimization::Reason_class_check,
3976                         Deoptimization::Action_make_not_entrant);
3977           assert(stopped(), "Should be stopped");
3978         }
3979         validated = true;
3980       }
3981 
3982       if (!stopped()) {
3983         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3984 
3985         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3986                                                 load_object_klass(original), klass_node);
3987         if (!is_copyOfRange) {
3988           ac->set_copyof(validated);
3989         } else {
3990           ac->set_copyofrange(validated);
3991         }
3992         Node* n = _gvn.transform(ac);
3993         if (n == ac) {
3994           ac->connect_outputs(this);
3995         } else {
3996           assert(validated, "shouldn't transform if all arguments not validated");
3997           set_all_memory(n);
3998         }
3999       }
4000     }
4001   } // original reexecute is set back here
4002 
4003   C->set_has_split_ifs(true); // Has chance for split-if optimization
4004   if (!stopped()) {
4005     set_result(newcopy);
4006   }
4007   return true;
4008 }
4009 
4010 
4011 //----------------------generate_virtual_guard---------------------------
4012 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4013 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4014                                              RegionNode* slow_region) {
4015   ciMethod* method = callee();
4016   int vtable_index = method->vtable_index();
4017   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4018          "bad index %d", vtable_index);
4019   // Get the Method* out of the appropriate vtable entry.
4020   int entry_offset  = (InstanceKlass::vtable_start_offset() +
4021                      vtable_index*vtableEntry::size()) * wordSize +
4022                      vtableEntry::method_offset_in_bytes();
4023   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4024   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4025 
4026   // Compare the target method with the expected method (e.g., Object.hashCode).
4027   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4028 
4029   Node* native_call = makecon(native_call_addr);
4030   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4031   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4032 
4033   return generate_slow_guard(test_native, slow_region);
4034 }
4035 
4036 //-----------------------generate_method_call----------------------------
4037 // Use generate_method_call to make a slow-call to the real
4038 // method if the fast path fails.  An alternative would be to
4039 // use a stub like OptoRuntime::slow_arraycopy_Java.
4040 // This only works for expanding the current library call,
4041 // not another intrinsic.  (E.g., don't use this for making an
4042 // arraycopy call inside of the copyOf intrinsic.)
4043 CallJavaNode*
4044 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4045   // When compiling the intrinsic method itself, do not use this technique.
4046   guarantee(callee() != C->method(), "cannot make slow-call to self");
4047 
4048   ciMethod* method = callee();
4049   // ensure the JVMS we have will be correct for this call
4050   guarantee(method_id == method->intrinsic_id(), "must match");
4051 
4052   const TypeFunc* tf = TypeFunc::make(method);
4053   CallJavaNode* slow_call;
4054   if (is_static) {
4055     assert(!is_virtual, "");
4056     slow_call = new CallStaticJavaNode(C, tf,
4057                            SharedRuntime::get_resolve_static_call_stub(),
4058                            method, bci());
4059   } else if (is_virtual) {
4060     null_check_receiver();
4061     int vtable_index = Method::invalid_vtable_index;
4062     if (UseInlineCaches) {
4063       // Suppress the vtable call
4064     } else {
4065       // hashCode and clone are not a miranda methods,
4066       // so the vtable index is fixed.
4067       // No need to use the linkResolver to get it.
4068        vtable_index = method->vtable_index();
4069        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4070               "bad index %d", vtable_index);
4071     }
4072     slow_call = new CallDynamicJavaNode(tf,
4073                           SharedRuntime::get_resolve_virtual_call_stub(),
4074                           method, vtable_index, bci());
4075   } else {  // neither virtual nor static:  opt_virtual
4076     null_check_receiver();
4077     slow_call = new CallStaticJavaNode(C, tf,
4078                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4079                                 method, bci());
4080     slow_call->set_optimized_virtual(true);
4081   }
4082   set_arguments_for_java_call(slow_call);
4083   set_edges_for_java_call(slow_call);
4084   return slow_call;
4085 }
4086 
4087 
4088 /**
4089  * Build special case code for calls to hashCode on an object. This call may
4090  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4091  * slightly different code.
4092  */
4093 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4094   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4095   assert(!(is_virtual && is_static), "either virtual, special, or static");
4096 
4097   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4098 
4099   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4100   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4101   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4102   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4103   Node* obj = NULL;
4104   if (!is_static) {
4105     // Check for hashing null object
4106     obj = null_check_receiver();
4107     if (stopped())  return true;        // unconditionally null
4108     result_reg->init_req(_null_path, top());
4109     result_val->init_req(_null_path, top());
4110   } else {
4111     // Do a null check, and return zero if null.
4112     // System.identityHashCode(null) == 0
4113     obj = argument(0);
4114     Node* null_ctl = top();
4115     obj = null_check_oop(obj, &null_ctl);
4116     result_reg->init_req(_null_path, null_ctl);
4117     result_val->init_req(_null_path, _gvn.intcon(0));
4118   }
4119 
4120   // Unconditionally null?  Then return right away.
4121   if (stopped()) {
4122     set_control( result_reg->in(_null_path));
4123     if (!stopped())
4124       set_result(result_val->in(_null_path));
4125     return true;
4126   }
4127 
4128   // We only go to the fast case code if we pass a number of guards.  The
4129   // paths which do not pass are accumulated in the slow_region.
4130   RegionNode* slow_region = new RegionNode(1);
4131   record_for_igvn(slow_region);
4132 
4133   // If this is a virtual call, we generate a funny guard.  We pull out
4134   // the vtable entry corresponding to hashCode() from the target object.
4135   // If the target method which we are calling happens to be the native
4136   // Object hashCode() method, we pass the guard.  We do not need this
4137   // guard for non-virtual calls -- the caller is known to be the native
4138   // Object hashCode().
4139   if (is_virtual) {
4140     // After null check, get the object's klass.
4141     Node* obj_klass = load_object_klass(obj);
4142     generate_virtual_guard(obj_klass, slow_region);
4143   }
4144 
4145   // Get the header out of the object, use LoadMarkNode when available
4146   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4147   // The control of the load must be NULL. Otherwise, the load can move before
4148   // the null check after castPP removal.
4149   Node* no_ctrl = NULL;
4150   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4151 
4152   // Test the header to see if it is unlocked.
4153   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4154   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4155   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4156   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4157   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4158 
4159   generate_slow_guard(test_unlocked, slow_region);
4160 
4161   // Get the hash value and check to see that it has been properly assigned.
4162   // We depend on hash_mask being at most 32 bits and avoid the use of
4163   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4164   // vm: see markOop.hpp.
4165   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4166   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4167   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4168   // This hack lets the hash bits live anywhere in the mark object now, as long
4169   // as the shift drops the relevant bits into the low 32 bits.  Note that
4170   // Java spec says that HashCode is an int so there's no point in capturing
4171   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4172   hshifted_header      = ConvX2I(hshifted_header);
4173   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4174 
4175   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4176   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4177   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4178 
4179   generate_slow_guard(test_assigned, slow_region);
4180 
4181   Node* init_mem = reset_memory();
4182   // fill in the rest of the null path:
4183   result_io ->init_req(_null_path, i_o());
4184   result_mem->init_req(_null_path, init_mem);
4185 
4186   result_val->init_req(_fast_path, hash_val);
4187   result_reg->init_req(_fast_path, control());
4188   result_io ->init_req(_fast_path, i_o());
4189   result_mem->init_req(_fast_path, init_mem);
4190 
4191   // Generate code for the slow case.  We make a call to hashCode().
4192   set_control(_gvn.transform(slow_region));
4193   if (!stopped()) {
4194     // No need for PreserveJVMState, because we're using up the present state.
4195     set_all_memory(init_mem);
4196     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4197     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4198     Node* slow_result = set_results_for_java_call(slow_call);
4199     // this->control() comes from set_results_for_java_call
4200     result_reg->init_req(_slow_path, control());
4201     result_val->init_req(_slow_path, slow_result);
4202     result_io  ->set_req(_slow_path, i_o());
4203     result_mem ->set_req(_slow_path, reset_memory());
4204   }
4205 
4206   // Return the combined state.
4207   set_i_o(        _gvn.transform(result_io)  );
4208   set_all_memory( _gvn.transform(result_mem));
4209 
4210   set_result(result_reg, result_val);
4211   return true;
4212 }
4213 
4214 //---------------------------inline_native_getClass----------------------------
4215 // public final native Class<?> java.lang.Object.getClass();
4216 //
4217 // Build special case code for calls to getClass on an object.
4218 bool LibraryCallKit::inline_native_getClass() {
4219   Node* obj = null_check_receiver();
4220   if (stopped())  return true;
4221   set_result(load_mirror_from_klass(load_object_klass(obj)));
4222   return true;
4223 }
4224 
4225 //-----------------inline_native_Reflection_getCallerClass---------------------
4226 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4227 //
4228 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4229 //
4230 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4231 // in that it must skip particular security frames and checks for
4232 // caller sensitive methods.
4233 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4234 #ifndef PRODUCT
4235   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4236     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4237   }
4238 #endif
4239 
4240   if (!jvms()->has_method()) {
4241 #ifndef PRODUCT
4242     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4243       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4244     }
4245 #endif
4246     return false;
4247   }
4248 
4249   // Walk back up the JVM state to find the caller at the required
4250   // depth.
4251   JVMState* caller_jvms = jvms();
4252 
4253   // Cf. JVM_GetCallerClass
4254   // NOTE: Start the loop at depth 1 because the current JVM state does
4255   // not include the Reflection.getCallerClass() frame.
4256   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4257     ciMethod* m = caller_jvms->method();
4258     switch (n) {
4259     case 0:
4260       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4261       break;
4262     case 1:
4263       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4264       if (!m->caller_sensitive()) {
4265 #ifndef PRODUCT
4266         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4267           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4268         }
4269 #endif
4270         return false;  // bail-out; let JVM_GetCallerClass do the work
4271       }
4272       break;
4273     default:
4274       if (!m->is_ignored_by_security_stack_walk()) {
4275         // We have reached the desired frame; return the holder class.
4276         // Acquire method holder as java.lang.Class and push as constant.
4277         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4278         ciInstance* caller_mirror = caller_klass->java_mirror();
4279         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4280 
4281 #ifndef PRODUCT
4282         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4283           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4284           tty->print_cr("  JVM state at this point:");
4285           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4286             ciMethod* m = jvms()->of_depth(i)->method();
4287             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4288           }
4289         }
4290 #endif
4291         return true;
4292       }
4293       break;
4294     }
4295   }
4296 
4297 #ifndef PRODUCT
4298   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4299     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4300     tty->print_cr("  JVM state at this point:");
4301     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4302       ciMethod* m = jvms()->of_depth(i)->method();
4303       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4304     }
4305   }
4306 #endif
4307 
4308   return false;  // bail-out; let JVM_GetCallerClass do the work
4309 }
4310 
4311 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4312   Node* arg = argument(0);
4313   Node* result = NULL;
4314 
4315   switch (id) {
4316   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4317   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4318   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4319   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4320 
4321   case vmIntrinsics::_doubleToLongBits: {
4322     // two paths (plus control) merge in a wood
4323     RegionNode *r = new RegionNode(3);
4324     Node *phi = new PhiNode(r, TypeLong::LONG);
4325 
4326     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4327     // Build the boolean node
4328     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4329 
4330     // Branch either way.
4331     // NaN case is less traveled, which makes all the difference.
4332     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4333     Node *opt_isnan = _gvn.transform(ifisnan);
4334     assert( opt_isnan->is_If(), "Expect an IfNode");
4335     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4336     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4337 
4338     set_control(iftrue);
4339 
4340     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4341     Node *slow_result = longcon(nan_bits); // return NaN
4342     phi->init_req(1, _gvn.transform( slow_result ));
4343     r->init_req(1, iftrue);
4344 
4345     // Else fall through
4346     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4347     set_control(iffalse);
4348 
4349     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4350     r->init_req(2, iffalse);
4351 
4352     // Post merge
4353     set_control(_gvn.transform(r));
4354     record_for_igvn(r);
4355 
4356     C->set_has_split_ifs(true); // Has chance for split-if optimization
4357     result = phi;
4358     assert(result->bottom_type()->isa_long(), "must be");
4359     break;
4360   }
4361 
4362   case vmIntrinsics::_floatToIntBits: {
4363     // two paths (plus control) merge in a wood
4364     RegionNode *r = new RegionNode(3);
4365     Node *phi = new PhiNode(r, TypeInt::INT);
4366 
4367     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4368     // Build the boolean node
4369     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4370 
4371     // Branch either way.
4372     // NaN case is less traveled, which makes all the difference.
4373     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4374     Node *opt_isnan = _gvn.transform(ifisnan);
4375     assert( opt_isnan->is_If(), "Expect an IfNode");
4376     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4377     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4378 
4379     set_control(iftrue);
4380 
4381     static const jint nan_bits = 0x7fc00000;
4382     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4383     phi->init_req(1, _gvn.transform( slow_result ));
4384     r->init_req(1, iftrue);
4385 
4386     // Else fall through
4387     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4388     set_control(iffalse);
4389 
4390     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4391     r->init_req(2, iffalse);
4392 
4393     // Post merge
4394     set_control(_gvn.transform(r));
4395     record_for_igvn(r);
4396 
4397     C->set_has_split_ifs(true); // Has chance for split-if optimization
4398     result = phi;
4399     assert(result->bottom_type()->isa_int(), "must be");
4400     break;
4401   }
4402 
4403   default:
4404     fatal_unexpected_iid(id);
4405     break;
4406   }
4407   set_result(_gvn.transform(result));
4408   return true;
4409 }
4410 
4411 //----------------------inline_unsafe_copyMemory-------------------------
4412 // public native void Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4413 bool LibraryCallKit::inline_unsafe_copyMemory() {
4414   if (callee()->is_static())  return false;  // caller must have the capability!
4415   null_check_receiver();  // null-check receiver
4416   if (stopped())  return true;
4417 
4418   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4419 
4420   Node* src_ptr =         argument(1);   // type: oop
4421   Node* src_off = ConvL2X(argument(2));  // type: long
4422   Node* dst_ptr =         argument(4);   // type: oop
4423   Node* dst_off = ConvL2X(argument(5));  // type: long
4424   Node* size    = ConvL2X(argument(7));  // type: long
4425 
4426   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4427          "fieldOffset must be byte-scaled");
4428 
4429   Node* src = make_unsafe_address(src_ptr, src_off);
4430   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4431 
4432   // Conservatively insert a memory barrier on all memory slices.
4433   // Do not let writes of the copy source or destination float below the copy.
4434   insert_mem_bar(Op_MemBarCPUOrder);
4435 
4436   // Call it.  Note that the length argument is not scaled.
4437   make_runtime_call(RC_LEAF|RC_NO_FP,
4438                     OptoRuntime::fast_arraycopy_Type(),
4439                     StubRoutines::unsafe_arraycopy(),
4440                     "unsafe_arraycopy",
4441                     TypeRawPtr::BOTTOM,
4442                     src, dst, size XTOP);
4443 
4444   // Do not let reads of the copy destination float above the copy.
4445   insert_mem_bar(Op_MemBarCPUOrder);
4446 
4447   return true;
4448 }
4449 
4450 //------------------------clone_coping-----------------------------------
4451 // Helper function for inline_native_clone.
4452 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4453   assert(obj_size != NULL, "");
4454   Node* raw_obj = alloc_obj->in(1);
4455   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4456 
4457   AllocateNode* alloc = NULL;
4458   if (ReduceBulkZeroing) {
4459     // We will be completely responsible for initializing this object -
4460     // mark Initialize node as complete.
4461     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4462     // The object was just allocated - there should be no any stores!
4463     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4464     // Mark as complete_with_arraycopy so that on AllocateNode
4465     // expansion, we know this AllocateNode is initialized by an array
4466     // copy and a StoreStore barrier exists after the array copy.
4467     alloc->initialization()->set_complete_with_arraycopy();
4468   }
4469 
4470   // Copy the fastest available way.
4471   // TODO: generate fields copies for small objects instead.
4472   Node* src  = obj;
4473   Node* dest = alloc_obj;
4474   Node* size = _gvn.transform(obj_size);
4475 
4476   // Exclude the header but include array length to copy by 8 bytes words.
4477   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4478   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4479                             instanceOopDesc::base_offset_in_bytes();
4480   // base_off:
4481   // 8  - 32-bit VM
4482   // 12 - 64-bit VM, compressed klass
4483   // 16 - 64-bit VM, normal klass
4484   if (base_off % BytesPerLong != 0) {
4485     assert(UseCompressedClassPointers, "");
4486     if (is_array) {
4487       // Exclude length to copy by 8 bytes words.
4488       base_off += sizeof(int);
4489     } else {
4490       // Include klass to copy by 8 bytes words.
4491       base_off = instanceOopDesc::klass_offset_in_bytes();
4492     }
4493     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4494   }
4495   src  = basic_plus_adr(src,  base_off);
4496   dest = basic_plus_adr(dest, base_off);
4497 
4498   // Compute the length also, if needed:
4499   Node* countx = size;
4500   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4501   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4502 
4503   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4504 
4505   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4506   ac->set_clonebasic();
4507   Node* n = _gvn.transform(ac);
4508   if (n == ac) {
4509     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4510   } else {
4511     set_all_memory(n);
4512   }
4513 
4514   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4515   if (card_mark) {
4516     assert(!is_array, "");
4517     // Put in store barrier for any and all oops we are sticking
4518     // into this object.  (We could avoid this if we could prove
4519     // that the object type contains no oop fields at all.)
4520     Node* no_particular_value = NULL;
4521     Node* no_particular_field = NULL;
4522     int raw_adr_idx = Compile::AliasIdxRaw;
4523     post_barrier(control(),
4524                  memory(raw_adr_type),
4525                  alloc_obj,
4526                  no_particular_field,
4527                  raw_adr_idx,
4528                  no_particular_value,
4529                  T_OBJECT,
4530                  false);
4531   }
4532 
4533   // Do not let reads from the cloned object float above the arraycopy.
4534   if (alloc != NULL) {
4535     // Do not let stores that initialize this object be reordered with
4536     // a subsequent store that would make this object accessible by
4537     // other threads.
4538     // Record what AllocateNode this StoreStore protects so that
4539     // escape analysis can go from the MemBarStoreStoreNode to the
4540     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4541     // based on the escape status of the AllocateNode.
4542     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4543   } else {
4544     insert_mem_bar(Op_MemBarCPUOrder);
4545   }
4546 }
4547 
4548 //------------------------inline_native_clone----------------------------
4549 // protected native Object java.lang.Object.clone();
4550 //
4551 // Here are the simple edge cases:
4552 //  null receiver => normal trap
4553 //  virtual and clone was overridden => slow path to out-of-line clone
4554 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4555 //
4556 // The general case has two steps, allocation and copying.
4557 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4558 //
4559 // Copying also has two cases, oop arrays and everything else.
4560 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4561 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4562 //
4563 // These steps fold up nicely if and when the cloned object's klass
4564 // can be sharply typed as an object array, a type array, or an instance.
4565 //
4566 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4567   PhiNode* result_val;
4568 
4569   // Set the reexecute bit for the interpreter to reexecute
4570   // the bytecode that invokes Object.clone if deoptimization happens.
4571   { PreserveReexecuteState preexecs(this);
4572     jvms()->set_should_reexecute(true);
4573 
4574     Node* obj = null_check_receiver();
4575     if (stopped())  return true;
4576 
4577     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4578 
4579     // If we are going to clone an instance, we need its exact type to
4580     // know the number and types of fields to convert the clone to
4581     // loads/stores. Maybe a speculative type can help us.
4582     if (!obj_type->klass_is_exact() &&
4583         obj_type->speculative_type() != NULL &&
4584         obj_type->speculative_type()->is_instance_klass()) {
4585       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4586       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4587           !spec_ik->has_injected_fields()) {
4588         ciKlass* k = obj_type->klass();
4589         if (!k->is_instance_klass() ||
4590             k->as_instance_klass()->is_interface() ||
4591             k->as_instance_klass()->has_subklass()) {
4592           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4593         }
4594       }
4595     }
4596 
4597     Node* obj_klass = load_object_klass(obj);
4598     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4599     const TypeOopPtr*   toop   = ((tklass != NULL)
4600                                 ? tklass->as_instance_type()
4601                                 : TypeInstPtr::NOTNULL);
4602 
4603     // Conservatively insert a memory barrier on all memory slices.
4604     // Do not let writes into the original float below the clone.
4605     insert_mem_bar(Op_MemBarCPUOrder);
4606 
4607     // paths into result_reg:
4608     enum {
4609       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4610       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4611       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4612       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4613       PATH_LIMIT
4614     };
4615     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4616     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4617     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4618     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4619     record_for_igvn(result_reg);
4620 
4621     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4622     int raw_adr_idx = Compile::AliasIdxRaw;
4623 
4624     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4625     if (array_ctl != NULL) {
4626       // It's an array.
4627       PreserveJVMState pjvms(this);
4628       set_control(array_ctl);
4629       Node* obj_length = load_array_length(obj);
4630       Node* obj_size  = NULL;
4631       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4632 
4633       if (!use_ReduceInitialCardMarks()) {
4634         // If it is an oop array, it requires very special treatment,
4635         // because card marking is required on each card of the array.
4636         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4637         if (is_obja != NULL) {
4638           PreserveJVMState pjvms2(this);
4639           set_control(is_obja);
4640           // Generate a direct call to the right arraycopy function(s).
4641           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4642           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4643           ac->set_cloneoop();
4644           Node* n = _gvn.transform(ac);
4645           assert(n == ac, "cannot disappear");
4646           ac->connect_outputs(this);
4647 
4648           result_reg->init_req(_objArray_path, control());
4649           result_val->init_req(_objArray_path, alloc_obj);
4650           result_i_o ->set_req(_objArray_path, i_o());
4651           result_mem ->set_req(_objArray_path, reset_memory());
4652         }
4653       }
4654       // Otherwise, there are no card marks to worry about.
4655       // (We can dispense with card marks if we know the allocation
4656       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4657       //  causes the non-eden paths to take compensating steps to
4658       //  simulate a fresh allocation, so that no further
4659       //  card marks are required in compiled code to initialize
4660       //  the object.)
4661 
4662       if (!stopped()) {
4663         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4664 
4665         // Present the results of the copy.
4666         result_reg->init_req(_array_path, control());
4667         result_val->init_req(_array_path, alloc_obj);
4668         result_i_o ->set_req(_array_path, i_o());
4669         result_mem ->set_req(_array_path, reset_memory());
4670       }
4671     }
4672 
4673     // We only go to the instance fast case code if we pass a number of guards.
4674     // The paths which do not pass are accumulated in the slow_region.
4675     RegionNode* slow_region = new RegionNode(1);
4676     record_for_igvn(slow_region);
4677     if (!stopped()) {
4678       // It's an instance (we did array above).  Make the slow-path tests.
4679       // If this is a virtual call, we generate a funny guard.  We grab
4680       // the vtable entry corresponding to clone() from the target object.
4681       // If the target method which we are calling happens to be the
4682       // Object clone() method, we pass the guard.  We do not need this
4683       // guard for non-virtual calls; the caller is known to be the native
4684       // Object clone().
4685       if (is_virtual) {
4686         generate_virtual_guard(obj_klass, slow_region);
4687       }
4688 
4689       // The object must be cloneable and must not have a finalizer.
4690       // Both of these conditions may be checked in a single test.
4691       // We could optimize the cloneable test further, but we don't care.
4692       generate_access_flags_guard(obj_klass,
4693                                   // Test both conditions:
4694                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4695                                   // Must be cloneable but not finalizer:
4696                                   JVM_ACC_IS_CLONEABLE,
4697                                   slow_region);
4698     }
4699 
4700     if (!stopped()) {
4701       // It's an instance, and it passed the slow-path tests.
4702       PreserveJVMState pjvms(this);
4703       Node* obj_size  = NULL;
4704       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4705       // is reexecuted if deoptimization occurs and there could be problems when merging
4706       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4707       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4708 
4709       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4710 
4711       // Present the results of the slow call.
4712       result_reg->init_req(_instance_path, control());
4713       result_val->init_req(_instance_path, alloc_obj);
4714       result_i_o ->set_req(_instance_path, i_o());
4715       result_mem ->set_req(_instance_path, reset_memory());
4716     }
4717 
4718     // Generate code for the slow case.  We make a call to clone().
4719     set_control(_gvn.transform(slow_region));
4720     if (!stopped()) {
4721       PreserveJVMState pjvms(this);
4722       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4723       Node* slow_result = set_results_for_java_call(slow_call);
4724       // this->control() comes from set_results_for_java_call
4725       result_reg->init_req(_slow_path, control());
4726       result_val->init_req(_slow_path, slow_result);
4727       result_i_o ->set_req(_slow_path, i_o());
4728       result_mem ->set_req(_slow_path, reset_memory());
4729     }
4730 
4731     // Return the combined state.
4732     set_control(    _gvn.transform(result_reg));
4733     set_i_o(        _gvn.transform(result_i_o));
4734     set_all_memory( _gvn.transform(result_mem));
4735   } // original reexecute is set back here
4736 
4737   set_result(_gvn.transform(result_val));
4738   return true;
4739 }
4740 
4741 // If we have a tighly coupled allocation, the arraycopy may take care
4742 // of the array initialization. If one of the guards we insert between
4743 // the allocation and the arraycopy causes a deoptimization, an
4744 // unitialized array will escape the compiled method. To prevent that
4745 // we set the JVM state for uncommon traps between the allocation and
4746 // the arraycopy to the state before the allocation so, in case of
4747 // deoptimization, we'll reexecute the allocation and the
4748 // initialization.
4749 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4750   if (alloc != NULL) {
4751     ciMethod* trap_method = alloc->jvms()->method();
4752     int trap_bci = alloc->jvms()->bci();
4753 
4754     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4755           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4756       // Make sure there's no store between the allocation and the
4757       // arraycopy otherwise visible side effects could be rexecuted
4758       // in case of deoptimization and cause incorrect execution.
4759       bool no_interfering_store = true;
4760       Node* mem = alloc->in(TypeFunc::Memory);
4761       if (mem->is_MergeMem()) {
4762         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4763           Node* n = mms.memory();
4764           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4765             assert(n->is_Store(), "what else?");
4766             no_interfering_store = false;
4767             break;
4768           }
4769         }
4770       } else {
4771         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4772           Node* n = mms.memory();
4773           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4774             assert(n->is_Store(), "what else?");
4775             no_interfering_store = false;
4776             break;
4777           }
4778         }
4779       }
4780 
4781       if (no_interfering_store) {
4782         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4783         uint size = alloc->req();
4784         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4785         old_jvms->set_map(sfpt);
4786         for (uint i = 0; i < size; i++) {
4787           sfpt->init_req(i, alloc->in(i));
4788         }
4789         // re-push array length for deoptimization
4790         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4791         old_jvms->set_sp(old_jvms->sp()+1);
4792         old_jvms->set_monoff(old_jvms->monoff()+1);
4793         old_jvms->set_scloff(old_jvms->scloff()+1);
4794         old_jvms->set_endoff(old_jvms->endoff()+1);
4795         old_jvms->set_should_reexecute(true);
4796 
4797         sfpt->set_i_o(map()->i_o());
4798         sfpt->set_memory(map()->memory());
4799         sfpt->set_control(map()->control());
4800 
4801         JVMState* saved_jvms = jvms();
4802         saved_reexecute_sp = _reexecute_sp;
4803 
4804         set_jvms(sfpt->jvms());
4805         _reexecute_sp = jvms()->sp();
4806 
4807         return saved_jvms;
4808       }
4809     }
4810   }
4811   return NULL;
4812 }
4813 
4814 // In case of a deoptimization, we restart execution at the
4815 // allocation, allocating a new array. We would leave an uninitialized
4816 // array in the heap that GCs wouldn't expect. Move the allocation
4817 // after the traps so we don't allocate the array if we
4818 // deoptimize. This is possible because tightly_coupled_allocation()
4819 // guarantees there's no observer of the allocated array at this point
4820 // and the control flow is simple enough.
4821 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4822   if (saved_jvms != NULL && !stopped()) {
4823     assert(alloc != NULL, "only with a tightly coupled allocation");
4824     // restore JVM state to the state at the arraycopy
4825     saved_jvms->map()->set_control(map()->control());
4826     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4827     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4828     // If we've improved the types of some nodes (null check) while
4829     // emitting the guards, propagate them to the current state
4830     map()->replaced_nodes().apply(saved_jvms->map());
4831     set_jvms(saved_jvms);
4832     _reexecute_sp = saved_reexecute_sp;
4833 
4834     // Remove the allocation from above the guards
4835     CallProjections callprojs;
4836     alloc->extract_projections(&callprojs, true);
4837     InitializeNode* init = alloc->initialization();
4838     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4839     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4840     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4841     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4842 
4843     // move the allocation here (after the guards)
4844     _gvn.hash_delete(alloc);
4845     alloc->set_req(TypeFunc::Control, control());
4846     alloc->set_req(TypeFunc::I_O, i_o());
4847     Node *mem = reset_memory();
4848     set_all_memory(mem);
4849     alloc->set_req(TypeFunc::Memory, mem);
4850     set_control(init->proj_out(TypeFunc::Control));
4851     set_i_o(callprojs.fallthrough_ioproj);
4852 
4853     // Update memory as done in GraphKit::set_output_for_allocation()
4854     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4855     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4856     if (ary_type->isa_aryptr() && length_type != NULL) {
4857       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4858     }
4859     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4860     int            elemidx  = C->get_alias_index(telemref);
4861     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4862     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4863 
4864     Node* allocx = _gvn.transform(alloc);
4865     assert(allocx == alloc, "where has the allocation gone?");
4866     assert(dest->is_CheckCastPP(), "not an allocation result?");
4867 
4868     _gvn.hash_delete(dest);
4869     dest->set_req(0, control());
4870     Node* destx = _gvn.transform(dest);
4871     assert(destx == dest, "where has the allocation result gone?");
4872   }
4873 }
4874 
4875 
4876 //------------------------------inline_arraycopy-----------------------
4877 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4878 //                                                      Object dest, int destPos,
4879 //                                                      int length);
4880 bool LibraryCallKit::inline_arraycopy() {
4881   // Get the arguments.
4882   Node* src         = argument(0);  // type: oop
4883   Node* src_offset  = argument(1);  // type: int
4884   Node* dest        = argument(2);  // type: oop
4885   Node* dest_offset = argument(3);  // type: int
4886   Node* length      = argument(4);  // type: int
4887 
4888 
4889   // Check for allocation before we add nodes that would confuse
4890   // tightly_coupled_allocation()
4891   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4892 
4893   int saved_reexecute_sp = -1;
4894   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4895   // See arraycopy_restore_alloc_state() comment
4896   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4897   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4898   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4899   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4900 
4901   // The following tests must be performed
4902   // (1) src and dest are arrays.
4903   // (2) src and dest arrays must have elements of the same BasicType
4904   // (3) src and dest must not be null.
4905   // (4) src_offset must not be negative.
4906   // (5) dest_offset must not be negative.
4907   // (6) length must not be negative.
4908   // (7) src_offset + length must not exceed length of src.
4909   // (8) dest_offset + length must not exceed length of dest.
4910   // (9) each element of an oop array must be assignable
4911 
4912   // (3) src and dest must not be null.
4913   // always do this here because we need the JVM state for uncommon traps
4914   Node* null_ctl = top();
4915   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4916   assert(null_ctl->is_top(), "no null control here");
4917   dest = null_check(dest, T_ARRAY);
4918 
4919   if (!can_emit_guards) {
4920     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4921     // guards but the arraycopy node could still take advantage of a
4922     // tightly allocated allocation. tightly_coupled_allocation() is
4923     // called again to make sure it takes the null check above into
4924     // account: the null check is mandatory and if it caused an
4925     // uncommon trap to be emitted then the allocation can't be
4926     // considered tightly coupled in this context.
4927     alloc = tightly_coupled_allocation(dest, NULL);
4928   }
4929 
4930   bool validated = false;
4931 
4932   const Type* src_type  = _gvn.type(src);
4933   const Type* dest_type = _gvn.type(dest);
4934   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4935   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4936 
4937   // Do we have the type of src?
4938   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4939   // Do we have the type of dest?
4940   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4941   // Is the type for src from speculation?
4942   bool src_spec = false;
4943   // Is the type for dest from speculation?
4944   bool dest_spec = false;
4945 
4946   if ((!has_src || !has_dest) && can_emit_guards) {
4947     // We don't have sufficient type information, let's see if
4948     // speculative types can help. We need to have types for both src
4949     // and dest so that it pays off.
4950 
4951     // Do we already have or could we have type information for src
4952     bool could_have_src = has_src;
4953     // Do we already have or could we have type information for dest
4954     bool could_have_dest = has_dest;
4955 
4956     ciKlass* src_k = NULL;
4957     if (!has_src) {
4958       src_k = src_type->speculative_type_not_null();
4959       if (src_k != NULL && src_k->is_array_klass()) {
4960         could_have_src = true;
4961       }
4962     }
4963 
4964     ciKlass* dest_k = NULL;
4965     if (!has_dest) {
4966       dest_k = dest_type->speculative_type_not_null();
4967       if (dest_k != NULL && dest_k->is_array_klass()) {
4968         could_have_dest = true;
4969       }
4970     }
4971 
4972     if (could_have_src && could_have_dest) {
4973       // This is going to pay off so emit the required guards
4974       if (!has_src) {
4975         src = maybe_cast_profiled_obj(src, src_k, true);
4976         src_type  = _gvn.type(src);
4977         top_src  = src_type->isa_aryptr();
4978         has_src = (top_src != NULL && top_src->klass() != NULL);
4979         src_spec = true;
4980       }
4981       if (!has_dest) {
4982         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4983         dest_type  = _gvn.type(dest);
4984         top_dest  = dest_type->isa_aryptr();
4985         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4986         dest_spec = true;
4987       }
4988     }
4989   }
4990 
4991   if (has_src && has_dest && can_emit_guards) {
4992     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4993     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4994     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4995     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4996 
4997     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4998       // If both arrays are object arrays then having the exact types
4999       // for both will remove the need for a subtype check at runtime
5000       // before the call and may make it possible to pick a faster copy
5001       // routine (without a subtype check on every element)
5002       // Do we have the exact type of src?
5003       bool could_have_src = src_spec;
5004       // Do we have the exact type of dest?
5005       bool could_have_dest = dest_spec;
5006       ciKlass* src_k = top_src->klass();
5007       ciKlass* dest_k = top_dest->klass();
5008       if (!src_spec) {
5009         src_k = src_type->speculative_type_not_null();
5010         if (src_k != NULL && src_k->is_array_klass()) {
5011           could_have_src = true;
5012         }
5013       }
5014       if (!dest_spec) {
5015         dest_k = dest_type->speculative_type_not_null();
5016         if (dest_k != NULL && dest_k->is_array_klass()) {
5017           could_have_dest = true;
5018         }
5019       }
5020       if (could_have_src && could_have_dest) {
5021         // If we can have both exact types, emit the missing guards
5022         if (could_have_src && !src_spec) {
5023           src = maybe_cast_profiled_obj(src, src_k, true);
5024         }
5025         if (could_have_dest && !dest_spec) {
5026           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5027         }
5028       }
5029     }
5030   }
5031 
5032   ciMethod* trap_method = method();
5033   int trap_bci = bci();
5034   if (saved_jvms != NULL) {
5035     trap_method = alloc->jvms()->method();
5036     trap_bci = alloc->jvms()->bci();
5037   }
5038 
5039   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5040       can_emit_guards &&
5041       !src->is_top() && !dest->is_top()) {
5042     // validate arguments: enables transformation the ArrayCopyNode
5043     validated = true;
5044 
5045     RegionNode* slow_region = new RegionNode(1);
5046     record_for_igvn(slow_region);
5047 
5048     // (1) src and dest are arrays.
5049     generate_non_array_guard(load_object_klass(src), slow_region);
5050     generate_non_array_guard(load_object_klass(dest), slow_region);
5051 
5052     // (2) src and dest arrays must have elements of the same BasicType
5053     // done at macro expansion or at Ideal transformation time
5054 
5055     // (4) src_offset must not be negative.
5056     generate_negative_guard(src_offset, slow_region);
5057 
5058     // (5) dest_offset must not be negative.
5059     generate_negative_guard(dest_offset, slow_region);
5060 
5061     // (7) src_offset + length must not exceed length of src.
5062     generate_limit_guard(src_offset, length,
5063                          load_array_length(src),
5064                          slow_region);
5065 
5066     // (8) dest_offset + length must not exceed length of dest.
5067     generate_limit_guard(dest_offset, length,
5068                          load_array_length(dest),
5069                          slow_region);
5070 
5071     // (9) each element of an oop array must be assignable
5072     Node* src_klass  = load_object_klass(src);
5073     Node* dest_klass = load_object_klass(dest);
5074     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5075 
5076     if (not_subtype_ctrl != top()) {
5077       PreserveJVMState pjvms(this);
5078       set_control(not_subtype_ctrl);
5079       uncommon_trap(Deoptimization::Reason_intrinsic,
5080                     Deoptimization::Action_make_not_entrant);
5081       assert(stopped(), "Should be stopped");
5082     }
5083     {
5084       PreserveJVMState pjvms(this);
5085       set_control(_gvn.transform(slow_region));
5086       uncommon_trap(Deoptimization::Reason_intrinsic,
5087                     Deoptimization::Action_make_not_entrant);
5088       assert(stopped(), "Should be stopped");
5089     }
5090   }
5091 
5092   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5093 
5094   if (stopped()) {
5095     return true;
5096   }
5097 
5098   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5099                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5100                                           // so the compiler has a chance to eliminate them: during macro expansion,
5101                                           // we have to set their control (CastPP nodes are eliminated).
5102                                           load_object_klass(src), load_object_klass(dest),
5103                                           load_array_length(src), load_array_length(dest));
5104 
5105   ac->set_arraycopy(validated);
5106 
5107   Node* n = _gvn.transform(ac);
5108   if (n == ac) {
5109     ac->connect_outputs(this);
5110   } else {
5111     assert(validated, "shouldn't transform if all arguments not validated");
5112     set_all_memory(n);
5113   }
5114 
5115   return true;
5116 }
5117 
5118 
5119 // Helper function which determines if an arraycopy immediately follows
5120 // an allocation, with no intervening tests or other escapes for the object.
5121 AllocateArrayNode*
5122 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5123                                            RegionNode* slow_region) {
5124   if (stopped())             return NULL;  // no fast path
5125   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5126 
5127   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5128   if (alloc == NULL)  return NULL;
5129 
5130   Node* rawmem = memory(Compile::AliasIdxRaw);
5131   // Is the allocation's memory state untouched?
5132   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5133     // Bail out if there have been raw-memory effects since the allocation.
5134     // (Example:  There might have been a call or safepoint.)
5135     return NULL;
5136   }
5137   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5138   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5139     return NULL;
5140   }
5141 
5142   // There must be no unexpected observers of this allocation.
5143   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5144     Node* obs = ptr->fast_out(i);
5145     if (obs != this->map()) {
5146       return NULL;
5147     }
5148   }
5149 
5150   // This arraycopy must unconditionally follow the allocation of the ptr.
5151   Node* alloc_ctl = ptr->in(0);
5152   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5153 
5154   Node* ctl = control();
5155   while (ctl != alloc_ctl) {
5156     // There may be guards which feed into the slow_region.
5157     // Any other control flow means that we might not get a chance
5158     // to finish initializing the allocated object.
5159     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5160       IfNode* iff = ctl->in(0)->as_If();
5161       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5162       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5163       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5164         ctl = iff->in(0);       // This test feeds the known slow_region.
5165         continue;
5166       }
5167       // One more try:  Various low-level checks bottom out in
5168       // uncommon traps.  If the debug-info of the trap omits
5169       // any reference to the allocation, as we've already
5170       // observed, then there can be no objection to the trap.
5171       bool found_trap = false;
5172       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5173         Node* obs = not_ctl->fast_out(j);
5174         if (obs->in(0) == not_ctl && obs->is_Call() &&
5175             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5176           found_trap = true; break;
5177         }
5178       }
5179       if (found_trap) {
5180         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5181         continue;
5182       }
5183     }
5184     return NULL;
5185   }
5186 
5187   // If we get this far, we have an allocation which immediately
5188   // precedes the arraycopy, and we can take over zeroing the new object.
5189   // The arraycopy will finish the initialization, and provide
5190   // a new control state to which we will anchor the destination pointer.
5191 
5192   return alloc;
5193 }
5194 
5195 //-------------inline_encodeISOArray-----------------------------------
5196 // encode char[] to byte[] in ISO_8859_1
5197 bool LibraryCallKit::inline_encodeISOArray() {
5198   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5199   // no receiver since it is static method
5200   Node *src         = argument(0);
5201   Node *src_offset  = argument(1);
5202   Node *dst         = argument(2);
5203   Node *dst_offset  = argument(3);
5204   Node *length      = argument(4);
5205 
5206   const Type* src_type = src->Value(&_gvn);
5207   const Type* dst_type = dst->Value(&_gvn);
5208   const TypeAryPtr* top_src = src_type->isa_aryptr();
5209   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5210   if (top_src  == NULL || top_src->klass()  == NULL ||
5211       top_dest == NULL || top_dest->klass() == NULL) {
5212     // failed array check
5213     return false;
5214   }
5215 
5216   // Figure out the size and type of the elements we will be copying.
5217   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5218   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5219   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5220     return false;
5221   }
5222 
5223   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5224   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5225   // 'src_start' points to src array + scaled offset
5226   // 'dst_start' points to dst array + scaled offset
5227 
5228   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5229   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5230   enc = _gvn.transform(enc);
5231   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5232   set_memory(res_mem, mtype);
5233   set_result(enc);
5234   return true;
5235 }
5236 
5237 //-------------inline_multiplyToLen-----------------------------------
5238 bool LibraryCallKit::inline_multiplyToLen() {
5239   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5240 
5241   address stubAddr = StubRoutines::multiplyToLen();
5242   if (stubAddr == NULL) {
5243     return false; // Intrinsic's stub is not implemented on this platform
5244   }
5245   const char* stubName = "multiplyToLen";
5246 
5247   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5248 
5249   // no receiver because it is a static method
5250   Node* x    = argument(0);
5251   Node* xlen = argument(1);
5252   Node* y    = argument(2);
5253   Node* ylen = argument(3);
5254   Node* z    = argument(4);
5255 
5256   const Type* x_type = x->Value(&_gvn);
5257   const Type* y_type = y->Value(&_gvn);
5258   const TypeAryPtr* top_x = x_type->isa_aryptr();
5259   const TypeAryPtr* top_y = y_type->isa_aryptr();
5260   if (top_x  == NULL || top_x->klass()  == NULL ||
5261       top_y == NULL || top_y->klass() == NULL) {
5262     // failed array check
5263     return false;
5264   }
5265 
5266   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5267   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5268   if (x_elem != T_INT || y_elem != T_INT) {
5269     return false;
5270   }
5271 
5272   // Set the original stack and the reexecute bit for the interpreter to reexecute
5273   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5274   // on the return from z array allocation in runtime.
5275   { PreserveReexecuteState preexecs(this);
5276     jvms()->set_should_reexecute(true);
5277 
5278     Node* x_start = array_element_address(x, intcon(0), x_elem);
5279     Node* y_start = array_element_address(y, intcon(0), y_elem);
5280     // 'x_start' points to x array + scaled xlen
5281     // 'y_start' points to y array + scaled ylen
5282 
5283     // Allocate the result array
5284     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5285     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5286     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5287 
5288     IdealKit ideal(this);
5289 
5290 #define __ ideal.
5291      Node* one = __ ConI(1);
5292      Node* zero = __ ConI(0);
5293      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5294      __ set(need_alloc, zero);
5295      __ set(z_alloc, z);
5296      __ if_then(z, BoolTest::eq, null()); {
5297        __ increment (need_alloc, one);
5298      } __ else_(); {
5299        // Update graphKit memory and control from IdealKit.
5300        sync_kit(ideal);
5301        Node* zlen_arg = load_array_length(z);
5302        // Update IdealKit memory and control from graphKit.
5303        __ sync_kit(this);
5304        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5305          __ increment (need_alloc, one);
5306        } __ end_if();
5307      } __ end_if();
5308 
5309      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5310        // Update graphKit memory and control from IdealKit.
5311        sync_kit(ideal);
5312        Node * narr = new_array(klass_node, zlen, 1);
5313        // Update IdealKit memory and control from graphKit.
5314        __ sync_kit(this);
5315        __ set(z_alloc, narr);
5316      } __ end_if();
5317 
5318      sync_kit(ideal);
5319      z = __ value(z_alloc);
5320      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5321      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5322      // Final sync IdealKit and GraphKit.
5323      final_sync(ideal);
5324 #undef __
5325 
5326     Node* z_start = array_element_address(z, intcon(0), T_INT);
5327 
5328     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5329                                    OptoRuntime::multiplyToLen_Type(),
5330                                    stubAddr, stubName, TypePtr::BOTTOM,
5331                                    x_start, xlen, y_start, ylen, z_start, zlen);
5332   } // original reexecute is set back here
5333 
5334   C->set_has_split_ifs(true); // Has chance for split-if optimization
5335   set_result(z);
5336   return true;
5337 }
5338 
5339 //-------------inline_squareToLen------------------------------------
5340 bool LibraryCallKit::inline_squareToLen() {
5341   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5342 
5343   address stubAddr = StubRoutines::squareToLen();
5344   if (stubAddr == NULL) {
5345     return false; // Intrinsic's stub is not implemented on this platform
5346   }
5347   const char* stubName = "squareToLen";
5348 
5349   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5350 
5351   Node* x    = argument(0);
5352   Node* len  = argument(1);
5353   Node* z    = argument(2);
5354   Node* zlen = argument(3);
5355 
5356   const Type* x_type = x->Value(&_gvn);
5357   const Type* z_type = z->Value(&_gvn);
5358   const TypeAryPtr* top_x = x_type->isa_aryptr();
5359   const TypeAryPtr* top_z = z_type->isa_aryptr();
5360   if (top_x  == NULL || top_x->klass()  == NULL ||
5361       top_z  == NULL || top_z->klass()  == NULL) {
5362     // failed array check
5363     return false;
5364   }
5365 
5366   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5367   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5368   if (x_elem != T_INT || z_elem != T_INT) {
5369     return false;
5370   }
5371 
5372 
5373   Node* x_start = array_element_address(x, intcon(0), x_elem);
5374   Node* z_start = array_element_address(z, intcon(0), z_elem);
5375 
5376   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5377                                   OptoRuntime::squareToLen_Type(),
5378                                   stubAddr, stubName, TypePtr::BOTTOM,
5379                                   x_start, len, z_start, zlen);
5380 
5381   set_result(z);
5382   return true;
5383 }
5384 
5385 //-------------inline_mulAdd------------------------------------------
5386 bool LibraryCallKit::inline_mulAdd() {
5387   assert(UseMulAddIntrinsic, "not implemented on this platform");
5388 
5389   address stubAddr = StubRoutines::mulAdd();
5390   if (stubAddr == NULL) {
5391     return false; // Intrinsic's stub is not implemented on this platform
5392   }
5393   const char* stubName = "mulAdd";
5394 
5395   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5396 
5397   Node* out      = argument(0);
5398   Node* in       = argument(1);
5399   Node* offset   = argument(2);
5400   Node* len      = argument(3);
5401   Node* k        = argument(4);
5402 
5403   const Type* out_type = out->Value(&_gvn);
5404   const Type* in_type = in->Value(&_gvn);
5405   const TypeAryPtr* top_out = out_type->isa_aryptr();
5406   const TypeAryPtr* top_in = in_type->isa_aryptr();
5407   if (top_out  == NULL || top_out->klass()  == NULL ||
5408       top_in == NULL || top_in->klass() == NULL) {
5409     // failed array check
5410     return false;
5411   }
5412 
5413   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5414   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5415   if (out_elem != T_INT || in_elem != T_INT) {
5416     return false;
5417   }
5418 
5419   Node* outlen = load_array_length(out);
5420   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5421   Node* out_start = array_element_address(out, intcon(0), out_elem);
5422   Node* in_start = array_element_address(in, intcon(0), in_elem);
5423 
5424   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5425                                   OptoRuntime::mulAdd_Type(),
5426                                   stubAddr, stubName, TypePtr::BOTTOM,
5427                                   out_start,in_start, new_offset, len, k);
5428   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5429   set_result(result);
5430   return true;
5431 }
5432 
5433 //-------------inline_montgomeryMultiply-----------------------------------
5434 bool LibraryCallKit::inline_montgomeryMultiply() {
5435   address stubAddr = StubRoutines::montgomeryMultiply();
5436   if (stubAddr == NULL) {
5437     return false; // Intrinsic's stub is not implemented on this platform
5438   }
5439 
5440   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5441   const char* stubName = "montgomery_square";
5442 
5443   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5444 
5445   Node* a    = argument(0);
5446   Node* b    = argument(1);
5447   Node* n    = argument(2);
5448   Node* len  = argument(3);
5449   Node* inv  = argument(4);
5450   Node* m    = argument(6);
5451 
5452   const Type* a_type = a->Value(&_gvn);
5453   const TypeAryPtr* top_a = a_type->isa_aryptr();
5454   const Type* b_type = b->Value(&_gvn);
5455   const TypeAryPtr* top_b = b_type->isa_aryptr();
5456   const Type* n_type = a->Value(&_gvn);
5457   const TypeAryPtr* top_n = n_type->isa_aryptr();
5458   const Type* m_type = a->Value(&_gvn);
5459   const TypeAryPtr* top_m = m_type->isa_aryptr();
5460   if (top_a  == NULL || top_a->klass()  == NULL ||
5461       top_b == NULL || top_b->klass()  == NULL ||
5462       top_n == NULL || top_n->klass()  == NULL ||
5463       top_m == NULL || top_m->klass()  == NULL) {
5464     // failed array check
5465     return false;
5466   }
5467 
5468   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5469   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5470   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5471   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5472   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5473     return false;
5474   }
5475 
5476   // Make the call
5477   {
5478     Node* a_start = array_element_address(a, intcon(0), a_elem);
5479     Node* b_start = array_element_address(b, intcon(0), b_elem);
5480     Node* n_start = array_element_address(n, intcon(0), n_elem);
5481     Node* m_start = array_element_address(m, intcon(0), m_elem);
5482 
5483     Node* call = make_runtime_call(RC_LEAF,
5484                                    OptoRuntime::montgomeryMultiply_Type(),
5485                                    stubAddr, stubName, TypePtr::BOTTOM,
5486                                    a_start, b_start, n_start, len, inv, top(),
5487                                    m_start);
5488     set_result(m);
5489   }
5490 
5491   return true;
5492 }
5493 
5494 bool LibraryCallKit::inline_montgomerySquare() {
5495   address stubAddr = StubRoutines::montgomerySquare();
5496   if (stubAddr == NULL) {
5497     return false; // Intrinsic's stub is not implemented on this platform
5498   }
5499 
5500   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5501   const char* stubName = "montgomery_square";
5502 
5503   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5504 
5505   Node* a    = argument(0);
5506   Node* n    = argument(1);
5507   Node* len  = argument(2);
5508   Node* inv  = argument(3);
5509   Node* m    = argument(5);
5510 
5511   const Type* a_type = a->Value(&_gvn);
5512   const TypeAryPtr* top_a = a_type->isa_aryptr();
5513   const Type* n_type = a->Value(&_gvn);
5514   const TypeAryPtr* top_n = n_type->isa_aryptr();
5515   const Type* m_type = a->Value(&_gvn);
5516   const TypeAryPtr* top_m = m_type->isa_aryptr();
5517   if (top_a  == NULL || top_a->klass()  == NULL ||
5518       top_n == NULL || top_n->klass()  == NULL ||
5519       top_m == NULL || top_m->klass()  == NULL) {
5520     // failed array check
5521     return false;
5522   }
5523 
5524   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5525   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5526   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5527   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5528     return false;
5529   }
5530 
5531   // Make the call
5532   {
5533     Node* a_start = array_element_address(a, intcon(0), a_elem);
5534     Node* n_start = array_element_address(n, intcon(0), n_elem);
5535     Node* m_start = array_element_address(m, intcon(0), m_elem);
5536 
5537     Node* call = make_runtime_call(RC_LEAF,
5538                                    OptoRuntime::montgomerySquare_Type(),
5539                                    stubAddr, stubName, TypePtr::BOTTOM,
5540                                    a_start, n_start, len, inv, top(),
5541                                    m_start);
5542     set_result(m);
5543   }
5544 
5545   return true;
5546 }
5547 
5548 
5549 /**
5550  * Calculate CRC32 for byte.
5551  * int java.util.zip.CRC32.update(int crc, int b)
5552  */
5553 bool LibraryCallKit::inline_updateCRC32() {
5554   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5555   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5556   // no receiver since it is static method
5557   Node* crc  = argument(0); // type: int
5558   Node* b    = argument(1); // type: int
5559 
5560   /*
5561    *    int c = ~ crc;
5562    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5563    *    b = b ^ (c >>> 8);
5564    *    crc = ~b;
5565    */
5566 
5567   Node* M1 = intcon(-1);
5568   crc = _gvn.transform(new XorINode(crc, M1));
5569   Node* result = _gvn.transform(new XorINode(crc, b));
5570   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5571 
5572   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5573   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5574   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5575   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5576 
5577   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5578   result = _gvn.transform(new XorINode(crc, result));
5579   result = _gvn.transform(new XorINode(result, M1));
5580   set_result(result);
5581   return true;
5582 }
5583 
5584 /**
5585  * Calculate CRC32 for byte[] array.
5586  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5587  */
5588 bool LibraryCallKit::inline_updateBytesCRC32() {
5589   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5590   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5591   // no receiver since it is static method
5592   Node* crc     = argument(0); // type: int
5593   Node* src     = argument(1); // type: oop
5594   Node* offset  = argument(2); // type: int
5595   Node* length  = argument(3); // type: int
5596 
5597   const Type* src_type = src->Value(&_gvn);
5598   const TypeAryPtr* top_src = src_type->isa_aryptr();
5599   if (top_src  == NULL || top_src->klass()  == NULL) {
5600     // failed array check
5601     return false;
5602   }
5603 
5604   // Figure out the size and type of the elements we will be copying.
5605   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5606   if (src_elem != T_BYTE) {
5607     return false;
5608   }
5609 
5610   // 'src_start' points to src array + scaled offset
5611   Node* src_start = array_element_address(src, offset, src_elem);
5612 
5613   // We assume that range check is done by caller.
5614   // TODO: generate range check (offset+length < src.length) in debug VM.
5615 
5616   // Call the stub.
5617   address stubAddr = StubRoutines::updateBytesCRC32();
5618   const char *stubName = "updateBytesCRC32";
5619 
5620   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5621                                  stubAddr, stubName, TypePtr::BOTTOM,
5622                                  crc, src_start, length);
5623   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5624   set_result(result);
5625   return true;
5626 }
5627 
5628 /**
5629  * Calculate CRC32 for ByteBuffer.
5630  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5631  */
5632 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5633   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5634   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5635   // no receiver since it is static method
5636   Node* crc     = argument(0); // type: int
5637   Node* src     = argument(1); // type: long
5638   Node* offset  = argument(3); // type: int
5639   Node* length  = argument(4); // type: int
5640 
5641   src = ConvL2X(src);  // adjust Java long to machine word
5642   Node* base = _gvn.transform(new CastX2PNode(src));
5643   offset = ConvI2X(offset);
5644 
5645   // 'src_start' points to src array + scaled offset
5646   Node* src_start = basic_plus_adr(top(), base, offset);
5647 
5648   // Call the stub.
5649   address stubAddr = StubRoutines::updateBytesCRC32();
5650   const char *stubName = "updateBytesCRC32";
5651 
5652   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5653                                  stubAddr, stubName, TypePtr::BOTTOM,
5654                                  crc, src_start, length);
5655   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5656   set_result(result);
5657   return true;
5658 }
5659 
5660 //------------------------------get_table_from_crc32c_class-----------------------
5661 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5662   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5663   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5664 
5665   return table;
5666 }
5667 
5668 //------------------------------inline_updateBytesCRC32C-----------------------
5669 //
5670 // Calculate CRC32C for byte[] array.
5671 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5672 //
5673 bool LibraryCallKit::inline_updateBytesCRC32C() {
5674   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5675   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5676   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5677   // no receiver since it is a static method
5678   Node* crc     = argument(0); // type: int
5679   Node* src     = argument(1); // type: oop
5680   Node* offset  = argument(2); // type: int
5681   Node* end     = argument(3); // type: int
5682 
5683   Node* length = _gvn.transform(new SubINode(end, offset));
5684 
5685   const Type* src_type = src->Value(&_gvn);
5686   const TypeAryPtr* top_src = src_type->isa_aryptr();
5687   if (top_src  == NULL || top_src->klass()  == NULL) {
5688     // failed array check
5689     return false;
5690   }
5691 
5692   // Figure out the size and type of the elements we will be copying.
5693   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5694   if (src_elem != T_BYTE) {
5695     return false;
5696   }
5697 
5698   // 'src_start' points to src array + scaled offset
5699   Node* src_start = array_element_address(src, offset, src_elem);
5700 
5701   // static final int[] byteTable in class CRC32C
5702   Node* table = get_table_from_crc32c_class(callee()->holder());
5703   Node* table_start = array_element_address(table, intcon(0), T_INT);
5704 
5705   // We assume that range check is done by caller.
5706   // TODO: generate range check (offset+length < src.length) in debug VM.
5707 
5708   // Call the stub.
5709   address stubAddr = StubRoutines::updateBytesCRC32C();
5710   const char *stubName = "updateBytesCRC32C";
5711 
5712   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5713                                  stubAddr, stubName, TypePtr::BOTTOM,
5714                                  crc, src_start, length, table_start);
5715   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5716   set_result(result);
5717   return true;
5718 }
5719 
5720 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5721 //
5722 // Calculate CRC32C for DirectByteBuffer.
5723 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5724 //
5725 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5726   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5727   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5728   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5729   // no receiver since it is a static method
5730   Node* crc     = argument(0); // type: int
5731   Node* src     = argument(1); // type: long
5732   Node* offset  = argument(3); // type: int
5733   Node* end     = argument(4); // type: int
5734 
5735   Node* length = _gvn.transform(new SubINode(end, offset));
5736 
5737   src = ConvL2X(src);  // adjust Java long to machine word
5738   Node* base = _gvn.transform(new CastX2PNode(src));
5739   offset = ConvI2X(offset);
5740 
5741   // 'src_start' points to src array + scaled offset
5742   Node* src_start = basic_plus_adr(top(), base, offset);
5743 
5744   // static final int[] byteTable in class CRC32C
5745   Node* table = get_table_from_crc32c_class(callee()->holder());
5746   Node* table_start = array_element_address(table, intcon(0), T_INT);
5747 
5748   // Call the stub.
5749   address stubAddr = StubRoutines::updateBytesCRC32C();
5750   const char *stubName = "updateBytesCRC32C";
5751 
5752   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5753                                  stubAddr, stubName, TypePtr::BOTTOM,
5754                                  crc, src_start, length, table_start);
5755   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5756   set_result(result);
5757   return true;
5758 }
5759 
5760 //------------------------------inline_updateBytesAdler32----------------------
5761 //
5762 // Calculate Adler32 checksum for byte[] array.
5763 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5764 //
5765 bool LibraryCallKit::inline_updateBytesAdler32() {
5766   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5767   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5768   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5769   // no receiver since it is static method
5770   Node* crc     = argument(0); // type: int
5771   Node* src     = argument(1); // type: oop
5772   Node* offset  = argument(2); // type: int
5773   Node* length  = argument(3); // type: int
5774 
5775   const Type* src_type = src->Value(&_gvn);
5776   const TypeAryPtr* top_src = src_type->isa_aryptr();
5777   if (top_src  == NULL || top_src->klass()  == NULL) {
5778     // failed array check
5779     return false;
5780   }
5781 
5782   // Figure out the size and type of the elements we will be copying.
5783   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5784   if (src_elem != T_BYTE) {
5785     return false;
5786   }
5787 
5788   // 'src_start' points to src array + scaled offset
5789   Node* src_start = array_element_address(src, offset, src_elem);
5790 
5791   // We assume that range check is done by caller.
5792   // TODO: generate range check (offset+length < src.length) in debug VM.
5793 
5794   // Call the stub.
5795   address stubAddr = StubRoutines::updateBytesAdler32();
5796   const char *stubName = "updateBytesAdler32";
5797 
5798   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5799                                  stubAddr, stubName, TypePtr::BOTTOM,
5800                                  crc, src_start, length);
5801   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5802   set_result(result);
5803   return true;
5804 }
5805 
5806 //------------------------------inline_updateByteBufferAdler32---------------
5807 //
5808 // Calculate Adler32 checksum for DirectByteBuffer.
5809 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5810 //
5811 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5812   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5813   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5814   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5815   // no receiver since it is static method
5816   Node* crc     = argument(0); // type: int
5817   Node* src     = argument(1); // type: long
5818   Node* offset  = argument(3); // type: int
5819   Node* length  = argument(4); // type: int
5820 
5821   src = ConvL2X(src);  // adjust Java long to machine word
5822   Node* base = _gvn.transform(new CastX2PNode(src));
5823   offset = ConvI2X(offset);
5824 
5825   // 'src_start' points to src array + scaled offset
5826   Node* src_start = basic_plus_adr(top(), base, offset);
5827 
5828   // Call the stub.
5829   address stubAddr = StubRoutines::updateBytesAdler32();
5830   const char *stubName = "updateBytesAdler32";
5831 
5832   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5833                                  stubAddr, stubName, TypePtr::BOTTOM,
5834                                  crc, src_start, length);
5835 
5836   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5837   set_result(result);
5838   return true;
5839 }
5840 
5841 //----------------------------inline_reference_get----------------------------
5842 // public T java.lang.ref.Reference.get();
5843 bool LibraryCallKit::inline_reference_get() {
5844   const int referent_offset = java_lang_ref_Reference::referent_offset;
5845   guarantee(referent_offset > 0, "should have already been set");
5846 
5847   // Get the argument:
5848   Node* reference_obj = null_check_receiver();
5849   if (stopped()) return true;
5850 
5851   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5852 
5853   ciInstanceKlass* klass = env()->Object_klass();
5854   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5855 
5856   Node* no_ctrl = NULL;
5857   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5858 
5859   // Use the pre-barrier to record the value in the referent field
5860   pre_barrier(false /* do_load */,
5861               control(),
5862               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5863               result /* pre_val */,
5864               T_OBJECT);
5865 
5866   // Add memory barrier to prevent commoning reads from this field
5867   // across safepoint since GC can change its value.
5868   insert_mem_bar(Op_MemBarCPUOrder);
5869 
5870   set_result(result);
5871   return true;
5872 }
5873 
5874 
5875 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5876                                               bool is_exact=true, bool is_static=false,
5877                                               ciInstanceKlass * fromKls=NULL) {
5878   if (fromKls == NULL) {
5879     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5880     assert(tinst != NULL, "obj is null");
5881     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5882     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5883     fromKls = tinst->klass()->as_instance_klass();
5884   } else {
5885     assert(is_static, "only for static field access");
5886   }
5887   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5888                                               ciSymbol::make(fieldTypeString),
5889                                               is_static);
5890 
5891   assert (field != NULL, "undefined field");
5892   if (field == NULL) return (Node *) NULL;
5893 
5894   if (is_static) {
5895     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5896     fromObj = makecon(tip);
5897   }
5898 
5899   // Next code  copied from Parse::do_get_xxx():
5900 
5901   // Compute address and memory type.
5902   int offset  = field->offset_in_bytes();
5903   bool is_vol = field->is_volatile();
5904   ciType* field_klass = field->type();
5905   assert(field_klass->is_loaded(), "should be loaded");
5906   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5907   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5908   BasicType bt = field->layout_type();
5909 
5910   // Build the resultant type of the load
5911   const Type *type;
5912   if (bt == T_OBJECT) {
5913     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5914   } else {
5915     type = Type::get_const_basic_type(bt);
5916   }
5917 
5918   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5919     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5920   }
5921   // Build the load.
5922   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5923   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5924   // If reference is volatile, prevent following memory ops from
5925   // floating up past the volatile read.  Also prevents commoning
5926   // another volatile read.
5927   if (is_vol) {
5928     // Memory barrier includes bogus read of value to force load BEFORE membar
5929     insert_mem_bar(Op_MemBarAcquire, loadedField);
5930   }
5931   return loadedField;
5932 }
5933 
5934 
5935 //------------------------------inline_aescrypt_Block-----------------------
5936 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5937   address stubAddr = NULL;
5938   const char *stubName;
5939   assert(UseAES, "need AES instruction support");
5940 
5941   switch(id) {
5942   case vmIntrinsics::_aescrypt_encryptBlock:
5943     stubAddr = StubRoutines::aescrypt_encryptBlock();
5944     stubName = "aescrypt_encryptBlock";
5945     break;
5946   case vmIntrinsics::_aescrypt_decryptBlock:
5947     stubAddr = StubRoutines::aescrypt_decryptBlock();
5948     stubName = "aescrypt_decryptBlock";
5949     break;
5950   }
5951   if (stubAddr == NULL) return false;
5952 
5953   Node* aescrypt_object = argument(0);
5954   Node* src             = argument(1);
5955   Node* src_offset      = argument(2);
5956   Node* dest            = argument(3);
5957   Node* dest_offset     = argument(4);
5958 
5959   // (1) src and dest are arrays.
5960   const Type* src_type = src->Value(&_gvn);
5961   const Type* dest_type = dest->Value(&_gvn);
5962   const TypeAryPtr* top_src = src_type->isa_aryptr();
5963   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5964   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5965 
5966   // for the quick and dirty code we will skip all the checks.
5967   // we are just trying to get the call to be generated.
5968   Node* src_start  = src;
5969   Node* dest_start = dest;
5970   if (src_offset != NULL || dest_offset != NULL) {
5971     assert(src_offset != NULL && dest_offset != NULL, "");
5972     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5973     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5974   }
5975 
5976   // now need to get the start of its expanded key array
5977   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5978   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5979   if (k_start == NULL) return false;
5980 
5981   if (Matcher::pass_original_key_for_aes()) {
5982     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5983     // compatibility issues between Java key expansion and SPARC crypto instructions
5984     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5985     if (original_k_start == NULL) return false;
5986 
5987     // Call the stub.
5988     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5989                       stubAddr, stubName, TypePtr::BOTTOM,
5990                       src_start, dest_start, k_start, original_k_start);
5991   } else {
5992     // Call the stub.
5993     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5994                       stubAddr, stubName, TypePtr::BOTTOM,
5995                       src_start, dest_start, k_start);
5996   }
5997 
5998   return true;
5999 }
6000 
6001 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6002 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6003   address stubAddr = NULL;
6004   const char *stubName = NULL;
6005 
6006   assert(UseAES, "need AES instruction support");
6007 
6008   switch(id) {
6009   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6010     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6011     stubName = "cipherBlockChaining_encryptAESCrypt";
6012     break;
6013   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6014     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6015     stubName = "cipherBlockChaining_decryptAESCrypt";
6016     break;
6017   }
6018   if (stubAddr == NULL) return false;
6019 
6020   Node* cipherBlockChaining_object = argument(0);
6021   Node* src                        = argument(1);
6022   Node* src_offset                 = argument(2);
6023   Node* len                        = argument(3);
6024   Node* dest                       = argument(4);
6025   Node* dest_offset                = argument(5);
6026 
6027   // (1) src and dest are arrays.
6028   const Type* src_type = src->Value(&_gvn);
6029   const Type* dest_type = dest->Value(&_gvn);
6030   const TypeAryPtr* top_src = src_type->isa_aryptr();
6031   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6032   assert (top_src  != NULL && top_src->klass()  != NULL
6033           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6034 
6035   // checks are the responsibility of the caller
6036   Node* src_start  = src;
6037   Node* dest_start = dest;
6038   if (src_offset != NULL || dest_offset != NULL) {
6039     assert(src_offset != NULL && dest_offset != NULL, "");
6040     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6041     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6042   }
6043 
6044   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6045   // (because of the predicated logic executed earlier).
6046   // so we cast it here safely.
6047   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6048 
6049   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6050   if (embeddedCipherObj == NULL) return false;
6051 
6052   // cast it to what we know it will be at runtime
6053   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6054   assert(tinst != NULL, "CBC obj is null");
6055   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6056   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6057   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6058 
6059   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6060   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6061   const TypeOopPtr* xtype = aklass->as_instance_type();
6062   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6063   aescrypt_object = _gvn.transform(aescrypt_object);
6064 
6065   // we need to get the start of the aescrypt_object's expanded key array
6066   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6067   if (k_start == NULL) return false;
6068 
6069   // similarly, get the start address of the r vector
6070   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6071   if (objRvec == NULL) return false;
6072   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6073 
6074   Node* cbcCrypt;
6075   if (Matcher::pass_original_key_for_aes()) {
6076     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6077     // compatibility issues between Java key expansion and SPARC crypto instructions
6078     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6079     if (original_k_start == NULL) return false;
6080 
6081     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6082     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6083                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6084                                  stubAddr, stubName, TypePtr::BOTTOM,
6085                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6086   } else {
6087     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6088     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6089                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6090                                  stubAddr, stubName, TypePtr::BOTTOM,
6091                                  src_start, dest_start, k_start, r_start, len);
6092   }
6093 
6094   // return cipher length (int)
6095   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6096   set_result(retvalue);
6097   return true;
6098 }
6099 
6100 //------------------------------get_key_start_from_aescrypt_object-----------------------
6101 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6102   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6103   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6104   if (objAESCryptKey == NULL) return (Node *) NULL;
6105 
6106   // now have the array, need to get the start address of the K array
6107   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6108   return k_start;
6109 }
6110 
6111 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6112 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6113   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6114   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6115   if (objAESCryptKey == NULL) return (Node *) NULL;
6116 
6117   // now have the array, need to get the start address of the lastKey array
6118   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6119   return original_k_start;
6120 }
6121 
6122 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6123 // Return node representing slow path of predicate check.
6124 // the pseudo code we want to emulate with this predicate is:
6125 // for encryption:
6126 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6127 // for decryption:
6128 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6129 //    note cipher==plain is more conservative than the original java code but that's OK
6130 //
6131 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6132   // The receiver was checked for NULL already.
6133   Node* objCBC = argument(0);
6134 
6135   // Load embeddedCipher field of CipherBlockChaining object.
6136   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6137 
6138   // get AESCrypt klass for instanceOf check
6139   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6140   // will have same classloader as CipherBlockChaining object
6141   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6142   assert(tinst != NULL, "CBCobj is null");
6143   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6144 
6145   // we want to do an instanceof comparison against the AESCrypt class
6146   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6147   if (!klass_AESCrypt->is_loaded()) {
6148     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6149     Node* ctrl = control();
6150     set_control(top()); // no regular fast path
6151     return ctrl;
6152   }
6153   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6154 
6155   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6156   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6157   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6158 
6159   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6160 
6161   // for encryption, we are done
6162   if (!decrypting)
6163     return instof_false;  // even if it is NULL
6164 
6165   // for decryption, we need to add a further check to avoid
6166   // taking the intrinsic path when cipher and plain are the same
6167   // see the original java code for why.
6168   RegionNode* region = new RegionNode(3);
6169   region->init_req(1, instof_false);
6170   Node* src = argument(1);
6171   Node* dest = argument(4);
6172   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6173   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6174   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6175   region->init_req(2, src_dest_conjoint);
6176 
6177   record_for_igvn(region);
6178   return _gvn.transform(region);
6179 }
6180 
6181 //------------------------------inline_ghash_processBlocks
6182 bool LibraryCallKit::inline_ghash_processBlocks() {
6183   address stubAddr;
6184   const char *stubName;
6185   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6186 
6187   stubAddr = StubRoutines::ghash_processBlocks();
6188   stubName = "ghash_processBlocks";
6189 
6190   Node* data           = argument(0);
6191   Node* offset         = argument(1);
6192   Node* len            = argument(2);
6193   Node* state          = argument(3);
6194   Node* subkeyH        = argument(4);
6195 
6196   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6197   assert(state_start, "state is NULL");
6198   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6199   assert(subkeyH_start, "subkeyH is NULL");
6200   Node* data_start  = array_element_address(data, offset, T_BYTE);
6201   assert(data_start, "data is NULL");
6202 
6203   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6204                                   OptoRuntime::ghash_processBlocks_Type(),
6205                                   stubAddr, stubName, TypePtr::BOTTOM,
6206                                   state_start, subkeyH_start, data_start, len);
6207   return true;
6208 }
6209 
6210 //------------------------------inline_sha_implCompress-----------------------
6211 //
6212 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6213 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6214 //
6215 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6216 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6217 //
6218 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6219 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6220 //
6221 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6222   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6223 
6224   Node* sha_obj = argument(0);
6225   Node* src     = argument(1); // type oop
6226   Node* ofs     = argument(2); // type int
6227 
6228   const Type* src_type = src->Value(&_gvn);
6229   const TypeAryPtr* top_src = src_type->isa_aryptr();
6230   if (top_src  == NULL || top_src->klass()  == NULL) {
6231     // failed array check
6232     return false;
6233   }
6234   // Figure out the size and type of the elements we will be copying.
6235   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6236   if (src_elem != T_BYTE) {
6237     return false;
6238   }
6239   // 'src_start' points to src array + offset
6240   Node* src_start = array_element_address(src, ofs, src_elem);
6241   Node* state = NULL;
6242   address stubAddr;
6243   const char *stubName;
6244 
6245   switch(id) {
6246   case vmIntrinsics::_sha_implCompress:
6247     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6248     state = get_state_from_sha_object(sha_obj);
6249     stubAddr = StubRoutines::sha1_implCompress();
6250     stubName = "sha1_implCompress";
6251     break;
6252   case vmIntrinsics::_sha2_implCompress:
6253     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6254     state = get_state_from_sha_object(sha_obj);
6255     stubAddr = StubRoutines::sha256_implCompress();
6256     stubName = "sha256_implCompress";
6257     break;
6258   case vmIntrinsics::_sha5_implCompress:
6259     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6260     state = get_state_from_sha5_object(sha_obj);
6261     stubAddr = StubRoutines::sha512_implCompress();
6262     stubName = "sha512_implCompress";
6263     break;
6264   default:
6265     fatal_unexpected_iid(id);
6266     return false;
6267   }
6268   if (state == NULL) return false;
6269 
6270   // Call the stub.
6271   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6272                                  stubAddr, stubName, TypePtr::BOTTOM,
6273                                  src_start, state);
6274 
6275   return true;
6276 }
6277 
6278 //------------------------------inline_digestBase_implCompressMB-----------------------
6279 //
6280 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6281 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6282 //
6283 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6284   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6285          "need SHA1/SHA256/SHA512 instruction support");
6286   assert((uint)predicate < 3, "sanity");
6287   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6288 
6289   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6290   Node* src            = argument(1); // byte[] array
6291   Node* ofs            = argument(2); // type int
6292   Node* limit          = argument(3); // type int
6293 
6294   const Type* src_type = src->Value(&_gvn);
6295   const TypeAryPtr* top_src = src_type->isa_aryptr();
6296   if (top_src  == NULL || top_src->klass()  == NULL) {
6297     // failed array check
6298     return false;
6299   }
6300   // Figure out the size and type of the elements we will be copying.
6301   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6302   if (src_elem != T_BYTE) {
6303     return false;
6304   }
6305   // 'src_start' points to src array + offset
6306   Node* src_start = array_element_address(src, ofs, src_elem);
6307 
6308   const char* klass_SHA_name = NULL;
6309   const char* stub_name = NULL;
6310   address     stub_addr = NULL;
6311   bool        long_state = false;
6312 
6313   switch (predicate) {
6314   case 0:
6315     if (UseSHA1Intrinsics) {
6316       klass_SHA_name = "sun/security/provider/SHA";
6317       stub_name = "sha1_implCompressMB";
6318       stub_addr = StubRoutines::sha1_implCompressMB();
6319     }
6320     break;
6321   case 1:
6322     if (UseSHA256Intrinsics) {
6323       klass_SHA_name = "sun/security/provider/SHA2";
6324       stub_name = "sha256_implCompressMB";
6325       stub_addr = StubRoutines::sha256_implCompressMB();
6326     }
6327     break;
6328   case 2:
6329     if (UseSHA512Intrinsics) {
6330       klass_SHA_name = "sun/security/provider/SHA5";
6331       stub_name = "sha512_implCompressMB";
6332       stub_addr = StubRoutines::sha512_implCompressMB();
6333       long_state = true;
6334     }
6335     break;
6336   default:
6337     fatal("unknown SHA intrinsic predicate: %d", predicate);
6338   }
6339   if (klass_SHA_name != NULL) {
6340     // get DigestBase klass to lookup for SHA klass
6341     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6342     assert(tinst != NULL, "digestBase_obj is not instance???");
6343     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6344 
6345     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6346     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6347     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6348     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6349   }
6350   return false;
6351 }
6352 //------------------------------inline_sha_implCompressMB-----------------------
6353 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6354                                                bool long_state, address stubAddr, const char *stubName,
6355                                                Node* src_start, Node* ofs, Node* limit) {
6356   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6357   const TypeOopPtr* xtype = aklass->as_instance_type();
6358   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6359   sha_obj = _gvn.transform(sha_obj);
6360 
6361   Node* state;
6362   if (long_state) {
6363     state = get_state_from_sha5_object(sha_obj);
6364   } else {
6365     state = get_state_from_sha_object(sha_obj);
6366   }
6367   if (state == NULL) return false;
6368 
6369   // Call the stub.
6370   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6371                                  OptoRuntime::digestBase_implCompressMB_Type(),
6372                                  stubAddr, stubName, TypePtr::BOTTOM,
6373                                  src_start, state, ofs, limit);
6374   // return ofs (int)
6375   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6376   set_result(result);
6377 
6378   return true;
6379 }
6380 
6381 //------------------------------get_state_from_sha_object-----------------------
6382 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6383   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6384   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6385   if (sha_state == NULL) return (Node *) NULL;
6386 
6387   // now have the array, need to get the start address of the state array
6388   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6389   return state;
6390 }
6391 
6392 //------------------------------get_state_from_sha5_object-----------------------
6393 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6394   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6395   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6396   if (sha_state == NULL) return (Node *) NULL;
6397 
6398   // now have the array, need to get the start address of the state array
6399   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6400   return state;
6401 }
6402 
6403 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6404 // Return node representing slow path of predicate check.
6405 // the pseudo code we want to emulate with this predicate is:
6406 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6407 //
6408 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6409   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6410          "need SHA1/SHA256/SHA512 instruction support");
6411   assert((uint)predicate < 3, "sanity");
6412 
6413   // The receiver was checked for NULL already.
6414   Node* digestBaseObj = argument(0);
6415 
6416   // get DigestBase klass for instanceOf check
6417   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6418   assert(tinst != NULL, "digestBaseObj is null");
6419   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6420 
6421   const char* klass_SHA_name = NULL;
6422   switch (predicate) {
6423   case 0:
6424     if (UseSHA1Intrinsics) {
6425       // we want to do an instanceof comparison against the SHA class
6426       klass_SHA_name = "sun/security/provider/SHA";
6427     }
6428     break;
6429   case 1:
6430     if (UseSHA256Intrinsics) {
6431       // we want to do an instanceof comparison against the SHA2 class
6432       klass_SHA_name = "sun/security/provider/SHA2";
6433     }
6434     break;
6435   case 2:
6436     if (UseSHA512Intrinsics) {
6437       // we want to do an instanceof comparison against the SHA5 class
6438       klass_SHA_name = "sun/security/provider/SHA5";
6439     }
6440     break;
6441   default:
6442     fatal("unknown SHA intrinsic predicate: %d", predicate);
6443   }
6444 
6445   ciKlass* klass_SHA = NULL;
6446   if (klass_SHA_name != NULL) {
6447     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6448   }
6449   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6450     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6451     Node* ctrl = control();
6452     set_control(top()); // no intrinsic path
6453     return ctrl;
6454   }
6455   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6456 
6457   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6458   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6459   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6460   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6461 
6462   return instof_false;  // even if it is NULL
6463 }
6464 
6465 bool LibraryCallKit::inline_profileBoolean() {
6466   Node* counts = argument(1);
6467   const TypeAryPtr* ary = NULL;
6468   ciArray* aobj = NULL;
6469   if (counts->is_Con()
6470       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6471       && (aobj = ary->const_oop()->as_array()) != NULL
6472       && (aobj->length() == 2)) {
6473     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6474     jint false_cnt = aobj->element_value(0).as_int();
6475     jint  true_cnt = aobj->element_value(1).as_int();
6476 
6477     if (C->log() != NULL) {
6478       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6479                      false_cnt, true_cnt);
6480     }
6481 
6482     if (false_cnt + true_cnt == 0) {
6483       // According to profile, never executed.
6484       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6485                           Deoptimization::Action_reinterpret);
6486       return true;
6487     }
6488 
6489     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6490     // is a number of each value occurrences.
6491     Node* result = argument(0);
6492     if (false_cnt == 0 || true_cnt == 0) {
6493       // According to profile, one value has been never seen.
6494       int expected_val = (false_cnt == 0) ? 1 : 0;
6495 
6496       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6497       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6498 
6499       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6500       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6501       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6502 
6503       { // Slow path: uncommon trap for never seen value and then reexecute
6504         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6505         // the value has been seen at least once.
6506         PreserveJVMState pjvms(this);
6507         PreserveReexecuteState preexecs(this);
6508         jvms()->set_should_reexecute(true);
6509 
6510         set_control(slow_path);
6511         set_i_o(i_o());
6512 
6513         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6514                             Deoptimization::Action_reinterpret);
6515       }
6516       // The guard for never seen value enables sharpening of the result and
6517       // returning a constant. It allows to eliminate branches on the same value
6518       // later on.
6519       set_control(fast_path);
6520       result = intcon(expected_val);
6521     }
6522     // Stop profiling.
6523     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6524     // By replacing method body with profile data (represented as ProfileBooleanNode
6525     // on IR level) we effectively disable profiling.
6526     // It enables full speed execution once optimized code is generated.
6527     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6528     C->record_for_igvn(profile);
6529     set_result(profile);
6530     return true;
6531   } else {
6532     // Continue profiling.
6533     // Profile data isn't available at the moment. So, execute method's bytecode version.
6534     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6535     // is compiled and counters aren't available since corresponding MethodHandle
6536     // isn't a compile-time constant.
6537     return false;
6538   }
6539 }
6540 
6541 bool LibraryCallKit::inline_isCompileConstant() {
6542   Node* n = argument(0);
6543   set_result(n->is_Con() ? intcon(1) : intcon(0));
6544   return true;
6545 }